File size: 10,831 Bytes
6c52838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import json
from flask import Flask, request, render_template_string
from textblob import TextBlob
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import numpy as np
import librosa

# ----------------------------------------------------------
# PATHS
# ----------------------------------------------------------
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
UPLOAD_FOLDER = os.path.join(BASE_DIR, "uploads")
os.makedirs(UPLOAD_FOLDER, exist_ok=True)

app = Flask(__name__)

# ----------------------------------------------------------
# TEXT SENTIMENT
# ----------------------------------------------------------
def predict_text_sentiment(text: str):
    if not text or not text.strip():
        return None, None

    polarity = TextBlob(text).sentiment.polarity

    if polarity > 0.1:
        arr = [0.1, 0.1, 0.8]
    elif polarity < -0.1:
        arr = [0.8, 0.1, 0.1]
    else:
        arr = [0.2, 0.7, 0.1]

    return arr, max(arr)


# ----------------------------------------------------------
# FINAL AUDIO SENTIMENT (Librosa-based - NO TF, NO TRANSFORMERS)
# ----------------------------------------------------------
def predict_audio_sentiment(file_path):
    if not file_path:
        return None, None

    try:
        # Load audio
        y, sr = librosa.load(file_path, sr=16000)

        # Extract intensity & pitch
        energy = float(np.mean(np.abs(y)))

        pitch, _ = librosa.piptrack(y=y, sr=sr)
        pitch_vals = pitch[pitch > 0]
        pitch_mean = float(np.mean(pitch_vals)) if pitch_vals.size > 0 else 0

        tempo, _ = librosa.beat.beat_track(y=y, sr=sr)

        # Simple rule-based emotions
        if energy < 0.02 and pitch_mean < 120:
            arr = [0.8, 0.15, 0.05]  # negative
        elif pitch_mean > 180 and energy > 0.05:
            arr = [0.7, 0.2, 0.1]   # angry -> negative
        elif tempo > 120 or pitch_mean > 160:
            arr = [0.1, 0.1, 0.8]   # happy -> positive
        else:
            arr = [0.1, 0.8, 0.1]   # neutral

        return arr, max(arr)

    except Exception as e:
        print("❌ AUDIO ERROR:", e)
        return None, None


# ----------------------------------------------------------
# IMAGE SENTIMENT (your trained CNN)
# ----------------------------------------------------------
NUM_CLASSES = 7
IMG_LABELS = ["angry", "disgust", "fear", "happy", "neutral", "sad", "surprise"]

class MediumEmotionCNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 32, 3, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(32),
            nn.MaxPool2d(2)
        )
        self.layer2 = nn.Sequential(
            nn.Conv2d(32, 64, 3, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(64),
            nn.MaxPool2d(2)
        )
        self.layer3 = nn.Sequential(
            nn.Conv2d(64, 128, 3, padding=1),
            nn.ReLU(),
            nn.BatchNorm2d(128),
            nn.MaxPool2d(2)
        )
        self.fc1 = nn.Linear(128 * 6 * 6, 256)
        self.dropout = nn.Dropout(0.4)
        self.fc2 = nn.Linear(256, NUM_CLASSES)

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = x.reshape(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        return self.fc2(x)

# Load model
IMG_MODEL_PATH = os.path.join(BASE_DIR, "emotion_cnn.pth")
image_device = "cuda" if torch.cuda.is_available() else "cpu"

image_model = MediumEmotionCNN().to(image_device)
IMAGE_MODEL_OK = False

try:
    image_model.load_state_dict(torch.load(IMG_MODEL_PATH, map_location=image_device))
    image_model.eval()
    IMAGE_MODEL_OK = True
    print("🟒 Image CNN loaded successfully!")
except Exception as e:
    print("❌ Image model failed:", e)

img_transform = transforms.Compose([
    transforms.Grayscale(1),
    transforms.Resize((48, 48)),
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

def predict_image_sentiment(path):
    if not (IMAGE_MODEL_OK and path and os.path.exists(path)):
        return None, None

    try:
        img = Image.open(path).convert("RGB")
        x = img_transform(img).unsqueeze(0).to(image_device)

        with torch.no_grad():
            logits = image_model(x)
            probs7 = torch.softmax(logits, dim=1)[0].cpu().numpy()

        idx = {l: i for i, l in enumerate(IMG_LABELS)}
        pos = float(probs7[idx["happy"]] + probs7[idx["surprise"]])
        neu = float(probs7[idx["neutral"]])
        neg = float(probs7[idx["angry"]] + probs7[idx["disgust"]] +
                    probs7[idx["fear"]] + probs7[idx["sad"]])

        return [neg, neu, pos], max([neg, neu, pos])

    except Exception as e:
        print("❌ Image error:", e)
        return None, None


# ----------------------------------------------------------
# FUSION
# ----------------------------------------------------------
def fuse_sentiments(*items):
    probs = [arr for arr, conf in items if arr]
    if not probs:
        return None

    avg = torch.tensor(probs).mean(dim=0).tolist()
    sent = ["negative", "neutral", "positive"][int(np.argmax(avg))]
    emoji = {"negative": "😑", "neutral": "😐", "positive": "😊"}[sent]

    return {"sentiment": sent, "emoji": emoji, "probs": avg}


# ----------------------------------------------------------
# HTML (unchanged)
# ----------------------------------------------------------
HTML = """

<!doctype html>

<html><head>

<meta charset="utf-8" />



<title>🎭 Multimodal Sentiment Analyzer</title>



<style>

body{

    margin:0;

    font-family:Poppins, sans-serif;

    background: linear-gradient(135deg, #161616, #1f0033, #33001a);

    background-size: 200% 200%;

    animation: gradientShift 8s ease infinite;

    color:#f5f5f5;

}



@keyframes gradientShift {

    0% { background-position: 0% 50%; }

    50% { background-position: 100% 50%; }

    100% { background-position: 0% 50%; }

}



.wrap{

    max-width:900px;

    margin:40px auto;

    padding:20px;

}



.card{

    background:rgba(255,255,255,0.07);

    backdrop-filter: blur(12px);

    border-radius:16px;

    padding:28px;

    box-shadow:0 0 18px rgba(0,0,0,0.5);

    margin-top:22px;

    border:1px solid rgba(255,255,255,0.15);

}



h1{

    text-align:center;

    font-size:36px;

    font-weight:700;

    color:#ffca5a;

    margin-bottom:10px;

    text-shadow:0 0 12px rgba(255, 204, 102,0.4);

}



input,textarea{

    width:100%;

    padding:14px;

    border-radius:12px;

    background:rgba(255,255,255,0.15);

    border:1px solid rgba(255,255,255,0.25);

    color:#fff;

    margin-top:8px;

    margin-bottom:18px;

    outline:none;

    resize:none;

    box-sizing: border-box;

}



.btn{

    width:100%;

    padding:16px;

    border-radius:12px;

    background:linear-gradient(90deg,#ff9933,#ff5500);

    border:0;

    font-weight:bold;

    color:white;

    margin-top:6px;

    cursor:pointer;

    box-shadow:0 0 12px rgba(255,153,51,0.5);

    transition: transform .2s ease;

}



.btn:hover{

    transform:scale(1.04);

}



.preview img,.preview audio{

    margin-top:12px;

    max-width:100%;

    border-radius:12px;

    box-shadow:0 0 14px rgba(255,153,51,0.4);

}



.result-emoji{

    font-size:60px;

    margin-bottom:10px;

    animation: pop 0.7s ease;

}



@keyframes pop {

    0%{transform:scale(0.2);}

    100%{transform:scale(1);}

}



pre{

    background:rgba(0,0,0,0.4);

    padding:16px;

    border-radius:12px;

    color:#7fffd4;

    overflow:auto;

}



label{

    font-size:15px;

    opacity:0.9;

    margin-top:12px;

    display:block;

}

</style>





<script>

function preview(input,id,type){

    let file = input.files[0];

    if(!file) return;

    let url = URL.createObjectURL(file);



    if(type==="img")

        document.getElementById(id).innerHTML = `<img src="${url}">`;

    else

        document.getElementById(id).innerHTML = `<audio controls src="${url}"></audio>`;

}

</script>



</head>

<body>



<div class="wrap">

    <h1>🎯 Multimodal Sentiment Analyzer</h1>



    <form method="POST" enctype="multipart/form-data" class="card">

        <label>Enter Text:</label>

        <textarea name="text" rows="4" placeholder="Write something..."></textarea>



        <label>Upload Face Image:</label>

        <input type="file" name="image" accept="image/*" onchange="preview(this,'imgprev','img')">

        <div class="preview" id="imgprev"></div>



        <label>Upload Audio:</label>

        <input type="file" name="audio" accept="audio/*" onchange="preview(this,'audprev','aud')">

        <div class="preview" id="audprev"></div>



        <button class="btn">πŸš€ Analyze</button>

    </form>



    {% if result %}

    <div class="card" style="text-align:center;">

        <div class="result-emoji">{{ result['fused']['emoji'] }}</div>

        <h2>{{ result['fused']['sentiment'] | capitalize }}</h2>

    </div>



    <div class="card">

        <pre>{{ result_json }}</pre>

    </div>

    {% endif %}

</div>



</body></html>

"""



# ----------------------------------------------------------
# ROUTE
# ----------------------------------------------------------
@app.route("/", methods=["GET", "POST"])
def home():
    result = None

    if request.method == "POST":
        text = request.form.get("text", "")

        audio_file = request.files.get("audio")
        image_file = request.files.get("image")

        audio_path = None
        img_path = None

        if audio_file and audio_file.filename:
            audio_path = os.path.join(UPLOAD_FOLDER, audio_file.filename)
            audio_file.save(audio_path)

        if image_file and image_file.filename:
            img_path = os.path.join(UPLOAD_FOLDER, image_file.filename)
            image_file.save(img_path)

        t = predict_text_sentiment(text)
        a = predict_audio_sentiment(audio_path)
        i = predict_image_sentiment(img_path)

        fused = fuse_sentiments(t, a, i)

        result = {"text": t, "audio": a, "image": i, "fused": fused}
        result_json = json.dumps(result, indent=2)

        return render_template_string(HTML, result=result, result_json=result_json)

    return render_template_string(HTML)


# ----------------------------------------------------------
if __name__ == "__main__":
    port = int(os.environ.get("PORT", 5000))
    app.run(host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))