gsaltintas's picture
Update README.md
b6dd0aa verified
---
license: mit
multilinguality: multilingual
task_categories:
- multiple-choice
pretty_name: Tokenization Robustness Math
tags:
- tokenization
- mathematics
dataset_info:
- config_name: tokenizer_robustness_completion_math_canonical
features:
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int64
- name: answer_label
dtype: string
- name: split
dtype: string
- name: subcategories
dtype: string
- name: category
dtype: string
- name: lang
dtype: string
- name: second_lang
dtype: string
- name: notes
dtype: string
- name: id
dtype: string
- name: set_id
dtype: string
- name: variation_id
dtype: string
- name: vanilla_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: trimmed_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: token_counts
struct:
- name: CohereLabs/aya-expanse-8b
dtype: int64
- name: Qwen/Qwen3-8B
dtype: int64
- name: bigscience/bloom
dtype: int64
- name: common-pile/comma-v0.1-1t
dtype: int64
- name: facebook/xglm-564M
dtype: int64
- name: google-bert/bert-base-multilingual-cased
dtype: int64
- name: google/byt5-small
dtype: int64
- name: google/gemma-2-2b
dtype: int64
- name: gpt2
dtype: int64
- name: meta-llama/Llama-3.2-1B
dtype: int64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: int64
- name: mistralai/tekken
dtype: int64
- name: tiktoken/gpt-4o
dtype: int64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: int64
splits:
- name: test
num_bytes: 11202
num_examples: 21
download_size: 29976
dataset_size: 11202
- config_name: tokenizer_robustness_completion_math_chinese
features:
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int64
- name: answer_label
dtype: string
- name: split
dtype: string
- name: subcategories
dtype: string
- name: category
dtype: string
- name: lang
dtype: string
- name: second_lang
dtype: string
- name: notes
dtype: string
- name: id
dtype: string
- name: set_id
dtype: string
- name: variation_id
dtype: string
- name: vanilla_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: trimmed_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: token_counts
struct:
- name: CohereLabs/aya-expanse-8b
dtype: int64
- name: Qwen/Qwen3-8B
dtype: int64
- name: bigscience/bloom
dtype: int64
- name: common-pile/comma-v0.1-1t
dtype: int64
- name: facebook/xglm-564M
dtype: int64
- name: google-bert/bert-base-multilingual-cased
dtype: int64
- name: google/byt5-small
dtype: int64
- name: google/gemma-2-2b
dtype: int64
- name: gpt2
dtype: int64
- name: meta-llama/Llama-3.2-1B
dtype: int64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: int64
- name: mistralai/tekken
dtype: int64
- name: tiktoken/gpt-4o
dtype: int64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: int64
splits:
- name: test
num_bytes: 11147
num_examples: 21
download_size: 34445
dataset_size: 11147
- config_name: tokenizer_robustness_completion_math_decorative_unicode
features:
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int64
- name: answer_label
dtype: string
- name: split
dtype: string
- name: subcategories
dtype: string
- name: category
dtype: string
- name: lang
dtype: string
- name: second_lang
dtype: string
- name: notes
dtype: string
- name: id
dtype: string
- name: set_id
dtype: string
- name: variation_id
dtype: string
- name: vanilla_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: trimmed_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: token_counts
struct:
- name: CohereLabs/aya-expanse-8b
dtype: int64
- name: Qwen/Qwen3-8B
dtype: int64
- name: bigscience/bloom
dtype: int64
- name: common-pile/comma-v0.1-1t
dtype: int64
- name: facebook/xglm-564M
dtype: int64
- name: google-bert/bert-base-multilingual-cased
dtype: int64
- name: google/byt5-small
dtype: int64
- name: google/gemma-2-2b
dtype: int64
- name: gpt2
dtype: int64
- name: meta-llama/Llama-3.2-1B
dtype: int64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: int64
- name: mistralai/tekken
dtype: int64
- name: tiktoken/gpt-4o
dtype: int64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: int64
splits:
- name: test
num_bytes: 11986
num_examples: 21
download_size: 34660
dataset_size: 11986
- config_name: tokenizer_robustness_completion_math_farsi
features:
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int64
- name: answer_label
dtype: string
- name: split
dtype: string
- name: subcategories
dtype: string
- name: category
dtype: string
- name: lang
dtype: string
- name: second_lang
dtype: string
- name: notes
dtype: string
- name: id
dtype: string
- name: set_id
dtype: string
- name: variation_id
dtype: string
- name: vanilla_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: trimmed_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: token_counts
struct:
- name: CohereLabs/aya-expanse-8b
dtype: int64
- name: Qwen/Qwen3-8B
dtype: int64
- name: bigscience/bloom
dtype: int64
- name: common-pile/comma-v0.1-1t
dtype: int64
- name: facebook/xglm-564M
dtype: int64
- name: google-bert/bert-base-multilingual-cased
dtype: int64
- name: google/byt5-small
dtype: int64
- name: google/gemma-2-2b
dtype: int64
- name: gpt2
dtype: int64
- name: meta-llama/Llama-3.2-1B
dtype: int64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: int64
- name: mistralai/tekken
dtype: int64
- name: tiktoken/gpt-4o
dtype: int64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: int64
splits:
- name: test
num_bytes: 12034
num_examples: 21
download_size: 34859
dataset_size: 12034
- config_name: tokenizer_robustness_completion_math_italian
features:
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int64
- name: answer_label
dtype: string
- name: split
dtype: string
- name: subcategories
dtype: string
- name: category
dtype: string
- name: lang
dtype: string
- name: second_lang
dtype: string
- name: notes
dtype: string
- name: id
dtype: string
- name: set_id
dtype: string
- name: variation_id
dtype: string
- name: vanilla_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: trimmed_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: token_counts
struct:
- name: CohereLabs/aya-expanse-8b
dtype: int64
- name: Qwen/Qwen3-8B
dtype: int64
- name: bigscience/bloom
dtype: int64
- name: common-pile/comma-v0.1-1t
dtype: int64
- name: facebook/xglm-564M
dtype: int64
- name: google-bert/bert-base-multilingual-cased
dtype: int64
- name: google/byt5-small
dtype: int64
- name: google/gemma-2-2b
dtype: int64
- name: gpt2
dtype: int64
- name: meta-llama/Llama-3.2-1B
dtype: int64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: int64
- name: mistralai/tekken
dtype: int64
- name: tiktoken/gpt-4o
dtype: int64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: int64
splits:
- name: test
num_bytes: 11219
num_examples: 21
download_size: 34631
dataset_size: 11219
- config_name: tokenizer_robustness_completion_math_latex
features:
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int64
- name: answer_label
dtype: string
- name: split
dtype: string
- name: subcategories
dtype: string
- name: category
dtype: string
- name: lang
dtype: string
- name: second_lang
dtype: string
- name: notes
dtype: string
- name: id
dtype: string
- name: set_id
dtype: string
- name: variation_id
dtype: string
- name: vanilla_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: trimmed_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: token_counts
struct:
- name: CohereLabs/aya-expanse-8b
dtype: int64
- name: Qwen/Qwen3-8B
dtype: int64
- name: bigscience/bloom
dtype: int64
- name: common-pile/comma-v0.1-1t
dtype: int64
- name: facebook/xglm-564M
dtype: int64
- name: google-bert/bert-base-multilingual-cased
dtype: int64
- name: google/byt5-small
dtype: int64
- name: google/gemma-2-2b
dtype: int64
- name: gpt2
dtype: int64
- name: meta-llama/Llama-3.2-1B
dtype: int64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: int64
- name: mistralai/tekken
dtype: int64
- name: tiktoken/gpt-4o
dtype: int64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: int64
splits:
- name: test
num_bytes: 11494
num_examples: 21
download_size: 34230
dataset_size: 11494
- config_name: tokenizer_robustness_completion_math_space_removal
features:
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int64
- name: answer_label
dtype: string
- name: split
dtype: string
- name: subcategories
dtype: string
- name: category
dtype: string
- name: lang
dtype: string
- name: second_lang
dtype: string
- name: notes
dtype: string
- name: id
dtype: string
- name: set_id
dtype: string
- name: variation_id
dtype: string
- name: vanilla_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: trimmed_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: token_counts
struct:
- name: CohereLabs/aya-expanse-8b
dtype: int64
- name: Qwen/Qwen3-8B
dtype: int64
- name: bigscience/bloom
dtype: int64
- name: common-pile/comma-v0.1-1t
dtype: int64
- name: facebook/xglm-564M
dtype: int64
- name: google-bert/bert-base-multilingual-cased
dtype: int64
- name: google/byt5-small
dtype: int64
- name: google/gemma-2-2b
dtype: int64
- name: gpt2
dtype: int64
- name: meta-llama/Llama-3.2-1B
dtype: int64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: int64
- name: mistralai/tekken
dtype: int64
- name: tiktoken/gpt-4o
dtype: int64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: int64
splits:
- name: test
num_bytes: 11559
num_examples: 21
download_size: 34064
dataset_size: 11559
- config_name: tokenizer_robustness_completion_math_spelled_out
features:
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int64
- name: answer_label
dtype: string
- name: split
dtype: string
- name: subcategories
dtype: string
- name: category
dtype: string
- name: lang
dtype: string
- name: second_lang
dtype: string
- name: notes
dtype: string
- name: id
dtype: string
- name: set_id
dtype: string
- name: variation_id
dtype: string
- name: vanilla_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: trimmed_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: token_counts
struct:
- name: CohereLabs/aya-expanse-8b
dtype: int64
- name: Qwen/Qwen3-8B
dtype: int64
- name: bigscience/bloom
dtype: int64
- name: common-pile/comma-v0.1-1t
dtype: int64
- name: facebook/xglm-564M
dtype: int64
- name: google-bert/bert-base-multilingual-cased
dtype: int64
- name: google/byt5-small
dtype: int64
- name: google/gemma-2-2b
dtype: int64
- name: gpt2
dtype: int64
- name: meta-llama/Llama-3.2-1B
dtype: int64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: int64
- name: mistralai/tekken
dtype: int64
- name: tiktoken/gpt-4o
dtype: int64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: int64
splits:
- name: test
num_bytes: 12129
num_examples: 21
download_size: 34634
dataset_size: 12129
- config_name: tokenizer_robustness_completion_math_turkish
features:
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int64
- name: answer_label
dtype: string
- name: split
dtype: string
- name: subcategories
dtype: string
- name: category
dtype: string
- name: lang
dtype: string
- name: second_lang
dtype: string
- name: notes
dtype: string
- name: id
dtype: string
- name: set_id
dtype: string
- name: variation_id
dtype: string
- name: vanilla_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: trimmed_cos_sim_to_canonical
struct:
- name: CohereLabs/aya-expanse-8b
dtype: float64
- name: Qwen/Qwen3-8B
dtype: float64
- name: bigscience/bloom
dtype: float64
- name: common-pile/comma-v0.1-1t
dtype: float64
- name: facebook/xglm-564M
dtype: float64
- name: google-bert/bert-base-multilingual-cased
dtype: float64
- name: google/byt5-small
dtype: float64
- name: google/gemma-2-2b
dtype: float64
- name: gpt2
dtype: float64
- name: meta-llama/Llama-3.2-1B
dtype: float64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: float64
- name: mistralai/tekken
dtype: float64
- name: tiktoken/gpt-4o
dtype: float64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: float64
- name: token_counts
struct:
- name: CohereLabs/aya-expanse-8b
dtype: int64
- name: Qwen/Qwen3-8B
dtype: int64
- name: bigscience/bloom
dtype: int64
- name: common-pile/comma-v0.1-1t
dtype: int64
- name: facebook/xglm-564M
dtype: int64
- name: google-bert/bert-base-multilingual-cased
dtype: int64
- name: google/byt5-small
dtype: int64
- name: google/gemma-2-2b
dtype: int64
- name: gpt2
dtype: int64
- name: meta-llama/Llama-3.2-1B
dtype: int64
- name: microsoft/Phi-3-mini-4k-instruct
dtype: int64
- name: mistralai/tekken
dtype: int64
- name: tiktoken/gpt-4o
dtype: int64
- name: tokenmonster/englishcode-32000-consistent-v1
dtype: int64
splits:
- name: test
num_bytes: 11339
num_examples: 21
download_size: 34650
dataset_size: 11339
configs:
- config_name: tokenizer_robustness_completion_math_canonical
data_files:
- split: test
path: tokenizer_robustness_completion_math_canonical/test-*
- config_name: tokenizer_robustness_completion_math_chinese
data_files:
- split: test
path: tokenizer_robustness_completion_math_chinese/test-*
- config_name: tokenizer_robustness_completion_math_decorative_unicode
data_files:
- split: test
path: tokenizer_robustness_completion_math_decorative_unicode/test-*
- config_name: tokenizer_robustness_completion_math_farsi
data_files:
- split: test
path: tokenizer_robustness_completion_math_farsi/test-*
- config_name: tokenizer_robustness_completion_math_italian
data_files:
- split: test
path: tokenizer_robustness_completion_math_italian/test-*
- config_name: tokenizer_robustness_completion_math_latex
data_files:
- split: test
path: tokenizer_robustness_completion_math_latex/test-*
- config_name: tokenizer_robustness_completion_math_space_removal
data_files:
- split: test
path: tokenizer_robustness_completion_math_space_removal/test-*
- config_name: tokenizer_robustness_completion_math_spelled_out
data_files:
- split: test
path: tokenizer_robustness_completion_math_spelled_out/test-*
- config_name: tokenizer_robustness_completion_math_turkish
data_files:
- split: test
path: tokenizer_robustness_completion_math_turkish/test-*
language:
- en
- fa
- zh
- it
- tr
size_categories:
- n<1K
---
# Dataset Card for Tokenization Robustness (Math)
<!-- Provide a quick summary of the dataset. -->
<img src="toksuite-logo.png" alt="TokSuite Logo" width="250px" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# TokSuite Benchmark (Math Collection)
## Dataset Description
This dataset is part of **TokSuite**, a comprehensive benchmark designed to measure how different tokenization strategies affect language model behavior under controlled conditions.
This specific subset focuses on **mathematical text completion**, containing multiple-choice math questions with a variety of **surface-form perturbations** that stress tokenizer handling of numbers, symbols, formatting, scripts, and mathematical notation.
- **Curated by:** R3 Research Team
- **Domain:** Mathematics
- **License:** MIT License
### Dataset Summary
TokSuite isolates the impact of tokenization by holding **model architecture, training data, training budget, and initialization constant**, varying only the tokenizer.
The Math benchmark evaluates performance on:
- A **canonical mathematical formulation**
- Multiple **perturbed variants** that preserve mathematical meaning while altering surface representation
These perturbations reflect realistic variation in how mathematical expressions are written, formatted, localized, and queried in practice.
**Key Features:**
- 21 canonical math questions with unambiguous answers
- Perturbations targeting notation, symbols, scripts, and formatting
- Parallel structure with TokSuite language benchmarks
- Designed for **evaluation**, not training
### Supported Tasks
- **Multiple-Choice Math Question Answering**
- **Tokenizer Robustness Evaluation**
- **Symbolic and Numerical Text Processing**
---
## Dataset Structure
### Data Fields
| Field | Type | Description |
|------|------|-------------|
| `question` | `string` | Mathematical question text |
| `choices` | `list[string]` | Multiple-choice answer options |
| `answer` | `int64` | Index of the correct answer |
| `answer_label` | `string` | Letter label of the correct answer |
| `split` | `string` | Dataset split identifier (all entries are `test`) |
| `subcategories` | `string` | Perturbation category |
| `lang` | `string` | Domain identifier (`math`) |
| `second_lang` | `string` | English translation or description of the question |
| `notes` | `string` | Additional context about the perturbation |
| `id` | `string` | Unique question identifier |
| `set_id` | `float64` | Question set grouping identifier |
| `variation_id` | `float64` | Variation number within a question set |
| `vanilla_cos_sim_to_canonical` | `dict[string, float]` | Cosine similarity to canonical form using raw token sequences |
| `trimmed_cos_sim_to_canonical` | `dict[string, float]` | Cosine similarity after token normalization |
| `token_counts` | `dict[string, int]` | Number of tokens produced per tokenizer |
---
## Dataset Creation
### Curation Rationale
This dataset was created to:
1. Systematically evaluate tokenizer robustness on **mathematical notation and structure**
2. Measure sensitivity to changes in formatting, symbols, scripts, and numeric representation
3. Isolate tokenization effects from mathematical reasoning difficulty
4. Provide standardized benchmarks for math-focused language models
Canonical questions are intentionally **simple and high-accuracy**, allowing researchers to attribute performance degradation to tokenization rather than reasoning complexity.
### Source Data
- Canonical math questions were manually authored
- Each question was perturbed while preserving mathematical equivalence
- Canonical accuracy was validated across TokSuite models
---
## Perturbation Categories (Math)
1. **Canonical**
The baseline mathematical text written in a standard, well-formatted form with no perturbations. This serves as the reference condition for evaluating all other perturbations.
2. **Chinese**
Rewrites mathematical text using Chinese characters for numbers, operators, or surrounding descriptions, testing tokenizer robustness to non-Latin scripts in math contexts.
3. **Decorative Unicode**
Replaces standard mathematical symbols with visually similar decorative or stylized Unicode characters (e.g., fancy numerals or operators), stressing Unicode normalization and symbol handling.
4. **Farsi**
Introduces Persian (Farsi) numerals or script elements into mathematical expressions, testing tokenizer robustness to right-to-left scripts and cross-script numeric representations.
5. **Italian**
Rewrites textual components of math problems in Italian while preserving the same mathematical structure and solution.
6. **LaTeX**
Encodes mathematical expressions using LaTeX-style syntax (e.g., `\frac`, `^`, `_`), stressing tokenizer handling of markup-heavy mathematical notation.
7. **Space Removal**
Removes or alters spacing within mathematical expressions and surrounding text, stressing tokenizer assumptions about whitespace in math contexts.
8. **Spelled-Out Forms**
Replaces numerals or symbols with fully spelled-out textual equivalents (e.g., numbers written as words), increasing sequence length and altering token boundaries.
9. **Turkish**
Rewrites textual components of math problems in Turkish while preserving the underlying mathematical meaning.
---
## Considerations for Using the Data
- **Language variety:** The dataset uses standard mathematical notation and English-language math phrasing, and may not represent informal or pedagogical math language.
- **Script focus:** Mathematical expressions are primarily written using ASCII and standard Unicode; LaTeX, decorative Unicode, and non-Latin scripts are included as perturbations.
- **Domain coverage:** Questions focus on general mathematics and may not represent highly specialized or advanced mathematical domains.
- **Question simplicity:** Designed for high baseline accuracy, which may not reflect real-world mathematical task complexity.
---
## Additional Information
### Dataset Curators
The dataset was curated by the TokSuite research team at R3.
### Licensing Information
MIT License
### Citation Information
If you use this dataset in your research, please cite the TokSuite paper:
```bibtex
@inproceedings{toksuite2026,
title={TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior},
author={Altıntaş, Gül Sena and Ehghaghi, Malikeh and Lester, Brian and Liu, Fengyuan and Zhao, Wanru and Ciccone, Marco and Raffel, Colin},
year={2026},
arxiv={https://arxiv.org/abs/2512.20757},
}
```
**Paper**: [TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior](TBD)
### Contributions
This dataset is part of TokSuite, which includes:
- 14 language models with identical architectures but different tokenizers
- Multilingual benchmark datasets (English, Turkish, Italian, Farsi, Chinese)
- Comprehensive analysis of tokenization's impact on model behavior
### Contact
For questions or issues related to this dataset, please refer to the TokSuite project or contact the authors of the paper.
---
<div align="center">
**Part of the [TokSuite Project](TBD)**
*Understanding Tokenization's Role in Language Model Behavior*
</div>