Upload 5 files
Browse files- Dockerfile.txt +21 -0
- app.py +390 -0
- emotion_cnn.pth +3 -0
- requirements.txt +13 -0
- runtime.txt +1 -0
Dockerfile.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
ENV PYTHONUNBUFFERED=1
|
| 4 |
+
|
| 5 |
+
RUN apt-get update && apt-get install -y \
|
| 6 |
+
ffmpeg \
|
| 7 |
+
libsndfile1 \
|
| 8 |
+
git \
|
| 9 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 10 |
+
|
| 11 |
+
WORKDIR /app
|
| 12 |
+
|
| 13 |
+
COPY requirements.txt /app/
|
| 14 |
+
|
| 15 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 16 |
+
|
| 17 |
+
COPY . /app
|
| 18 |
+
|
| 19 |
+
EXPOSE 7860
|
| 20 |
+
|
| 21 |
+
CMD ["gunicorn", "-b", "0.0.0.0:7860", "app:app"]
|
app.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from flask import Flask, request, render_template_string
|
| 4 |
+
from textblob import TextBlob
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import numpy as np
|
| 11 |
+
import librosa
|
| 12 |
+
|
| 13 |
+
# ----------------------------------------------------------
|
| 14 |
+
# PATHS
|
| 15 |
+
# ----------------------------------------------------------
|
| 16 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 17 |
+
UPLOAD_FOLDER = os.path.join(BASE_DIR, "uploads")
|
| 18 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 19 |
+
|
| 20 |
+
app = Flask(__name__)
|
| 21 |
+
|
| 22 |
+
# ----------------------------------------------------------
|
| 23 |
+
# TEXT SENTIMENT
|
| 24 |
+
# ----------------------------------------------------------
|
| 25 |
+
def predict_text_sentiment(text: str):
|
| 26 |
+
if not text or not text.strip():
|
| 27 |
+
return None, None
|
| 28 |
+
|
| 29 |
+
polarity = TextBlob(text).sentiment.polarity
|
| 30 |
+
|
| 31 |
+
if polarity > 0.1:
|
| 32 |
+
arr = [0.1, 0.1, 0.8]
|
| 33 |
+
elif polarity < -0.1:
|
| 34 |
+
arr = [0.8, 0.1, 0.1]
|
| 35 |
+
else:
|
| 36 |
+
arr = [0.2, 0.7, 0.1]
|
| 37 |
+
|
| 38 |
+
return arr, max(arr)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# ----------------------------------------------------------
|
| 42 |
+
# FINAL AUDIO SENTIMENT (Librosa-based - NO TF, NO TRANSFORMERS)
|
| 43 |
+
# ----------------------------------------------------------
|
| 44 |
+
def predict_audio_sentiment(file_path):
|
| 45 |
+
if not file_path:
|
| 46 |
+
return None, None
|
| 47 |
+
|
| 48 |
+
try:
|
| 49 |
+
# Load audio
|
| 50 |
+
y, sr = librosa.load(file_path, sr=16000)
|
| 51 |
+
|
| 52 |
+
# Extract intensity & pitch
|
| 53 |
+
energy = float(np.mean(np.abs(y)))
|
| 54 |
+
|
| 55 |
+
pitch, _ = librosa.piptrack(y=y, sr=sr)
|
| 56 |
+
pitch_vals = pitch[pitch > 0]
|
| 57 |
+
pitch_mean = float(np.mean(pitch_vals)) if pitch_vals.size > 0 else 0
|
| 58 |
+
|
| 59 |
+
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
|
| 60 |
+
|
| 61 |
+
# Simple rule-based emotions
|
| 62 |
+
if energy < 0.02 and pitch_mean < 120:
|
| 63 |
+
arr = [0.8, 0.15, 0.05] # negative
|
| 64 |
+
elif pitch_mean > 180 and energy > 0.05:
|
| 65 |
+
arr = [0.7, 0.2, 0.1] # angry -> negative
|
| 66 |
+
elif tempo > 120 or pitch_mean > 160:
|
| 67 |
+
arr = [0.1, 0.1, 0.8] # happy -> positive
|
| 68 |
+
else:
|
| 69 |
+
arr = [0.1, 0.8, 0.1] # neutral
|
| 70 |
+
|
| 71 |
+
return arr, max(arr)
|
| 72 |
+
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print("❌ AUDIO ERROR:", e)
|
| 75 |
+
return None, None
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# ----------------------------------------------------------
|
| 79 |
+
# IMAGE SENTIMENT (your trained CNN)
|
| 80 |
+
# ----------------------------------------------------------
|
| 81 |
+
NUM_CLASSES = 7
|
| 82 |
+
IMG_LABELS = ["angry", "disgust", "fear", "happy", "neutral", "sad", "surprise"]
|
| 83 |
+
|
| 84 |
+
class MediumEmotionCNN(nn.Module):
|
| 85 |
+
def __init__(self):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.layer1 = nn.Sequential(
|
| 88 |
+
nn.Conv2d(1, 32, 3, padding=1),
|
| 89 |
+
nn.ReLU(),
|
| 90 |
+
nn.BatchNorm2d(32),
|
| 91 |
+
nn.MaxPool2d(2)
|
| 92 |
+
)
|
| 93 |
+
self.layer2 = nn.Sequential(
|
| 94 |
+
nn.Conv2d(32, 64, 3, padding=1),
|
| 95 |
+
nn.ReLU(),
|
| 96 |
+
nn.BatchNorm2d(64),
|
| 97 |
+
nn.MaxPool2d(2)
|
| 98 |
+
)
|
| 99 |
+
self.layer3 = nn.Sequential(
|
| 100 |
+
nn.Conv2d(64, 128, 3, padding=1),
|
| 101 |
+
nn.ReLU(),
|
| 102 |
+
nn.BatchNorm2d(128),
|
| 103 |
+
nn.MaxPool2d(2)
|
| 104 |
+
)
|
| 105 |
+
self.fc1 = nn.Linear(128 * 6 * 6, 256)
|
| 106 |
+
self.dropout = nn.Dropout(0.4)
|
| 107 |
+
self.fc2 = nn.Linear(256, NUM_CLASSES)
|
| 108 |
+
|
| 109 |
+
def forward(self, x):
|
| 110 |
+
x = self.layer1(x)
|
| 111 |
+
x = self.layer2(x)
|
| 112 |
+
x = self.layer3(x)
|
| 113 |
+
x = x.reshape(x.size(0), -1)
|
| 114 |
+
x = F.relu(self.fc1(x))
|
| 115 |
+
x = self.dropout(x)
|
| 116 |
+
return self.fc2(x)
|
| 117 |
+
|
| 118 |
+
# Load model
|
| 119 |
+
IMG_MODEL_PATH = os.path.join(BASE_DIR, "emotion_cnn.pth")
|
| 120 |
+
image_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 121 |
+
|
| 122 |
+
image_model = MediumEmotionCNN().to(image_device)
|
| 123 |
+
IMAGE_MODEL_OK = False
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
image_model.load_state_dict(torch.load(IMG_MODEL_PATH, map_location=image_device))
|
| 127 |
+
image_model.eval()
|
| 128 |
+
IMAGE_MODEL_OK = True
|
| 129 |
+
print("🟢 Image CNN loaded successfully!")
|
| 130 |
+
except Exception as e:
|
| 131 |
+
print("❌ Image model failed:", e)
|
| 132 |
+
|
| 133 |
+
img_transform = transforms.Compose([
|
| 134 |
+
transforms.Grayscale(1),
|
| 135 |
+
transforms.Resize((48, 48)),
|
| 136 |
+
transforms.ToTensor(),
|
| 137 |
+
transforms.Normalize((0.5,), (0.5,))
|
| 138 |
+
])
|
| 139 |
+
|
| 140 |
+
def predict_image_sentiment(path):
|
| 141 |
+
if not (IMAGE_MODEL_OK and path and os.path.exists(path)):
|
| 142 |
+
return None, None
|
| 143 |
+
|
| 144 |
+
try:
|
| 145 |
+
img = Image.open(path).convert("RGB")
|
| 146 |
+
x = img_transform(img).unsqueeze(0).to(image_device)
|
| 147 |
+
|
| 148 |
+
with torch.no_grad():
|
| 149 |
+
logits = image_model(x)
|
| 150 |
+
probs7 = torch.softmax(logits, dim=1)[0].cpu().numpy()
|
| 151 |
+
|
| 152 |
+
idx = {l: i for i, l in enumerate(IMG_LABELS)}
|
| 153 |
+
pos = float(probs7[idx["happy"]] + probs7[idx["surprise"]])
|
| 154 |
+
neu = float(probs7[idx["neutral"]])
|
| 155 |
+
neg = float(probs7[idx["angry"]] + probs7[idx["disgust"]] +
|
| 156 |
+
probs7[idx["fear"]] + probs7[idx["sad"]])
|
| 157 |
+
|
| 158 |
+
return [neg, neu, pos], max([neg, neu, pos])
|
| 159 |
+
|
| 160 |
+
except Exception as e:
|
| 161 |
+
print("❌ Image error:", e)
|
| 162 |
+
return None, None
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# ----------------------------------------------------------
|
| 166 |
+
# FUSION
|
| 167 |
+
# ----------------------------------------------------------
|
| 168 |
+
def fuse_sentiments(*items):
|
| 169 |
+
probs = [arr for arr, conf in items if arr]
|
| 170 |
+
if not probs:
|
| 171 |
+
return None
|
| 172 |
+
|
| 173 |
+
avg = torch.tensor(probs).mean(dim=0).tolist()
|
| 174 |
+
sent = ["negative", "neutral", "positive"][int(np.argmax(avg))]
|
| 175 |
+
emoji = {"negative": "😡", "neutral": "😐", "positive": "😊"}[sent]
|
| 176 |
+
|
| 177 |
+
return {"sentiment": sent, "emoji": emoji, "probs": avg}
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# ----------------------------------------------------------
|
| 181 |
+
# HTML (unchanged)
|
| 182 |
+
# ----------------------------------------------------------
|
| 183 |
+
HTML = """
|
| 184 |
+
<!doctype html>
|
| 185 |
+
<html><head>
|
| 186 |
+
<meta charset="utf-8" />
|
| 187 |
+
|
| 188 |
+
<title>🎭 Multimodal Sentiment Analyzer</title>
|
| 189 |
+
|
| 190 |
+
<style>
|
| 191 |
+
body{
|
| 192 |
+
margin:0;
|
| 193 |
+
font-family:Poppins, sans-serif;
|
| 194 |
+
background: linear-gradient(135deg, #161616, #1f0033, #33001a);
|
| 195 |
+
background-size: 200% 200%;
|
| 196 |
+
animation: gradientShift 8s ease infinite;
|
| 197 |
+
color:#f5f5f5;
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
@keyframes gradientShift {
|
| 201 |
+
0% { background-position: 0% 50%; }
|
| 202 |
+
50% { background-position: 100% 50%; }
|
| 203 |
+
100% { background-position: 0% 50%; }
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
.wrap{
|
| 207 |
+
max-width:900px;
|
| 208 |
+
margin:40px auto;
|
| 209 |
+
padding:20px;
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
.card{
|
| 213 |
+
background:rgba(255,255,255,0.07);
|
| 214 |
+
backdrop-filter: blur(12px);
|
| 215 |
+
border-radius:16px;
|
| 216 |
+
padding:28px;
|
| 217 |
+
box-shadow:0 0 18px rgba(0,0,0,0.5);
|
| 218 |
+
margin-top:22px;
|
| 219 |
+
border:1px solid rgba(255,255,255,0.15);
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
h1{
|
| 223 |
+
text-align:center;
|
| 224 |
+
font-size:36px;
|
| 225 |
+
font-weight:700;
|
| 226 |
+
color:#ffca5a;
|
| 227 |
+
margin-bottom:10px;
|
| 228 |
+
text-shadow:0 0 12px rgba(255, 204, 102,0.4);
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
input,textarea{
|
| 232 |
+
width:100%;
|
| 233 |
+
padding:14px;
|
| 234 |
+
border-radius:12px;
|
| 235 |
+
background:rgba(255,255,255,0.15);
|
| 236 |
+
border:1px solid rgba(255,255,255,0.25);
|
| 237 |
+
color:#fff;
|
| 238 |
+
margin-top:8px;
|
| 239 |
+
margin-bottom:18px;
|
| 240 |
+
outline:none;
|
| 241 |
+
resize:none;
|
| 242 |
+
box-sizing: border-box;
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
.btn{
|
| 246 |
+
width:100%;
|
| 247 |
+
padding:16px;
|
| 248 |
+
border-radius:12px;
|
| 249 |
+
background:linear-gradient(90deg,#ff9933,#ff5500);
|
| 250 |
+
border:0;
|
| 251 |
+
font-weight:bold;
|
| 252 |
+
color:white;
|
| 253 |
+
margin-top:6px;
|
| 254 |
+
cursor:pointer;
|
| 255 |
+
box-shadow:0 0 12px rgba(255,153,51,0.5);
|
| 256 |
+
transition: transform .2s ease;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
.btn:hover{
|
| 260 |
+
transform:scale(1.04);
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
.preview img,.preview audio{
|
| 264 |
+
margin-top:12px;
|
| 265 |
+
max-width:100%;
|
| 266 |
+
border-radius:12px;
|
| 267 |
+
box-shadow:0 0 14px rgba(255,153,51,0.4);
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
.result-emoji{
|
| 271 |
+
font-size:60px;
|
| 272 |
+
margin-bottom:10px;
|
| 273 |
+
animation: pop 0.7s ease;
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
@keyframes pop {
|
| 277 |
+
0%{transform:scale(0.2);}
|
| 278 |
+
100%{transform:scale(1);}
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
pre{
|
| 282 |
+
background:rgba(0,0,0,0.4);
|
| 283 |
+
padding:16px;
|
| 284 |
+
border-radius:12px;
|
| 285 |
+
color:#7fffd4;
|
| 286 |
+
overflow:auto;
|
| 287 |
+
}
|
| 288 |
+
|
| 289 |
+
label{
|
| 290 |
+
font-size:15px;
|
| 291 |
+
opacity:0.9;
|
| 292 |
+
margin-top:12px;
|
| 293 |
+
display:block;
|
| 294 |
+
}
|
| 295 |
+
</style>
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
<script>
|
| 299 |
+
function preview(input,id,type){
|
| 300 |
+
let file = input.files[0];
|
| 301 |
+
if(!file) return;
|
| 302 |
+
let url = URL.createObjectURL(file);
|
| 303 |
+
|
| 304 |
+
if(type==="img")
|
| 305 |
+
document.getElementById(id).innerHTML = `<img src="${url}">`;
|
| 306 |
+
else
|
| 307 |
+
document.getElementById(id).innerHTML = `<audio controls src="${url}"></audio>`;
|
| 308 |
+
}
|
| 309 |
+
</script>
|
| 310 |
+
|
| 311 |
+
</head>
|
| 312 |
+
<body>
|
| 313 |
+
|
| 314 |
+
<div class="wrap">
|
| 315 |
+
<h1>🎯 Multimodal Sentiment Analyzer</h1>
|
| 316 |
+
|
| 317 |
+
<form method="POST" enctype="multipart/form-data" class="card">
|
| 318 |
+
<label>Enter Text:</label>
|
| 319 |
+
<textarea name="text" rows="4" placeholder="Write something..."></textarea>
|
| 320 |
+
|
| 321 |
+
<label>Upload Face Image:</label>
|
| 322 |
+
<input type="file" name="image" accept="image/*" onchange="preview(this,'imgprev','img')">
|
| 323 |
+
<div class="preview" id="imgprev"></div>
|
| 324 |
+
|
| 325 |
+
<label>Upload Audio:</label>
|
| 326 |
+
<input type="file" name="audio" accept="audio/*" onchange="preview(this,'audprev','aud')">
|
| 327 |
+
<div class="preview" id="audprev"></div>
|
| 328 |
+
|
| 329 |
+
<button class="btn">🚀 Analyze</button>
|
| 330 |
+
</form>
|
| 331 |
+
|
| 332 |
+
{% if result %}
|
| 333 |
+
<div class="card" style="text-align:center;">
|
| 334 |
+
<div class="result-emoji">{{ result['fused']['emoji'] }}</div>
|
| 335 |
+
<h2>{{ result['fused']['sentiment'] | capitalize }}</h2>
|
| 336 |
+
</div>
|
| 337 |
+
|
| 338 |
+
<div class="card">
|
| 339 |
+
<pre>{{ result_json }}</pre>
|
| 340 |
+
</div>
|
| 341 |
+
{% endif %}
|
| 342 |
+
</div>
|
| 343 |
+
|
| 344 |
+
</body></html>
|
| 345 |
+
"""
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
# ----------------------------------------------------------
|
| 350 |
+
# ROUTE
|
| 351 |
+
# ----------------------------------------------------------
|
| 352 |
+
@app.route("/", methods=["GET", "POST"])
|
| 353 |
+
def home():
|
| 354 |
+
result = None
|
| 355 |
+
|
| 356 |
+
if request.method == "POST":
|
| 357 |
+
text = request.form.get("text", "")
|
| 358 |
+
|
| 359 |
+
audio_file = request.files.get("audio")
|
| 360 |
+
image_file = request.files.get("image")
|
| 361 |
+
|
| 362 |
+
audio_path = None
|
| 363 |
+
img_path = None
|
| 364 |
+
|
| 365 |
+
if audio_file and audio_file.filename:
|
| 366 |
+
audio_path = os.path.join(UPLOAD_FOLDER, audio_file.filename)
|
| 367 |
+
audio_file.save(audio_path)
|
| 368 |
+
|
| 369 |
+
if image_file and image_file.filename:
|
| 370 |
+
img_path = os.path.join(UPLOAD_FOLDER, image_file.filename)
|
| 371 |
+
image_file.save(img_path)
|
| 372 |
+
|
| 373 |
+
t = predict_text_sentiment(text)
|
| 374 |
+
a = predict_audio_sentiment(audio_path)
|
| 375 |
+
i = predict_image_sentiment(img_path)
|
| 376 |
+
|
| 377 |
+
fused = fuse_sentiments(t, a, i)
|
| 378 |
+
|
| 379 |
+
result = {"text": t, "audio": a, "image": i, "fused": fused}
|
| 380 |
+
result_json = json.dumps(result, indent=2)
|
| 381 |
+
|
| 382 |
+
return render_template_string(HTML, result=result, result_json=result_json)
|
| 383 |
+
|
| 384 |
+
return render_template_string(HTML)
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
# ----------------------------------------------------------
|
| 388 |
+
if __name__ == "__main__":
|
| 389 |
+
port = int(os.environ.get("PORT", 5000))
|
| 390 |
+
app.run(host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))
|
emotion_cnn.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d02ae0ed00d07354860b6967be52b23a2e6a6de764ffa7e035778504dab3cdbc
|
| 3 |
+
size 5109183
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Flask==3.0.0
|
| 2 |
+
gunicorn==21.2.0
|
| 3 |
+
textblob==0.17.1
|
| 4 |
+
transformers==4.45.1
|
| 5 |
+
torch==2.9.0
|
| 6 |
+
torchvision==0.24.0
|
| 7 |
+
torchaudio==2.9.0
|
| 8 |
+
Pillow==10.4.0
|
| 9 |
+
librosa==0.10.1
|
| 10 |
+
|
| 11 |
+
huggingface-hub
|
| 12 |
+
accelerate
|
| 13 |
+
soundfile
|
runtime.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python-3.10
|