Datasets:
question
stringlengths 8
123
| choices
listlengths 4
4
| answer
int64 0
3
| answer_label
stringclasses 4
values | split
stringclasses 1
value | subcategories
stringclasses 1
value | category
stringclasses 1
value | lang
stringclasses 1
value | second_lang
stringclasses 1
value | notes
stringclasses 1
value | id
stringlengths 7
7
| set_id
stringlengths 5
5
| variation_id
stringclasses 1
value | vanilla_cos_sim_to_canonical
dict | trimmed_cos_sim_to_canonical
dict | token_counts
dict |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 + 7 is
|
[
"15",
"13",
"16",
"14"
] | 3
|
D
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
200-1.0
|
200.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 5,
"Qwen/Qwen3-8B": 5,
"bigscience/bloom": 4,
"common-pile/comma-v0.1-1t": 5,
"facebook/xglm-564M": 4,
"google-bert/bert-base-multilingual-cased": 4,
"google/byt5-small": 8,
"google/gemma-2-2b": 5,
"gpt2": 4,
"meta-llama/Llama-3.2-1B": 5,
"microsoft/Phi-3-mini-4k-instruct": 6,
"mistralai/tekken": 5,
"tiktoken/gpt-4o": 5,
"tokenmonster/englishcode-32000-consistent-v1": 4
}
|
||
1/2 + 1/4 = 2/4 + 1/4 equals
|
[
"3/4",
"1/2",
"3/8",
"1/3"
] | 0
|
A
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
201-1.0
|
201.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 19,
"Qwen/Qwen3-8B": 19,
"bigscience/bloom": 9,
"common-pile/comma-v0.1-1t": 19,
"facebook/xglm-564M": 10,
"google-bert/bert-base-multilingual-cased": 17,
"google/byt5-small": 28,
"google/gemma-2-2b": 19,
"gpt2": 16,
"meta-llama/Llama-3.2-1B": 19,
"microsoft/Phi-3-mini-4k-instruct": 20,
"mistralai/tekken": 19,
"tiktoken/gpt-4o": 19,
"tokenmonster/englishcode-32000-consistent-v1": 13
}
|
||
The area of a 4 by 3 rectangle is
|
[
"10 square units",
"13 square units",
"14 square units",
"12 square units"
] | 3
|
D
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
202-1.0
|
202.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 11,
"Qwen/Qwen3-8B": 11,
"bigscience/bloom": 9,
"common-pile/comma-v0.1-1t": 12,
"facebook/xglm-564M": 10,
"google-bert/bert-base-multilingual-cased": 11,
"google/byt5-small": 33,
"google/gemma-2-2b": 11,
"gpt2": 9,
"meta-llama/Llama-3.2-1B": 11,
"microsoft/Phi-3-mini-4k-instruct": 11,
"mistralai/tekken": 11,
"tiktoken/gpt-4o": 11,
"tokenmonster/englishcode-32000-consistent-v1": 8
}
|
||
In the pattern 2, 4, 6, 8, the next number is
|
[
"10",
"9",
"8",
"11"
] | 0
|
A
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
203-1.0
|
203.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 19,
"Qwen/Qwen3-8B": 19,
"bigscience/bloom": 15,
"common-pile/comma-v0.1-1t": 19,
"facebook/xglm-564M": 13,
"google-bert/bert-base-multilingual-cased": 15,
"google/byt5-small": 45,
"google/gemma-2-2b": 19,
"gpt2": 15,
"meta-llama/Llama-3.2-1B": 19,
"microsoft/Phi-3-mini-4k-instruct": 19,
"mistralai/tekken": 19,
"tiktoken/gpt-4o": 19,
"tokenmonster/englishcode-32000-consistent-v1": 9
}
|
||
The sum of angles in a triangle is
|
[
"90 degrees",
"60 degrees",
"360 degrees",
"180 degrees"
] | 3
|
D
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
204-1.0
|
204.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 8,
"Qwen/Qwen3-8B": 8,
"bigscience/bloom": 8,
"common-pile/comma-v0.1-1t": 10,
"facebook/xglm-564M": 9,
"google-bert/bert-base-multilingual-cased": 8,
"google/byt5-small": 34,
"google/gemma-2-2b": 8,
"gpt2": 8,
"meta-llama/Llama-3.2-1B": 8,
"microsoft/Phi-3-mini-4k-instruct": 8,
"mistralai/tekken": 8,
"tiktoken/gpt-4o": 8,
"tokenmonster/englishcode-32000-consistent-v1": 6
}
|
||
In the sequence 15, 20, 25, ___, 35, the missing number is
|
[
"28",
"24",
"30",
"32"
] | 2
|
C
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
205-1.0
|
205.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 25,
"Qwen/Qwen3-8B": 25,
"bigscience/bloom": 17,
"common-pile/comma-v0.1-1t": 21,
"facebook/xglm-564M": 16,
"google-bert/bert-base-multilingual-cased": 19,
"google/byt5-small": 58,
"google/gemma-2-2b": 25,
"gpt2": 17,
"meta-llama/Llama-3.2-1B": 21,
"microsoft/Phi-3-mini-4k-instruct": 26,
"mistralai/tekken": 25,
"tiktoken/gpt-4o": 21,
"tokenmonster/englishcode-32000-consistent-v1": 13
}
|
||
The number of sides in a square is
|
[
"3",
"4",
"5",
"6"
] | 1
|
B
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
206-1.0
|
206.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 9,
"Qwen/Qwen3-8B": 9,
"bigscience/bloom": 9,
"common-pile/comma-v0.1-1t": 11,
"facebook/xglm-564M": 8,
"google-bert/bert-base-multilingual-cased": 8,
"google/byt5-small": 35,
"google/gemma-2-2b": 9,
"gpt2": 9,
"meta-llama/Llama-3.2-1B": 9,
"microsoft/Phi-3-mini-4k-instruct": 9,
"mistralai/tekken": 9,
"tiktoken/gpt-4o": 9,
"tokenmonster/englishcode-32000-consistent-v1": 7
}
|
||
Half of a circle is colored blue. The fraction that is shaded is
|
[
"1/3",
"1/4",
"1/2",
"1/5"
] | 2
|
C
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
207-1.0
|
207.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 14,
"Qwen/Qwen3-8B": 14,
"bigscience/bloom": 15,
"common-pile/comma-v0.1-1t": 15,
"facebook/xglm-564M": 17,
"google-bert/bert-base-multilingual-cased": 16,
"google/byt5-small": 64,
"google/gemma-2-2b": 14,
"gpt2": 15,
"meta-llama/Llama-3.2-1B": 14,
"microsoft/Phi-3-mini-4k-instruct": 15,
"mistralai/tekken": 14,
"tiktoken/gpt-4o": 14,
"tokenmonster/englishcode-32000-consistent-v1": 14
}
|
||
In the Pythagorean theorem a² + b² = c², variable 'c' represents
|
[
"The hypotenuse",
"The shortest side",
"The base",
"The height"
] | 0
|
A
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
208-1.0
|
208.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 20,
"Qwen/Qwen3-8B": 20,
"bigscience/bloom": 18,
"common-pile/comma-v0.1-1t": 23,
"facebook/xglm-564M": 22,
"google-bert/bert-base-multilingual-cased": 21,
"google/byt5-small": 67,
"google/gemma-2-2b": 17,
"gpt2": 20,
"meta-llama/Llama-3.2-1B": 20,
"microsoft/Phi-3-mini-4k-instruct": 21,
"mistralai/tekken": 20,
"tiktoken/gpt-4o": 21,
"tokenmonster/englishcode-32000-consistent-v1": 30
}
|
||
24 stickers minus 8 stickers leaves
|
[
"15",
"16",
"14",
"17"
] | 1
|
B
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
209-1.0
|
209.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 8,
"Qwen/Qwen3-8B": 8,
"bigscience/bloom": 8,
"common-pile/comma-v0.1-1t": 9,
"facebook/xglm-564M": 8,
"google-bert/bert-base-multilingual-cased": 8,
"google/byt5-small": 35,
"google/gemma-2-2b": 8,
"gpt2": 6,
"meta-llama/Llama-3.2-1B": 7,
"microsoft/Phi-3-mini-4k-instruct": 11,
"mistralai/tekken": 10,
"tiktoken/gpt-4o": 7,
"tokenmonster/englishcode-32000-consistent-v1": 8
}
|
||
3 apples at 25 cents each costs
|
[
"70 cents",
"75 cents",
"85 cents",
"80 cents"
] | 1
|
B
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
210-1.0
|
210.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 9,
"Qwen/Qwen3-8B": 9,
"bigscience/bloom": 7,
"common-pile/comma-v0.1-1t": 8,
"facebook/xglm-564M": 9,
"google-bert/bert-base-multilingual-cased": 8,
"google/byt5-small": 31,
"google/gemma-2-2b": 9,
"gpt2": 7,
"meta-llama/Llama-3.2-1B": 8,
"microsoft/Phi-3-mini-4k-instruct": 12,
"mistralai/tekken": 9,
"tiktoken/gpt-4o": 8,
"tokenmonster/englishcode-32000-consistent-v1": 8
}
|
||
47 rounded to the nearest 10 is
|
[
"40",
"55",
"50",
"45"
] | 2
|
C
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
211-1.0
|
211.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 10,
"Qwen/Qwen3-8B": 10,
"bigscience/bloom": 7,
"common-pile/comma-v0.1-1t": 10,
"facebook/xglm-564M": 9,
"google-bert/bert-base-multilingual-cased": 7,
"google/byt5-small": 31,
"google/gemma-2-2b": 10,
"gpt2": 7,
"meta-llama/Llama-3.2-1B": 8,
"microsoft/Phi-3-mini-4k-instruct": 11,
"mistralai/tekken": 10,
"tiktoken/gpt-4o": 8,
"tokenmonster/englishcode-32000-consistent-v1": 6
}
|
||
9 × 9 equals
|
[
"62",
"81",
"36",
"64"
] | 1
|
B
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
212-1.0
|
212.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 5,
"Qwen/Qwen3-8B": 5,
"bigscience/bloom": 4,
"common-pile/comma-v0.1-1t": 5,
"facebook/xglm-564M": 5,
"google-bert/bert-base-multilingual-cased": 5,
"google/byt5-small": 13,
"google/gemma-2-2b": 5,
"gpt2": 4,
"meta-llama/Llama-3.2-1B": 5,
"microsoft/Phi-3-mini-4k-instruct": 6,
"mistralai/tekken": 5,
"tiktoken/gpt-4o": 5,
"tokenmonster/englishcode-32000-consistent-v1": 6
}
|
||
A pizza is cut into 8 equal slices. If you eat 3 slices, 5 slices will be left. The fraction of pizza which is left will be
|
[
"5/8",
"3/8",
"5/3",
"3/5"
] | 0
|
A
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
213-1.0
|
213.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 33,
"Qwen/Qwen3-8B": 33,
"bigscience/bloom": 30,
"common-pile/comma-v0.1-1t": 34,
"facebook/xglm-564M": 34,
"google-bert/bert-base-multilingual-cased": 35,
"google/byt5-small": 123,
"google/gemma-2-2b": 33,
"gpt2": 30,
"meta-llama/Llama-3.2-1B": 33,
"microsoft/Phi-3-mini-4k-instruct": 38,
"mistralai/tekken": 33,
"tiktoken/gpt-4o": 33,
"tokenmonster/englishcode-32000-consistent-v1": 24
}
|
||
If x + 6 = 12, then x = 12 - 6 equals
|
[
"8",
"6",
"7",
"17"
] | 1
|
B
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
214-1.0
|
214.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 20,
"Qwen/Qwen3-8B": 20,
"bigscience/bloom": 14,
"common-pile/comma-v0.1-1t": 18,
"facebook/xglm-564M": 14,
"google-bert/bert-base-multilingual-cased": 15,
"google/byt5-small": 37,
"google/gemma-2-2b": 20,
"gpt2": 14,
"meta-llama/Llama-3.2-1B": 18,
"microsoft/Phi-3-mini-4k-instruct": 20,
"mistralai/tekken": 20,
"tiktoken/gpt-4o": 18,
"tokenmonster/englishcode-32000-consistent-v1": 13
}
|
||
50% of 60 is
|
[
"30",
"25",
"35",
"40"
] | 0
|
A
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
215-1.0
|
215.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 8,
"Qwen/Qwen3-8B": 8,
"bigscience/bloom": 4,
"common-pile/comma-v0.1-1t": 7,
"facebook/xglm-564M": 4,
"google-bert/bert-base-multilingual-cased": 5,
"google/byt5-small": 12,
"google/gemma-2-2b": 8,
"gpt2": 5,
"meta-llama/Llama-3.2-1B": 6,
"microsoft/Phi-3-mini-4k-instruct": 9,
"mistralai/tekken": 8,
"tiktoken/gpt-4o": 6,
"tokenmonster/englishcode-32000-consistent-v1": 5
}
|
||
5,000,000,000 / 1,000 is equal to
|
[
"5,000,000",
"50,000,000",
"1,000",
"500,000"
] | 0
|
A
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
216-1.0
|
216.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 23,
"Qwen/Qwen3-8B": 23,
"bigscience/bloom": 14,
"common-pile/comma-v0.1-1t": 17,
"facebook/xglm-564M": 7,
"google-bert/bert-base-multilingual-cased": 14,
"google/byt5-small": 33,
"google/gemma-2-2b": 23,
"gpt2": 14,
"meta-llama/Llama-3.2-1B": 15,
"microsoft/Phi-3-mini-4k-instruct": 24,
"mistralai/tekken": 23,
"tiktoken/gpt-4o": 15,
"tokenmonster/englishcode-32000-consistent-v1": 10
}
|
||
The value of 16^(1/2) is equal to
|
[
"3",
"5",
"4",
"6"
] | 2
|
C
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
217-1.0
|
217.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 14,
"Qwen/Qwen3-8B": 14,
"bigscience/bloom": 11,
"common-pile/comma-v0.1-1t": 16,
"facebook/xglm-564M": 11,
"google-bert/bert-base-multilingual-cased": 13,
"google/byt5-small": 33,
"google/gemma-2-2b": 14,
"gpt2": 13,
"meta-llama/Llama-3.2-1B": 13,
"microsoft/Phi-3-mini-4k-instruct": 14,
"mistralai/tekken": 14,
"tiktoken/gpt-4o": 13,
"tokenmonster/englishcode-32000-consistent-v1": 9
}
|
||
Calculate 3.1416 × 2
|
[
"7.2831",
"628.33",
"62.832",
"6.2832"
] | 3
|
D
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
218-1.0
|
218.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 11,
"Qwen/Qwen3-8B": 11,
"bigscience/bloom": 7,
"common-pile/comma-v0.1-1t": 9,
"facebook/xglm-564M": 6,
"google-bert/bert-base-multilingual-cased": 8,
"google/byt5-small": 21,
"google/gemma-2-2b": 11,
"gpt2": 9,
"meta-llama/Llama-3.2-1B": 9,
"microsoft/Phi-3-mini-4k-instruct": 12,
"mistralai/tekken": 11,
"tiktoken/gpt-4o": 9,
"tokenmonster/englishcode-32000-consistent-v1": 9
}
|
||
The unit of volume is
|
[
"m^2",
"m",
"m^3",
"kg"
] | 2
|
C
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
219-1.0
|
219.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 5,
"Qwen/Qwen3-8B": 5,
"bigscience/bloom": 5,
"common-pile/comma-v0.1-1t": 6,
"facebook/xglm-564M": 5,
"google-bert/bert-base-multilingual-cased": 5,
"google/byt5-small": 21,
"google/gemma-2-2b": 5,
"gpt2": 5,
"meta-llama/Llama-3.2-1B": 5,
"microsoft/Phi-3-mini-4k-instruct": 5,
"mistralai/tekken": 5,
"tiktoken/gpt-4o": 5,
"tokenmonster/englishcode-32000-consistent-v1": 5
}
|
||
The last digit of 1982354 is
|
[
"4",
"1",
"8",
"2"
] | 0
|
A
|
test
|
Canonical
|
Mathematical & Scientific Notation
|
eng_Latn
|
220-1.0
|
220.0
|
1.0
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 1,
"Qwen/Qwen3-8B": 1,
"bigscience/bloom": 1,
"common-pile/comma-v0.1-1t": 1,
"facebook/xglm-564M": 1,
"google-bert/bert-base-multilingual-cased": 1,
"google/byt5-small": 1,
"google/gemma-2-2b": 1,
"gpt2": 1,
"meta-llama/Llama-3.2-1B": 1,
"microsoft/Phi-3-mini-4k-instruct": 1,
"mistralai/tekken": 1,
"tiktoken/gpt-4o": 1,
"tokenmonster/englishcode-32000-consistent-v1": 1
}
|
{
"CohereLabs/aya-expanse-8b": 13,
"Qwen/Qwen3-8B": 13,
"bigscience/bloom": 8,
"common-pile/comma-v0.1-1t": 10,
"facebook/xglm-564M": 7,
"google-bert/bert-base-multilingual-cased": 9,
"google/byt5-small": 28,
"google/gemma-2-2b": 13,
"gpt2": 8,
"meta-llama/Llama-3.2-1B": 9,
"microsoft/Phi-3-mini-4k-instruct": 13,
"mistralai/tekken": 13,
"tiktoken/gpt-4o": 9,
"tokenmonster/englishcode-32000-consistent-v1": 8
}
|
Dataset Card for Tokenization Robustness (Math)
TokSuite Benchmark (Math Collection)
Dataset Description
This dataset is part of TokSuite, a comprehensive benchmark designed to measure how different tokenization strategies affect language model behavior under controlled conditions.
This specific subset focuses on mathematical text completion, containing multiple-choice math questions with a variety of surface-form perturbations that stress tokenizer handling of numbers, symbols, formatting, scripts, and mathematical notation.
- Curated by: R3 Research Team
- Domain: Mathematics
- License: MIT License
Dataset Summary
TokSuite isolates the impact of tokenization by holding model architecture, training data, training budget, and initialization constant, varying only the tokenizer.
The Math benchmark evaluates performance on:
- A canonical mathematical formulation
- Multiple perturbed variants that preserve mathematical meaning while altering surface representation
These perturbations reflect realistic variation in how mathematical expressions are written, formatted, localized, and queried in practice.
Key Features:
- 21 canonical math questions with unambiguous answers
- Perturbations targeting notation, symbols, scripts, and formatting
- Parallel structure with TokSuite language benchmarks
- Designed for evaluation, not training
Supported Tasks
- Multiple-Choice Math Question Answering
- Tokenizer Robustness Evaluation
- Symbolic and Numerical Text Processing
Dataset Structure
Data Fields
| Field | Type | Description |
|---|---|---|
question |
string |
Mathematical question text |
choices |
list[string] |
Multiple-choice answer options |
answer |
int64 |
Index of the correct answer |
answer_label |
string |
Letter label of the correct answer |
split |
string |
Dataset split identifier (all entries are test) |
subcategories |
string |
Perturbation category |
lang |
string |
Domain identifier (math) |
second_lang |
string |
English translation or description of the question |
notes |
string |
Additional context about the perturbation |
id |
string |
Unique question identifier |
set_id |
float64 |
Question set grouping identifier |
variation_id |
float64 |
Variation number within a question set |
vanilla_cos_sim_to_canonical |
dict[string, float] |
Cosine similarity to canonical form using raw token sequences |
trimmed_cos_sim_to_canonical |
dict[string, float] |
Cosine similarity after token normalization |
token_counts |
dict[string, int] |
Number of tokens produced per tokenizer |
Dataset Creation
Curation Rationale
This dataset was created to:
- Systematically evaluate tokenizer robustness on mathematical notation and structure
- Measure sensitivity to changes in formatting, symbols, scripts, and numeric representation
- Isolate tokenization effects from mathematical reasoning difficulty
- Provide standardized benchmarks for math-focused language models
Canonical questions are intentionally simple and high-accuracy, allowing researchers to attribute performance degradation to tokenization rather than reasoning complexity.
Source Data
- Canonical math questions were manually authored
- Each question was perturbed while preserving mathematical equivalence
- Canonical accuracy was validated across TokSuite models
Perturbation Categories (Math)
Canonical
The baseline mathematical text written in a standard, well-formatted form with no perturbations. This serves as the reference condition for evaluating all other perturbations.Chinese
Rewrites mathematical text using Chinese characters for numbers, operators, or surrounding descriptions, testing tokenizer robustness to non-Latin scripts in math contexts.Decorative Unicode
Replaces standard mathematical symbols with visually similar decorative or stylized Unicode characters (e.g., fancy numerals or operators), stressing Unicode normalization and symbol handling.Farsi
Introduces Persian (Farsi) numerals or script elements into mathematical expressions, testing tokenizer robustness to right-to-left scripts and cross-script numeric representations.Italian
Rewrites textual components of math problems in Italian while preserving the same mathematical structure and solution.LaTeX
Encodes mathematical expressions using LaTeX-style syntax (e.g.,\frac,^,_), stressing tokenizer handling of markup-heavy mathematical notation.Space Removal
Removes or alters spacing within mathematical expressions and surrounding text, stressing tokenizer assumptions about whitespace in math contexts.Spelled-Out Forms
Replaces numerals or symbols with fully spelled-out textual equivalents (e.g., numbers written as words), increasing sequence length and altering token boundaries.Turkish
Rewrites textual components of math problems in Turkish while preserving the underlying mathematical meaning.
Considerations for Using the Data
- Language variety: The dataset uses standard mathematical notation and English-language math phrasing, and may not represent informal or pedagogical math language.
- Script focus: Mathematical expressions are primarily written using ASCII and standard Unicode; LaTeX, decorative Unicode, and non-Latin scripts are included as perturbations.
- Domain coverage: Questions focus on general mathematics and may not represent highly specialized or advanced mathematical domains.
- Question simplicity: Designed for high baseline accuracy, which may not reflect real-world mathematical task complexity.
Additional Information
Dataset Curators
The dataset was curated by the TokSuite research team at R3.
Licensing Information
MIT License
Citation Information
If you use this dataset in your research, please cite the TokSuite paper:
@inproceedings{toksuite2026,
title={TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior},
author={Altıntaş, Gül Sena and Ehghaghi, Malikeh and Lester, Brian and Liu, Fengyuan and Zhao, Wanru and Ciccone, Marco and Raffel, Colin},
year={2026}
}
Paper: TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior
Contributions
This dataset is part of TokSuite, which includes:
- 14 language models with identical architectures but different tokenizers
- Multilingual benchmark datasets (English, Turkish, Italian, Farsi, Chinese)
- Comprehensive analysis of tokenization's impact on model behavior
Contact
For questions or issues related to this dataset, please refer to the TokSuite project or contact the authors of the paper.
Part of the TokSuite Project
Understanding Tokenization's Role in Language Model Behavior
- Downloads last month
- 336