|
|
import os
|
|
|
import json
|
|
|
from flask import Flask, request, render_template_string
|
|
|
from textblob import TextBlob
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.nn.functional as F
|
|
|
from torchvision import transforms
|
|
|
from PIL import Image
|
|
|
import numpy as np
|
|
|
import librosa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
|
UPLOAD_FOLDER = os.path.join(BASE_DIR, "uploads")
|
|
|
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
|
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_text_sentiment(text: str):
|
|
|
if not text or not text.strip():
|
|
|
return None, None
|
|
|
|
|
|
polarity = TextBlob(text).sentiment.polarity
|
|
|
|
|
|
if polarity > 0.1:
|
|
|
arr = [0.1, 0.1, 0.8]
|
|
|
elif polarity < -0.1:
|
|
|
arr = [0.8, 0.1, 0.1]
|
|
|
else:
|
|
|
arr = [0.2, 0.7, 0.1]
|
|
|
|
|
|
return arr, max(arr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_audio_sentiment(file_path):
|
|
|
if not file_path:
|
|
|
return None, None
|
|
|
|
|
|
try:
|
|
|
|
|
|
y, sr = librosa.load(file_path, sr=16000)
|
|
|
|
|
|
|
|
|
energy = float(np.mean(np.abs(y)))
|
|
|
|
|
|
pitch, _ = librosa.piptrack(y=y, sr=sr)
|
|
|
pitch_vals = pitch[pitch > 0]
|
|
|
pitch_mean = float(np.mean(pitch_vals)) if pitch_vals.size > 0 else 0
|
|
|
|
|
|
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
|
|
|
|
|
|
|
|
|
if energy < 0.02 and pitch_mean < 120:
|
|
|
arr = [0.8, 0.15, 0.05]
|
|
|
elif pitch_mean > 180 and energy > 0.05:
|
|
|
arr = [0.7, 0.2, 0.1]
|
|
|
elif tempo > 120 or pitch_mean > 160:
|
|
|
arr = [0.1, 0.1, 0.8]
|
|
|
else:
|
|
|
arr = [0.1, 0.8, 0.1]
|
|
|
|
|
|
return arr, max(arr)
|
|
|
|
|
|
except Exception as e:
|
|
|
print("β AUDIO ERROR:", e)
|
|
|
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NUM_CLASSES = 7
|
|
|
IMG_LABELS = ["angry", "disgust", "fear", "happy", "neutral", "sad", "surprise"]
|
|
|
|
|
|
class MediumEmotionCNN(nn.Module):
|
|
|
def __init__(self):
|
|
|
super().__init__()
|
|
|
self.layer1 = nn.Sequential(
|
|
|
nn.Conv2d(1, 32, 3, padding=1),
|
|
|
nn.ReLU(),
|
|
|
nn.BatchNorm2d(32),
|
|
|
nn.MaxPool2d(2)
|
|
|
)
|
|
|
self.layer2 = nn.Sequential(
|
|
|
nn.Conv2d(32, 64, 3, padding=1),
|
|
|
nn.ReLU(),
|
|
|
nn.BatchNorm2d(64),
|
|
|
nn.MaxPool2d(2)
|
|
|
)
|
|
|
self.layer3 = nn.Sequential(
|
|
|
nn.Conv2d(64, 128, 3, padding=1),
|
|
|
nn.ReLU(),
|
|
|
nn.BatchNorm2d(128),
|
|
|
nn.MaxPool2d(2)
|
|
|
)
|
|
|
self.fc1 = nn.Linear(128 * 6 * 6, 256)
|
|
|
self.dropout = nn.Dropout(0.4)
|
|
|
self.fc2 = nn.Linear(256, NUM_CLASSES)
|
|
|
|
|
|
def forward(self, x):
|
|
|
x = self.layer1(x)
|
|
|
x = self.layer2(x)
|
|
|
x = self.layer3(x)
|
|
|
x = x.reshape(x.size(0), -1)
|
|
|
x = F.relu(self.fc1(x))
|
|
|
x = self.dropout(x)
|
|
|
return self.fc2(x)
|
|
|
|
|
|
|
|
|
IMG_MODEL_PATH = os.path.join(BASE_DIR, "emotion_cnn.pth")
|
|
|
image_device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
image_model = MediumEmotionCNN().to(image_device)
|
|
|
IMAGE_MODEL_OK = False
|
|
|
|
|
|
try:
|
|
|
image_model.load_state_dict(torch.load(IMG_MODEL_PATH, map_location=image_device))
|
|
|
image_model.eval()
|
|
|
IMAGE_MODEL_OK = True
|
|
|
print("π’ Image CNN loaded successfully!")
|
|
|
except Exception as e:
|
|
|
print("β Image model failed:", e)
|
|
|
|
|
|
img_transform = transforms.Compose([
|
|
|
transforms.Grayscale(1),
|
|
|
transforms.Resize((48, 48)),
|
|
|
transforms.ToTensor(),
|
|
|
transforms.Normalize((0.5,), (0.5,))
|
|
|
])
|
|
|
|
|
|
def predict_image_sentiment(path):
|
|
|
if not (IMAGE_MODEL_OK and path and os.path.exists(path)):
|
|
|
return None, None
|
|
|
|
|
|
try:
|
|
|
img = Image.open(path).convert("RGB")
|
|
|
x = img_transform(img).unsqueeze(0).to(image_device)
|
|
|
|
|
|
with torch.no_grad():
|
|
|
logits = image_model(x)
|
|
|
probs7 = torch.softmax(logits, dim=1)[0].cpu().numpy()
|
|
|
|
|
|
idx = {l: i for i, l in enumerate(IMG_LABELS)}
|
|
|
pos = float(probs7[idx["happy"]] + probs7[idx["surprise"]])
|
|
|
neu = float(probs7[idx["neutral"]])
|
|
|
neg = float(probs7[idx["angry"]] + probs7[idx["disgust"]] +
|
|
|
probs7[idx["fear"]] + probs7[idx["sad"]])
|
|
|
|
|
|
return [neg, neu, pos], max([neg, neu, pos])
|
|
|
|
|
|
except Exception as e:
|
|
|
print("β Image error:", e)
|
|
|
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fuse_sentiments(*items):
|
|
|
probs = [arr for arr, conf in items if arr]
|
|
|
if not probs:
|
|
|
return None
|
|
|
|
|
|
avg = torch.tensor(probs).mean(dim=0).tolist()
|
|
|
sent = ["negative", "neutral", "positive"][int(np.argmax(avg))]
|
|
|
emoji = {"negative": "π‘", "neutral": "π", "positive": "π"}[sent]
|
|
|
|
|
|
return {"sentiment": sent, "emoji": emoji, "probs": avg}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HTML = """
|
|
|
<!doctype html>
|
|
|
<html><head>
|
|
|
<meta charset="utf-8" />
|
|
|
|
|
|
<title>π Multimodal Sentiment Analyzer</title>
|
|
|
|
|
|
<style>
|
|
|
body{
|
|
|
margin:0;
|
|
|
font-family:Poppins, sans-serif;
|
|
|
background: linear-gradient(135deg, #161616, #1f0033, #33001a);
|
|
|
background-size: 200% 200%;
|
|
|
animation: gradientShift 8s ease infinite;
|
|
|
color:#f5f5f5;
|
|
|
}
|
|
|
|
|
|
@keyframes gradientShift {
|
|
|
0% { background-position: 0% 50%; }
|
|
|
50% { background-position: 100% 50%; }
|
|
|
100% { background-position: 0% 50%; }
|
|
|
}
|
|
|
|
|
|
.wrap{
|
|
|
max-width:900px;
|
|
|
margin:40px auto;
|
|
|
padding:20px;
|
|
|
}
|
|
|
|
|
|
.card{
|
|
|
background:rgba(255,255,255,0.07);
|
|
|
backdrop-filter: blur(12px);
|
|
|
border-radius:16px;
|
|
|
padding:28px;
|
|
|
box-shadow:0 0 18px rgba(0,0,0,0.5);
|
|
|
margin-top:22px;
|
|
|
border:1px solid rgba(255,255,255,0.15);
|
|
|
}
|
|
|
|
|
|
h1{
|
|
|
text-align:center;
|
|
|
font-size:36px;
|
|
|
font-weight:700;
|
|
|
color:#ffca5a;
|
|
|
margin-bottom:10px;
|
|
|
text-shadow:0 0 12px rgba(255, 204, 102,0.4);
|
|
|
}
|
|
|
|
|
|
input,textarea{
|
|
|
width:100%;
|
|
|
padding:14px;
|
|
|
border-radius:12px;
|
|
|
background:rgba(255,255,255,0.15);
|
|
|
border:1px solid rgba(255,255,255,0.25);
|
|
|
color:#fff;
|
|
|
margin-top:8px;
|
|
|
margin-bottom:18px;
|
|
|
outline:none;
|
|
|
resize:none;
|
|
|
box-sizing: border-box;
|
|
|
}
|
|
|
|
|
|
.btn{
|
|
|
width:100%;
|
|
|
padding:16px;
|
|
|
border-radius:12px;
|
|
|
background:linear-gradient(90deg,#ff9933,#ff5500);
|
|
|
border:0;
|
|
|
font-weight:bold;
|
|
|
color:white;
|
|
|
margin-top:6px;
|
|
|
cursor:pointer;
|
|
|
box-shadow:0 0 12px rgba(255,153,51,0.5);
|
|
|
transition: transform .2s ease;
|
|
|
}
|
|
|
|
|
|
.btn:hover{
|
|
|
transform:scale(1.04);
|
|
|
}
|
|
|
|
|
|
.preview img,.preview audio{
|
|
|
margin-top:12px;
|
|
|
max-width:100%;
|
|
|
border-radius:12px;
|
|
|
box-shadow:0 0 14px rgba(255,153,51,0.4);
|
|
|
}
|
|
|
|
|
|
.result-emoji{
|
|
|
font-size:60px;
|
|
|
margin-bottom:10px;
|
|
|
animation: pop 0.7s ease;
|
|
|
}
|
|
|
|
|
|
@keyframes pop {
|
|
|
0%{transform:scale(0.2);}
|
|
|
100%{transform:scale(1);}
|
|
|
}
|
|
|
|
|
|
pre{
|
|
|
background:rgba(0,0,0,0.4);
|
|
|
padding:16px;
|
|
|
border-radius:12px;
|
|
|
color:#7fffd4;
|
|
|
overflow:auto;
|
|
|
}
|
|
|
|
|
|
label{
|
|
|
font-size:15px;
|
|
|
opacity:0.9;
|
|
|
margin-top:12px;
|
|
|
display:block;
|
|
|
}
|
|
|
</style>
|
|
|
|
|
|
|
|
|
<script>
|
|
|
function preview(input,id,type){
|
|
|
let file = input.files[0];
|
|
|
if(!file) return;
|
|
|
let url = URL.createObjectURL(file);
|
|
|
|
|
|
if(type==="img")
|
|
|
document.getElementById(id).innerHTML = `<img src="${url}">`;
|
|
|
else
|
|
|
document.getElementById(id).innerHTML = `<audio controls src="${url}"></audio>`;
|
|
|
}
|
|
|
</script>
|
|
|
|
|
|
</head>
|
|
|
<body>
|
|
|
|
|
|
<div class="wrap">
|
|
|
<h1>π― Multimodal Sentiment Analyzer</h1>
|
|
|
|
|
|
<form method="POST" enctype="multipart/form-data" class="card">
|
|
|
<label>Enter Text:</label>
|
|
|
<textarea name="text" rows="4" placeholder="Write something..."></textarea>
|
|
|
|
|
|
<label>Upload Face Image:</label>
|
|
|
<input type="file" name="image" accept="image/*" onchange="preview(this,'imgprev','img')">
|
|
|
<div class="preview" id="imgprev"></div>
|
|
|
|
|
|
<label>Upload Audio:</label>
|
|
|
<input type="file" name="audio" accept="audio/*" onchange="preview(this,'audprev','aud')">
|
|
|
<div class="preview" id="audprev"></div>
|
|
|
|
|
|
<button class="btn">π Analyze</button>
|
|
|
</form>
|
|
|
|
|
|
{% if result %}
|
|
|
<div class="card" style="text-align:center;">
|
|
|
<div class="result-emoji">{{ result['fused']['emoji'] }}</div>
|
|
|
<h2>{{ result['fused']['sentiment'] | capitalize }}</h2>
|
|
|
</div>
|
|
|
|
|
|
<div class="card">
|
|
|
<pre>{{ result_json }}</pre>
|
|
|
</div>
|
|
|
{% endif %}
|
|
|
</div>
|
|
|
|
|
|
</body></html>
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/", methods=["GET", "POST"])
|
|
|
def home():
|
|
|
result = None
|
|
|
|
|
|
if request.method == "POST":
|
|
|
text = request.form.get("text", "")
|
|
|
|
|
|
audio_file = request.files.get("audio")
|
|
|
image_file = request.files.get("image")
|
|
|
|
|
|
audio_path = None
|
|
|
img_path = None
|
|
|
|
|
|
if audio_file and audio_file.filename:
|
|
|
audio_path = os.path.join(UPLOAD_FOLDER, audio_file.filename)
|
|
|
audio_file.save(audio_path)
|
|
|
|
|
|
if image_file and image_file.filename:
|
|
|
img_path = os.path.join(UPLOAD_FOLDER, image_file.filename)
|
|
|
image_file.save(img_path)
|
|
|
|
|
|
t = predict_text_sentiment(text)
|
|
|
a = predict_audio_sentiment(audio_path)
|
|
|
i = predict_image_sentiment(img_path)
|
|
|
|
|
|
fused = fuse_sentiments(t, a, i)
|
|
|
|
|
|
result = {"text": t, "audio": a, "image": i, "fused": fused}
|
|
|
result_json = json.dumps(result, indent=2)
|
|
|
|
|
|
return render_template_string(HTML, result=result, result_json=result_json)
|
|
|
|
|
|
return render_template_string(HTML)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
port = int(os.environ.get("PORT", 5000))
|
|
|
app.run(host="0.0.0.0", port=int(os.environ.get("PORT", 7860))) |