index
int64 0
1.74k
| image
stringlengths 1.02k
414k
| question
stringlengths 31
488
| option
stringlengths 38
473
| answer
stringclasses 5
values |
|---|---|---|---|---|
0
|
iVBORw0KGgoAAAANSUhEUgAAAP8AAAELCAYAAAAWfFBxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABtwSURBVHhe7Z19aBznnceXtnRbGkEpWSg4goACMjjibCjCoEAiKE4M5pC5kGtCjA1Oj9a4x/4R4xgHrGIZw6nQqvlD0AUHzjIS58MqCGyscBJu8Itwm9i0OiEqLLAVZDvIRSqHYPvH7+Y7+zzr2fdZaWef55n5fuDB1sxotc/zzOeZ531SQghJJJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKBbJPy+/+/eLsqR+IqSSmzLU3S3dDcK+wyfl5FBOJu8syLNN9aukAmvkX5/JSiaVkdO38uoIIeVsyrPVVVmY/aX0p1OSSnkh0y+Dl27IveVVWfXOrS7fkxuXzsnBXR2F8+mMvH7qmjxgIVCBJfKvyNj+Qmamj16VdXWUkFrMZJX8fbkatcVNeXDl59KlCon0nkG5taZOER8r5M/PDUonMtIPPTIyr04QUoPF0d4G8hdY82qU+t5KD0x4jxmisUD+dbl6NC2ZY1k5pErpzOlbwso/qcdSri+U/N6jReYGOwvXptJy9CrrlRrz8i/lpM9/2ufl1ulMIZPSh2SKVTRSh/Dye6yMyX5ffi94T//H6nDSMSy/En7/WKE6Nj8iPSqTelj3J3VoSn5ZlNFeJX/Ke7Dw4e9jVv6VCRlIB6tizzv+UpnTwo5/Uovm5A90EKZ6ZXRRHUw4RuWfH+mpkHz96lFJ+5mUloEJds+Q6mxd/pRkZ9TBhGNO/vUZyWaqVO/zt+S0d9zPqJ4RYeWfVGPr8nfL8H11MOEYk39lbL+XEftlrMrD3a8R+BnFST+kOs3J/1gmBrT8AzLBHj8fM/Ln78twj5cR6Yx0VZme2b1Dzc5C0J2BhARoSv68V8vUMwJZmyxiRP5Cu75Hzt9WUzIrwv/KpwNpVQBw0g+ppBn516YOqX6klOyvVtVMKAbkX5JcX0oy2Zm603jz94eLw36NriXJI7T8a95Tv7NwH6U6B2WOrcgibZffX8CT9tpdDQvgwsw/P9NSfZIL06tDEsONE+reqCf/2hcy3K+uS/dLbpHmB2mr/Pkn04VSuPe3Mh8iH57810Elf0rS/aMyz5VZBOQXZdSrPdaUf/MruXfllOztKFzTsfeUTD+k+OW0Tf6bZzLFdpcf0Nn37rgsq/MlLI/Lu11l1/uhQ3YM3VQXlVJ6HYOLoTGF9fw7lNTFEOw41vdNxw7pPXhKcrMPhM+M6rRN/s1nVTr2nm5UX8CT35Cn5dfqUGN3hpKbgcHJ0JjCev6q90UgPN3gUz4Mba32R0n4G4jYBvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ4zDszUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnxmHemYHyE+Mw78xA+YlxmHdmoPzEOMw7M1B+YhzmnRkoPzEO884MlJ8Yh3lnBspPjMO8MwPlJ8Zh3pmB8hPjMO/MQPmJcZh3ZqD8xDjMOzNQfmIc5p0ZKD8xDvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ44fMu3Cu6S0KNV7oTyk8sIHze3ZSh7i7JpAvX+yGdka7ubukuCTukQ5/vvyDL6rdJKZSfGKfpvNucl9/2Kbn7crKkDpew+UCuHO2sfZ5QfmKereTdTLaB/GB9RrIDlL8WlJ8YJzL5JS9z//17VvtrQPmJcVovf142NtjR1wjKT4zTevkXZXR0Rv2f1ILyE+O0XP6VMdmfpfyNoPzEONuSv/dX8sfguP7CrIy80ykpyt8Qyk+Msy35K8b51Rg/5W8I5SfG2Zb8Var9+cVR6aP8DaH8xDitll9kWcbHb6r/k1pQfmKc1stPwkD5iXEovxkoPzEO5TcD5SfGaT7v8jJ9TMnfOyqL6ihpDspPjBM+7wrr+Rdmfyn9xWW9nfLOyKwseMe5dL85KD8xTvi8w3r+4Jh+aRhiB39TUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnbeNvf/ubLC8vy1//+leZnZ31w/j4eDHv8PPnn3/uX4Pwj3/8Q/0miQLKT1rOwsKCL/XZs2fl/fffl71798qLL75YzKNmwiuvvCJvvfWWHD9+XH7961/L1NSUX4iQ7UP5ybbBOvqLFy/KkSNH5OWXXy6RN6qwe/du+eijj+TatWuyuckB/q1A+cmWePTokf9kf/XVV0uk1OE73/mOf25gYMCX9NNPP5Xbt28Xq/TBp7f+HYDP1U0DiP3JJ59INpv1n/6oBQT/hg74Wz/+8Y/9Aujvf/+7/zmkMZSfhAZi5XI5eeONN0rkQ4CAOH7mzBlf8mba6/ozwoDvgKo/CoRqBQ++B5oauIZ9BvWh/KQhqNZDNogVFO373/++fPDBB/4TejtP3O3knW5yoGbwrW99q+T7/fCHP/T7CdgsqA7lJzVB1RtyB6WHYKjKX758uWVStSrvvv76a192dDDqz0RgIVAdyk8qQLsbnXfBJyme8qjSQ7BWE0XeYcShPA66EGBzoADlJ0Ugxfnz5+WFF14oEWZ4eDjS4bUo8w61l/Imy86dO+Wzzz5TVyQXyk98IAOk0OmIJz2kb0dVuR15h76Bn/3sZyU1gZ/85Cd+LSepUP6Eg446VI91+iGgtxyytIt25t3du3dL+gRQyxkdHVVnkwXlTzB//vOfS4bLTFWH2513aN5AeNRu9N9GLSBpcwQof0LBpJtg2x4TcUx1hJnKO3ReYohQ/31MIvryyy/V2fhD+RMGBA9W89GhZ7rzy3TeoZNT9wWgYxATmZIA5U8QqNYGZ+fhqdfOtn0tbMg7rCZ86aWXit8FNaG4Q/kTAiQPtu8xL98WbMk7NANee+214vfBBKc4zwmg/AkAE170ajtUb22r1tqUd5D97bffLn4nzGaMa0cg5Y85EB/teqQNOvgwLdc2bMs7FACYGKS/F2oDcZwaTPljDKr6uh0L8dGutRFb8w4dgfq7oTYQtyYA5Y8pqKrqGXs2iw9szjv0jejvhxmCcYLyxxA8oXTHFdr4k5OT6oyd2J53wSbAxx9/rI66D+WPIZieq9MDk3lsx4W8wwxAl9I0DJQ/ZmDaqk4LtFldwIW8Q23qwIED/vdEMwpTo12H8scITE3VS1cxROUKruQdljXrIVPMmXB9CJDyxwTciHqDS/TwR7HpRlS4lHfoONVTgTFN2mUof0zQE1NwY9rcs18N1/IuOASI/QNdhfLHAPTm6/hjqy3XcC3v0P7HVuH4zngZiUu1rCCU33Ew80y3Q3/0ox85ORHFxbzDDkB6STTWALgI5XccjDvruGO/fBdxNe+C1X8X057yOww2p9S9+y7PPnM171DL0isl8a9rtS7K7zAYzkOc0e50+eWVLucdOlf198erxVyC8jsKxvR1nF3fecb1vNMzKrF60qWnP+V3FP3Ux9i+i518QVzPOyyb1nFwaeov5XcQtPX1RJM47DcXh7xzsTCm/A6iN+BENTMOm0zEIe+CzTDbV1FqKL9jYHxZP/Xx3rk4EJe805ujYr6FC1B+x9Bjy5hgEpetpeKSd3hVuY6LC6v+KL9j6HFlV2eVVSMueYe2vt427cMPP1RH7YXyO0SwXTk7O6uOuk+c8g77/SMuLgz7UX6H0NtJ4ekSJ+KUd8Fhv6mpKXXUTii/Q+gtuOO0jxyIW97ptwBj8o/NUH5HCFb58ZrpOBG3vBseHvbjg7cA2wzldwR9Q2Eef9yIW94FC2r831YovyPoV0ljF9m4Ece80+/+t3kuBuV3APQa640jsDtv3Ihj3unpvjZvpEr5HQDDejp+y8vL6mh8iGPe4YmPONnc7qf8DqDb+3Eb4tPEMe+C7X4sxLIRyu8A2KUHcUO7P47EMe+wlbqOl63j/ZTfAfROscePH1dH4kVc805P9bW104/yO4C+iVzbJioscc07XWjbur8i5bccrNzTccOqsTgS17xDTQ3xwlJfG6H8loOloTpucezpB3HNO93jj2nZNkL5LSc4zBdX4ho/7Odnc9wov+XEVX5MXEKtZnx8nHlniPZ9q79clpMnTzYIQ5KbvC53Fp5Js3vUxPUG0k8PvJwjLmDZK7a60nmmw+XLl9UV8cD2yVnts2XlS7l+/ZKc29dZTJBM/4e+7NevI0xKbuiwvJ5J++fSmdfl3B+eSF79eiP0Z8YNLT/exxcH8HIRtIH1PoTlAcLUJb8hD+/dkMncUOCBcUPuPdxQ90pe7v/PDXns/98swbX9yZZfk5+WYypB+nJL6mCA/BO5O9wvaf+aTsnOrKkT9dGJHDf07L64yI/trdLpQgFfHr7xjW/Izp071ZVl4L7IHZFdHXgw7JGDp3IyWfbQ6Nh1UI4d3isdvaOyqH7NJBBex83GZdgGbLkvw92FBKkqv8+aTB1SN0jmtNwK8fjXiczgfqh49djaLRncg/uhQ94cuStPqt0PKBxG3pQO/zOyMqMOmyQof8MajQEMyL8kub5CgtSWX2R96pBKuIwMzqmDddCJzOB+WF1dVbnqsX5DTnQWjveNLjZoBuZlcbTPu9Y++fnk94lG/rgStzb/22+/Ld/73vdU3laGH/zgB+pKsC43Tqg+os5BmQvTAZSfk8HOAZmwoNHPNn8FYeQPVPvTR+XqujqcQOLW24/Vbt/85jeLUgQDOgHRx1FkZUz2q3P1HhTlrIydliYujwz29lfQSP5NmR97Rzr9REtL/wULctEgto8VbwUUaN/97nfl29/+th8v/e+hQ4dKtrteyqEKj7h3y/B9dTAMaw/loQUPDNvzzqj8GM47HBjnP3awV7rUUB96bs9NPww91GcTN4e6pbu7yTB0U/12KXGUH6BKfPbs2eJ7Byvj91gmBgrHUyk7qvHNomtttuadUfm7j/2nGuMvhEu/OSYH92QKw3wdO2TfL8bkbtWuXbvZfLYqq8v35NLR53MafjrpHVutDAt3LskJ9GRnq3dRJXdu//P7xJYOvGbh3P4KGrf5N+fH5B3Vw5tK90tu0cXnv8fiqPT6N29KarhdAG3bY9NVazmoBhcESNqqPvfl56q+ChrLD/Jzg6rd74X9Y7KijjvFUk76VBzqyi/LcuFEzkuZ6hQESNp6fi9N+lX+pw7JlIOdvlzPX0E4+YOTgVzN/PDye7WdDT09tZJCGiRvJ5+5wYw65+ZwL3fyqWAr8rtZ7Qsl/59+L79v0JQvpEEC9/D707li7a+7qe5+83APv6rMyWCmkCh1q/33h6VHJV766FVxcqg/hPzrU8MNx6T1TZS83XtXZGJAz/fwan/hlnmg00i+mP8/9YMZgrv32tpR2375167Iv6pEqS5/Xp7czT3v8Ov0nvphM902Gsnv3aS/7esLLT+CrdtAbwcdt6qszUhW3Qvp/lGZb7TWe+0LGX7vhPF7xvaeftA++f31/M+X7PqZmemSfYefj/OfPHZQend0qPMdsutIzsmhviIB+Tt2lI/td0kmjXPNyZ/EN/bkFycCD4N9cu7agjwrLwQ2v5J7V07J63tOyLQF94x+Y4/Nr1drn/z+ev7nY/q1wx1ZWF2tzFwXCchfbZx/YXbEu6mbkz+x7+rbfCDXzh30l/QWrk9LpksVpF0ZSXfskiO5Giv+DKDf1WdzYd0++ZNIi9v8CLa/9nkr6LiFY1OerS7InZKHRfM7P0VJsL2PmYy2QvmjJIT8srkhGw2eVvpG0oHv57cbvQGLze19QPmjJIz8IdBy6HFj7IYTJ3T84oLen/D9999XR+yE8kdJU/Ln5f7vLsgd9VMQLcdHH33k/xu3IT8dvzgQXIvx2WefqaN2QvmjpAn5N2+dlj2nb1Wd5advpmBb0vYbqxl0nOIAamWICwro4PJkG6H8kZGXJ1cOqY1IU3JsulbDflO+uj0s/enaU1iDcuzevdv//wcffOD/HAeC8XMZyK6bZqil2Q7ljwB/PX9xvoIKntxdJeP8hbBDD131jMi8+v1y9GeA8+fP+/9/4YUX/Pf4xYFg/FwGqy51XFD9tx3KHwH+ev6yMf2Goc7EhqAcjx49Ku55b+uCkWYJxs9lsHQX8UCHnwtQfgcol0PvfoOhpDg8/cvj5yLB/pjJyUl11G4ovwOUy4H5/frpn8vl1FF3KY+fi+jpvK+88or1HX0ayu8A1eRw8WarRbX4uURwi27s2+cKlN8BqskRrGa6/vSvFj+XwGQefH80w1wqiCm/A9SSQz/9X3zxxcpXXDlErfi5wOeff178/q5ts0b5HaCWHGj742UeOGfrPnFhqBU/28FT/tVXX/W/O/51rflF+R2gnhwff/xx8fzt27fVUbeoFz+b0XMuXE17yu8A9eTAUB/e44fzGF92sfOvXvxsBfMtMNEK39vV2ZaU3wEayYFxZX3NmTNn1FF3aBQ/20ABq7flRn/L119/rc64BeV3gDBy4O23uAbj/64t+gkTP5tAAau/88WLF9VR96D8DhBGDmwVjTF/XIchJ0wZdoUw8bMFFKx6ghVmWroM5XeAsHJg7F/3/qNa6kr7P2z8TIMCFQUrvit691Hgugzld4Bm5MCGkfp6V3b8aSZ+poDor732mv890dHnwqq9RlB+B2hWDj3jDMGFlX/Nxq/doAal+1QQXJrCWw/K7wDNyoGbVS8vRbh8+bI6YyfNxq/d6FWUCC6OptSC8jvAVuRANVXv+oMOqtnZWXXGPrYSv3aRzWaL3w//jxOU3wG2Kgc6qHbu3On/Ltqptg4BbjV+URMUH9X+uEH5HWA7cmC5qe6hRg3AxibAduIXBWg2Ydae/l4Q35WRk2ag/A6wXTnwllhdA0ABYNvqs+3Gr5VgunSwcy+u4gPK7wCtkANNgL179xY/6+zZs+qMeVoRv1aAabp6OA8B1f64ig8ovwO0Sg50Auo56QhvvfWWFTMBWxW/7YB1+XrbbQSslow7lN8BWikHnmRY+68/E/0BpjsCWxm/rYCluXrKLmZIxmFfxDBQfgeIQo7x8fHiklQEvGTCVBU3iviFAdV81H7030e/CKZIJwXK7wBRyYGdgPRcAH3zm6gFRBW/WqCQwzRo/Q59BEzkcX2ufrNQfgeIUg70bh8/frxY7UXA9OB29gVEGb9y8HrzYMcnCgDUgpII5XeAdsiBbaj0q6W1FHjPfDteCtKO+KEwQ19HsJDD097VjThaAeV3gHbIAVAdxhyAYHUYO9VgPnuUuwNHGT80bSB5UHosx0XvftKh/A4QpRzVwFOyXBgUCBj3xt51rSaK+KF6j63Ng3HAyAZWOcZ57L4ZKL8DRCFHGCA6hNcbhOiAuQLYvqpVTYJWxQ/fF8N2ejttHbT07WjCuATld4BWybFVUBNA1T/YHEDAUCHmwOPV1NvpKd9O/PDdUBBhyC74lEfAtmZYe0/pq0P5HWA7crQSSISe8Wqi4Wf0omO+QLOFQTPxg+z4Dui80+sVgkEXSDYvYbYFyu8A+sa2iVpV7GBAdRtNBAwloto9NTXld7RhoRGCbnvr61Fg4Dg66SAvViDib2DoEQVLec1DBzRLUCC1simSBCi/A+ib3FYaPY1bHSA7dipCUwSFBIXfGpTfAfRN7wooDPCUx9MeBQJE1XsKNBtQmBw4cMDfjBSz8jAfgbK3BsrvAFoE18FcgWC1HgE1Bh0//FytWUCigfI7QFzkr0Xc42crTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuANQfhIFTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuAPUkwO72iwsLKif7AR76NfbfYfym4Ep7gDV5IBM2CYL22NhLzubwQtA6u2dT/nNwBR3gKAc2AoLO9oG98RzQX79XasVAvocaS9McQfQclR7cQYCjr388svWBuylX/6dg4WAPkbaC1PcAYLSxC1gv339f9JemOIOoOXAq6fwCir9sw54umJ7bFtDsImiw+7du2VycrIkfqS9MMUdICgHtrMuLwRcavMHpdfoc6S9MMUdoJocwULABfmrSa+h/GZgijtAPTlQCOAFFzaDl3TUg/KbgSnuAHGXg/KbgSnuAJSfRAFT3AGal2NTnq2uytONvPrZbii/GZjiDtCsHEsX+iXtXd+XW1JH7Ibym4Ep7gDNyJFfzEl/unA95Sf1YIo7QGg58osy2tcpnZ2UnzSGKe4A4eTIy9xgp/QM35fpLOUnjWGKO0AYOdZmstLVn5PFvMhMaPnzsvF0VVZXV+VZ7eX2Hpvy7OmGd7Wm0KG4WvWX6p2rDuU3A1PcARrKsTYj2a5+uaBcbyz/pjy4dkpez2RkR3e3dGXS3vUdsuvImMwHnN386p5c+c1h7zrvfF9Oljz9H06fkr0dhc9PpdLS9d6EX+DgM+fHjsiuqufq0zB+JBKY4g5QX441mTrUIYem1tTPjeRfk5kTXZLuzMr0E23mmkwfy/i/k+6/4Enu8XhOpiYn5Zf9KBi8z+sblekL/yx7DpyTS9evy+TIe9KlOhb3j83LF8Nvyq4DpyQ3WX5uxf8L9fA/3wukvTDFHaCeHBjW68rOePo+p578KxMDkk5l5PSt0kdyfvqY+jt9Evy14vGON2Xk7pNA1V9kfqRHndsr5/5Qem5lbH/h3MCEPFbHalH4u7wV2w1T3AFqyeEP63VlZSZovkdt+edlpMc7lxmUOXWkyPqc/Me+buk9UlZVn8kW/r5f7S9jq+fK8K/zAmkvTHEHqCqHGtYbnCt9goOa8i/lpA+fFULIIpQ/tjDFHaBSjsKw3j8N3ZRH6FkvC5M/LVzf+6s/Fo7pnvobJ/yZf5SfAKa4A1TKMSNZdSxU0ALODUoGP6e9pkJlhUGRlzyr/YmAKe4kf5HLJ0/KyRrhX9Cu92TK9P9b4dgnNwqdbo8nZMAXLS1Hr677n1SB1zQYngqca4P8xAyUP4bU7vBbkbH9hXOpzsqOQvQj5N78uZSUC5Q/tlD+GFJvqG/da/d3QkovpLvek5HZBb9fYOHOJTm1t8OfHhys9ReH+rYqf++oLKpDxC4ofwypJz/a9IsX3pQOiFkWOo9OyUNtfn5Dni7flmE9ySfdL8O3lwvTdv1z9+TS0U71uz2SveYVIlXPdcrRK+ocsQrKH0NuDnVLd3e3vDtee2+/zQfX5DeH9/nX9R48JbnZB1Ki5/K4vOudw/mSMHRz6+eIVVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckkYj8P3aHxnXKUrjAAAAAAElFTkSuQmCC
|
As shown in the figure, a circle is drawn with vertex C of the square as the center. What is the measure of the central angle ∠ECF? ( )°
|
A. 45; B. 60; C. 72; D. 90; E. No correct answer
|
D
|
1
|
iVBORw0KGgoAAAANSUhEUgAAAP8AAAELCAYAAAAWfFBxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABtwSURBVHhe7Z19aBznnceXtnRbGkEpWSg4goACMjjibCjCoEAiKE4M5pC5kGtCjA1Oj9a4x/4R4xgHrGIZw6nQqvlD0AUHzjIS58MqCGyscBJu8Itwm9i0OiEqLLAVZDvIRSqHYPvH7+Y7+zzr2fdZaWef55n5fuDB1sxotc/zzOeZ531SQghJJJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKBbJPy+/+/eLsqR+IqSSmzLU3S3dDcK+wyfl5FBOJu8syLNN9aukAmvkX5/JSiaVkdO38uoIIeVsyrPVVVmY/aX0p1OSSnkh0y+Dl27IveVVWfXOrS7fkxuXzsnBXR2F8+mMvH7qmjxgIVCBJfKvyNj+Qmamj16VdXWUkFrMZJX8fbkatcVNeXDl59KlCon0nkG5taZOER8r5M/PDUonMtIPPTIyr04QUoPF0d4G8hdY82qU+t5KD0x4jxmisUD+dbl6NC2ZY1k5pErpzOlbwso/qcdSri+U/N6jReYGOwvXptJy9CrrlRrz8i/lpM9/2ufl1ulMIZPSh2SKVTRSh/Dye6yMyX5ffi94T//H6nDSMSy/En7/WKE6Nj8iPSqTelj3J3VoSn5ZlNFeJX/Ke7Dw4e9jVv6VCRlIB6tizzv+UpnTwo5/Uovm5A90EKZ6ZXRRHUw4RuWfH+mpkHz96lFJ+5mUloEJds+Q6mxd/pRkZ9TBhGNO/vUZyWaqVO/zt+S0d9zPqJ4RYeWfVGPr8nfL8H11MOEYk39lbL+XEftlrMrD3a8R+BnFST+kOs3J/1gmBrT8AzLBHj8fM/Ln78twj5cR6Yx0VZme2b1Dzc5C0J2BhARoSv68V8vUMwJZmyxiRP5Cu75Hzt9WUzIrwv/KpwNpVQBw0g+ppBn516YOqX6klOyvVtVMKAbkX5JcX0oy2Zm603jz94eLw36NriXJI7T8a95Tv7NwH6U6B2WOrcgibZffX8CT9tpdDQvgwsw/P9NSfZIL06tDEsONE+reqCf/2hcy3K+uS/dLbpHmB2mr/Pkn04VSuPe3Mh8iH57810Elf0rS/aMyz5VZBOQXZdSrPdaUf/MruXfllOztKFzTsfeUTD+k+OW0Tf6bZzLFdpcf0Nn37rgsq/MlLI/Lu11l1/uhQ3YM3VQXlVJ6HYOLoTGF9fw7lNTFEOw41vdNxw7pPXhKcrMPhM+M6rRN/s1nVTr2nm5UX8CT35Cn5dfqUGN3hpKbgcHJ0JjCev6q90UgPN3gUz4Mba32R0n4G4jYBvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ4zDszUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnxmHemYHyE+Mw78xA+YlxmHdmoPzEOMw7M1B+YhzmnRkoPzEO884MlJ8Yh3lnBspPjMO8MwPlJ8Zh3pmB8hPjMO/MQPmJcZh3ZqD8xDjMOzNQfmIc5p0ZKD8xDvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ44fMu3Cu6S0KNV7oTyk8sIHze3ZSh7i7JpAvX+yGdka7ubukuCTukQ5/vvyDL6rdJKZSfGKfpvNucl9/2Kbn7crKkDpew+UCuHO2sfZ5QfmKereTdTLaB/GB9RrIDlL8WlJ8YJzL5JS9z//17VvtrQPmJcVovf142NtjR1wjKT4zTevkXZXR0Rv2f1ILyE+O0XP6VMdmfpfyNoPzEONuSv/dX8sfguP7CrIy80ykpyt8Qyk+Msy35K8b51Rg/5W8I5SfG2Zb8Var9+cVR6aP8DaH8xDitll9kWcbHb6r/k1pQfmKc1stPwkD5iXEovxkoPzEO5TcD5SfGaT7v8jJ9TMnfOyqL6ihpDspPjBM+7wrr+Rdmfyn9xWW9nfLOyKwseMe5dL85KD8xTvi8w3r+4Jh+aRhiB39TUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnbeNvf/ubLC8vy1//+leZnZ31w/j4eDHv8PPnn3/uX4Pwj3/8Q/0miQLKT1rOwsKCL/XZs2fl/fffl71798qLL75YzKNmwiuvvCJvvfWWHD9+XH7961/L1NSUX4iQ7UP5ybbBOvqLFy/KkSNH5OWXXy6RN6qwe/du+eijj+TatWuyuckB/q1A+cmWePTokf9kf/XVV0uk1OE73/mOf25gYMCX9NNPP5Xbt28Xq/TBp7f+HYDP1U0DiP3JJ59INpv1n/6oBQT/hg74Wz/+8Y/9Aujvf/+7/zmkMZSfhAZi5XI5eeONN0rkQ4CAOH7mzBlf8mba6/ozwoDvgKo/CoRqBQ++B5oauIZ9BvWh/KQhqNZDNogVFO373/++fPDBB/4TejtP3O3knW5yoGbwrW99q+T7/fCHP/T7CdgsqA7lJzVB1RtyB6WHYKjKX758uWVStSrvvv76a192dDDqz0RgIVAdyk8qQLsbnXfBJyme8qjSQ7BWE0XeYcShPA66EGBzoADlJ0Ugxfnz5+WFF14oEWZ4eDjS4bUo8w61l/Imy86dO+Wzzz5TVyQXyk98IAOk0OmIJz2kb0dVuR15h76Bn/3sZyU1gZ/85Cd+LSepUP6Eg446VI91+iGgtxyytIt25t3du3dL+gRQyxkdHVVnkwXlTzB//vOfS4bLTFWH2513aN5AeNRu9N9GLSBpcwQof0LBpJtg2x4TcUx1hJnKO3ReYohQ/31MIvryyy/V2fhD+RMGBA9W89GhZ7rzy3TeoZNT9wWgYxATmZIA5U8QqNYGZ+fhqdfOtn0tbMg7rCZ86aWXit8FNaG4Q/kTAiQPtu8xL98WbMk7NANee+214vfBBKc4zwmg/AkAE170ajtUb22r1tqUd5D97bffLn4nzGaMa0cg5Y85EB/teqQNOvgwLdc2bMs7FACYGKS/F2oDcZwaTPljDKr6uh0L8dGutRFb8w4dgfq7oTYQtyYA5Y8pqKrqGXs2iw9szjv0jejvhxmCcYLyxxA8oXTHFdr4k5OT6oyd2J53wSbAxx9/rI66D+WPIZieq9MDk3lsx4W8wwxAl9I0DJQ/ZmDaqk4LtFldwIW8Q23qwIED/vdEMwpTo12H8scITE3VS1cxROUKruQdljXrIVPMmXB9CJDyxwTciHqDS/TwR7HpRlS4lHfoONVTgTFN2mUof0zQE1NwY9rcs18N1/IuOASI/QNdhfLHAPTm6/hjqy3XcC3v0P7HVuH4zngZiUu1rCCU33Ew80y3Q3/0ox85ORHFxbzDDkB6STTWALgI5XccjDvruGO/fBdxNe+C1X8X057yOww2p9S9+y7PPnM171DL0isl8a9rtS7K7zAYzkOc0e50+eWVLucdOlf198erxVyC8jsKxvR1nF3fecb1vNMzKrF60qWnP+V3FP3Ux9i+i518QVzPOyyb1nFwaeov5XcQtPX1RJM47DcXh7xzsTCm/A6iN+BENTMOm0zEIe+CzTDbV1FqKL9jYHxZP/Xx3rk4EJe805ujYr6FC1B+x9Bjy5hgEpetpeKSd3hVuY6LC6v+KL9j6HFlV2eVVSMueYe2vt427cMPP1RH7YXyO0SwXTk7O6uOuk+c8g77/SMuLgz7UX6H0NtJ4ekSJ+KUd8Fhv6mpKXXUTii/Q+gtuOO0jxyIW97ptwBj8o/NUH5HCFb58ZrpOBG3vBseHvbjg7cA2wzldwR9Q2Eef9yIW94FC2r831YovyPoV0ljF9m4Ece80+/+t3kuBuV3APQa640jsDtv3Ihj3unpvjZvpEr5HQDDejp+y8vL6mh8iGPe4YmPONnc7qf8DqDb+3Eb4tPEMe+C7X4sxLIRyu8A2KUHcUO7P47EMe+wlbqOl63j/ZTfAfROscePH1dH4kVc805P9bW104/yO4C+iVzbJioscc07XWjbur8i5bccrNzTccOqsTgS17xDTQ3xwlJfG6H8loOloTpucezpB3HNO93jj2nZNkL5LSc4zBdX4ho/7Odnc9wov+XEVX5MXEKtZnx8nHlniPZ9q79clpMnTzYIQ5KbvC53Fp5Js3vUxPUG0k8PvJwjLmDZK7a60nmmw+XLl9UV8cD2yVnts2XlS7l+/ZKc29dZTJBM/4e+7NevI0xKbuiwvJ5J++fSmdfl3B+eSF79eiP0Z8YNLT/exxcH8HIRtIH1PoTlAcLUJb8hD+/dkMncUOCBcUPuPdxQ90pe7v/PDXns/98swbX9yZZfk5+WYypB+nJL6mCA/BO5O9wvaf+aTsnOrKkT9dGJHDf07L64yI/trdLpQgFfHr7xjW/Izp071ZVl4L7IHZFdHXgw7JGDp3IyWfbQ6Nh1UI4d3isdvaOyqH7NJBBex83GZdgGbLkvw92FBKkqv8+aTB1SN0jmtNwK8fjXiczgfqh49djaLRncg/uhQ94cuStPqt0PKBxG3pQO/zOyMqMOmyQof8MajQEMyL8kub5CgtSWX2R96pBKuIwMzqmDddCJzOB+WF1dVbnqsX5DTnQWjveNLjZoBuZlcbTPu9Y++fnk94lG/rgStzb/22+/Ld/73vdU3laGH/zgB+pKsC43Tqg+os5BmQvTAZSfk8HOAZmwoNHPNn8FYeQPVPvTR+XqujqcQOLW24/Vbt/85jeLUgQDOgHRx1FkZUz2q3P1HhTlrIydliYujwz29lfQSP5NmR97Rzr9REtL/wULctEgto8VbwUUaN/97nfl29/+th8v/e+hQ4dKtrteyqEKj7h3y/B9dTAMaw/loQUPDNvzzqj8GM47HBjnP3awV7rUUB96bs9NPww91GcTN4e6pbu7yTB0U/12KXGUH6BKfPbs2eJ7Byvj91gmBgrHUyk7qvHNomtttuadUfm7j/2nGuMvhEu/OSYH92QKw3wdO2TfL8bkbtWuXbvZfLYqq8v35NLR53MafjrpHVutDAt3LskJ9GRnq3dRJXdu//P7xJYOvGbh3P4KGrf5N+fH5B3Vw5tK90tu0cXnv8fiqPT6N29KarhdAG3bY9NVazmoBhcESNqqPvfl56q+ChrLD/Jzg6rd74X9Y7KijjvFUk76VBzqyi/LcuFEzkuZ6hQESNp6fi9N+lX+pw7JlIOdvlzPX0E4+YOTgVzN/PDye7WdDT09tZJCGiRvJ5+5wYw65+ZwL3fyqWAr8rtZ7Qsl/59+L79v0JQvpEEC9/D707li7a+7qe5+83APv6rMyWCmkCh1q/33h6VHJV766FVxcqg/hPzrU8MNx6T1TZS83XtXZGJAz/fwan/hlnmg00i+mP8/9YMZgrv32tpR2375167Iv6pEqS5/Xp7czT3v8Ov0nvphM902Gsnv3aS/7esLLT+CrdtAbwcdt6qszUhW3Qvp/lGZb7TWe+0LGX7vhPF7xvaeftA++f31/M+X7PqZmemSfYefj/OfPHZQend0qPMdsutIzsmhviIB+Tt2lI/td0kmjXPNyZ/EN/bkFycCD4N9cu7agjwrLwQ2v5J7V07J63tOyLQF94x+Y4/Nr1drn/z+ev7nY/q1wx1ZWF2tzFwXCchfbZx/YXbEu6mbkz+x7+rbfCDXzh30l/QWrk9LpksVpF0ZSXfskiO5Giv+DKDf1WdzYd0++ZNIi9v8CLa/9nkr6LiFY1OerS7InZKHRfM7P0VJsL2PmYy2QvmjJIT8srkhGw2eVvpG0oHv57cbvQGLze19QPmjJIz8IdBy6HFj7IYTJ3T84oLen/D9999XR+yE8kdJU/Ln5f7vLsgd9VMQLcdHH33k/xu3IT8dvzgQXIvx2WefqaN2QvmjpAn5N2+dlj2nb1Wd5advpmBb0vYbqxl0nOIAamWICwro4PJkG6H8kZGXJ1cOqY1IU3JsulbDflO+uj0s/enaU1iDcuzevdv//wcffOD/HAeC8XMZyK6bZqil2Q7ljwB/PX9xvoIKntxdJeP8hbBDD131jMi8+v1y9GeA8+fP+/9/4YUX/Pf4xYFg/FwGqy51XFD9tx3KHwH+ev6yMf2Goc7EhqAcjx49Ku55b+uCkWYJxs9lsHQX8UCHnwtQfgcol0PvfoOhpDg8/cvj5yLB/pjJyUl11G4ovwOUy4H5/frpn8vl1FF3KY+fi+jpvK+88or1HX0ayu8A1eRw8WarRbX4uURwi27s2+cKlN8BqskRrGa6/vSvFj+XwGQefH80w1wqiCm/A9SSQz/9X3zxxcpXXDlErfi5wOeff178/q5ts0b5HaCWHGj742UeOGfrPnFhqBU/28FT/tVXX/W/O/51rflF+R2gnhwff/xx8fzt27fVUbeoFz+b0XMuXE17yu8A9eTAUB/e44fzGF92sfOvXvxsBfMtMNEK39vV2ZaU3wEayYFxZX3NmTNn1FF3aBQ/20ABq7flRn/L119/rc64BeV3gDBy4O23uAbj/64t+gkTP5tAAau/88WLF9VR96D8DhBGDmwVjTF/XIchJ0wZdoUw8bMFFKx6ghVmWroM5XeAsHJg7F/3/qNa6kr7P2z8TIMCFQUrvit691Hgugzld4Bm5MCGkfp6V3b8aSZ+poDor732mv890dHnwqq9RlB+B2hWDj3jDMGFlX/Nxq/doAal+1QQXJrCWw/K7wDNyoGbVS8vRbh8+bI6YyfNxq/d6FWUCC6OptSC8jvAVuRANVXv+oMOqtnZWXXGPrYSv3aRzWaL3w//jxOU3wG2Kgc6qHbu3On/Ltqptg4BbjV+URMUH9X+uEH5HWA7cmC5qe6hRg3AxibAduIXBWg2Ydae/l4Q35WRk2ag/A6wXTnwllhdA0ABYNvqs+3Gr5VgunSwcy+u4gPK7wCtkANNgL179xY/6+zZs+qMeVoRv1aAabp6OA8B1f64ig8ovwO0Sg50Auo56QhvvfWWFTMBWxW/7YB1+XrbbQSslow7lN8BWikHnmRY+68/E/0BpjsCWxm/rYCluXrKLmZIxmFfxDBQfgeIQo7x8fHiklQEvGTCVBU3iviFAdV81H7030e/CKZIJwXK7wBRyYGdgPRcAH3zm6gFRBW/WqCQwzRo/Q59BEzkcX2ufrNQfgeIUg70bh8/frxY7UXA9OB29gVEGb9y8HrzYMcnCgDUgpII5XeAdsiBbaj0q6W1FHjPfDteCtKO+KEwQ19HsJDD097VjThaAeV3gHbIAVAdxhyAYHUYO9VgPnuUuwNHGT80bSB5UHosx0XvftKh/A4QpRzVwFOyXBgUCBj3xt51rSaK+KF6j63Ng3HAyAZWOcZ57L4ZKL8DRCFHGCA6hNcbhOiAuQLYvqpVTYJWxQ/fF8N2ejttHbT07WjCuATld4BWybFVUBNA1T/YHEDAUCHmwOPV1NvpKd9O/PDdUBBhyC74lEfAtmZYe0/pq0P5HWA7crQSSISe8Wqi4Wf0omO+QLOFQTPxg+z4Dui80+sVgkEXSDYvYbYFyu8A+sa2iVpV7GBAdRtNBAwloto9NTXld7RhoRGCbnvr61Fg4Dg66SAvViDib2DoEQVLec1DBzRLUCC1simSBCi/A+ib3FYaPY1bHSA7dipCUwSFBIXfGpTfAfRN7wooDPCUx9MeBQJE1XsKNBtQmBw4cMDfjBSz8jAfgbK3BsrvAFoE18FcgWC1HgE1Bh0//FytWUCigfI7QFzkr0Xc42crTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuANQfhIFTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuAPUkwO72iwsLKif7AR76NfbfYfym4Ep7gDV5IBM2CYL22NhLzubwQtA6u2dT/nNwBR3gKAc2AoLO9oG98RzQX79XasVAvocaS9McQfQclR7cQYCjr388svWBuylX/6dg4WAPkbaC1PcAYLSxC1gv339f9JemOIOoOXAq6fwCir9sw54umJ7bFtDsImiw+7du2VycrIkfqS9MMUdICgHtrMuLwRcavMHpdfoc6S9MMUdoJocwULABfmrSa+h/GZgijtAPTlQCOAFFzaDl3TUg/KbgSnuAHGXg/KbgSnuAJSfRAFT3AGal2NTnq2uytONvPrZbii/GZjiDtCsHEsX+iXtXd+XW1JH7Ibym4Ep7gDNyJFfzEl/unA95Sf1YIo7QGg58osy2tcpnZ2UnzSGKe4A4eTIy9xgp/QM35fpLOUnjWGKO0AYOdZmstLVn5PFvMhMaPnzsvF0VVZXV+VZ7eX2Hpvy7OmGd7Wm0KG4WvWX6p2rDuU3A1PcARrKsTYj2a5+uaBcbyz/pjy4dkpez2RkR3e3dGXS3vUdsuvImMwHnN386p5c+c1h7zrvfF9Oljz9H06fkr0dhc9PpdLS9d6EX+DgM+fHjsiuqufq0zB+JBKY4g5QX441mTrUIYem1tTPjeRfk5kTXZLuzMr0E23mmkwfy/i/k+6/4Enu8XhOpiYn5Zf9KBi8z+sblekL/yx7DpyTS9evy+TIe9KlOhb3j83LF8Nvyq4DpyQ3WX5uxf8L9fA/3wukvTDFHaCeHBjW68rOePo+p578KxMDkk5l5PSt0kdyfvqY+jt9Evy14vGON2Xk7pNA1V9kfqRHndsr5/5Qem5lbH/h3MCEPFbHalH4u7wV2w1T3AFqyeEP63VlZSZovkdt+edlpMc7lxmUOXWkyPqc/Me+buk9UlZVn8kW/r5f7S9jq+fK8K/zAmkvTHEHqCqHGtYbnCt9goOa8i/lpA+fFULIIpQ/tjDFHaBSjsKw3j8N3ZRH6FkvC5M/LVzf+6s/Fo7pnvobJ/yZf5SfAKa4A1TKMSNZdSxU0ALODUoGP6e9pkJlhUGRlzyr/YmAKe4kf5HLJ0/KyRrhX9Cu92TK9P9b4dgnNwqdbo8nZMAXLS1Hr677n1SB1zQYngqca4P8xAyUP4bU7vBbkbH9hXOpzsqOQvQj5N78uZSUC5Q/tlD+GFJvqG/da/d3QkovpLvek5HZBb9fYOHOJTm1t8OfHhys9ReH+rYqf++oLKpDxC4ofwypJz/a9IsX3pQOiFkWOo9OyUNtfn5Dni7flmE9ySfdL8O3lwvTdv1z9+TS0U71uz2SveYVIlXPdcrRK+ocsQrKH0NuDnVLd3e3vDtee2+/zQfX5DeH9/nX9R48JbnZB1Ki5/K4vOudw/mSMHRz6+eIVVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckkYj8P3aHxnXKUrjAAAAAAElFTkSuQmCC
|
As shown in the figure, a circle is drawn with vertex C of the square as the center, and the radius of the circle is as shown in the figure. The circumference of this circle is () cm. (Use π = 3.14)
|
A. 50.24; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
B
|
2
|
iVBORw0KGgoAAAANSUhEUgAAAQEAAAENCAYAAAAPLtCGAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB/fSURBVHhe7Z1vaFzHuca3fzeULvSDFwLO0oIKKjiCGIowqJdYEJyKhiLTEJIQ44Dc4oi07Acbxzhg5dbG3KtCresPgrvgcImMxE2xCgKrdqmE6hvHxsWxcYyuEmFdHAX/CXKR+kGw/fDe85w9sz672t0zu3t298yZ5weDveecXZ2Zed/nzMyZeSchhBCroQgQYjkUAUIshyJAiOVQBAixHIoAIZZDESDEcigChFgORYAQy6EIEGI5FAFCLIciQIjlUAQIsRyKACGWQxEgxHIoAoRYDkWAEMuhCBBiORQBQiyHIkCI5VgiAuty8fhxWVj3PhKyhY/kRHe3dAekPfuPyJETOZm+uiiPN72vGo4dIrCck75EQgYmVr0DhJSzKY/v35fF+fekP5mQhGMviXS/jJxbkJsr9+W+c+7+yk1ZOHdS9u5IFc4n0/L80Vm5a7gYWCACeblyLF2otJ4xueMdJaQac1lPBPpysuwdK2VT7p5/S7o8sUjuHJEra94pA4m/CKxOyaBS9kRShi6wT0BqszTeGyACBdbmspJx7coRgsEpMbWdGXsRuDPWI4mBrGR7PCEYmDC2skh7WM71aYkAWpnXRjKFaw1+wMRbBNbnJJsuVM7qxIBXWT0yeivvXUDIVvRFwGF1QgZcu3KS0xp44B02iViLgOv46WNyBT6/fkGGVB9u6IKwU0CqUZcIyJKM93oikNgnMwYaVnxFIH9NRjIJ6RlTQ4G+AcLEgPBFAalGfSLgG0hM9Mr4knfQIGIrAusXhiRZ7ux3xqTHrayEZEauObJAyFYaF4GEZOe8gwYRUxFYllxfpWb/qkwMeBWWHBK+KCCVaFwEumX0lnfQIGIpAvkrxySdSMsxdzCglEILoVBpnDxEKlGfCDyQqUElAoMyZeDIYAxFYE1m9iWdCknJ9grTPru70kURKA4aEuKjLhHIz0lWzUMxdDJa/ETA7fcnZd9/rxSmelZI88fMf7dLWkc9IrA2s8/4lmXMRGDd6Z+lgytvbUb2KfXW7PcRe9AWgTWnFZDx7CgzItcMbVXGSwTchUIZGdGoDXcmoavgacnOsTVAnrBwGN3JABFYuyGj/d51yX7JLZnbr4yPCGzekXG3Un4psxqruvLX/1W+74oAVDwrlx5ycIA45JdkvM+zi0oisPml3Dx/VHalCtekdh2VS/fMtp1YiMDK5M8lpRzaTRgUPCEfeedLwbrx7WXXIyUl/YtJWfGu8lN6HZOJKZhCPIHtnnMXUzItXeWDyqnt0rv3qOTm70ocQgrEQgTyG48qDAA+rlJBhXXjW6930qONihOISoyCycgUTA278KVHG/FrMcanO9BC9A2JRA3WXTAsHQ1oSObCuguGpaMBDclcWHfBsHQ0oCGZC+suGJaOBjQkc2HdBcPS0YCGZC6su2BYOhrQkMyFdRcMS0cDGpK5sO6CYeloQEMyF9ZdMCwdDWhI5sK6C4alowENyVxYd8GwdDSgIZkL6y4Ylo4GNCRzYd0Fw9LRgIZkLqy7YFg6GtCQzIV1FwxLRwMakrmw7oJh6WhAQzIX1l0wLB0NaEjmwroLhqWjAQ3JXFh3wbB0NKAhmQvrLhiWjgY0JHNh3QXD0tGAhmQurLtgWDoa0JDMhXUXDEtHAxqSubDugmHpaEBDMhfWXTAsHQ1oSObCuguGpaMBDclcWHfBsHQ0oCGZC+suGJaOBjQkc2HdBcPS0YCGZC6su2BYOhrQkMxFv+70tiYvSY8rb35vGrRsDSgC5qJfdx/Jie4uSScL17spmZau7m7pLknbJaXO95+VFe/bJkPL1kDfkEjUqLvuNu/If/R5Tt6Xk2XvcAmbd+X8UKb6ecOgZWtAETCXRupuLhsgAmB9TrKDFAFroAiYS8tEQPJy7Q9/ZHfAFigC5hK+CORlYyMeA4IKWrYGFAFzCV8ElmR8fM77fzygZWtAETCX0EVgdUIGshQB66AImEtTItD7O/mbf17A4ryMvZKRBEXAPigC5tKUCGyZJ+DNEaAI2AdFwFyaEoEK3YH80rj0UQTsgyJgLmGLgMiKTE5+5P0/HtCyNaAImEv4IhA/aNkaUATMhSIQDC1bA4qAuVAEgqFla0ARMJf66y4vl4Y9EegdlyXvaJyhZWtAETAX/borxBNYnH9P+ovLiTPyyti8LDrHYxI6oCK0bA0oAuaiX3eIJ+CfE1CaTsTrhUAJtGwNKALmwroLhqWjAQ3JXFh3wbB0NKAhmQvrLhiWjgY0JHNh3QXD0tGAhhR9/vGPf8jKyoqb5ufn3TQ5OVmsO3y+fPly8ZrNzRgP99cJLVsDikB0+Pvf/y6zs7Ny5swZefvtt+WnP/2pPPPMM8U6qif98Ic/lJdeekmy2ayMj4+7QgExsQ1atgbKaEj7gdNPT0+7jvrcc8+VOHEr0je/+U3ZtWuXvPPOO67Y2CAKtGwNlIGQ9vDVV1+5T3o4o99B/enpp5+Wn/zkJ3Lw4EEZHR11hQJP8vLmvrpedRc+//xz9zpcf+rUKTlw4ID7d7Zt21by+ypBFPB3crmcK0hxhJatgTII0jr++c9/uo45ODgoTz31VIkjIqEVgNYArqnn6ay+rwOiB2EcAcLyox/9qOTvI+G+Xn31VZmZmXHvNy7QsjVQRkDCB0/X48ePb3kSK4f78MMPm3oCN1N3ShQgTGgR+O8PLZHf//73segu0LI1aMaQSGXgYHD+733veyXOhaY5BunCanqHVXfoosDpy8clcP/Ih8ldBVq2BmEZEik8+Q8dOlTS5Mf/0TdfXFz0rgqPVtTdJ598Im+++WZJ60CJgYktA1q2Bq0wJBtB0xrNaL/jQBDQKmgVray7L774wh2n8AvaD37wA3fcwiRo2Rq00pBsAE/4F154oViO3/3ud9vWhG5H3SEf7777bokYYP4B3kaYAC1bg3YYUhzBCPpvf/vbEufAIBueoO2inXWH14+YvKT+JvKNcYSoQ8vWoJ2GFBfQxPc//dFMxuSbdtOJukO3xz+LEcIX5YFDWrYGnTAkk/nzn/9c0vdHv7lTc/U7VXcYIMTgofr7EAWsXYgitGwNOmVIJoK+vho1x8BfpwfJOl1377//vjsGgntAuWCWYtSgZWvQaUMyAfT/33jjjWJZ/fjHP47EwFgU6u727dvy7LPPFu8FLaMozTikZWsQBUOKMmj6YjRclROm3UbFyKNSdyijl19+uXg/+H9kysj7l9QgKoYURTCTDgtsVBlh9V2UiFLdwenRClD3tHv37khMLqJlaxAlQ4oSeAPgX2gTxddhUaw7jJuo+4KAdloIaNkaRNGQOg0MVy31xYDXBx984J2JFlGtOwimujcIQScjHdGyNYiqIXUKNGv9XYCoCgCIct35haCTYwS0bA2ibEjtBobqH+BCQI8oE/W6wxiKukfMK+gEtGwNom5I7QRx/VR5YJAr6phQd/5JRRgvaDe0bA1MMKR2gIk/qizQGjABE+oOrSv1ihXjK5hx2U5o2RqYYEitBhN/VAAQBNYwJWS3KXWHtQVYX4F7xZTrVi6vLocioIEphtQq8KTCDECUAabAYrWcKZhUd9evXy9Oucbiq3YNFFIENDDJkFqBf4ILYv6ZhGl1539jgGXY7YAioIFphhQm/qeTCQOB5ZhYd1h6jHtGPIJ2tLooAhqYaEhhgOaomhCE3XpM3LrLxLrDVGw1/oIgJa2GIqCBiYYUBoj6q/KuGxBk8+5VOXf6iBw5ckROn7sqn23kvTOVyW98JvO5E871JyT3p0/lYdXLN+XufE5OOL97Ivcn+bT6hSWYWnfY7ETde6uXY1MENDDVkJoBo9PqaYTmaTBrcuXkLkmldsmvc9NycTonB3cmJZHcKSNX1rxrSlm7clJ2pZKy82BOpi+ek5N7MpLsOixzWy5fk7lsRjJ7Tsq5ixdlOndQdqb6JbcULAQm151qheGtQStbYRQBDUw2pEZRE1jQLw2OC5CXpVy/JJNljplfkvE+p+zKjzvkl3LSn0xIJjvnuLiHd32yPycll18bkXTfeMmx9bmspAen5IH3uRom1x1Cm6vxmFZOIqIIaGCyITUCAoHWZXzrF2TIcejE8CVHDkrJXzkmaed3ko7DrnrH8GSf2ee0EhJ9klv2Dnmsz+xz/26f/4Tj8N8/dcP74LGck76+nJR9fQum152aoYlWWaviFFIENDDdkOpFvRLUNbyKjqvIz0kWAuF3eDgwyrR7VG55h4qsnJX+8nN3xqSn55TcKLaI8/Lw/D5JDV2Qde9INUyvO3TLVLTmVr0ypAhoYLoh1YPf6BBLX4flXJ97fe/4knfEz7Lk0CVwzg9fKrQTVs72F8p030wFJ16Qw65o9MqTn3O6G2dflHTXSzJ85Igc2b/L+X+lsYOtuH/HSSajRBkzCVsxNkAR0CAOhqQLHB95hRDoTl1VIlCpO+AXAdVSmMsWPicPL7ifS3lyfXbOO+Sx+eVNWbh4URZu3pOAlw5F3PtykslgroDqnrUicAtFQIM4GJIOeMqoNwL1TAzKO332JMooOSQXtjzanzh1/1kMMD6QqcHC54rdhwqi0Qz4HSTTUQO1aA2EPZ2YIqBBXAwpCGyaofJa3y5By3K2HwN9ZaP9Dpt3/0v2us37pBQe/EFOThGoBLZyU3kJe5UhRUCDuBhSEGq6Khav1M3aFTm5K+V+P7Vjr9N3H5a9//IzOX7qV/J9t/z2yYzbStBvCQxOBb0ADAa/gxQH1LboCO0eJhQBDeJkSNXAVFXV78RstcbYlMeLV+Wi02+/uvjI7bffGu12fzPpG8lfOFxoNXSPbnk34HBNRtIob9VyaI441Z1aXISVnGEOEFIENIiTIVVDTRHGgGBo0W/XZmRf+etBhwdThRZHxYHE/CUZdst7UEJoCBT+Tkzqzj9/I8y4jhQBDeJkSNVQgUPDixi0JpeG085vJqU/t1Tq7KsTMoAyrTRP4NaodOPcwIRvclHjxK3u1CavelO59aAIaBA3QyoHT371hAknXsCazB3uct8YlA8UFliXuSwEokfG7niHPAqvG5MytPU1Q0PEre7UwqIwuwQUAQ3iZkjl+GMHNjs1dfPLjyX3Ssb5rZS8OHajggB4rM1JNpOQtNMlUNfkH87KcLqacDRG3OoO6zhUnubn572jzUER0CBuhlSOmp+OVWsN8WBBzgzvld6utPP0T0r6+aMyezf4KZVfmpLXu5KS2rVfjjjf35FKyY7fzMi9ChOBVB00muIEYjsgT2EtKqIIaBBHQ/KjthJreB/B9c/kfy5elItXF+WR7lQ+RX5DPrvqfPfiVVl8XF04VB00muIENnxFnhoW7TIoAhrE0ZAUmBqs8tfuUNf10GgdNPq9KINxG+QJ4zhhvMmhCGgQR0NSqPEAGFQrA1c0S6N1EMe6w7iNylcY4wIUAQ3iaEiKU6dOuXlDlyDKNFoHca27bdu2ufk6c+aMd6RxKAIaxNWQgFqYgh1wokyjdRDXulPzOsKIAE0R0CCuhgTUpiKHDh3yjkSTRusgrnV34MABN19hRCOmCGgQV0MCaukwpg1HmUbrIK51h92gkS8EIW0WioAGcTUk/5uBsCaetIpG66DR70Ud/wSvZgd0KQIaxNWQ/LPPgiMKd5ZG66DR70UdiLbKW7N1RxHQIK6GdPny5dAMqdXUWwdYced/WsaNMAU8HqWDaasIQBmQTp+rLz6dIq6G5H+atGsH3EbRrQM4v9rr35/ef/9974p44BeB27dve0cbIx6W7U5bnZbcwZ2FWHdIPb9wnR4BLpDOnR6WvTsKkW8SqR3y5sQd0e1JqcKOG34RiDo694m+MebVf/vb3y5er9LXv/51DSHwgqKcO13y4Li6+LhoK6t/+Yt86v2/kyCvKm/NjufEzLKXZLzXq/jyULUum3L3/JBk3MKrsM69Cqqw4wacAvnCxJOoo1MHiLxTSQBUwvLbyjh2MXtUnk8nnQfEdtmz/7S73Zn/4ZFMPy/7h1+SruSweJHTO47KF0WghHWZ2edVekURAHm5NdrjFeCATGhErlCFzWR+2tJ0zi/JlLv0OSldb52Xyosf8fB4yxEA/MbWXZM6hcoTRaAMFdO+ugg4qOg1TtIJZqkKm8n89PHHH3u1Cp5ESfbHNajG2qVhSVMEok8rRCCumDQmoANmPaLJr/JUnr7xjW+UrLpbPtvv7ZcwKFNascxWZWowIyPXvI8dhGMCNQgWAX93YGt4K5vwi0DU3w7ogBHz73znO+4goMqXSt/61rdkeHjYu9Ihf0WOuVGNE5J0bEW3m48NVkdqPF/aBd8O1KC2COTl4V9HZKfbt0tI5vBC4IaWccakeQK6YG5AKpWSZDIpX/va19yBQogC5tj7WwHFXZOctK+wIYIe+XtyL4wIqE3iF4Fm6y6+IpDaIXuHffME9u+R7u2FV4QY6f31RI34dxFmZfI16e7uri+9NimVzCRMQ4oSmCuAHXzVZipI5VwbQaBTnEtHonlfL/5WHEWgjKII/OzfinMEkKZzJ2T/nu2SwrlkWnbuPakVBy9q5Dceyf37izL/ntefdVLv7/7mrgMoTys3/yRjGPmuso8/rlGG1Gy/Mqqo/JVTtJMIDfTVA9cO1CBoTCD/8K8ysrMwIpxIZCSrs791FClu0hGwZx/6vgPjUmnTcKAMKeqrCBtF5a8c00WAqwhrECQCLqtTMuiNCyTSx+RKRCZ/1MecZF0jDt64c+HwYefqyhQcIfrxBBpF5a8ctRVaItEtFXdDiziMJ1ADLRHwTyoy1AjqEYH8xkZx2ms5hTKIfmShRlH5K6e4FZqTTHxNzMhCNahfBMxsDmqJwIM/yh8/8v5fhUIZRD/GYKOo/G3hwR/kFdUa3Ddj3FsixhisypNtr2uKQHGjTCf1jImZUwU0RODWqIzW0kIHtwycFPVow42i8reVvFwbwXRhnO9xWoOafcL8Q7lxq7NvUvzRhsMIEx8vEcjfkFPdhcKpJgKbd2flsBoYTPZLbsnIAQGHABFwjHV2OC01G0QOypiQ4viGQOWtIvklyXnThhOZrFx6GGAL+Xsy89brHbcZte8AUrPbxoF4iIAbT8C3VBgptV169w4/mSdwZL/scbfJwnn9rbKiyxMRSKa7tswN2J4qnKtHBBregSjCqLxVZe3Kk7dFyZ1ycOJjuVcecAK7JM2Pyes7fy65O523Ge5AVAm1DVZgWpCbK/fr3yorkjwRgUrzBFZunndbPPWIQFhGFSVU3mritJquT/y6sJTYuz61XQnqdkkl0/L80dkqKwzbT9PbxpURDxGwknDHBJAwLhBG8zJKqLzpkZeNRytyc8H/0HhUdySqVoLZkCpPYXXfKALGoiECTjN2I+DppQxKJfQ344TKV1xQgWCeeuqp0AZyKQLGoiECGignQVcA/77xxhvemXig8hcXVPzEF154wTvSPBQBY6lPBNYu/Kd8+IX3wYdyEoTmwr94woSx021UUPmLA1999ZXbZUN+PvjgA+9o81AEjEVfBPL/NyGDgxNSaQWschK/gcUpMq/KXxxQQo3AKWEKNUXAUDZvnJIez8B7x6stD8rLxmfnZShTfWqs30la0dTsNP78mY7aNzLsLhtFwDDceALF+Q4qpWR72TwBpC71yis5JBeqzItVvwEmJyeLnzEKHQf8+TOZxcXFYl5mZ2e9o+FAETCMQjyB0jkBgenRRtXwWX4nwWiz2qA0jIUpUcCfP5NRW8g//fTToYeCowhYTrmTvPvuu+5nDBBCQEynPH8m8vnnnxfHazAuEDYUAcspdxI4PgQAxyAIplOePxNBqwx5QCugFYu8KAKWU8lJlNGha2D6DMJK+TMJvygjbmIroAhYTiUnwaCgan4eP37cO2omlfJnEm+//bZ7/60UZIqA5VRzEjUQhaeQyZGIq+XPBD755JO2iDFFwHKqOQmaoepNAUJ3m0q1/JmAmsqNYKKtDPhCEbCcWk6CCMTqfNjvpttFrfxFmVwuV7x3hBdvJRQBy6nlJHgfrZ5G2PffxPBjtfIXVTCFW7XCwogmHARFwHKCnOT69evFfqmJE4iC8hdF1M5JGI/BHIFWQxGwHB0nUa8MkVrdNA0bnfxFCX8XrFWvBMuhCFiOjpOgW6AWr6CZatLbAp38RQW8DVBzArCIq107RVMELEfXSeD4qp8KQTBlK3Pd/HUaLA1WsQMxM7CdU7YpApZTj5P4N8FExFsTqCd/neTll1927xPjL2HsJVAPFAHLqddJ1Aw2JBNmE9abv07gH3PpRJlSBCynXidBN0A9tZDC2AarldSbv3Zz6tSp4j12Kr4jRcByGnES9F/VhphovkY5QnEj+WsXKnIwEqI6dWqchSJgOY06iX8gK8pC0Gj+Wg0Char5FxDUTgZ3pQhYTjNOghFsvxBEsWvQTP5axejoaPG+UH6YIdhJKAKW06yTQAiee+654u9EbbCw2fyFjX8QEC2ATgsAoAhYThhOgqbs7t27i7+F14dRmUcQRv7CAGXkH1DF/zvZBfBDEbCcsJwETv/qq68Wfw8TiqIwszCs/DXD7du35dlnny3eS5REElAELCdsJ1GBSpEww7DTaw3Czl+94A0ANgvBPWDcBK8EowZFwHJa4SSIPbBt27bib6Mf3KllyK3Inw5o6qvoTEjPPPOMXL582TsbLSgCltMqJ0GcQjWXAAnRcToRmKRV+asFNnGB06u/jcVA7VwLUC8UActppZOg33vo0KHi+3AkrJVv5+5GrcxfOVj7jyAg6m8i31gOHKX+fyUoApbTDidBYBIVoQgJfWS8SmxHOPN25A/5wFiIWgaMhKc/tg4zAYqA5bTDSRSIm+cfK8DAYavFoJX5QxMf4x1qiTUSugHoDpgERcByWukklYDDw3H8T038H8da0U1oRf7w6rM8D0rQovLuvx4oApbTCifRQT1F/Y6EhGY0XquF5Uxh5Q/ihZaMf7ATqR2tmVZDEbCcsJykUaqJAT5jaS0WJjUjCM3kD46Nv4/ZfeX3FwfnV1AELKcZJwkTODpW1qEl4H+bgITPGFjE4Nv8/Hxdcw7qyR/uAa8x33nnnZL1ECrhPvB2A31+E8OvV4MiYDnKwKMEWgfYgtv/RsGf4IxYfQeHxCtIROjFRBz01ZH8i3LUdwB+V12DEF74HlohWMuvVkOWJ/wtdAFwbRQW+7QCioDlKGOPKqpJjvn21Rw17IS/gzBqmPJs4kBfvVAELEcZvingKQ5RwBz8AwcOuE9pROf1O7Fuwus8dD8gMFjjD6dHa8E2KAKWoxzCdPDEVk19jBsgoe+u8ofP/i5DnPr0zUIRsJy4iEA14p6/MGDpWA5FgLB0LIciQFg6lkMRICwdy6EIEJaO5VAECEvHcigChKVjORQBwtKxHIoAYelYDkWAsHQshyJAWDqWQxEgLB3LoQgQlo7lUAQIS8dyKAKEpWM5FAHC0rGcWk6CwBtR30UH91crQAhFIBiWjuVUchI4FQJ9ImwXwmpHGdwf7hP3W0kMKALBsHQsx+8kfudXx00QAXWvlcRAnSPVYelYjnKScudXCZtsYFvxqCb/PoAq+cVAHSPVYelYjt954pb8G4iQ6rB0LEc5SbWWAJ62u3fvjmzC/ZXfM1sC9cHSsRy/k3BMwE5YOpZTyUn8YmCCCFRyfgVFIBiWjuXUchI4FecJxB+WjuXE3UkoAsGwdCyHIkBYOpZTv5PkZePRfbn/uHoTPEpQBIJh6VhOvU6yvnBYMvhOds47Em0oAsGwdCynLidZm5NspnA9RSA+sHQsR99J1uTScEYymTRFIGawdCxH10lWpwYltW9GbuT6KAIxg6VjOTpOkl/KSX9XVubWRJa1RcAbQLx/X2qPIW7K40cbztUK57PzncoDj7XOVYYiEAxLx3ICnSS/JLn+Ljm8sO5+DBaBTbk7e1SeT6dle3e3dKWTzvUp2fHmhNzx+e7mlzfl/On9znXO+b6cLDsycO/SUdmVKtxPIpGUrtenZMlVh025M/Gm7Kh4rjaB+SMUAdup7SR5uTXaIz2jt4pP6toisCZzh7skmcnKpYfqGxhLKIwjJPvPOs7u8OCazExPy3v9EAjnt/rG5dLZn8vOl07KuYsXZXrsdelKFu5rYOKO3Bh9UXa8dFRy0+XnVt2/UAv3951EqsPSsZxaToLXgV39uZInbi0RwLhBMpGWY1dKH9H5S8Pe3+mTnKsCBYrHUy/K2PWHvi6ByJ2xHu/cLjn519JzqxMDhXODU/LAO1aNwt+lmdeCpWM5VZ0ErwO7+iVX1uauLgJ3ZKzHOZ4ekWvekSLr1+Tf93RL75tlTfi5bOG33O5AGY2eK8O9zkmkOiwdy6nsJIXXgYNTW5vbVUVgOSd9OK7hmEUoApGApWM5lZwEzfr0a5PyvxiJL0t/+11v4Tu/nPaOPRZ3vM/pOiRxnCJgHCwdy9nqJMuS6ysc00tZcdsE10Ykjc9J53NpD8JHXvLsDkQOlg4p44EsnDkiR45UTr/q92YM9vzCO/ahfOp+bUoGXYdLytCFwuvELThdhtEZ37k2iAAJhiJA6qL6wOCqTAxABJyUKUwsKgHzDV58S0r0gSIQCSgCpC5qvSIsrjB0UrLrdRmbX3THDRavnpOju1Il8w1A8RVhoyLQOy5L3iHSOBQBUhe1RAB9/qWzL0oK58tSZmhG7ikFyG/Io5WPZVRNFkr2y+jHK4XpwO65m3JuKON9t0eys46YVDyXkaHz3jnSMBQBUhcrk69Jd3e3dJ/4yDuylc27s3J6/x73ut69RyU3f7fwBkGxMimv4TfKE36z0XOkYSgChFgORYAQy6EIEGI5FAFCLIciQIjlUAQIsRyKACGWQxEgxHIoAoRYDkWAEMuhCBBiORQBQiyHIkCI5VAECLEcigAhlkMRIMRyKAKEWA5FgBDLoQgQYjUi/w+0ZfGZfwLWrgAAAABJRU5ErkJggg==
|
As shown in the figure, a circle is drawn with the vertex C of a square as the center. The circumference of the circle is 25.12 cm. The length of the arc EF corresponding to the central angle ∠ECF is () cm.
|
A. 50.24; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
D
|
3
|
iVBORw0KGgoAAAANSUhEUgAAAP8AAAELCAYAAAAWfFBxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABtwSURBVHhe7Z19aBznnceXtnRbGkEpWSg4goACMjjibCjCoEAiKE4M5pC5kGtCjA1Oj9a4x/4R4xgHrGIZw6nQqvlD0AUHzjIS58MqCGyscBJu8Itwm9i0OiEqLLAVZDvIRSqHYPvH7+Y7+zzr2fdZaWef55n5fuDB1sxotc/zzOeZ531SQghJJJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKBbJPy+/+/eLsqR+IqSSmzLU3S3dDcK+wyfl5FBOJu8syLNN9aukAmvkX5/JSiaVkdO38uoIIeVsyrPVVVmY/aX0p1OSSnkh0y+Dl27IveVVWfXOrS7fkxuXzsnBXR2F8+mMvH7qmjxgIVCBJfKvyNj+Qmamj16VdXWUkFrMZJX8fbkatcVNeXDl59KlCon0nkG5taZOER8r5M/PDUonMtIPPTIyr04QUoPF0d4G8hdY82qU+t5KD0x4jxmisUD+dbl6NC2ZY1k5pErpzOlbwso/qcdSri+U/N6jReYGOwvXptJy9CrrlRrz8i/lpM9/2ufl1ulMIZPSh2SKVTRSh/Dye6yMyX5ffi94T//H6nDSMSy/En7/WKE6Nj8iPSqTelj3J3VoSn5ZlNFeJX/Ke7Dw4e9jVv6VCRlIB6tizzv+UpnTwo5/Uovm5A90EKZ6ZXRRHUw4RuWfH+mpkHz96lFJ+5mUloEJds+Q6mxd/pRkZ9TBhGNO/vUZyWaqVO/zt+S0d9zPqJ4RYeWfVGPr8nfL8H11MOEYk39lbL+XEftlrMrD3a8R+BnFST+kOs3J/1gmBrT8AzLBHj8fM/Ln78twj5cR6Yx0VZme2b1Dzc5C0J2BhARoSv68V8vUMwJZmyxiRP5Cu75Hzt9WUzIrwv/KpwNpVQBw0g+ppBn516YOqX6klOyvVtVMKAbkX5JcX0oy2Zm603jz94eLw36NriXJI7T8a95Tv7NwH6U6B2WOrcgibZffX8CT9tpdDQvgwsw/P9NSfZIL06tDEsONE+reqCf/2hcy3K+uS/dLbpHmB2mr/Pkn04VSuPe3Mh8iH57810Elf0rS/aMyz5VZBOQXZdSrPdaUf/MruXfllOztKFzTsfeUTD+k+OW0Tf6bZzLFdpcf0Nn37rgsq/MlLI/Lu11l1/uhQ3YM3VQXlVJ6HYOLoTGF9fw7lNTFEOw41vdNxw7pPXhKcrMPhM+M6rRN/s1nVTr2nm5UX8CT35Cn5dfqUGN3hpKbgcHJ0JjCev6q90UgPN3gUz4Mba32R0n4G4jYBvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ4zDszUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnxmHemYHyE+Mw78xA+YlxmHdmoPzEOMw7M1B+YhzmnRkoPzEO884MlJ8Yh3lnBspPjMO8MwPlJ8Zh3pmB8hPjMO/MQPmJcZh3ZqD8xDjMOzNQfmIc5p0ZKD8xDvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ44fMu3Cu6S0KNV7oTyk8sIHze3ZSh7i7JpAvX+yGdka7ubukuCTukQ5/vvyDL6rdJKZSfGKfpvNucl9/2Kbn7crKkDpew+UCuHO2sfZ5QfmKereTdTLaB/GB9RrIDlL8WlJ8YJzL5JS9z//17VvtrQPmJcVovf142NtjR1wjKT4zTevkXZXR0Rv2f1ILyE+O0XP6VMdmfpfyNoPzEONuSv/dX8sfguP7CrIy80ykpyt8Qyk+Msy35K8b51Rg/5W8I5SfG2Zb8Var9+cVR6aP8DaH8xDitll9kWcbHb6r/k1pQfmKc1stPwkD5iXEovxkoPzEO5TcD5SfGaT7v8jJ9TMnfOyqL6ihpDspPjBM+7wrr+Rdmfyn9xWW9nfLOyKwseMe5dL85KD8xTvi8w3r+4Jh+aRhiB39TUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnbeNvf/ubLC8vy1//+leZnZ31w/j4eDHv8PPnn3/uX4Pwj3/8Q/0miQLKT1rOwsKCL/XZs2fl/fffl71798qLL75YzKNmwiuvvCJvvfWWHD9+XH7961/L1NSUX4iQ7UP5ybbBOvqLFy/KkSNH5OWXXy6RN6qwe/du+eijj+TatWuyuckB/q1A+cmWePTokf9kf/XVV0uk1OE73/mOf25gYMCX9NNPP5Xbt28Xq/TBp7f+HYDP1U0DiP3JJ59INpv1n/6oBQT/hg74Wz/+8Y/9Aujvf/+7/zmkMZSfhAZi5XI5eeONN0rkQ4CAOH7mzBlf8mba6/ozwoDvgKo/CoRqBQ++B5oauIZ9BvWh/KQhqNZDNogVFO373/++fPDBB/4TejtP3O3knW5yoGbwrW99q+T7/fCHP/T7CdgsqA7lJzVB1RtyB6WHYKjKX758uWVStSrvvv76a192dDDqz0RgIVAdyk8qQLsbnXfBJyme8qjSQ7BWE0XeYcShPA66EGBzoADlJ0Ugxfnz5+WFF14oEWZ4eDjS4bUo8w61l/Imy86dO+Wzzz5TVyQXyk98IAOk0OmIJz2kb0dVuR15h76Bn/3sZyU1gZ/85Cd+LSepUP6Eg446VI91+iGgtxyytIt25t3du3dL+gRQyxkdHVVnkwXlTzB//vOfS4bLTFWH2513aN5AeNRu9N9GLSBpcwQof0LBpJtg2x4TcUx1hJnKO3ReYohQ/31MIvryyy/V2fhD+RMGBA9W89GhZ7rzy3TeoZNT9wWgYxATmZIA5U8QqNYGZ+fhqdfOtn0tbMg7rCZ86aWXit8FNaG4Q/kTAiQPtu8xL98WbMk7NANee+214vfBBKc4zwmg/AkAE170ajtUb22r1tqUd5D97bffLn4nzGaMa0cg5Y85EB/teqQNOvgwLdc2bMs7FACYGKS/F2oDcZwaTPljDKr6uh0L8dGutRFb8w4dgfq7oTYQtyYA5Y8pqKrqGXs2iw9szjv0jejvhxmCcYLyxxA8oXTHFdr4k5OT6oyd2J53wSbAxx9/rI66D+WPIZieq9MDk3lsx4W8wwxAl9I0DJQ/ZmDaqk4LtFldwIW8Q23qwIED/vdEMwpTo12H8scITE3VS1cxROUKruQdljXrIVPMmXB9CJDyxwTciHqDS/TwR7HpRlS4lHfoONVTgTFN2mUof0zQE1NwY9rcs18N1/IuOASI/QNdhfLHAPTm6/hjqy3XcC3v0P7HVuH4zngZiUu1rCCU33Ew80y3Q3/0ox85ORHFxbzDDkB6STTWALgI5XccjDvruGO/fBdxNe+C1X8X057yOww2p9S9+y7PPnM171DL0isl8a9rtS7K7zAYzkOc0e50+eWVLucdOlf198erxVyC8jsKxvR1nF3fecb1vNMzKrF60qWnP+V3FP3Ux9i+i518QVzPOyyb1nFwaeov5XcQtPX1RJM47DcXh7xzsTCm/A6iN+BENTMOm0zEIe+CzTDbV1FqKL9jYHxZP/Xx3rk4EJe805ujYr6FC1B+x9Bjy5hgEpetpeKSd3hVuY6LC6v+KL9j6HFlV2eVVSMueYe2vt427cMPP1RH7YXyO0SwXTk7O6uOuk+c8g77/SMuLgz7UX6H0NtJ4ekSJ+KUd8Fhv6mpKXXUTii/Q+gtuOO0jxyIW97ptwBj8o/NUH5HCFb58ZrpOBG3vBseHvbjg7cA2wzldwR9Q2Eef9yIW94FC2r831YovyPoV0ljF9m4Ece80+/+t3kuBuV3APQa640jsDtv3Ihj3unpvjZvpEr5HQDDejp+y8vL6mh8iGPe4YmPONnc7qf8DqDb+3Eb4tPEMe+C7X4sxLIRyu8A2KUHcUO7P47EMe+wlbqOl63j/ZTfAfROscePH1dH4kVc805P9bW104/yO4C+iVzbJioscc07XWjbur8i5bccrNzTccOqsTgS17xDTQ3xwlJfG6H8loOloTpucezpB3HNO93jj2nZNkL5LSc4zBdX4ho/7Odnc9wov+XEVX5MXEKtZnx8nHlniPZ9q79clpMnTzYIQ5KbvC53Fp5Js3vUxPUG0k8PvJwjLmDZK7a60nmmw+XLl9UV8cD2yVnts2XlS7l+/ZKc29dZTJBM/4e+7NevI0xKbuiwvJ5J++fSmdfl3B+eSF79eiP0Z8YNLT/exxcH8HIRtIH1PoTlAcLUJb8hD+/dkMncUOCBcUPuPdxQ90pe7v/PDXns/98swbX9yZZfk5+WYypB+nJL6mCA/BO5O9wvaf+aTsnOrKkT9dGJHDf07L64yI/trdLpQgFfHr7xjW/Izp071ZVl4L7IHZFdHXgw7JGDp3IyWfbQ6Nh1UI4d3isdvaOyqH7NJBBex83GZdgGbLkvw92FBKkqv8+aTB1SN0jmtNwK8fjXiczgfqh49djaLRncg/uhQ94cuStPqt0PKBxG3pQO/zOyMqMOmyQof8MajQEMyL8kub5CgtSWX2R96pBKuIwMzqmDddCJzOB+WF1dVbnqsX5DTnQWjveNLjZoBuZlcbTPu9Y++fnk94lG/rgStzb/22+/Ld/73vdU3laGH/zgB+pKsC43Tqg+os5BmQvTAZSfk8HOAZmwoNHPNn8FYeQPVPvTR+XqujqcQOLW24/Vbt/85jeLUgQDOgHRx1FkZUz2q3P1HhTlrIydliYujwz29lfQSP5NmR97Rzr9REtL/wULctEgto8VbwUUaN/97nfl29/+th8v/e+hQ4dKtrteyqEKj7h3y/B9dTAMaw/loQUPDNvzzqj8GM47HBjnP3awV7rUUB96bs9NPww91GcTN4e6pbu7yTB0U/12KXGUH6BKfPbs2eJ7Byvj91gmBgrHUyk7qvHNomtttuadUfm7j/2nGuMvhEu/OSYH92QKw3wdO2TfL8bkbtWuXbvZfLYqq8v35NLR53MafjrpHVutDAt3LskJ9GRnq3dRJXdu//P7xJYOvGbh3P4KGrf5N+fH5B3Vw5tK90tu0cXnv8fiqPT6N29KarhdAG3bY9NVazmoBhcESNqqPvfl56q+ChrLD/Jzg6rd74X9Y7KijjvFUk76VBzqyi/LcuFEzkuZ6hQESNp6fi9N+lX+pw7JlIOdvlzPX0E4+YOTgVzN/PDye7WdDT09tZJCGiRvJ5+5wYw65+ZwL3fyqWAr8rtZ7Qsl/59+L79v0JQvpEEC9/D707li7a+7qe5+83APv6rMyWCmkCh1q/33h6VHJV766FVxcqg/hPzrU8MNx6T1TZS83XtXZGJAz/fwan/hlnmg00i+mP8/9YMZgrv32tpR2375167Iv6pEqS5/Xp7czT3v8Ov0nvphM902Gsnv3aS/7esLLT+CrdtAbwcdt6qszUhW3Qvp/lGZb7TWe+0LGX7vhPF7xvaeftA++f31/M+X7PqZmemSfYefj/OfPHZQend0qPMdsutIzsmhviIB+Tt2lI/td0kmjXPNyZ/EN/bkFycCD4N9cu7agjwrLwQ2v5J7V07J63tOyLQF94x+Y4/Nr1drn/z+ev7nY/q1wx1ZWF2tzFwXCchfbZx/YXbEu6mbkz+x7+rbfCDXzh30l/QWrk9LpksVpF0ZSXfskiO5Giv+DKDf1WdzYd0++ZNIi9v8CLa/9nkr6LiFY1OerS7InZKHRfM7P0VJsL2PmYy2QvmjJIT8srkhGw2eVvpG0oHv57cbvQGLze19QPmjJIz8IdBy6HFj7IYTJ3T84oLen/D9999XR+yE8kdJU/Ln5f7vLsgd9VMQLcdHH33k/xu3IT8dvzgQXIvx2WefqaN2QvmjpAn5N2+dlj2nb1Wd5advpmBb0vYbqxl0nOIAamWICwro4PJkG6H8kZGXJ1cOqY1IU3JsulbDflO+uj0s/enaU1iDcuzevdv//wcffOD/HAeC8XMZyK6bZqil2Q7ljwB/PX9xvoIKntxdJeP8hbBDD131jMi8+v1y9GeA8+fP+/9/4YUX/Pf4xYFg/FwGqy51XFD9tx3KHwH+ev6yMf2Goc7EhqAcjx49Ku55b+uCkWYJxs9lsHQX8UCHnwtQfgcol0PvfoOhpDg8/cvj5yLB/pjJyUl11G4ovwOUy4H5/frpn8vl1FF3KY+fi+jpvK+88or1HX0ayu8A1eRw8WarRbX4uURwi27s2+cKlN8BqskRrGa6/vSvFj+XwGQefH80w1wqiCm/A9SSQz/9X3zxxcpXXDlErfi5wOeff178/q5ts0b5HaCWHGj742UeOGfrPnFhqBU/28FT/tVXX/W/O/51rflF+R2gnhwff/xx8fzt27fVUbeoFz+b0XMuXE17yu8A9eTAUB/e44fzGF92sfOvXvxsBfMtMNEK39vV2ZaU3wEayYFxZX3NmTNn1FF3aBQ/20ABq7flRn/L119/rc64BeV3gDBy4O23uAbj/64t+gkTP5tAAau/88WLF9VR96D8DhBGDmwVjTF/XIchJ0wZdoUw8bMFFKx6ghVmWroM5XeAsHJg7F/3/qNa6kr7P2z8TIMCFQUrvit691Hgugzld4Bm5MCGkfp6V3b8aSZ+poDor732mv890dHnwqq9RlB+B2hWDj3jDMGFlX/Nxq/doAal+1QQXJrCWw/K7wDNyoGbVS8vRbh8+bI6YyfNxq/d6FWUCC6OptSC8jvAVuRANVXv+oMOqtnZWXXGPrYSv3aRzWaL3w//jxOU3wG2Kgc6qHbu3On/Ltqptg4BbjV+URMUH9X+uEH5HWA7cmC5qe6hRg3AxibAduIXBWg2Ydae/l4Q35WRk2ag/A6wXTnwllhdA0ABYNvqs+3Gr5VgunSwcy+u4gPK7wCtkANNgL179xY/6+zZs+qMeVoRv1aAabp6OA8B1f64ig8ovwO0Sg50Auo56QhvvfWWFTMBWxW/7YB1+XrbbQSslow7lN8BWikHnmRY+68/E/0BpjsCWxm/rYCluXrKLmZIxmFfxDBQfgeIQo7x8fHiklQEvGTCVBU3iviFAdV81H7030e/CKZIJwXK7wBRyYGdgPRcAH3zm6gFRBW/WqCQwzRo/Q59BEzkcX2ufrNQfgeIUg70bh8/frxY7UXA9OB29gVEGb9y8HrzYMcnCgDUgpII5XeAdsiBbaj0q6W1FHjPfDteCtKO+KEwQ19HsJDD097VjThaAeV3gHbIAVAdxhyAYHUYO9VgPnuUuwNHGT80bSB5UHosx0XvftKh/A4QpRzVwFOyXBgUCBj3xt51rSaK+KF6j63Ng3HAyAZWOcZ57L4ZKL8DRCFHGCA6hNcbhOiAuQLYvqpVTYJWxQ/fF8N2ejttHbT07WjCuATld4BWybFVUBNA1T/YHEDAUCHmwOPV1NvpKd9O/PDdUBBhyC74lEfAtmZYe0/pq0P5HWA7crQSSISe8Wqi4Wf0omO+QLOFQTPxg+z4Dui80+sVgkEXSDYvYbYFyu8A+sa2iVpV7GBAdRtNBAwloto9NTXld7RhoRGCbnvr61Fg4Dg66SAvViDib2DoEQVLec1DBzRLUCC1simSBCi/A+ib3FYaPY1bHSA7dipCUwSFBIXfGpTfAfRN7wooDPCUx9MeBQJE1XsKNBtQmBw4cMDfjBSz8jAfgbK3BsrvAFoE18FcgWC1HgE1Bh0//FytWUCigfI7QFzkr0Xc42crTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuANQfhIFTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuAPUkwO72iwsLKif7AR76NfbfYfym4Ep7gDV5IBM2CYL22NhLzubwQtA6u2dT/nNwBR3gKAc2AoLO9oG98RzQX79XasVAvocaS9McQfQclR7cQYCjr388svWBuylX/6dg4WAPkbaC1PcAYLSxC1gv339f9JemOIOoOXAq6fwCir9sw54umJ7bFtDsImiw+7du2VycrIkfqS9MMUdICgHtrMuLwRcavMHpdfoc6S9MMUdoJocwULABfmrSa+h/GZgijtAPTlQCOAFFzaDl3TUg/KbgSnuAHGXg/KbgSnuAJSfRAFT3AGal2NTnq2uytONvPrZbii/GZjiDtCsHEsX+iXtXd+XW1JH7Ibym4Ep7gDNyJFfzEl/unA95Sf1YIo7QGg58osy2tcpnZ2UnzSGKe4A4eTIy9xgp/QM35fpLOUnjWGKO0AYOdZmstLVn5PFvMhMaPnzsvF0VVZXV+VZ7eX2Hpvy7OmGd7Wm0KG4WvWX6p2rDuU3A1PcARrKsTYj2a5+uaBcbyz/pjy4dkpez2RkR3e3dGXS3vUdsuvImMwHnN386p5c+c1h7zrvfF9Oljz9H06fkr0dhc9PpdLS9d6EX+DgM+fHjsiuqufq0zB+JBKY4g5QX441mTrUIYem1tTPjeRfk5kTXZLuzMr0E23mmkwfy/i/k+6/4Enu8XhOpiYn5Zf9KBi8z+sblekL/yx7DpyTS9evy+TIe9KlOhb3j83LF8Nvyq4DpyQ3WX5uxf8L9fA/3wukvTDFHaCeHBjW68rOePo+p578KxMDkk5l5PSt0kdyfvqY+jt9Evy14vGON2Xk7pNA1V9kfqRHndsr5/5Qem5lbH/h3MCEPFbHalH4u7wV2w1T3AFqyeEP63VlZSZovkdt+edlpMc7lxmUOXWkyPqc/Me+buk9UlZVn8kW/r5f7S9jq+fK8K/zAmkvTHEHqCqHGtYbnCt9goOa8i/lpA+fFULIIpQ/tjDFHaBSjsKw3j8N3ZRH6FkvC5M/LVzf+6s/Fo7pnvobJ/yZf5SfAKa4A1TKMSNZdSxU0ALODUoGP6e9pkJlhUGRlzyr/YmAKe4kf5HLJ0/KyRrhX9Cu92TK9P9b4dgnNwqdbo8nZMAXLS1Hr677n1SB1zQYngqca4P8xAyUP4bU7vBbkbH9hXOpzsqOQvQj5N78uZSUC5Q/tlD+GFJvqG/da/d3QkovpLvek5HZBb9fYOHOJTm1t8OfHhys9ReH+rYqf++oLKpDxC4ofwypJz/a9IsX3pQOiFkWOo9OyUNtfn5Dni7flmE9ySfdL8O3lwvTdv1z9+TS0U71uz2SveYVIlXPdcrRK+ocsQrKH0NuDnVLd3e3vDtee2+/zQfX5DeH9/nX9R48JbnZB1Ki5/K4vOudw/mSMHRz6+eIVVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckkYj8P3aHxnXKUrjAAAAAAElFTkSuQmCC
|
As shown in the figure, a circle is drawn with the vertex C of a square as the center. The circle intersects the sides BC and CD of the square at points E and F, respectively. What is the arc length of EF on this circle? ( ) cm.(π = 3.14)
|
A. 50.24; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
D
|
4
|
iVBORw0KGgoAAAANSUhEUgAAAcYAAADVCAYAAADNV1CoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxvSURBVHhe7Z1diB1nGYBTWyXVigWLP5ALoQF7kYuiAQNbIYUgQYLkohcpBBHJRWhzsUguchEIWDBgwEIDBrLQShcMKDTQggFDVmjBgAEDrVhwQyMKFgwYMNCAguM+35nv7Hdm5+ye/TlzZuZ7Hnib7jlnz87M2X2feb/fXYWIiIgMUYwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIis8fPiwuHv3bnH79u3id7/7XbG4uFhcunSpOHfuXHHq1KniBz/4wUgcPny4OHjw4Eg888wzxde+9rWReO6559a87vjx42vej59z4cKF4o033iiuXbtWvPfee+F47t27Vx6hNIViFJHeg1xu3rwZZIeAEBOCevbZZ4O8HnvssWLXrl2tjq985SvF3r17w3EfPXq0OH36dBA3El1eXi7PVHYCxSgivQD5UekhizNnzhQvvPBCEN8TTzxRK5px8eSTTw4rPapCqjkkhFDTeO2114rXX399JH7zm98US0tLI/Hmm2+ueV31vc6ePRt+DsJDfAgQEdYd37hA7nwfx0yF++qrrxbvvPOO0twCilFEOsfHH39cXL16NQjlyJEjxZ49e2plkQbC279/f3Hs2LHwfQjqV7/6VZDXn//85+Jvf/tb8b///W9msXx5bvV45y4Xy+Xj//znP4uPPvooHOfbb78djvsnP/lJceLEiSDvSc6dmwNeizAXFhaKDz74oLySUodiFJHWQ9VDJUhVRVVUl/wJ5HfgwIHQVPrjH/84VGu///3vg1yqImpX3Cjm52/UPD5ZfPLJJ8X7779fvPXWW8VPf/rT4uTJk8WhQ4fWlSbXipuK8+fPh2bm//73v+XVFsUoIq3jwYMHxZUrV0JVRLNmXWJnoAuiRARUUv/4xz9qpdGJuHG5uLxc8/gOxL///e9wc/Dzn/98Rb7zoXLcvXv3mutJVUlT7sWLF4u///3v5SeRJ4pRRFoBMmRwDMm5LnFTCdLXR1XU/gpwM7FcXJ4rzzNpQl2NlWpyeB3mhgINTa+8/sZ8+dx8cWPl8Rvz673XIKgw33333dAkS59kXT8sAqWfMkdJKkYRmSkffvhh6PuiaS9NzE899VSoGH/5y18W//rXv2oTfN9iILVV+UVpzt9InqfJdSjD8uvydXNzc+VrkWn6PusHoqQPk0FLDFhKPweCJldGv+aCYhSRmcB8QRJumoCjDH/7298W//nPf2qTeN8jVIKxv3H58ors6iu/YcVYfo005y4vl88Pqswo1M3GX/7ylzBAqdqfy9fMs+x7f6RiFJFGoWmO5tI04dJMymhLKpe6RJ1VpDKkMpyBGNOgf5K+3LR5G0EyFaSvKEYRaQyqjbTJlP6tP/7xj7UJOdtAjGnFWPYdVl/XlBhj0JxNU2sqSIR5//798tPtD4pRRBqBEZExoTKilD6tugTc1aDp92c/+1nxrW99q3j88cdDVUWz8GbnR96YX9vHuCq8lecvD2TYtBhjMPqXxRPSz5J5pX1CMYrI1GFwTUykjCztW5MpUyK++c1vFo888sjwPIlHH320+PznP1/84Q9/qP2+EKEqXP2etTIbSG7k+crgmzAop/x67vKN1VGumxiAs9lgcQT6hPk5yLFPa7oqRhGZKqxQE5M2FVVdku16vPTSS8WnPvWp4XmmweNPP/10L/tPWTEoLl1HddwXFKOITBWqCRInTal1ybXrgfBSEY4LKqy67+960CQez5GpN31AMYrI1KB5LSbNfk3KXw2aSeM55h6smtMHFKOITA32FCRh0hdVJ5U+hGJcjb40pypGEZkabAMVkyb9UXVi6Xrk3pRKsGsJ58j0jT6gGEVkaqRiZFJ/XVLtQ/zoRz9aMyI1BiNT+zr4hrh8+fLwXBWjiMgGpGIk+jwA5/nnnx85V4LNg7/85S+vP12jw0EVzDnG81WMIiIbEMWYJk8mh/d1IA5bO7Gaz1e/+tWwGDdzNvu4ADqLGbDdV/xc47+KUURkA6IY2VOREYsxgTIYh7VRc10ovMvBEn6sbcvnSHCjw8bQilFEZAJSMQI7asR5jQTLprl4eDeC5uB08XfWTGW/RkCIPKYYRUQ2oCpGePjwYXHu3LmRxcRZPYVtjjq9C38PgxsWblziqNMYCDKdzK8YRUQmpE6MEXZlqAqSYOd4lo7b7OLbxs4EMnzrrbdC82i6sz/N4DSbUvVXUYwiIhOynhgjVJALCwu1O8dTqbDVEcuO2dw6vWCOKTcjDBxKt5UiqOb5DNhHcxyKUURkQiYRYwrVSN3O8QTVC4mbKpMd/tnRoi7JGxsHA2hee+214tixY8NFwNNgcBSr2Fy/fn2i3foVo4jIhGxWjCn0YTGSlf6stEkvBk17VJkkd6YOvP322za/VoKpIuzAjwTZ+uvgwYNrmq7jtWSkKTcdfGaTyDBFMYqITMh2xJhCor5582YYBYko66qcGDQF7tu3L7yOeYTMLaTC/Oijj2rl0fVgTijye/PNN0O1Td8gkot7JdYF1whJ0kR67dq14sGDB+WV3hqKUURkQnZKjHXcvXu3+PWvfx1kcOTIkWLPnj0jyb8uqIyYLsLraSqkQqJvjZGXyBPBINBZN9Myv5PjoMmT/lWkh+A5Xio/qmT6X+uqv2rwGgY08X2XLl0qbt26temKcCMUo4jIhExTjHWwzRWJ/8qVK8Urr7wS5IcU1qsw1wuOm+qT6oo4dOhQSP5pnDx5Mghro2A5vOr3Iuj43oiOn1cd/DJJID+alRk1ShXIYCb6B9cbMLOTcC4cB//2AcUoIlOjaTGuB6NfP/jgg+Lq1avFhQsXgkBSOXGM6zU/ziKQJMeFNDlGjpfKD9EuLi6G5mVuBmaNYhQRmZA2iXEzfPzxx8Xy8nI4fkT6xhtvhKASq1aCUbAbRRRaGvSZxvdGdPw8RubSTLzTzZ3ThPNTjCIiE9BVMcrmUIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwyNdgWh1X1q9HUnmoiO41izAPFKAG2hEFa7O/GHz87ibN1DJujsp0MvyDsss0eamwgSmKIMcmu25MGu5an782mrHEz1bjNzcWLF8OxXbt2LRwrx822OiLTRjHmgWLMBOTx3nvvhZ3A2dSU3bePHj0aNgzd6m7gbYvHHnssJKy4AerZs2eLS5cuFe+8807YE+7+/fvl1RDZGooxDxRjj6BqooqioqK6otKiAkvlMUnwR793794gmMOHD4dfjlitIVWqNTY7JUmkQbUZm0tjPHjwoDy6VTjO6uvYubv6fmx0ys/i5yI5juP48ePhuA4cOBCOc7M7lD/xxBPFvn37ihdeeCG8JzcKSJNmX5GN4PeS3yPF2G8UY0dhN27Ecfr06SCvSQTBa2gGPXLkSHHy5Mni/Pnzw122kVOXoRpEzNwYsCt5FCkSRfJUk3XXJA2ESXMx8r9+/Xqt1CVvFGMeKMaOgAhfffXVUOms1/SJ/OiXQ3y8HlF8+OGHK0n+/WJhbvV1cwt3ynfOByrVW7duhSoRcXItkeE4afI4NxI0O1MhK0pRjHmgGFsMf4RUhFQ8acKO8cwzz4TkToVDP9q9e/fK76xhab6YXyr/X0Zg4BHNqVTPSJAmaJpcq9d79+7d4TluOBxZmyeKMQ8UY8ugr43kXNc3iAipBKl4NjsKc2lhocivRtw6UZZIkEFKdSNvqcx53hGx+aAY80AxtgCSMNMjGFCSJl6qFj4YBqBsK/neWSjmyvesbUJdqSaHP3cuCvROaHrl9Uvz5XOh5Fwq5td7rx7DTQvTVxDi8HqtBJXkiRMnQh+n9BvFmAeKccbQB0glGJMs/VpUKIhy50dKllIbym+FIM35lWdg8Dz+G8qw/Hrwurlibq58LTJN3ycz6PNFktVmbv6QrCD7i2LMA8U4IxjIwQjImFCpOmhCnf7o0EElGPsb7yysyK628lutGAcgzbli9UuqzCjU9UEiNP9yE9DHuYQMzEmrSCp9zlf6h2LMA8U4A5ADox1jImVuXpNVRipDKsNpiRHJf/vb3x6eJ/Hoo4+GeYk0H/cNBJlWkPQ/Sr9QjHmgGGdArBSpLBhN2jSIMa0YB32HVbYnRkZtfuELXyg+85nPhHNN45FHHil++MMflq/sF7QExD8qmsXpl5T+oBjzQDE2DPPoYtJkibbmWRHcmj7GRHgrzy+EL7YnRvpJaR7mXMcFSaav0ArAObLAgPQHxZgHirFhWG2GC87qM00RqsKVnzmIGpkFyY0+Pzr4BinGr1fkuLQ6yrVuAA7NpBtJkRsD5mj2FZqROU+ug8vN9QfFmAeKsUEYhPLiiy8O5ZB7NHlz0DRM3eAcP/3pTxevv/56+eiA6nVoW8h4FGMeKMYGoZL6xje+MZKEcg0qRkbh9hE+Z9avjefK1JuU9Dq0MWQ8ijEPFGPDMDjji1/8YrjoyIHJ+32EvjWqpZhs64JRnH2DEcepFKfZXMyoV36Go1+bQzHmgWKcAX/961+Lxx9/fJg8aVKkmbVPsHA5I1KRfzzPGEzZ+O53v1u+sj9wk5Mu8P69732vfGbnod8y/iz+tR+zGRRjHijGGfGnP/2p+NznPjdMogzSYBpHn4b3cy5PP/10OD8EyTQN/v/73/9+b3aqQEhshswuHfGzJL7zne+Ur5gOsVqMYdXYDIoxDxTjDGG6xmc/+9mRBEcw+Z8dM/qwgwPiYG9DRuMikL6sJ8o5sT5q3eLizz///FQXMEirxRhWjc2gGPNAMc4Y+tlicyN/bNWmR/rqkIoLVM8WKlwWY2B3k+rOJ1/60peG1f/+/funXg1Xq8UYVo3TRzHmgWJsAew4H5Pbyy+/HESYLhkXg4RMcyuVF314Mj2QG1Uhy9dxc1Kdl8nXLGLwi1/8ovj6178eHmMx+Gkv7VdXLcawapw+ijEPFGNLYKeGmODinT/7AfI4ibluEAu79TNwh5GPTAmwqtwajCSlWZvrTvMoNyXjrjcr2jDIhk2hkWdcPBwpNXGzMq5ajGHVOF0UYx4oxhZx6tSp8GGQlKtz30jCNLsiQfZtrEvcBJUMiZ2d/al2eB8GweS+4zyVFOKiCrx48WK41kyrGFd9ETxHVYhsuElJoQ+Ra8zrWPO2qUFTHAfJOSboeJzxsepxys6iGPNAMbaINNkivvXWUiXRxyqHKqY6KnJc8AdNBcr3nDlzJkiCvjMS6vS3vJoO3DRw7FwPtnuiKRrxITVuEqj06q5FGgyiOXTo0LD63mj6DH2NfB+fE9tpzYJ47Cbp5lCMeaAYW0baPEclspnmUb6XRcqRA9JDsgizbuTkekGy5w+fLZSQKJUVvyDIhioUGdOcGAORxIolDaoohFUNpFP3eiJ9X4KmZH4mPx+ZczxUzBzfetXeuKCfluuL2DgPbgo4ps3A8cT3W1xcLB9tnngMJunm4HfUa95/FGMLoc8r7upP8t+JZlCkSVMi1Q2DfaJsqJL4WUg4JtquBteKUaFUikicypGbBCrJzcpvHOlAKd5/lsTjMEk3h2LMA8XYUhjdGCsixMVgj2lDUy4CQaAkAKopqjaaWxEpa5vyi8KAHyq3GDRXkiiqMa6iixVpXVDNpe9NlcjPPHv2bDgGjocqjeOLwmtqk+d0ak0b1nmN15PrJs2gGPNAMbYYBBWbQREGVZ/MBiQcq2qaqKc5gX9SOBaTdLMoxjxQjC0nTcg0EbYhIecGNyhxAA83KG35DDgek3SzKMY8UIwdgMEtsQmPeXbSHDTTxpVuaNJuU9XOMZmkm0Ux5oFi7Aj088VESF+bTB8kGKfBIMem+jInJf4+mKSbQzHmgWLsEAxAicmQZeFketBcGqfN0IxKc2rbiL8LJunmUIx5oBg7Bk2pfGA0rVZXx5GdASmmq9rQz9tGOD6TdLMoxjxQjB2DpM0gnLYn7S7DVAyub9tvPjhGk3SzKMY8UIwdhL6v2MzHdI42NvN1FSbtR+G0vbk6HqdJujkUYx4oxo7CQJB0dZy2DQzpIiweEGXThQFO8VhN0s2hGPNAMXYYVn1JV8dxAYCtw1J5cUoM66h2AY7VJN0sijEPFGPHYZHxuAAAzatuVLt5WOy8i4socLwm6WZRjHmgGHsAA3BitdOW5cq6Av2zseru2rJ7HLNJulkUYx4oxp7A6MmYKNlZQjaGflm21uKaNbVQ+04SP2+TdHMoxjxQjD2C/QVjsmQfQxkPlSG7gnCtqBh3YmuvpomftUm6ORRjHijGnsEO9DFhMspS1kJTM/tQco3oW9zMZtBtIn7OJunmUIx5oBh7CHsY8qHS78ieijLKsWPHhtenywskcA4m6WZRjHmgGHsIFdHhw4fDB+vqOKN0ZVWbSeA8TNLNohjzQDH2FPrQDhw4ED5c+tBcHWe0D5b/7zrxXEzSzaEY80Ax9ph0dRz+kHNeHefKlStDkdAP2wfi+YxP0neKhbldxdzCnfJr2S6KMQ8UY89J5+mxt2COq+Ncv359OM+T/te+wPmsl6TvLMyF5xXjzqEY80AxZsCtW7eGK7scPHgwqwUAbt++PTx3+l37dO6c09gkvTRf7JqfL+ZXnleMO4dizAPFmAlp1cTqODmwvLw8rJb379/fu2qZ86pP0ksrQpxf+S//1olx8Hj8/vml8mFAqLvmCr5laT6+hveKzw0ey1W2ijEPFGNGpP1sjM7sM2n/Kv/2sX81fpbVJL00PxBbFOCoxAaPRRkOmlsHr49NrzEGrynfY27lufKb0u/JDcWYB4oxMy5cuDBMfPx/H8llRG78HEeS9EpVtyrCtWIMUptbKFYfGRVlWjEOGAzgiVIM3Fko5hRj+Yj0EcWYIXEuH7G4uFg+2g+qczjpX+0r8TNcTdIrkksFViPG0Dw68poKinFdFGMeKMZMoZ+RD55+R/of+0L8hea82GOxz3CeaZKuNoWOBv2ENZKrohjXRTHmgWLMFCorRqjy4felsjpz5kw4H6JvlXAd8VzHJ+kxTalxMM2QpNJUjOuiGPNAMWZMdYeJLvfFpava9LXvtEo8382IcSC1iuhWZDj8cmIxVkazZoJizAPFmDnVPQm7OHqTNU/jVJS+j7ZN4XzXT9I1YoQoxxil4UabYpHj4PuHjzFoJ4hz9bHc5KgY80AxysjqOF2b78cC6bnNz4xwzibpZlGMeaAYJYBg4gox7FXYhRVi2EcxHvNzzz2X1Yo+wHmbpJtFMeaBYpQh7N0Yq6+2rynKjvu5rwHLuZukm0Ux5oFilBHY9T8m3LbuQnHv3j13DVkhfk4m6eZQjHmgGGUN58+fHybdtu1bSGVIsynH9tRTT2W9z2T8jEzSzaEY80AxSi2nTp0aJt627HRPH+LRo0fDMdG3SL9ozsTPxyTdHIoxDxSj1IKE0tVxSAiz5sSJE8PjuXr1avlovnAtTNLNohjzQDHKWB4+fDhstqRCYxTorDh37txQBAsLC+WjeROvh0m6ORRjHihGWRf69OJAF0aB3r17t3ymOS5dujSUAIKUAfGamKSbQzHmgWKUDWHU5549e8IvStOr46Sr2pw8ebJ8VIBrYpJuFsWYB4pRJoLRn4wC5ZeF5tUm5g2miw7Q35nbBP6N4LqYpJtFMeaBYpSJSUV15MiRqYoKET/55JPhZzUl4q7BtTFJN4tizAPFKJsibdpklOg0qDbdMqFf1sL1MUk3i2LMA8UomyYdDHP27Nny0Z2hOtiHpd+knvgZmKSbQzHmgWKULZFOn7h48WL56PaoTg/JeVWbSYjX3yTdHIoxDxSjbBlGifLLQ9PqdlfHqS4okPuqNpPAtTJJN4tizAPFKFsmXaJt9+7d25JZXIJuJySbC1wvk3SzKMY8UIyyLdJFvbfa/PnKK68Mk3zbFi1vM/GamaSbQzHmgWKUbZNuA8WAmc0sAJBuc3XmzJnyURnHtWvXwjVLrxvzS+Nj169fL18p00Ax5oFilB0h3TgYSd6/f798Zjzpxsh9+QWcNqkQ64LnZXooxjxQjLJj0IwaFwDYaFJ+uljA4cOHXdVmQrhOe/fuDdetGjzudZwuy8vL4VrTp84oaukncSBgX9ZmVowzBuGRNPilGreMGwKN1eWBAwdc1WaTjKsarRabIa7I5C4v/YTWr/gZ03XRBxRjC1hv4W/6H2mG4rmmFyTvC3VVo9Vic7CoBdecvl3n2vaLdDDhs88+25u/KcXYEhhdGpM2o06BXzp+2XiMipFmKdka1arRarE5aEKNNyb8Ht++fbt8RroM4yKiFPs2l1oxtghGmcbEzTJyBw8eDP9P3+KtW7fKV8lWSKtGq8XmoaUjjsQmidIX5WfQXRgIGNdn7uNcasXYMuLorhj80jmlYGeIVaPV4mxAjvFmj+AGhc9CQXYHqv24SAlB8ziS7BuKsWWQJNiiKv7iXblypXxGtgvX1hG9s4e1guOAMwJB0pUwyZQlmQ3IL81LBIMF+7qTj2JsIbFD21VtBqR/jG0M2TxUj/Pz8yOCpMuAwWe0kHjzMnsY08B4hzj4LwZVP/NT+4x/1S3FxLBK+kfZxpCtw1B/+tbjdKQYNNGxfynD/53/2ByMZaD/Nw76i8ENDN08N2/eLF/Zb/yrFpGZw40gAzjov0qryJiUaQKnCdYRrTsLNyZ01yC96s0JQcsV1z23Zm7FKCKtgq6ExcXF4tixY8OJ42nQ5Hro0KFQaV69erW4e/du+Z2yHsiNJlC6aOgfjKNK02CwH02lvCbnTc8Vo4i0FipJmu9o3mPVp2o1GQOBktDpt2SqE02w9JHl2CVB/y1zCrm5YHEFqvBqP2EaTKOhb5cBNq6qNUAxikhnoL+RpH/+/PmQ8Ouqnmow6pUKk+TP99FkS19aVysiRoKyghAio5mTmwGuxb59+8beOMSg2qZ59PTp06Ha7uuo0u2iGEWk05DcGcl64cKF0FdG4q/rLxsXVJtUVHwffZm8B+KgSmWeJSKlCZJAyjTdpjHpMo00ZVa/F0HH90Z0/DzkTaXHcSA8KmHkvtlzYgANTaa8F+fgylmToxhFpJdQXdZVVggj7lTT5RhXCVsFbh/FKCJZQn8aVRtVYNzQGsEwqIdqjeqRKpJqsgmR8nOQNhXi8ePHi1OnToWqlV1JYtWK6CetUGXrKEYRkS2AoKpNowwUik2jMWjCrL7OecrtRjGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiQ4ri/x0yBQtysrruAAAAAElFTkSuQmCC
|
Mike has a conical water container. Each time he fills the cone with water and then pours it all into a cylindrical storage container. He repeats this process 6 times. How much water does he pour in total? ( ) cm3
|
A. 314; B. 628; C. 1256; D. 2512; E. No correct answer
|
B
|
5
|
iVBORw0KGgoAAAANSUhEUgAAAcYAAADVCAYAAADNV1CoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxvSURBVHhe7Z1diB1nGYBTWyXVigWLP5ALoQF7kYuiAQNbIYUgQYLkohcpBBHJRWhzsUguchEIWDBgwEIDBrLQShcMKDTQggFDVmjBgAEDrVhwQyMKFgwYMNCAguM+35nv7Hdm5+ye/TlzZuZ7Hnib7jlnz87M2X2feb/fXYWIiIgMUYwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIis8fPiwuHv3bnH79u3id7/7XbG4uFhcunSpOHfuXHHq1KniBz/4wUgcPny4OHjw4Eg888wzxde+9rWReO6559a87vjx42vej59z4cKF4o033iiuXbtWvPfee+F47t27Vx6hNIViFJHeg1xu3rwZZIeAEBOCevbZZ4O8HnvssWLXrl2tjq985SvF3r17w3EfPXq0OH36dBA3El1eXi7PVHYCxSgivQD5UekhizNnzhQvvPBCEN8TTzxRK5px8eSTTw4rPapCqjkkhFDTeO2114rXX399JH7zm98US0tLI/Hmm2+ueV31vc6ePRt+DsJDfAgQEdYd37hA7nwfx0yF++qrrxbvvPOO0twCilFEOsfHH39cXL16NQjlyJEjxZ49e2plkQbC279/f3Hs2LHwfQjqV7/6VZDXn//85+Jvf/tb8b///W9msXx5bvV45y4Xy+Xj//znP4uPPvooHOfbb78djvsnP/lJceLEiSDvSc6dmwNeizAXFhaKDz74oLySUodiFJHWQ9VDJUhVRVVUl/wJ5HfgwIHQVPrjH/84VGu///3vg1yqImpX3Cjm52/UPD5ZfPLJJ8X7779fvPXWW8VPf/rT4uTJk8WhQ4fWlSbXipuK8+fPh2bm//73v+XVFsUoIq3jwYMHxZUrV0JVRLNmXWJnoAuiRARUUv/4xz9qpdGJuHG5uLxc8/gOxL///e9wc/Dzn/98Rb7zoXLcvXv3mutJVUlT7sWLF4u///3v5SeRJ4pRRFoBMmRwDMm5LnFTCdLXR1XU/gpwM7FcXJ4rzzNpQl2NlWpyeB3mhgINTa+8/sZ8+dx8cWPl8Rvz673XIKgw33333dAkS59kXT8sAqWfMkdJKkYRmSkffvhh6PuiaS9NzE899VSoGH/5y18W//rXv2oTfN9iILVV+UVpzt9InqfJdSjD8uvydXNzc+VrkWn6PusHoqQPk0FLDFhKPweCJldGv+aCYhSRmcB8QRJumoCjDH/7298W//nPf2qTeN8jVIKxv3H58ors6iu/YcVYfo005y4vl88Pqswo1M3GX/7ylzBAqdqfy9fMs+x7f6RiFJFGoWmO5tI04dJMymhLKpe6RJ1VpDKkMpyBGNOgf5K+3LR5G0EyFaSvKEYRaQyqjbTJlP6tP/7xj7UJOdtAjGnFWPYdVl/XlBhj0JxNU2sqSIR5//798tPtD4pRRBqBEZExoTKilD6tugTc1aDp92c/+1nxrW99q3j88cdDVUWz8GbnR96YX9vHuCq8lecvD2TYtBhjMPqXxRPSz5J5pX1CMYrI1GFwTUykjCztW5MpUyK++c1vFo888sjwPIlHH320+PznP1/84Q9/qP2+EKEqXP2etTIbSG7k+crgmzAop/x67vKN1VGumxiAs9lgcQT6hPk5yLFPa7oqRhGZKqxQE5M2FVVdku16vPTSS8WnPvWp4XmmweNPP/10L/tPWTEoLl1HddwXFKOITBWqCRInTal1ybXrgfBSEY4LKqy67+960CQez5GpN31AMYrI1KB5LSbNfk3KXw2aSeM55h6smtMHFKOITA32FCRh0hdVJ5U+hGJcjb40pypGEZkabAMVkyb9UXVi6Xrk3pRKsGsJ58j0jT6gGEVkaqRiZFJ/XVLtQ/zoRz9aMyI1BiNT+zr4hrh8+fLwXBWjiMgGpGIk+jwA5/nnnx85V4LNg7/85S+vP12jw0EVzDnG81WMIiIbEMWYJk8mh/d1IA5bO7Gaz1e/+tWwGDdzNvu4ADqLGbDdV/xc47+KUURkA6IY2VOREYsxgTIYh7VRc10ovMvBEn6sbcvnSHCjw8bQilFEZAJSMQI7asR5jQTLprl4eDeC5uB08XfWTGW/RkCIPKYYRUQ2oCpGePjwYXHu3LmRxcRZPYVtjjq9C38PgxsWblziqNMYCDKdzK8YRUQmpE6MEXZlqAqSYOd4lo7b7OLbxs4EMnzrrbdC82i6sz/N4DSbUvVXUYwiIhOynhgjVJALCwu1O8dTqbDVEcuO2dw6vWCOKTcjDBxKt5UiqOb5DNhHcxyKUURkQiYRYwrVSN3O8QTVC4mbKpMd/tnRoi7JGxsHA2hee+214tixY8NFwNNgcBSr2Fy/fn2i3foVo4jIhGxWjCn0YTGSlf6stEkvBk17VJkkd6YOvP322za/VoKpIuzAjwTZ+uvgwYNrmq7jtWSkKTcdfGaTyDBFMYqITMh2xJhCor5582YYBYko66qcGDQF7tu3L7yOeYTMLaTC/Oijj2rl0fVgTijye/PNN0O1Td8gkot7JdYF1whJ0kR67dq14sGDB+WV3hqKUURkQnZKjHXcvXu3+PWvfx1kcOTIkWLPnj0jyb8uqIyYLsLraSqkQqJvjZGXyBPBINBZN9Myv5PjoMmT/lWkh+A5Xio/qmT6X+uqv2rwGgY08X2XLl0qbt26temKcCMUo4jIhExTjHWwzRWJ/8qVK8Urr7wS5IcU1qsw1wuOm+qT6oo4dOhQSP5pnDx5Mghro2A5vOr3Iuj43oiOn1cd/DJJID+alRk1ShXIYCb6B9cbMLOTcC4cB//2AcUoIlOjaTGuB6NfP/jgg+Lq1avFhQsXgkBSOXGM6zU/ziKQJMeFNDlGjpfKD9EuLi6G5mVuBmaNYhQRmZA2iXEzfPzxx8Xy8nI4fkT6xhtvhKASq1aCUbAbRRRaGvSZxvdGdPw8RubSTLzTzZ3ThPNTjCIiE9BVMcrmUIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwyNdgWh1X1q9HUnmoiO41izAPFKAG2hEFa7O/GHz87ibN1DJujsp0MvyDsss0eamwgSmKIMcmu25MGu5an782mrHEz1bjNzcWLF8OxXbt2LRwrx822OiLTRjHmgWLMBOTx3nvvhZ3A2dSU3bePHj0aNgzd6m7gbYvHHnssJKy4AerZs2eLS5cuFe+8807YE+7+/fvl1RDZGooxDxRjj6BqooqioqK6otKiAkvlMUnwR793794gmMOHD4dfjlitIVWqNTY7JUmkQbUZm0tjPHjwoDy6VTjO6uvYubv6fmx0ys/i5yI5juP48ePhuA4cOBCOc7M7lD/xxBPFvn37ihdeeCG8JzcKSJNmX5GN4PeS3yPF2G8UY0dhN27Ecfr06SCvSQTBa2gGPXLkSHHy5Mni/Pnzw122kVOXoRpEzNwYsCt5FCkSRfJUk3XXJA2ESXMx8r9+/Xqt1CVvFGMeKMaOgAhfffXVUOms1/SJ/OiXQ3y8HlF8+OGHK0n+/WJhbvV1cwt3ynfOByrVW7duhSoRcXItkeE4afI4NxI0O1MhK0pRjHmgGFsMf4RUhFQ8acKO8cwzz4TkToVDP9q9e/fK76xhab6YXyr/X0Zg4BHNqVTPSJAmaJpcq9d79+7d4TluOBxZmyeKMQ8UY8ugr43kXNc3iAipBKl4NjsKc2lhocivRtw6UZZIkEFKdSNvqcx53hGx+aAY80AxtgCSMNMjGFCSJl6qFj4YBqBsK/neWSjmyvesbUJdqSaHP3cuCvROaHrl9Uvz5XOh5Fwq5td7rx7DTQvTVxDi8HqtBJXkiRMnQh+n9BvFmAeKccbQB0glGJMs/VpUKIhy50dKllIbym+FIM35lWdg8Dz+G8qw/Hrwurlibq58LTJN3ycz6PNFktVmbv6QrCD7i2LMA8U4IxjIwQjImFCpOmhCnf7o0EElGPsb7yysyK628lutGAcgzbli9UuqzCjU9UEiNP9yE9DHuYQMzEmrSCp9zlf6h2LMA8U4A5ADox1jImVuXpNVRipDKsNpiRHJf/vb3x6eJ/Hoo4+GeYk0H/cNBJlWkPQ/Sr9QjHmgGGdArBSpLBhN2jSIMa0YB32HVbYnRkZtfuELXyg+85nPhHNN45FHHil++MMflq/sF7QExD8qmsXpl5T+oBjzQDE2DPPoYtJkibbmWRHcmj7GRHgrzy+EL7YnRvpJaR7mXMcFSaav0ArAObLAgPQHxZgHirFhWG2GC87qM00RqsKVnzmIGpkFyY0+Pzr4BinGr1fkuLQ6yrVuAA7NpBtJkRsD5mj2FZqROU+ug8vN9QfFmAeKsUEYhPLiiy8O5ZB7NHlz0DRM3eAcP/3pTxevv/56+eiA6nVoW8h4FGMeKMYGoZL6xje+MZKEcg0qRkbh9hE+Z9avjefK1JuU9Dq0MWQ8ijEPFGPDMDjji1/8YrjoyIHJ+32EvjWqpZhs64JRnH2DEcepFKfZXMyoV36Go1+bQzHmgWKcAX/961+Lxx9/fJg8aVKkmbVPsHA5I1KRfzzPGEzZ+O53v1u+sj9wk5Mu8P69732vfGbnod8y/iz+tR+zGRRjHijGGfGnP/2p+NznPjdMogzSYBpHn4b3cy5PP/10OD8EyTQN/v/73/9+b3aqQEhshswuHfGzJL7zne+Ur5gOsVqMYdXYDIoxDxTjDGG6xmc/+9mRBEcw+Z8dM/qwgwPiYG9DRuMikL6sJ8o5sT5q3eLizz///FQXMEirxRhWjc2gGPNAMc4Y+tlicyN/bNWmR/rqkIoLVM8WKlwWY2B3k+rOJ1/60peG1f/+/funXg1Xq8UYVo3TRzHmgWJsAew4H5Pbyy+/HESYLhkXg4RMcyuVF314Mj2QG1Uhy9dxc1Kdl8nXLGLwi1/8ovj6178eHmMx+Gkv7VdXLcawapw+ijEPFGNLYKeGmODinT/7AfI4ibluEAu79TNwh5GPTAmwqtwajCSlWZvrTvMoNyXjrjcr2jDIhk2hkWdcPBwpNXGzMq5ajGHVOF0UYx4oxhZx6tSp8GGQlKtz30jCNLsiQfZtrEvcBJUMiZ2d/al2eB8GweS+4zyVFOKiCrx48WK41kyrGFd9ETxHVYhsuElJoQ+Ra8zrWPO2qUFTHAfJOSboeJzxsepxys6iGPNAMbaINNkivvXWUiXRxyqHKqY6KnJc8AdNBcr3nDlzJkiCvjMS6vS3vJoO3DRw7FwPtnuiKRrxITVuEqj06q5FGgyiOXTo0LD63mj6DH2NfB+fE9tpzYJ47Cbp5lCMeaAYW0baPEclspnmUb6XRcqRA9JDsgizbuTkekGy5w+fLZSQKJUVvyDIhioUGdOcGAORxIolDaoohFUNpFP3eiJ9X4KmZH4mPx+ZczxUzBzfetXeuKCfluuL2DgPbgo4ps3A8cT3W1xcLB9tnngMJunm4HfUa95/FGMLoc8r7upP8t+JZlCkSVMi1Q2DfaJsqJL4WUg4JtquBteKUaFUikicypGbBCrJzcpvHOlAKd5/lsTjMEk3h2LMA8XYUhjdGCsixMVgj2lDUy4CQaAkAKopqjaaWxEpa5vyi8KAHyq3GDRXkiiqMa6iixVpXVDNpe9NlcjPPHv2bDgGjocqjeOLwmtqk+d0ak0b1nmN15PrJs2gGPNAMbYYBBWbQREGVZ/MBiQcq2qaqKc5gX9SOBaTdLMoxjxQjC0nTcg0EbYhIecGNyhxAA83KG35DDgek3SzKMY8UIwdgMEtsQmPeXbSHDTTxpVuaNJuU9XOMZmkm0Ux5oFi7Aj088VESF+bTB8kGKfBIMem+jInJf4+mKSbQzHmgWLsEAxAicmQZeFketBcGqfN0IxKc2rbiL8LJunmUIx5oBg7Bk2pfGA0rVZXx5GdASmmq9rQz9tGOD6TdLMoxjxQjB2DpM0gnLYn7S7DVAyub9tvPjhGk3SzKMY8UIwdhL6v2MzHdI42NvN1FSbtR+G0vbk6HqdJujkUYx4oxo7CQJB0dZy2DQzpIiweEGXThQFO8VhN0s2hGPNAMXYYVn1JV8dxAYCtw1J5cUoM66h2AY7VJN0sijEPFGPHYZHxuAAAzatuVLt5WOy8i4socLwm6WZRjHmgGHsAA3BitdOW5cq6Av2zseru2rJ7HLNJulkUYx4oxp7A6MmYKNlZQjaGflm21uKaNbVQ+04SP2+TdHMoxjxQjD2C/QVjsmQfQxkPlSG7gnCtqBh3YmuvpomftUm6ORRjHijGnsEO9DFhMspS1kJTM/tQco3oW9zMZtBtIn7OJunmUIx5oBh7CHsY8qHS78ieijLKsWPHhtenywskcA4m6WZRjHmgGHsIFdHhw4fDB+vqOKN0ZVWbSeA8TNLNohjzQDH2FPrQDhw4ED5c+tBcHWe0D5b/7zrxXEzSzaEY80Ax9ph0dRz+kHNeHefKlStDkdAP2wfi+YxP0neKhbldxdzCnfJr2S6KMQ8UY89J5+mxt2COq+Ncv359OM+T/te+wPmsl6TvLMyF5xXjzqEY80AxZsCtW7eGK7scPHgwqwUAbt++PTx3+l37dO6c09gkvTRf7JqfL+ZXnleMO4dizAPFmAlp1cTqODmwvLw8rJb379/fu2qZ86pP0ksrQpxf+S//1olx8Hj8/vml8mFAqLvmCr5laT6+hveKzw0ey1W2ijEPFGNGpP1sjM7sM2n/Kv/2sX81fpbVJL00PxBbFOCoxAaPRRkOmlsHr49NrzEGrynfY27lufKb0u/JDcWYB4oxMy5cuDBMfPx/H8llRG78HEeS9EpVtyrCtWIMUptbKFYfGRVlWjEOGAzgiVIM3Fko5hRj+Yj0EcWYIXEuH7G4uFg+2g+qczjpX+0r8TNcTdIrkksFViPG0Dw68poKinFdFGMeKMZMoZ+RD55+R/of+0L8hea82GOxz3CeaZKuNoWOBv2ENZKrohjXRTHmgWLMFCorRqjy4felsjpz5kw4H6JvlXAd8VzHJ+kxTalxMM2QpNJUjOuiGPNAMWZMdYeJLvfFpava9LXvtEo8382IcSC1iuhWZDj8cmIxVkazZoJizAPFmDnVPQm7OHqTNU/jVJS+j7ZN4XzXT9I1YoQoxxil4UabYpHj4PuHjzFoJ4hz9bHc5KgY80AxysjqOF2b78cC6bnNz4xwzibpZlGMeaAYJYBg4gox7FXYhRVi2EcxHvNzzz2X1Yo+wHmbpJtFMeaBYpQh7N0Yq6+2rynKjvu5rwHLuZukm0Ux5oFilBHY9T8m3LbuQnHv3j13DVkhfk4m6eZQjHmgGGUN58+fHybdtu1bSGVIsynH9tRTT2W9z2T8jEzSzaEY80AxSi2nTp0aJt627HRPH+LRo0fDMdG3SL9ozsTPxyTdHIoxDxSj1IKE0tVxSAiz5sSJE8PjuXr1avlovnAtTNLNohjzQDHKWB4+fDhstqRCYxTorDh37txQBAsLC+WjeROvh0m6ORRjHihGWRf69OJAF0aB3r17t3ymOS5dujSUAIKUAfGamKSbQzHmgWKUDWHU5549e8IvStOr46Sr2pw8ebJ8VIBrYpJuFsWYB4pRJoLRn4wC5ZeF5tUm5g2miw7Q35nbBP6N4LqYpJtFMeaBYpSJSUV15MiRqYoKET/55JPhZzUl4q7BtTFJN4tizAPFKJsibdpklOg0qDbdMqFf1sL1MUk3i2LMA8UomyYdDHP27Nny0Z2hOtiHpd+knvgZmKSbQzHmgWKULZFOn7h48WL56PaoTg/JeVWbSYjX3yTdHIoxDxSjbBlGifLLQ9PqdlfHqS4okPuqNpPAtTJJN4tizAPFKFsmXaJt9+7d25JZXIJuJySbC1wvk3SzKMY8UIyyLdJFvbfa/PnKK68Mk3zbFi1vM/GamaSbQzHmgWKUbZNuA8WAmc0sAJBuc3XmzJnyURnHtWvXwjVLrxvzS+Nj169fL18p00Ax5oFilB0h3TgYSd6/f798Zjzpxsh9+QWcNqkQ64LnZXooxjxQjLJj0IwaFwDYaFJ+uljA4cOHXdVmQrhOe/fuDdetGjzudZwuy8vL4VrTp84oaukncSBgX9ZmVowzBuGRNPilGreMGwKN1eWBAwdc1WaTjKsarRabIa7I5C4v/YTWr/gZ03XRBxRjC1hv4W/6H2mG4rmmFyTvC3VVo9Vic7CoBdecvl3n2vaLdDDhs88+25u/KcXYEhhdGpM2o06BXzp+2XiMipFmKdka1arRarE5aEKNNyb8Ht++fbt8RroM4yKiFPs2l1oxtghGmcbEzTJyBw8eDP9P3+KtW7fKV8lWSKtGq8XmoaUjjsQmidIX5WfQXRgIGNdn7uNcasXYMuLorhj80jmlYGeIVaPV4mxAjvFmj+AGhc9CQXYHqv24SAlB8ziS7BuKsWWQJNiiKv7iXblypXxGtgvX1hG9s4e1guOAMwJB0pUwyZQlmQ3IL81LBIMF+7qTj2JsIbFD21VtBqR/jG0M2TxUj/Pz8yOCpMuAwWe0kHjzMnsY08B4hzj4LwZVP/NT+4x/1S3FxLBK+kfZxpCtw1B/+tbjdKQYNNGxfynD/53/2ByMZaD/Nw76i8ENDN08N2/eLF/Zb/yrFpGZw40gAzjov0qryJiUaQKnCdYRrTsLNyZ01yC96s0JQcsV1z23Zm7FKCKtgq6ExcXF4tixY8OJ42nQ5Hro0KFQaV69erW4e/du+Z2yHsiNJlC6aOgfjKNK02CwH02lvCbnTc8Vo4i0FipJmu9o3mPVp2o1GQOBktDpt2SqE02w9JHl2CVB/y1zCrm5YHEFqvBqP2EaTKOhb5cBNq6qNUAxikhnoL+RpH/+/PmQ8Ouqnmow6pUKk+TP99FkS19aVysiRoKyghAio5mTmwGuxb59+8beOMSg2qZ59PTp06Ha7uuo0u2iGEWk05DcGcl64cKF0FdG4q/rLxsXVJtUVHwffZm8B+KgSmWeJSKlCZJAyjTdpjHpMo00ZVa/F0HH90Z0/DzkTaXHcSA8KmHkvtlzYgANTaa8F+fgylmToxhFpJdQXdZVVggj7lTT5RhXCVsFbh/FKCJZQn8aVRtVYNzQGsEwqIdqjeqRKpJqsgmR8nOQNhXi8ePHi1OnToWqlV1JYtWK6CetUGXrKEYRkS2AoKpNowwUik2jMWjCrL7OecrtRjGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiQ4ri/x0yBQtysrruAAAAAElFTkSuQmCC
|
As shown in the diagram, Mike uses a conical container to pour a total of 628 cm3 of water into a cylindrical water storage container, just enough to fill it. What is the height of the cylinder in cm?
|
A. 4; B. 8; C. 16; D. 20; E. No correct answer
|
B
|
6
|
iVBORw0KGgoAAAANSUhEUgAAAcYAAADVCAYAAADNV1CoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB5/SURBVHhe7Z1fiB1n3YD7F1PwIvAFLdKCSPDrRYqFLxeBVfBiLwIWDNiLCLkQXEoucrEXuehFQDBowID5aKCFLBhooAEFA0ZcsSRCCwYacMFCC25pwYABAwYUDCh03GfOec++Mzuzc87u+TMz7/PAj2TP/zPzzvuc3/v3sUxERERGKEYREZEIxSgiIhKhGEVERCIUo4iISIRiFBERiVCMIiIiEYpRREQkQjGKiIhEKEYREZEIxSgiIhKhGEVERCIUo4iISIRiFBERiVCMIiIiEYpRREQkQjGKiIhEKEYREZEIxSgiIhKhGEVERCIUo4iISIRiFBERiVCMIiIiEYpRREQkQjGKiIhEKEYREZEIxSgiIhKhGEVERCIUo4iISIRiFBERiVCMIiIiEYpRRJLm/v372aefflqIR48eDe+VFFGMItI5kNlHH32U/f73v89+8YtfZGtra9kPfvCD7MyZM9mpU6eyb37zm9mRI0eyL3/5y4X4/Oc/nz322GN7iueee27H633961/PXn755ex73/tedu7cuezChQvZ1atXs/X19ezOnTtKtqMoRhFpFf/5z39y6SGXy5cvZ2fPns1eeeWV7KWXXsqeffbZSmm1PQ4cOJCLFGGvrKxk58+fz65du5bLE8lLu1CMIrIQyKZu3LiRZ1lkXGRfZGVVYqkLRHn48OFcOCdOnBhlbj/+8Y+zn/3sZ6O4fft2Id59993sk08+aYw//elPO577y1/+cvS6b7zxxihT5b35HEePHs0liAyrPnNVkMmS4ZJ9rq6u5j8I7t69m/3zn/8cHi2ZJ4pRRGYOWRESpNJHHgcPHqwURBzIZXl5Oc+wEN3bb7+diwlh/e1vf8s+++yzxcet1egzr2a3Svf/+9//zj/vH//4x+x3v/tdLtLXXnstz4AR6DjHAWHy+EuXLuWyJKOW2aIYRWTqPHz4MLt+/XqeRZHRVVX4BBkiWRLNpa+//nr2m9/8Jvvwww9zocSCaWdsZldWr2SblfeNH0j+/fffz8XPDwB+CCDNuoyT2/lxQaZKU6xMH8UoIlNhY2Mjr6yPHTtWWaHT7Elz509+8pM8e2pN1rfX2LySXblVcfuUgh8HNOW+9dZbeaaNLJ966qkdx5Ws8+TJk3mfpU2v00ExisieYZAMfXpVWSEiZIQofXFkgVWVf5fj1mr4rjubUPNscmn7WKwGgeZNr1uP35LqUn7fUnZl87Ns88rS8LFVr7Ud//jHP/LmZH6AkDWWRUk2yY8PsnVHw+4dxSgiE0GFS8VLxRxXygQDaGgOpE+tqmLvYwSpjeS3FUhz6crm9v1LV7LNkQy3gr/D45aWho8dyDR+naZAlL/61a+y06dP7xi4dOjQobyJmh8vMhmKUUTGhjl65ewQGf70pz/N/vKXv1RW3kkEmeBQdp99ditbrcv8QsY4/DuX5uqt4f0DMQah7iUYbUuzK1KMzxGZ++bm5vAsShOKUUQaYZAH8whDRcv0ArIU+sCqKuj0IpJhnhkuRowh/vWvf+V9k3F/L82sjIi1ibUZxSgitTA1gOa40JdF5UpG8te//rWyQu5qMNCF5t+9DwjaEmMhYxz0He543JzEGAd9knGz9wsvvOBo1gYUo4hUghSZPxcqVKZV9K25lD66V199NXvmmWdG3/OrX/1q3m9X9fi6QHDlPsZt4XH/lYEMFyDGED//+c9HTaz80GEpPalGMYpIJUGKVKJXtir2qsq2y4EUv/KVr2RPPvnkSIrEE088kf/LIKKq5w2CrHD7OTtlNpBc4f7S4JtbSDH8vSXH7VGukw3AmSTIiOkT5j04r++8887wbEuMYhSRHbBKTag8yTSqKtmux/e///2RBKsCYfaxD5UfBEGODKRyJZ2dKEYR2QGTyak46V+sqlz7EHUry4RAjMzRrHpu14M+4rAcHQsDSBHFKCIFWD0lDLbp2yCbEPSVxhJMORhMJUUUo4gUeO+990aVJs1uVWLpevC9YjmkHKxnK0UUo4gUYPPfUGmyxVKVWPoQzz//fEEQ5Xj88cd7OeiIYHpKmJdaFmP5OLQt5oFiFJECsRhZZqyvzanM74sr3DjoX2S7p27s8jF5MOI2fFfFuBPFKCIFYjESTAjvqxzJCBmEgwiJp59+Ov/ODD7685//XPmcrgfL98Xnd1ZNqSwfyAAftiDrGopRRArEYmSHDP5lYnhfp20gQDIodqVgJ36+Zx8zxb///e+5BMO5ZVk//p2FGJkCEtbUZSeQrqEYRaRALEZ2ZmAn/fA3q9/0NZPqayB5tv6Kd99gnVumovD/WYiRbDG8VxezRsUoIgViMQLTN+JMg6kc/O0C4u0OFhJ/++23877ScO6Q482bN/PzSibHbdMWY5wthuha1qgYRaRAWYwBbi/vwcjuDWQjnd+Nv0fBYugszBBvPUU/KnKKM7dZiTHOFkN0LWtUjCJSoE6MAdbXPH78eKHiI4tcXl7OB7MoyfnHH/7wh7xptJyp0UfMVlP3798fnr1tZiHGqmwxRJeyRsUoIgWaxBj49NNP80q3vHM8QSZJRUiFXVWRG/sLBtLQTIrUwgCpEPxI4YcLu2fstg7qLMRYlS2G6FLWqBhFpMC4YoxhtRyWFosH6oRg9CPZJBkN2zmZUU4WYa/IN954I1tZWSn0GYYIGfva2lr24MGD4VnZnVmI8fz58/nrxduVIW5uIyhbXUAxikiBvYgxhpGsly5dyrOWuoW6yTIZ4YosmR7BQJ6+Lj83STBf9N13381ef/31XILMp6w7hvwIYXQpO6EwQGpSZiHGAK0J4XPSL901FKOIFNivGGMePXqUZ5MXLlzI5wmGHR3qguyCZthTp07lFfdbb72Vi6IvCwwwUvTDDz/MM2fkR5bNDwSywKbdPljCjXmW7IaBePaLYqxHMYpIgWmKsQoqTbIcKmZkyco64f12C8RBlkRFi0yo0Onj/OEPf5iPjGVdV5Z5Y57lvESK6D755JPs/fffz9+bz4Hw+G5kcwiez4vUqvpiq4IfD2SKSPDy5cvZ3bt395QRNqEY61GMIlJg1mKsY3NzMx/xSj8Zwjt58mQuiHjawV4DocbByEkq7Kbg/cvPbcp6m4L+QN6fPkHkSTbNQBkEOG7/4DRQjPUoRhEpsCgx7gYZ08bGRra+vp6PfEQmyJNKneyRHemRVljmbBFBRkj2iwiQOtJDPm+++WZ2/fr1/LhOowl0WijGehSjiBRooxgngSkKVMxkYHyXOMjMEGscSBZJxIHMyo8jmy2/HlnuPLO8aaIY61GMIlKACr/LYpTxUIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPLnAKvvU1DK8cEHH+SV0CRR9ToEOwqITAPKmWLsP4qxHkv+BLAn3EcffZRvP8M2NGxNQ+EK+8K98soreSFgt+5pbGi6l2BPON6bz0HwuVZWVvLPef78+fxzszfce++9lxdekTKKMQ0UYz2W/Aj2VqNSQB5IhI1G2QQV0c1CcmyqGnYFHzeqXme/weuy0Subq549eza7dOlSduPGjbnvKC7tQDGmgWKsJ8mSTxMmWROZHlnekSNHsqeeemp0IpsCkVRlZGx4ilTZDJXKBbFQQB4+fDh859lx7969/L1435DRrq2t1Wa0hw4dqvxuVcFjESc/FJAmrz+P7ySLQTGmgWKsp/cl//79+3n2s7q6mlfuZGnhhFXFs88+mx09+mL2f/+zfdv/vvr/2Z07d3L59IlHjx7lWXIQKRcKkl9eXs5eeOGFxmN1+PDhXLYXL17Mj4/9nP1AMaaBYqyndyWfpr9r167lJ5vKPZyccoRK/dy5c3n2uLGxkYsi5/Zqtnp78N/U4YcF4rx8+XJ25syZvJDXNSsfOHAgv58Ljj5MRdlNFGMaKMZ6elHyyXo4yceOHRudjDgYkBIym3GaAW+vrWUfD/8v1XDMaTKmT5JMHCmWjzsZJ8edHyoMXJJuoBjTQDHW09mST0VLFkOlHE5ACPoA6Q8jE+QETcTHa9nS8HWW1ir0uJVNjt5rKQj042xtafD426vD+/KU83a2uttr9QiyQ/pU6YNkwFK5GZa/T506lVe60m4UYxooxno6V/I54DTplZvzyBbJCJlOMR2GUhvJb4tcmqtb98Dgfvw3kuHw78HjlrKlpeFjkWn8OglAs/T6+nreZ1ke6MNgJ37U2NTaThRjGijGejpT8qlomUIRN9nRRMptNOvNhkEmGPobP17bkl1l5redMQ5AmkvZ9p9kmUGo6YEAb968mTerxqN/6QOmaVvahWJMA8VYTydKPqNBmWIQDjT/p39rHhlHLEMyw1mKMQwcYgQtwifj6hucS6aPxE2tDICS9qAY00Ax1tP6kk82yBQKDjBNcszNmyeIMc4YB32HZfYvRkQfmofJqp588sn8/9/4xjfykaF9A0GyoEC4eOh/lHagGNNAMdbT6pJPRnj06NH84NLsNr3+w3HZEtyOPsZIeFv3r+V/7E+MzAFEhEGGcSBJBhj1FZbVC82rZMuyeBRjGijGelpd8sMFSrPb7PoRi+RZ4fCEVsosl1zx/uLgG6QY/t6S4+3tUa51A3CQ/9NPPz16japghG1fCRcoTeSyeBRjGijGelpd8lliLRzclIOMipG4fYW+1fBdy3NM4+PQxugjijENFGM9rS35NJt++9vfHh3c1OP48ePDI9M/QkXMiGOaVmPKx6Ft0UcUYxooxnpaXfK/+93vjg4uJ7Gv0FT8xBNPjL5rOcgYWWGmj5AhhhHHNCezNN8sYAATg5v6OJBp2ijGNFCM9bS65DP45sUXXxwdYE5gH5cWY37f5z73udH3rAoG6PQNvlPYSuvxxx/Pfv3rXw/vmT5MgeF9+Fd2RzGmgWKsp/UlHxE+//zzo4PM1A1GL/Zp1RT62L7whS/UDsDpW/8iWRsXY/h+SPFHP/rR8N7pw/uFhSH416xxdxRjGijGejpR8hHHl770pdGBJtgdg3U5RztidBzm9X3rW98qfMdnnnkmXzqtL9BMykVYXnCcxQxmScgWQ5g17o5iTAPFWE9nSj4HmqyKA02GEQ56WJyaVWL6kEXS58aWTUikD98H4fMDJsxHLQer4MySOFsMYda4O4oxDRRjPZ0q+ey8H5YSo2/qi1/84ujgEwyuOHHiRD6ycV7zHqUIGTwVK8KrkuHXvva10UIGs7ggy5SzxRBmjfUoxjRQjPV0ruSTTYWVUr7zne9kv/3tbyt3cCDoj2TZMUSJVGX6kOGSrbPeKRdAOTsjGHVKcymLFIQfNmxNNeuMuCpbDGHWWI9iTAPFWE8nSz7rioaDHgamUMkiTTKVup37qZTJYngOfXeMimzatFi2YW7pjRs3csmRmdPPW3WckQ7zLjnGXCDhueHHC1uEzWN0cV22GMKssRrFmAaKsZ7Olnz6rcKBZ4WcMpwYMhQ2LI535qgKKmxOHsLktRj1SuUQKvVU4EcCmTUZIFk2WSBTSdg/sS7zIvjBgQgRJsetPCCKzCxMy+BHyyIytfBZ+RyyO4oxDRRjPZ0u+Ux6Dwf/6tWrw1urIUMhoySLQZZkjqFZrynY95EsB0nwnkiZ96MC4TUpBAwyaSNIis9HxsbnZV9EPjsS4zggNMRX3vi5LhALzaBk5mTuTQu7c9x5fZ5L0/ai+n7jzy+7oxjTQDHW0/mSz4hUDj79jlT6k0L2QoaEMMkYqfTJMMcVRTnIrKh8kQEFgiZHCl4ICmMcCApRNQUZXPm5SDp+7eXl5fw9eX9kXvX5xgmez44eHFuyRjJvRslO2vxJ8zavw2vyI2RWq9qMQ/zdZHcUYxpQh3COqTumzW5ijDddyDdaqNpZYcF0vuRT+SIEDjKV7zRXiEEENC0iXMREloQsqOypYMM+kV0JfjzwuWnOJFNk0BJinlXTMRl2eN9F79QfjoFibEYxpsEixDjYvSjatSjfrah9cuxFyUdgYWoAsmpq3ps2obkSiVKpMECFLI8mVwofmWic2YVAHBSaSaLqdQgyO96LjZx5bz5HkN0imnnjgS9t2DIrfBbF2IxiTINFiDHPFgubvZf2rm0JvSn5NImG0aiMlnQo/uK4ePHi6KLgx0EbCJ9HMTajGNNgcRkj+9YObyBjLIhyi3xD+MFzy9nkdsY52Bw+f8xwn9t4L93yS05Kr0o+mWJo3qSfcNI+Mdk/NMuOCmeLpkOEz6QYm1GMabAIMUKhj7FSitsyHDx254bwI2EOJbq0tJQtDZ8UP2ev9K7k3717dzTalBPSh2XVugKDmMLiCyys0CbCBaUYm1GMabAoMW6pK1sd3lcW2I6m1pIod/RRDl8rSDEn77dUjDtocwXdV9r+gyRcpIqxGcWYBgsRYy66obRCk+mwKXTrhrx5tCC5Eopxn7S1Sa+PdKEJO5QFxdiMYkyD+YuxSnwDsQ2SxArJlVCMU6CNg0D6RlcGPYVyoBibUYxpMH8xVouP5tNwW96UOsogh2xllqvD+xXjlGjbtIE+sehpMpMQyoBibEYxpsEimlIHA2OikaalPsSB1Iqi+3htdQ99jNFr7oHel3z6uuKJ5lz0sn84riwSwHGlb5Gl8dpMuEgVYzOKMQ0WNfhmIMcQFQIbyjFEIZsc3b4lx9BHGWL19lCc4ba9yzGJkk8l3palyfrCfpfimzfhYlGMzSjGNFiUGLtAMiWfZr82LGbdByZZvL0thM+rGJtRjGmgGOtJquQzMCQsrr2o7Y+6TrzdF+usdoXwmRVjM4oxDRRjPcmVfAaIhA1zaV51dZzxYZupMD80bBDdFcJFqhibUYxpoBjrSbLkM1AkTEZnmylXx2mGYxakyGCmrh2zcJEqxmYUYxooxnqSLfnsgBEq+lkUjD7BriHhhwRZdnmH/i4QLlLF2IxiTAPFWE/SJZ89FsPJY69F2QkFPKxqQ7/sw4cPh/d0i3CeFWMzijENFGM9yZf8UDgIdvGXbR48eDBa1QY5dnmwUjjHirEZxZgGirEeS/4Wp0+fzk8gTasMMJHB9JYw9/PgwYOtXtVmHMJFqhibUYxpoBjrseRvEa+Oc+DAgdav4jJrOB4nTpzIj0cXVrUZh3CRKsZmFGMaKMZ6LPlD4gwJGXQ9Q9oPKysr+XHoUwYdLtJ6MTZveZMKijENFGM9lvyIPvWp7ZW+9rmG71QnxrDGomJUjKmgGOux5Je4d+9eL0Zh7oV4lO65c+eGt/aD8L0qxciixaurjXvBpYJiTAPFWI8lvwKaUeN5eymsjhOvakNTat8IF+lOMbJtDdvYVO8VN7h/8FxisKHqkGh7m+2V/4db4kQ7BHRNtooxDRRjPZb8Grq+0sskpLASULhIy2K8vRq2pqkS4+C2IMNBc+vg8cXtbUo7kC9t3Td8UvycrqAY00Ax1mPJ34Uurw06LqmsHRsu0oIYt7K6bRHuFGMutcJu4kVRxhnjgMEAniDFnPJGrB1AMaaBYqzHkt9AV3eTGIeUdhsJ53BbjFuSiwVWIca8ebTwmBKKUTqMYqzHkj8GLBcXTvLa2trw1m5DZhiPwKUg95lw/oIYy02hxaCfsEJyZRSjdBjFWI8lf0y6tmP9btCHGM/Z3NjYGN7TX8JFunPwTaCmKTUMphkRZZqKUTqMYqzHkj8myOT48eP5ie7yajB8j7DKD5KnEkyBcJFOIsaB1Eqi25Lh6M+xxVgazdpyFGMaKMZ6LPkTQPPjsWPH8pNN82MXV8dZXaUyHxTYlNaFDd95IjFCkGOIoeGKTbHIcfD80W0M2snFuX1bV+SoGNNAMdZjyZ8QBqiEvjkq2S4NWLlw4cKosDKoKCXC964XowQUYxooxnos+Xtgc3NztDrOkSNHOjHF4erVq6OCevbs2eGt6RC+u2JsRjGmgWKsx5K/R+7evTuaFM+Jb/Ok+PX19dF8zJMnTw5vTYtwkSrGZhRjGijGeiz5++Cdd94prI7TRu7cuTMS+PLyci9XtRmHcJEqxmYUYxooxnos+fvk+vXrowLAwJY2weCg0OR79OjRJNZ8rSOcI8XYjGJMA8VYjyV/Cly8eHFUCPh/G2BQ0OHDh/PPxL99XtVmHML5UYzNKMY0UIz1WPKnRDwNgixykZAZkiHyWbo6rWTahHOjGJtRjGmgGOux5E+ReOI8/Y+LgD5E+hL5HPQt0scoinESFGMaKMZ6LPlTBClRCCgMSImRq/OGUae8P3JmNKoMCBepYmxGMaaBYqzHkj9laMZkbiMFgmZM5jzOC+YnhsLIvEXZJhwXxdiMYkwDxViPJX8GMNCFCphCMa/tnOLtsVjhRoqEY6MYm1GMaaAY67Hkz4h4qgTrq85yqgRrnoZC2LYpI20hHB/F2IxiTINZiDF0JdVFV1qyLPkzhB04wuR6duaYxeR6KrF4kYFUJ/A3ES5MxdiMYkyDWYgxLjvlYNpYV+onS/6MuXHjxkhc7Ok4TdhHMYiX/RUfPXo0vEfKhItTMTajGNNgVk2pdVljl8Y9WPLnALv+h8Lx2muvDW/dH7Thh6Za+jFTXtVmHMLxV4zNKMY0mJUYq7LGLmWLYMmfE+fPnx8Vkv1u+cRgnrD11XPPPZf8qjbjEI69YmxGMabBLAfflLPGro2St+TPkTNnzuSFhKbVvW4STGZIsymvc+jQIVe1GZNwgSrGZhRjGsxSjHEZ6lq2CJb8OULhiFfHYXDOJPD8l19+OX8+fYuTPj9lwkWqGJtRjGkwSzFCyBq7OKfakj9n4owPuU2S8a2srOTP20/GmRKsWcvFHyoA4uDBg6PbFr2mbVtRjGkwazFSjrqYLYIlfwE8fPhw1EfIAJp79+4N76nn3Llzo8rqzTffHN4qu8GI4HDMqoL7ZSesrxuOkfSXOjGGc9/WmAeW/AXBgJl4VOmDBw+G9+zk8uXLo0JBYZbxeemll0bHLg5ul2qY9hOmGDH6WfpJaIFiKcmY+DppY8wDxbhAaEaN5yFWTbmgyTRUUhRkmYy6rNFscXdCcz8DxqR/0EoV6h6vhZ0oxgXDAJoDBw7kBbS8ck28cs6JEyc62VbfBspZo9liM2ybFo6X/dn9Ih7nwL6t1is7UYwtIM4KT58+nd9GNslAEW6ryyZlPMpZo7+QxyNsvk3ZpDlfug+ZYjz4bxFb43UBxdgS4n5EKqRx+x9lPELWaLY4GUGOBMPv57mNmkwXpk2EH9tI0ele9SjGFsFycaESIpCjgx+mQ8gazRYnhx9tobmf7JFRjAqyO1Dm4+4Edvvx/O2OYmwZVDoUXn7RffDBB8Nb0yVczG2NVKBpP17mC0GePHnSrKOlMCWMHzRhWhhBtnjx4kX7FMdAMbYMCi1ytMIZEC7qtkZqMGk79FGFOHLkSL4WsFnIYmGaDdkhu/iEQXsE2T5N4shSxkMxisjEsAgAGWNoYg1Bkx2LUSBQM5PZw3xo+g7LMiRY/pAM0TEKk6MYRWTPUDGzW0w5iySoqFnbl/sZ/ago9w+SIyskAyRTLx9zNhZgvjPTbTzee0cxishUYCoA/VrIsJy9ENy2vLycDzJjnVr60K2860GCZN78sKB7Je4vjIPbmealDKeHYhSRqUMFTT85SxgiwypREgziIfNhcQuEyabeyGCc9YP7AP2C/EAgC6TZE8FxvMJ0rapgYW5ESROqo9Zng2IUkZmDKDc2NkbZD32RYVGLuqD/Emmy6hPrebJ4PlkR/ZsIoQuLXiB4RvQiexbyuHDhQt7UyQhfNhmv+t5x0DRKBs73R572F84HxSgiCyHIkmZVBuwwgIQ5dsigShJ1wSATBIpsGBCEeMhUkTBZVRw3b97MJRUH4kK0cSDf8uOuXbu24/V4H6SF7I8fP573tfJ5wkT6cYIfCGSBPJ+1afncfE4luDgUo4i0DqYWIM04y6KJEelMKs5FB+Ljc5Mlx9nv+vq6U1xaimIUkU7CiFjEQjZHMyMZHPMp6askg6MJkiwyDjJLJBVHecoJQR9f+XFkg+XXI8ulX5DMkYFHfAY+D6NwyTzpQ5TuoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFRERGZNl/Aa6iJ1Ehy53KAAAAAElFTkSuQmCC
|
The height of the cylindrical water storage container is as shown in the figure. Its height is equivalent to ( ) meters.
|
A. 0.8; B. 0.08; C. 16; D. 8; E. No correct answer
|
B
|
7
|
iVBORw0KGgoAAAANSUhEUgAAAcYAAADVCAYAAADNV1CoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxvSURBVHhe7Z1diB1nGYBTWyXVigWLP5ALoQF7kYuiAQNbIYUgQYLkohcpBBHJRWhzsUguchEIWDBgwEIDBrLQShcMKDTQggFDVmjBgAEDrVhwQyMKFgwYMNCAguM+35nv7Hdm5+ye/TlzZuZ7Hnib7jlnz87M2X2feb/fXYWIiIgMUYwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIis8fPiwuHv3bnH79u3id7/7XbG4uFhcunSpOHfuXHHq1KniBz/4wUgcPny4OHjw4Eg888wzxde+9rWReO6559a87vjx42vej59z4cKF4o033iiuXbtWvPfee+F47t27Vx6hNIViFJHeg1xu3rwZZIeAEBOCevbZZ4O8HnvssWLXrl2tjq985SvF3r17w3EfPXq0OH36dBA3El1eXi7PVHYCxSgivQD5UekhizNnzhQvvPBCEN8TTzxRK5px8eSTTw4rPapCqjkkhFDTeO2114rXX399JH7zm98US0tLI/Hmm2+ueV31vc6ePRt+DsJDfAgQEdYd37hA7nwfx0yF++qrrxbvvPOO0twCilFEOsfHH39cXL16NQjlyJEjxZ49e2plkQbC279/f3Hs2LHwfQjqV7/6VZDXn//85+Jvf/tb8b///W9msXx5bvV45y4Xy+Xj//znP4uPPvooHOfbb78djvsnP/lJceLEiSDvSc6dmwNeizAXFhaKDz74oLySUodiFJHWQ9VDJUhVRVVUl/wJ5HfgwIHQVPrjH/84VGu///3vg1yqImpX3Cjm52/UPD5ZfPLJJ8X7779fvPXWW8VPf/rT4uTJk8WhQ4fWlSbXipuK8+fPh2bm//73v+XVFsUoIq3jwYMHxZUrV0JVRLNmXWJnoAuiRARUUv/4xz9qpdGJuHG5uLxc8/gOxL///e9wc/Dzn/98Rb7zoXLcvXv3mutJVUlT7sWLF4u///3v5SeRJ4pRRFoBMmRwDMm5LnFTCdLXR1XU/gpwM7FcXJ4rzzNpQl2NlWpyeB3mhgINTa+8/sZ8+dx8cWPl8Rvz673XIKgw33333dAkS59kXT8sAqWfMkdJKkYRmSkffvhh6PuiaS9NzE899VSoGH/5y18W//rXv2oTfN9iILVV+UVpzt9InqfJdSjD8uvydXNzc+VrkWn6PusHoqQPk0FLDFhKPweCJldGv+aCYhSRmcB8QRJumoCjDH/7298W//nPf2qTeN8jVIKxv3H58ors6iu/YcVYfo005y4vl88Pqswo1M3GX/7ylzBAqdqfy9fMs+x7f6RiFJFGoWmO5tI04dJMymhLKpe6RJ1VpDKkMpyBGNOgf5K+3LR5G0EyFaSvKEYRaQyqjbTJlP6tP/7xj7UJOdtAjGnFWPYdVl/XlBhj0JxNU2sqSIR5//798tPtD4pRRBqBEZExoTKilD6tugTc1aDp92c/+1nxrW99q3j88cdDVUWz8GbnR96YX9vHuCq8lecvD2TYtBhjMPqXxRPSz5J5pX1CMYrI1GFwTUykjCztW5MpUyK++c1vFo888sjwPIlHH320+PznP1/84Q9/qP2+EKEqXP2etTIbSG7k+crgmzAop/x67vKN1VGumxiAs9lgcQT6hPk5yLFPa7oqRhGZKqxQE5M2FVVdku16vPTSS8WnPvWp4XmmweNPP/10L/tPWTEoLl1HddwXFKOITBWqCRInTal1ybXrgfBSEY4LKqy67+960CQez5GpN31AMYrI1KB5LSbNfk3KXw2aSeM55h6smtMHFKOITA32FCRh0hdVJ5U+hGJcjb40pypGEZkabAMVkyb9UXVi6Xrk3pRKsGsJ58j0jT6gGEVkaqRiZFJ/XVLtQ/zoRz9aMyI1BiNT+zr4hrh8+fLwXBWjiMgGpGIk+jwA5/nnnx85V4LNg7/85S+vP12jw0EVzDnG81WMIiIbEMWYJk8mh/d1IA5bO7Gaz1e/+tWwGDdzNvu4ADqLGbDdV/xc47+KUURkA6IY2VOREYsxgTIYh7VRc10ovMvBEn6sbcvnSHCjw8bQilFEZAJSMQI7asR5jQTLprl4eDeC5uB08XfWTGW/RkCIPKYYRUQ2oCpGePjwYXHu3LmRxcRZPYVtjjq9C38PgxsWblziqNMYCDKdzK8YRUQmpE6MEXZlqAqSYOd4lo7b7OLbxs4EMnzrrbdC82i6sz/N4DSbUvVXUYwiIhOynhgjVJALCwu1O8dTqbDVEcuO2dw6vWCOKTcjDBxKt5UiqOb5DNhHcxyKUURkQiYRYwrVSN3O8QTVC4mbKpMd/tnRoi7JGxsHA2hee+214tixY8NFwNNgcBSr2Fy/fn2i3foVo4jIhGxWjCn0YTGSlf6stEkvBk17VJkkd6YOvP322za/VoKpIuzAjwTZ+uvgwYNrmq7jtWSkKTcdfGaTyDBFMYqITMh2xJhCor5582YYBYko66qcGDQF7tu3L7yOeYTMLaTC/Oijj2rl0fVgTijye/PNN0O1Td8gkot7JdYF1whJ0kR67dq14sGDB+WV3hqKUURkQnZKjHXcvXu3+PWvfx1kcOTIkWLPnj0jyb8uqIyYLsLraSqkQqJvjZGXyBPBINBZN9Myv5PjoMmT/lWkh+A5Xio/qmT6X+uqv2rwGgY08X2XLl0qbt26temKcCMUo4jIhExTjHWwzRWJ/8qVK8Urr7wS5IcU1qsw1wuOm+qT6oo4dOhQSP5pnDx5Mghro2A5vOr3Iuj43oiOn1cd/DJJID+alRk1ShXIYCb6B9cbMLOTcC4cB//2AcUoIlOjaTGuB6NfP/jgg+Lq1avFhQsXgkBSOXGM6zU/ziKQJMeFNDlGjpfKD9EuLi6G5mVuBmaNYhQRmZA2iXEzfPzxx8Xy8nI4fkT6xhtvhKASq1aCUbAbRRRaGvSZxvdGdPw8RubSTLzTzZ3ThPNTjCIiE9BVMcrmUIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwyNdgWh1X1q9HUnmoiO41izAPFKAG2hEFa7O/GHz87ibN1DJujsp0MvyDsss0eamwgSmKIMcmu25MGu5an782mrHEz1bjNzcWLF8OxXbt2LRwrx822OiLTRjHmgWLMBOTx3nvvhZ3A2dSU3bePHj0aNgzd6m7gbYvHHnssJKy4AerZs2eLS5cuFe+8807YE+7+/fvl1RDZGooxDxRjj6BqooqioqK6otKiAkvlMUnwR793794gmMOHD4dfjlitIVWqNTY7JUmkQbUZm0tjPHjwoDy6VTjO6uvYubv6fmx0ys/i5yI5juP48ePhuA4cOBCOc7M7lD/xxBPFvn37ihdeeCG8JzcKSJNmX5GN4PeS3yPF2G8UY0dhN27Ecfr06SCvSQTBa2gGPXLkSHHy5Mni/Pnzw122kVOXoRpEzNwYsCt5FCkSRfJUk3XXJA2ESXMx8r9+/Xqt1CVvFGMeKMaOgAhfffXVUOms1/SJ/OiXQ3y8HlF8+OGHK0n+/WJhbvV1cwt3ynfOByrVW7duhSoRcXItkeE4afI4NxI0O1MhK0pRjHmgGFsMf4RUhFQ8acKO8cwzz4TkToVDP9q9e/fK76xhab6YXyr/X0Zg4BHNqVTPSJAmaJpcq9d79+7d4TluOBxZmyeKMQ8UY8ugr43kXNc3iAipBKl4NjsKc2lhocivRtw6UZZIkEFKdSNvqcx53hGx+aAY80AxtgCSMNMjGFCSJl6qFj4YBqBsK/neWSjmyvesbUJdqSaHP3cuCvROaHrl9Uvz5XOh5Fwq5td7rx7DTQvTVxDi8HqtBJXkiRMnQh+n9BvFmAeKccbQB0glGJMs/VpUKIhy50dKllIbym+FIM35lWdg8Dz+G8qw/Hrwurlibq58LTJN3ycz6PNFktVmbv6QrCD7i2LMA8U4IxjIwQjImFCpOmhCnf7o0EElGPsb7yysyK628lutGAcgzbli9UuqzCjU9UEiNP9yE9DHuYQMzEmrSCp9zlf6h2LMA8U4A5ADox1jImVuXpNVRipDKsNpiRHJf/vb3x6eJ/Hoo4+GeYk0H/cNBJlWkPQ/Sr9QjHmgGGdArBSpLBhN2jSIMa0YB32HVbYnRkZtfuELXyg+85nPhHNN45FHHil++MMflq/sF7QExD8qmsXpl5T+oBjzQDE2DPPoYtJkibbmWRHcmj7GRHgrzy+EL7YnRvpJaR7mXMcFSaav0ArAObLAgPQHxZgHirFhWG2GC87qM00RqsKVnzmIGpkFyY0+Pzr4BinGr1fkuLQ6yrVuAA7NpBtJkRsD5mj2FZqROU+ug8vN9QfFmAeKsUEYhPLiiy8O5ZB7NHlz0DRM3eAcP/3pTxevv/56+eiA6nVoW8h4FGMeKMYGoZL6xje+MZKEcg0qRkbh9hE+Z9avjefK1JuU9Dq0MWQ8ijEPFGPDMDjji1/8YrjoyIHJ+32EvjWqpZhs64JRnH2DEcepFKfZXMyoV36Go1+bQzHmgWKcAX/961+Lxx9/fJg8aVKkmbVPsHA5I1KRfzzPGEzZ+O53v1u+sj9wk5Mu8P69732vfGbnod8y/iz+tR+zGRRjHijGGfGnP/2p+NznPjdMogzSYBpHn4b3cy5PP/10OD8EyTQN/v/73/9+b3aqQEhshswuHfGzJL7zne+Ur5gOsVqMYdXYDIoxDxTjDGG6xmc/+9mRBEcw+Z8dM/qwgwPiYG9DRuMikL6sJ8o5sT5q3eLizz///FQXMEirxRhWjc2gGPNAMc4Y+tlicyN/bNWmR/rqkIoLVM8WKlwWY2B3k+rOJ1/60peG1f/+/funXg1Xq8UYVo3TRzHmgWJsAew4H5Pbyy+/HESYLhkXg4RMcyuVF314Mj2QG1Uhy9dxc1Kdl8nXLGLwi1/8ovj6178eHmMx+Gkv7VdXLcawapw+ijEPFGNLYKeGmODinT/7AfI4ibluEAu79TNwh5GPTAmwqtwajCSlWZvrTvMoNyXjrjcr2jDIhk2hkWdcPBwpNXGzMq5ajGHVOF0UYx4oxhZx6tSp8GGQlKtz30jCNLsiQfZtrEvcBJUMiZ2d/al2eB8GweS+4zyVFOKiCrx48WK41kyrGFd9ETxHVYhsuElJoQ+Ra8zrWPO2qUFTHAfJOSboeJzxsepxys6iGPNAMbaINNkivvXWUiXRxyqHKqY6KnJc8AdNBcr3nDlzJkiCvjMS6vS3vJoO3DRw7FwPtnuiKRrxITVuEqj06q5FGgyiOXTo0LD63mj6DH2NfB+fE9tpzYJ47Cbp5lCMeaAYW0baPEclspnmUb6XRcqRA9JDsgizbuTkekGy5w+fLZSQKJUVvyDIhioUGdOcGAORxIolDaoohFUNpFP3eiJ9X4KmZH4mPx+ZczxUzBzfetXeuKCfluuL2DgPbgo4ps3A8cT3W1xcLB9tnngMJunm4HfUa95/FGMLoc8r7upP8t+JZlCkSVMi1Q2DfaJsqJL4WUg4JtquBteKUaFUikicypGbBCrJzcpvHOlAKd5/lsTjMEk3h2LMA8XYUhjdGCsixMVgj2lDUy4CQaAkAKopqjaaWxEpa5vyi8KAHyq3GDRXkiiqMa6iixVpXVDNpe9NlcjPPHv2bDgGjocqjeOLwmtqk+d0ak0b1nmN15PrJs2gGPNAMbYYBBWbQREGVZ/MBiQcq2qaqKc5gX9SOBaTdLMoxjxQjC0nTcg0EbYhIecGNyhxAA83KG35DDgek3SzKMY8UIwdgMEtsQmPeXbSHDTTxpVuaNJuU9XOMZmkm0Ux5oFi7Aj088VESF+bTB8kGKfBIMem+jInJf4+mKSbQzHmgWLsEAxAicmQZeFketBcGqfN0IxKc2rbiL8LJunmUIx5oBg7Bk2pfGA0rVZXx5GdASmmq9rQz9tGOD6TdLMoxjxQjB2DpM0gnLYn7S7DVAyub9tvPjhGk3SzKMY8UIwdhL6v2MzHdI42NvN1FSbtR+G0vbk6HqdJujkUYx4oxo7CQJB0dZy2DQzpIiweEGXThQFO8VhN0s2hGPNAMXYYVn1JV8dxAYCtw1J5cUoM66h2AY7VJN0sijEPFGPHYZHxuAAAzatuVLt5WOy8i4socLwm6WZRjHmgGHsAA3BitdOW5cq6Av2zseru2rJ7HLNJulkUYx4oxp7A6MmYKNlZQjaGflm21uKaNbVQ+04SP2+TdHMoxjxQjD2C/QVjsmQfQxkPlSG7gnCtqBh3YmuvpomftUm6ORRjHijGnsEO9DFhMspS1kJTM/tQco3oW9zMZtBtIn7OJunmUIx5oBh7CHsY8qHS78ieijLKsWPHhtenywskcA4m6WZRjHmgGHsIFdHhw4fDB+vqOKN0ZVWbSeA8TNLNohjzQDH2FPrQDhw4ED5c+tBcHWe0D5b/7zrxXEzSzaEY80Ax9ph0dRz+kHNeHefKlStDkdAP2wfi+YxP0neKhbldxdzCnfJr2S6KMQ8UY89J5+mxt2COq+Ncv359OM+T/te+wPmsl6TvLMyF5xXjzqEY80AxZsCtW7eGK7scPHgwqwUAbt++PTx3+l37dO6c09gkvTRf7JqfL+ZXnleMO4dizAPFmAlp1cTqODmwvLw8rJb379/fu2qZ86pP0ksrQpxf+S//1olx8Hj8/vml8mFAqLvmCr5laT6+hveKzw0ey1W2ijEPFGNGpP1sjM7sM2n/Kv/2sX81fpbVJL00PxBbFOCoxAaPRRkOmlsHr49NrzEGrynfY27lufKb0u/JDcWYB4oxMy5cuDBMfPx/H8llRG78HEeS9EpVtyrCtWIMUptbKFYfGRVlWjEOGAzgiVIM3Fko5hRj+Yj0EcWYIXEuH7G4uFg+2g+qczjpX+0r8TNcTdIrkksFViPG0Dw68poKinFdFGMeKMZMoZ+RD55+R/of+0L8hea82GOxz3CeaZKuNoWOBv2ENZKrohjXRTHmgWLMFCorRqjy4felsjpz5kw4H6JvlXAd8VzHJ+kxTalxMM2QpNJUjOuiGPNAMWZMdYeJLvfFpava9LXvtEo8382IcSC1iuhWZDj8cmIxVkazZoJizAPFmDnVPQm7OHqTNU/jVJS+j7ZN4XzXT9I1YoQoxxil4UabYpHj4PuHjzFoJ4hz9bHc5KgY80AxysjqOF2b78cC6bnNz4xwzibpZlGMeaAYJYBg4gox7FXYhRVi2EcxHvNzzz2X1Yo+wHmbpJtFMeaBYpQh7N0Yq6+2rynKjvu5rwHLuZukm0Ux5oFilBHY9T8m3LbuQnHv3j13DVkhfk4m6eZQjHmgGGUN58+fHybdtu1bSGVIsynH9tRTT2W9z2T8jEzSzaEY80AxSi2nTp0aJt627HRPH+LRo0fDMdG3SL9ozsTPxyTdHIoxDxSj1IKE0tVxSAiz5sSJE8PjuXr1avlovnAtTNLNohjzQDHKWB4+fDhstqRCYxTorDh37txQBAsLC+WjeROvh0m6ORRjHihGWRf69OJAF0aB3r17t3ymOS5dujSUAIKUAfGamKSbQzHmgWKUDWHU5549e8IvStOr46Sr2pw8ebJ8VIBrYpJuFsWYB4pRJoLRn4wC5ZeF5tUm5g2miw7Q35nbBP6N4LqYpJtFMeaBYpSJSUV15MiRqYoKET/55JPhZzUl4q7BtTFJN4tizAPFKJsibdpklOg0qDbdMqFf1sL1MUk3i2LMA8UomyYdDHP27Nny0Z2hOtiHpd+knvgZmKSbQzHmgWKULZFOn7h48WL56PaoTg/JeVWbSYjX3yTdHIoxDxSjbBlGifLLQ9PqdlfHqS4okPuqNpPAtTJJN4tizAPFKFsmXaJt9+7d25JZXIJuJySbC1wvk3SzKMY8UIyyLdJFvbfa/PnKK68Mk3zbFi1vM/GamaSbQzHmgWKUbZNuA8WAmc0sAJBuc3XmzJnyURnHtWvXwjVLrxvzS+Nj169fL18p00Ax5oFilB0h3TgYSd6/f798Zjzpxsh9+QWcNqkQ64LnZXooxjxQjLJj0IwaFwDYaFJ+uljA4cOHXdVmQrhOe/fuDdetGjzudZwuy8vL4VrTp84oaukncSBgX9ZmVowzBuGRNPilGreMGwKN1eWBAwdc1WaTjKsarRabIa7I5C4v/YTWr/gZ03XRBxRjC1hv4W/6H2mG4rmmFyTvC3VVo9Vic7CoBdecvl3n2vaLdDDhs88+25u/KcXYEhhdGpM2o06BXzp+2XiMipFmKdka1arRarE5aEKNNyb8Ht++fbt8RroM4yKiFPs2l1oxtghGmcbEzTJyBw8eDP9P3+KtW7fKV8lWSKtGq8XmoaUjjsQmidIX5WfQXRgIGNdn7uNcasXYMuLorhj80jmlYGeIVaPV4mxAjvFmj+AGhc9CQXYHqv24SAlB8ziS7BuKsWWQJNiiKv7iXblypXxGtgvX1hG9s4e1guOAMwJB0pUwyZQlmQ3IL81LBIMF+7qTj2JsIbFD21VtBqR/jG0M2TxUj/Pz8yOCpMuAwWe0kHjzMnsY08B4hzj4LwZVP/NT+4x/1S3FxLBK+kfZxpCtw1B/+tbjdKQYNNGxfynD/53/2ByMZaD/Nw76i8ENDN08N2/eLF/Zb/yrFpGZw40gAzjov0qryJiUaQKnCdYRrTsLNyZ01yC96s0JQcsV1z23Zm7FKCKtgq6ExcXF4tixY8OJ42nQ5Hro0KFQaV69erW4e/du+Z2yHsiNJlC6aOgfjKNK02CwH02lvCbnTc8Vo4i0FipJmu9o3mPVp2o1GQOBktDpt2SqE02w9JHl2CVB/y1zCrm5YHEFqvBqP2EaTKOhb5cBNq6qNUAxikhnoL+RpH/+/PmQ8Ouqnmow6pUKk+TP99FkS19aVysiRoKyghAio5mTmwGuxb59+8beOMSg2qZ59PTp06Ha7uuo0u2iGEWk05DcGcl64cKF0FdG4q/rLxsXVJtUVHwffZm8B+KgSmWeJSKlCZJAyjTdpjHpMo00ZVa/F0HH90Z0/DzkTaXHcSA8KmHkvtlzYgANTaa8F+fgylmToxhFpJdQXdZVVggj7lTT5RhXCVsFbh/FKCJZQn8aVRtVYNzQGsEwqIdqjeqRKpJqsgmR8nOQNhXi8ePHi1OnToWqlV1JYtWK6CetUGXrKEYRkS2AoKpNowwUik2jMWjCrL7OecrtRjGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiQ4ri/x0yBQtysrruAAAAAElFTkSuQmCC
|
As shown in the figure, there is a cylindrical water storage container. Mike wants to fill it with water. He uses a conical water container, filling it completely with water each time and then pouring it all into the cylindrical container. After pouring water 6 times, the cylindrical container is just full. What is the height of the cylinder? ( ) m
|
A. 0.8; B. 0.08; C. 16; D. 8; E. No correct answer
|
B
|
8
|
iVBORw0KGgoAAAANSUhEUgAAAVcAAAEUCAYAAACf/XXaAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACAxSURBVHhe7d1baBxXmgfwHhioeUiz85CGAVsQ0IACtmAExhgUcBqCL4wYJNZkMsHCZpVZHGEv/RCtbRywwDZmthccjZYIphkF1jIW8RItNGNFDpFRkvEFzdrWOBohR1hgy/iGPMh+aOh5+La+qnNaJam7urq7Lqeq/j84xKruljrqqr9OnfrqnAQBAIDrEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK5RtnSbJiYmamy3aUm83Kpw/wZNTP2NlsXXAGAP4Rpl31+io0d7qWtLkhKJhNla/1nfdnRjO7CLNiX5ORmaFC8vWRimtMaPJen4n8U2ALCFcI2D4jU6kRLhmtkQnauWr1BvamO4Lg6nzdemTtC1otgIALYQrrGwQLl2B+Gqm8n20PCi+EKY6tOM17bnFsQWAKgG4RoLzsO1OPM1TT0RXxhWKN/NvVa9R7siNgFAVQjXWHASrsv04EG59DRfi14rQG0QrrHgJFwnKVc2QCcpg14rQM0QrrFQPVyL105QZ7lwffUXuvQn9FoBaoVwjQVLuP7ydxtqW8dyR2hHEqf+AG5CuMaCJVzL1bke2EkpDeEK4CaEayw4GBaYyVIPwhXANQjXWHByQet7mlpbgwUADUC4xoKTcAUANyFcY6HGcF25R/fKzd4CAI4hXGOhlnBdpsnMv9AIwhWgIQjXWJihbIuTcC3S/PBuSnbnCfcMADQG4RplxnyuF+hMRzNpHKzcmt6lgbG1da5Gu/AJHdiZ0p+nUc9lRCtAoxCuUWbM57quprVqu0gzmFYQoGEIVwAADyBcAQA8gHAFAPAAwjWGOjs7KZPJ0OLiuiUHAMA1CNeY+fbbb82qAb39+Mc/poMHD9Lt27fFowDgFoRrzHCvlYP1F7/4hRGuMmh5+9WrV8WzAKBRCNcYuXv3rhGkP/nJT+jvf/87PX782BgeeO2110oh+9Zbb9HY2Jh4BQDUC+EaIzwEwAHKgWrFQXvy5En62c9+VgrZrVu30meffUb/+Mc/xLMAoBYI15h4+PChMQzAjf9dTqFQoHPnztHPf/7zUshu3rzZ2MaPAYBzCNeY4N4qhyX3Xqvh3ur58+eNcVkZsj/96U+N3u3z58/FswDADsI1Bvi0X46r8rhrLfL5PL399tulkOXxWpRxAVSHcI0B7nFyMHJFQL2uX79eqjTghjIuAHsI14jjsVJ5ocqNUqu5uTkjVFHGBWAP4RpxfDGKA5BLrNyEMi4AewjXCOMLU/LKv1ehhzIugPIQrhHGV/xl2HkNZVwAayFcI0yWUnEv0i8o4wIwIVwjikuoZO8xqNNzlHFBnCFcI0qGGp+WBw1lXBBHCNcI4jDjEOPTcZXGO8uVcXV0dKCMCyIJ4RpBspfI45wqKlfGtWPHDpRxQaQgXCOGe4ccVjy+qfoFJC7jOnXq1JoyrjfffBNlXBAJCNeI4dNuDinuGYYFD10MDg6uKePiwOXx4levXolnAYQLwjVC+HSbe6w8pvnDDz+IreHBvdWLFy+WLePi/zeAMEG4Rgj3VjmQ9u/fL7aE1/j4eNkyrjD+0YB4QrhGBI9fci+PgyhKJU7T09Mbyrj4jwfKuEB1CNeI4AtDHD5c2hRF3GPl8WTuwcqgRRkXqAzhGgFuTyuoMlnGJXvp3FDGBSpCuEYAX2mXIRMXKOMC1SFcQ46DxOtpBVWGMi5QFcI15Lh0Sfba4gxlXKAahGvIBTGtoOpQxgUqQLiGGIcIhwefBmOccSOUcUGQEK4hptK0gipDGRcEIfbhWrh/lT793zviK688pC8Hh2n6aVF83TjufXFI8LgiLtw4gzIu8FO4w3X2D/Rv5xfEF7Uq0OzIQTo4ME12mVd8eY9uXPiEjh7YRS0tLUbbdeAofXLhBt17yS8s0synf6A/m09ftXyNzuxqoe3HJ2mZvy4+oPyHO+n9kVn9JzdOnu5+/PHHYgs4ZVfGhfW+wC0hDtcVmsykKJE6Qddq7hAu07X+Nkr/3iboCvdp/PgOSuoHXnLHASNM5/SeD/d+5m6MUe4IP5akTc0p0hLdlF8RrzMU9femmQdu6wDNiq38cyczzZTO3jIDt058msvjh3yaiyvh9bMr4+IABmhEeMN1aYT2GgeERj2X1yRbFUWaz6VJa83STIVQLj69Qn3NHI5N9K5NT7MwO0LvNvF7aKfcmg70PA1tNw/WvSNLYpuwMkV9TRqlc/P6O6nPBx98YHzvw4cPiy3QCL4YeOnSpQ1lXHxWoOYfryc0NXiUjh61b6dzYzQxoXcKnr2se1+D+oU0XIt0s7+pdCCs7R3aK84PUbtdIBdvUr8RmAlqzc5U3SmLM1lq3RCuk5Th91WhV72c7yZNS9NwHSMafLBzjzWs0wqq7quvvtpQxsV/xNT6Xa/Qve8maCx3iNo0cQzoZ1Fbunr1M6wJPVC5XaBPertoS9J8XEvtpCMj9kNg4K5whuvKZerRUtSb0UPK2LFSdMLR2MASjXbqPVItQ5Nln24J7ZT+HEcdYh6eaKK+KfElWxymtP49NvRaJeP96zt8d77m4YGPPvrIeH/vvfee2AJe4AuGPK7Nf8T4983/5d+5amVc80Pbzf01oe+vYtsaxac0nXuXmozn6PtcOku3GhmTAsdCGa4LuXazt1q8RidSYqdxElSzA3ovU3++/tyyuSlCj79fqv+m2OiA3nvNWvds/esW27HgJ3rI889ppQGnXW5dVKcVVBn3WHkYxlrGtWfPHmXKuFb0syDzfVUIV2F5MmMJ2GGq9zIwOBe+cBWBKnuFswOtYueqHlQ3+1PGc7cPzYsta63uqAnqvVLL+VOB1lxk1nfkir1WYSbbYvycWkL87Nmzxmv44AZ/8XAMnzVYy7i2bdsWfBmXvq+Z78c+XPmsbCYrjxWNOkft909oXOjCdWm0kzSth0pDpqULW3pQnbhmM0Y6Q9kW++Cc6hNX+BMtlJ0RG+tQfPmCjCotG6Ugb8nq76y6OE0rqDI+e+A/ctYyLq42CKyMy3G46ixnZrVcp4D6hCxcZ2mgdX2IrtDlHhGKWidV/IP8ZJQ6jZ0wRZU6i5MZseNtuEDlgdJBsb6Mq7yhoSHj+dxbguBxkPJnEngZVy3hqh8r+W4f9/GYC1W4rug7UqrM6X/x2gl9u7nTtFYaG1jIUXuVncrXcJ0fou0Of1bcpxVUWeBlXDWFq/UCWIIyTl4AdQtRuC7RyF59p9g7ov9rPbNHa+w0lS4klXbCymEmx2TtereuKYW9trbSoAw+ePl9ccCCugIp46oxXI2LweL9taPr6qnQhKtZT8r1es2l21CtbZOo5+NW9mISX8E3Hq8criuXe0Rplw87Xilct1OF62slsleUy+XEFlCZr2VcDYRr5+gTsRW8EJJwFeOqrWfpun6qxadbG9rfPqNOu8H6UpjZ9EpXJikjSrvK95Bd5HBYgC9e8fvh8Tzc9x4uvpRx1RiuskrFyRkTNCYc4WoEY4oytlX91lKTcs+doj4RvnZjTQvD6dKNCb1XHFZbL9+i0Yk58YVD8qDQ+vR3Vtk777xjPC+bzYotEDb8x9+zMq6awlXWV3PrJHRcvRWCcDUnaNE6R6v3JK2lJu25dYXSq1dK7U/5eXIVcZeWlqbs9FOb8i490p9+Q/0dfTRZ410vi3qIGz+j0g0NOj6N5OfwQYmJRMLPkzKuWsLVUrao9VyuuN+BOxQP1yI9vWLeWbL997O2IWd6Sp93mTsPn/akh9ZOulIaU+29Yv+9jOkBm0UPNklbDg7Ql3cW6UXpmxXoxeId+uJMB7XtPEPX6rid0KyptZ90Zt++fcb/y7Fjx8QWiAJXy7gch+syXemVF2xbKVtp1iJwjcLh+mc6mZJF/Wbji1m/ubgoHl9r8eJvqHnd842W3ESn5WSr8nZZR4X7erB//wWd6WqjlOwNl5pGqbYuOjN+v/KUhbbEDQ02t8j+8Y9/pB/96Efrfi5aXBoPJTjxZFQuY2MXrgWaHZLDXY3NyAbOKRyueu/QesFKtGcVbn0qvny24bmyrfY4xR1eNd7Tz0H78pn8fs+q3n1VlTHHgf0tiK+//nrpQEOLX9M0zbgYZl/GVaRbZ+UFqvLhWnh0nXLvi7Mwrdm1ydqhunBc0HKVOTNWqvdKQxNW169I106kbCfP4HpJPmD4tJGvLKPFp8lw5eVoKjPnc+3t2mJM5m6+JkmbWnbRgdJ8rgdolzGRu/6Yfva268iIq8sMQXUxDFfd8iT1NTdTptarUC4w6nWb9F6GzY+WhehYLjt+ZLhy+RafKZVnzudqzttq027M0WNMlB2YeIYrW75FA7/6FQ3N+neSVHyQpw87+m0vgF2/ft04uFDXGk8yXLlx+RaEV3zDlfFEwsNH6fSEp7cL6Ir0YPI09f7HN1VngpcLD2K57HiSwcp3daEEL9ziHa5Csej1iVNR74VW/xmyrpUvZqHXGk8yXPl2Wf7vyZMnxSMQNghXhRw8eBAHVMzJcJV/aDE8FF4IV0VwyQ1OBUGGK8MQUbghXBVx6NAh40CyL8GBqLOGqyzN4t4rzxsL4YJwVQCX3HDpjX35DcSBNVwZyvLCC+GqAO6t8gHEvVeIt/XhOj4+bnzNN5Sg9xouCNeA8fgqj7PyeKunM9ZDKKwPVyYnS8cSP+GCcA0YVwbwgbN//36xBeKsXLhyqPI2DlkID4RrgLjERk7Q4skSIBA65cLVukBlPp8XW0F1CNcAcYkNHzBccgPAyoUr4wtavJ0vcEE4IFwDwr0ROSM9zycAwCqFq3V/4RItUB/CNSDoiUA5lcKV4UwnXBCuAbCOofHcrQCSXbjyGL3svWKMXn0I1wBcunTJOEBw9RfWswtXJqtLeH01UBvCNQCoW4RKqoUr6qLDA+HqMy6l4YOHhwUA1qsWrown0ebn8CxqoC6Eq89wrzjYcRKumIsiHBCuPpKzHL3xxhu4TxzKchKu7PDhw8bzMIuauhCuPsL8nFCN03CV8/9y7/X58+diK6gE4eoTzCwPTjgNV4aVK9SGcPUJl87wgXDq1CmxBWCjWsJV/sHG6hVqQrj6AEu4gFO1hCvDUJO6EK4+kKdvx44dE1sAyqs1XKenp43nY7hJPQhXj6FsBmpRa7gyWd43ODgotoAKEK4ek0u4oGQGnKgnXGWJH5aCUQvC1UM8vso9Vh5vXVxcFFsBKqsnXJm8pRo3p6gD4eohOckGblMEp+oNVywFox6Eq0devXplVAfwDj83Nye2AtirN1zZm2++abwWEwKpAeHqEUxsDPVoJFzlBOzbtm0TWyBICFcPYFJjqFcj4WqdhB1LwQQP4eqBoaEhYwfHEi5Qq0bClckzJux7wUO4ugy9B2hEo+GKsyZ1IFxddv78eWPHxrgX1KPRcGVnz541vgfG+4OFcHUZlnCBRrgRrnIpGP4+d+/eFVvBbwhXF6HWEBrlRriyjz/+2Pg+qLEODsLVRW+99ZaxQ+MuGaiXW+Eq57TAQobBQbi6BPd3gxvcCleGeS2ChXB1yTvvvGPsyJiZCBrhZrjyfBZyKRjMyOY/hKsLsIQLuMXNcGVyLmFejhv8hXB1gZwNPpvNii0A9XE7XHm8lb8fVsHwH8K1Qdh5wU1uhyuTf/yxkKG/EK4Nwgqc4CYvwhXDVsFAuDbg4cOHWDseXOVFuDJ5wRULGfoH4doAlLqA27wKV1kqyL1XlAr6A+FaJ2uRNspcwC1ehSvbsWOH8b1xk4s/EK51wu2F4AUvw1Xeno0bXfyBcK2DnBgDtxaC27wMV4aJhfyDcK0DpnQDr3gdrnJKTEwu5D2Ea40wGTF4yetwtU7mns/nxVbwAsK1RnIZjT179ogtAO7xOlwZliHyB8K1BljCBbzmR7haz76wH3sH4VoDuXQx/uKDV/wIV4al372HcK3B1q1bjR0SV1rBK36Fq3UpGFw78AbC1SEs4QJ+8CtcGc+HwT9r3759Ygu4CeHqkKwPvHjxotgC4D4/w5V7r1gKxjsIVwewhAv4xc9wZXJ+DNxp6D6EqwN8AYt3wFwuJ7YAeMPvcMUcGd5BuFYxPT1t7OyYCxP84He4MjknMWZ3cxfCtQo5izvmwQQ/BBGuPN6KeYndh3C1cffuXWNH55IV9FrBD0GEK+OKAf65WFHDPQhXG1jCBfwWVLjKpWCwFpx7EK4VyFOl1157DTsb+CaocGUdHR3Gz8Yqxu5AuFZw+PBhY0fDID/4KchwtS4Fg2GwxiFcy5DlKdxQngJ+CjJcmSw7HBwcFFugXgjXMj766CNjB/vggw/EFgB/BB2uPMcr/3zcMNM4hOs6WMIFghR0uDJ5qzcWMmwMwnUdOZnF/v37xRYA/6gQrpcuXTLeA88CB/VDuFpgCRcImgrhap0UHtNr1g/haoEJhCFoKoQrkxPDb9u2TWyBWiFcBf5rvXnzZmOH+vbbb8VWAH+pEq5YCqZxCFcBS7iAClQJVybP5HBM1AfhqrOOMY2Pj4utAP5TKVy59/r6668b74dnh4PaIFx1WMIFVKFSuDJZPYPrELVDuOpkXR+ujELQVAtX60KGPEscOBf7cOVhAN5xcEcKqEC1cGVYCqY+sQ9XeS817kYBFagYrtalYHDXonOxDlcuueIdmUuw0GsFFagYruzQoUPG++LZ4sCZWIcrlnAB1agartalYDBTnDOxDVc58zrmrgSVqBqujOfb4PfGs8ZBdbEN1/fee8/YUbCEC6hE5XDFUjC1iWW4ylMc7CSgGpXDlcmhNHRKqotluPIk2LyD4PQGVKN6uF6/ft14f3znFobT7MUuXLGEC6hM9XBlsnwRF4LtxS5cZUE0Fh4EFYUhXL/66ivjPfLFYJQwVharcOXxVV4qG8XQoKowhCvDUjDVxSpc5SQUuI0PVBWWcJWTHeG28cpiE66vXr3CBBSgvLCEK5PTdPKaW7BRbMIVS7hAGIQpXOUE85iqs7xYhKt1yQpM+gsqC1O48nDAG2+8YbzffD4vtoIUi3DN5XLGDoDlKkB1YQpXhqVgKot8uPJfVzk2hIXWQHVhC1csZFhZ5MP14sWLxgePcSEIg7CFKzt16pTxnjs6OsQWYJEPVyzhAmESxnC1LgXDk7uAKdLhKmvxtm7dKrYAeE8GZCMtbI4dO2a873379oktEOlwxRIuEARrSNbbwgZLwWwU2XDlwXXeSXEHCfitkYAMa7gyLGS4VmTDdc+ePcYHjZl7wG+NBGQjrw3a4uKi0XPlhhnnIhquWMIFghTXcGXca+X3j1nnIhqucrb0s2fPii0A/mkkIBt5rQrm5uaM98/jr8+fPxdb4yly4YolXCBocQ5XhqVgTJELV3lagjV+ICiNBGQjr1UFFjI0RSpceRCde61YwgWCFPdwZbIMMpvNii3xE6lwxRIuoIJGArKR16pElkLG+aJyZMLVWsT88OFDsRXAfwhX07Zt24z/l8HBQbElXjz/FBcv/oZaWlqqtF104Ohpyn15hx7V+UcOS7iAKhoJyEZeq5q6loIpPKI7X+bodG8XbRf5sL2rl07nvqQ7IhyWL39KFxeNfyrN80+x+PIZPV68Qxd6mko7zi9/d4Pm9J4m9zYfP56jG2M5OrIjaT6uNdOH+QdUFK93wjpxBG69g6DJ/bwejbxWRY4XMiw+penc+9SsJUhr7qDjHKaLZkYs3pmiC2c69Mc0SjVvomSihbIz4nUK8+9TXMhRu9hxMpNi2xoFmh1Kk2Y8p0l/zrLYXh0PmvP35UF0vksEDS3IJgOy3GPVWiOvVbHJ6QhtJ08qzFJuN3euNGrr/4aeVuhZFZ9+Q/1tmvH9ymeIWvwL1+IV6hU7TuVfzBKN7DWfk2gdoFmx1Y51sl40NDR1W/lpP5dotNMMTK07T1W7VMt56tZ7twjXNSYpI37Jdr+Y+aHt4sNI07CDcZXz588b6/igoaGp3fbv3y+O2lVLo53ibLWdcgtiYxULuXZKOwmHgCkXrjf7UyJcuym/IjYCQATN0kCrmQmJzlF6IrZWtZKnrNMkDpBa4bqiPydlPkfTf9lLYjMARNBMllpEJmwfmhcbnShSoVDLJe9gKBOuhUfXacAY1Nafk9xNw/Pq//IAnFmhe99N0MREbe27e9E+dVscTpvHu966I3iaGki4JrQUNVvqXDclxfbEP9G2f/+cvq90ubAC+QEBqOkJTQ0epaMHdlJKk/t6itL/qm87ur71UldbyhiHbA/Bqa8TlY5PHjuVj4XhAlWtAgnX347JGldui3Rn6gJ9UtrxNErtPE7j953fTVDpwwNQzdLIXrG/2l3AKdL8UDvCNeQCCddKv8jigzz1NJnPSWhpyjkcGpAfEIDyJs35L6peHV/Rj4W+KfFFuFU6Pp+MmlMTcuscdXw5KzSUCle2ou98KfE8recyORmJkR8QgPKchist0ddffy/+HW4Vj8/ZAWoVj2l6KETtKoty4Wq92SDRdIb+T2y2U/HDA1CNg3AtPngQqUqZysfnAuXaxbGeOkHXIpau6oXrk1HqFM9LpIfJSalw5Q8PQDEOwnUhl9OPluiwOz5XpvqoSTzePjTvrPdafED5//mOXokvVeVfIi0OU1r8EiuHqzmQb34YGnWOOvv7bffhASilarjyLeCZ2ISrccznVucU6fniPtleyi7M0sj77zu+HhMk3xJp+UpvaSy1XLgWX96j8eM7KCme06Q/yenULfYfHoBCSuHaQr3/vb629QKd6WjWgyZO4cqW6dbAbnHsm9VCF27M0bOXMkCL9PLZHF3NHaGdbe/TaEhq4D1PJGM+12azbk/+ko1fYPNqnWvLJnHzAG9v66Iz41X+eq1T/cMDUEQpXMvVufZS1xY+FuIWrqbC/auUO7LLUve+2pKbdtGRkemKM2apyPNEMuZzLdW02rRnL+u+Wig/AADlVR0WWKZ8d18sw9Wq8GI1G17UOYF+0CKRSAhXCA0HF7SeTE1RNIqwTHE9PhGuAH5yEK5Rg3ANMYQrhEaN4bp0756jG2lUhnANMYQrhEYN4Vqcz9G7/dfqvhahCoRriCFcISxW8t1if60SrsuT1NfcGoqF+KpBuIZYrR8er7t17tw58RWA18z5XMdyR2hHqcxIo7a+C+vqXLmNUe54F23h5zlcR84vQ0NDxkrLtUK4hpjTD0+GqlzQEMAfYj7XNTWt1du5r9WaYYDXweIl7E+ePFlTyCJcQ6zah7c+VOP6YQM0gsNVHju1hGxcj7dIh2ulUK30fACozBqusjkJWfncuIlkuFYLVdkAwLly4SqbXcjK58RNpMLVaajKxjsDGhqas8YBWu44srZyISsfi5tIhavTUEVDQ/O2yZDlDo/cFjeRCtfOztU1edDQ0IJrb7/9Nl29enXN8Rk3kQpXdvv2bcchu7i4iIaG5rBt3ry57HFkbdZQleRjcRO5cJWchCwAOGd3QatcqEryOXET2XCV7EIWAJwrF652oSrJ58ZN5MNVKheyAOCcNVydhKoU1+MtNuEqWUMWAJzjcK0lVCWEa4jV8+FxyAKAc/UeMwjXEIvrhwcQBgjXEEO4AqgL4RpiCNcwKNJ8Lm0ssd4el8WjwIBwDTGEq/qKM1lqFZ8TwjVeEK4hhnBV3PIkZZrMz4gbwjVe4np8IlzBY8s0mWkiLZ2mdvE5IVzjBeEaYghXdS3nu0lL9dIV7r2KzwnhGi8I1xBDuKqJl4ZOa02UmVzWv0K4xhXCNcQQrgoqzlMurVFrdkasu49wjSuEa4ghXFVTpJlsK2npHM2byaqrJVwLdP9qjo7saqaUZr4mkdxE27vO0Pj9gniOReER3fniDHVtSVIiM2luKz6l6dxBaktpxuuTW7rok2+eiqBn+s8Y11/TljLKw/j77zp+hR6sPgFcEtfjE+EKrluZ6qMmLU3DazLUYbgWZim3O0la84f0xdwLPQJ52yO6njVrZBMJOcygW7lJ/9W1hZLi+xqNw3X5GvW3aZTc1EItzSI8xWv7plb04H1A+Z4m/eskbWqxBLjemvqmSH8GuEj+buMG4QruMsquLAFY4iBcxVBCQuum/PqXr+SpW7w+keqnm2KzYWmE9srHfp2hk78+uaaHW5gdorQM0M4hGu3bSe/npump7KXqYftFd8p8PNFJo0/EdnCF+XtFuIZSXD889SxTvlujJr33uD4bnYTr0min0ctsHZgVW6yW6E+Hmo3Hk7vP09rvsPq9E7/+fDU0S4o0mTGHBxKJdvr9bJmhhZv9lBLfQ44sgDvM3zvCNZTi+uGpZmFYP3VvzdJM2XHLauE6Q9kWfjxF/Wu6pU7I1+qtQjIu5NrFfpLR30kZC7lSHS7C1V3m7x3hGkpx/fBUYpRdJdOUW72CtU6VcF0cprTxeDvZDcmWt0C5dvN7I1zVY/7eEa4AdZnMiHCrsZWCrHRavp2G5sU2xxCuoB6EK7jCvXBNUHe+1uv1CFdQD8IVXFF48ZgeP7ZrY/RbEV7b//Mvpe0v5LUlS7hpPZdty6GKMwP06ZT4woBwBfUgXMEn1S5o3aT+lAjIRDsNVRy7XaLRzh5a27lFuIJ6EK7gk2rhWqSb/VzYL0KyKUNXNtRULdOtbNoo9Vrbs0W4gnoQruCTauGqWzfvayK5hbqO52hsYoLGcsfN21u1ThpdEs8vWf3eboRrJ+4iABcgXMEnDsJVV5wfpXetAWttyd00cGv97QkFejSeoSb5HL3HO/5o7U0ChUfX6azs2SZS1P35PXpp7RQXX9Jfh+TttQnS0kP01zVPAKgdwhV84ixcDYX7NH6mqzTpijGpypERmt4wTGDpsa5v7TlasA4XlGlGJ3cyU/YxblXfJ4ANhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOA6ov8HLExIMPBwcegAAAAASUVORK5CYII=
|
As shown in the figure, quadrilateral ABCD is a trapezoid, with the length of the lower base being twice the length of the upper base. What is the length of AD in cm?
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
9
|
iVBORw0KGgoAAAANSUhEUgAAAVoAAAEVCAYAAAChXy3PAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACHLSURBVHhe7d1vaBtnngdwvSioL2roQQWFVBDQggONoYZgDA6kgpI/EA6HDdk2xKR7bpfUdBcfxDjGC/FdGwKrg8T1Cx+nw8teEmIuh7MgaDYutXHTOjG5TZxNjNdeU4OT4qTBKXY4BLMvfje/meeRx7L+jKSZ0TMz3w88NB6NbNWa+Xr0PL95nggBAICrELQAAC5D0AIAuAxBCwDgMgQtAIDLELQAAC5D0AIAuAxBCwDgMgQtAIDLELQAAC5D0AIAuAxBCwDgMgQtAIDLELQAAC5D0AIAuAxBCwDgMgQtAIDLELQAAC5D0AIAuAxBCwDgMgQtAIDLELRB993n1NjYWGH7nL4TT9+0RtPn9lNjSx9NrIlNAGALgjbosi9odXWZZq90UjwSoQi3j6/r21a3t/k7dKWnmaKRbpoQT5e0iW59Oz+/iQbnxEYAsAVBGxoLNNwigrY7P0atntDlQ100rokvhYXhFvO5hy7rewBAJRC0obFE6TY7QUu0PNJD6SXxhTDRzc+NUf90XgIDQFkI2tCwH7SU3aCNLXm6TCNJ/Xm4mgWoCoI2NOwE7Z/pj39cFv+2ekCpRlzNAlQLQRsaNoJ2PUOp/D4DwwR142oWoGoI2tAoF7RZmvuijdoKBa22QS+29iUAQAUQtKFhCdqGHdtqZxOxqPFYwaAFgJogaEPDErSF6mjnJ2nwWBxBC+ACBG1o1NJHCwC1QNCGho2gpSxtoC8WwHEI2tCwE7QA4AYEbWhUFrTag/+gkTviCwCoCYI2NCoI2uw09Tf3E+5PAHAGgjYktGdj1BEVQds1TsUyNPvDbUoloxQbmBFbAKBWCNqgM+aj3UENHLC5pgdpYmsdrdF2NIjHMRUigJMQtEFnzEebVzNbtr2grHg6ANQOQQsA4DIELQCAyxC0IbW8XGg6RABwA4I2hP7+97/Tm2++Se+88w5dunTJ+BoA3IOgDaHf//73lgqECP3sZz+jCxcuUDaLITAANyBoQ2j37t1GwH766afU2tqaC1y+yj179iz99NNPYk8AcAKCNmSuX7+eC1XZZTA5OUmHDx/OBe5rr71G3d3dRqkXANQOQRsye/fuNcKUuwry3b9/n06cOEGvvPKKsQ//98MPP6T5+XmxBwBUA0EbInzlygH6+uuv08uXL8XW7f72t78ZV7Svvvpq7iq3vb2dbt++LfYAgEogaEOEw5JDk/th7eCuA96Xg1kG7rvvvkuZTEbsAQB2IGhDgrsFOCj5KrXSvle++uWuBu7XlYGL0jAA+xC0IcF9rRyQXGlQLQ5VLg3btWtXLnBRGgZQHoI2BPguMB7Y4sb9r07g6gWUhgHYg6ANAR7Y4jB8//33xRbn8ACb7PvlhtIwgO0QtAH3/PnzXPUA99O6hb83d0+gNAxgOwRtwPHHeQ6+gwcPii3u4m4KlIYBbIWgDTAeoHrjjTeMsOOP+F7iK2mUhgGYELQBxtUAHHB79uwRW7zHYc+v46233soFLkrDIGwQtAHFIbZz504j2LhCoN5kaZic0IYbSsMgLBC0ASWnQuQwUw0Hv5xzgRt3b6A0DIIMQRtQ/PGcQ4wDV1X5pWE8gMYDaY8fPxZ7AAQDgjaArFMh+uFjebHSsIcPH4o9APwNQRtAPLrPgZVKpcQWfyhWGnbr1i2xB4A/IWgDhkOJA4rLqvza51msNEyFQT2AaiBoA0b2eZ45c0Zs8a9ipWHc74zSMPATBG2AcJ8mh1E1UyGqrFBpGJeuoTQM/AJBGyByKsRTp06JLcGD0jDwIwRtQHBJFI/Wc3NqKkSVoTQM/ARBGxAcMhw4R48eFVvCAaVh4AcI2gDgj808DywHjZtTIaqMr2RRGgaqQtAGgJwK8b333hNbwov/6PDvQ85axg2lYVBvCFqf41F3uWii11MhqkyWhsmJdbihNAzqBUHrcxwmMkRgO1kaJud+4IbSMPAagtbHOER4di4OD3w0Lo9/R/L2ZG4oDQOvIGhJo5Xx31HXH2bF1255Sl+f76WRu8/0n+gMnjybA4PDFh+H7eMBMpSGgZd8H7TadD81D8xUF17aCmU+2Uc946XCL0s/zI7RxZP7qXFHQ+7kbNjRSPtPXqSx2R8oqz2jG10DNCGeIWkLI3SgIULR5AgtGVuyNJf+R2r+JEMrDqSt/Dg8PDwstkAluASsUGlYWCs3wD0+D9onNNoepUi0k75cF5vs0hZo5ECMOjJrYsN22so49bVyuDZQa98VujP/Qo9KU/bFMs2O9VGrHqRm+LbT6FPxoGGdMh3isUOX9VcqabSQTlLi2Cgt1BC2vPYWf2+/TIWosmKlYRhcBKf4O2jnBqlJnBiHLm9GWXlrNNEdp2j7qCUAt1q7l6JkVP/e0SSl7hUPY31HSiX1sI+0Udq8bBUeUKqRX1uUOvP/CughP9wWoXjPlB7H1ZF9jefPnxdboFaFSsP4dl81+7+X6eoHjdTYWLq1HOmi3t6LdGVqllY2nOq0gkr5OGjX6ctODjjzhIjE+mna5nG0PtVD8UiM+os9YS1DHRyyeki2j9oI8Cej1B7ND9oJ6ubX1TRIc2KLFXd5xCJxGpip/ODnpbv5/9nPUyGqrFBpGE9oo1ZpmEYbP67S8uwV6oyLcyDSRP+Uvq5/8lo1JhVaXZ2nO9fT9Ot9MYoajzfQ2x+m6e4zBK7X/Bu0Ty7TIf3ASqU5sPggKnDlWNAcDTbp+8cGaEZs2coS4E0pemDrmNToQaqJuq2dtEtpaiv1mrRp6o/pP6MtLfpv7ZMDOadPnxZbwA2FSsN4ykbVSsOW0m3i9XVvGycwafTs7qAxXmDsFz9Go7X0W0HFfBq0Gs0MxEXfpwhOPoBshJZ5Janv2zWuf5cCjAA3v19j6oHYaIMerGnrUT4zQLEiV7Mm2Ydb4sq6AJ4whl9b0KZCVF1+aRh/muBuBp6kvN608S7xuooFrUlbSJvdYbxvXL/QQNZ6xp9Bu/4ldUY3rxafXD4kDrRyoaXRRLd5tdq29XN+ztPRzbKfLVeoFdLGu8teYS8Mtxg/J6r/ILvHvJwK8aOPPhJbwEvFSsN4GZ66mTAnFCoXtOyJfnyb3QgRahosfhkAzvJl0M4NNm3tkzWC1zx4op1flhhgmqEB/riu71csRCe6zccjkRYaXhAbXZK7EinajbEVX8HyiR2WqRBVplRpWAVBm+uyquC4g9r5L2jFgbL1r7FG0/0xcbA1UdE/1MsjlDT2aaRivQKbQZs/uOWC3AmSXxpWmJwKka+oQA1KlIZVErT6uTLeJY/x4ucBOMt3QWt+9DlE26q5LKVesf7pwh/FF4apxdineIh6GrTGgJm9n8XVBXKxQhTUq0eWhskJfrh5VhpWUdBaB88i1DWOjlov+CxozYGvwt0DT+jyIfPgiUQ7qOB9CLkDsniwPUg1in2i1DMlNrolF7Tl+4M/++wzYz8ekAF1ydIwOQcFN9dLw2oI2mJjFeAsXwXtun5AmaVc5VvBjn4bV7S5qgS9VVR1UA2bV7R88sorpRs3boitoDIOVZ6LwpPSsBqCtiNTesAWnOGjoDWvWEvdzaUnMXXnOvoL3MCQ66MtcbWqPaCULBezXUdbpQcpajReT5JGSgxaDw0NGa8HUyH6E98u7WppWIVBOzMgxzNiNIDRME/4Jmi1mQGK8w0KZZJvs3yl0F1dm1UHpfqm1vQDNy6+RzK9YKv0SlsYpbNX/yq+skmeICVGf/nKSH4MvXr1qtgKfsR39LlSGlZR0C5Rus38+VXNEQJV8UnQmpPHxLonSpRuCdbylW1F2Zt1tC0la7fMiV/MwI7TsfQ9KjH1jHHXzc9/PlLxJDHyI1ypOloOV94HUyEGx/z8vLOlYRUEraZ/iio7aAyOUz5otY0Vup0yQ6+x9+uyE2NoG3+hL+RfbL3FO8do/sVmn1iuD7YjUya0szR3+TglZH1u4jD1FbyPPEH7+sarmPZQltmUvslC9vHxDQpcMoQWnMZ/RK19uNyqKg2zG7TaAqWNCZD0faPtZGcaD3CG4kErJmbJa8VGSq2d/Pltc1S/3FwHW2kbizSZ7qMjLQmKydsXI/rVdaKFjvSlafL7agc2RDdGidt0f/nLX275f0ALV7NbGrY8khTPKRG0PPdyZ1zsF9fPhxIz0oHjfDQY5pyys3d5QM7e1TNV+LqaR6blEuJo4Wx8tcufZErfBbimfzKSg1sFglbboMXJQTqeMK9ko4njlC417Se4IpRBq0ctTfXELSsfeG2NMh1RiuuX2cUOeS4D4hMDdbPhI4O29HtvzkebiImugFxroB25+Wh3UANvi8Yosf8kXRx7RJghsT5CGrQ6bYFGjyVsVxU4aW28ixIHig+eWSsNvvrqK7G1/oxVJaZu0s2bUzS7vLnaBDjLGpzFB8jM+WjN8YISzTI+AfUT3qBl2jP6ZuAwfZJZ8ShsNXr2zTk68pvSa4bxXUR8kilTN6ut0Hhfq3l1ZGkNrX007sTiZ7CF9XeMeS2CIdxBa+DyrBH61/+eF1+7ZZ3+/Id+ujBePtR37dplnGRqLKFizv0bje2jkxev6FezN+nKucO5aoxIvJswruIsGbJybgueKQz8DUGrGA5XPrk4bJXwdJSOJdPbujmsk0jjfnlnyaDlFTT4v1xjC/6GoFWMrKvk7gMlPPqavi5Sb2nMC8yhUG5GHKiIDFruY8X8w8GAoFUIF6rzCcaLAvriLjBRKB8tNnFE9gXN3+HBs5s0NbtMBcdlsj/Q7NT93PwV2R9macrY/4etg22573WHFgO+mqsMWvbpp58a/+ZbdcG/ELQKkROPcGmXH5grRBRagFLcVdcQo30ne6m36wi9zQsDNrTSuWnu0NXo2aMxunhyn7gJhOs/12j63NYBN1n+tjZ9jlrlwoLcoklKB3hxQfn/yfhKlq9o+cqWr3DBnxC0irh7965xcvF0iCqtsFqKMQtUgfkkjHki8sIwt2xPtIf4+je7sUHZ3H33v6Ce3/0zpW+bV7HZ78fEEtox6ho4S784e8O8jVq/+pW3Y5dessjfrEHLuI+Wv8aqx/6FoFWEnNWJJ/j2BWNKygK3copVhLfNB8wlYhd76fPL1gl65C3WXZQ/mZqcgL3li7mtVRrrGerg5wR4vav8oOWqA/6aqxB4JQfwHwStAvx3Iml6EDYVvLPNvO/e7jynMmi33zoq563YXtFQ/DlBkR+0TP4h5nlswX8QtAqQHw3PnDkjtqiN5+tNFCj5Yuaaa3ZXEEbQFlIoaP3YtQSbELR15rfBDq6fPXBgmOaKnOtycUt7i/4haAspFLTMb4OlsAlBW2e+Kt9Zm6CefT0l7wSTfatFJ5XWVmglV5eLoC2E/7+55ZPlf3xVi0ng/QVBW0fWgvSalzNxW8mQXaPFxafmP2cGxOKWbTS8rW9Bo4XhfstS8QjaQooFLVPuhhawBUFbR365xVJ7Nk49zSfp6l8LzA41f4eu9LRSz4QMVXPZISMsos3UMzZLy8Z+k5Q+1UyJnqnNsixtnLqMUEHQWhm/O70VIm/RxtJG/oKgrROuLpCThvAaUqrSVjKiprVEy19xeG2azrU2bNsvfmw0N4D25P5NPaCbcwtpNvdcoZv39Uvd9UX69vogHZM/M36MBq9/S4t6Oj+5f90Ia+tzvuUHAkb+vorZvXu38bgakw6BHQjaOuEyHT5Z1J4G7zl9+++91Ntbpl17JPa34Jn971yhi/z452n606NnW/psH13L+x7y+zydoqH87b1DNPW08HOG+IGAKRe0yk2jCWUhaOuAy3N4QINPlqpXPoXAKhe01onhM5mM2AoqQ9DWAZapgVLKBS3DMeQvCFqP8dWIvJqteFlpCAU7QWv9VITjSH0IWo/J/rXW1laxBWArO0HLzp8/b+yH5W7Uh6D1kLVvDSPGUIzdoLVWrqCvX20IWg/JGkiMFkMpdoOW/fa3vzX2PXr0qNgCKkLQegh39YAdlQSt9e5CLHejLgStR27cuGGcPLijB8qpJGgZz5PB+2MRR3UhaD0iZ14aGhoSWwAKqzRoHz9+jOVuFIeg9YB11iXMJQrlVBq0TM5pjEUc1YSg9YCcHR/ziIId1QQt98/yc/iq9vnz52IrqAJB6zIuu+ETAOs9gV3VBC3DcjfqQtC67P3338fBDxWpNmjxR11dCFoXWZepwcc5sKvaoGXvvfee8Vx0U6kFQeuijz76yDjoMUABlaglaDHwqiYErUusheQouYFK1BK0bO/evcbzUUqoDgStS1BEDtWqNWix3I16ELQu4IGI1157DbdFQlVqDVqG273VgqB1gT+WqQFVORG0ly5dMr4HJjBSA4LWYS9fvsTUdVATJ4IWU3KqBUHrMLnEyOHDh8UWgMo4EbRseHjY+D579uwRW6BeELQOwvIi4ASnghbHozoQtA5Kp9PGQY0F86AWTgUtwyKOakDQOgR9YuAUJ4MWy92oAUHrkKtXrxoHM0Z5oVZOBi1DFUz9IWgdIusWOXABauF00PJVLd+lyN/z4cOHYit4CUHrANyJA05yOmgZ7lSsLwStA+S95bgLB5zgRtBiEcf6QtDWCLMlgdPcCFqG5W7qB0Fbo4MHDxoHL+b/BKe4FbTW+ZExo5y3ELQ1sM5oj6tZcIpbQcuOHj1qfO/Tp0+LLeAFBG0NsEYTuMHNoMVyN/WBoK2S/BjG0yHigAUnuRm0DBcI3kPQVgkDC+AWt4MWA7jeQ9BWgQcSMKgAbnE7aBnPfcA/A4O43kDQVkEWf/PiiwBO8yJoM5mM8TP4qhY32bgPQVshFH6D27wIWoblbryDoK2QnKDjxIkTYguAs7wK2mvXrhk/B7eOuw9BWwFMOQde8CpoMbWndxC0FUilUsZBienmwE1eBS3jbgP+WZje010IWpusy4LcunVLbAVwnpdBy1e18rjmATJwB4LWpqGhIeNgxJIg4DYvg5ZhuRv3IWhtsPZl3bhxQ2wFcIfXQcuf1t544w3jZ2IRR3cgaG1APxZ4yeugZVjuxl0IWht2795tHIQYmQUv1CNoUVHjLgRtGdZlagC8UI+gZfKOR55KEZyFoC1jz549xsGHu2fAK/UKWtz16B4EbQlylqO33noLd86AZ+oVtOzUqVPGz8Yijs5C0JaAGY6gHuoZtFjuxh0I2iLkTPSYsxO8Vs+gZZhr2XkI2iIwCz3US72DVl5k8FXt8+fPxVaoBYK2gIcPHxoHGtZVgnqod9AyXGg4C0FbgPzodObMGbEFwDsqBO3t27eN14CLDWcgaPNgMADqTYWgZRgMdg6CNo8s2sZAANSLKkH71VdfGa8DA8K1Q9BaoGAbVKBK0DK53A3PXgfVQ9BacJ8sH1Qo1oZ6Uilorbeg46ad6iFoBeukGlx1AFAvKgUt27Vrl/F6cBt69RC0wmeffWYcTJgmDupNtaDFNKG1Q9DqrMvU3L17V2wFqA/Vgpa7DHbu3Gm8JkwVWh0ErQ5LeYBKVAtaJs8Rns0OKhf6oOW/1jw7Fx9EWMYDVKBi0Fo/9eE8qVzog1b2P+EvNahCxaBlchwDn/wqF/qglYsuou8JVKFq0GK5m+qFOmhljSCvCQagClWDlslac1TnVCbUQSvvekF9IKhE5aCVd0/y60O9uX2hDVp5HzfueAHVqBy0TM4Hgjso7Qtt0GJmIlCV6kG7vLxszAeCOUHsC2XQ3rp1yziQMSsRqEj1oGVY7qYyoQxaOXt8KpUSWwDU4YegnZ+fN14j5m22J3RBK9dDwszxoCo/BC2TFyynT58WW6CY0AXtiRMnjIMDayGBqvwStLhosS9UQYtlasAP/BK0TA4q48KltFAF7alTp4yDAh34oDI/BS3Pe8CvFQPLpYUmaK3L1Dx+/FhsBVCPn4KWtba2Gq8XpZLFhSZoUWQNfuG3oJW3svNVLW7+KSwUQWudDAMF1qA6vwUtw+3spYUiaLmjng8CTIQBfuDHoJXTjeKW9sICH7TcQY+p3cBrMixraX7C4YopR4sLfNDKJTgOHjwotgC4zxqY1Ta/GRoaMl43FnHcLtBBi+U3oF5qCctanltP1vMtk8mIrcACHbSy32jv3r1iC4A3agnLWp5bb1jotLDABi36jKCeagnLWp5bb9YKH3yK3BTYoL127ZrxZqO/COqhlrCs5bkqQJXPdoENWlnXd+nSJbEFwDu1hGUtz1XB8+fPc8vdoNLHFMiglXeqoKYP6qWWsKzluaqQd2IePXpUbAm3QAatnFEonU6LLQDeqiUsa3muKnhuESx3sylwQYvZhEAFYQ9aJpe7wfwiAQzaw4cPG28uZhKCeqolLGt5rkow//OmQAWtdcb3ly9fiq0A3kPQmuRyN2GfA9qTd3Mp3ZY7eIq3BtrR2EJH+tI0ubhBmnhuJbjjnb8XZnuHepPHdTVqea5q5MUPX9VyNUJ5Gm0sTlK67wi1JGIUFb+LaCxBLUf6KD25SBtalua+6Kb0kniKD3j3bmob9JfhZO4X9/H1F7TZg5qlF8uzNNbXSg3G41FqHpimNfGoHdaPKVi/COqtlrCs5bkqkt15ZS+A1u5R+nhCz4goJY4P0p9mV/RQNR/SNn6k+clBOp6Iit9PjAZmzMf8wNt3cylNbeIg6p4Q2/KsTXRT3NgnSskR+3+yZMc7z/bOt96iodWzmWFgzs9aaavluSo2uYRUqUUctZUMdcb5/ztOnZmV4p9otRXKdMaN71csQ1Tk8Z/NCeoWB1HxX9I6ZTrMfSKxAbLzR0uWkhjPQUNDU7YVHKTWHlCqyXw8rl+mlu021GZoQA9lBG1RdoLW2qfbZqsfhmcK4itaNDQ0tVuh7oO5wSbzfI92UMZmf+FapoOSPuqkVTBoNZrolv0wXTRezagYAPiDNk39MTMTIh0Z/fOsTdoEpSvoWqw39YL2ySi1R819YvpOtn/xAOA/MwMUE5nQ5qcyggrVLWg/zmwt4cq+WDVGFY8ZHeIRijYP0HQFZQf8HG4AanpKU0O91NtbWRuaeiqe72/Fzk9r6WdXgD++1i1oi7d/oGTqG1qt8O5Z+XwANa3T4rc36eaVc7RfXExEIo3U9V/6tpv57Tql+w5TQv9kF5SrvGLnpzVo/TS4Vam6Be3WX6pGGz/O0x39IDws6+QaWqlvvESZRx75ZgGobj3TIY7X0oO9fhvwKaXY+YmgdYWNPtrsHA0n5WBYnHqm7PXSyjcLQHkT5hSCZatqtHHqCkj6FDs/N//oRCg5siy2Bo96QavT7p2nRrFfpH2U7PRSyTcLQHl2g5a7GxafiH/7W9Hz88llOiQeq6jqwGeUDFrrfpH4Ofqz2FpK0TcSQDU2gnZ9ZoYeiX8HQfHzc40yHeITbAV1tH6jZtBabtXFFS0Ejo2gXRge1s+W4Ch1fmoLaUqKks64Hgy2snZtms5d+Jr+T3ypOm+TycZcB/wXbqLbvJcZfbQQSOWC1rgltTs0Qcusc5w094zTSolR8Oz3Y/Sb/X004aOrX++SadvsXT/mZuYxZF/Q8uwY9bU2iDelgQ6MLKDqAIInF7QxSv4qv3b2JO2L8UfpcAWtHhD07Jtz1Npg7sdVRycvXqGp2WVjLpPV1WWanbpC5440U/PxNN3zWReDJ8lkbz5avUVjlJBz0n5fWSGt/B4AyssFbaE62uuU/jVPFxq2oBWyP9Ds2EU6ub+RdsjQ1VvDjkbaf/IijT16ZvviSyWBSSbbbyRAvZXto9Voun8gnEEbUAhaAK+VDVqi9cVFCkZhlwlBGxAIWvANG0EbNAjagEDQgm9UFLQaPfh6ylaJo8oQtAGBoAXfqCBo16d66MDgnPjKvxC0AYGgBb94cvmQOF5LB212bpiS0WB0LyBoA6LSN5KXQeY15wG8Yc5H23XkbbHSs9kaWk/m1dFy66IjzWKp7UOXlRoU4+VoJicnxVf2VXp+Bk3oglYGbNjfePCamI92S81s+fbtolrTrOzcudM4b959992KAjfs51togjY/YMvtDwDbyaCVzW7ghv18C3zQFgtY2QDAvvygla1c4Mr9wiqwQVsuYGUDAPuKBa1sxQJXPh5WgQtauwErGx8YaGho9tqrr75a8DzKb7yvNXDl9rAKXNCioaGp0/iiJ5vN5r4Oq8AF7YULF+jNN9/MfV2u8UchNDQ0e+2VV14peB7lt9dff53Onj1LP/3005bzM6wCF7SM/4LaDVwAsI/DttB5JFt+wEry8bAKZNBKdgIXAOwrFrTFAlaS+4VVoINWKhW4AGBfftCWC1gp7OdbKIJWKhS4AGCfDFq7ASuF/XwLVdBK1sAFAPveeeedigJWQtAGRDVvJAcuANhX7TmDoA2IsL+R6tNo48dVWn2BP25hhKANCASt2ngCa2Pd/u4gLTkIdiFoAwJBq7C1CeqOm+8PgjacELQBgaBV1RqNd8UpHo8haEMMQRsQCFo1PRltp4aODN1LtyFoQwxBGxAIWvVoC2lKJrppYo1oqYKgzb5YpdXVVfpxQxNbCuHBtRe0ObQmBtt+3ND/la/UY+AFBG1AIGgVoy1QOpmgnilzKZbyQavRs7tp+vDtGMUSjdS4o0HfP0qxfefom2eb8ahtLNJkuo+OvM2P6yGub1u7l6bjiWjuGGhoPUfTergb3/Obc7QvVugx8JL8/YcVghZcoNGDVBM1pR7kriBLB61GCyMHqCGapOE5eY2qbxsWz4n3kJnXj2jiyk36z864eL+7aWyih5r3/ZrS12/SzSt91NpgHgex/m/o+0wnvd16ki7qz9n62HTudYE3zPcLQet7YX8jVcKlXIlkmhYsaVYqaLWZAaP069DlvPVeF4apRbyvW56W256gTzLfW7oP9J/9Zae5emw0Qccvz215TJvupxg/FhugGbENvBH28xNBC87iUq5EktLWlNUVD9p1+rKTP9q30+hTsSlnif7nwxZq3J/3cX8pTW3G+212HWxR7WPgKgRtQCBoVWCWcrWP5l2Z6ooHrR7MxntXQfghaH0HQRsQCNr641Ku2AdX6a+rZtWAtf3vv7WY79HH18U2UTGwPEJJ471D0AYZgjYgELT1tkTpNvM9sNdE2D0dpXbj6zZKLxnfqCBN29Lhi6D1Gfm+hxWCFhzylKaGeqm3t3D7VVLcGdb0c7HtGj0ynjdDAzHzvWsanDO2bLM+Qan0A/GFDkHrO2E/PxG04InifbQaTfeLEI5uH0Tjft+J7gO0JYMRtL4T9vMTyQSeKFlHuzRCyah5IkYaWqlvbJaWV1dpefZPNHg8YdzCu+Ueg1x5V7VB20XjKKQFDyFowRMlg1a3NtFDCRm2lhZNpuheLmWz9GJ1nsZyNyzEqXNsXtxaaz42+S9Js442EqP24du0XPCxKCVT8jEA9yFowRPLVz+gxsZGavz8O7FlO+3ZXbrcd4RaeL/9J+ni2COy3H2r+44+58fy2wdXabnqxwDch6AFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwFVE/w9AZHpX2JR0ggAAAABJRU5ErkJggg==
|
As shown in the figure, triangle DEC is rotated counterclockwise around point D by a certain angle, and it is found that point C' coincides with point A. What is the length of CD? ( ) cm
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
10
|
iVBORw0KGgoAAAANSUhEUgAAAVcAAAEUCAYAAACf/XXaAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACYQSURBVHhe7d1/SBxpmgfwZlno/SOy+0caBhL3As7iQCKMEEQwkGkIJmHDoHshMxsSDOfskJEM9MI0TjDceBcl3PbCxAusxzRk4EZRLnt64BFXw3ZwM2Mi3iV6E/F0JYJxiE7oLBqOhto/nqun+n21uru6u7rt6q4f3w+8JFZXt61d/bX6fZ96Xx8BAEDJIVwBACyAcAUAsADCFQDAAghXAAALIFwBACyAcAUAsADCFQDAAghXAAALIFwBACyAcAUAsADCFQDAAghXAAALIFwBACyAcAUAsADCFQDAAghXAAALIFwBACyAcAUAsADC1bUU2v7+Bb14UVj7flsR99dLPtarhPgSAPJCuLrWKg39spZqD1SRz+cTzU+BGnVbbXqroYA/uU9TdEXcX1JoKRokv3qb/9zvaUNsBYDcEK6up9B8pE6EaxNlZKekbNJkqNogXGeoO5AM3rq+BbENAPJBuHpBLJQ/XNn6AF3onhFfCBvD1ML39bfQ8LrYBgB5IVy9wGy40gJ98cU34v/CUj81qPetVkPXqDcWAIwhXL3ATLgmEmQ4XsX3xVkrQMEQrl5gIlxXolGKif/rrd4O4qwVoAgIVy/IG65bdLc9bBiu/3v7M/o9zloBCoZw9YKdcG2g3/5Xem3rIt3vO0fVvpBhuAJAcRCuXrATrkZ1rrLGFeEKUEoIVy/I1y2QWKB/bkK4ApQSwtULTAxorQ4NUVoRFgDsAcLVC0yEKwCUFsLVCwoM18T2NkqvAPYI4eoFhYRrPEbhq3dpS3wJAMVBuHqAMtlhLlyVJRpoqaOuaZy3AuwVwtW1knOwrs6NULjeL8I1QBf/bTGtzpXbKs39IUofN1aRL9BFyFaAvUO4upaYzzWlpjV/a/4C0woClALCFQDAAghXAAALIFwBACyAcPWYP//5z/TZZ5/RX/7yF7EFAKyAcPWYS5cuaZUD+/bto1AopFULAEDpIVw9hIP0Rz/6Ef3whz/UGocs/8uBu7i4KPYCgFJAuHoIn6lyoF64cIFWV1e1rzlskzWwPmppaaEHDx6IvQFgLxCuHsF9rD/5yU+0EH3y5InYSvTy5UutD1bexu2dd96h0dFRsQcAFAPh6hHXr1/XgvPMmTNiS6pEIkGff/45HTx4cCdk3377bfryyy/pr3/9q9gLAMxCuHoAB+cbb7yhBeb9+/fFVmMcpByoR44c2QnZQ4cOacHLjwMA5iBcPaC/v18LycbGRrHFHO4aOHbs2E7I7t+/X+tC4K4EAMgN4epyfCb65ptvauFYbD8qn+3yYJcMWR4E48EwHhQDAGMIV5e7c+eOFogcsHvFA2FctpVexqUfIAOAJISry/GgFAch96OWSrYyrnz9uQBegnB1sXv37mnBx4NZVgxGGZVxcR8tyrgAEK6uxvWqHHg80m8lozKut956C2Vc4GkIV5fiflAOOT6rLNckLUZlXHzWzMH7+vVrsReANyBcXUqO7l+7dk1sKa/0Mi4Oee5CwEQx4BUIVxfiaQV5JJ8HnCodZtnKuPg5ArgZwtWFPvjgAy3Irly5IrZUnlEZF08ggzIucCuEq8vopxW049mhURnXqVOnUMYFroNwdZlPPvlEC6z3339fbLEnWcbFl9TKkD169CjKuMA1EK4ukm1aQTuTZVw8OYwMWb6ajKsOMFEMOBnC1UUikYgWTidOnBBbnEOWcckryrjJMi6s9wVOhHB1CT7LMzutoN1x14C8AIIbn41/+umnKOMCR0G4ukQ0GtWCiM/83IKXnEkv47p8+TLKuMAREK4uUIppBe3s22+/zSjjOnv2LMq4wNYQri7AgcqhwwHr5mv5nz9/nlHGxf3LKOMCO0K4uoAcBOKuAS/gAa70Mi7+HfDctZgoBuwC4epwfNbG4WLVtIJ2lq2Mi5e1QRkXVBrC1eH4YzGHCpdheVW2Mq4bN26gjAsqBuHqYJWYVtDujMq4+Ko1lHFBuSFcHYxHzDlAuAYUUhmVcfGENijjgnJBuDqUnaYVtDOjMi4O3dnZWbEHgDU8Hq4KbS/P0vyG+NIqT2M0/qy0Ayw8nSCHBRfVQ35GZVzcfTA+Pi72ACgtB4erQvP/8R+0pIgvC6Ws0eTVNro6/oxyxZ6yvUZzU6MU7emkzk619URpdGqO1rbFN1bm6Y9TmekcfzxAPZ1f0HScv0rQwsAlar06SWvFPl8du08raGfZyriGhoZQxgUl5dxwjY/RRb+f2u9uiQ0FiD+myMmTFHmsJZ8hZXOWopcOU5XPT4H6VroaHaWJiQmaGI1ST9txCvir6HBrB7U1VlFD/5K4l7DxezrnT75xW4Zl8Cq0ORmimmA/LezxJJaXbtEeW/14C8XJVsZ169YtlHFBSTg2XBf66pJvitMDtC62maIsUTTopyY1ELOdRManu6mew7HqJPXNbhrux+Hbd7Iq+RxCMbFViIWS2/3tlJr9Cs10V5M/GC36jJvPvJw2raCd8dnqV199lVHGdf36dftWYCReaZ9ecrdXOT+RgfWcGa5bMQoFkm8En6+aumfMJpVC8xE1lANdNJ3lLltTYarWHreJ+vMloBrU/U3qvmnhuhJt0p5bXWQ+M5jFc88V7rnw2RY/NvcXQmmNjY2llHHt27dP66flsLKVb3qotvaA+qlKvgdE8weoprZWva2WagJ+bZs/UEPNbTdpZO47hG2ZOTJc1wdOk68uSEERsP72u2Sqc2AlSk3q/rVq6BnamqJwdfIxq7tnTIWfMtNN1S3DpO91nekOqAf6RRrL0uuQvL2Fhgs65U6dVvDevXtiK5Taw4cPU8q4uG+bKw4WFxfFHvagLPVrxzM/x4bf/k9GeCa+m6ORq407IVzV2CvGAKAcnBeuyjxF6nx0emB9t2vAd5rUL/NQaLpLDTVfQD3TFZvSaKGtPV4TRVfExrzWaaArSru7KzTZkeWsVVLPjv3q9wl0TRd09spXIfHz44+wYD0OU30ZFzcOXQ5fe1BPBkTfflOOAzb+OEJBsZ+vOkQxBGxZOC5ct+62k1/2Za4P0Glx0OcNqq271K4dYOoZpeFp7gpF+SM+P15thLKc2xqKr63pzpzVxwlmP2vVbAxTC3+fjD7Z3OS0gjxBCZQPdwtw9wB3E2jHh9q4+4C7ESpr95jNFa4sHguJ7i71vdIxSchX6zksXJMH026QbtHd9mTfUr6gUtSDi88WswanDDxuaR/zC7NB//NkLc8Z6Qx1a10afgrFzJ27emVaQTuTZVyya4Ybf4rgTxSVeU3Mh6sarzR2UbxXfHXUtyA2g2UcFa7KdBcF0g6M5Lb8B9h8pDZ5YAVv06rYlkL0x2r7pI/+l9zumyKjjCsLXhmV9+cZn6CyZBmX/CTBjUu6eFt5y7gKCVfdCYbaso47QMk4KFzFX96M0qsF6qtLHjC5qgBiIbFPtuAsa7huqT+L+e/l5WkF7cyojIsvTuCz2/KUcRUWrimfzrKdZEDJOCdcF/qoTv0YbXTRwO5AVLaLClbpdlAcVNnCbPU2BeWBd3HMXPXBHuyEvYkuiFOnTmn78hR6YE/pZVx8BR330/Jlt9YpMFwpRiHx/HyBbsoyrgsl4pBwlSP9P6N3fy0uQ9W3D4M7XQO+uj71XDbdBg23iNuzninKflC1leHA2wnXPEGOaQWdJVsZF08gU3p7CFdfSP0KrOSMcBVVAU3XxCWoBu23rbKzPkBdBn0DZsLsv3urxWPUktVdUnm7KYQLFy5o+/FZEDhHtjKu0q73tYdwbdKXD4IVHBCu4qqqavVsMtfAuq7P1K8GaHqpyVJ/Q/6Dan2YWkQ9oNFjZJNYeEwL/ye+MGX3TZFrQAvTCjqfURnXsWPHSrRKb4HhutRPDeI5+Dom81S0wF7ZP1zFBC0XcxaOMtl1wAdPnXrmmXbozHQnuw78YZoSm4zs1gP6Kdi/kPeSQS7QPh+OFVg3KLsgsl/QwPhNyT8PnwGBsxmVcR05cmSPZVyFhWv+sQkoJZuHa1z9+Mwf1U32Dz2+QX8jDtyMyVGUaerSAi1It3MOkyq0NHxup+C6urmXxhczJ8FIXlp4nOrDk7RZ6CmAHLXNUd3AZzxy7lFMK+geRmVcBw8eLLKMq4BwVdQ/6OLS7ryfAqEkbBuuG1N/T80HxKxTaqs60ExtnXfoqbg91VO609lGx8VkFbL5A/XU+k9TO6Px8nLZjsn8R1bi2Tj1tvKUg+Lx0ibFqDp8iaJZZszKR9Yb1uWo5P75z3+ufV/uFuAaSjR3tZ/+9Kf0gx/8YOdY1beVFbO9oUvU35C8T+5wlScpvG81hXD9a1nYNly3lr82GLh6kmV6wXV6krGvaF8v7w5gaV0MBV7Tz9O7LT7afbxHi/Ti1V5qTUX3Ra6JXWZmdt5oaN5r/AeVu4RWV/NVou4OUGUN18QzGvmoRlw8UE3nhoubjQ0K54ABrdKKj10kf45gs5w2x4GfWnJMifWLX/xCe8PwwEdbWxuaR5oM1x//+MfaH3JeZNGwP1abz3WR7v9DcPeKq45/pam5Va07idvq3BQN9rbS4ark7VWNV0u+1BDk5rlwlR+RKjN5RXKy7OpQ9gEwfYXAy5cvxVbwAhmu3LgPNittPtdkF1X21kCtHZ10c3CK5ta2cbZaAR4MVxan6e5GOhkt50ckXuYlTMfzDIDx8s/85rJPXav6vGcHqKetOfmmbW6jnoHZwgfxIC99uHJVASbocTaPhitTaG3yM/rVb/5kfVAomzT7uw/pk5HciyHKCgE+c+X/V556lh+W/XWpzV8TxrygJSZ/t42Njdq/XKYFzuXhcBUSm7Rpdcnf+jMy091lt7rWLa75rQ/TyNwaaYvdKtu0PB5Ori/GAdsyXNj6ZZCTDFdML+kOCFeb4CJzvoqHz1rtUde6RWNh41nr45MdYi6HFtpZ3Bb2TIYrkzNtYWJ050K42gRfvcNvJvssl63Q9na20+15itRyEBSyHA7kow9XnsqQ/48lfZwL4WoDr1+/dthy2fLKIOMlcxLP7lP0ais1aKPWzdTWM0CzKR3banAvq/t83Ey/HOJazuSg2cfNyf0/Hni8U03BS5gPiMdqaO2lyTX3jqTpw5W7A+RVXJVfTgaKgXC1AS674TfRmTNnxBa7S86NkLnqrrh02F9P4ZE5Wn3xghbv/0NycTx/kKJ8PfLaGPWG2nb6bZuij+lx5F2qb+2gzo4zVKNt91Pw9golFvrp5IF6au3ooNbD4mo9F1+6qf18apN41Qn+GsuoOxPCtcL4enI5mUdpp6Oz0HyEag0mx9maClO1L0Adk/qO2g36/bnkZclB3aQOctmd6jO/oUndaJ/y+Ib62GrIBA7Tpd/pS77iNPJeMnjDuWbecTD+fXCTHHlswA6Ea4VFo1HtzeOcs5PkcjuZS4ev08BpNRyMFoBUtun7F6mT36xEm7SfO/OyTXlJZ+ZkPdnv4w78s3HTk59q7NMXD2YhXCtI369Wmvk9rcdTMtakzzjGtsboIoeDyXlCEa6Z+GfjpsdVJM7qjwcJ4VpBQ0ND2pvGKSPCylKUTh7OcvGAnKzc5LLkCNdM/LNxSycrSc6ePSu2gBMgXCtI1jJyyNpeXA29RuO6V40MV5PrjyFcM/HPxi0dn73KK/cwt69zIFwrxFFX4SQWqP/8RzSWswxqd3WFUMzokrctmhr6T5JroSJcM2ULV4ZVKZwH4VohchlmHtCyNS1Yz9NwRicrU2jpq9s0pa0flpzxSwuI6va0IFZobayd/m5g92JZhGsm7XenNiNy3glu9ph3AvJBuFYAl9Xwm4jLbApf2qOM4tPUXe+nn73768zlzDs7qLU+QFX6WlfuOpBLifgDdLxN7He4Km3Znd31zmpvPE4dAIuP0HtayLxHIyldEAo9vpEs38q4j0tovze1ZcNnrXy7fWZMg1wQrhVw6tQp7U2Sc87OSlODMlyTumxOZstcxpyvqOp7N6CbSauKGj/+d1qQf0NWh+iXNfrb/RSo+SXxhVrf9NTSATG5s9aqDlBtzzfJ++iW/Enep4fUW1xF/nzZ6Of65X5YsDeEa5lxOQ2/gbi8xtZnrdps98lZ7bO375OzZRlQtr/X9slYEUereTV+nMSr9O1q4wcwvE/mopFOly9cGVcM8D5cQQD2hnAtMy4Gx5sDjJgJV/0fZ56TAuwL4VpG8mMdTy2Ij3WQzky4Mp6DgvezdbcSIFzLCQMSkIvZcHXMgKjHIVzLhPsJ5WAE/x8gndlwZbKUj2fOAntCuJaJLALnBQgBjBQSrjzHK++LpWDsC+FaBnymissXIZ9CwpXJy6d51QKwH4RrGciJNy5cuCC2AGQqNFx5fS3eH0vB2BPC1WKYMg7MKjRcnThlpZcgXC0WiUS0gx+THUM+hYYr+/LLL7X7HDt2TGwBu0C4Wki/TMeDBw/EVgBjxYQrloKxL4SrhW7duqUd9FhgDswoJlyZXArmxIkTYgvYAcLVIvr+sPHxcbEVILtiw5XPXvfv36/dF/369oFwtYjsC8NILphVbLgyWZGCvn37QLhaRNYgYhQXzNpLuOqrUlBLbQ8IVws4agkXsI29hCvDUjD2gnC1wNGjR7WDnLsGAMzaa7jqrwR8/lyuVgaVgnAtMTlj0cGDB3HWCgXZa7iyy5cva4+BmdcqD+FaYnK2Isy1CYUqRbjql4LB7GuVhXAtITlLPObZhGKUIlyZnDf42rVrYgtUAsK1hLCEC+xFqcJVvxQMVryoHIRriSwuLuKAhj0pVbgy+Yf+xo0bYguUG8K1RORHsU8++URsAShMKcP14cOH2mOhi6pyEK4lgEEEKIVShivD4GplIVxLQBZvo/wF9qLU4Xrv3j3t8Qq+mCXxilbnpmhiYoKm5lbpFU58i4Jw3SMs4QKlUupwZfIybHMXtCi0NnmVGquSz2OnVTXS1ck19VYoBMJ1jz799FPtAMQlh7BXMsxKSV6KfeTIEbElO2Wmm6r9ATredpMG1bPWicFeOlPjF8+rmkKxuNgTzEC47oF+soxvv/1WbAUojhXhyswtBbNBw+eCFF1KOz9VligaFAHbFKUVsRnyQ7juwfXr17WDDtO8QSlYFa7mpr98Sn/847r4f5qFPqrTnluIYmIT5IdwLZJ+eY3Z2VmxFaB4VoUrD2YdOnRIe+ziloKJUYifmz9MU2JLCmWb1sQA2MSjRfp+26B3Vt1n+dHXtLwlv1ymR9r+y5Sy+85jTdHcd84eSUO4FkkurYElXKBUrApXtqfjVZmkDvW+/va7JLJRUGjzT73UWFVFh1s7qLOzjY4H/GoI19D54SVtACzx7D5Fr7bSYW2QrImiKwotDZ+nGn/yZ+XmD0aJeyOUpWE6v9PHy83Z/bwI1yLwmQDPesUHABaFg1KRoWKFPX3SmummgBp03TOpZ6TxWIiq0wNwqZ8atJ8jSLdX+UR0mxLxMbqohWkDdVz9NX02njxbVTZnKSL6c093/YY+/DBKD9e2SeGz3JF29bHV+9T10YJ4aKdBuBZB9mHxvK0ApWJluLLixgi2KBYKUHUoRinnkMo0dQWMzmbj9HighzpvTtLaThavULQpGa79S2KTsDV2Mflz/2qcUjsB5ilSy/dpoeENsclhEK5FMDf6ClAYq8O1mOoWZT5CddUhyvh0PhUmv/o4LaaST4YrdwuITZJ69qv93Gp4p8pxH4dAuBaokLpBgEJYHa6soLrseIxCNQblWaqVaJP2OB2TmbdlQriCCYVd8QJgnhYyarOS6SsKub715EnqXzAesZfh2pD+Od8QwhXyKPpabQATyhGuTM6FceXKFbElXZxi4eMUzjFSv9NXenqAjKtj47S2JntjEa6QB2YZAitpIaM2q62uruaYxS13sMaXl0nrZd0Yphbt+QaoYzJz3/hkF0WmZZcBwhVywPyYYLVyhSsznH9Y2aTJcD21Df2vFrqpbZEeDYapMRwTE7goNNNdLZ5zNZ3ru0+LvN/qHI30NlNN8LYaj9IS9TcgXCELzOwOVksGVXnekhkrZyhrNNYuwzJbC1DXztmoSlmi4fM1WtWAfj9/fTdNi5PZreWvabTvXLJmVW3V5/po9Otl2qJ1ejIxSOF6cdGAv57CgxP0ZD15n0E1oFPuwzc4DMLVBKxJBOWghYzaykW/5tvLr/+FOjs787Q79FTcd1eCvpv7A0V7+PabNPjoWUq96sbUrbTHUNutKdpQH+lO+na13VG/geF9+AaHQbiacOHChZ2DEMAq5Q5XrFZsLYRrHljCBcql3OHKMEhrHYRrHpcvX9YOPizhAlarRLjy3Bj8PXmuDJQXlhbCNQc+U5UF18+fPxdbAaxRiXBlPEcGf19cGFNaCNccZLE1lnCBcqhUuMpLunFxTGkhXLPQT3KBhQehHCoVrkxe1o3JiEoH4ZoFVwbwwYYlXKBcKhmu5paCgUIgXA1wWYo8a+VyFYByqGS4cneAnEpzfHxcbIW9QLgakEtinDp1SmwBsF4lw5XdunVL+/5Yuqg0EK5p9MthYAkXKKdKh6v+2H/w4IHYCsVCuKaRfU/Hjh0TWwDKo9LhyiKRiPYcMNawdwhXHX2/E0ZNodzsEK76KhmMN+wNwlXnzp072kGFEVOoBDuEK5OVMu+//77YAsVAuOrIWr+vvvpKbAEoH7uE68uXL80tBQM5IVyFsbEx7cDGVSpQKXYJVyavTvzggw/EFigUwlWQswP19/eLLQDlZadw5Xk1MBvc3iBcVXJmIMxrCZVkp3BlcikYzAhXHISr6syZM9pBhDktoZLsFq5yLuN9+/ZhBY4ieD5c9Uu4vH79WmwFKD+7hSvTLwUDhfF8uJ49exYHD9iCHcMVJx/F83S46pdwwcceqDQ7hitDt1lxPB2u6LAHO7FruGLAtzieDVe5hAtKTcAu7BquTJYqRqNRsQXy8Wy4YgkXsBs7hyuWgimcJ8MVl/eBHdk5XJm8PHxoaEhsgVw8Ga6YmALsyO7hyqHKzw8TG5njuXDFlGpgV3YPV0zJWRjPhatcwgWTAYPd2D1cGQ9o8XPEUjD5eSpcsYQL2JkTwhXvIfM8Fa484xX+6oJdOSFcGRbwNMcz4arvL+K5WwHsxinhymevGLfIzzPhKhcexEgn2JVTwpXJihuMXWTnmXCVNXoY5QS7clK4ctUNT0WIWvHsPBGuuLoEnMBJ4cpwlWNungjXxsZG7SDgrgEAu3JauMr5OfjsFfNzZHJ9uOpn9MFZK9iZ08KV8QKG/Jwxs1wm14friRMntBcfc1GC3TkxXPVzIuPsNZWrw1XOor5//37MQwm258RwZRcuXNCeN1bzSOXqcMX6P1AJMiSLbU6jXwoGK3rscm248scVvOBQCfqgLKY5kTyRiUQiYgu4NlyxhAtUSrEhWez97ODBgwfac8dSMLtcGa6rq6voZIeK8WK4MrkUzK1bt8QWb3NluMri5itXrogtAOVTbEgWez+7GB8f154/LtZJcl246gubcVkeVIJXw5XJy8xxwY4Lw/XatWvai4tL8qBSig3JYu9nJ/JSc0yQ5LJwxRIuYAfFhmSx97MTLAWzy1XheuPGDe1FxTRoUEnFhmSx97MbOb3n0aNHxRZvck246pefePjwodgKUH7FhmSx97MbPns9ePCg9rN4eSkY14SrXHoCS7hApRUbksXez47wfrQ8XNfpycQETeRpU3Or9OJV8YXH/Jfy0KFD2ouJRdOg0ooNyWLvZ0f6T5KFjn8kXr2gxUcyHx7R4otXtJsOW7S8vC7+b28Wv5JP6U5nJ7UdD5BfHDg+f4DqWzuoU93OraO1gQ5UJW+rOtxKvZNrpIh7m4UlXMBOtONcbYUq9n52VdhSMAl6Nt5LrYer1PtU0YHmNpERbdRco+ZH1WFq7R2k0b5zVB2KifvYW5leyTiNvCfCtSlKK2LrDmWTZqPqL007uPwUjC4VFLBvvfWW9thYwgXsoNiQLPZ+dqWv3llcXBRbDcQfU99JDlU/1YfH6ZnBh9jEs3EK1/uTvyOjDLGhsr2SM92BPL8YhZb6m5L7+Oqob0FszkPW1XHjrgE0tEq3Yo9HNx7HfEEP/0xZ687jMQrXcGiaOKlSligaVPdFuKZaiYrgzPWL2RimFnGA1Ubmxcbc5BUhaGho9m3GV0zGKRaqTu5TF6F5Ex9XlfkI1dWq+4qv7cxe4apMUod4MfzhKbExOx7I4kla0NDQ7N9ev34t3rnCQh/Viff7xbEtsTGfLbrbHiYn9LraKlyV6S4KiF92y/CG2AoAbrTTVehroULe7lszM/RU/N/O7BOu8cd0oykZrL7qbpoptGQAwK4Sr7QJhQpr+vIjN5qnSK14v/vDlP9zqvOUP1wDQeoe1NW5jkapp6OVDmvlWH4KHO+lP22aT9bkX76y/RgAhfumh2prayjgF2HCreqAuq02sx3gUXPeJ+SIj75mGL9HYxSSvwuHDFAVqiLh+qGocdVaWzPVBESJRVUjtd0coacIV3Cj+BhdlAGbo1YzsdBPQT/C1enKH66Gv0iFtpdH6COtJEPdx19D4Vhc3Jab8QsHYEcrFJVdXzkL4RWa7vq7gvoh7cz4PaoL14Z+WhJb3cQm4Sro/7L72+muiQFE4xcOwI7MhivR1sQXNLQqvnA44/foKt0Oit+F7yKZLhZwEHuFq2p3BNFHHZP5uwfkvgD2ZyZcFUok3DWam+09upMJPj+FYu4bwbZduC71N+y8GAhXcBcz4RqjaNRdPZBZ36Nbd6ldfFL1twyT6elYlE3aNNdrWFFlS6X5SG3yl5wzXNdp4LQ4+HynacDEbzvrCwdgOybCdaGP2r0Srqp4LFTYnCKJBeo/f5WmHNCNUKZUUmiyQxxU2cKVJ2+JBMXsWeYnb8n1wgHYiy5cfzWaUdu6OjeiTU7S5KFw5WxYun2SqrR9/FTz0WCWaqEEffcwSuePf0Rja87oQrA4lZLzuQ72Nou/TmrjUqybg7t1rhOjFO1po+OyHMtfQ+ejj8nsWX/uFw7ATnThalTnKmpcvRWuTKHN2Shd0qYb5H39FKhppraUcs0ANV41njHLrixOpeR8rjs1rTnaTb6w4NEiFTpndv4XDsAu8nULqCEz3kEtngtXSaHttTma4guLZDb0RGl0ao7Wtp1xtqrn+FRCuIJzmBnQ+oaG3FKDJXj1PYpwBSgbM+HqPghXh0K4gnMUGK7KNm27YPYWhKtDIVzBOQoJV4WWoh/R70yuyGFnCFeHQriCcyxRf4O5cI1Pd1Hd6QHzhfU2hnB1qGJeOLmCAUBZaPO5LtJ9XrlUHK++phv0cDW1zlVri49osPcM1fh9dNrMVTRl8vz5c2257GIgXB2qkBeOQ5WX4X7zzTe1ZX8BykKbzzWtpjVv+4QmbHQVEr9v3njjDfr8888LDlmEq0OZeeH0oSr3R7gCmMfvH/neKTRk5f28xtXhahSqsiFcAczTh6tsZkNW7u81rgzXXKEqG8IVwDyjcJUtX8jK/bzGVeFqJlRlC4VCGUv/oqGhGbdIJGL4PtK3bCErb/ca14Sr2VBFQ0OztqWHrNzuNa4J15aWlp3/o6GhVba9/fbbdP/+/ZT3qNe4JlzZkydPTIfsO++8o/W7oqGh5W9m31ccqqOjo9r7UZK3eY2rwlUyE7J8wACAObkGtLgZhaok9/EaV4arlCtkEa4A5mULV/4EODY2JvYyJvf1GleHq2QUsghXAPPSw5VDVfap5iPv4zWeCFdJH7IIVwDzZLgWEqpSIe9RN/FUuEocsuPj4+IrAMjn4cOHBYeqhHB1KK++cABOgXB1KISr/cWnv6DOzls0tSE2gKcgXB0K4Wpz8TG66OfXqIlctqgpmIRwdSiEq52t0O2gX7xGCFevQrg6FMLVrngNqCDVhEL0HsLV0xCuDoVwtSdlqZ+aqsM0tRWjEMLV0xCuDoVwtSFlhrqrm6h/SVG/MBmuie9o7g9R6unspM7OmzT4aJm2+e7peL+Rm3RLjo4lntGjwZvqfTrp5shT2tTdR9leznoblA/C1aEQrnYTp1iohoLRJUpmWb5wVWjzT73UGKihM72DNDExStHL9eRX7+Ov76bpeHKvreUx6m09TFXi9W5SHyyxEKWTVcmvZfMHbxN/m/h0N9VrA2mZt0F5yd+/1yBcoaTisRDVpIRY7nDl/at91RSKiRTV7K7v72+/S7xOn5JIkKLMU6Quub2hI0yXLkXp4Xc8Z6ga0LM3qEn7PgHq6L5KzXzb2rZ6C98WoaAWtAHqntG+AZSRV9+jCFcoHS67qrpIY/qczBWuyjR1BdTbDNbnn+kOJF9bNaj1i6DHQsnXu/bGY3FmLG3R2EVx2z/OUupc+ApNdiRv4zNeKC/tdVSb1yBcoUS47Kom7QyUZQ/Xrbvt2sf/hv4lsUWH+1InpuhpWkepDFejkCz2NrCWV9+jCFcoAVl2FaP0aM0Vrkv9DdprV0jgIVydh3/v3LwG4Qp7txKlJt/P6N1f80h/evtbqtNeowAFP0xukyP9MvAMz1yzQLg6D//euXkNwhX2LhbaeR3MNBlw8szVqM91x8o8zfOIloBwdR7tNVab1yBcYe8Sr+jFixdZ2ij9SnuNGui3/5Xc9r0oYFXUUOY+V5+vjiLzRkWocRoL9ZJ+gB/h6jxefY8ilcBiJqoF+PbqEE2mDF4laKE/SEf7FsTXSQhXcAqEK1jMTJ1rMvh8/gAdb+N+2TZqPlClBi5fPit21KzTwOnkvpn9tLvlVrWRebFN2r0t0DWdVsIFYA2EK1gsd7hy8K1NXqXGtCutqhp7d67OYhtTt6jjTI3oRlCbv4bOdHTSnafiNt3VWz5fFTWqIZ3vNgArIVzBYuv0ZGKCJia+puWUs9A0iVe0+Ij3m6I57cqqVFvLX6u38e2p7cl68bcBWAnhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAEDJEf0/+/wsgx1dXywAAAAASUVORK5CYII=
|
As shown in the figure, the perimeter of the isosceles trapezoid ABCD is () cm.
|
A. 4; B. 6; C. 8; D. 10; E. No correct answer
|
D
|
11
|
iVBORw0KGgoAAAANSUhEUgAAAVcAAAEUCAYAAACf/XXaAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACAxSURBVHhe7d1baBxXmgfwHhioeUiz85CGAVsQ0IACtmAExhgUcBqCL4wYJNZkMsHCZpVZHGEv/RCtbRywwDZmthccjZYIphkF1jIW8RItNGNFDpFRkvEFzdrWOBohR1hgy/iGPMh+aOh5+La+qnNaJam7urq7Lqeq/j84xKruljrqqr9OnfrqnAQBAIDrEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK5RtnSbJiYmamy3aUm83Kpw/wZNTP2NlsXXAGAP4Rpl31+io0d7qWtLkhKJhNla/1nfdnRjO7CLNiX5ORmaFC8vWRimtMaPJen4n8U2ALCFcI2D4jU6kRLhmtkQnauWr1BvamO4Lg6nzdemTtC1otgIALYQrrGwQLl2B+Gqm8n20PCi+EKY6tOM17bnFsQWAKgG4RoLzsO1OPM1TT0RXxhWKN/NvVa9R7siNgFAVQjXWHASrsv04EG59DRfi14rQG0QrrHgJFwnKVc2QCcpg14rQM0QrrFQPVyL105QZ7lwffUXuvQn9FoBaoVwjQVLuP7ydxtqW8dyR2hHEqf+AG5CuMaCJVzL1bke2EkpDeEK4CaEayw4GBaYyVIPwhXANQjXWHByQet7mlpbgwUADUC4xoKTcAUANyFcY6HGcF25R/fKzd4CAI4hXGOhlnBdpsnMv9AIwhWgIQjXWJihbIuTcC3S/PBuSnbnCfcMADQG4RplxnyuF+hMRzNpHKzcmt6lgbG1da5Gu/AJHdiZ0p+nUc9lRCtAoxCuUWbM57quprVqu0gzmFYQoGEIVwAADyBcAQA8gHAFAPAAwjWGOjs7KZPJ0OLiuiUHAMA1CNeY+fbbb82qAb39+Mc/poMHD9Lt27fFowDgFoRrzHCvlYP1F7/4hRGuMmh5+9WrV8WzAKBRCNcYuXv3rhGkP/nJT+jvf/87PX782BgeeO2110oh+9Zbb9HY2Jh4BQDUC+EaIzwEwAHKgWrFQXvy5En62c9+VgrZrVu30meffUb/+Mc/xLMAoBYI15h4+PChMQzAjf9dTqFQoHPnztHPf/7zUshu3rzZ2MaPAYBzCNeY4N4qhyX3Xqvh3ur58+eNcVkZsj/96U+N3u3z58/FswDADsI1Bvi0X46r8rhrLfL5PL399tulkOXxWpRxAVSHcI0B7nFyMHJFQL2uX79eqjTghjIuAHsI14jjsVJ5ocqNUqu5uTkjVFHGBWAP4RpxfDGKA5BLrNyEMi4AewjXCOMLU/LKv1ehhzIugPIQrhHGV/xl2HkNZVwAayFcI0yWUnEv0i8o4wIwIVwjikuoZO8xqNNzlHFBnCFcI0qGGp+WBw1lXBBHCNcI4jDjEOPTcZXGO8uVcXV0dKCMCyIJ4RpBspfI45wqKlfGtWPHDpRxQaQgXCOGe4ccVjy+qfoFJC7jOnXq1JoyrjfffBNlXBAJCNeI4dNuDinuGYYFD10MDg6uKePiwOXx4levXolnAYQLwjVC+HSbe6w8pvnDDz+IreHBvdWLFy+WLePi/zeAMEG4Rgj3VjmQ9u/fL7aE1/j4eNkyrjD+0YB4QrhGBI9fci+PgyhKJU7T09Mbyrj4jwfKuEB1CNeI4AtDHD5c2hRF3GPl8WTuwcqgRRkXqAzhGgFuTyuoMlnGJXvp3FDGBSpCuEYAX2mXIRMXKOMC1SFcQ46DxOtpBVWGMi5QFcI15Lh0Sfba4gxlXKAahGvIBTGtoOpQxgUqQLiGGIcIhwefBmOccSOUcUGQEK4hptK0gipDGRcEIfbhWrh/lT793zviK688pC8Hh2n6aVF83TjufXFI8LgiLtw4gzIu8FO4w3X2D/Rv5xfEF7Uq0OzIQTo4ME12mVd8eY9uXPiEjh7YRS0tLUbbdeAofXLhBt17yS8s0synf6A/m09ftXyNzuxqoe3HJ2mZvy4+oPyHO+n9kVn9JzdOnu5+/PHHYgs4ZVfGhfW+wC0hDtcVmsykKJE6Qddq7hAu07X+Nkr/3iboCvdp/PgOSuoHXnLHASNM5/SeD/d+5m6MUe4IP5akTc0p0hLdlF8RrzMU9femmQdu6wDNiq38cyczzZTO3jIDt058msvjh3yaiyvh9bMr4+IABmhEeMN1aYT2GgeERj2X1yRbFUWaz6VJa83STIVQLj69Qn3NHI5N9K5NT7MwO0LvNvF7aKfcmg70PA1tNw/WvSNLYpuwMkV9TRqlc/P6O6nPBx98YHzvw4cPiy3QCL4YeOnSpQ1lXHxWoOYfryc0NXiUjh61b6dzYzQxoXcKnr2se1+D+oU0XIt0s7+pdCCs7R3aK84PUbtdIBdvUr8RmAlqzc5U3SmLM1lq3RCuk5Th91WhV72c7yZNS9NwHSMafLBzjzWs0wqq7quvvtpQxsV/xNT6Xa/Qve8maCx3iNo0cQzoZ1Fbunr1M6wJPVC5XaBPertoS9J8XEvtpCMj9kNg4K5whuvKZerRUtSb0UPK2LFSdMLR2MASjXbqPVItQ5Nln24J7ZT+HEcdYh6eaKK+KfElWxymtP49NvRaJeP96zt8d77m4YGPPvrIeH/vvfee2AJe4AuGPK7Nf8T4983/5d+5amVc80Pbzf01oe+vYtsaxac0nXuXmozn6PtcOku3GhmTAsdCGa4LuXazt1q8RidSYqdxElSzA3ovU3++/tyyuSlCj79fqv+m2OiA3nvNWvds/esW27HgJ3rI889ppQGnXW5dVKcVVBn3WHkYxlrGtWfPHmXKuFb0syDzfVUIV2F5MmMJ2GGq9zIwOBe+cBWBKnuFswOtYueqHlQ3+1PGc7cPzYsta63uqAnqvVLL+VOB1lxk1nfkir1WYSbbYvycWkL87Nmzxmv44AZ/8XAMnzVYy7i2bdsWfBmXvq+Z78c+XPmsbCYrjxWNOkft909oXOjCdWm0kzSth0pDpqULW3pQnbhmM0Y6Q9kW++Cc6hNX+BMtlJ0RG+tQfPmCjCotG6Ugb8nq76y6OE0rqDI+e+A/ctYyLq42CKyMy3G46ixnZrVcp4D6hCxcZ2mgdX2IrtDlHhGKWidV/IP8ZJQ6jZ0wRZU6i5MZseNtuEDlgdJBsb6Mq7yhoSHj+dxbguBxkPJnEngZVy3hqh8r+W4f9/GYC1W4rug7UqrM6X/x2gl9u7nTtFYaG1jIUXuVncrXcJ0fou0Of1bcpxVUWeBlXDWFq/UCWIIyTl4AdQtRuC7RyF59p9g7ov9rPbNHa+w0lS4klXbCymEmx2TtereuKYW9trbSoAw+ePl9ccCCugIp46oxXI2LweL9taPr6qnQhKtZT8r1es2l21CtbZOo5+NW9mISX8E3Hq8criuXe0Rplw87Xilct1OF62slsleUy+XEFlCZr2VcDYRr5+gTsRW8EJJwFeOqrWfpun6qxadbG9rfPqNOu8H6UpjZ9EpXJikjSrvK95Bd5HBYgC9e8fvh8Tzc9x4uvpRx1RiuskrFyRkTNCYc4WoEY4oytlX91lKTcs+doj4RvnZjTQvD6dKNCb1XHFZbL9+i0Yk58YVD8qDQ+vR3Vtk777xjPC+bzYotEDb8x9+zMq6awlXWV3PrJHRcvRWCcDUnaNE6R6v3JK2lJu25dYXSq1dK7U/5eXIVcZeWlqbs9FOb8i490p9+Q/0dfTRZ410vi3qIGz+j0g0NOj6N5OfwQYmJRMLPkzKuWsLVUrao9VyuuN+BOxQP1yI9vWLeWbL997O2IWd6Sp93mTsPn/akh9ZOulIaU+29Yv+9jOkBm0UPNklbDg7Ql3cW6UXpmxXoxeId+uJMB7XtPEPX6rid0KyptZ90Zt++fcb/y7Fjx8QWiAJXy7gch+syXemVF2xbKVtp1iJwjcLh+mc6mZJF/Wbji1m/ubgoHl9r8eJvqHnd842W3ESn5WSr8nZZR4X7erB//wWd6WqjlOwNl5pGqbYuOjN+v/KUhbbEDQ02t8j+8Y9/pB/96Efrfi5aXBoPJTjxZFQuY2MXrgWaHZLDXY3NyAbOKRyueu/QesFKtGcVbn0qvny24bmyrfY4xR1eNd7Tz0H78pn8fs+q3n1VlTHHgf0tiK+//nrpQEOLX9M0zbgYZl/GVaRbZ+UFqvLhWnh0nXLvi7Mwrdm1ydqhunBc0HKVOTNWqvdKQxNW169I106kbCfP4HpJPmD4tJGvLKPFp8lw5eVoKjPnc+3t2mJM5m6+JkmbWnbRgdJ8rgdolzGRu/6Yfva268iIq8sMQXUxDFfd8iT1NTdTptarUC4w6nWb9F6GzY+WhehYLjt+ZLhy+RafKZVnzudqzttq027M0WNMlB2YeIYrW75FA7/6FQ3N+neSVHyQpw87+m0vgF2/ft04uFDXGk8yXLlx+RaEV3zDlfFEwsNH6fSEp7cL6Ir0YPI09f7HN1VngpcLD2K57HiSwcp3daEEL9ziHa5Csej1iVNR74VW/xmyrpUvZqHXGk8yXPl2Wf7vyZMnxSMQNghXhRw8eBAHVMzJcJV/aDE8FF4IV0VwyQ1OBUGGK8MQUbghXBVx6NAh40CyL8GBqLOGqyzN4t4rzxsL4YJwVQCX3HDpjX35DcSBNVwZyvLCC+GqAO6t8gHEvVeIt/XhOj4+bnzNN5Sg9xouCNeA8fgqj7PyeKunM9ZDKKwPVyYnS8cSP+GCcA0YVwbwgbN//36xBeKsXLhyqPI2DlkID4RrgLjERk7Q4skSIBA65cLVukBlPp8XW0F1CNcAcYkNHzBccgPAyoUr4wtavJ0vcEE4IFwDwr0ROSM9zycAwCqFq3V/4RItUB/CNSDoiUA5lcKV4UwnXBCuAbCOofHcrQCSXbjyGL3svWKMXn0I1wBcunTJOEBw9RfWswtXJqtLeH01UBvCNQCoW4RKqoUr6qLDA+HqMy6l4YOHhwUA1qsWrown0ebn8CxqoC6Eq89wrzjYcRKumIsiHBCuPpKzHL3xxhu4TxzKchKu7PDhw8bzMIuauhCuPsL8nFCN03CV8/9y7/X58+diK6gE4eoTzCwPTjgNV4aVK9SGcPUJl87wgXDq1CmxBWCjWsJV/sHG6hVqQrj6AEu4gFO1hCvDUJO6EK4+kKdvx44dE1sAyqs1XKenp43nY7hJPQhXj6FsBmpRa7gyWd43ODgotoAKEK4ek0u4oGQGnKgnXGWJH5aCUQvC1UM8vso9Vh5vXVxcFFsBKqsnXJm8pRo3p6gD4eohOckGblMEp+oNVywFox6Eq0devXplVAfwDj83Nye2AtirN1zZm2++abwWEwKpAeHqEUxsDPVoJFzlBOzbtm0TWyBICFcPYFJjqFcj4WqdhB1LwQQP4eqBoaEhYwfHEi5Qq0bClckzJux7wUO4ugy9B2hEo+GKsyZ1IFxddv78eWPHxrgX1KPRcGVnz541vgfG+4OFcHUZlnCBRrgRrnIpGP4+d+/eFVvBbwhXF6HWEBrlRriyjz/+2Pg+qLEODsLVRW+99ZaxQ+MuGaiXW+Eq57TAQobBQbi6BPd3gxvcCleGeS2ChXB1yTvvvGPsyJiZCBrhZrjyfBZyKRjMyOY/hKsLsIQLuMXNcGVyLmFejhv8hXB1gZwNPpvNii0A9XE7XHm8lb8fVsHwH8K1Qdh5wU1uhyuTf/yxkKG/EK4Nwgqc4CYvwhXDVsFAuDbg4cOHWDseXOVFuDJ5wRULGfoH4doAlLqA27wKV1kqyL1XlAr6A+FaJ2uRNspcwC1ehSvbsWOH8b1xk4s/EK51wu2F4AUvw1Xeno0bXfyBcK2DnBgDtxaC27wMV4aJhfyDcK0DpnQDr3gdrnJKTEwu5D2Ea40wGTF4yetwtU7mns/nxVbwAsK1RnIZjT179ogtAO7xOlwZliHyB8K1BljCBbzmR7haz76wH3sH4VoDuXQx/uKDV/wIV4al372HcK3B1q1bjR0SV1rBK36Fq3UpGFw78AbC1SEs4QJ+8CtcGc+HwT9r3759Ygu4CeHqkKwPvHjxotgC4D4/w5V7r1gKxjsIVwewhAv4xc9wZXJ+DNxp6D6EqwN8AYt3wFwuJ7YAeMPvcMUcGd5BuFYxPT1t7OyYCxP84He4MjknMWZ3cxfCtQo5izvmwQQ/BBGuPN6KeYndh3C1cffuXWNH55IV9FrBD0GEK+OKAf65WFHDPQhXG1jCBfwWVLjKpWCwFpx7EK4VyFOl1157DTsb+CaocGUdHR3Gz8Yqxu5AuFZw+PBhY0fDID/4KchwtS4Fg2GwxiFcy5DlKdxQngJ+CjJcmSw7HBwcFFugXgjXMj766CNjB/vggw/EFgB/BB2uPMcr/3zcMNM4hOs6WMIFghR0uDJ5qzcWMmwMwnUdOZnF/v37xRYA/6gQrpcuXTLeA88CB/VDuFpgCRcImgrhap0UHtNr1g/haoEJhCFoKoQrkxPDb9u2TWyBWiFcBf5rvXnzZmOH+vbbb8VWAH+pEq5YCqZxCFcBS7iAClQJVybP5HBM1AfhqrOOMY2Pj4utAP5TKVy59/r6668b74dnh4PaIFx1WMIFVKFSuDJZPYPrELVDuOpkXR+ujELQVAtX60KGPEscOBf7cOVhAN5xcEcKqEC1cGVYCqY+sQ9XeS817kYBFagYrtalYHDXonOxDlcuueIdmUuw0GsFFagYruzQoUPG++LZ4sCZWIcrlnAB1agartalYDBTnDOxDVc58zrmrgSVqBqujOfb4PfGs8ZBdbEN1/fee8/YUbCEC6hE5XDFUjC1iWW4ylMc7CSgGpXDlcmhNHRKqotluPIk2LyD4PQGVKN6uF6/ft14f3znFobT7MUuXLGEC6hM9XBlsnwRF4LtxS5cZUE0Fh4EFYUhXL/66ivjPfLFYJQwVharcOXxVV4qG8XQoKowhCvDUjDVxSpc5SQUuI0PVBWWcJWTHeG28cpiE66vXr3CBBSgvLCEK5PTdPKaW7BRbMIVS7hAGIQpXOUE85iqs7xYhKt1yQpM+gsqC1O48nDAG2+8YbzffD4vtoIUi3DN5XLGDoDlKkB1YQpXhqVgKot8uPJfVzk2hIXWQHVhC1csZFhZ5MP14sWLxgePcSEIg7CFKzt16pTxnjs6OsQWYJEPVyzhAmESxnC1LgXDk7uAKdLhKmvxtm7dKrYAeE8GZCMtbI4dO2a873379oktEOlwxRIuEARrSNbbwgZLwWwU2XDlwXXeSXEHCfitkYAMa7gyLGS4VmTDdc+ePcYHjZl7wG+NBGQjrw3a4uKi0XPlhhnnIhquWMIFghTXcGXca+X3j1nnIhqucrb0s2fPii0A/mkkIBt5rQrm5uaM98/jr8+fPxdb4yly4YolXCBocQ5XhqVgTJELV3lagjV+ICiNBGQjr1UFFjI0RSpceRCde61YwgWCFPdwZbIMMpvNii3xE6lwxRIuoIJGArKR16pElkLG+aJyZMLVWsT88OFDsRXAfwhX07Zt24z/l8HBQbElXjz/FBcv/oZaWlqqtF104Ohpyn15hx7V+UcOS7iAKhoJyEZeq5q6loIpPKI7X+bodG8XbRf5sL2rl07nvqQ7IhyWL39KFxeNfyrN80+x+PIZPV68Qxd6mko7zi9/d4Pm9J4m9zYfP56jG2M5OrIjaT6uNdOH+QdUFK93wjpxBG69g6DJ/bwejbxWRY4XMiw+penc+9SsJUhr7qDjHKaLZkYs3pmiC2c69Mc0SjVvomSihbIz4nUK8+9TXMhRu9hxMpNi2xoFmh1Kk2Y8p0l/zrLYXh0PmvP35UF0vksEDS3IJgOy3GPVWiOvVbHJ6QhtJ08qzFJuN3euNGrr/4aeVuhZFZ9+Q/1tmvH9ymeIWvwL1+IV6hU7TuVfzBKN7DWfk2gdoFmx1Y51sl40NDR1W/lpP5dotNMMTK07T1W7VMt56tZ7twjXNSYpI37Jdr+Y+aHt4sNI07CDcZXz588b6/igoaGp3fbv3y+O2lVLo53ibLWdcgtiYxULuXZKOwmHgCkXrjf7UyJcuym/IjYCQATN0kCrmQmJzlF6IrZWtZKnrNMkDpBa4bqiPydlPkfTf9lLYjMARNBMllpEJmwfmhcbnShSoVDLJe9gKBOuhUfXacAY1Nafk9xNw/Pq//IAnFmhe99N0MREbe27e9E+dVscTpvHu966I3iaGki4JrQUNVvqXDclxfbEP9G2f/+cvq90ubAC+QEBqOkJTQ0epaMHdlJKk/t6itL/qm87ur71UldbyhiHbA/Bqa8TlY5PHjuVj4XhAlWtAgnX347JGldui3Rn6gJ9UtrxNErtPE7j953fTVDpwwNQzdLIXrG/2l3AKdL8UDvCNeQCCddKv8jigzz1NJnPSWhpyjkcGpAfEIDyJs35L6peHV/Rj4W+KfFFuFU6Pp+MmlMTcuscdXw5KzSUCle2ou98KfE8recyORmJkR8QgPKchist0ddffy/+HW4Vj8/ZAWoVj2l6KETtKoty4Wq92SDRdIb+T2y2U/HDA1CNg3AtPngQqUqZysfnAuXaxbGeOkHXIpau6oXrk1HqFM9LpIfJSalw5Q8PQDEOwnUhl9OPluiwOz5XpvqoSTzePjTvrPdafED5//mOXokvVeVfIi0OU1r8EiuHqzmQb34YGnWOOvv7bffhASilarjyLeCZ2ISrccznVucU6fniPtleyi7M0sj77zu+HhMk3xJp+UpvaSy1XLgWX96j8eM7KCme06Q/yenULfYfHoBCSuHaQr3/vb629QKd6WjWgyZO4cqW6dbAbnHsm9VCF27M0bOXMkCL9PLZHF3NHaGdbe/TaEhq4D1PJGM+12azbk/+ko1fYPNqnWvLJnHzAG9v66Iz41X+eq1T/cMDUEQpXMvVufZS1xY+FuIWrqbC/auUO7LLUve+2pKbdtGRkemKM2apyPNEMuZzLdW02rRnL+u+Wig/AADlVR0WWKZ8d18sw9Wq8GI1G17UOYF+0CKRSAhXCA0HF7SeTE1RNIqwTHE9PhGuAH5yEK5Rg3ANMYQrhEaN4bp0756jG2lUhnANMYQrhEYN4Vqcz9G7/dfqvhahCoRriCFcISxW8t1if60SrsuT1NfcGoqF+KpBuIZYrR8er7t17tw58RWA18z5XMdyR2hHqcxIo7a+C+vqXLmNUe54F23h5zlcR84vQ0NDxkrLtUK4hpjTD0+GqlzQEMAfYj7XNTWt1du5r9WaYYDXweIl7E+ePFlTyCJcQ6zah7c+VOP6YQM0gsNVHju1hGxcj7dIh2ulUK30fACozBqusjkJWfncuIlkuFYLVdkAwLly4SqbXcjK58RNpMLVaajKxjsDGhqas8YBWu44srZyISsfi5tIhavTUEVDQ/O2yZDlDo/cFjeRCtfOztU1edDQ0IJrb7/9Nl29enXN8Rk3kQpXdvv2bcchu7i4iIaG5rBt3ry57HFkbdZQleRjcRO5cJWchCwAOGd3QatcqEryOXET2XCV7EIWAJwrF652oSrJ58ZN5MNVKheyAOCcNVydhKoU1+MtNuEqWUMWAJzjcK0lVCWEa4jV8+FxyAKAc/UeMwjXEIvrhwcQBgjXEEO4AqgL4RpiCNcwKNJ8Lm0ssd4el8WjwIBwDTGEq/qKM1lqFZ8TwjVeEK4hhnBV3PIkZZrMz4gbwjVe4np8IlzBY8s0mWkiLZ2mdvE5IVzjBeEaYghXdS3nu0lL9dIV7r2KzwnhGi8I1xBDuKqJl4ZOa02UmVzWv0K4xhXCNcQQrgoqzlMurVFrdkasu49wjSuEa4ghXFVTpJlsK2npHM2byaqrJVwLdP9qjo7saqaUZr4mkdxE27vO0Pj9gniOReER3fniDHVtSVIiM2luKz6l6dxBaktpxuuTW7rok2+eiqBn+s8Y11/TljLKw/j77zp+hR6sPgFcEtfjE+EKrluZ6qMmLU3DazLUYbgWZim3O0la84f0xdwLPQJ52yO6njVrZBMJOcygW7lJ/9W1hZLi+xqNw3X5GvW3aZTc1EItzSI8xWv7plb04H1A+Z4m/eskbWqxBLjemvqmSH8GuEj+buMG4QruMsquLAFY4iBcxVBCQuum/PqXr+SpW7w+keqnm2KzYWmE9srHfp2hk78+uaaHW5gdorQM0M4hGu3bSe/npump7KXqYftFd8p8PNFJo0/EdnCF+XtFuIZSXD889SxTvlujJr33uD4bnYTr0min0ctsHZgVW6yW6E+Hmo3Hk7vP09rvsPq9E7/+fDU0S4o0mTGHBxKJdvr9bJmhhZv9lBLfQ44sgDvM3zvCNZTi+uGpZmFYP3VvzdJM2XHLauE6Q9kWfjxF/Wu6pU7I1+qtQjIu5NrFfpLR30kZC7lSHS7C1V3m7x3hGkpx/fBUYpRdJdOUW72CtU6VcF0cprTxeDvZDcmWt0C5dvN7I1zVY/7eEa4AdZnMiHCrsZWCrHRavp2G5sU2xxCuoB6EK7jCvXBNUHe+1uv1CFdQD8IVXFF48ZgeP7ZrY/RbEV7b//Mvpe0v5LUlS7hpPZdty6GKMwP06ZT4woBwBfUgXMEn1S5o3aT+lAjIRDsNVRy7XaLRzh5a27lFuIJ6EK7gk2rhWqSb/VzYL0KyKUNXNtRULdOtbNoo9Vrbs0W4gnoQruCTauGqWzfvayK5hbqO52hsYoLGcsfN21u1ThpdEs8vWf3eboRrJ+4iABcgXMEnDsJVV5wfpXetAWttyd00cGv97QkFejSeoSb5HL3HO/5o7U0ChUfX6azs2SZS1P35PXpp7RQXX9Jfh+TttQnS0kP01zVPAKgdwhV84ixcDYX7NH6mqzTpijGpypERmt4wTGDpsa5v7TlasA4XlGlGJ3cyU/YxblXfJ4ANhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOA6ov8HLExIMPBwcegAAAAASUVORK5CYII=
|
As shown in the figure, quadrilateral ABCD is an isosceles trapezoid, with the length of the lower base being twice the length of the upper base. DE is the height of the isosceles trapezoid. After rotating triangle DEC counterclockwise by a certain angle around point D, point C' coincides with point A. What is the perimeter of the isosceles trapezoid ABCD? ( ) cm
|
A. 4; B. 6; C. 8; D. 10; E. No correct answer
|
D
|
12
|
iVBORw0KGgoAAAANSUhEUgAAARIAAADNCAYAAAB0KP9tAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABZOSURBVHhe7Z1faBvXnsf1UFAfKrYPFRQcswUFXLg1NBCCwb00fkkaahaHW0q3xCRsciHXNIseapKSsjHbmHDxQ+P1gx8G7JcYmwaSBUMSu6yMt72u00AcNzapHRMviUviBqfYeRAoD7/Vb3SOPJb1Z0ZnzmiO/f3AIfHRkTSao99HZ86/iRAAACgCkQAAlIFIAADKQCQAAGUgEgCAMhAJAEAZiAQAoAxEAgBQBiIBACgDkQAAlIFIAADKQCQAAGUgEgCAMhAJAEAZiAQAoAxEAgwjQxu/P6WnTyukF2lRHgQBRAIMY5mG/7WBEvEoRSKRzRSro4aGhlyqi+XyonHad7Sbrs2tZvUDdAKRAENZo/GOuBBJklIiV5LZWKSbXzVRzH48RocHFiATjUAkwFiWB1pKiiRHhhasForaZeqp6zZUoguIBJhLKllBJFkyKUpGuUyEoskUWiWagEiAubgRCS2R1ZwTSaTZyv4FdACRAHNxI5L1UWq3y2RbJJ2TIhP4DUQCzKWiSNJ091KjKNNIPbO4sNEFRALMJS+Sj6nv3rJjHskDmh4bou7WRK6jNZqgv40+Rv+IRiASYC55kcSoTs4h4ZSIi5GabPqnP9N//Pc9+g3z07QCkQBzKXdpk35BDyZ66dN6IZRYE3VPrYkHgd9AJMBc3HS2ro1TR1zIJNpGIysiH/gKRALMxY1IsixZzaJchFoGlkUu8BOIBJiLS5FslotQQ8+syAR+ApEAY8mMd7gSyWxPgygXpZM31kUu8BOIBNQUHq59+PAhTUxM2Gl4eJgGBwepr6+PLly4YKcTJ07Q8+fPxTM22bxkKS2S9Hw/tcgp8i0WLWAMWAsQCdDOy5cvaWZmxpbEN998Q5999hnt37+f3njjDSGCyml5WfZt5PYjWb43RCfliEzkY/r75D1azs8jeUoPpq+TdUau/o1QrKmbMGijD4gE+A4HPbcquCWxd+/evAzKpXfeecdOLJiDBw9Sa2srffLJJ/nHN0WS248kP2ekTDpwtIPOXrTo1r3fCNNI9AKRAGWc4mAZOAUh05tvvmlLglsj3Crh1gm3Uri1Ugp+Xfn8TZGAMAKRgKrgwGYhlGpxvP/++3Tu3Dm6efOmfalRDRCJOUAkwDV//PEHWZZFH3zwwRZpcHr33Xfp9OnTdPXqVbucH0Ak5gCRgLK8evWKrl+/bvdXvP7661vkwa2Ob7/9tuoWRyUgEnOASEBRWCDc71F46bJnzx768ssv6f79+6KkPiASc4BIwBbS6bTdynj77bfzQcwtkWPHjtn9HSyYoIBIzAEi8Rnnuo6SKRqnREMDHTp+kaxb4VjiXkwgPNKSTCa1XbpUAiIxB4hEB5kN+qVf7l4eoY/77tGy44ZN6RfLdO9aN7UmxL1Zogn63LpLtZgvxS0MnkVaKBCeUepXp2m1QCTmAJHoYsmiZhEEyVLztzOr9L9d+4RwopToTAUqk59++snuMJXByjLp6empuUAkEIk5QCTaSFFSBEFJkdisUSpZLwImSu2j+lXCojh16lQ+SLkPhOeE8OVNmIBIzAEi0YZbkWRZz5aVm+/Ez9OUxoVlPA/krbfeygdoW1tbaIMUIjEHiEQbHkSSxbnUPZny3yS8wtY5kYyHdXkUJsxAJOYAkWjDm0hosjPfORvvui0y/YHXtciVtmG9jCkGRGIOEIk2PIrE0TkbaR8lP7bfYVnwtHUZjLxozqSAhEjMASLRhoJIfLi15IMHD7aMyPB8kCAnk/lBcZE4bsHpNsW7yN82HigEItGGgkg6xpVu5sRT2+WlDM8J4bUyJlKuRZL+7SfqaRHzcIrukJahjcc/kfUpj4hV2NMVKAORaKP6PpJqNyjmFscXX3whgsu8S5lCyomEcbPVImVuU1c9RKIbiEQb3kSyOWoTp/NVjP+yRJw7ipl4KVOILyLJMt/bC5FoBiLRhgeROOeRNPbSvMh2C+8yJod2X3vtNXuuyE7AL5EA/UAk2nArEufM1nrqnPQ2XsML6t577z37+Ty0yxsL7RRURZLKClW10xq4AyLRhee1NjE6PLDgqZOVR2bkfiHcufrDDz+IR3YGaiKZpZ52iCQoIBIdFKz+/ev1p+RY/Ltt9W808TlZd1Y9S0Su2OV/g9hoKGiqFkn2/C9+105xH4bRgTsgEp/Z/HKXSzGqazhARzsu09D0Im147FvloHIu+98NqbxISiSIJDAgEsPgPhHeaJkDpdStH3Zi8nZpk6GNX/qppQUiCQqIxCB4dKapqckOHm6RzM3N5QONR2t2UkcrU/WljU2GxvshkqCASAyB54R89NFHduA4O1ZloHHaaTJREwkIEojEEPgOdVIWo6OjIndTJHIyGuaRgFoAkRjA119/nQ8oXkfjROYXzmzljZxNByIxB4gk5PDmQzKYLl26JHI3kY8xhWttTJcJRGIOEEmIefLkSX5bRN4SsRgy0JzwOhuZb7JMyokks/EL/Vd+O4E4tX/nfRgd+AdEElK4dSHXz/Awb6md3WWgFeKUCd9awkSKi6T8fiTNFsZpagFEElL4Tv4cGLx+5s6dOyJ3OzKAiuGUCf/fNMq1SEC4gEhCiLNfpL+/X+QWR5YrBe/PKsuYJhOIxBwgkpDBASP7RXjItxIy0MrB/SSynEkygUjMASIJGdypyoHDq3p5JmslZKBVwimTEydOGLHpEURiDhBJiHBe0rjdEkCWd4NTJjznJOwygUjMASIJCXzrCLm3yLFjx0RuZWSguYUntPHsV35O2GUCkZgDRBISZKco7/rOK3zdIgPNC7wexwSZQCTmAJGEAA4SHublgPE6gUwGmlecMuHFgG76Y4IGIjEHiCQEyA5W3nvVa+tABlo1OGXCk9/CJhOIxBwgkhozMTGRD5Zq9lyVz60WXkksb6YVNplAJOYAkdSYgwcP2oHipYPViQw0FVhgYZQJRGIOEEkNka0Rvrx4+PChyPWGDDRVnDLhewZ76fDVBURiDhBJDZGtER45qRYZaH7glAnvC1trmUAk5gCR1Ahn38jMzIzI9Y58Db9gmcgd6mstE4jEHCCSGtHa2moHSKl9RtwiA81PnPfMqaVMIBJzgEhqALdAZICU2yLADfJ1/MYpE94Phf8OGojEHCCSGiDnjXAfiSoy0HRQeDe/oGUCkZgDRBIwz58/z08C+/7770Vu9chA0wXLQ64BClomEIk5QCQBI1fg7tmzR+SoIQNNJ9xHIu/uF6RMIBJzgEgCZv/+/XZg8C0m/EAGmm6cMuGFhdXMwvUKRGIOEEmA8C+5DAy/ftXl6wWBUybOu/3pAiIxB4gkQOSNrrhV4hcy0IKCZcIzX/k9dcsEIjEHiCRAuF+Eg8LrVgHlkIEWJLwWR94qQ6dMIBJzgEgCwrmuhkdu/EIGWtA4ZcJ7qei4eTlEYg4QSUCcPn3aDgie0eonMtBqgVMmLEi/ZQKRmANEEhCyk7LSfWq8IgOtVrBM5OJDv2UCkZgDRBIA3EGpKyDk69YS3tWNVzDzcfgpE4jEHCCSABgeHraDgdes+I0MtFrjlAknPzqUIRJzgEgCQPaPnDp1SuT4hwy0MOC3TCASc4BIAkD2j3DLxG9koIUFlgnfalQel4pMIBJzgEg04+wf4f/7jXztsMH3GJbHVq1MIBJzgEg0I/tH+FYTOpCBFkacMqnm5uUQiTlAJJqRwVRNILlBBlpYUZEJRGIOEIlm+C52HAh9fX0ix19koIWZamUCkZgDRKIZHvLlQPBjE6NiyEALO9xPIo+VZeLmjoIQiTlAJBpJp9P5QHjy5InI9Rf5+ibglImbm5dDJOYAkWjk/v37dhDwojZdyEAzBXm8XhNEEm4gEo3wVHEOAt6/Qxcy0ExBHq/XBJGEG4ikBOtjF+jC5Lr4qzouXbpkB4HKnfQqIQPNFOTxek0QSbiBSIqyRFZz9gt85AqtiJxq4BuDcxCcO3dO5PiPDDRTkMfLiVtsckf9YjcvRx+JOUAkRchMnae4/QVupN55kVkFcnm9ZVkix39koJmCPF55zOVkApGYA0SyjRUaaYvmv8DRkzeo2gscubepn3t0FCKP0xTk8TqPuZRMIBJzgEgKme+lxsgRSiYbxZf4CF2p8vpGziHhbRZ1IQPNFOTxFh4znyPe/5XzWSa8HSVEYg4QyRbWKZWM51ohK1foiPgSN/bMUkaU8ILc7Bki2UQeb7Fj5k2kpUx4xfTPP/+cLwuRhBuIxIktjzidn2JtrNONk+ISJ3qSblRxfRNEEMj3MAV5vKWO2SmTRCKRL+v6HGY26PenT+2V1r9vVKN/UA0QSZ4M3e6qp0hjL8n+1c1O1wgdqeL6xnMQVIF8D1OQx1vumJ0ykansOcys0ty1bjq6L9uajMYp0dBADQ0JikcjFI1/SGesCXqUFmWBFiASyfoNOpn94m0Vxjz1Noovc30X3fbwA+fch6RwWNNP5HuYgjzeSsc8MzND8Xg8X/bXX38Vj2wlPX+FPk9kW46xJvrq5iJtaYRkWyeLN7+iplj2Neo/pSvzsIkuIBLBktVc9BJm5coR8WWO0kkP1zf8CyqDYHBwUFsK4j38TPJ43RxzZ2dnvmyxFsna3R5qyco/Em0ha6G05TMLliiXoM7UmsgFfgKRMJkpOh+PUPz81PZOVdFSsb/QHiaoyXU2SP6kbSJZG6eObJ3xY24uO/M/CNF2GoVLfAciybI22k7R7JcsVsfX1oUpd62d+0LLjtjKcNOcJ6TpTjLQdnrauk2l6M/ix9x2hDt+EIr+YAAlIBLRDxJt/46WRW//tjRxnurFF1plghrwiUyKklLubSP0TGSX5xmNtInnVDkKB0qz60WynkpSPNJM1pLIKMoajbbL2a6VygLt3O7Kj6bFu26LzMrc7pKdt1HqnBSZwBd2uUhyi/Pqs1/Gik1de8ar+PImU2iV1JKs/HNCiFCzB6vbHerieW0j7toxwB27WCRpmu9vsftG/nrTxbBg5g795z/nvoSRSD0lx1dxnV0rfBCJl+eByuxOkSwP07/w3ALxpeLEHa0X/yEeL+AfFxuorqA8p2j8LzSsb67ZFlZmxmhszGOa8T6JzggcIjnQvyAyK+MUSbZRCXxkd4rEMY3amV6UaJikX2wvm0u/b50ApZG5q2fpbMdR+pNDaI1/yead3Z6OH6qjGJfZqdGyZFGzOAeRjnHXLcPNPhL0c/nNru9sNQ3ntP1ynlgb77D7cnYmjhnHDT00K3LL4xi1cSyDAP4AkZiG49e4vCdmqefkAAV05RU4KyNtdv+W67k9+dXcUWrHjDTfgUhMw7VIMjT7P5Mu51iYyBINtOSG5KNtIxVmHK9RKpmbwFafPWnQiP9AJKbhRiRrj+nxbhifXrtLPbZMotTSc7eEINbobk9udC52eIDKLMkBCkAkpuFGJClr93QmZh7T+FdNdudyrOkMWbfuiRnKD2j6ukVnmmL2Yr3PrTu0ColoAyIxjYoiydDU+bZdNyqR2Vik6aHL1HH0QH6d1KHjZ+ny0DQtYoMj7UAkpuEQycd/L5w7cp2sM/zrjOFNECwQiWk4RFJsHsnxD+MUhUhAwEAkpuHi0ma25yREAgIFIjENN52tc5M0iTVpIEAgEtNwIxIAAgYi0QQHuky+4lEk64uLSvcvriXaziHwHdSQJrQFgReRrKUo+W9qN0KvJdrOIfAd1JAmtAXBbA81iNctK5LMAg0cjlH7qLlTXLWdQ+A7qCFN+B0E9n4kQ93UyvdwEa9b/2kvXd8yjySXhi4fpw/j2XKG703q9zkE+kANacLvILD3IymYM1IxDVd3z+Kw4Pc5BPpADWkCQaAOzqE5oIY0gSBQB+fQHFBDmkAQqINzaA6oIU0gCNTBOTQH1JAmEATq4ByaA2pIEwgCdXAOzQE1pAkEgTo4h+aAGtIEgkAdnENzQA1pAkGgDs6hOaCGNIEgUAfn0BxQQ5pAEKiDc2gOqCFNqATBq1ev6OXLl+KvnQF/Hv5cXlA5hyBYUEOaqCYIONAGBwdp7969NDExIXJ3Bvx5+HPx53MrlGrOIagNqCFNeAkCp0Dkc3aiSORncysUWZ4TCDeoIU24CYJiApFpJ4tEpkpCcZYF4QY1pIlyQVBOIDLtBpHIVEoozjIg3KCGNFEsCNwIRKbdJBKZCoXifAyEG9SQJpxB4EUgMp04cYIuXLiwYxJ/nmKfs1iSQnHmgXCDGtKEMwi8CASpeALhBjWkCWcQHDx4cMvfSN4TCDeoIU0UBgH3EXgRyrlz5+zm/U5J/HmKfc5iic9TYZ8KCDeoIU2UCgK3QtmNna1SIBLnYyDcoIY0USkIKgllN4mkUCASZxkQblBDmnAbBKWEUkkkmdU5unb5Ks2Jv8NOMZGUEojEWRaEG9SQJrwGQaFQSgVY+tEE9Z74E8XscklycR/xUOAUSSWBSGR5TiDcoIY0UW0QSKEUDbTMY1pc3KD0/w3SEfu1zRKJW4FIqj2HIHhQQ5pQDYLC6eJbSVHSfm1zRFL+8xRH9RyC4EANaUJvECyR1exGJBnaWJymocu5ewFftG7R3GrB3YAzG7Q4YdHFq7neFu57uWVdzJa/TNfmVjfvHZx+RBN2/kWyJh5RWmTrRO85BH6CGtKE3iBwI5I1muraR7FEK3UPjdHYUDcdqs8+J5qgztRa9vFnNNl3kv4cF8eZTNHaVBfti9dRQyJOUfvY66lzcp3S8xYdjsWorqFO9M1EqWVgKfc2GtF7DoGfoIY0oTcIKokkQ7M9jRSpzz7OzhA8G2nLHVPLAC2LvMx4Ry4vcYguji7Sht0EydDqtfacTBqb6Oi/X6NHogmSWeinZs6Pd9HtXJY29J5D4CeoIU3oDYIKIlm5YnfGNlsFrYbMKs1NjtG0tAKTSuaOM9si2UJmnDo4/0A/LYisHG4vq9TRew6Bn6CGNKE3CMoHs2x5FLqhKEtWroWxrbDo0G22su/mBCIB20ENaUJvEJQP5iWr2X5fiAQEBWpIE3qDwJ1I2kaeiZwyQCTAB1BDmtAbBOWDeX20PffeR67Qishzkpmd3ZxaD5EAH0ANaUJvECxQ/4EywfxshNrs945Tx7hj2IZZu0uXkg45LPTTAS4LkQAFUEOa0BsEIsgjHTReML8shxj+tcvEqOmMRdfHxui6dYaaYrm5IZL88G/H+ObkM2Z9lNo5v6GHZkVWDimxA9S/dTjHd/SeQ+AnqCFN6AkCnkR2lo43xfKvHWs6Tmf7JrOPFLJGU91NYgKZSNEE/W30sRAGv9bxrFjk41nhHD9LPMF17qrzPaIU//A49U0+o2eTfdTRmhCT1SIUTbRSh5gRq4P8cWcTCDeoIU3oCYJ1WvxxjMayrYst6cfF7CPFSb94QNNcZvoBvdgyr734a82sEK3MbM//cXGd1hd/3JY/xk/QhJ5zCHSAGtIEgkAdnENzQA1pAkGgDs6hOaCGNIEgUAfn0BxQQ5pAEKiDc2gOqCEAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAEaL/By2dyrlbIdvmAAAAAElFTkSuQmCC
|
As shown in the figure, the square DEOF is within a sector with a central angle of 90°. What is the length of OD in cm?
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
D
|
13
|
iVBORw0KGgoAAAANSUhEUgAAARIAAADMCAYAAAC/dCzIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABesSURBVHhe7Z1xaFTXnscHWhgpndI/HBA0rBBhChpQKCKkYAJiK/tYIpXWSoN2w0JfamEeNKtiS/O2StnNQs1j2cAOa/6oolsf5o+AwZRNmic1TX1U82w2JAYD1hK1JCXpH4Hxj9/O7879TW4md+7cO+eemXvi9wOHOGfu3Ln3nvl9POfcc8+JEQAAKAKRAACUgUgAAMpAJAAAZSASAIAyEAkAQBmIBACgDEQCAFAGIgEAKAORAACUgUgAAMpAJAAAZSASAIAyEAkAQBmIBACgDEQCzOPbM5RKpcqk3XSw/QSdu/gdTS9l7Q8CXUAkwDyWF2hubpKG/9hM8ViMYrmUar9Cd2bncvmcZunOyEU6+7t6+/0Evd79A83bHwfhA5EAgxmitC2SxsyMneckS48H01RnbROn5sxULgfoACIBBjNFPbu9RMJk6ebppLVNLN5G1xbtbBAqEAkwmBnKNJYTSU4lg+15keRqJR0jdiYIFYgEGIw/kTy63GKLJEVd43YmCBWIBBiMH5GsbBOr66QxdJJoASIBBuMtkuzSNF39vX3nJl5PHUO4b6MLiAQYjKO2EUvQZsc4kvpk3M6PUd3bf6Lh+8v2Z4AOIBJgMCsi2f3vf7XHkOTT5Hd9lDl1kLYn8u8nth+jzK3HuP2rCYgEGIyPPpL5H6irWWondZRG80YLEAkwGB8iYWYy1GiJJJcaumnCzgbhAZEAg/EpEsfAtVjsLfrzL3Y2CA2IBBiMX5GMUWfSFkm8gzAmLXwgEhBZfvrpJ5qdnaXbt29bf9cyQh3x8iKZH2ynpFUbiVFd5xg6XDUAkYCq8ssvv9Do6Cj19vbSyZMn6dChQ9TU1ESvvPIKbd26lTZu3JivORSlTz/91N7DCtmpnkLfh6tIln+m0cwRqrdlE2/O0BQsogWIBGiDaxJdXV10+PBhevXVV+nll19eJYcgaZVIrPlINlOiaJvEZsd8JPXJwhQDic376cMLt+gxJKINiASExuTkJPX09Fji8JIGv8di4e0+++wzq3bS19dHw8PDdOPGDasZw+np06d07Ngx6zOrRGLNR7IyZqR0WiAMQ6sOEAmomOXlZUsAHOxbtmxZI4znn3+e9uzZYzVhMpmMJQlu2gTBVSQgckAkIDDcx3H8+HHX/owdO3ZQOp2m/v5++u233+xPVA5EYgYQCfAF30HhZsi2bdtWiePFF1+0gv3SpUtWcyJsIBIzgEiAJ9xvsW/fvlXy4CYL53355Zeh1Dq8gEjMACIBrnDfx2uvvbZKIDt37rTuwnDtpFpAJGYAkYTOj3TlxAk6USadu3idro/codmFaN1XYIGwMEQeXPvgYOZbubUAIjEDiCR0HtLt69fp4tn99uzluRRP0t6jZyjTl5NH7r3rfRk6c3QvJe2BUontB+nswP2a3qosFsiGDRusIL537569RW2ASMwAItFGlgbbbZE0Zsh1APfyfRro2FUYOFXX1k8Pqjxo6u7du6uaMCwQvuuio+O0EiASM4BINDLelfIWiUWWpjIrCz3VdYxQNVZM+PXXXy1hcNMligIRIBIzgEg0MpNp9CESZp76W1cm3+nUPEMxDw5zjgF54403at6EKQVEYgYQiUb8iyTHRDc12IEdb7umpVbCHaY80lQEwqNRuW8kykAkZgCRaCSQSGiculL5AI/F0zQUcqXkiy++KDRj+C8PW9c9BiQMIBIzgEg0Ekwkjs7ZWCN5ztMTAO4LaWmRBaJiVscqP1xnChCJGUAkGgkmEqKhtIgkRukhO1OBW7duWXN8yD65FsJP1JoERGIGEIlGKhdJkjrH7MwKcTZluGN1YGDAfscsIBIzgEg0Ekwki9TfKiJppvNuMwv6gPs9ipsy1RzSHjYQiRlAJBoJJhLHBMXJztyr4PBcH87BZSY2ZYqBSMwAItFIEJFkb54uTFDc0B185RWudfC8p/x5Hlx25coV+x2z8RbJyizyvlOFkgbeQCQa8S2S7BT1SEDEW6k/4GJwfBdm06ZN1ud5fhCeiWy94KdGsvzzqGM1vTSt7afO0tKDUcq8VVfifaAKRKKRsc5k/sftJZLsYxpM8w+cgyD4kpIsDZkflWVi0q1dP/ht2hSk7SWKbK75WAeR6AAi0cY8XX2bf9ilRJL7X3J6gE7tSeS3Seyhs38Jtsg1N1+4BsKf52aNyZ2qpQhVJDkmurshEg1AJKGTn4/k6N6V5RB4GoH63QepXeYjaT9IuzfnBRJP7qKDZwfofsA5BPh2rtze5Q7WoJMqm0LYIgF6gEhCJz8fiTXviEcauTNLcxVOasTNGamJPCtJVSRDGT93zkClQCSG4exY5bVhnMG2ntMnn3xiXwF3vEUyTl2tEIlOIBKD4LlCRCLcJ8KvncHGiUe0mg6fl9zKllRxjSS7RNNftVLS11geUCkQiSE4g4tlIotqS6DxpETyb56g2VSc5+lsvvkXSYkEkWgFIjEAXtFORqxycDlv8UqgME6Z8L9No1gi3Bck51N5H0mWlv7WQ83NEIlOIBIDeP/991cFlxMJNIEXsZI8k2TiJhFGzkWtszVLgz0QiU4gkojDK9hJMPGCVMXIe064n0TyTZBJKYkwch6qd22AXiCSCMP9IDJqlcdTuCGBVkyxTKL68J6XRBg5B4gk2kAkEYUDX27v8sLcpaZFlEBzwymTQ4cORU4m5STCyPFDJNEGIokoPAWABBivPVMKCbRS9Pb2FkbARkkmfiTCyPlBJNEGIokgPPxdAohF4IVs5wU/kxMlmfiVCCPn5yWS7NLf6E+F6QSS1PrVNC1VeaGxZx2IJGLwZM0y6KxUv4gTCbRyFMukVjPIB5EII+fnLhLv+Ugaw5pBG5QFIokYMhaEJ232E+wSNH5wyoTHpVRbJkElwsj5lWvagNoCkUQInvVdAt3vwlUSaH75+uuvrSDmz1RTJpVIhJHzg0iiDUQSIWQVPF5C0y8SaEHgIK6mTCqVCCPnB5FEG4gkIvT09FgBw/OtynM0fpBAC0qxTHTNZ6IiEUbODyKJNhBJBOAgloFnPMQ9CBJoleCUCQc7B32YqEqEkfODSKINRBIBZBawbdu2WQ/oBUECrVJ4YfHiqQnCIAyJMHJ+EEm0gUhqzL179wodrJWshieBpoJzsqQwZMK3sMOQCCPnB5FEG4ikxkhtpKmpyc4JhgSaKsUyYcFVAnfcOqc8UJEII+cHkUQbiKSGqNZGGAm0MHDKhP865z3xQ9gSYeT8IJJoA5HUEKmN7Ny5084JjgRaWDhX7AsiEx0SYeT8IJJoA5HUCA7YoIPP3JBACxNnR6kfmeiSCCPnB5FEG4ikRshQeJXaCCOBFjbFMuFRt27olAgj5weRRBuIpAZwkPLAMw4Qt1nPgiCBpoNyt3B1S4SR84NIog1EUgM4KDg4eNyI6iP9Emi64Fu5brKohkQYOT+IJNpAJDWABcLBEcayERJoOimWxuDgYFUkwsj5QSTRBiKpMhx0HBjc0RrGot8SaLpxyuS5556z/uqWCCPnB5FEG4ikysjSEkGe8PVCAq0aPHr0iF566aXCdwZ9LqgS5LsgkmgDkVQRfo5m48aNVmCodrIKEmi6cdZI5LY1/+XJknQi5weRRBuIpIrweBEOCm4SBH04rxQSaDop7iP55ptvrOka+bVumcj5QSTRBiKpIi0tLVZQ+JmL1S8SaLoodXeG7zY5ZZLJZKz8sJHzg0iiDURSJfg2qowdGR4etnPVkUDTQSmJCE6ZcOJ1dMJG9g2RRBuIpEpIs4ZHiYaJBFrYlJOIExmlyylsmch+IZJoA5FUCQm2w4cP2znhIIEWJkEkIuiSiewTIok2EEmV4GdqOCB4btYwkUALi0okIjhl8vHHH9u5asj+IJJoA5FUAe4fkYAIMrGzH2S/YaAiEeGjjz4qHBOLRRXZF0QSbSCSKiD9I7zoVdhIoKkShkQE5+LlqjKR/UAk0QYiqQJS5Q/ztq8ggaZCmBIRwpKJ7AMiiTYQSRWQ/pGwRrM6kUCrFB0SEZwyYYlW8qSzfB4iiTYQiWZ4zRoJBtXZ2d2QfVeCTokILBMZUs9jToLKRM4PIok2EIlmRkdHrUAIe/yIIIEWlGpIRHAuXh5UJnJ+EEm0gUg009vbawUCB60OJNCCUE2JCJXKRM4PIok2EIlmTp48aQUCTx+gAwk0v9RCIoJTJvv27bOOpRxyfhBJtIFINCMP6oUxG5obEmh+qKVEBJaJHHOQBJFEG4hEMzt27LACQWXJCS8k0MoRBYkIcsxBEkQSbSASzUhVPuiqdX6RQPMiShJh5JiDJIgk2kAkgVmk67kf9cii/dIDlocEQiVjKPwg+y9F1CTCyDHLMfFfHmvjdntctoNIog1EEpSZDDXmftgHLjy0M0rT399vBQGvDaMLCTQ3oigRRo6ZEx+TTD/J16lYJrIdRBJtIJJAZOnm6WT+x93QTRN2bink1m9TU5OdEz4SaMVEVSKMHLMcN9fceJwNvy6WiWwHkUQbiCQIDy9TS1yCIE5t17zbN7USSZQlwsgxO4+7lExkO4gk2kAkAZjobqDYgTSlG+xAOHCBvBo4/OPn7d599107J3wk0ISoS4SRY3YeN+OUyZYtW1b1MUEk0QYi8cviEKWT+VrIwwsH7B94A3WNZ+0N1iIi0fHUryCBxpggEUaOWY7bCctDViIUqXCCSKINROITSx7J03STvbF4jdrsJk687RqVauAcP37c2iaMCX5KIYFmikQYOWZObnCzRhYvl1RWJMs/052r5+jo/hRtTsjnErQ5tZ8+zAzT9FJp4QN1IBI/ZMeosy5GDd3SverodI0doFI3cLgm4isIFJBAM0UijBwzp1IUy+SDDz6w3ykmSw8GT9GenDzi9Ueoe3iSFmTJoOUFmhzupiP1cYrF6+n3/Q9yWwMdQCQ+WLzWRvFiYUx0U4P9I6/rHHP9gfJEz/w+10h4ikUdSQKN0wsvvGANQXfbLkrJecxu70v6/vvvC9u999579lV1skwTPc25sslJpDlDU6UskZ2iTHNOJrE47eq8SfN2NggPiKQsM5RpdGvCPKQLB+yAiLeR2w0cvlsjgYCkltxqdfP9rZZEYvFW6i9nh/l+arWao3FquVx+DBAIBkRShuzN05SMJem01TmymnxNJf9DdxugBpGEl9aIxOr8zr+XPH3TR5PF0RwtIX5QORCJJ/PU38pVYu60S1GqONUnCyIpdMQ64Ha+W5UdKXjimfidPLqcf6qaaxgdI3ZmOUY6PMUPKgci8cLqB4lT61ezlhTc0vDpusIPutwANRAWiznB2wKPNdN5vyt8zJ6nZlsksZbL9MjOBupAJCVZpKF0rircmKEZO8eVQts7l8ptq8LD23T9+vWA6bbngDlzyfdb5UWSpiE7tzy55pCIJNVF43YuUAciKYX1cF4ddY6Vb31bI16tH2iS0kOaaiU/XqETJ9rp4PaE/V251PBmLu/E2nR0vz2WIkiQmUQIIlm316Y2QCRuLE9Qj3W78J9oQMYkeJC99S/0d/IDrUvT4OPy8qmY7E06bXcyxtIeoTA/SO1JiGQ1DpHs7qEpOxeoA5EUMXvpHyghPzYrcUfrGfrWfn8139KZ1Oai7TnFKfnmJQp3cU7BEUReIskx3tXmv//AKJx9JI2U8dueXMw1Q6WMWvtLjkgGwYFIisguPXHpVF0g94rJMi2s2dZOT5Y0jaL0L5Ls+P/SyDrtUVy5axOj9kGfV3q8i1L2Z1ouo6s1TCAS4/Ajknl68GCd/3/r83knJ4W+LG7yoToSKhCJcfgRyRBlfNf3zeVhrlaSHxfio3lj9RnxtnWUHsIg+bCBSIyjvEh4NG7LMyASrnnd7NxlySTe3EMTpTrGC53ncWrOTOHBPQ1AJMbhEMnf/+uasSN9mQ+tJ2EbnwmRMMs0ceEI1eeaOcVP/3J/V+Hp38QeOjWIp391AZEYh0MkbuNIju6lZC6onh2R5MkuTdNw5hQd3O24ixZPUv3ug3QqM0z3fdzGB5UDkRiHj6bNeBe1PWMiAbUFIjEOP52tP9LIer3vCyIJRGIcfkQCQHWBSIwjoEgWp2kaT8wDzUAkxhFEJPM0lP7HknPKAhAWEIlGrGC3U3iMU1fKj0iyNHX+dUoY/kyJnmsIwgalo5FQg8Caj+Qinf1d/cqsbHVvUXff6nEkVrp4jo7u5dnbzJ9sKdRrCLSB0tFIqEFgzUdSNGakbLpEHut3GUGo1xBoA6WjEQSBOriGZoDS0QiCQB1cQzNA6WgEQaAOrqEZoHQ0giBQB9fQDFA6GkEQqINraAYoHY0gCNTBNTQDlI5GEATq4BqaAUpHIwgCdXANzQCloxEEgTq4hmaA0tEIgkAdXEMzQOloBEGgDq6hGaB0NIIgUAfX0AxQOhpBEKiDa2gGKB2NIAjUwTU0A5SORioNguHhYerp6bFfrR+OHz9Ot2/ftl/5o9JrCKoLSkcjQYOABdLU1GRtf+zYMTt3/bB161br3FpaWnwLJeg1BLUBpaMRv0HgFIik9SwSSX6E4tweRBeUjkbKBYGbQCQ9CyKR5CUU53YguqB0NFIqCLwEIulZEokkN6E43wfRBaWjkeIg8CMQSYcOHaLZ2dl1lbZs2eJ6rsXJKRRnPoguKB2NOIPAr0CQVhILxfkaRBeUjkacQYCknkB0QeloxBkEvb29tG3btlV5XmnTpk1WLWY9pQ0bNrieq1vauXMn9fX1rcoD0QWlo5HiIHj69KlvoTyLna2cRCCC8z0QXVA6GikVBH6E8qyJpFgggnMbEF1QOhopFwReQvElkuwSLSyZs5Sem0hKCURwbguiC0pHI36DwE0oniJZvk/DmQ9pTyJGjZkZOzP6OEVSTiCCbM8JRBeUjkaCBoFTKKVE8uAv/0X//T8XKd2Q369pIvErECHoNQS1AaWjkUqDgIVy9+5d+5U7M5lGa78mieTGjRv2v/xT6TUE1QWloxGdQbDY32rt15dIlhdobm6O5p4skXuPSpaWnizQsv2K+16e5LZfKGTY2PlPqtgvo/MagvBA6WhEaxAMpa39eopkeYIuHNtOicRmSqU2UyK3fbz+CGV+mLff/5nuXD1LB7cncvtK01BOJRMXjlB93D7ueD11DPG2WXoweMrqk8mfT4JePz9VQkrhItePE4guKB2NaA2CciJZHKOzu+JUlx6kx3bEZ3/4nFJ8PPE2urZINP9/d+jO6OfUaB3j2/T5f/6B/pAZpsm5WRrNvEV1nJ/8Z+rNvEn7T12k7ybnaHL4j9RsieYAXXiY369OtF5DEBooHY1oDQJPkWRprLMuJ4HTdHNVtWGG/nxsN6X2/xuN5USSZ4jS1jG+TV+JcSwe0oUDnJ+k9oHHq2of410p67vTQ3aGRrReQxAaKB2NaA0CL5Fkc3LgWkP7oI/mxzh1pfgYuWmzmqE05zdS8VdIRy9EAgSUjka0BoGXSGYy+eaKr0ifoUwjHyNEAioHpaMRrUHgRyS+aiQQCVAHpaMRrUHgJZLZ89TM37umj0RYpuXCrV2IBKiD0tGI1iDw7GyVfo84tVxee2slO3aO/mPMfgGRgBBA6WhEZxDMnm+29usuklyw596P83fHd1HHwDRZY8iySzQ90EG7Xu2i8UJNZYQ6rNu5wUXScvmRnaMPndcQhAdKRyNagoBHqc6OUk9L0tpvvLmLRmfdRqE+oP62ulXHYKXE63R+Km+R7NITmrzalh8vEqujtquTNMc74u+Y/Ipak/nPNH48TJM8KpZHtua+u6s5buXnv9sxIlYDzmMH0QWloxEtQfDtGUqlUmvSmW/t91exTPcHztHR/bzNfjp67ir96BgrMnvpnTX7SfGO3L7jnUs0O3uJ3inOT50h168OCS3XEIQOSkcjCAJ1cA3NAKWjEQSBOriGZoDS0QiCQB1cQzNA6WgEQaAOrqEZoHQ0giBQB9fQDFA6AABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABFiP4flzOdsVUh6wsAAAAASUVORK5CYII=
|
As shown in the figure, quadrilateral DEOF is a square, and the diagonal OD = 1 cm. Then EF = ( ) cm, and OD and EF are ( ) to each other.
|
A. 4, parallel; B. 1, parallel; C. 2, perpendicular; D. 1, perpendicular; E. No correct answer
|
D
|
14
|
iVBORw0KGgoAAAANSUhEUgAAARAAAADNCAYAAABw3S9QAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxKSURBVHhe7Z19aBv5mcf1R2FaWtFSVrDgNRdwDxdSwxqKMbhHYih5oabYtOT2ljUOl72yK9jDBzFZk3Dro8mlXbUk3oUzVJDAxiaGFLtgSBoXnHpf8oKvsd2NMU5NDFmH2Buc4pRDoP7x3Dwzv0ceSSNpNBppZqTvB34QjeblN2M9n8zvPUIAAOASCAQA4BoIBADgGggEAOAaCAQA4BoIBADgGggEAOAaCAQA4BoIBADgGggEAOAaCAQA4BoIBADgGggEAOAaCAQA4BoIBADgGggEAOAaCKQOeXDtFJ06VSKdTdL0zbu0+jyljgKgfCCQOmRz8SbdnDhHh5ojFIlwilH3SRaGvp3TdJLODhygmMbfaRQ7cI4+3k6rowFwDgRSx6Rn40ogXZRcVxstpLcXKNGtmfs0D9LcjvoCAIdAIPXMcoJaiwjEYGeG+o03kQjFTt8mvIeAcoBA6pn1JHWVEgjt0ky/KZBIbITuqa0AOAECqWcgEFBlIJB6xolALEUY7cR1XScAOAcCqWdKCSS1QuPHms23D62bLhV8SwHAHgiknskIhJtqByz9QOLU19GimnGjtL/vHM0+RvUpKB8IpJ7JCKSV4h+pPiBGmqCL8T5qj5lNuNGmQ/TO+AKhKwgoFwiknilZB5KilfFj1GzsEyGtO0lrkAgoAwiknnFSiUppujei6kH0dHR8U20HoDQQSD3jSCA6mQ5neuqfQUsMcAwEUs+4EcjgnNoIQGkgkHrm3gjFSgokrfujzZRHRKMT1/H+AZwDgQSU1dVVmpmZoUQiQe+99x4dP37cSD09PXTw4EHq7Oykffv2GekrX/kK3bp1Sx25x87UPysxFBBIepsWknuVqM362wfG04FygEB85O9//zstLCxQMpmkkydPUm9vL333u981hGAGvvNkFYgxH0hmuD4njWIth2jAMh9IvK+DmqLq++h+Op5EMy4oHwikxrAwzp8/T0eOHKFvfOMbGQHkJpYIy4TfOPjN48yZM8abyIULF+jy5ct05coVQxovv/yysb9VIMZ8IJk+H0XS3VV6+vQ5YUoh4BYIpMr85S9/MYKe3y6+9a1v5YmCJfLDH/6Q3nrrLaO4wsUWLr7w24kTuAiTKxAAagUEUgWePXtmSOP73/9+njC++tWvGnUY/BZy584dx6IoBAQC/AQC8YhUKkVXr141ihy5dRhc4fnuu+8aQc77eQkEAvwEAqmQxcVFevPNN/PqMziwuc6CizDVBAIBfgKBuITFwfUaVmlwHQfL5JNPPlF7VR8IBPhJ7QWSek5Pnz4tkYLbMsCtKLni4DoNLr54XTxxAgQC/KT2AvnsLLW2NlHUEoBG0mLU0tqqf9dKLWqYuRZroUMDF2lq6YnvQuEAZVFY88yf/Q5cCAT4iW9FmPTamBqnEaGOX/05TxCpJ0s0NdyZEU208xzd9qGb5MbGRt4bB3/mN5EgAIEAP/GxDmSehlRPya4iI7127ieoW3pU1nDtEm5e5aZWbna1ioPrPoIEBAL8xEeBrFOyq7RAmJ25wcx4jVh8turjNTgYuReoiIP7c3CfjSACgQA/CYVAdIXQTL9aQS3SRqMrarPHcAXuG2+8oa5jtqqMjY1V3NmrmkAgwE9CIhCitP4WoqnAbk0sq63eMT09ndXVnEXCQgk6EAjwk9AIhLYmqVcFd6T7Em2ozZXCTa88DkXE8b3vfa+m/TgqBQIBfhIegdAcDaog92oFtc8//5xeffXVjDwGBwcDXVyxAwIBfhJOgUQG9U+VwUPipfs5F124CBNGIBDgJ+EUSFdSP9odf/vb3+i1114zz6MnbmHhvh5hBQIBfhIegayNUYcK+kh8ltxMnsWVojwyVuQRxiJLLhAI8JPQCGRz/KgKfHcT//JbhvTt4KJLWIssuRQXyGd0Vg0PcJxO3sSyDsAx4RBI+h6NNJv7RppH6F6Zrx88w5dM/ffSSy+FqpWlFMUFkqLnTzdoaWqI2qU3b8ev6H8zgxYlrdLdiWHq5DlSKygegsbDR4Gs0ViH+aMuLpAdmhuUldOaabDMvuwsC+nfwRJhmdQTToswc4NKIEUEkV5OUBsEAsrAR4HsVYoWFEjqEU293aI6kDXTscm1suo+eH5RaWnh4ssXX3yhvqkfvBQI0RZNjkAgwDm1F4gxH8gq3fqv7r2epfGPaH5pI/NKvbE0TxPn+mi/WnYg2jlMNx6VN6Cf5SFTC/7gBz8wzluPeCsQ/S0klXJVQQ0ak9oLxJgPxKbyLit1UF/8FF2cmKelxy/K/kFzsSV3isF6T5UJZIOuXv1M/RsA5/hYhKkOXMfBFaUcLPzmYQ2yek4VCSStFyeHsCYuKJ+6EggXU1555RUjULjOgz9bg4y7rddDUYbvwTrdACf3AknT9lQ/aVhUG7igbgTy17/+NRNU3NoivUslwKyVqWGWiFUe1mKaY4FYpo40UlPU3A6BABfUhUC4e7oUVzioeJCcIAFmrRcJq0Ry5cH3JPfnWCB5/UBUhTYEAlxQFwLhtWM5OLjVJbeTmAQYw99J/UjYJGInD0bur7JK1GVKJCAQUD6hFwiPqpUg4gWnc5HvBGuvVK4vCUPHskLyYOT+KhNIml68COpCGiDIhFogXFSRYglPCmSHBJgVq0SC3ju1mDwYub/KBAKAO0IrEK734NnDOCi4daXQok4SYLmEQSKl5MHI/UEgwA9CKxCp9+BxLsXWn5UAs4Ol8Z3vfMf4PmgScSIPRu4PAgF+EEqBWOs9Sg3Ll/0KYQ1UllGhQK0lTuXByP0VFUh6mRJtSiBaP01to7M68IbQCYTfNqTegycEKoUEWDHKCdhqU25e5P7sBWLOB9KkxhTtpSg16dvPovc6qJDQCeTIkSNGEHC9h5PZxCRoSuGVRCqZ4cxNHuT+7AXC84FY+3xkp+doeAEVEiqBcHFFAsbpSnGyvxM4qHiOVN7fjUSkQ9v777+vtjiHr+1GYHJ/pepAAKgGoREIt7LI0PU333xTbS2NBJhTrL1auWPatWvX1DfFkeO+/vWv07e//W26cOGC+qY0buXByP1BIMAPQiOQM2fOGIHCPUmfPXumtpZGAqwcypWI7C/Bz3UzfCznuRSVyIOR+4NAgB+EQiBccSqr5CeTSbXVGRJg5eJUIlzncfDgwbzg//nPf24cW6yit1J5MHJ/EAjwg1AIRCpOeUmGcpEAcwNLpKenxzjeTiIsj5/+9KfGd3YBzMUYPpb3ya1c9UIejNwfBAL8IPAC+cMf/pAJ4IWFBbXVORJgbhFJyHmkbsMqj2JFHP6O9+nt7TWExHglD0byBYEAPwi8QLh4wAHCPU/dIAFWCbkS+fWvf+1IHgK3HrEouEi0tbWVKRpVKg9G8gSBAD8ItEA4KCRAinVXL4YcXym5Evna177mSB4Ci+Kb3/xmZvyOF/JgJD8QCPCDQAtE3j749d8tEmBewBLhJmQ5ZyKRUN+UhosvsqymV/JgJC8QCPCDwAqEA0yCY3FxUW0tHzmHl0gzLScn3emtLTpeyoORfEAgwA8CKxB+6+DAqOTtg5EA8xqnEqmmPBjJAwQC/CCQAuE3DgkMp13WCyHnqQalJFJteTByfQgE+EEgBfLaa68ZQcF1IJUiAVYtpMMYJ5YI15MwtZAHI9eGQIAfBE4gHHjS65SXp6wUCbBqIh3GOHFLDS8xUQt5MHJdCAT4QeAEwl3VOSB4zIv8b14JEmDVxioRmfm92vJg5JoQCPCDwAlEmm6LVUyWgwRYLfjFL36RuR53MvvjH/+ovqkecj0IBPhBoATyxRdfZALCTbd1O+R81cZa5yGJizO8vZrItSAQ4AeBEohUSPI4Ea+QAKsmuRWmfB/8BsKfeXs1JSL3B4EAPwiUQGSAGQegV0iAVYtceUidhwyi4+3VlIjcHwQC/CAwAuEiiwQDF2W8Qs5ZDQrJQ6iFROT+QiuQ1BNamp+gi6dO0Sk9nU1O092HLyhv3vitefpQ7WOXLk7cpJt3Vyue53Vr/kPb8+elD+dpyzygaL4y6doD4/yVkN5+QFOT6roBITACee+99zKB5iUSYF5TSh4CT0fA38u98VB+L5H7C59AUrQy/jq1aBq19AxTcloXwM1pSg730f6oRrEfj9L9HbUrs/uQPr05QUPtmnnPP/qlvj8fo6fpJA337acob9da6PXkArlduWL34af6+UbpWLP5XH/0S3WNTNLz+E4nRWV9nWL54qTn7Z3OKEUqWLw89egOfXT6nyjG5w/Yuj6BEYi0vrBIvMT4o+rJS5zKQ+DvRSJcTPNSInJ/4RLIDs0NtZAWaabB2e28t4309iwNcgA3D9KcVSLMnOr9axOQ6e2PaUQFcrP+fe6h5bA21mGcxz7ud+n66KXsQC6SL2Ndnrcv0Yb66I51Snbp54dA8uGAlM5jlXZdz8X4o+rJK8qVh1Aticj9hUkgOzP9ujwiFDt9O7+ookjfPm38j6v1TtKm2mZQLFCZnVmKx/iZaHTi+q7aWD7ryS7jOoUus/vwYVn52nn8WNdOZRirC0Ig+dy4ccN4+BxgXnQes2L8UfXkBW7lIVRDInJ/4RHICo0aq+S1UmJZbbJF/1+7lfeL0cg9tYkpJRCdzfGj5j5Hx/Ug36L5D23qJOySpZ6imEAePLCpzyiUrwfzNJ+ptHhA1+yua5M+3DsoQ2mBpOjRXVWfdDZJv3+Q/XaXerJEv09eMvOTekS3kmf1a12kG4+k4kg//laSzurHX5x64KgYGAiBvPvuu8bD5/lHvcb4o+qpUiqVh8ADBWVRb5aI24mSBLm/0Ahk4xJ1G3mO02yJH6is59tqNY0DgejlD+owrtFPM7u79PBTS51EsbS4905RUCDp+3Q+YXPtAvlaTw5SMhPxm7Rod12b9OnD/PeVogLZuU+jh2PU0nOOJvTjJ4ba9bc8jbqTa7pEHtPHvzlNPUa9TheNfTJD/36oj+KnBqiTVy3UuunS2hpNHu+gQwOnaOBAzHhDbNbNXcohgRAIrzLHD7+ctVScYvxR9VQJXslD4EW8RSKVLuot9xcagUigRQapiAIMlhOt5r7WoHQikLRejDGu0WUJ3vIQgbT9xPpmEKe+/QUqRCVfbT/Z23/gAMU093nIpbBAdmimXyOtf2av3keeQXSYZAVTs14nu94pff88ter7NR8bp5VMC9YmjR/Vj21N6O+BxfFdIDzwzPxBRejzzz9XW71Dzu0Wr+UheCURub/QCGR+yPjfzYlApCKzbIHszlC/cQ0O3sqKMLmtMNPJt6h9qIhAslphJujcoWMWgVSpCLM1Sb36teNZr3Rp2ubik6UYY95TjtCUaLpyLGe+/ZX+G/kuEFmukoOoGhh/VD25oVryELyQiNxfaASifuxm8UJtK4AUYbovWdovnAhkOWH8rxrR9ABIe1yE4QLB46zqU5NC+dp8SHulkSoVYdS1iz0SxlYguiIG9WNDKxDpvl7pzGOFMP6oeiqXastD4E5z0gOXJVJuK5TcX3gqUdXrsV4+H5wrVsKWStSjNG6N15ICSev+aDP20U5cd93yUVggBXAitgopKBD1Vnc060EpNpdpWb3M1KVA3njjDePBnzx5Um3xFuOPqqdyqJU8hErWiZH7C49A9BKG/oNv1vOsdef0pbCwMxs3mnGbh+azJVAiUNNrSerW9O+5YrDQyR1QWiBpWrv3J8ossuqnQOStri1By1lOTtO9ixfpttpWlwKRmcrHxsbUFm8x/qh6ckqt5SG4lYjcX5gEYgTfpcMU1d9C2kc+zmku1MvuCwlDAtHDl2gt5yUlrYvFuOe8QE3RkzujdJhbFbiiMK8HWnlIBa69D/Q8zg7S4dEV9blYvrxil2b69fPHRsjaqm2yqwd8zLh+9PB/063Vp/R0Y4mmhjrpsMWiZp1SjkCUfLJauvT7m43zcwyBQGTynWoFgPFH1ZMT/JKHYJVIuSlcAmFYFEl6vUUjLdZOfXGuPIxTX3uMtOh+Op7bHd0Yc6KaHfmera0d8T5qj3EPVI1iB4Yt/RrKxxgLY7SemNfR2v9l7zpGUnmUolVuviJR6hywrwR1i5mnTrOrvn6PLT3x/POnVih5OKryoPYbmlXPkCuS9/IY7RwwjufzDnA3e95fa6Ge+DV6wPcT76EW4/7NaxUbxuOrQHiVfblhr3pm5iLnL4Xf8hAkv+Wm8AlESNOLL1fprqo8vLv6Jb3IeeswMMac5Fc2Srqr/6/7pe2B5WGMhbE5f1769KFZtCqQL7tKULfY5cn+/Cl6vnrX+D57QGJ+RTIfn3/eRdq0uR9L3XIevgqEKwz5x88BWy0kwIoRFHkwkt9yU3gFAsKM9wJJL9Pvfse930pz5coV48fPHcmqhQRYIYIkD0byy0nyVWwNXtkXAgF+4LlAjIFS2glyMo7pzJkzxo+fl3GoFhJgdgRNHozkl5M1f4UkIvtCIMAPPBaIDJQq0CadA6+4z/uySKqFBFguQZQHI/mVPFsX9WaJ5LZWyb4QCPADTwWyOzdoTnrCqXmE7pUox4hAvJ4DxIoEmJWgyoOR/FrzbJUIJ+uYIdkGgQA/8FAgZg/Dtu5uJZHS8zEcOXIkLyC8RgJMCLI8GMmvNc9MIYnIZwgE+IFnAkkvJ6jNaBvfK8aY8zEURmYhu3z5striPRJgTNDlwUh+Jc9W7CQi/4ZAgB94JJBdun5Cy4w9yEzoEonRaelHa4P0Qr169ara4j0SYGGQByP55VQI66LekpwIJPWc+1vsTWB86uIE3bz70L7fBQAO8EYg60nqsspi9zqdkJ58RQY07du3z/GP3y0SYGGQByP55VSMXIkUe4apRzdomCeJ0WJ0YOCiMeEMdxCauDhAB7gHp9Hz835Fc4iCxsQDgaTp9ukYRdpGyTIywNxm/LhzB+/sUUuBcAq6PBhrfkthlcj4+LjaaiVNa5PH1MC1BC3YzVGX3qaFRLc5A1XWpDIAlKZygezMUL/+tpHXbLsySm3qx11o8lxZM4WHsbNMqpEkwOo92Ul4/QoPWNO/t5vdPIsdmhtsNs6jdSfzBrABUIiKBbIy2kYR245jMu+Dngp0LLMGAFJlKU8gm5PUq4qRTvrk0OY4HTXOpVF3JePgQUNRmUDSt+k0T6H/jz+m/8gasWimn3VLMSZCbZahzwK3viB5k7IHI1qLkKVn/jJRw8X5mNjpzBwSABSjIoGYrS1ddMZYVcwu/Yr61P+C+FHWkns0YqyNoqeOMVpTW0uRmYNUfwspPlsYACbuBcKrbbWVnvpdZnbiH2X/TPXq+VPPnxr/C5eVKl1INagYrWJKIPHZon8fK5lJcfSUO0MVAHa4Fog5aE5/PS7lBCnm8A8zb8o17/jsbCu1tpjrWUgQRJv0ba35qUkmf6ni9HO+YhVIOfco0/LV87MBnuJOIDtz5tqlDn9k98//g/phykI31UOWTeTrFc5eilbGukmDQLKxCCSWtRwcAPaUKZAtmv/PQ3v/g0ei1HRoIGs9jSweXMuaHs5MGsXa++iXHk75loUleIrGDr8Z/eukfkd1SGb1Nz31lnGPFoFkLaUAQAHKFEiBNTYKzXm2uZi/r0peTvmWhVOB6Pdy8zdXK1wxPajIkgh6sp2E1569+qpS69YCYOK+EjWoOBFIOkWpOm9kMPrnGM+hjWxa0G2wNONm9SoGoDCNKZC5ZMHu9XXDzizFVeV1oZ7AWWQ6kjXT0HyV3g5B3dGQAlkZPVH/AtHZmRs0xsFwX52xYv3T02uU7DaXRah2JTeoL+paIP82ndv3Y4OWpoao3cMV04POzu0R/X715xE9TKMLewstC+ntBRo11hOJ0uFRjMgF5VHXArHrB2K2IDWOQBiWxPg7ZmtYtOkQDRhDDeLU19FkrA5X6WJMoHFpvCJMeptuxHsbSiAZ0i/oS7XwEKf5pQ1PFmMCjUtjVqJ+dpWuopsDABXTmAIBAHhCwwsk/eIFofQPgDsaWyDcfPn2/6DTFAAu8VUgHOSSPGNtjDocCWSHbp9uczZbV4CpyjMEwCF1IxBjPpDVWzR6zJzbk1PX+Tu0kdUPxEyrdyfoXE8LacY6NuoEIcXLZwhAudSNQIz5QHL6fJRMJ28WXHIiLHj5DAEol7oRSKOCZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE9CKZDFxUVaWFhQn+qDZ8+e0fT0tPrkHLfPEAAvCJVAWBy9vb3G/pcvX1Zb64ONjQ3jvl599dWyRFLuMwTAS0IhEKs4JNWrQCQ5FYn1GABqTaAFYicOSfUuEEmlRGLdF4BaE0iBFBOHpEYRiKRCIrHuA0CtCZRAnIhDUqMJRFKuSKzfAVBrAiMQp+KQ9NJLL9G+ffvqJr3yyiu291koiUis2wCoNYERCFLlCYBaExiBHDx4MOszUvH08ssv04ULF7K2AVBrAiMQ5tatW45F0qh1ICKOVMpc0df6HQC1JlACEZyIpNEEkisOwboPALUmkAIRiomkUQRSSByCdV8Aak2gBSLYiaSoQFJPaGlqmA7Euim5rrYFnFyBlBKHYD0GgFoTCoEIVpHYC2SL/vTRKI3EOylqnLcrdAJxKg6h3GcIgJeESiACi+TOnTvqkx1rNNYRLoHwaNxyxCG4fYYAeEEoBVKaLZrsDZdA3FK9ZwhAaepUIERzgw4Ekn5Ms+f6qD2mmfmINtGh4Rv0KPMSkKInS1N0rm8/RbuStE5pejw7TIeaovr+GsUOnKPbO7xfmrYXknR8P2+PUHT/cZpcSxtnqDbVfIYAlKJxBbJznxLdGjWfmKKHL/RgT7+gP3/QZeRF652kTfo/WvrdJUoOtZPGeez6gG4kf0KH3knS9M0JGu40ZaGdmKH7k6/TgZ5hSk5PU/IttX/bKK2oS1WTaj5DAErRoALZpfmhZj3IE7RsfVHY/C0di+pSaHmf/qQ20XqSujiPsX6aemzZefc6ndD4Gs10Yuax/g4ibNL40WLX9pZqPkMAStGYAtmapF79mq2JZbWhCGrfiFGEsbJOyS6+xiDNqS2Co+KTR1TzGQJQisYUyNygcc0uRxE+R4OcRwgEgDwgkJJAIAAUoqEFEumfoV21qTAQCACFaEyBSL1Gge935y7RbzfUBwgEgILUqUBKdSTb1L83+35o3Qla2JY2FO7PMUqHD1tk4boStZWc1NFWSvWeIQClqUuBpLdv0alWPm+M4je2LU2sFtZ/S8ea5fpRamptpVbuIKZ1UzLTCUwXyo04xXifWJxuZETD15iifqMZt43OL7zYu0ZqhT4wxBKhrg9WqLyO6eVTrWcIgBPqTiDm//65Kf8tgUlvL1DyeDvFWARajNr7ztGspa+H3bm44nU9aXY4y0qD+hWkbsWa8t5cvMV6LQBqTd0JpNHAMwR+AoGEHDxD4CcQSMjBMwR+AoGEHDxD4CcQSMjBMwR+gl8dAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMAlRP8Pd1Q7y7qJ8LgAAAAASUVORK5CYII=
|
As shown in the figure, the diagonals of square DFEO are OD and EF. What is the area of square DFEO? ( ) cm²
|
A. 0.5; B. 3; C. 2; D. 1; E. No correct answer
|
A
|
15
|
iVBORw0KGgoAAAANSUhEUgAAARIAAADMCAYAAAC/dCzIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABesSURBVHhe7Z1xaFTXnscHWhgpndI/HBA0rBBhChpQKCKkYAJiK/tYIpXWSoN2w0JfamEeNKtiS/O2StnNQs1j2cAOa/6oolsf5o+AwZRNmic1TX1U82w2JAYD1hK1JCXpH4Hxj9/O7879TW4md+7cO+eemXvi9wOHOGfu3Ln3nvl9POfcc8+JEQAAKAKRAACUgUgAAMpAJAAAZSASAIAyEAkAQBmIBACgDEQCAFAGIgEAKAORAACUgUgAAMpAJAAAZSASAIAyEAkAQBmIBACgDEQCzOPbM5RKpcqk3XSw/QSdu/gdTS9l7Q8CXUAkwDyWF2hubpKG/9hM8ViMYrmUar9Cd2bncvmcZunOyEU6+7t6+/0Evd79A83bHwfhA5EAgxmitC2SxsyMneckS48H01RnbROn5sxULgfoACIBBjNFPbu9RMJk6ebppLVNLN5G1xbtbBAqEAkwmBnKNJYTSU4lg+15keRqJR0jdiYIFYgEGIw/kTy63GKLJEVd43YmCBWIBBiMH5GsbBOr66QxdJJoASIBBuMtkuzSNF39vX3nJl5PHUO4b6MLiAQYjKO2EUvQZsc4kvpk3M6PUd3bf6Lh+8v2Z4AOIBJgMCsi2f3vf7XHkOTT5Hd9lDl1kLYn8u8nth+jzK3HuP2rCYgEGIyPPpL5H6irWWondZRG80YLEAkwGB8iYWYy1GiJJJcaumnCzgbhAZEAg/EpEsfAtVjsLfrzL3Y2CA2IBBiMX5GMUWfSFkm8gzAmLXwgEhBZfvrpJ5qdnaXbt29bf9cyQh3x8iKZH2ynpFUbiVFd5xg6XDUAkYCq8ssvv9Do6Cj19vbSyZMn6dChQ9TU1ESvvPIKbd26lTZu3JivORSlTz/91N7DCtmpnkLfh6tIln+m0cwRqrdlE2/O0BQsogWIBGiDaxJdXV10+PBhevXVV+nll19eJYcgaZVIrPlINlOiaJvEZsd8JPXJwhQDic376cMLt+gxJKINiASExuTkJPX09Fji8JIGv8di4e0+++wzq3bS19dHw8PDdOPGDasZw+np06d07Ngx6zOrRGLNR7IyZqR0WiAMQ6sOEAmomOXlZUsAHOxbtmxZI4znn3+e9uzZYzVhMpmMJQlu2gTBVSQgckAkIDDcx3H8+HHX/owdO3ZQOp2m/v5++u233+xPVA5EYgYQCfAF30HhZsi2bdtWiePFF1+0gv3SpUtWcyJsIBIzgEiAJ9xvsW/fvlXy4CYL53355Zeh1Dq8gEjMACIBrnDfx2uvvbZKIDt37rTuwnDtpFpAJGYAkYTOj3TlxAk6USadu3idro/codmFaN1XYIGwMEQeXPvgYOZbubUAIjEDiCR0HtLt69fp4tn99uzluRRP0t6jZyjTl5NH7r3rfRk6c3QvJe2BUontB+nswP2a3qosFsiGDRusIL537569RW2ASMwAItFGlgbbbZE0Zsh1APfyfRro2FUYOFXX1k8Pqjxo6u7du6uaMCwQvuuio+O0EiASM4BINDLelfIWiUWWpjIrCz3VdYxQNVZM+PXXXy1hcNMligIRIBIzgEg0MpNp9CESZp76W1cm3+nUPEMxDw5zjgF54403at6EKQVEYgYQiUb8iyTHRDc12IEdb7umpVbCHaY80lQEwqNRuW8kykAkZgCRaCSQSGiculL5AI/F0zQUcqXkiy++KDRj+C8PW9c9BiQMIBIzgEg0Ekwkjs7ZWCN5ztMTAO4LaWmRBaJiVscqP1xnChCJGUAkGgkmEqKhtIgkRukhO1OBW7duWXN8yD65FsJP1JoERGIGEIlGKhdJkjrH7MwKcTZluGN1YGDAfscsIBIzgEg0Ekwki9TfKiJppvNuMwv6gPs9ipsy1RzSHjYQiRlAJBoJJhLHBMXJztyr4PBcH87BZSY2ZYqBSMwAItFIEJFkb54uTFDc0B185RWudfC8p/x5Hlx25coV+x2z8RbJyizyvlOFkgbeQCQa8S2S7BT1SEDEW6k/4GJwfBdm06ZN1ud5fhCeiWy94KdGsvzzqGM1vTSt7afO0tKDUcq8VVfifaAKRKKRsc5k/sftJZLsYxpM8w+cgyD4kpIsDZkflWVi0q1dP/ht2hSk7SWKbK75WAeR6AAi0cY8XX2bf9ilRJL7X3J6gE7tSeS3Seyhs38Jtsg1N1+4BsKf52aNyZ2qpQhVJDkmurshEg1AJKGTn4/k6N6V5RB4GoH63QepXeYjaT9IuzfnBRJP7qKDZwfofsA5BPh2rtze5Q7WoJMqm0LYIgF6gEhCJz8fiTXviEcauTNLcxVOasTNGamJPCtJVSRDGT93zkClQCSG4exY5bVhnMG2ntMnn3xiXwF3vEUyTl2tEIlOIBKD4LlCRCLcJ8KvncHGiUe0mg6fl9zKllRxjSS7RNNftVLS11geUCkQiSE4g4tlIotqS6DxpETyb56g2VSc5+lsvvkXSYkEkWgFIjEAXtFORqxycDlv8UqgME6Z8L9No1gi3Bck51N5H0mWlv7WQ83NEIlOIBIDeP/991cFlxMJNIEXsZI8k2TiJhFGzkWtszVLgz0QiU4gkojDK9hJMPGCVMXIe064n0TyTZBJKYkwch6qd22AXiCSCMP9IDJqlcdTuCGBVkyxTKL68J6XRBg5B4gk2kAkEYUDX27v8sLcpaZFlEBzwymTQ4cORU4m5STCyPFDJNEGIokoPAWABBivPVMKCbRS9Pb2FkbARkkmfiTCyPlBJNEGIokgPPxdAohF4IVs5wU/kxMlmfiVCCPn5yWS7NLf6E+F6QSS1PrVNC1VeaGxZx2IJGLwZM0y6KxUv4gTCbRyFMukVjPIB5EII+fnLhLv+Ugaw5pBG5QFIokYMhaEJ232E+wSNH5wyoTHpVRbJkElwsj5lWvagNoCkUQInvVdAt3vwlUSaH75+uuvrSDmz1RTJpVIhJHzg0iiDUQSIWQVPF5C0y8SaEHgIK6mTCqVCCPnB5FEG4gkIvT09FgBw/OtynM0fpBAC0qxTHTNZ6IiEUbODyKJNhBJBOAgloFnPMQ9CBJoleCUCQc7B32YqEqEkfODSKINRBIBZBawbdu2WQ/oBUECrVJ4YfHiqQnCIAyJMHJ+EEm0gUhqzL179wodrJWshieBpoJzsqQwZMK3sMOQCCPnB5FEG4ikxkhtpKmpyc4JhgSaKsUyYcFVAnfcOqc8UJEII+cHkUQbiKSGqNZGGAm0MHDKhP865z3xQ9gSYeT8IJJoA5HUEKmN7Ny5084JjgRaWDhX7AsiEx0SYeT8IJJoA5HUCA7YoIPP3JBACxNnR6kfmeiSCCPnB5FEG4ikRshQeJXaCCOBFjbFMuFRt27olAgj5weRRBuIpAZwkPLAMw4Qt1nPgiCBpoNyt3B1S4SR84NIog1EUgM4KDg4eNyI6iP9Emi64Fu5brKohkQYOT+IJNpAJDWABcLBEcayERJoOimWxuDgYFUkwsj5QSTRBiKpMhx0HBjc0RrGot8SaLpxyuS5556z/uqWCCPnB5FEG4ikysjSEkGe8PVCAq0aPHr0iF566aXCdwZ9LqgS5LsgkmgDkVQRfo5m48aNVmCodrIKEmi6cdZI5LY1/+XJknQi5weRRBuIpIrweBEOCm4SBH04rxQSaDop7iP55ptvrOka+bVumcj5QSTRBiKpIi0tLVZQ+JmL1S8SaLoodXeG7zY5ZZLJZKz8sJHzg0iiDURSJfg2qowdGR4etnPVkUDTQSmJCE6ZcOJ1dMJG9g2RRBuIpEpIs4ZHiYaJBFrYlJOIExmlyylsmch+IZJoA5FUCQm2w4cP2znhIIEWJkEkIuiSiewTIok2EEmV4GdqOCB4btYwkUALi0okIjhl8vHHH9u5asj+IJJoA5FUAe4fkYAIMrGzH2S/YaAiEeGjjz4qHBOLRRXZF0QSbSCSKiD9I7zoVdhIoKkShkQE5+LlqjKR/UAk0QYiqQJS5Q/ztq8ggaZCmBIRwpKJ7AMiiTYQSRWQ/pGwRrM6kUCrFB0SEZwyYYlW8qSzfB4iiTYQiWZ4zRoJBtXZ2d2QfVeCTokILBMZUs9jToLKRM4PIok2EIlmRkdHrUAIe/yIIIEWlGpIRHAuXh5UJnJ+EEm0gUg009vbawUCB60OJNCCUE2JCJXKRM4PIok2EIlmTp48aQUCTx+gAwk0v9RCIoJTJvv27bOOpRxyfhBJtIFINCMP6oUxG5obEmh+qKVEBJaJHHOQBJFEG4hEMzt27LACQWXJCS8k0MoRBYkIcsxBEkQSbSASzUhVPuiqdX6RQPMiShJh5JiDJIgk2kAkgVmk67kf9cii/dIDlocEQiVjKPwg+y9F1CTCyDHLMfFfHmvjdntctoNIog1EEpSZDDXmftgHLjy0M0rT399vBQGvDaMLCTQ3oigRRo6ZEx+TTD/J16lYJrIdRBJtIJJAZOnm6WT+x93QTRN2bink1m9TU5OdEz4SaMVEVSKMHLMcN9fceJwNvy6WiWwHkUQbiCQIDy9TS1yCIE5t17zbN7USSZQlwsgxO4+7lExkO4gk2kAkAZjobqDYgTSlG+xAOHCBvBo4/OPn7d599107J3wk0ISoS4SRY3YeN+OUyZYtW1b1MUEk0QYi8cviEKWT+VrIwwsH7B94A3WNZ+0N1iIi0fHUryCBxpggEUaOWY7bCctDViIUqXCCSKINROITSx7J03STvbF4jdrsJk687RqVauAcP37c2iaMCX5KIYFmikQYOWZObnCzRhYvl1RWJMs/052r5+jo/hRtTsjnErQ5tZ8+zAzT9FJp4QN1IBI/ZMeosy5GDd3SverodI0doFI3cLgm4isIFJBAM0UijBwzp1IUy+SDDz6w3ykmSw8GT9GenDzi9Ueoe3iSFmTJoOUFmhzupiP1cYrF6+n3/Q9yWwMdQCQ+WLzWRvFiYUx0U4P9I6/rHHP9gfJEz/w+10h4ikUdSQKN0wsvvGANQXfbLkrJecxu70v6/vvvC9u999579lV1skwTPc25sslJpDlDU6UskZ2iTHNOJrE47eq8SfN2NggPiKQsM5RpdGvCPKQLB+yAiLeR2w0cvlsjgYCkltxqdfP9rZZEYvFW6i9nh/l+arWao3FquVx+DBAIBkRShuzN05SMJem01TmymnxNJf9DdxugBpGEl9aIxOr8zr+XPH3TR5PF0RwtIX5QORCJJ/PU38pVYu60S1GqONUnCyIpdMQ64Ha+W5UdKXjimfidPLqcf6qaaxgdI3ZmOUY6PMUPKgci8cLqB4lT61ezlhTc0vDpusIPutwANRAWiznB2wKPNdN5vyt8zJ6nZlsksZbL9MjOBupAJCVZpKF0rircmKEZO8eVQts7l8ptq8LD23T9+vWA6bbngDlzyfdb5UWSpiE7tzy55pCIJNVF43YuUAciKYX1cF4ddY6Vb31bI16tH2iS0kOaaiU/XqETJ9rp4PaE/V251PBmLu/E2nR0vz2WIkiQmUQIIlm316Y2QCRuLE9Qj3W78J9oQMYkeJC99S/0d/IDrUvT4OPy8qmY7E06bXcyxtIeoTA/SO1JiGQ1DpHs7qEpOxeoA5EUMXvpHyghPzYrcUfrGfrWfn8139KZ1Oai7TnFKfnmJQp3cU7BEUReIskx3tXmv//AKJx9JI2U8dueXMw1Q6WMWvtLjkgGwYFIisguPXHpVF0g94rJMi2s2dZOT5Y0jaL0L5Ls+P/SyDrtUVy5axOj9kGfV3q8i1L2Z1ouo6s1TCAS4/Ajknl68GCd/3/r83knJ4W+LG7yoToSKhCJcfgRyRBlfNf3zeVhrlaSHxfio3lj9RnxtnWUHsIg+bCBSIyjvEh4NG7LMyASrnnd7NxlySTe3EMTpTrGC53ncWrOTOHBPQ1AJMbhEMnf/+uasSN9mQ+tJ2EbnwmRMMs0ceEI1eeaOcVP/3J/V+Hp38QeOjWIp391AZEYh0MkbuNIju6lZC6onh2R5MkuTdNw5hQd3O24ixZPUv3ug3QqM0z3fdzGB5UDkRiHj6bNeBe1PWMiAbUFIjEOP52tP9LIer3vCyIJRGIcfkQCQHWBSIwjoEgWp2kaT8wDzUAkxhFEJPM0lP7HknPKAhAWEIlGrGC3U3iMU1fKj0iyNHX+dUoY/kyJnmsIwgalo5FQg8Caj+Qinf1d/cqsbHVvUXff6nEkVrp4jo7u5dnbzJ9sKdRrCLSB0tFIqEFgzUdSNGakbLpEHut3GUGo1xBoA6WjEQSBOriGZoDS0QiCQB1cQzNA6WgEQaAOrqEZoHQ0giBQB9fQDFA6GkEQqINraAYoHY0gCNTBNTQDlI5GEATq4BqaAUpHIwgCdXANzQCloxEEgTq4hmaA0tEIgkAdXEMzQOloBEGgDq6hGaB0NIIgUAfX0AxQOhpBEKiDa2gGKB2NIAjUwTU0A5SORioNguHhYerp6bFfrR+OHz9Ot2/ftl/5o9JrCKoLSkcjQYOABdLU1GRtf+zYMTt3/bB161br3FpaWnwLJeg1BLUBpaMRv0HgFIik9SwSSX6E4tweRBeUjkbKBYGbQCQ9CyKR5CUU53YguqB0NFIqCLwEIulZEokkN6E43wfRBaWjkeIg8CMQSYcOHaLZ2dl1lbZs2eJ6rsXJKRRnPoguKB2NOIPAr0CQVhILxfkaRBeUjkacQYCknkB0QeloxBkEvb29tG3btlV5XmnTpk1WLWY9pQ0bNrieq1vauXMn9fX1rcoD0QWlo5HiIHj69KlvoTyLna2cRCCC8z0QXVA6GikVBH6E8qyJpFgggnMbEF1QOhopFwReQvElkuwSLSyZs5Sem0hKCURwbguiC0pHI36DwE0oniJZvk/DmQ9pTyJGjZkZOzP6OEVSTiCCbM8JRBeUjkaCBoFTKKVE8uAv/0X//T8XKd2Q369pIvErECHoNQS1AaWjkUqDgIVy9+5d+5U7M5lGa78mieTGjRv2v/xT6TUE1QWloxGdQbDY32rt15dIlhdobm6O5p4skXuPSpaWnizQsv2K+16e5LZfKGTY2PlPqtgvo/MagvBA6WhEaxAMpa39eopkeYIuHNtOicRmSqU2UyK3fbz+CGV+mLff/5nuXD1LB7cncvtK01BOJRMXjlB93D7ueD11DPG2WXoweMrqk8mfT4JePz9VQkrhItePE4guKB2NaA2CciJZHKOzu+JUlx6kx3bEZ3/4nFJ8PPE2urZINP9/d+jO6OfUaB3j2/T5f/6B/pAZpsm5WRrNvEV1nJ/8Z+rNvEn7T12k7ybnaHL4j9RsieYAXXiY369OtF5DEBooHY1oDQJPkWRprLMuJ4HTdHNVtWGG/nxsN6X2/xuN5USSZ4jS1jG+TV+JcSwe0oUDnJ+k9oHHq2of410p67vTQ3aGRrReQxAaKB2NaA0CL5Fkc3LgWkP7oI/mxzh1pfgYuWmzmqE05zdS8VdIRy9EAgSUjka0BoGXSGYy+eaKr0ifoUwjHyNEAioHpaMRrUHgRyS+aiQQCVAHpaMRrUHgJZLZ89TM37umj0RYpuXCrV2IBKiD0tGI1iDw7GyVfo84tVxee2slO3aO/mPMfgGRgBBA6WhEZxDMnm+29usuklyw596P83fHd1HHwDRZY8iySzQ90EG7Xu2i8UJNZYQ6rNu5wUXScvmRnaMPndcQhAdKRyNagoBHqc6OUk9L0tpvvLmLRmfdRqE+oP62ulXHYKXE63R+Km+R7NITmrzalh8vEqujtquTNMc74u+Y/Ipak/nPNH48TJM8KpZHtua+u6s5buXnv9sxIlYDzmMH0QWloxEtQfDtGUqlUmvSmW/t91exTPcHztHR/bzNfjp67ir96BgrMnvpnTX7SfGO3L7jnUs0O3uJ3inOT50h168OCS3XEIQOSkcjCAJ1cA3NAKWjEQSBOriGZoDS0QiCQB1cQzNA6WgEQaAOrqEZoHQ0giBQB9fQDFA6AABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABFiP4flzOdsVUh6wsAAAAASUVORK5CYII=
|
As shown in the figure, the square DEOF is within a sector with a central angle of 90°. What is the area of the square? ( ) cm²
|
A. 0.5; B. 3; C. 2; D. 1; E. No correct answer
|
A
|
16
|
iVBORw0KGgoAAAANSUhEUgAAAbAAAAESCAYAAACcmoDPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACXWSURBVHhe7d1/iBRnvu/x+SPQYdlhE0gvC2Y4wuxhAoncCCIDBpIBMRHCYWRDfhFRMPfgSgJzIF4dDGQ46hXOHIhz/GNgG1zOVcmwZvXAXJxoQHHd+AMvid7EK5N4HDDKqEHDKJeB3j++p77V9XTX9FRP/656nq73Cx50qn9MTXdVfeqpen50CQAADiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAYIX8o+/l4pH9smPHDtmx/4hc/P6R5IPHACAKAYbEPTg/IiszXdLVFS4ZWTlyXh4EzwGAcgQYknXjoAxk+2X42BWZmZ2VmStfyNibPUGIZWXXeephAKIRYEjQA5ncvl1OL6pm3ZbD6ws1scz2s8EyAFiIAEOC5uXRo+ga1o3cGj/AsiOXgiUAsBABlpT8Lfnu/3GHp5Lp8dVegK2QsWvBgijzd+TKFznZow0/duyXIxe/l6g81AYiZ3J75Oh3wc/3vpMvvJ937NgjuTM3vRgtmb9zpeJjnW7u+7/KyZMnaygX5frsrDxM04cDKxFgCbl9eL10rRiTpY7PqZW/JCM9GRnITVdoiZiXe3/ZK/3ZXnl97xHvgHpccltXSkYvOa4ckfPBecHtCzn58OWsv1xrc0Onvded2i69ZQ1GeraflTnvPacn3pSe0PLSY+lw9+wBL7g3ycvZTOgz6JZl6zYVWof6ZZOs6zWfqT42LMe+u0eLUSSCAEvENRlboQcAGimUm785JdtXZqTnn85UbIH44PSQFzQ9XiCFn3FDcmsKB93MlhN+6MzPe1WEB5OyMQist4aGZcPwlHzvV9Pm5eafNkrWPxCvl117fyfrvMeu+9UK77FjW4IwG5SJu/r+KZI/L7uyhc+sq2tITgeLw+bvXJCxV7uD53TLqwcrnWwA7UOAJWDuxJZirSAzOCG3g+Wp9t3/kg0rS7UlPSg+v3lCpsuPiubguv7wos/t0ki28NqBgzITLAsH21vHyiPxqoz2BY/9qbwWMS3jqwuPDUUdwTta6TOrFGC+/LTkBkxtrUdGLhFhiBcBFrtSC7tCqXKfJy1ufyMnTx6R/ds2yPPdpc+nPOBN+K8enw6WhMzflIsnz8p398IH0tLBeHEQNfpYp6sxwDz587uCWqz3XXkfFBGGOBFgMctfHZUVXWtk/HBpx8/uOs+OHzZ/R86MFO5p6WXWcEPEQuOOLlmTuxEsqYYAq1/tASY3crLGf55X1uS8VwLxIcBiNScntmSCezTmPphXMoMywXXEMqWDaDisTg8VlkXWwCIRYPWrI8Cmx2W1/zyvLLh0C7QfARan24dlfajhht8SMdj5V3AdcZG7E4P+ZzNwsHRYNDWwqHtgRTeuytVi00ECrH61B5jpr6eFbRhxI8Bik5fzu7ILm87PnZAtpkl3dpfQIHGh/Klt3mez8BJi/vRQcGlxhYxejfrAHsjk0F4pvYQAq18tAZaXe5dHZcBsvz3b5Wxa+hvAGgRYXIKwWn84XG8IQs0/UGRkkOuIIQ/k1LasZAYOeofTkHAT754hObWgwca8XBsfkFULagIEWP3CAbZCfrdf+9qVOjIf2b9DNhX712Wk992cfE2ffCSAAIvJtbEV0pXZIifKz1KvjckK/0DglbR1bL5xSF7t7pLu5zfLWHjUi/w9uTw6IBkvoBaPk2j6gQWfWSYrL28KOtgu615cEwgF3rZT5TW2UlP5jZPlX0zpsYUnHWkQDrAeWbfNdGIOPue+ZdLtP+aV7n7ZtP9YWctPIB4EWByCg2j0PYJws/qUdWy+/bm8GW4yn+2Vvr5eyXZ7oTQ8JTcrDlWUl1unhqU/9Fot3f17i6NwqO+OejWFftPZ1it6sN1xQM7eDR4LjdLRlemV17dVfywdwgFW4RLi/B25kHu3NKqJ9xn9fvIWrWkRKwIsBrcnBr2D4d/JPx4MjydXKp8PBw0TvJK6js3zD+X6RfNZnJUrM/cjxzOMVHyt97pbiyfAvP1N6TMulb/K915lq9HH0qGGAAssqA1XvC8JtAcB1naF5vKZle+ELsOUl3+UgeLQPXRsRtJqDzAv7hd0zGf2AMSJAGuzOe8MNVtDKIWb1NOxGcmqJ8BCXRu0pK/FCxJEgLVV4ezUDC67pHDrusxGmaRVFxJTX4AVx6D0ChOQIk4EWBvlL41ITx2XBBd0bB69WrUWtnPnTlm+fDmFUrV88803wVZTizoC7MEp2Va8/M2AvogXAdYu+WkZ14PAf/u32pvGh4flyQxIbtFQ7CU///yzPPXUU8GBg0JZugwODgZbTi1Ko/QvFWD5e5dltDgafUZ6h9MzdxrsQIC13G25kBuWDc+b5tsZWfnOHskdX6IV29z38tfjOfkw3ORbizbf3ntE/hrxwk8++cR/zi9+8QvJZrMyOTkpZ86coVCK5a233lqwPVWrhRVmZD4ie9f1hF7XLc9v2CY7wp2Zj+yXbRtWStY0oe9+XjYfvpaq2athBwKs5b6To5EtDZfoR3T3rByIfE2hHCh7oU7U+Mwzz/gHj6efftr/d+vWrcGjQHQN/b333gsejVaYkTl6G1xc9ssRL8wuXq+j2wPQYgSYgz799FP/gPSb3/xG/vznPxcPUOfOnQuegbQzNfRweeKJJ+SHH34IngG4jwBzjNa+NLj0gKRBpt544w3/5+eee64wjT5S7fHjx4tqX6+88or/7/vvvx88C3AfAeaYP/7xj/6BSC8hmrD66aefigcsPfNGuoVr6PqvlqmpKf/fJ598UmZnZ4NnAm4jwBzyt7/9TX77299GBpUJNr1M9O233wZLkTblNXT9V4t68cUX/f8PDQ35PwOuI8AccvToUf8ApLUtvUlfzlwm6u/v98MO6WNCS7cRDTP9vxZ1/Phx//+//OUvI7cfwDUEmEOqnUHrDXq9RKTPOXDgQLAUaaEnLdppWb9/U0PX/2tRS9XgARcRYI4wZ8/V7mHs27fPf56eZf/444/BUqSBuYwcrqHrz1qM8HNo8APXEWCOMJcHP/jgg2BJND3LNjW1119/PViKTheuXekQY4b+rMXQ55W3YgVcRYA5QEdV0ANOrf14Lly44D9XX6P3zdD5zP3R8hq6LtMSFm6lSC0MLiPAHKA1KT3gbN68OVhS3UcffeS/Rpvbc8O+81W6P6rLtISFWyrmcrlgKeAeAsxyOn6dOQjVM6K4dmY1N/TrCT64Z6n7o2bbKWdG6tDLjnpZEXARAWY5HUVcDzT1jSZeYDqvatHLkOhM2m1Cv+OoExXz/ZcLj5X42WefBUsBtxBgFtP7XeZe1uXLl4Ol9dEBXPX1eqbN/Y7OU+3+qD6mJYq5zKyXHwEXEWAW0zNqPcBoC8RG6TBTZuT6cOs0dAbTOrXSZWJ9TEsUvdxo+g3qZUjANQSYpfTgYmpfzV7+Cw8zVd/MvLCZzj5gAqrS92oer0S7ZejjzZwkAUkhwCylrcn0wNKqyzuvvfaa/36rVq3ipn2HqOX+qD6upZLwZWruk8I1BJiF2nFpZ2Zmxh+dQ99zdHQ0WApX1do61TxnKeZStZ7kAC4hwCxkmji/8MILwZLW0ODS99Ug00CDu0zta+3atcGSaPocLUupNQwB2xBglgk3b9Z7V62klw71EqK+N2fb7qrnsp8Jpmqa6a4BJIUAs4ypJbWrg6meYZuDX6sDEvGop3WqPk9LNdpNQ5+n20Ytw5UBNiDALBIe4qedA62Gh5nSZvZwR7j2pR3Vq9HnaalFtSb5gG0IMIvENciqvrcZZko7OsMd9bZO1edqqUW4U3T5kFSAjQgwS+jlQjMdhs7p1W7mYKWlljN5JK+R1qnmO65VpUGBARsRYJaImoyw3cy9FK2N6eC/sJupfdXTOlWfr6VWtU6cCtiAALOEHpT0wBHnVO8alGaYKb0vBnvpd2VqX/U0vtHna6nHc889F/u2CDSCALNAkme9OhK5/m6976ETYcJOjU5/oq/RUo8krgYAjSDALJD0fQczYaauB8NM2SfcN7DeCSj1NVrqoduAaeTDqC2wGQGWsHDLrx9//DFYGq/wMFNxNCBBffQ70e+mkdap+jot9YqrRSzQDAIsYbb0vTlw4IC/HnoZk46s9mi2b6C+Tku9wr9Xtw3ARgRYgvSekx4gbBj9QC8bmZl9mVrDHs3WhPS1Whphan7tGhUGaBYBliDbxp/79ttvi6M8MMxU8jQ0TC1o9+7dwdL66Gu1NCJ8743tATYiwBJi6wjgH3/8sb9OeuCiH1CyWtEa0GxjjTLbQ6tnRgBagQBLiK1zMOllKtMP6I033giWIm5a+zIjszTTH0tfr6VRjYz+AcSFAEtAPdNhJCE8zNTk5GSwFHEytS8Nj2YGXDbfYzPMCCA6FQ9gEwIsAVu3bvUPCDY3lnj//ff9dXz22WcZZioBreobqO+hpRnazcLmEy6kFwEWM1cuyeg9Fw0vXc8PPvggWIo4tHJkFn0fLc2qZw4yIC4EWMzM5Zhap8NI0tGjR/111bNvhpmKj6l9aU29Wfo+Wpp1/fr14nvZ1OgI6UaAxSjcLFnHIHSBaeqvDTvoC9R+X375pf95t6pvoAmdVrCt2wdAgMWo0QFZk6TDW5nQZXTy9mv1yCz6XlpaIdz1Q/sMAkkjwGKizdNd7RQaHmZKLyWhPcKtP1s1Mot5v1ZZu3at/35JD30GKAIsJq4PjmqGmXrppZeCJWg1MytAKy/R6ftpaZXw4NOMmYmkEWAxCA+M2siArDbQmpdpPcngrq3XrpFZzHu2kjmZSWr6H8AgwGIQHhLIxdqXYe7h6d+R1NQvnapdDST0PbW0UpITsAJhBFibtWpIIBvo32KGmaIlWutogwgTNK3uKGzet9VMU/+dO3cGS4D4EWBtZqbs1wkjGx2Q1SZmChgt2k8MzWtnJ2HzXbVaKwYaBppFgLVZq4YEsomOzKF/k47UwcGrOe0eF1PfV0urddKVBbiLAGujTr1XEB5mqhWjRaSZGXOyXSOz6HtraQfTvcLVlrVwHwHWRqZTaice5E04a2GA18bEMS6m+Y7aoRNa18JtBFibpKG/jM4Xpn+jNuzgDLx+cYyLqe+vpV1M/0atkTPUGOJGgLWJTlSpO/Z7770XLOk8WoMwo4vozL2oXbj21c5xMfX9tbRLeHxP10aYgfsIsDZoV6dUG+VyOf/v1Jom4+PVLq5xMc122E7hvwWIEwHWBu3qlGorc69PR2jgMlJ1cdZa9HdoaSedMbrd9/KAKARYi4WbRadlDi2GmaqPqbHEcd9If4+WdnNpnjt0DgKsxdI6c+3u3bv9v1s7bOsU9IimjV2eeeYZ/7OKo+We/h4t7ab39MyJ29TUVLAUaC8CrIV0fECzE+vEhGmiNQnTaVtHVUe0uGcl0N+lJQ5pPXlDcgiwFkr7ZRS9ZGoC3JUZp+MU7jc1OjoaLG0v/V1a4hC+fH7u3LlgKdA+BFiLxNEp1QUmxPUyGcNMLTQ+Pu5/NnGOH6i/T0tc0taACckiwFrE3JjXTr1p9vjxY1m+fLn/WTBrb4leYk1i7ED9fVrikqYuJEgeAdYCdOZcaHJysngQY5ipgqRGbzffQ5zMzNKd3IkfdiDAWmDfvn3+Dqs1D/pBFbz99tvFz4RhpqQ4j1rcsxLo79QSpzQMowY7EGBNCt+YZ0DTEu3camqlH330UbA0nZKclUB/r5a4mc7tOto+0C4EWJPibhbtEnPZTM/E03w/xHQviLv2pfT3aolbkqGN9CDAmqCXC02DBb2MiMXWrl3rfz6rVq1K5eVVcz9QQzyJDt76u7UkIcngRjoQYE1I6sa8S/SgbboXxNX3ySbmUlpSLTL1d2tJgvYF1N+to7Owf6AdCLAmmBvzTCWyNA0u/Zw0yNI0zJQNjRn092tJQlJdB5AeBFiDuMZfOz2QmctJekkxLUztSyf+TIr+fi1JMdPt6FUK7SMItBIB1iCu79fn8uXLxWGG0tBXzpYOvWYdkkIrXbQTAdYAHahXd8ikbsy7SpvT6+emw0xpM/tOZsuQSroOWpJES120CwHWgKRvzLtKD16m1WYnj9IQrn0lPSecWY8k6fdu+gTqJUWgVQiwOukByRwUGGWgfqb2qkWbmHciDWf9+2yYVsR81kkzY4Vqow5Gq0GrEGB1YrTt5pl5o7Q21mk39sNTitgwDqSuh5akaTN6bU6v68JUO2gVAqwOttyYd53e/zKzEndaIxgTzi+99FKwJFlme7WBfte6LmmdLw+tR4DVwVwaSlNT8HY5dOiQ/1lqbSXp+0StEp5W35Y54XRdtNiAOfPQagRYjWy7NNQJXnvtNf/z1DPyTrgvYmMNQ9dHiy10cF9dH1tqqHAbAVajrVu3suO1mHZBMPdFXB9L0tbaha6PFltwIohWIsBqwKWP9jF9hPTzvX79erDUPaaPm22t7HSdtNjEzBWnNXCgGQRYDbj53D56sO/v7/c/XxuanTfC5hm5dZ202ITGUGgVAqyKcPNfbXiA1tODmLms5GJHV5v7OJmgsA3dUdAKBFgVdMCMx86dO/3PWWsyLg2OrP3YTO3LxrH+dL202ObcuXP+eumJCwMCoFEE2BIYAic++lmbqTeSHL29XraP86frpsVGDMmGZhFgS2AQ0niZ+bO0uNBYRrcJ20daN5+njaampvx101rYjz/+GCwFakeAVeDCwakTmX5Czz77rPWz+JoTHK2l23qCo+unxVZMS4RmEGAVMBFfMjS0zInDBx98ECy1j94PNZc8bZ5tWNdPi620pq3rx8SwaAQBFsGVg1OnOnr0aPHAa+swU9pcXtdPT3Bsrimaz9FW7GtoBgEWQUfL1h1Km8/bfhmrU73++uv+d/Dcc89Z1/ozfNDV1pM203XUYjNXTgZgHwIsAtflk6c39U3/O9vOzE0N0YXLXrqeWmymJwTmsvHo6GiwFKiOACvDNXl7HDhwwP8utJWaTcNMuXSCo+upxXa0+EUjCLAyOliv7kjaGg7J0jNzM8yU/msDc4KjoerCCY6uqxbb0eoXjSDAQkw/JEYHsIfWvPT70O9Fa2RJM4HqSudbXVctLmDUG9SLAAvRiSp1B9LRsmEPc2DTm/xJdnh18QRH11eLC7QBh37Hur62DYoMOxFgAUbItpdeXtLWiPrdJDn4q4tDH5lt2hVmWpoXXnghWAJURoAFGB3bbmbwVy3aCjBu2h/N/H6XTnDMOrtC7ysy9x5qRYB59HKQ2dH1QAk7mVmx9WZ/3P2FXD3BMdu1S3QEFl3nVatWBUuAaASYRy8J6Q7j6oSKaaGhpWMk6ncVZytRly8vm/V2iZ5QmoY7et8RqCT1ATYzM1PcWXR0bNjNNGOP8+Bmal/ayMc15rNyDSeVqEXqA0w7o+qOop1T4QadL0y/M23Y0e5Or67XBnS9tbgmXOu9fPlysBRYKNUBxg1jN2lTetPc+uOPPw6WtofrNQETAi6iYRWqSXWA6cFPdxDtOAm3jI+P+9+d1o7adV8qXPuanJwMlrpF112Li7TmZdb/22+/DZYCJakNMDpNus8M+6WjY7Rj5IZOuLxsAsBVLva9Q3xSG2C7d+/2dwxt1cawNW7SYabMJeBWj5/XKZeXdf21uIrh3bCUVAYYA4d2DjPMlE69oi1KW8XUvlwfEUL/Bi0uY3ojVJLKAGPqhs6htWcNGf0+dRLMVtDLy2YuMtcvL+vfoMVlpusEUxyhXOoCTA94y5cv93cIvYwI9+kwT6axxaFDh4KljeukUdH179DiOjMWpo6VCBipCzCmL+9MZvihZ555Rn766adgaf3CjXtyuVywNDm6Hq0ormO/RZTUBZieVeuOsHPnzmAJOsHjx4+Lw0w102Jt3759/nvYcnlZ16UVxXXhKydaQwZUqgKMa+mdTftqmQP2l19+GSytnY2Ne8zf02zpBNy7RrlUBRitmTqfGWZKz9brPcjZeIDU9TGlEc281jY2nmAgWakJMD0j1w1fb/a3srk17KL3v8w9rHpu+OslKnNwtOkSla6PKY1o5rU2Mpd46b8JlZoAo0d/epgb/nqyUutAsLY2EtB1MqURzbzWRuFGNq53cUDzUhFg4dl8dfQGdD5zwqKXjaudqevjpnGPbQ0EzHarpRHNvNZW4TFMqYWlWyoCjFGt00eHHTJDQY2OjgZLo2nfMX2ePr+ZJvjtoOtlSiOaea2tmEUCRscHmMuz6aI55n6JHuyWuu9pc+Mes+1qaUQzr7VZJwy0jOZ1fIC99957/obOzK7po5eXTDhVmk3Z9q4Vum6mNKKZ19qMmdShOjrAXJ9NF80LDzMVddPfBNzWrVuDJXbRdTOlEc281nauTzaK5nV0gL3//vv+Bq7zRSG9tDm9bgfaei18jyvctcLWqTp0/UxpRDOvtZ02yDJ/nzbUQvrEtGXPy8PZWf8STbXysEX9R/W9uNELpcNMmWGI3n777WCpG10rzAFaSyOaea0LWtFAK//ofvH4c/9RPlhq5OXRI0b9sFVMW/ZXsqevT3qzmeIOVSrdssx7rE/Lsu7QsnWyaf8xuXKnsY2Hm7wI0/skZpvTIafMRIlabO5aYdZRSyOaea0LGm2kNX/zjOSGN8hK/5hUOgbpMSqT7ZV1H+bkiyszMjM1JD1Dp4NXwTYxb9nz8vW+FcUNbvW//l9vSZn5h3L9zJi822vCrlv6h0/JrfIToyVoZ8dOmc8JrWMa9Ght7LXXXvP/b3vXisI+0HgINfNaV2gDHf0bw7XrivK35NRwv3R7z8/0vitjZ76X8krX/J0rcix4jv/5bZyUueAx2CX+Lft0oWakZU3uRrAwQv6enNreK5nguZmBnEzXGGKdNJ8TWkfvf+l0K2b702J714rwujaimde6wtSmq97LfPC1jA4UTox7tkxWPSl+cH5EVma8z29NTpY4UiFB9gaY74H39J7i87Uq/yB4pBK932GGmtFamJ5tUyimaIA9/fTT8utf/1p+9atfRT7HpmK2fS1Rj1crzbzWpWL+Tm24Fe2GHAzCq6tnRC7VeDJ84+CAZFaPy3TwM+xieYB55k7LULbw/K6uHhmpsuWZEcUpFEr6SqX+fLcnBoOrORnZOFntNDgkf1VGVwwJd8HsZH+Aea6Nle6bZbacWPJ6tDaN1vteFAolnWVRo5z8edllToIzXhjVWPsybn/+uXwV/B92cSLA5Oqo9AWvaWQDBJBeee+YY+6l0yCjs7gRYF4FfshsgF2rZZwL0qjB/MPF/QxrKw8Xt461yfzDiHWupVj+d7XJpZFs8ZjTN3o1WIpO4EiAXZXRPhNgXbJUtwzzHC1It6/29Elfb7Z09q2le1mhz2FEKfVTHJCDNs95+tUeb32XlZp5+yUj2d6Iv2vB39+593JKn0P5fj8nkxtLj9V+zIELHAmwG5JbU9oICTDUY/7yP5cuQS/ZKTUv9y6PykBmjThxnHtwQT5eYbb3JdZ5/qYc26KtedMYYAuPHQRYZ3EkwM7Kdu2P4b8uI9vPBosjmPfWAhSELkFXHVUhL+d3DboRYJ7TQ2Z7rxK6Hd6arvJ+Tw2sk7kRYHcnZDB4TVfXoEzcDZZHMO+tBSioJ8C8Y/3ZT+XAleAHy9UcYJ4bhz6V/23XfJ0ts9R+H74Hlh25FCxFJ3AiwBa0IqrSK968txagoL4Ac0k9AdbJltrv505sKR0/BidkifNfOMaBAJuTE1vMzfUuWX/4drA8mnmeFqCg1gCbl0eLRiO3W/UAS8do6kvu9wsGQ1gvVQ4hEfKSp+uOlawPsPylEekJnl/LEDDmvbUABTUG2N0JGXGsGlM1wOYmZWOH1TqjVNvv/SGhgsd7Ri55kVSrvEznfi9jV0kwG1kdYPl7p2SoJ9gwMwOSq2E0X/PeWoCC2gJMLzUNOBtgq+Vf/09Zv6/rZ2TszZ6Ou2wapep+n5+WnBkLsatHhk7dqyHE8nJr8vfybm66jsBDnGI/yudPbStuaJUDTJszj8mr3cFG2f2qjH1d2/hl5r21AAWhAPvvxxce5P0yI1e+GJM3vZOlWu/L2qIUYEsUAqxg/prkXi3NOfjq2AWpON1g/p5cHvsHWbm9+gDiSE5MR/nCjMwzV47J9pWl+1nZgRE5cvKsXJkJDiQzV+Tskf2y6eWg82UmKy8PT8nNOi7hm/fWAhSEAqxCR+ZlwcmSuwG2+BJi/tEtmdLZHAiwEg2m3LvSa7rl6DFm0w7Zf+SknDzpleM52bNtgzy/rF+Gp26mcuQSl8R0lC/MyBx14Cgvqzdskx17cnL84nV52MDWU/OGjBSp5RLivFz7tzUdFWA+7oFFm7/j1bq9sNqxSdYVjz/rZNOOPZI709ixB/HruKN83RsyUqDWRhz/IZ9+ZvMYUotVDTC5Jn/4Q+ePpc5+n04EGFKgxgBzUPUASwf2+3QiwJACjQSYG/2nCLAC9vt0IsCQAvUHWP7qqAzV3+M1dgRYAft9OhFgSIF6A+yGHBwYcCIQCLAC9vt0IsDQ+bQlntkuqs7IOy/XxgckU2XMTTuER1pP90Sv7PfpRICF/PDDD/L48ePgJ7jOn5HZjEZhtovsRvnTddOBeWG5fvG4jL3b6/dBtLo5vT8j84xcObKlNMyaVzIrt8uxKzMye/+RkyNHnDlzJvhf/Yrfr1eQHgSYR4Nr8+bN8sQTT8jMjFvNqFGZPyNzqI9h7eV3csjm6pc/I3PUegflnc/Exa14+fLl8uKLL8rx48eDJbVrZL+H+1IdYOHgMq8hwIBkaICZ/bDeIDOv04L0SGWARQWXKQQYkIxwgJlSa5CFX4P0SFWALRVcphBgQDKiAsyUakEWfi7SIxUBVktwmUKAAclYKsBMqRRk4ecgPTo6wOoJLlP6+/vllVdeoVAoMZcnn3wycp+MKuVBFn4M6dHRAVZPcFEoFPeKBpleNQkvQ3p0dIB98skn8tRTTy1YRqFQOqMMDg7KN998s2i/R3p0dICpn3/+ua4gO3funH9GR6FQ4i3PPvts5D5ZXsLBZYQfR3p0fIAZtQaZ7kgA4letEUdUcBnh5yE9UhNgRrUgI8CAZFQKsKWCywg/H+mRugAzKgUZAQYkozzAagkuI/w6pEdqA8woDzICDEiGCbB6gsuod79HZ0h9gBkmyHRUcgDxGxoaqju4jEb3e7iNAAPgPPb7dCLAkLhrf1gXPS1IeXF0mhC0H/t9OhFgSNhVGe0rfWdLleyu805O1Ij2C28nSA8CDInKn98lWe+76l62Tjbt2CE7Iso//cPfe99nVkYuBS8CyrDfpxMBhgTl5fRQr2w5dlPmgyWLzcmJLRnpyo4I+YVK2O/TiQBDcuZOyP8cu7r0ZUHvOVsyXdI3ejVYACzGfp9OBBiSk5+X+So3teZObJFMV5+QX1gK+306EWCw2JxMbvS+yxVjci1YEmX+5hnJ7dkk64LWius27ZHcmajLkvNy58ox2bthtbzzWdCecf6mnMl9WHjt6g2yd2rh6/z3Ht4gq/XxdR/K4cv3aEhiIfb7dCLAYK+5SdnofY8rxirEV/6e/GVvv3R398vwsSsyMzsrM1eOyJaewvff8+aETGva/P//lBN7N8jKbKa4bazJ3ZD89IS82dMty7xw6i0+lpFV/mXNvNya/L30ZvTxXslmzHbVI0OnHxR+P6xhvlctSA8CDNa6OzHofY8rJDq/HsjpoR7pygxIzk+pkrnJjcVtYHDirrfEiyN9yu3Dsj5Yvnrbv8g/fzolN4vVreD9/Mc3yr9PDsvmsQtyxzyevyXHNmYLj1epESJ+5vvWgvQgwGCpuzIx6H2Pa3JyI1gSlr80Ij3edxzZN+z2hAz6NaaMvPm5BphxWoaCbaNv39eLXzc9LquDx986FlHLOrtdMv7jG2VyLlgGK7DfpxMBBjvd9ULI+w71Ut9iQdN67/FtpxbFkC//6L7M3n9UFlKXZCRb2Dai37cUcEOng0VhN3Kyxn98jUS+HIkx+7wWpAcBBivdPrze+w7Xy+HbwYIFSkEUGTQV3ZDcmsLrCLDOYvZ5LUgPAgwWui2H13vf4frD3v+iVAmaigiwTmX2eS1IDwIM9gkaW6yPrn55Qvey6uogRoB1KrPPa0F6EGCwzo3cGu/7GxS/AWGkUhB19YzIpejbYJ45OXvoP0Ij2BNgncrs81qQHgQYLBOEzOCEVMwvz7WxFcXvec349OIWhZ4Hp4dk5YIRgAmwTmW2BS1ID75t2OXamKzwDkIbq7VTLzaV19It/cNTcv1hodNW/tEtuZB7V3q7vVrcgquQZ2V78BoCDHAfAQarFGpWtfWzenB6u/QWQ6y8LB4xIz89HgRQl2T/x18WDTWVvzrqh6c+HlWrezC5MegHlvECltE4gKQRYLDINRlb0SWZLSek1n7C8zenZPjlbBAshXDJvvyh/PlaOJ5m5LN3wsNBFUr3sr7CmIgzn8k7fcukO/SYeXzPV97Lv9ojfb3h36HF+z2974gZUhFA/AgwWGReHs7Oyv1HFVtlVOR3XK742rw8uj/rP15e/OfnH8n9iMe0+Fcl5x9GPjY7e18aWFUALUKAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABABwk8l9tDjZzjlA/JgAAAABJRU5ErkJggg==
|
Given that quadrilateral ABCD is a trapezoid as shown in the figure, with an area of 20 cm², what is the height BF of trapezoid ABCD in cm?
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
A
|
17
|
iVBORw0KGgoAAAANSUhEUgAAAbAAAAESCAYAAACcmoDPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACXWSURBVHhe7d1/iBRnvu/x+SPQYdlhE0gvC2Y4wuxhAoncCCIDBpIBMRHCYWRDfhFRMPfgSgJzIF4dDGQ46hXOHIhz/GNgG1zOVcmwZvXAXJxoQHHd+AMvid7EK5N4HDDKqEHDKJeB3j++p77V9XTX9FRP/656nq73Cx50qn9MTXdVfeqpen50CQAADiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAYIX8o+/l4pH9smPHDtmx/4hc/P6R5IPHACAKAYbEPTg/IiszXdLVFS4ZWTlyXh4EzwGAcgQYknXjoAxk+2X42BWZmZ2VmStfyNibPUGIZWXXeephAKIRYEjQA5ncvl1OL6pm3ZbD6ws1scz2s8EyAFiIAEOC5uXRo+ga1o3cGj/AsiOXgiUAsBABlpT8Lfnu/3GHp5Lp8dVegK2QsWvBgijzd+TKFznZow0/duyXIxe/l6g81AYiZ3J75Oh3wc/3vpMvvJ937NgjuTM3vRgtmb9zpeJjnW7u+7/KyZMnaygX5frsrDxM04cDKxFgCbl9eL10rRiTpY7PqZW/JCM9GRnITVdoiZiXe3/ZK/3ZXnl97xHvgHpccltXSkYvOa4ckfPBecHtCzn58OWsv1xrc0Onvded2i69ZQ1GeraflTnvPacn3pSe0PLSY+lw9+wBL7g3ycvZTOgz6JZl6zYVWof6ZZOs6zWfqT42LMe+u0eLUSSCAEvENRlboQcAGimUm785JdtXZqTnn85UbIH44PSQFzQ9XiCFn3FDcmsKB93MlhN+6MzPe1WEB5OyMQist4aGZcPwlHzvV9Pm5eafNkrWPxCvl117fyfrvMeu+9UK77FjW4IwG5SJu/r+KZI/L7uyhc+sq2tITgeLw+bvXJCxV7uD53TLqwcrnWwA7UOAJWDuxJZirSAzOCG3g+Wp9t3/kg0rS7UlPSg+v3lCpsuPiubguv7wos/t0ki28NqBgzITLAsH21vHyiPxqoz2BY/9qbwWMS3jqwuPDUUdwTta6TOrFGC+/LTkBkxtrUdGLhFhiBcBFrtSC7tCqXKfJy1ufyMnTx6R/ds2yPPdpc+nPOBN+K8enw6WhMzflIsnz8p398IH0tLBeHEQNfpYp6sxwDz587uCWqz3XXkfFBGGOBFgMctfHZUVXWtk/HBpx8/uOs+OHzZ/R86MFO5p6WXWcEPEQuOOLlmTuxEsqYYAq1/tASY3crLGf55X1uS8VwLxIcBiNScntmSCezTmPphXMoMywXXEMqWDaDisTg8VlkXWwCIRYPWrI8Cmx2W1/zyvLLh0C7QfARan24dlfajhht8SMdj5V3AdcZG7E4P+ZzNwsHRYNDWwqHtgRTeuytVi00ECrH61B5jpr6eFbRhxI8Bik5fzu7ILm87PnZAtpkl3dpfQIHGh/Klt3mez8BJi/vRQcGlxhYxejfrAHsjk0F4pvYQAq18tAZaXe5dHZcBsvz3b5Wxa+hvAGgRYXIKwWn84XG8IQs0/UGRkkOuIIQ/k1LasZAYOeofTkHAT754hObWgwca8XBsfkFULagIEWP3CAbZCfrdf+9qVOjIf2b9DNhX712Wk992cfE2ffCSAAIvJtbEV0pXZIifKz1KvjckK/0DglbR1bL5xSF7t7pLu5zfLWHjUi/w9uTw6IBkvoBaPk2j6gQWfWSYrL28KOtgu615cEwgF3rZT5TW2UlP5jZPlX0zpsYUnHWkQDrAeWbfNdGIOPue+ZdLtP+aV7n7ZtP9YWctPIB4EWByCg2j0PYJws/qUdWy+/bm8GW4yn+2Vvr5eyXZ7oTQ8JTcrDlWUl1unhqU/9Fot3f17i6NwqO+OejWFftPZ1it6sN1xQM7eDR4LjdLRlemV17dVfywdwgFW4RLi/B25kHu3NKqJ9xn9fvIWrWkRKwIsBrcnBr2D4d/JPx4MjydXKp8PBw0TvJK6js3zD+X6RfNZnJUrM/cjxzOMVHyt97pbiyfAvP1N6TMulb/K915lq9HH0qGGAAssqA1XvC8JtAcB1naF5vKZle+ELsOUl3+UgeLQPXRsRtJqDzAv7hd0zGf2AMSJAGuzOe8MNVtDKIWb1NOxGcmqJ8BCXRu0pK/FCxJEgLVV4ezUDC67pHDrusxGmaRVFxJTX4AVx6D0ChOQIk4EWBvlL41ITx2XBBd0bB69WrUWtnPnTlm+fDmFUrV88803wVZTizoC7MEp2Va8/M2AvogXAdYu+WkZ14PAf/u32pvGh4flyQxIbtFQ7CU///yzPPXUU8GBg0JZugwODgZbTi1Ko/QvFWD5e5dltDgafUZ6h9MzdxrsQIC13G25kBuWDc+b5tsZWfnOHskdX6IV29z38tfjOfkw3ORbizbf3ntE/hrxwk8++cR/zi9+8QvJZrMyOTkpZ86coVCK5a233lqwPVWrhRVmZD4ie9f1hF7XLc9v2CY7wp2Zj+yXbRtWStY0oe9+XjYfvpaq2athBwKs5b6To5EtDZfoR3T3rByIfE2hHCh7oU7U+Mwzz/gHj6efftr/d+vWrcGjQHQN/b333gsejVaYkTl6G1xc9ssRL8wuXq+j2wPQYgSYgz799FP/gPSb3/xG/vznPxcPUOfOnQuegbQzNfRweeKJJ+SHH34IngG4jwBzjNa+NLj0gKRBpt544w3/5+eee64wjT5S7fHjx4tqX6+88or/7/vvvx88C3AfAeaYP/7xj/6BSC8hmrD66aefigcsPfNGuoVr6PqvlqmpKf/fJ598UmZnZ4NnAm4jwBzyt7/9TX77299GBpUJNr1M9O233wZLkTblNXT9V4t68cUX/f8PDQ35PwOuI8AccvToUf8ApLUtvUlfzlwm6u/v98MO6WNCS7cRDTP9vxZ1/Phx//+//OUvI7cfwDUEmEOqnUHrDXq9RKTPOXDgQLAUaaEnLdppWb9/U0PX/2tRS9XgARcRYI4wZ8/V7mHs27fPf56eZf/444/BUqSBuYwcrqHrz1qM8HNo8APXEWCOMJcHP/jgg2BJND3LNjW1119/PViKTheuXekQY4b+rMXQ55W3YgVcRYA5QEdV0ANOrf14Lly44D9XX6P3zdD5zP3R8hq6LtMSFm6lSC0MLiPAHKA1KT3gbN68OVhS3UcffeS/Rpvbc8O+81W6P6rLtISFWyrmcrlgKeAeAsxyOn6dOQjVM6K4dmY1N/TrCT64Z6n7o2bbKWdG6tDLjnpZEXARAWY5HUVcDzT1jSZeYDqvatHLkOhM2m1Cv+OoExXz/ZcLj5X42WefBUsBtxBgFtP7XeZe1uXLl4Ol9dEBXPX1eqbN/Y7OU+3+qD6mJYq5zKyXHwEXEWAW0zNqPcBoC8RG6TBTZuT6cOs0dAbTOrXSZWJ9TEsUvdxo+g3qZUjANQSYpfTgYmpfzV7+Cw8zVd/MvLCZzj5gAqrS92oer0S7ZejjzZwkAUkhwCylrcn0wNKqyzuvvfaa/36rVq3ipn2HqOX+qD6upZLwZWruk8I1BJiF2nFpZ2Zmxh+dQ99zdHQ0WApX1do61TxnKeZStZ7kAC4hwCxkmji/8MILwZLW0ODS99Ug00CDu0zta+3atcGSaPocLUupNQwB2xBglgk3b9Z7V62klw71EqK+N2fb7qrnsp8Jpmqa6a4BJIUAs4ypJbWrg6meYZuDX6sDEvGop3WqPk9LNdpNQ5+n20Ytw5UBNiDALBIe4qedA62Gh5nSZvZwR7j2pR3Vq9HnaalFtSb5gG0IMIvENciqvrcZZko7OsMd9bZO1edqqUW4U3T5kFSAjQgwS+jlQjMdhs7p1W7mYKWlljN5JK+R1qnmO65VpUGBARsRYJaImoyw3cy9FK2N6eC/sJupfdXTOlWfr6VWtU6cCtiAALOEHpT0wBHnVO8alGaYKb0vBnvpd2VqX/U0vtHna6nHc889F/u2CDSCALNAkme9OhK5/m6976ETYcJOjU5/oq/RUo8krgYAjSDALJD0fQczYaauB8NM2SfcN7DeCSj1NVrqoduAaeTDqC2wGQGWsHDLrx9//DFYGq/wMFNxNCBBffQ70e+mkdap+jot9YqrRSzQDAIsYbb0vTlw4IC/HnoZk46s9mi2b6C+Tku9wr9Xtw3ARgRYgvSekx4gbBj9QC8bmZl9mVrDHs3WhPS1Whphan7tGhUGaBYBliDbxp/79ttvi6M8MMxU8jQ0TC1o9+7dwdL66Gu1NCJ8743tATYiwBJi6wjgH3/8sb9OeuCiH1CyWtEa0GxjjTLbQ6tnRgBagQBLiK1zMOllKtMP6I033giWIm5a+zIjszTTH0tfr6VRjYz+AcSFAEtAPdNhJCE8zNTk5GSwFHEytS8Nj2YGXDbfYzPMCCA6FQ9gEwIsAVu3bvUPCDY3lnj//ff9dXz22WcZZioBreobqO+hpRnazcLmEy6kFwEWM1cuyeg9Fw0vXc8PPvggWIo4tHJkFn0fLc2qZw4yIC4EWMzM5Zhap8NI0tGjR/111bNvhpmKj6l9aU29Wfo+Wpp1/fr14nvZ1OgI6UaAxSjcLFnHIHSBaeqvDTvoC9R+X375pf95t6pvoAmdVrCt2wdAgMWo0QFZk6TDW5nQZXTy9mv1yCz6XlpaIdz1Q/sMAkkjwGKizdNd7RQaHmZKLyWhPcKtP1s1Mot5v1ZZu3at/35JD30GKAIsJq4PjmqGmXrppZeCJWg1MytAKy/R6ftpaZXw4NOMmYmkEWAxCA+M2siArDbQmpdpPcngrq3XrpFZzHu2kjmZSWr6H8AgwGIQHhLIxdqXYe7h6d+R1NQvnapdDST0PbW0UpITsAJhBFibtWpIIBvo32KGmaIlWutogwgTNK3uKGzet9VMU/+dO3cGS4D4EWBtZqbs1wkjGx2Q1SZmChgt2k8MzWtnJ2HzXbVaKwYaBppFgLVZq4YEsomOzKF/k47UwcGrOe0eF1PfV0urddKVBbiLAGujTr1XEB5mqhWjRaSZGXOyXSOz6HtraQfTvcLVlrVwHwHWRqZTaice5E04a2GA18bEMS6m+Y7aoRNa18JtBFibpKG/jM4Xpn+jNuzgDLx+cYyLqe+vpV1M/0atkTPUGOJGgLWJTlSpO/Z7770XLOk8WoMwo4vozL2oXbj21c5xMfX9tbRLeHxP10aYgfsIsDZoV6dUG+VyOf/v1Jom4+PVLq5xMc122E7hvwWIEwHWBu3qlGorc69PR2jgMlJ1cdZa9HdoaSedMbrd9/KAKARYi4WbRadlDi2GmaqPqbHEcd9If4+WdnNpnjt0DgKsxdI6c+3u3bv9v1s7bOsU9IimjV2eeeYZ/7OKo+We/h4t7ab39MyJ29TUVLAUaC8CrIV0fECzE+vEhGmiNQnTaVtHVUe0uGcl0N+lJQ5pPXlDcgiwFkr7ZRS9ZGoC3JUZp+MU7jc1OjoaLG0v/V1a4hC+fH7u3LlgKdA+BFiLxNEp1QUmxPUyGcNMLTQ+Pu5/NnGOH6i/T0tc0taACckiwFrE3JjXTr1p9vjxY1m+fLn/WTBrb4leYk1i7ED9fVrikqYuJEgeAdYCdOZcaHJysngQY5ipgqRGbzffQ5zMzNKd3IkfdiDAWmDfvn3+Dqs1D/pBFbz99tvFz4RhpqQ4j1rcsxLo79QSpzQMowY7EGBNCt+YZ0DTEu3camqlH330UbA0nZKclUB/r5a4mc7tOto+0C4EWJPibhbtEnPZTM/E03w/xHQviLv2pfT3aolbkqGN9CDAmqCXC02DBb2MiMXWrl3rfz6rVq1K5eVVcz9QQzyJDt76u7UkIcngRjoQYE1I6sa8S/SgbboXxNX3ySbmUlpSLTL1d2tJgvYF1N+to7Owf6AdCLAmmBvzTCWyNA0u/Zw0yNI0zJQNjRn092tJQlJdB5AeBFiDuMZfOz2QmctJekkxLUztSyf+TIr+fi1JMdPt6FUK7SMItBIB1iCu79fn8uXLxWGG0tBXzpYOvWYdkkIrXbQTAdYAHahXd8ikbsy7SpvT6+emw0xpM/tOZsuQSroOWpJES120CwHWgKRvzLtKD16m1WYnj9IQrn0lPSecWY8k6fdu+gTqJUWgVQiwOukByRwUGGWgfqb2qkWbmHciDWf9+2yYVsR81kkzY4Vqow5Gq0GrEGB1YrTt5pl5o7Q21mk39sNTitgwDqSuh5akaTN6bU6v68JUO2gVAqwOttyYd53e/zKzEndaIxgTzi+99FKwJFlme7WBfte6LmmdLw+tR4DVwVwaSlNT8HY5dOiQ/1lqbSXp+0StEp5W35Y54XRdtNiAOfPQagRYjWy7NNQJXnvtNf/z1DPyTrgvYmMNQ9dHiy10cF9dH1tqqHAbAVajrVu3suO1mHZBMPdFXB9L0tbaha6PFltwIohWIsBqwKWP9jF9hPTzvX79erDUPaaPm22t7HSdtNjEzBWnNXCgGQRYDbj53D56sO/v7/c/XxuanTfC5hm5dZ202ITGUGgVAqyKcPNfbXiA1tODmLms5GJHV5v7OJmgsA3dUdAKBFgVdMCMx86dO/3PWWsyLg2OrP3YTO3LxrH+dL202ObcuXP+eumJCwMCoFEE2BIYAic++lmbqTeSHL29XraP86frpsVGDMmGZhFgS2AQ0niZ+bO0uNBYRrcJ20daN5+njaampvx101rYjz/+GCwFakeAVeDCwakTmX5Czz77rPWz+JoTHK2l23qCo+unxVZMS4RmEGAVMBFfMjS0zInDBx98ECy1j94PNZc8bZ5tWNdPi620pq3rx8SwaAQBFsGVg1OnOnr0aPHAa+swU9pcXtdPT3Bsrimaz9FW7GtoBgEWQUfL1h1Km8/bfhmrU73++uv+d/Dcc89Z1/ozfNDV1pM203XUYjNXTgZgHwIsAtflk6c39U3/O9vOzE0N0YXLXrqeWmymJwTmsvHo6GiwFKiOACvDNXl7HDhwwP8utJWaTcNMuXSCo+upxXa0+EUjCLAyOliv7kjaGg7J0jNzM8yU/msDc4KjoerCCY6uqxbb0eoXjSDAQkw/JEYHsIfWvPT70O9Fa2RJM4HqSudbXVctLmDUG9SLAAvRiSp1B9LRsmEPc2DTm/xJdnh18QRH11eLC7QBh37Hur62DYoMOxFgAUbItpdeXtLWiPrdJDn4q4tDH5lt2hVmWpoXXnghWAJURoAFGB3bbmbwVy3aCjBu2h/N/H6XTnDMOrtC7ysy9x5qRYB59HKQ2dH1QAk7mVmx9WZ/3P2FXD3BMdu1S3QEFl3nVatWBUuAaASYRy8J6Q7j6oSKaaGhpWMk6ncVZytRly8vm/V2iZ5QmoY7et8RqCT1ATYzM1PcWXR0bNjNNGOP8+Bmal/ayMc15rNyDSeVqEXqA0w7o+qOop1T4QadL0y/M23Y0e5Or67XBnS9tbgmXOu9fPlysBRYKNUBxg1jN2lTetPc+uOPPw6WtofrNQETAi6iYRWqSXWA6cFPdxDtOAm3jI+P+9+d1o7adV8qXPuanJwMlrpF112Li7TmZdb/22+/DZYCJakNMDpNus8M+6WjY7Rj5IZOuLxsAsBVLva9Q3xSG2C7d+/2dwxt1cawNW7SYabMJeBWj5/XKZeXdf21uIrh3bCUVAYYA4d2DjPMlE69oi1KW8XUvlwfEUL/Bi0uY3ojVJLKAGPqhs6htWcNGf0+dRLMVtDLy2YuMtcvL+vfoMVlpusEUxyhXOoCTA94y5cv93cIvYwI9+kwT6axxaFDh4KljeukUdH179DiOjMWpo6VCBipCzCmL+9MZvihZ555Rn766adgaf3CjXtyuVywNDm6Hq0ormO/RZTUBZieVeuOsHPnzmAJOsHjx4+Lw0w102Jt3759/nvYcnlZ16UVxXXhKydaQwZUqgKMa+mdTftqmQP2l19+GSytnY2Ne8zf02zpBNy7RrlUBRitmTqfGWZKz9brPcjZeIDU9TGlEc281jY2nmAgWakJMD0j1w1fb/a3srk17KL3v8w9rHpu+OslKnNwtOkSla6PKY1o5rU2Mpd46b8JlZoAo0d/epgb/nqyUutAsLY2EtB1MqURzbzWRuFGNq53cUDzUhFg4dl8dfQGdD5zwqKXjaudqevjpnGPbQ0EzHarpRHNvNZW4TFMqYWlWyoCjFGt00eHHTJDQY2OjgZLo2nfMX2ePr+ZJvjtoOtlSiOaea2tmEUCRscHmMuz6aI55n6JHuyWuu9pc+Mes+1qaUQzr7VZJwy0jOZ1fIC99957/obOzK7po5eXTDhVmk3Z9q4Vum6mNKKZ19qMmdShOjrAXJ9NF80LDzMVddPfBNzWrVuDJXbRdTOlEc281nauTzaK5nV0gL3//vv+Bq7zRSG9tDm9bgfaei18jyvctcLWqTp0/UxpRDOvtZ02yDJ/nzbUQvrEtGXPy8PZWf8STbXysEX9R/W9uNELpcNMmWGI3n777WCpG10rzAFaSyOaea0LWtFAK//ofvH4c/9RPlhq5OXRI0b9sFVMW/ZXsqevT3qzmeIOVSrdssx7rE/Lsu7QsnWyaf8xuXKnsY2Hm7wI0/skZpvTIafMRIlabO5aYdZRSyOaea0LGm2kNX/zjOSGN8hK/5hUOgbpMSqT7ZV1H+bkiyszMjM1JD1Dp4NXwTYxb9nz8vW+FcUNbvW//l9vSZn5h3L9zJi822vCrlv6h0/JrfIToyVoZ8dOmc8JrWMa9Ght7LXXXvP/b3vXisI+0HgINfNaV2gDHf0bw7XrivK35NRwv3R7z8/0vitjZ76X8krX/J0rcix4jv/5bZyUueAx2CX+Lft0oWakZU3uRrAwQv6enNreK5nguZmBnEzXGGKdNJ8TWkfvf+l0K2b702J714rwujaimde6wtSmq97LfPC1jA4UTox7tkxWPSl+cH5EVma8z29NTpY4UiFB9gaY74H39J7i87Uq/yB4pBK932GGmtFamJ5tUyimaIA9/fTT8utf/1p+9atfRT7HpmK2fS1Rj1crzbzWpWL+Tm24Fe2GHAzCq6tnRC7VeDJ84+CAZFaPy3TwM+xieYB55k7LULbw/K6uHhmpsuWZEcUpFEr6SqX+fLcnBoOrORnZOFntNDgkf1VGVwwJd8HsZH+Aea6Nle6bZbacWPJ6tDaN1vteFAolnWVRo5z8edllToIzXhjVWPsybn/+uXwV/B92cSLA5Oqo9AWvaWQDBJBeee+YY+6l0yCjs7gRYF4FfshsgF2rZZwL0qjB/MPF/QxrKw8Xt461yfzDiHWupVj+d7XJpZFs8ZjTN3o1WIpO4EiAXZXRPhNgXbJUtwzzHC1It6/29Elfb7Z09q2le1mhz2FEKfVTHJCDNs95+tUeb32XlZp5+yUj2d6Iv2vB39+593JKn0P5fj8nkxtLj9V+zIELHAmwG5JbU9oICTDUY/7yP5cuQS/ZKTUv9y6PykBmjThxnHtwQT5eYbb3JdZ5/qYc26KtedMYYAuPHQRYZ3EkwM7Kdu2P4b8uI9vPBosjmPfWAhSELkFXHVUhL+d3DboRYJ7TQ2Z7rxK6Hd6arvJ+Tw2sk7kRYHcnZDB4TVfXoEzcDZZHMO+tBSioJ8C8Y/3ZT+XAleAHy9UcYJ4bhz6V/23XfJ0ts9R+H74Hlh25FCxFJ3AiwBa0IqrSK968txagoL4Ac0k9AdbJltrv505sKR0/BidkifNfOMaBAJuTE1vMzfUuWX/4drA8mnmeFqCg1gCbl0eLRiO3W/UAS8do6kvu9wsGQ1gvVQ4hEfKSp+uOlawPsPylEekJnl/LEDDmvbUABTUG2N0JGXGsGlM1wOYmZWOH1TqjVNvv/SGhgsd7Ri55kVSrvEznfi9jV0kwG1kdYPl7p2SoJ9gwMwOSq2E0X/PeWoCC2gJMLzUNOBtgq+Vf/09Zv6/rZ2TszZ6Ou2wapep+n5+WnBkLsatHhk7dqyHE8nJr8vfybm66jsBDnGI/yudPbStuaJUDTJszj8mr3cFG2f2qjH1d2/hl5r21AAWhAPvvxxce5P0yI1e+GJM3vZOlWu/L2qIUYEsUAqxg/prkXi3NOfjq2AWpON1g/p5cHvsHWbm9+gDiSE5MR/nCjMwzV47J9pWl+1nZgRE5cvKsXJkJDiQzV+Tskf2y6eWg82UmKy8PT8nNOi7hm/fWAhSEAqxCR+ZlwcmSuwG2+BJi/tEtmdLZHAiwEg2m3LvSa7rl6DFm0w7Zf+SknDzpleM52bNtgzy/rF+Gp26mcuQSl8R0lC/MyBx14Cgvqzdskx17cnL84nV52MDWU/OGjBSp5RLivFz7tzUdFWA+7oFFm7/j1bq9sNqxSdYVjz/rZNOOPZI709ixB/HruKN83RsyUqDWRhz/IZ9+ZvMYUotVDTC5Jn/4Q+ePpc5+n04EGFKgxgBzUPUASwf2+3QiwJACjQSYG/2nCLAC9vt0IsCQAvUHWP7qqAzV3+M1dgRYAft9OhFgSIF6A+yGHBwYcCIQCLAC9vt0IsDQ+bQlntkuqs7IOy/XxgckU2XMTTuER1pP90Sv7PfpRICF/PDDD/L48ePgJ7jOn5HZjEZhtovsRvnTddOBeWG5fvG4jL3b6/dBtLo5vT8j84xcObKlNMyaVzIrt8uxKzMye/+RkyNHnDlzJvhf/Yrfr1eQHgSYR4Nr8+bN8sQTT8jMjFvNqFGZPyNzqI9h7eV3csjm6pc/I3PUegflnc/Exa14+fLl8uKLL8rx48eDJbVrZL+H+1IdYOHgMq8hwIBkaICZ/bDeIDOv04L0SGWARQWXKQQYkIxwgJlSa5CFX4P0SFWALRVcphBgQDKiAsyUakEWfi7SIxUBVktwmUKAAclYKsBMqRRk4ecgPTo6wOoJLlP6+/vllVdeoVAoMZcnn3wycp+MKuVBFn4M6dHRAVZPcFEoFPeKBpleNQkvQ3p0dIB98skn8tRTTy1YRqFQOqMMDg7KN998s2i/R3p0dICpn3/+ua4gO3funH9GR6FQ4i3PPvts5D5ZXsLBZYQfR3p0fIAZtQaZ7kgA4letEUdUcBnh5yE9UhNgRrUgI8CAZFQKsKWCywg/H+mRugAzKgUZAQYkozzAagkuI/w6pEdqA8woDzICDEiGCbB6gsuod79HZ0h9gBkmyHRUcgDxGxoaqju4jEb3e7iNAAPgPPb7dCLAkLhrf1gXPS1IeXF0mhC0H/t9OhFgSNhVGe0rfWdLleyu805O1Ij2C28nSA8CDInKn98lWe+76l62Tjbt2CE7Iso//cPfe99nVkYuBS8CyrDfpxMBhgTl5fRQr2w5dlPmgyWLzcmJLRnpyo4I+YVK2O/TiQBDcuZOyP8cu7r0ZUHvOVsyXdI3ejVYACzGfp9OBBiSk5+X+So3teZObJFMV5+QX1gK+306EWCw2JxMbvS+yxVjci1YEmX+5hnJ7dkk64LWius27ZHcmajLkvNy58ox2bthtbzzWdCecf6mnMl9WHjt6g2yd2rh6/z3Ht4gq/XxdR/K4cv3aEhiIfb7dCLAYK+5SdnofY8rxirEV/6e/GVvv3R398vwsSsyMzsrM1eOyJaewvff8+aETGva/P//lBN7N8jKbKa4bazJ3ZD89IS82dMty7xw6i0+lpFV/mXNvNya/L30ZvTxXslmzHbVI0OnHxR+P6xhvlctSA8CDNa6OzHofY8rJDq/HsjpoR7pygxIzk+pkrnJjcVtYHDirrfEiyN9yu3Dsj5Yvnrbv8g/fzolN4vVreD9/Mc3yr9PDsvmsQtyxzyevyXHNmYLj1epESJ+5vvWgvQgwGCpuzIx6H2Pa3JyI1gSlr80Ij3edxzZN+z2hAz6NaaMvPm5BphxWoaCbaNv39eLXzc9LquDx986FlHLOrtdMv7jG2VyLlgGK7DfpxMBBjvd9ULI+w71Ut9iQdN67/FtpxbFkC//6L7M3n9UFlKXZCRb2Dai37cUcEOng0VhN3Kyxn98jUS+HIkx+7wWpAcBBivdPrze+w7Xy+HbwYIFSkEUGTQV3ZDcmsLrCLDOYvZ5LUgPAgwWui2H13vf4frD3v+iVAmaigiwTmX2eS1IDwIM9gkaW6yPrn55Qvey6uogRoB1KrPPa0F6EGCwzo3cGu/7GxS/AWGkUhB19YzIpejbYJ45OXvoP0Ij2BNgncrs81qQHgQYLBOEzOCEVMwvz7WxFcXvec349OIWhZ4Hp4dk5YIRgAmwTmW2BS1ID75t2OXamKzwDkIbq7VTLzaV19It/cNTcv1hodNW/tEtuZB7V3q7vVrcgquQZ2V78BoCDHAfAQarFGpWtfWzenB6u/QWQ6y8LB4xIz89HgRQl2T/x18WDTWVvzrqh6c+HlWrezC5MegHlvECltE4gKQRYLDINRlb0SWZLSek1n7C8zenZPjlbBAshXDJvvyh/PlaOJ5m5LN3wsNBFUr3sr7CmIgzn8k7fcukO/SYeXzPV97Lv9ojfb3h36HF+z2974gZUhFA/AgwWGReHs7Oyv1HFVtlVOR3XK742rw8uj/rP15e/OfnH8n9iMe0+Fcl5x9GPjY7e18aWFUALUKAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABABwk8l9tDjZzjlA/JgAAAABJRU5ErkJggg==
|
As shown in the figure, quadrilateral ABCE is a parallelogram, AB = 3 cm, then CE = ( ) cm
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
B
|
18
|
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEUCAYAAABKw2PSAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAC6hSURBVHhe7Z1/aBxHtu/FErYXdofNggcCttjABBRwxI3ACC/KJTtg7Bj8hwTBLzEWNjgXEpGAFqLnCIcb3ZcIQ7Rga/2HYOc+h72WsXi5yA/Es9YKyCghToTvdex4dYWyehI4NrId5CCZx0Dnj/P6dFfNtEbzo+dH91R1fT9wsFXdPRpVV9e3T9WpUy0EAAAAaAgEDAAAgJZAwAAAAGgJBAwAAICWQMAAAABoCQQMAACAlkDAAAAAaAkEDAAAgJZAwAAAAGgJBAwAAICWQMAAAABoCQQMAACAlkDAAAAAaAkEDAAAgJZAwAAAAGgJBAwAAICWQMAAAABoCQQMAACAlkDAAAAAaAkEDAAAgJZAwAAAAGgJBAwAAICWQMAAAABoCQQMAACAlkDAAAAAaAkEDIAYkX28RmtrAezRJtniGgB0BQIGQIz48qM2akslyWppoRafWckUtbU5x9hyxy1KdvTQ4PhXdD8rPgAAjYCAARBDsjdPU7sUsK4MLYvyHNn7dGtygDoscU7rYZpYgk8G9AICBkAsmaX+cgImsJcylM6J2ADNbYgDAGgABAyAWBJMwJiF0XbvPMe6Jx6IUgDUBwIGQCwJLmA0258TsJb+WVEIgPpAwACIJRAwEH8gYADEkqACZtPN0205AcMQItAJCBhQh+xjb43SY8R0108wAcsujPmCOIZoHoGIQCMgYKD5ZBdo/PhuSsgO17HE7uM0vgAhqx2fgLX10ae3Vn0LmVfp1txlyryzN1fnib3D9PlDqBfQCwgYaC72EmXSliNYPdR38iT19XRQUnoEVjdN3BPngSrxCVhLgnbKRcxbFjJ79ut//Gf637fuE14XgG5AwEBTWc4cphOTK1s6T/vuJPUmvc61fXRBlILqqDCEaG/S3VuTNLg3kRMyeGFANyBgoIks0tX/s1Q0J9/tERFYgKi4GgkaxLFOs/2tORHDPBjQCQgYUJLlTJfToVp04kqF1BCOJ/HIndd5XHYIzN58RP7YEP55be0RbRbprMsd04egAuawcYVOyGFbx3qnkI4D6AEErEnY80OUOnGF0FUUY52mei2y0hkqmZ4vu0LTgy9TMrmT2tpS3rxZYjcdH1/IC5kjbt9dy9Bgjxcg4jpz6zcpcySVnwNK7KXh6+ve6Q8/p+GXffNDvmP6UYWAOa1wqlec61hXpvzZAKgCBKwpbNCVE5bTWRykcQQpFJClhfHD1NraT7OltGN9lgZSFrX2z1BuymZ9hvrceTOL0ue9Dvhvsxfp6r+eoFbRMfdPOtd1vEzvZC7T1asX8/M/yVP0+coUndi9l46dda4pOHZdS08MAgbiDwSsGSxnqEt0Fu0jt7EvE8PZ0f+aoXeEcCT2DtLk3x4WqZt7NNHtiP82YbFppq9Yh71EY51eeeqtKVrxjzPmhs4sSh0Zpy1R+/Z1OuUKYpKG5kWZVlQhYOtT1JsbQmwnxM0AXYCARY5N108lRWfhmHWCKk3zGMGXH1Fb284ta8FaWlrp8ERBkMfCqLtNSLKIqmzMf0z72zrp+JZrlinT5X3e9niQWo9pgO14pG4dOlZOwLILNJbm0QDv3FanXvFCBXQBAhY17lu/Rek0Byl4ncZBjCPm4Xmr6WHa3yo634K1YF5wRzXDXGYJmLsj8+otuviWb54vmaahi1dpzreYefXWHF08e4z2JsQ5LQk6MHqTdJ3xA2YCAYsYd+uK9lFa8Ed+tY/Qbbz2bsU3rOXPzzc34HkLELDiuDsy+xctl7NOXjz+EWUuf03f6R1yCQwFAhYlYl7F87j8Q4kBwsUNRK4F84vV/JBXZ5ajKiW7XNvGECIABgABi5B7E91k+ee8xHwOd5ItB8cJA4kFiG0++mbycvTAqUO3vsrMHS5nRii/lAkCBkBcgYBFxgKNtrdQ8tR1n3dwj8YPep0kR3+NYBxxC+58V6FQ3Rung259tVCroyyFcza8Rf6Bt/zr6yBgAMQVCFhEbDjeRLJIiPLGlRO5yXbLtIXN9l2aOXuSzk7+Lb+eS8BClLZaHfEolKgNmhuQqY84/H2Uri1yYMIifX1xkPYmCl8E8mH0tQqY3wMEAKgDBCwSPE/L6p3aHuWVW2/EZtjC5vkhR9TF357YKxYYX6bM4CFKJffS4Mzd4vNc9hKdP5BPQpu3Vjoxlb+GI/IWJ/MLmVtPTNKiSBHlHrv2L7m9sJLdY/TVavFjVnokdwwAoA4QsAiwb49Qe0uSTpVI6eBGJopO1qyFzVlamT5Lx/bLyLhO6un7iDJ/vUX3yyU2dPFf61w3mKFrW1Ypl4rIe50urdZ+DACgDhCw0JFpozyBqmhY2AwAAIGAgIWNG3RgUe9UuSWiGzTbn8/OgYXNAABQGQhYqIi1XkEWKvvyI7oLnUUxAACA4kDAwsTNJlHJ+5L4vbBgC5tv3LhBn3zyCQxW0X788UfRakojRwBg+pppQMBCw6b5odbqtuPwR+UF8NpeeOGFbQ0YBitmH3zwgWg1pSl2HUwvMw0IWAjYm3fp1kURvm2laeybACHYnMT2f/XmBcyx1sMZ+qpEON7ly5fdc37+85/Trl276Pe//z0MtsX8LzhPP/10RS9MngvT10wDAtZwfPswbbEuKpl/1j//VcSKJa7ds2ePe+xnP/uZ+y8LGgB+XnzxxS3t6PTp0+IICBN+UeAXhmvXrokSEBYQMA3hB4M7pKeeeop6e3vd/7MXFmSeA5jB1NTUFvFie+aZZyibrbjADtQJD9dyfbMXDMIFAqYh/GDwA3L06FF68uSJK17885tvvinOAKYj24i0HTt2uP+eOXNGnAHCQHpfst7hhYULBEwzvvnmm9zDwf9n/G/bX3zxhVsGzMXvoct2Ib2C5557jn766SdxJmg0sp6lwQsLFwiYZnR3e9uJ8L9+Xn31Vbf8+eefxzCR4UjvS7YJNr9nwGH1oPEUel/S4IWFBwRMI+7cuZN7KL766itR6sHbxMuHJ0jINIgnhR66/D/z7rvvuv/nlxzQeAq9L2nwwsIDAqYRx48fL/tA8Js1H+eho8XFRVEKTKLQQ5edKMMvOb/4xS/cnxG12lhKeV/S4IWFAwRME/7+97/n5jQ+++wzUbodOXy0d+9ezHUYht/jkh66/Fny9ttvuz9ziD1oHKW8L2nwwsIBAqYJ/f3e9vqVOh4WOvmWfe7cOVEKTICjUgs7S9mBSvwvQvAKGkMl70sa6rvxQMA0oNqhH16wyuf+6le/ou+//16UgjhTSphk5+mn0lA0qI5K3pc01HfjgYBpQLWT7zx0KLMwHDp0SJSCOCNF6aWXXhIlHrLz9OMfauSE0KB2gnpf0uCFNRYImOLUGv7McyDyjfzTTz8VpSCOsIcu73Whhy47zkJKLccA1RHU+5IGL6yxQMAURz4gzz77bNVBGXLejFMIsRCCeFJuflR2nIXwC448xsszQPVU631JgxfWOCBgCsMLkll8uNHXkgKI00yx8PH1PMQE4kel+VHZaRaDvQG0jdrhoVh+wSw0v6gVO44lDI0DAqYwLFr8ENSThHV6ejr3MOHNL37I+dFSKaLkvS8Gtwc+xsOPHAQCGoN8aSxV76BxoIYVhTsj6X19+OGHorQ2ZHg1d3JIMxUfgsyPVupIZbAPrw8DjQECFh2oYUWRWTW4g6p3/uqHH37IZSN/7733RCnQHR6O4ntaLkFvpY6Uh7P4OA9D8nAkqB8IWHSghhWEOyPulPgBeP/990VpffjTTPHYPdAbnt+U3le5+dEgHSkvz+BzeDgS1A8ELDpQwwoS1lvxvn373M9Fmin9CTo/GqQjbaS3DyBgUYIaVhA5L8Hh0Y1kdXXVzc7Bnz0yMiJKgW5UE50apCPllxnZ6fKwJKgPCFh0oIYVQ25OyUN9LDiNhoWLP5+FLIzPB+EjvS/2mCoF5QTtSBsR8Qo8IGDRgRpWjLDX5vDb9p49e9zf8corr4hSoAv++dEg3lLQjrQarw6UBwIWHahhhZDrctjCXJfDQRwy9dCFCxdEKdCBauerZHsKAi/X4HN37dqFOdI6gIBFB2pYIaLMTycXwHJ4PYfZA/Xxe19Bl0NU05EGWVcGKgMBiw7UsCL4M4RHEebOQ0byQeOFzkB9OCkz369qolNlmwoKL9vg88utLQPlgYBFB2pYEV577TW3wXOoe1Twzs7yQeOUU0BtaolOlfc3KJVyK4LKQMCiAzWsAM3cJVfuI8UPHS+OBWoi1wZyO6lmbWAtHWnQ3b9BcSBg0YEaVoBSmxFGAc97yDRTyMSgLrz4nO9RtdGptXSkvLxCvlDBM68eCFh0oIabjApDNpcuXXJ/P3da2KFXPerJGl9rRypfqrABY/VAwKIDNdxkVBmuOXToUO57YPJeLepZG1hrR7q4uJi79osvvhClIAgQsOhADTcRHr6T3lez12P500ydPn1alIJm4985uZboVHltLUS5rCNOQMCiAzXcRIJshxElMp0Qiyo2OFSDekWkno406qUdcQECFh2o4SbhXzSayWREaXNhEZXBApj7aD6NEBB5fa3I4UusFQwOBCw6UMNNQtXkqXfu3MlFoCEbQ3N59dVX3ftQz9rAejvSegJITAUCFh2o4SageuJUmY2BPUSkmWoOjVob2IiOVHrlb7zxhigB5YCARQdquAmMjY25jZsFQsXFwyywcpde9gJA9DQqjL0RHWlYG6zGFQhYdKCGI8afkFXlzQP9mfF5jzIQHX7vq966l/ewXsLaZDWOQMCiAzUcMXI7DH6bDbIdRjPhISP+rry9BtJMRUcj1wY2qiOV7ZaXWqjebpsNBCw6UMMRo9ObLHdUcq7u7bffFqUgTBqdmaVRHakuIwcqAAGLDtRwhOg4lyC38OAhLV5UC8JFel88B9kIGtmRnjt3zv0snrtVKXJWNSBg0YEajhBdo7nkYlruVJFmKjzY45XZUBq1hKGRHanq0bOqAAGLDtRwROi8nub777/PLbrG8FF4hJGZpdEd6cjIiPt5qq1fVAkIWHSghiNCZjTgjSt1RA4f8fAnJ3oFjSWszCyN7kj93xML3YsDAYsO1HAExCWnnBwCbca+ZXEnLM9GtrtGoloOT9WAgEUHajgC4pLVmz0vuT6JF2ODxhDm3FIYHSlnZ5GRkryXHNgKBCw6UMMhE7d9leTbNw8j8dwYqJ8w82LKttdoVNnHTkUgYNGBGg6ZuO1sy0NGMs2U7h6lCnB9Su8rjACZsDpSXgYivfFm7SSuKhCw6EANhwhvEikf8unpaVGqP/5NFnmdGKgdmeGCPdowMlzI+xQGcXs5axQQsOhADYdInIdZODMH/22cZiqMjtcE2PsKO7tFmB1pozLmxw0IWHSghkOi0SmBVINFi8WL/74333xTlIJquHDhglt/YWZmCbsjlQFKhw4dEiUAAhYdqOGQeO+999wGzG/YcUWmxmKLQ4BK1ESRF1Pen7CIyxKRRgIBiw7UcAiYtNhT7hrMgR3IzBCcqPJiRtGRvvLKK+7vwN5xHg0XsPVZGuxso7bXL9GqKAIeELAQ+PDDD93Gy0NscV/o6U8zxTs5g2BI7yvs4deGdqQl0DlNWhg0VsDu0US35X1eV4aWRSnwgIA1mDAXpaoKpz6SHdidO3dEKShFlB2+2/E5FjYyVRpHJppO4wTMpqVMmizxWRCw7UDAGkyYi1JVRnZgnG4K6YXKE2Vn73Z8joWNHBJlUdZlq6CwaJSA2Utj1GWlKd0FASsFBKyBcMctI/N4GNEkOOOIjLrkxL+gONL7YosiKbL8XVGg02atYdIQAduYo4HWVuqfXafZfghYKSBgDSTsRamqI+f+eE8rpJkqDoebcx1FlcXE7fgciwLOi8i/i19kOF+iqdQvYCxardTaP+v8jyBgZYCANRC5KJVD6E2EPdAXXnjBrQOsC9pOM0LO5e+LgigWZutAvQK2PtVLVtcYLdnez0EFzH74N5o820c9HLHY1kadPX10dvJv9FB8jp/s/Vs0OdxDnbnIxiytXMvQO/v52k7qGZ6mFf8MSHaFrmUGxWfvp3fGbxT93KiBgDWIqMKiVYfTTMnsDMhUvpVmLPp1Oz7HokIG9Jg6CsHUI2D2UobSiTRlpHo5VBawLC2MH6FUIkVHRq/RotP/rC1eo39Je9GLVscQXWdXjv4f/d8rw9TTkdwaGGIv0cThVkrsdMQplT9m7Rml287XsO9O0Vspyz2eSoqISMekh9hMIGANAuP/eWQKrR07diDNlMC/K0GUaZfk74wKE6NwC6lZwBwhyaQT1Du1VRbKC5iMVPTmy7Zwe4TaxPdIDs27RbbNwniPxg+Kz+zso4//xxma9rlb67P91Cqu6/3LFA0eH6Wv7svjNt2d7KWke7ydRhdEcZOAgDUATtTLNxvrYDyePHmSe4gRVu3RrMS3biflWJSYGokrqU3AbJofys97+SkrYPcmqNtyjh0cd2SpAHuehlq9a1uH/1MUeuQ+s+003dw2FLhEY53i+H+bLOJlzdEA/07neO/UhihrDhCwBoA1MNuZmpryHgDHTE/02sykt/IeRAm/wMjF7SZufFqLgLleT+sQzReZVyonYAuj7e6xzrElUVJA9jGtrT2mwteI+aFkyc9kcr/TEdTtLFNGhPZ3ZYoPakYFBKxOOAege6MdiyIsWidee+01t174gTY5zRRn2+B6aMauBLJtRo3c+JSDOkxbF1i1gK3PUF/r1nkvP6UF7AFNdHvHqhWS5UxXic/0gIAZgpyYx+aO2+FQavkm/u6774pSs2j2rgRuJ+RY1PDcJy+n4N8d93yghVQrYHMDFrVYSUq1edGDhbYzIcTEd85HX/KVtQsJBAwgE3cA5No4HkIzsY6avSecbJ/NoNl/e7OoVsByYlGFebqSF5KW3imqZjYKAgZyQ2RRT8zrhpwj3LNnj1HDSX7vi/f+agZuJ+RYM2i299ksqhWw7OM1t65K2eV/EmLS+Uf6D1H2WIzI54TG6qaJbVEceZad9uc6bQIImOFgN9rgrK6u5jqykZERURp/VJgHcjshx5rFG2+84f5+zpFpClXPgVUgJyZFxGbjyoncuq1k30zRdVnu2rLDE/RA/MxAwAzHxAezHli4uL54XoQFLe6osiec2wk51ixMfNGLUsD8ofItLRaljmToq7ub5IaDZB/T4vQg7U200lBBeKM771bqMx0gYDGGXXgTh0bqgT0Qudh73759ojS+SO+L10I1c9jU7YQcayZyqN2E+85EKmAO9tJ5OiADPbaZRenMkidoEnuJxuTcWfK/0+eFAcL2bRppF8d9Ka1yrE9Rr1gHZvVONTUbBwSsBkydnK6XGzdu5N7G4xyZplI2CrcTcqyZmBbsFLWAMfbDG5Q5vpsS4veyJXb30NnPH24Rr9VLr29JB+VaYqfY7XmVLr3ui3r0H3fDHr+kj9pSlBTiJc1Kpuj1S80ZVYGAVYnJ4cGNgMPpue44zVRcM5arlIlCdjLNxqTlJo0WsFyQxyMxNFgOd+Gyc66M8ijA3nzkHS8097Nt2nxU5Bib+3lZelzsmGOPNit+s1CAgFWJyQs0G4E/zdTRo0dFaXzwe18qBKw0siOtB57/kt8l7unWGi1goDSo4SowPUVOo/jss89yDzjnkYwTqmVjl/WsAqakXIOARQdquApMT1LaSGRyW37Y+cUgDrBHrtp+WCp1pP6k13GORIWARQdqOCAqTczHAZ7/4nkwrs+4bEEjs47wHKkq28io1pHKSNS43PNiQMCiAzUcEGzU13g4OwXXKb+R80aYuvP8888r1zmr1pGasPErBCw6UMMBUHFoKC688sorbr3ym7nOQTGqdsyqdaT+Z+n9998XpfECAhYdqOEASE+BOyd4X42F50LksoTTp0+LUv1QdWhMxY5UDrXGdTQDAhYdqOEAmDBu30xkmil+QdAxxFpu3slDoap9fxU7UvbC5Hyyzi8tpYCARQdquAImjNk3G+7QOKck17OOmf1VDg9XtSONc0QvBCw6UMMVeOmll9yGGPe1K82GUwzJNFMcMKMLcoGuit4Xo2pHyqIlo1DjFtULAYsO1HAZVO+c4sZ7773n1jfPjeji7XKCWv7Or776qihRC5U70rhmtYGARQdquAyqd05xg9/KZYSaDnWuQ5Ja+f1UhAM4ZGabOOUVhYBFB2q4BKZl0FYFf848Do5QGR0S1Mq6VBWZ3JnX0MUFCFh0oIZLYFL2bNWQaaZ27dqlbJi1/wVH5UXY8juqCg8Vc4AUf8e47K0HAYsO1HAReL5LNkBTdpFVCRYtGWb99ttvi1K14Ez6/P1Uj5qU7Vhl+B7zd4zL/noQsOhADRdBegA6hnTHhU8//TTXCajm4fALjoyYVP0FR9ahyuhUn0GAgEUHargAzgwhHybV52DizqFDh9z7wPMjKkWpyRccXrumOrp0pHF6aYSARQdquADOtsENLy7DGTrz/fff59JMqZKDkuds5AuODnM2unSk/jnFGzduiFI9gYBFB2rYRxwnlHXn3Llz7v3g+7K4uChKm4duLzg6daRxCZyCgEUHatgHZ8fmRhe3hZU6408z1ewhOx1fcHTqSHmuU37fO3fuiFL9gIBFB2pYENdFlXGAOzM5bMceWbOQmUJ0esHRrSNVOa9kUCBg0YEaFnBWbG5wHL4N70s9ZNohfsngubGo0fUFR7eONA7p2yBg0YEaduAURnLdUdwSi8YFvkdyx+NmzJHomrdPx45Ubl+k6hrASkDAogM17BDnrR3ixBdffJHrGHidWFRwm5Del24vOLK+dEL3LYwgYNFhfA3z27RscKqEaoPSvPnmm+69ijLNlM4vOLp2pNLb5lyJugEBiw7jazju25vHDb5HLF58z9544w1RGh66Dy/r2pHq/FxCwKLD+BrW+U3PVPxppsJOPSS9L+5Inzx5Ikr1QdaTbug8MgIBiw6ja1j3sXaT4f3C+N7xC0hYw3rcicr9yXQdXta5I9V16BYCFh1G17CMduLsCkAvOJReBlbwAvQwiMPwss4dqa7DtxCw6DC2hj/77DO3gem83sR0xsbGcvew0ZuO+r0vnYeXde9IP/zwQ/f787ynLssXIGDRYWwNx2HFPyB66aWX3PvIaaYa2cHFZXhZ946UPV/paeuygBwCFh1G1nBccq4BchP8yvyEjRxmisvwsmznOqNbjlIIWHQYWcNxyXoNPGSWDN56hfdzqxfpffHQpO7BPXHoSHVLogwBiw7jajhO+w4BD34rl8sheBPMepHDknEYXpZtXXd02sYGAhYdxtXw0aNH3YYVh51fQR4eFpYZ6y9duiRKq0e1ZLKyI6zXdMe/U/r09LQobS68YzuLVaHJ78lW7HhYUbMmYpSAcYckG1fYC2BB9HDyV763O3bsoB9++EGUVocM7uEXHRWQHWG9FgfYI+a/RZWXT3+kalBT5cUoLhglYDKP3p49e0QJiBOcKUOmmapl+M8f3NPosPxakd+nXosDHLAj/x5O7KwCcq1gUEPUc2MxRsB0mwgGtcHDOrKz4LV+1aBicI/8W9hqoZ5rVUS1e1SNFwbvq/EYI2ByEviFF14QJSCuyDRTPN8QNAWRP7hHFe+Lkd+JrRbquVZFVLxPQb0weF+NxwgB48WQHGLNjUiXxZCgdtjblotfg2bRkKKnWnCP7PzYaqGea1VFtXnKIF4YvK9wMELAdN1NF9SOfCvmjqPSm7rKwT2yA2SrhXquVRXVIkWZSl4YvK9wiL2A8RCSfBs/d+6cKAUmIN/Uee1QuRcX1aLb/MgOkK0W6rlWZTh1GP9dUewJF4RyXhi8r/CIvYDpuiUDqB/uNGTgzsjIiCjdin99EQeAqIbsBNlqoZ5rVUbFXJWlvDB4X+ERawHzb8dQqgMD8eb06dPu/eeOrliaKdUzPMhOkK0W6rlWdVTLV1nMC4P3FS6xFjD5RqTzfk6gPrhTkR3dvn37RKmHDksrZEfIVgv1XKs68vnmAC1Vnu9CLwzeV7jEVsD8b0O67qYLGoM/zRR3MBLpfXEeRVWRHSFbLdRzreqo+Iz7vxO8r/CJqGV/SR+1tVFbANt/7CSdPHmWLl79mhYf1z5nxfnwuBHxG3ataYVAfJBiJdNM6bK0gr+ftFqo51od4MAs/vt4lEWVOW7phcH7Cp+IWnaWHq+t0eqtSRrosHIPVTI95AmVc4yHc9YWv6arF8/SsZeTZLnnWJR8eZCmV6pvmKqNj4PmwmmmeGEzt4nXXntNm6UV8llhq4V6rtUB/zx3I/eDqwduT+zVw/sKn8hbtj3Tl3uoujLLorQQmx7eyNDhVvnwttLhiSWnNBhx2s8JNA7OYi7b3i9/+Uv337GxMXFUTeT3ZauFeq7VBQ7Q4r+x2khjWTdxMtOI/i+e9YZy2EoLmIf9cIb6fSLWP7sujpRHrv/htFHszsNg0n73u9/Rb37zG/rtb39Lv/71r+nPf/5z0fNUMfmssBU7XsnquVYXk0tl5N8ZFHlNnMw0lBYwxr49Qu3yBlm9NFVBw+QqfRgMZp5VMyRc7HrdzTSUFzCiDbpyIj9v1j66IMqLw+t+2AODwWBmmipbrYDw0UDAHC/MucYL6nCsbYRui3IAAADmooWA0cYU9UoBa0nT+e0JFYDufPlR0WUVQezdqxviQwCok+xjWvz6Ip09eYz259rYfjrGS3vmbtF9N0bEpqXzH9Al9ENNRw8BozkasKSAWTQwJ4pBfHA6jrW1Vbo1OUAduXv9T3RZLrEotNVb9NfRI5Ryzg3ejmJCzWL/EX0pPgIUYD+kGxmvPbUkdlPP8EWau7Uq2tsifX05Q++4y3sStLNtJyVausi0ZqcimgjYMmW6ZKfWQv2zohjEkA2a6pX3up8q3ep74wfNEzBX7J1O9V/f8jpct6466Y//USDyQujnLg7S3kSw+jSS9es05K5PtSj11iSVXnbKy3tGKC3qHP1Q89FEwG7TSJt8UNFw4s5sv7zXATrcBxN0amxJ/GAaNs30yboq7xHYSxmn44WAbWN9NrdUJ9k3Q0EW6sjIaPRDzUcPAbNnqE9cw2+axvZXhlCVgHGWlypSjsm2xxYH8nVVaUjLpuunTtFM0GwARrDuvAAkvfqzumniniiuiE3zQ62UxmR809FDwJw3njZxTUtyiOZFMYgn1QlYdci2xxYHgguY0+1uPqZNCFgOe36IWkVbSJ667shSFdwbp1NB+y8QGloI2MJoe+6aSg1NnscG9CSYgNk0d+ESVfsOHLf2UY2AxZnq76t/falF/bPVKrtN2SzeBpqN+gK2PkN9Sdk4Kz+k8rPZgJ4EE7DbNNKboWr77Li1j8oC9p905kz8Yw+rvq/2LPXnAmCwNEdXFBewdef0VnG+RelM5YS+8rPZgJ5UFjCbHk73UbILAlZewEQ9GRBtUPV9Xc5QV+6axg9Vg2hQV8DsuzT1Viq3rUpqYDZQhJD8bDagJ/lOmdfcbF/PlEqKoR8ImK+uLEqmCupqZ8I7BgHbjq8fgoDpS8RPcZZuns7PZ3X+8VunpABeCX9tlI6kRCeV2EuD0yvbzytBvlFCwHQl3ymXWMi8+DVdHOggCwLmq6s26vu3q3T1at4uZwZpP4eIQ8C2MzeQT08HAdOWiJ5ib0fm3JvzFvO9OabERpZWklL7j9HZSZm6JTj+zwZ6ku+UMQdWiXxdFZ8Dc9csQcC2s2UIsQ/LCzQloqfY25F525t0EXtUZ5xv1Q0ZKEcwAXNa1eZmxTnRQuLWPioJmJuGbQACth1/ejqsLdWV2PXy1TdkoBpBBawW4tY+KguYTZubVQ5jaEj199V26i4/InRwPPAqZqAQEDCgHNUL2AbNnfmfdEv8VI64tY/KAmYGNd3XhdH8ZrntI3S7Knd+nWb/bYruip9Ac4CAAeWoVsB4nic9FCw/S9zaBwTMo7b76qWE8q4LtkzHw6alzBEamA0SFw3CBAIGlKMqAbOXaKwrSaeuB+t64tY+IGAeNd9Xp/1MHJYilqADozcrLNdZp5sjB+hAYLEDYQIBA0phP5z2ZV4pP7luP7xBowcS1JI8RQH1K3btAwLmUdd9tR/S58N7KSGuT+zuoeHJW7T6KB8klH28RovXeE+wDjoyvhB4WQ8IFwgYUAN3k0beKDB//1xL7Ny6OFeaXKTrWDWJWP2frT1b0qxZlB4zt2NtxH3NrlyjzDv7aae7d1qB8SaXg+N04yH8LpWAgAE1cDdpLL60opJVs/QiFu3DFfsUJXNh4Hmzkilqe736JMe646+DRmBvPqqpfYFogYABo4hF+6gk9r6hL1OIxX0FVQMBA0ZRb/vIZjH7ETY//fRT1fVc730FegIBA0ZRa/v48ccf6YMPPqAXX3xRlICwWF1dpWeeeYbOnDkTWMhqva9AbyBgwCiqbR9SuJ5++mn3mmeffVYcAWHBAibvUVAhk+ezAXOAgAGjCNo+CoVLGgQsfPwCJq2SkPnPBeYAAQNGUal9lBIuaRCw8CkmYNJKCZn/HGAOEDBgFKXaRyXhkgYBC59yAiatUMj8x4A5QMCAURS2j6DCJY3P4/Nh4Vl/v3+35PImhcxfBswBAgaMwt8+uLMMKlwwfQyYAwQMGIW/fXzyySf03HPPbSmD6W/AHCBgwCgK2wcvmq1GyHbs2OGeDwvPRkZGitZ9MeN1eZcvX95SBswBAgaMolT7CCpkCOIInyBBHFK4JP5jwBwgYMAoKrWPSkIWhoDZd7+g0eOduSzoVrKDeoanaSVYEorYUU7ACoVL4j8HmAMEDBhF0PZRSsgaLWD2UobSRbLKs1npDC0ZmAi9mICVEi6J/1xgDhAwYBTVto9CIWuogG3M0UAqRW9dvEX3XW/Lps27X3mbdIrv2D664J5qEn4BqyRcEnk+GzAHCBgwilrbhxSyffv2iZJ6sen26Fs0tlBknNC+TSPt4numzxu3txcLWFDhktR6X4HeQMCAUajTPmx6eP9hyX27bo+0ed+zd4o2RJkp8MtCtahzX0GUQMCAUejSPjwBs6h74p4oAeXQ5b6CxgIBA0ahRfsQQ4hW+jwti6LiZGlleph6OndSQvxNiZ2dRSMY7c3v6FrmHXo5aVFXxvvU7Mo0Dffs9q61kvTy4AzdzbmENt2dcT67I0kWH0/spuOZm7QujqqGFvcVNBwIGDAK9dvHOl0f6qBExxBdL6cW6zfdYA+rY4Cmv9t0hyLtzW9pLG25f5uVGqBZvv7JN5Q52kX/sDMfGMICtj47QB2p/XTs5EnqkyLmWLJvxvkG3ndI7uTjfXkRczzC9Pnyktos5N/GBswBAgaMQtn2kX1Mi9cy9M5eT2ha9w/TdMmFYMt0noUq2UczBSJnz/Tl/r70eV/4x8YU9YrytgN/oDMzK47/JrFpaaxLXHeQTn38B/r4c//8XJZunm73jieHaF6UqoT8m9mAOUDAgFGo2T5mqd/3vfLWSiem7m4L9Ni4csL1iNpGbosSHxtzNJhyxM1K0eCcP/wj/zs6x5ZEmY/V85QWx/tmioSWzA9R0j3eTRMPRJlC+OsNmAMEDBiF0u2jwAvzrIvElJXgAU10e8f6Z0VRIG7TSJt3nZwD20pe4Ip+7nKGuop+HzXI1xeee5OAgAGj0KN9ZGlhLC3mnVooOeQftJujAZG5ozoBW6ZMl3cdBAzEBQgYMAp92sc9Gj8ovmv3hON3SfJCU3SoryQQMBA/IGDAKHRqHw8mur3v2jfjmwfLe2BbPbNKQMBA/ICAAaPQqn3MelvrbxWcVTqfFn+D1UtTJUPt79HE8AVfGioIGIgfEDBgFDq1j4XRdkekuqkwGce98YO5v6HVUZvtGmbTUiZNe7YkAoaAgfgBAQNGoU77yNLKtYt08fLXRff98rZZSdCBC0XUgrPYt+b/jsTeQbr49SKtra3R6q2/0uiRFFmtA7Qlit4nUBAwEBcgYAA0g+8v0AHZVq0UHRqepFura44ILdK1zJvUkUjRW0XWgEnspQk67BOxLZY4QOe3bCRm08OZfmoVx62evxSIZpbuT/WJdV7s1U2L7V0E9iZ9+ye50NkRwD99S5vVxI9EgPxubMAcIGAANIV1upk5Tp2+FE+cjzDV2UODmWv0XRCFyK7Q9HAPdSRF+ih3J+dJ+q8tY4r5ocNCcz2xnGe13VxPTMzDbTe1PDH/dwPmAAEDAGgPnnszgYABALQHz72ZQMAAANqD595MIGA+eAvzH374QfwEAIiSsbEx+vHHH8VP1VHPcw/0BQLmwML14osvutesrvq2oAAARMazzz5LTz/9NH3wwQdVC1ktzz3QH6MFzC9c0iBgADQHFjD5HFYrZP5nGJiDkQJWTLikQcAAaA5+AZMWVMj81wBzMErAygmXNAgYAM2hmIBJqyRk/nOBORghYEGESxoEDIDmUE7ApJUSMv85wBxiLWDVCBcMBtPHCoXMfwyYQ6wFDAaDxdvYa+NRE38ZMAd4YAW2a9cu96GAwWDR2lNPPVX0mSxm8MAAE2sBk2AODAD1YREr9kz6DXNgwI8RAiZBFCIA6lJOwBCFCIphlIBJygkZBAyA5lBMwCoJl8R/DTAHIwVMUkzIIGAANAe/gAUVLon/GQbmYLSASfxCBgEDoDmwgFUrXJJannugPxAwHyxkyEYPQHNANnpQLRAwAID24Lk3EwgYaDI2XT+V3HLfSlpXhpbFVQD48bcTYA4QMNBc7Ot0Kpm/Z+WsfXRBXATAVvztBJgDBAw0lY0rJ8hqSdDeY2fp4tWrdLWI/ftgp3M/2wn6BUqB595MIGCgiWzQ1Ik0jS1kxc/FeEAT3c79bB8l6BcoBZ57M4GAgebx4N/p7MQ98UMJHkxQt3MvuzKY/QKlwXNvJhAwoDT3xg8697KLoF+gHHjuzQQCBhTmHo0fdO7lwXHnf6XI0sr0MPV07qSEuO+JnZ3UMzxNKwUjk/bmd3Qt8w69nLRyHl12ZZqGe3Z711pJenlwhu7a7iEHm+7OOJ/dkSSLjyd20/HMTVoXR4E64Lk3EwgYUJd743TQuY8Hx0vI1/pNGj2QIKtjgKa/23TkhkXqWxpLW+79t1IDNMtq8+Qbyhzton/Ymci1DRaw9dkB6kjtp2MnT1KfFDHHkn0zjkit0/WhDkru5ON9eRFrsSh9Hu6gasj7ygbMAQIGlGU50+Xcx4NUXL+W6TwLVbKPZgpcInumL9cG0ud9qcE2pqhXlLcd+AOdmVlx/DeJTUtj/Pv4+EE69fEf6OPPH7qi6JGlm6fbvePJIZoXpUAN5P1mA+YAAQOKskyZLuc+dk/QA1Hixwu/d4Ro5LYo8bExR4MpR9ysFA3ObYhCZpb6RdvoHFsSZT5Wz1NaHO+byUtXjvkhSrrHu2mi2JcCTQPPvZlAwICaLGeoy7mH3UWVQoTWO8f7Z0VRIG7TSJt3XfGoxrzAFf1c8Z0QVKIe8plnA+YAAQNKsjDKw3W9NOV3oHLM0YDl3ePqBEx4dc51ELB4IZ95NmAOEDCgIAs02u7cw94pKqpfPqEpOtRXEghYXJHPPBswBwgYUI+FUWpvsejEleLy5ffAkkPVhFNAwOKKfObZgDlAwIBy3B5poxbrBJXUL1ql82lxn61emiq5MOseTQxfcM6WQMDiinzm2YA5QMCAYniBFtaJKyWGDz28DB3efW511Ga7htm0lEnTni0ZgCFgcUW2BTZgDhAwoBZuqLrlCEiFua2NORpozd/rxN5Buvj1Iq2trdHqrb/S6JEUWa0DtCWK3idQELB4IdsBGzAH3G2gFPNDSWqx+qmSfjH20gQd9onYFkscoPNL/g+x6eFMP7WK41bPXwpSTWXp/lSfWOfFXt003fcftzfp2z/Jhc6OAP7pW9qsJn4EANBwIGBAIeZpKNlCyVPXfRkwKpBdoenhHupIivRRyQ7qGZ6k/9oyppgfOiw01xPLeVbbzfXEZvuLHoMnBkBzgYABAADQEggYAAAALYGAAQAA0BIIGAAAAC2BgAEAANASCBgAAAANIfr/ECYSUx0a6DIAAAAASUVORK5CYII=
|
As shown in the figure, the area of triangle BCE is () cm².
|
A. 6; B. 3; C. 2; D. 1; E. No correct answer
|
A
|
19
|
iVBORw0KGgoAAAANSUhEUgAAAbAAAAESCAYAAACcmoDPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACXWSURBVHhe7d1/iBRnvu/x+SPQYdlhE0gvC2Y4wuxhAoncCCIDBpIBMRHCYWRDfhFRMPfgSgJzIF4dDGQ46hXOHIhz/GNgG1zOVcmwZvXAXJxoQHHd+AMvid7EK5N4HDDKqEHDKJeB3j++p77V9XTX9FRP/656nq73Cx50qn9MTXdVfeqpen50CQAADiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAYIX8o+/l4pH9smPHDtmx/4hc/P6R5IPHACAKAYbEPTg/IiszXdLVFS4ZWTlyXh4EzwGAcgQYknXjoAxk+2X42BWZmZ2VmStfyNibPUGIZWXXeephAKIRYEjQA5ncvl1OL6pm3ZbD6ws1scz2s8EyAFiIAEOC5uXRo+ga1o3cGj/AsiOXgiUAsBABlpT8Lfnu/3GHp5Lp8dVegK2QsWvBgijzd+TKFznZow0/duyXIxe/l6g81AYiZ3J75Oh3wc/3vpMvvJ937NgjuTM3vRgtmb9zpeJjnW7u+7/KyZMnaygX5frsrDxM04cDKxFgCbl9eL10rRiTpY7PqZW/JCM9GRnITVdoiZiXe3/ZK/3ZXnl97xHvgHpccltXSkYvOa4ckfPBecHtCzn58OWsv1xrc0Onvded2i69ZQ1GeraflTnvPacn3pSe0PLSY+lw9+wBL7g3ycvZTOgz6JZl6zYVWof6ZZOs6zWfqT42LMe+u0eLUSSCAEvENRlboQcAGimUm785JdtXZqTnn85UbIH44PSQFzQ9XiCFn3FDcmsKB93MlhN+6MzPe1WEB5OyMQist4aGZcPwlHzvV9Pm5eafNkrWPxCvl117fyfrvMeu+9UK77FjW4IwG5SJu/r+KZI/L7uyhc+sq2tITgeLw+bvXJCxV7uD53TLqwcrnWwA7UOAJWDuxJZirSAzOCG3g+Wp9t3/kg0rS7UlPSg+v3lCpsuPiubguv7wos/t0ki28NqBgzITLAsH21vHyiPxqoz2BY/9qbwWMS3jqwuPDUUdwTta6TOrFGC+/LTkBkxtrUdGLhFhiBcBFrtSC7tCqXKfJy1ufyMnTx6R/ds2yPPdpc+nPOBN+K8enw6WhMzflIsnz8p398IH0tLBeHEQNfpYp6sxwDz587uCWqz3XXkfFBGGOBFgMctfHZUVXWtk/HBpx8/uOs+OHzZ/R86MFO5p6WXWcEPEQuOOLlmTuxEsqYYAq1/tASY3crLGf55X1uS8VwLxIcBiNScntmSCezTmPphXMoMywXXEMqWDaDisTg8VlkXWwCIRYPWrI8Cmx2W1/zyvLLh0C7QfARan24dlfajhht8SMdj5V3AdcZG7E4P+ZzNwsHRYNDWwqHtgRTeuytVi00ECrH61B5jpr6eFbRhxI8Bik5fzu7ILm87PnZAtpkl3dpfQIHGh/Klt3mez8BJi/vRQcGlxhYxejfrAHsjk0F4pvYQAq18tAZaXe5dHZcBsvz3b5Wxa+hvAGgRYXIKwWn84XG8IQs0/UGRkkOuIIQ/k1LasZAYOeofTkHAT754hObWgwca8XBsfkFULagIEWP3CAbZCfrdf+9qVOjIf2b9DNhX712Wk992cfE2ffCSAAIvJtbEV0pXZIifKz1KvjckK/0DglbR1bL5xSF7t7pLu5zfLWHjUi/w9uTw6IBkvoBaPk2j6gQWfWSYrL28KOtgu615cEwgF3rZT5TW2UlP5jZPlX0zpsYUnHWkQDrAeWbfNdGIOPue+ZdLtP+aV7n7ZtP9YWctPIB4EWByCg2j0PYJws/qUdWy+/bm8GW4yn+2Vvr5eyXZ7oTQ8JTcrDlWUl1unhqU/9Fot3f17i6NwqO+OejWFftPZ1it6sN1xQM7eDR4LjdLRlemV17dVfywdwgFW4RLi/B25kHu3NKqJ9xn9fvIWrWkRKwIsBrcnBr2D4d/JPx4MjydXKp8PBw0TvJK6js3zD+X6RfNZnJUrM/cjxzOMVHyt97pbiyfAvP1N6TMulb/K915lq9HH0qGGAAssqA1XvC8JtAcB1naF5vKZle+ELsOUl3+UgeLQPXRsRtJqDzAv7hd0zGf2AMSJAGuzOe8MNVtDKIWb1NOxGcmqJ8BCXRu0pK/FCxJEgLVV4ezUDC67pHDrusxGmaRVFxJTX4AVx6D0ChOQIk4EWBvlL41ITx2XBBd0bB69WrUWtnPnTlm+fDmFUrV88803wVZTizoC7MEp2Va8/M2AvogXAdYu+WkZ14PAf/u32pvGh4flyQxIbtFQ7CU///yzPPXUU8GBg0JZugwODgZbTi1Ko/QvFWD5e5dltDgafUZ6h9MzdxrsQIC13G25kBuWDc+b5tsZWfnOHskdX6IV29z38tfjOfkw3ORbizbf3ntE/hrxwk8++cR/zi9+8QvJZrMyOTkpZ86coVCK5a233lqwPVWrhRVmZD4ie9f1hF7XLc9v2CY7wp2Zj+yXbRtWStY0oe9+XjYfvpaq2athBwKs5b6To5EtDZfoR3T3rByIfE2hHCh7oU7U+Mwzz/gHj6efftr/d+vWrcGjQHQN/b333gsejVaYkTl6G1xc9ssRL8wuXq+j2wPQYgSYgz799FP/gPSb3/xG/vznPxcPUOfOnQuegbQzNfRweeKJJ+SHH34IngG4jwBzjNa+NLj0gKRBpt544w3/5+eee64wjT5S7fHjx4tqX6+88or/7/vvvx88C3AfAeaYP/7xj/6BSC8hmrD66aefigcsPfNGuoVr6PqvlqmpKf/fJ598UmZnZ4NnAm4jwBzyt7/9TX77299GBpUJNr1M9O233wZLkTblNXT9V4t68cUX/f8PDQ35PwOuI8AccvToUf8ApLUtvUlfzlwm6u/v98MO6WNCS7cRDTP9vxZ1/Phx//+//OUvI7cfwDUEmEOqnUHrDXq9RKTPOXDgQLAUaaEnLdppWb9/U0PX/2tRS9XgARcRYI4wZ8/V7mHs27fPf56eZf/444/BUqSBuYwcrqHrz1qM8HNo8APXEWCOMJcHP/jgg2BJND3LNjW1119/PViKTheuXekQY4b+rMXQ55W3YgVcRYA5QEdV0ANOrf14Lly44D9XX6P3zdD5zP3R8hq6LtMSFm6lSC0MLiPAHKA1KT3gbN68OVhS3UcffeS/Rpvbc8O+81W6P6rLtISFWyrmcrlgKeAeAsxyOn6dOQjVM6K4dmY1N/TrCT64Z6n7o2bbKWdG6tDLjnpZEXARAWY5HUVcDzT1jSZeYDqvatHLkOhM2m1Cv+OoExXz/ZcLj5X42WefBUsBtxBgFtP7XeZe1uXLl4Ol9dEBXPX1eqbN/Y7OU+3+qD6mJYq5zKyXHwEXEWAW0zNqPcBoC8RG6TBTZuT6cOs0dAbTOrXSZWJ9TEsUvdxo+g3qZUjANQSYpfTgYmpfzV7+Cw8zVd/MvLCZzj5gAqrS92oer0S7ZejjzZwkAUkhwCylrcn0wNKqyzuvvfaa/36rVq3ipn2HqOX+qD6upZLwZWruk8I1BJiF2nFpZ2Zmxh+dQ99zdHQ0WApX1do61TxnKeZStZ7kAC4hwCxkmji/8MILwZLW0ODS99Ug00CDu0zta+3atcGSaPocLUupNQwB2xBglgk3b9Z7V62klw71EqK+N2fb7qrnsp8Jpmqa6a4BJIUAs4ypJbWrg6meYZuDX6sDEvGop3WqPk9LNdpNQ5+n20Ytw5UBNiDALBIe4qedA62Gh5nSZvZwR7j2pR3Vq9HnaalFtSb5gG0IMIvENciqvrcZZko7OsMd9bZO1edqqUW4U3T5kFSAjQgwS+jlQjMdhs7p1W7mYKWlljN5JK+R1qnmO65VpUGBARsRYJaImoyw3cy9FK2N6eC/sJupfdXTOlWfr6VWtU6cCtiAALOEHpT0wBHnVO8alGaYKb0vBnvpd2VqX/U0vtHna6nHc889F/u2CDSCALNAkme9OhK5/m6976ETYcJOjU5/oq/RUo8krgYAjSDALJD0fQczYaauB8NM2SfcN7DeCSj1NVrqoduAaeTDqC2wGQGWsHDLrx9//DFYGq/wMFNxNCBBffQ70e+mkdap+jot9YqrRSzQDAIsYbb0vTlw4IC/HnoZk46s9mi2b6C+Tku9wr9Xtw3ARgRYgvSekx4gbBj9QC8bmZl9mVrDHs3WhPS1Whphan7tGhUGaBYBliDbxp/79ttvi6M8MMxU8jQ0TC1o9+7dwdL66Gu1NCJ8743tATYiwBJi6wjgH3/8sb9OeuCiH1CyWtEa0GxjjTLbQ6tnRgBagQBLiK1zMOllKtMP6I033giWIm5a+zIjszTTH0tfr6VRjYz+AcSFAEtAPdNhJCE8zNTk5GSwFHEytS8Nj2YGXDbfYzPMCCA6FQ9gEwIsAVu3bvUPCDY3lnj//ff9dXz22WcZZioBreobqO+hpRnazcLmEy6kFwEWM1cuyeg9Fw0vXc8PPvggWIo4tHJkFn0fLc2qZw4yIC4EWMzM5Zhap8NI0tGjR/111bNvhpmKj6l9aU29Wfo+Wpp1/fr14nvZ1OgI6UaAxSjcLFnHIHSBaeqvDTvoC9R+X375pf95t6pvoAmdVrCt2wdAgMWo0QFZk6TDW5nQZXTy9mv1yCz6XlpaIdz1Q/sMAkkjwGKizdNd7RQaHmZKLyWhPcKtP1s1Mot5v1ZZu3at/35JD30GKAIsJq4PjmqGmXrppZeCJWg1MytAKy/R6ftpaZXw4NOMmYmkEWAxCA+M2siArDbQmpdpPcngrq3XrpFZzHu2kjmZSWr6H8AgwGIQHhLIxdqXYe7h6d+R1NQvnapdDST0PbW0UpITsAJhBFibtWpIIBvo32KGmaIlWutogwgTNK3uKGzet9VMU/+dO3cGS4D4EWBtZqbs1wkjGx2Q1SZmChgt2k8MzWtnJ2HzXbVaKwYaBppFgLVZq4YEsomOzKF/k47UwcGrOe0eF1PfV0urddKVBbiLAGujTr1XEB5mqhWjRaSZGXOyXSOz6HtraQfTvcLVlrVwHwHWRqZTaice5E04a2GA18bEMS6m+Y7aoRNa18JtBFibpKG/jM4Xpn+jNuzgDLx+cYyLqe+vpV1M/0atkTPUGOJGgLWJTlSpO/Z7770XLOk8WoMwo4vozL2oXbj21c5xMfX9tbRLeHxP10aYgfsIsDZoV6dUG+VyOf/v1Jom4+PVLq5xMc122E7hvwWIEwHWBu3qlGorc69PR2jgMlJ1cdZa9HdoaSedMbrd9/KAKARYi4WbRadlDi2GmaqPqbHEcd9If4+WdnNpnjt0DgKsxdI6c+3u3bv9v1s7bOsU9IimjV2eeeYZ/7OKo+We/h4t7ab39MyJ29TUVLAUaC8CrIV0fECzE+vEhGmiNQnTaVtHVUe0uGcl0N+lJQ5pPXlDcgiwFkr7ZRS9ZGoC3JUZp+MU7jc1OjoaLG0v/V1a4hC+fH7u3LlgKdA+BFiLxNEp1QUmxPUyGcNMLTQ+Pu5/NnGOH6i/T0tc0taACckiwFrE3JjXTr1p9vjxY1m+fLn/WTBrb4leYk1i7ED9fVrikqYuJEgeAdYCdOZcaHJysngQY5ipgqRGbzffQ5zMzNKd3IkfdiDAWmDfvn3+Dqs1D/pBFbz99tvFz4RhpqQ4j1rcsxLo79QSpzQMowY7EGBNCt+YZ0DTEu3camqlH330UbA0nZKclUB/r5a4mc7tOto+0C4EWJPibhbtEnPZTM/E03w/xHQviLv2pfT3aolbkqGN9CDAmqCXC02DBb2MiMXWrl3rfz6rVq1K5eVVcz9QQzyJDt76u7UkIcngRjoQYE1I6sa8S/SgbboXxNX3ySbmUlpSLTL1d2tJgvYF1N+to7Owf6AdCLAmmBvzTCWyNA0u/Zw0yNI0zJQNjRn092tJQlJdB5AeBFiDuMZfOz2QmctJekkxLUztSyf+TIr+fi1JMdPt6FUK7SMItBIB1iCu79fn8uXLxWGG0tBXzpYOvWYdkkIrXbQTAdYAHahXd8ikbsy7SpvT6+emw0xpM/tOZsuQSroOWpJES120CwHWgKRvzLtKD16m1WYnj9IQrn0lPSecWY8k6fdu+gTqJUWgVQiwOukByRwUGGWgfqb2qkWbmHciDWf9+2yYVsR81kkzY4Vqow5Gq0GrEGB1YrTt5pl5o7Q21mk39sNTitgwDqSuh5akaTN6bU6v68JUO2gVAqwOttyYd53e/zKzEndaIxgTzi+99FKwJFlme7WBfte6LmmdLw+tR4DVwVwaSlNT8HY5dOiQ/1lqbSXp+0StEp5W35Y54XRdtNiAOfPQagRYjWy7NNQJXnvtNf/z1DPyTrgvYmMNQ9dHiy10cF9dH1tqqHAbAVajrVu3suO1mHZBMPdFXB9L0tbaha6PFltwIohWIsBqwKWP9jF9hPTzvX79erDUPaaPm22t7HSdtNjEzBWnNXCgGQRYDbj53D56sO/v7/c/XxuanTfC5hm5dZ202ITGUGgVAqyKcPNfbXiA1tODmLms5GJHV5v7OJmgsA3dUdAKBFgVdMCMx86dO/3PWWsyLg2OrP3YTO3LxrH+dL202ObcuXP+eumJCwMCoFEE2BIYAic++lmbqTeSHL29XraP86frpsVGDMmGZhFgS2AQ0niZ+bO0uNBYRrcJ20daN5+njaampvx101rYjz/+GCwFakeAVeDCwakTmX5Czz77rPWz+JoTHK2l23qCo+unxVZMS4RmEGAVMBFfMjS0zInDBx98ECy1j94PNZc8bZ5tWNdPi620pq3rx8SwaAQBFsGVg1OnOnr0aPHAa+swU9pcXtdPT3Bsrimaz9FW7GtoBgEWQUfL1h1Km8/bfhmrU73++uv+d/Dcc89Z1/ozfNDV1pM203XUYjNXTgZgHwIsAtflk6c39U3/O9vOzE0N0YXLXrqeWmymJwTmsvHo6GiwFKiOACvDNXl7HDhwwP8utJWaTcNMuXSCo+upxXa0+EUjCLAyOliv7kjaGg7J0jNzM8yU/msDc4KjoerCCY6uqxbb0eoXjSDAQkw/JEYHsIfWvPT70O9Fa2RJM4HqSudbXVctLmDUG9SLAAvRiSp1B9LRsmEPc2DTm/xJdnh18QRH11eLC7QBh37Hur62DYoMOxFgAUbItpdeXtLWiPrdJDn4q4tDH5lt2hVmWpoXXnghWAJURoAFGB3bbmbwVy3aCjBu2h/N/H6XTnDMOrtC7ysy9x5qRYB59HKQ2dH1QAk7mVmx9WZ/3P2FXD3BMdu1S3QEFl3nVatWBUuAaASYRy8J6Q7j6oSKaaGhpWMk6ncVZytRly8vm/V2iZ5QmoY7et8RqCT1ATYzM1PcWXR0bNjNNGOP8+Bmal/ayMc15rNyDSeVqEXqA0w7o+qOop1T4QadL0y/M23Y0e5Or67XBnS9tbgmXOu9fPlysBRYKNUBxg1jN2lTetPc+uOPPw6WtofrNQETAi6iYRWqSXWA6cFPdxDtOAm3jI+P+9+d1o7adV8qXPuanJwMlrpF112Li7TmZdb/22+/DZYCJakNMDpNus8M+6WjY7Rj5IZOuLxsAsBVLva9Q3xSG2C7d+/2dwxt1cawNW7SYabMJeBWj5/XKZeXdf21uIrh3bCUVAYYA4d2DjPMlE69oi1KW8XUvlwfEUL/Bi0uY3ojVJLKAGPqhs6htWcNGf0+dRLMVtDLy2YuMtcvL+vfoMVlpusEUxyhXOoCTA94y5cv93cIvYwI9+kwT6axxaFDh4KljeukUdH179DiOjMWpo6VCBipCzCmL+9MZvihZ555Rn766adgaf3CjXtyuVywNDm6Hq0ormO/RZTUBZieVeuOsHPnzmAJOsHjx4+Lw0w102Jt3759/nvYcnlZ16UVxXXhKydaQwZUqgKMa+mdTftqmQP2l19+GSytnY2Ne8zf02zpBNy7RrlUBRitmTqfGWZKz9brPcjZeIDU9TGlEc281jY2nmAgWakJMD0j1w1fb/a3srk17KL3v8w9rHpu+OslKnNwtOkSla6PKY1o5rU2Mpd46b8JlZoAo0d/epgb/nqyUutAsLY2EtB1MqURzbzWRuFGNq53cUDzUhFg4dl8dfQGdD5zwqKXjaudqevjpnGPbQ0EzHarpRHNvNZW4TFMqYWlWyoCjFGt00eHHTJDQY2OjgZLo2nfMX2ePr+ZJvjtoOtlSiOaea2tmEUCRscHmMuz6aI55n6JHuyWuu9pc+Mes+1qaUQzr7VZJwy0jOZ1fIC99957/obOzK7po5eXTDhVmk3Z9q4Vum6mNKKZ19qMmdShOjrAXJ9NF80LDzMVddPfBNzWrVuDJXbRdTOlEc281nauTzaK5nV0gL3//vv+Bq7zRSG9tDm9bgfaei18jyvctcLWqTp0/UxpRDOvtZ02yDJ/nzbUQvrEtGXPy8PZWf8STbXysEX9R/W9uNELpcNMmWGI3n777WCpG10rzAFaSyOaea0LWtFAK//ofvH4c/9RPlhq5OXRI0b9sFVMW/ZXsqevT3qzmeIOVSrdssx7rE/Lsu7QsnWyaf8xuXKnsY2Hm7wI0/skZpvTIafMRIlabO5aYdZRSyOaea0LGm2kNX/zjOSGN8hK/5hUOgbpMSqT7ZV1H+bkiyszMjM1JD1Dp4NXwTYxb9nz8vW+FcUNbvW//l9vSZn5h3L9zJi822vCrlv6h0/JrfIToyVoZ8dOmc8JrWMa9Ght7LXXXvP/b3vXisI+0HgINfNaV2gDHf0bw7XrivK35NRwv3R7z8/0vitjZ76X8krX/J0rcix4jv/5bZyUueAx2CX+Lft0oWakZU3uRrAwQv6enNreK5nguZmBnEzXGGKdNJ8TWkfvf+l0K2b702J714rwujaimde6wtSmq97LfPC1jA4UTox7tkxWPSl+cH5EVma8z29NTpY4UiFB9gaY74H39J7i87Uq/yB4pBK932GGmtFamJ5tUyimaIA9/fTT8utf/1p+9atfRT7HpmK2fS1Rj1crzbzWpWL+Tm24Fe2GHAzCq6tnRC7VeDJ84+CAZFaPy3TwM+xieYB55k7LULbw/K6uHhmpsuWZEcUpFEr6SqX+fLcnBoOrORnZOFntNDgkf1VGVwwJd8HsZH+Aea6Nle6bZbacWPJ6tDaN1vteFAolnWVRo5z8edllToIzXhjVWPsybn/+uXwV/B92cSLA5Oqo9AWvaWQDBJBeee+YY+6l0yCjs7gRYF4FfshsgF2rZZwL0qjB/MPF/QxrKw8Xt461yfzDiHWupVj+d7XJpZFs8ZjTN3o1WIpO4EiAXZXRPhNgXbJUtwzzHC1It6/29Elfb7Z09q2le1mhz2FEKfVTHJCDNs95+tUeb32XlZp5+yUj2d6Iv2vB39+593JKn0P5fj8nkxtLj9V+zIELHAmwG5JbU9oICTDUY/7yP5cuQS/ZKTUv9y6PykBmjThxnHtwQT5eYbb3JdZ5/qYc26KtedMYYAuPHQRYZ3EkwM7Kdu2P4b8uI9vPBosjmPfWAhSELkFXHVUhL+d3DboRYJ7TQ2Z7rxK6Hd6arvJ+Tw2sk7kRYHcnZDB4TVfXoEzcDZZHMO+tBSioJ8C8Y/3ZT+XAleAHy9UcYJ4bhz6V/23XfJ0ts9R+H74Hlh25FCxFJ3AiwBa0IqrSK968txagoL4Ac0k9AdbJltrv505sKR0/BidkifNfOMaBAJuTE1vMzfUuWX/4drA8mnmeFqCg1gCbl0eLRiO3W/UAS8do6kvu9wsGQ1gvVQ4hEfKSp+uOlawPsPylEekJnl/LEDDmvbUABTUG2N0JGXGsGlM1wOYmZWOH1TqjVNvv/SGhgsd7Ri55kVSrvEznfi9jV0kwG1kdYPl7p2SoJ9gwMwOSq2E0X/PeWoCC2gJMLzUNOBtgq+Vf/09Zv6/rZ2TszZ6Ou2wapep+n5+WnBkLsatHhk7dqyHE8nJr8vfybm66jsBDnGI/yudPbStuaJUDTJszj8mr3cFG2f2qjH1d2/hl5r21AAWhAPvvxxce5P0yI1e+GJM3vZOlWu/L2qIUYEsUAqxg/prkXi3NOfjq2AWpON1g/p5cHvsHWbm9+gDiSE5MR/nCjMwzV47J9pWl+1nZgRE5cvKsXJkJDiQzV+Tskf2y6eWg82UmKy8PT8nNOi7hm/fWAhSEAqxCR+ZlwcmSuwG2+BJi/tEtmdLZHAiwEg2m3LvSa7rl6DFm0w7Zf+SknDzpleM52bNtgzy/rF+Gp26mcuQSl8R0lC/MyBx14Cgvqzdskx17cnL84nV52MDWU/OGjBSp5RLivFz7tzUdFWA+7oFFm7/j1bq9sNqxSdYVjz/rZNOOPZI709ixB/HruKN83RsyUqDWRhz/IZ9+ZvMYUotVDTC5Jn/4Q+ePpc5+n04EGFKgxgBzUPUASwf2+3QiwJACjQSYG/2nCLAC9vt0IsCQAvUHWP7qqAzV3+M1dgRYAft9OhFgSIF6A+yGHBwYcCIQCLAC9vt0IsDQ+bQlntkuqs7IOy/XxgckU2XMTTuER1pP90Sv7PfpRICF/PDDD/L48ePgJ7jOn5HZjEZhtovsRvnTddOBeWG5fvG4jL3b6/dBtLo5vT8j84xcObKlNMyaVzIrt8uxKzMye/+RkyNHnDlzJvhf/Yrfr1eQHgSYR4Nr8+bN8sQTT8jMjFvNqFGZPyNzqI9h7eV3csjm6pc/I3PUegflnc/Exa14+fLl8uKLL8rx48eDJbVrZL+H+1IdYOHgMq8hwIBkaICZ/bDeIDOv04L0SGWARQWXKQQYkIxwgJlSa5CFX4P0SFWALRVcphBgQDKiAsyUakEWfi7SIxUBVktwmUKAAclYKsBMqRRk4ecgPTo6wOoJLlP6+/vllVdeoVAoMZcnn3wycp+MKuVBFn4M6dHRAVZPcFEoFPeKBpleNQkvQ3p0dIB98skn8tRTTy1YRqFQOqMMDg7KN998s2i/R3p0dICpn3/+ua4gO3funH9GR6FQ4i3PPvts5D5ZXsLBZYQfR3p0fIAZtQaZ7kgA4letEUdUcBnh5yE9UhNgRrUgI8CAZFQKsKWCywg/H+mRugAzKgUZAQYkozzAagkuI/w6pEdqA8woDzICDEiGCbB6gsuod79HZ0h9gBkmyHRUcgDxGxoaqju4jEb3e7iNAAPgPPb7dCLAkLhrf1gXPS1IeXF0mhC0H/t9OhFgSNhVGe0rfWdLleyu805O1Ij2C28nSA8CDInKn98lWe+76l62Tjbt2CE7Iso//cPfe99nVkYuBS8CyrDfpxMBhgTl5fRQr2w5dlPmgyWLzcmJLRnpyo4I+YVK2O/TiQBDcuZOyP8cu7r0ZUHvOVsyXdI3ejVYACzGfp9OBBiSk5+X+So3teZObJFMV5+QX1gK+306EWCw2JxMbvS+yxVjci1YEmX+5hnJ7dkk64LWius27ZHcmajLkvNy58ox2bthtbzzWdCecf6mnMl9WHjt6g2yd2rh6/z3Ht4gq/XxdR/K4cv3aEhiIfb7dCLAYK+5SdnofY8rxirEV/6e/GVvv3R398vwsSsyMzsrM1eOyJaewvff8+aETGva/P//lBN7N8jKbKa4bazJ3ZD89IS82dMty7xw6i0+lpFV/mXNvNya/L30ZvTxXslmzHbVI0OnHxR+P6xhvlctSA8CDNa6OzHofY8rJDq/HsjpoR7pygxIzk+pkrnJjcVtYHDirrfEiyN9yu3Dsj5Yvnrbv8g/fzolN4vVreD9/Mc3yr9PDsvmsQtyxzyevyXHNmYLj1epESJ+5vvWgvQgwGCpuzIx6H2Pa3JyI1gSlr80Ij3edxzZN+z2hAz6NaaMvPm5BphxWoaCbaNv39eLXzc9LquDx986FlHLOrtdMv7jG2VyLlgGK7DfpxMBBjvd9ULI+w71Ut9iQdN67/FtpxbFkC//6L7M3n9UFlKXZCRb2Dai37cUcEOng0VhN3Kyxn98jUS+HIkx+7wWpAcBBivdPrze+w7Xy+HbwYIFSkEUGTQV3ZDcmsLrCLDOYvZ5LUgPAgwWui2H13vf4frD3v+iVAmaigiwTmX2eS1IDwIM9gkaW6yPrn55Qvey6uogRoB1KrPPa0F6EGCwzo3cGu/7GxS/AWGkUhB19YzIpejbYJ45OXvoP0Ij2BNgncrs81qQHgQYLBOEzOCEVMwvz7WxFcXvec349OIWhZ4Hp4dk5YIRgAmwTmW2BS1ID75t2OXamKzwDkIbq7VTLzaV19It/cNTcv1hodNW/tEtuZB7V3q7vVrcgquQZ2V78BoCDHAfAQarFGpWtfWzenB6u/QWQ6y8LB4xIz89HgRQl2T/x18WDTWVvzrqh6c+HlWrezC5MegHlvECltE4gKQRYLDINRlb0SWZLSek1n7C8zenZPjlbBAshXDJvvyh/PlaOJ5m5LN3wsNBFUr3sr7CmIgzn8k7fcukO/SYeXzPV97Lv9ojfb3h36HF+z2974gZUhFA/AgwWGReHs7Oyv1HFVtlVOR3XK742rw8uj/rP15e/OfnH8n9iMe0+Fcl5x9GPjY7e18aWFUALUKAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABABwk8l9tDjZzjlA/JgAAAABJRU5ErkJggg==
|
As shown in the figure, quadrilateral ABCD is a trapezoid, and quadrilateral ABCE is a parallelogram. Given that the area of trapezoid ABCD is 20 cm², what is the area of triangle BCE in cm²?
|
A. 6; B. 3; C. 2; D. 1; E. No correct answer
|
A
|
20
|
iVBORw0KGgoAAAANSUhEUgAAATIAAACXCAYAAACWYNcsAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA1fSURBVHhe7d1vSBxnHsDxfTd9I/emAwVZKCyHhbJcfSPhLKS+sQilRCgpOZAE5OAqBPbgrBXhTo5IuLNw8XqQF3u0bwx6d8UUhKTxhcGQ2oYcQaEiSohHm2ISMGXtC2H74nfz55l1XWf/uNmZZ2fm+4GBOo5GndnvPjPz7DYlABBxhAxA5BEyAJFHyABEHiEDEHmEDEDkETIAkUfIAEQeIQMQeYQMQOQRMgCRR8gARB4hAxB5LQ/Zztw56erqqrv0nx+TsSvX5JvtfSmqr0X8FPe35ZtrV2TsfH9p3/cMjsil/Jey9sOBs01h5U/yt6+c/wSa0vKQFfefye7OmiyMdouRSknKWrpG/iNrO7uyu+sum99cl/z4O5Ix3M93nJqS1T31DRAPB4/k5vgp6bD37+uDMnVtpXQM7KytyLUpe/8bYmYyYlrHQW5ZfR0aYj9B3M5flP5LPAPYgju1LCzKkApZb/6hWnlU8btFGU6726TSk3KPoVksHO7XtJyd3RB33HVc8el9me4znP0/tFhQa8N17AyiZ1yWazypfnWpbFtvOTcnO+rzwduWxT+ckV+Z7t8txTOAI8BrZMuSqxMyW2E5J6babmD2sVqLyNqz9rt6cuq9ulX/soHavtYxEiT7DGJn7UuZ+U2mdAZh9OVlq8oPfvDcGlVu3pRc1trWPCNXv96R3WfBXh55/PnncmzctTLq/ryEzKE9ZOUjN3ZK1O3J0ojp7ktzQlYbfHTvLQ5Jn6aQHdqTB5d73Z/dWtLWsVjrasfDvLVtKMfrY5kdyFmPpgoP89LLY6ZEf8iezMsZtZ0xuqJWIpI2ZiSr9mXX9Lpa2YDiqkxMtsED0jo7SKXTknZ+B8OKa/URZVgh21sasc5YCFk9mkNWlK2r3rOgKbllPddJ0Br3JtVozNqXk/fUyoYUZX+/2pW0ENkhyy3JVr5PnWamrWPSf1wWRsiKT5fUaTohq0dfyA5+kK/zZ0vPfpnR2kN5tLuHku9193cqdUbmn6jVUeKEzA7DnvWfafd3Mfok73PBrGbIDh7J7fy4DPa4NwP6z1+RhW+fHh/dHTyXzdt5udh/ybkGtvcgLxesr+m/+IXcv5+Xs96NsFSHdKobC+fm1G2FipAdPLopU4M91jY9Mji1JN8FedGuDYUSMjtUZqbsLk9nh1pvLen35e+3H1W9s+XnwoULLJqXfD6v9oanfH/7jCCioBQyS3FL8uqOaipt/T4Vz7LVQnawkZe3Ozrk1PiCM91kZ21Bxk/Zx7sh3ZOrpSfr7X+Ny/Cgd4MhJ0tbeXk30+lMV7HDlbtpT1X5r3zcY3/8W7mupi4921eFKoVsSZ4ujUtP/3kZGzsvp9XdzLQ1JE5Sy0IJWdef75bmkLnzyG7JtalBeb3D/Xyq45RcnH3Q8IjMfbCw6FrefPNN+emnn9Te8MQsZLayO7DG0OKR49M3ZGp701p/5CKJFcWrzmjVkL5Py89O7smkaa/Pytsz9hlJUZ7en5VLV7wRlTfKrXFqmTktf10qG+09npUBe705aX335NB7jexgQ2bPqiG8taRHV44eAFV423/22WcsISwfffRR6W/+3nvvyc8//6z2RLkYhsxStEZKfc7E7aMX//1CtjGTtbbzvz5YuDHsjr6O3M31QvW+LPg+izcQssqYihVNZxQX0X3QJM0X+y0FazvnWclesjKzodbX4D2oELzNzU155ZVXnL939YjZduTTPm8/9kqtXd62fEJm27PWu9dyDy/+Hw+ZF5Aqv3txSUac71EeuhqhcjQTMu9rRmQpQeeW+kNmWRlV1yKspe/T+nOkvW0RrMYj5nJHJO6+0TVT/4VUCZlVocM7meri//GQecd7tYh7oSt/OVaQIYvok0mT2iJkzkHR4LY2b1sE56QRc3jXZ+xlYFYaf52GFYrPv5A19ZE2VUNmK7uTmc5J3p486xsyQ/ynQ3qB6ZLDKXaErFXaIGQFWRxyt7MPgtxy/fGwuy0hC0pTEXMU5d6kd82z+hysSnvLo/K7+TZ4eVrNkFnK72Tay5Ftn8j8GXe9/2TgdZnusj7ve42MkL0o7SErrk+XZoOnevPWbqjPO5DQes1HTCl/sBvdMnnHZ/5USVGe3pmUd9plDmG9kNnK7mRWblt63bA5IkuVv5AarWaPXAT2olPtetbxzx/sq9d1eiEbWar4+xKyljq4/2fpsv/Q1uIbsuK+bN8clW71Vj6p9FmZr/ZK3QrO9taC1nrhiHmK38niB94cKUMy70zJwtrO4Rwoa98/27wt+YunpfuDxTaZvFmUB5e7JNV1WR7U+XmK9ybdi//Hond4+pk+Oysb3uTIg0eyMJw+/mL0gzvyoXOjy5QP7/jNpPRuoJgy9O9N2Vm7JuP/cOeH7S287/w7x35e++Vezvfsksv1fpEYaXkNnLdFyZjqID5cDDNzOCG27POG2S2DUzfl0QlmxHrfE63TsoiVWKOtbxdkarDbeb8xb5+5S4d09l+U2fu1Rmvhcd6ap3ySdkendZy6s+39qYv/fqO34lO5n7/gzpE0TMlYx3unacrp8aPHuP046fTmUXp/E59/0z7t9t63L3123grhjsyd8ybOuov92LJn/Nu/R8Z7ex97sf/9hLxfWctr4LyxYtnk1+rLM/GeoE/K21FojdZHrFJR9p95+/35iV7FEQbnrXmOHZ/1fs4Def681hbW553v43+c+z9O/P9NZ9vSWwWV/y0PF3u06/t71PwZ4yOSNSBkrRN8xIDgEbIEI2KIC0KWUEQsOPbLuhAuQpZARCw49nWpl156Sa5fv67WIAyELGGIWLByuZzzt33jjTfUGoSBkCUIEQuWNxrzjk9GZeEhZAlBxILnjca8hVFZeAhZAhCx4FWOxryFUVk4CFnMEbFwVI7GvIVRWTgIWYwRsXBUG415C6Oy4BGymCJi4ak2GvMWRmXBI2QxRMTCU2805i2MyoJFyGKGiIWr3mjMWxiVBYuQxQgRC1ejozFvYVQWHEIWE0QsfI2OxryFUVlwCFkMEDE95ubmjv0/QF977TVnP7z88svHPmcvP/74o/pqtBIhizgi1l7eeustZ1+8+uqrag3CQMgijIi1H0KmByGLKCLWngiZHoQsgohY+yJkehCyiCFi7Y2Q6UHIIoSItT9CpgchiwgiFg2ETA9CFgFELDoImR6ErM0RsWghZHoQsjZGxKKHkOlByNoUEYsmQqYHIWtDRCy6CJkehKzNELFoI2R6ELI2QsSij5DpQcjaBBGLB0KmByFrA0QsPgiZHoRMMyIWL4RMD0KmERGLH0KmByHThIjFEyHTg5BpQMTii5DpQchCRsTijZDpQchCRMTij5DpQchCQsSSgZDpQchCQMSSg5DpQcgCRsSShZDpQcgCRMSSh5DpQcgCQsSSiZDpQcgCQMSSi5DpQchajIglGyHTg5C1EBEDIdODkLUIEYONkOlByFqAiMFDyPQgZC+IiKEcIdODkL0AIoZKhEwPQtYkIgY/hEwPQtYEIoZqCJkehOyEiBhqIWR6ELITIGKoh5DpQcgaRMTQCEKmByFrABFDowiZHoSsDiKGkyBkehCyGogYToqQ6UHIqiBiaAYh04OQ+SBiaBYh04OQVSBieBG7u7uys7Mj33//vVqDMBCyMkQMiCZCphAxILoImYWIAdGW+JARMSD6Eh0yIgbEQ2JDRsSA+EhkyIgYEC+JCxkRA+InUSEjYkA8JSZkRAyIr0SEjIgB8Rb7kBExIP5iHTIiBiRDbENGxIDkiGXIiBiQLLELGREDkidWISNiQDLFJmREDEiuWISMiAHJFvmQETEAGkJWlPW5OVkvqg+b4IWMiAGwhR+ywg0ZNgwZvlFQK07OCxkRA2ALPWQP871uiAZm5bFad1JeyIgYAFu4ISuuyoTpRciUidXmzi+JGIByoYascGNYjHRGMoYbImP4hjRzgknEAJQLMWQbMpNNycDs/2R9OqtGVQMy28T5JREDUC60kBVXJ8Q0hsW5xv94VgbU6WF2el1OeoJJxACUCylkBbkxbEh68p6KlvuxMyrz4gYATQonZBszkq04jXRGaGpUNtDM+SUAKCGErCirE6bPhX33mpkzKsvOWB8BQHOCD9neogwZWZn2mcrv3MV0RmXNT8UAgMBDtjGTldQvfi0XxsZkrHL5/bvyS3V6+SITZAEkW7AhcybAGjL48S25dct/+edw2g1ZKisznF8CaEKgIXs8f0aM7HTtF4iXTcUwJ1ZPPBUDAAIMmX0x35Az8/VOGAuynDPdUZkxJIt7ajUANCiwkBWWc2KaE9LQNfz1aelSo7JmJsgCSLZgQra3LLm0Faaeq7KlVtVUWJQhFbKU0Sf5LVIGoHEtDtkTWfljv3R2qChZS0dnv5z/ZMX6jB9r+0/Oy2lTzfIvxcyU7sG/yIr/FwHAES0OWUG27/rcnby7XTEZ1lNle2e5K9u8dAlAAwK82A8A4SBkACKPkAGIPEIGIPIIGYDII2QAIo+QAYg8QgYg8ggZgMgjZAAij5ABiDxCBiDyCBmAyCNkACKPkAGIPEIGIPIIGYDII2QAIo+QAYg4kf8D9jykpTqrTYIAAAAASUVORK5CYII=
|
As shown in the figure, point B is directly north of point A, and point C is directly east of point B. What is the positional relationship between AB and BC? ( )
|
A. Parallel; B. Perpendicular; C. Cannot be determined; D. No correct answer
|
B
|
21
|
iVBORw0KGgoAAAANSUhEUgAAATEAAACYCAYAAACMAd76AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA1pSURBVHhe7d1PaBtXHsBxHQrqxdA9zCkICjq4UMzWFxNwIfXFxRCWmIWULIQETGFrCOiwrjE+xJQYw2Zh420hB0F7kYl3NzgFQ9JowcGhdZvNkjpQE2xCBK1L/oADdg8CXX47f97Isjz6a8+T3sz3AwPpeOQ/mtFXTzNPakIAwGBEDIDRiBgAoxExAEYjYgCMRsQAGI2IATAaEQNgNCIGwGhEDIDRiBgAoxExAEYjYgCMRsQAGC2UiBVunJPe3t6Gy/CFSZm8tiA/bO1JSd0W0VPa25IfFq7J5IXh8r4fGB2XK9lvZP3XorvN7upl+ft37j+BloQSsdLeK3leWJeliX5JJhKSsJfe8X/LeuG5PH/uLU9+uCXZqdOSTnpf7zk5K2s76hsgGorP5M7USelx9u+7ozK7sFo+Bgrrq7Iw6+z/pFjptFj2cZBZUbdDU5wnh3vZSzJ8Jd71D/fl5O6ynFcRG8w+VSsPKv28LGMpb5tEakYeMCSLhP39mpKzuQ3xxluHlV4+lKtDSXf/n1/eVWv1OvTKYWBKVuo8oX53pWJbfzl3Qwrq6+HbkuW/nJHfW979loh5/UM+J7YimQYRc+yuZMRS243kttVaGGvH3u/qiWnw+mbjUwVq+3rHSJicVw6F9W9k/k/p8iuH5FBWNmv84sXX9mjyyR3J9NnbWmfk+vcFef4q3FMi2zdvyqHx1uqE9/sSsTA1F7HKEVvcd4j5diQ/bnn70pqWtSYf2TvL52WoQxHbtyOP5ga9391eUvaxWO8Mx9Osva2W43VbciMZ+9FU5WlWBnnMdEnEXizKGbVdcmJVrYSRNualT+3L3quP1comlNZkeqYLHoz2q4JEKiUp929I2mGtPZLUFbGd/Lj9SoWI1dIFESvJ5nX/2c+SzEpnzovgeDyYUaMwe1/OPFArm1KSvb1aZ840ciKWyctmdki9tEzZx2TweExHxEov8+qlORGrpbMRK/4q32fPlp/10hP1h+/odk8lO+jt70TijCy+UKtN4kbMicKO/c+U97ckhyQbcIKsbsSKz+RedkpGB7wT/8MXrsnSTy8Pj+qKr+XJvaxcGr7invPaeZSVi/Zthi99LQ8fZuWsf9Er0SMn1EWEczfUJYSqiBWf3ZHZ0QF7mwEZnc3Lz2GepOsi2iLmRMpKV1zNOdGj1ttL6iP5x71nNa9gBbl48SJLh5dsNqv2hq9yfweMHExQjpittClZdeU0kbL/nqpn2FoRK25k5cOeHjk5teROKSmsL8nUSed4T0r/zFr5iXrrn1MyNupfTMhIfjMrf0ifcKekONHK3HGmo/xP/jbg/PfHcktNT3q1p+pUjlheXuanZGD4gkxOXpBT6qplyh4Kx6Fj2iLW+9m35Tli3jyxu7IwOyrv9nhfT/SclEu5R02PxLwHCkunlvfff19+++03tTd8EYuYo+JKa/L88oHjMzBianvLXn/gxIgdxOvuKDUpQ19Wvip5IDOWs75PPpx3XomU5OXDnFy55o+k/NFtnZeT6VPy13zFKG87JyPOemvG/u7R1/lzYsUNyZ1Vw3Z7SU2sHtz5Nfjbf/XVVywalrm5OXnjjTfc+zw4YI4IRsxWskdIQ+6k7IMn+oMitjHfZ28XfD5w9/aYN+o6cNXWj9RHshT4DN5ExKpDKnYw3dGbofugRV1wYt+2a2/nPhs5S5/Mb6j1dXjbtv7rt3u7OHNGzu+88457v9UOmKMgXw75+3FQ6u3yrhUQMceOvd47d7t/ov9wxPx41PjbS3kZd79HZeTqRMrVTsT824xLPgavJ7sjYrbVCXXuwV6Gvmw899nftlXt3i6umg+YxxuJePdxp2bgH0mNiNkF2r9iqU70H46Yf7zXCrgfucq3WIUZMUOfSFrUNRFzD4gmt3X427aq3dvFUasBc/nnY5xlJCfNv//CjsTNr2Vd/VfH1IyYo+KKZSojWWdibGDEkhI83dGPS6/sT6EjYkfVJRHbleXz3nbOAZBZaTwG9rYlYmFpK2CukjyY8c9x1p5jVW1nZUL+vNgFbzmrGzFb5RVLZzmw7QtZPOOtD57o+1iu9tpfDzwnRsTa1RURKz2+Wp7lnRjM2rugMf8galW7t4uT9gOmVD7Qk/0ycz9gflRZSV7en5HT3TJHsFHEHBVXLKu3Lb8P2BqXfPUfpEapfQdO+vrBqXX+6vDXi3vqfZp+xMbzVfcvETs2xYefSa9zJ9tLYMRKe7J1Z0L61cfxJFJnZbHWu26ruNvbS6vavV1cHDlgvtLPsvyJPwcqKenTs7K0Xtif42Tv+1dP7kn20inp/2S5SyZmluTRXK8keufkUYPfp/RgxjvRfyh4+y85U2dzsuFPfiw+k6Wx1OE3lhfvy6fuRS1LPr0fNFPSv1hiyfl/PZHC+oJMfeHN/9pZ+sj9OYd+X+ctXO737JW5Rn9IBITyaHY/2iRtqQN4f0la6f3JrhVfT1r9Mjp7R561MNvV/56tavd2cXBsASuzR1k/LcnsaL/7eWH+fe8tPXJi+JLkHtYbpenjfrxO5QTsnhP2cerNog+mTvQHjdpKL+Vh9qI3BzJpSdo+3k9YlpyaOniMO4+TE/48Sf8+CfiZzktt/3P3UmcX7QgW5MY5f1KstziPLWcmv/N3pP2P6HEW5+dH/PPGQnk0ux+KaD8gGi+vxH9ibpW/k1rV7u2iztkfxxuwaiXZe+Xv99ctvTtDB/fjdQ4cm838nkV5/breFvbX3e8TfJwHP06Cf6a7bfnjfirvy/3FGeUG/h11f0fzGftoJmLHxznQww0YEB4iFnMEDKYjYjFGwMLjvFULehCxmCJg4XHu2zfffFNu3bql1iBMRCyGCFi4MpmMe9++9957ag3CZHzE2l3iioCFyx+F+ccZo7HwEbEYIWDh80dh/sJoLHzGRwzNIWDhqx6F+QujsXARsRggYHpUj8L8hdFYuIhYxBEwPWqNwvyF0Vh4iFiEETB9ao3C/IXRWHiIWEQRMH0ajcL8hdFYOIhYBBEwvRqNwvyF0Vg4iFjEEDC9mh2F+QujseNHxCKEgOnX7CjMXxiNHT8iFhEErDOc/x/n5cuXDyxvv/22ux/eeuutQ19zFmdf4fgQsQggYN3lgw8+cPeFEzOEj4gZjoB1HyKmFxEzGAHrTkRMLyJmKALWvYiYXkTMQASsuxExvYiYYQhY9yNiehExgxAwMxAxvYiYIQiYOYiYXkTMAATMLERMLyLW5QiYeYiYXkSsixEwMxExvYhYlyJg5iJiehGxLkTAzEbE9CJiXYaAmY+I6UXEuggBiwYiphcR6xIELDqImF5ErAsQsGghYnoRsQ4jYNFDxPQiYh1EwKKJiOlFxDqEgEUXEdOLiHUAAYs2IqYXEdOMgEUfEdOLiGlEwOKBiOlFxDQhYPFBxPQiYhoQsHghYnoRsZARsPghYnoRsRARsHgiYnoRsZAQsPgiYnoRsRAQsHgjYnoRsWNGwEDE9CJix4iAwUHE9CJix4SAwUfE9CJix4CAoRIR04uIHREBQzUiphcROwIChiBETC8i1iYChlqImF5ErA0EDPUQMb2IWIsIGBohYnoRsRYQMDSDiOlFxJpEwNAsIqYXEWsCAUMriJheRKwBAoZWETG9iFgdBAztIGJ6EbEaCBjaRcT0ImIBCBiOwjl+CoWC/PLLL2oNwkTEqhAwwCxErAIBA8xDxBQCBpiJiNkIGGCu2EeMgAFmi3XECBhgvthGjIAB0RDLiBEwIDpiFzECBkRLrCJGwIDoiU3ECBgQTbGIGAEDoivyESNgQLRFOmIEDIi+yEaMgAHxEMmIETAgPiIXMQIGxEukIkbAgPiJTMQIGBBPkYgYAQPiq2MR2/7xR9lW/26HHzECBsRbZyJWWpNpy5LptZJa0To/YgQMiLeORGxn+bwk7fAkx27LrlrXKj9iBAyItw5EbEPm+/wA9cn8hlrdIgIGwKE9YqW1abGSSXck5kTIml6Tdl5UEjAADs0R25bFM0npm/+vrGQsbzSVHJPbbbymJGAAHHojtjEvfYkRyTmXJd1/e6OxEXdFawgYAIfGiJVkbdqqOJm/LbkRL2IJa1qOcKESQIzpi9j2opxJHjyRv3t7TJ0bS8pYO68pAcSetohtzPdJYiR3cIKrO19MjcaqvwYATdATMTW5NbNyeLS1nRvxInaE6RYA4ktLxNxQ/e6cfHH3rtytXm5OyYAbsaNNfgUQTxoi5k1u7fvjpExOBi/n+pNqNKauXAJAk0KP2O5KRiwrIwGvJPdVTLfo4zUlgBaEHDFvGkXjMHmTYN3RGNMtALQg1IiVHl+VviZn5LtvR1KjsXYmvwKIp/AiVtqU7JA9uhrMylO1qq7iHflYRSxhjUt+R60HgDpCiNiubC1fkwsne7wgJXrk5IVrsvDtVo0rj/b23y7I7Ol0+U3hzpJMn5ap7H9ki8uVAOoIIWIvZPXzgKuQn6/aXwlSY3t3+VxWg28EAK6QT+wDQLiIGACjETEARiNiAIxGxAAYjYgBMBoRA2A0IgbAaEQMgNGIGACjETEARiNiAIxGxAAYjYgBMBoRA2A0IgbAaEQMgNGIGACjETEABhP5P3zgYcX726UpAAAAAElFTkSuQmCC
|
As shown in the figure, AB is perpendicular to BC. Mike needs 5 meters to walk from A to B, and 5 meters to walk from B to C. What is the measure of ∠BAC? ( )°
|
A. 45; B. 60; C. 72; D. 90; E. No correct answer
|
A
|
22
|
iVBORw0KGgoAAAANSUhEUgAAATAAAACXCAYAAACSlQcRAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA/wSURBVHhe7d1vSBxnAsfxfRGYvuhyfbNQkIXCBgykvhBKEOzRLpQEuePYkJISOUnAcnBCwINbJOS4CjUtd75oJC+EG2pe3HqVphdfWMzVF4a99owipAZqZa1EsBZj7lbQvhCmL343f55xZ/+6bnee3Wf294Gnjbuz1u6sX5+ZedaEQESkKAaMiJTFgBGRshgwIlIWA0ZEymLAiEhZDBgRKYsBIyJlMWBEpCwGjIiUxYARkbIYMCJSFgNGRMpiwIhIWXUN2P76V/jiiy+OHYtrO9jZOxSPokA73MPO2uLRvk+vbOL5gSHuNGW/xbfb4s9EJ1TXgD1L38HQwEWcDYcQCjlDi3Ti4sAQhoaccfV8DBHNuS989iJuPXgKpix4Dp8+wK2LZxG29nPbuaPXwMDFc2gLa4i8cR369DRGExEMzosHUdWMg3Usfs3y+3MIuaGjWwSsW98QN3oYu1geu2C/uEMhDZ3DC8iKu0h1WSzc6rL3rdaZxIP1A3jmWw5r/+u9iIkfZI0KWNERQ/rbiq/D7a8927rjq3Xsi/v9d4gfVu4f/WAIsfx+nQObx6AdpzIBsxl4MtphbxMKRTG8VPQyJ+VkMT8YtfepFteROWaXZucHEa34GvGXdcQwcLHz6IjA+mEa1zPFwRW+uWfOIq86cba2jf16AEN30ngm7veDsbWF3DzrEHs7O9j8xzvO18uANTJgps0JxMV2WjItbiRVbU8loNn7sxvVNcnA0nC0YQFzGbtzSMY0JwrmD9PB+crHA09G2xHqm5Ew8zLMHwhJ87upQGYc56yvlQFrcMCMOQyI7bgzFLc/i34xk9H6Z6v/5t5O4bfDS+KDBjJng07AzKHFoVeYPm7o3XJer9tTSGiDxQFzT9Hwe6axATMWbiJSxXbU/LZTPUcB6Js5ydzkGdLpb8SfG8gK2MA49LiYiUXNcJSZiMkJWBYzfdbXwoBV0rCAWdP2waizTSiaRFremVCqu2eYSoh9WfXhY5OxAmYFIWu+dsXrstx5vOMCZhxsYSXtnORfXNsrf5XdOMD64tfOOS5jF9+Yj1m0LnqYf55LxsTh+K/wF3HB4Kt18U1SFDDr5H7a3CaNlR9a65q+7wGLxP8Ifdpz1WbyNoauviFOnFqX02/h37vVn8B/+PAhR4PH8vKy2BuuJQxHnP1dcsagAjdgJiOjIy4Oh6PmbYUTsbIBM7Ywd6ML4fBZe9nIgLhaqMV6kVrNheXw6UPo18+jzV5uZD5fRiY38wt1oPfPf8LQ0O8Qt5/TDlwSS5DupMXlAm/Aso8xdiEsHmuN48/hBYnvAdM6rxytAXPWgbWLHWeOcBeu3n6Ade/CxmPkdhRHI8aLL76IL7/8UuwNV25/ByFgFvcKqX1lciJ/Slk6YFnM9psh6fgQjz2ToMPVcSeGnvNqh3t7ONj9FO/Yn78Pyb/ewP21r5HqNWdd4cv4zJ6SbUDvLvN8ugF7ZxB//cMEHtmzLnMWNjPgnJLp1s1Ht4bGHEJaU+cHSXS6l6+1TgwvVPdTw/1GevPNNzkkjNdff/3oOS8dL0vwAma+SJHR485hXMFJ/VIB25/tt7ctdf5vdUwsF+pJeZZEuIEqt4SomoB9ivyDF3cmrOg+qEFjT+I/GUWH2C4UMZ/0Ks6DOd8kPn3ZlOenn37C22+/bT/f5eNleYLRdrEfQwlM+bkwyi9FAbPk1rV5T+oXB8w9B1jm/N92Cj32c+O9v0KgbFUErOjrPe5zBk9DA2b+3MJMn7OdNaq5euVuS/6qPl4Wa72Sew4nYs4oxM0qKRkwk+f8lHtSvzhgaSTto4lyFzBy5whzD/MzYHFMbIqbAq7BAbPW5J2zt6tmW4u7LfnnZPFyeJfERG4ulF3NXoqxu1t0oly6cgGzeK5MWif1HxcFzH29t2P0ibgpjxsWDbn12n4GTNErwTVoeMCWhiP2dtZIVHHs4W5L/qglXg73m8ccWh9mqi2SGYfh4bnmDpgpd2VSQzRqvmbzts0dQpd+DbvPjffwmgGrh8YGbN/czr38XuWL3t7WHFR/tcfL4V1+oMXH4Vk5UNrhKsZ7k2UXjEp1TMAsuSuT5ijYtvSJekG84yT/HQoMWD34U4JnU0iIHV02YOaLN3VZnCAtcam6HGd7Bqzefm68XNnHY7gglslY65/0Rz+UWMhp4GD9Pn7f+RtMVHjLjkzPphIIJaaOeWO2gcy4efhovQYL47GfRtI+zNTQd3837xA6O9MHrejtSRmMn7O2LxebwhhlMfv3z/Ff649Lw87henwC+ae6jvucwVPXEti/nmRax/Wu3MK6SPx3GNGncwtZzftHvL8zLNyFG3NbVZ8zcT8v1U+94uUydpehXxO/8sUcWiSGcxcHnLWA5r4/1xZBrFfH8gkWMPvF/hU5k7dw3o5PFOdvTZqvU7E6vhT3pH6J2ZqRmUKv/abwMLqu65g2X++T9sLWLtzyLBOyvk/s28XzE+66gcmi/6bzRnf79R5uQ6ztghnA/2H9q0kkO90LJlFcHpu2V+hb/x/TY5ePZojRy2OYboHfF1bXEti/0NCzaLX8GLFX56dXtnCCNaw2Z8cxYPVS73h5OW+pmYY+4u732+Y36iLWmui38dq/Iqfo9XkPFd+dmV3A3+6V2cJ+e9Akbtufx3yd/2sFhe/uKf19UuK/af3etNQIhkZ0fLllfaM8Q/pO4eOcFfol/z/KfY0BolwJGLD68TNeRDIwYC2K8aIgYMBaEOPln83NFllB2iQYsBbDePnHem7PnDmD7777TtxCfmPAWgjj5a+7d+/az+21a9fELeQ3BqxFMF7+sp7f06dP28/vqVOnOAuThAFrAYyX/9zZlzs4C5ODAQs4xst/3tmXOzgLk4MBCzDGS47C2Zc7OAvzHwMWUIyXHKVmX+7gLMx/DFgAMV7ylJt9uYOzMH8xYAHDeMlTafblDs7C/MWABQjjJddxsy93cBbmHwYsIBgvuaqZfbmDszD/MGABwHjJV+3syx2chfmDAVMc49UYb731Fl555ZW88cILL9j7wZpxFd5nzdZ2dnbEo6leGDCFMV7NxfqLgK19YQWL5GDAFMV4NR8GTD4GTEGMV3NiwORjwBTDeDUvBkw+BkwhjFdzY8DkY8AUwXg1PwZMPgZMAYyXGhgw+RiwJsd4qYMBk48Ba2KMl1oYMPkYsCbFeKmHAZOPAWtCjJeaGDD5GLAmw3ipiwGTjwFrIoyX2hgw+RiwJsF4qY8Bk48BawKMVzAwYPIxYA3GeAUHAyYfA9ZAjFewMGDyMWANwngFDwMmHwPWAIxXMDFg8jFgkjFewcWAyceAScR4BRsDJh8DJgnjFXwMmHwMmASMV2tgwORjwHzGeLUOBkw+BsxHjFdrYcDkC2zAjMwELrW3Y+Q/4oZStj/DNXOb9oLxyzsrYgPB2MVy6jrOW/efv4rbD57iUNxVDuPVehgw+YIZMCMDPa7Z2w3Oi9uKGFgajh59vtzoQWpbbGLLYn4wimj/JFY2d7Cz9hAfXIggrmfMz1Aa49WaGDD5AhgwK0wxRKMRe7uyAdueQuK1D/Fox4ySdzw/yA/T5gTi7R/isffG7H28oyWRFh96MV6tiwGTL3ABy84PIhbXMTfeXSFgBhZuRtE3kxUfV7ChozsxhWfiQ8c8BkOD5j/zMV6tjQGTL1gBy5phifXB6tKGXiFg2yn0hMJoO38VI/pDrB+UOxg0GUsYjnbjw8du7Axs3e9D1Iya90iT8SIGTL4ABWwbU4mYGSwnNOUDZs2+nMPL3Aij68YDPC1zZt7ITKE3FkGbdRLf/Hek6xYWPJM3xossDJh8AQmYgYweR2x46ej8VfmAHWJvZwdri19gWr+Bi2fDR59T6xzOC1M+53E7e/mVY7zIxYDJF4iAGZlxxOM6Mp4jwYqHkHkM7C6P4UJYRKxvBmUbVoDxIi8GTD71A7afRjIWx8SG+FioPmAOI6MjrlmfuwNjq+LGChgvKsSAyad4wKw1Wp0YmCueM500YBb3MYmp/GuOhRgvKoUBk0/tgKWT0KyriZ5V9O6IRZyFrOE25+Mrn2w6j6nEWvNlPqZbL5jOeTBeVA4DJp/aAfvPSFG43FFTwOz1XZo5ayu9rILxokoYMPnUDlgFtRxCmg9Cd2QQ8/viYw/Gi47DgMnXggGzlkPslXgzdhZzA1EkpvLeCGljvKgaDJh8LRewzYm4fXv4wgd4uO687/HwhxVM/r4Tvxl7XLSEgvGiajFg8rXeDGzjM/TGnPNjztAQeeM6Usu7R4tgXYwXnQQDJl9gA2YcPLd/u0TBwnlBrKovez/jRSfHgMkX2ID9HIwX1YIBk48BK8B4Ua0YMPkYMA/Gi36Ou3fv4r333sNHH30kbiG/MWAC40WkHgbMxHgRqanlA8Z4EamrpQPGeBGpTemAff/999jc3LSHFaOTYLyI1KdswEqNl156CWfOnMG7776Le/fu4ccffxSPysd4EQWD0gF7+eWX7TU31vDe7o5Tp07Za3Omp6fFoxkvoiBR+hCykPXWoEePHuH999+3w2UFzN3+1Vdfxccff4xLly4xXkQBEaiAFbIOIXVdx+nTp48ex3gRBUegA+Y6PDzEa6+9xngRBUzgA8ZzXkTBFeiAMV5EwRbYgDFeRMEXyIAxXkStIXABY7yIWkegAsZ4EbWWwASM8SJqPYEIGONF1JqUDxjjRdS6lA4Y40XU2qQH7HCv1F/rXz03YIwXEUkO2CrGOjowtio+rIEbMMaLiKQGzFi4iYgZncjNhaK/xr9absAYLyKSGLBtpHpEfLQEprbFzSfEeBGRS17AVsfQIeJjjY4ajyMZLyJySQrYPuYHI+ah4z+RSmhOxCI3sVDDcSTjRUQuOQHbTqEn5Jy8d8+DhUIa+mf3xQbVY7yIyCUlYKtjHQj1pOCc9rKuRIpDyY4x8yMiotr4H7D9eQxGIrjpOV7cTvU4AQvl305EdBK+B8yOVeFMa38W/ZozC9P6Z3HyA0kiIt8DZh0uakgUrZkw8GTUPKy0Z2E9SNW4pIKIWpuvAduf7Yf2iwF8/v2O/Xc25o2VO/ilHbAQosNLNS9sJaLW5WPAnIWr4bZ2tLeXHm1hJ2AhrR81XJAkohbnW8CMJ6PoOGbFfW5JRQg9PI4kohPyKWD7mO3XqnjPI5dUEFHt/AmYvXC1upPz9nkyexZW28JWImpdPgQsi7mBCELdOjbELRXtz6BPHEaGOkbxhGfziahKdQyYgYP1RUwmO50ZldaJ5OQi1p4flDmMNLd/voaHo4mj82DWiF4ew79WtnDAkBHRMeoYsE18cqXE1cYrn5j3lFJme3tcwSelH0REdMSnk/hERP5jwIhIWQwYESmLASMiZTFgRKQsBoyIlMWAEZGyGDAiUhYDRkTKYsCISFkMGBEpiwEjImUxYESkLAaMiJTFgBGRshgwIlIWA0ZEymLAiEhRwP8Be6g3+xeTYV0AAAAASUVORK5CYII=
|
As shown in the figure, Mike's initial position is at point A. He walks 5 meters north to reach point B, then walks 5 meters east to reach point C. In which direction is point C from point A?
|
A. North by west 45°; B. South by east 45°; C. North by east 45°; D. South by west 45°; E. No correct answer
|
C
|
23
|
iVBORw0KGgoAAAANSUhEUgAAATIAAACXCAYAAACWYNcsAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA1fSURBVHhe7d1vSBxnHsDxfTd9I/emAwVZKCyHhbJcfSPhLKS+sQilRCgpOZAE5OAqBPbgrBXhTo5IuLNw8XqQF3u0bwx6d8UUhKTxhcGQ2oYcQaEiSohHm2ISMGXtC2H74nfz55l1XWf/uNmZZ2fm+4GBOo5GndnvPjPz7DYlABBxhAxA5BEyAJFHyABEHiEDEHmEDEDkETIAkUfIAEQeIQMQeYQMQOQRMgCRR8gARB4hAxB5LQ/Zztw56erqqrv0nx+TsSvX5JvtfSmqr0X8FPe35ZtrV2TsfH9p3/cMjsil/Jey9sOBs01h5U/yt6+c/wSa0vKQFfefye7OmiyMdouRSknKWrpG/iNrO7uyu+sum99cl/z4O5Ix3M93nJqS1T31DRAPB4/k5vgp6bD37+uDMnVtpXQM7KytyLUpe/8bYmYyYlrHQW5ZfR0aYj9B3M5flP5LPAPYgju1LCzKkApZb/6hWnlU8btFGU6726TSk3KPoVksHO7XtJyd3RB33HVc8el9me4znP0/tFhQa8N17AyiZ1yWazypfnWpbFtvOTcnO+rzwduWxT+ckV+Z7t8txTOAI8BrZMuSqxMyW2E5J6babmD2sVqLyNqz9rt6cuq9ulX/soHavtYxEiT7DGJn7UuZ+U2mdAZh9OVlq8oPfvDcGlVu3pRc1trWPCNXv96R3WfBXh55/PnncmzctTLq/ryEzKE9ZOUjN3ZK1O3J0ojp7ktzQlYbfHTvLQ5Jn6aQHdqTB5d73Z/dWtLWsVjrasfDvLVtKMfrY5kdyFmPpgoP89LLY6ZEf8iezMsZtZ0xuqJWIpI2ZiSr9mXX9Lpa2YDiqkxMtsED0jo7SKXTknZ+B8OKa/URZVgh21sasc5YCFk9mkNWlK2r3rOgKbllPddJ0Br3JtVozNqXk/fUyoYUZX+/2pW0ENkhyy3JVr5PnWamrWPSf1wWRsiKT5fUaTohq0dfyA5+kK/zZ0vPfpnR2kN5tLuHku9193cqdUbmn6jVUeKEzA7DnvWfafd3Mfok73PBrGbIDh7J7fy4DPa4NwP6z1+RhW+fHh/dHTyXzdt5udh/ybkGtvcgLxesr+m/+IXcv5+Xs96NsFSHdKobC+fm1G2FipAdPLopU4M91jY9Mji1JN8FedGuDYUSMjtUZqbsLk9nh1pvLen35e+3H1W9s+XnwoULLJqXfD6v9oanfH/7jCCioBQyS3FL8uqOaipt/T4Vz7LVQnawkZe3Ozrk1PiCM91kZ21Bxk/Zx7sh3ZOrpSfr7X+Ny/Cgd4MhJ0tbeXk30+lMV7HDlbtpT1X5r3zcY3/8W7mupi4921eFKoVsSZ4ujUtP/3kZGzsvp9XdzLQ1JE5Sy0IJWdef75bmkLnzyG7JtalBeb3D/Xyq45RcnH3Q8IjMfbCw6FrefPNN+emnn9Te8MQsZLayO7DG0OKR49M3ZGp701p/5CKJFcWrzmjVkL5Py89O7smkaa/Pytsz9hlJUZ7en5VLV7wRlTfKrXFqmTktf10qG+09npUBe705aX335NB7jexgQ2bPqiG8taRHV44eAFV423/22WcsISwfffRR6W/+3nvvyc8//6z2RLkYhsxStEZKfc7E7aMX//1CtjGTtbbzvz5YuDHsjr6O3M31QvW+LPg+izcQssqYihVNZxQX0X3QJM0X+y0FazvnWclesjKzodbX4D2oELzNzU155ZVXnL939YjZduTTPm8/9kqtXd62fEJm27PWu9dyDy/+Hw+ZF5Aqv3txSUac71EeuhqhcjQTMu9rRmQpQeeW+kNmWRlV1yKspe/T+nOkvW0RrMYj5nJHJO6+0TVT/4VUCZlVocM7meri//GQecd7tYh7oSt/OVaQIYvok0mT2iJkzkHR4LY2b1sE56QRc3jXZ+xlYFYaf52GFYrPv5A19ZE2VUNmK7uTmc5J3p486xsyQ/ynQ3qB6ZLDKXaErFXaIGQFWRxyt7MPgtxy/fGwuy0hC0pTEXMU5d6kd82z+hysSnvLo/K7+TZ4eVrNkFnK72Tay5Ftn8j8GXe9/2TgdZnusj7ve42MkL0o7SErrk+XZoOnevPWbqjPO5DQes1HTCl/sBvdMnnHZ/5USVGe3pmUd9plDmG9kNnK7mRWblt63bA5IkuVv5AarWaPXAT2olPtetbxzx/sq9d1eiEbWar4+xKyljq4/2fpsv/Q1uIbsuK+bN8clW71Vj6p9FmZr/ZK3QrO9taC1nrhiHmK38niB94cKUMy70zJwtrO4Rwoa98/27wt+YunpfuDxTaZvFmUB5e7JNV1WR7U+XmK9ybdi//Hond4+pk+Oysb3uTIg0eyMJw+/mL0gzvyoXOjy5QP7/jNpPRuoJgy9O9N2Vm7JuP/cOeH7S287/w7x35e++Vezvfsksv1fpEYaXkNnLdFyZjqID5cDDNzOCG27POG2S2DUzfl0QlmxHrfE63TsoiVWKOtbxdkarDbeb8xb5+5S4d09l+U2fu1Rmvhcd6ap3ySdkendZy6s+39qYv/fqO34lO5n7/gzpE0TMlYx3unacrp8aPHuP046fTmUXp/E59/0z7t9t63L3123grhjsyd8ybOuov92LJn/Nu/R8Z7ex97sf/9hLxfWctr4LyxYtnk1+rLM/GeoE/K21FojdZHrFJR9p95+/35iV7FEQbnrXmOHZ/1fs4Def681hbW553v43+c+z9O/P9NZ9vSWwWV/y0PF3u06/t71PwZ4yOSNSBkrRN8xIDgEbIEI2KIC0KWUEQsOPbLuhAuQpZARCw49nWpl156Sa5fv67WIAyELGGIWLByuZzzt33jjTfUGoSBkCUIEQuWNxrzjk9GZeEhZAlBxILnjca8hVFZeAhZAhCx4FWOxryFUVk4CFnMEbFwVI7GvIVRWTgIWYwRsXBUG415C6Oy4BGymCJi4ak2GvMWRmXBI2QxRMTCU2805i2MyoJFyGKGiIWr3mjMWxiVBYuQxQgRC1ejozFvYVQWHEIWE0QsfI2OxryFUVlwCFkMEDE95ubmjv0/QF977TVnP7z88svHPmcvP/74o/pqtBIhizgi1l7eeustZ1+8+uqrag3CQMgijIi1H0KmByGLKCLWngiZHoQsgohY+yJkehCyiCFi7Y2Q6UHIIoSItT9CpgchiwgiFg2ETA9CFgFELDoImR6ErM0RsWghZHoQsjZGxKKHkOlByNoUEYsmQqYHIWtDRCy6CJkehKzNELFoI2R6ELI2QsSij5DpQcjaBBGLB0KmByFrA0QsPgiZHoRMMyIWL4RMD0KmERGLH0KmByHThIjFEyHTg5BpQMTii5DpQchCRsTijZDpQchCRMTij5DpQchCQsSSgZDpQchCQMSSg5DpQcgCRsSShZDpQcgCRMSSh5DpQcgCQsSSiZDpQcgCQMSSi5DpQchajIglGyHTg5C1EBEDIdODkLUIEYONkOlByFqAiMFDyPQgZC+IiKEcIdODkL0AIoZKhEwPQtYkIgY/hEwPQtYEIoZqCJkehOyEiBhqIWR6ELITIGKoh5DpQcgaRMTQCEKmByFrABFDowiZHoSsDiKGkyBkehCyGogYToqQ6UHIqiBiaAYh04OQ+SBiaBYh04OQVSBieBG7u7uys7Mj33//vVqDMBCyMkQMiCZCphAxILoImYWIAdGW+JARMSD6Eh0yIgbEQ2JDRsSA+EhkyIgYEC+JCxkRA+InUSEjYkA8JSZkRAyIr0SEjIgB8Rb7kBExIP5iHTIiBiRDbENGxIDkiGXIiBiQLLELGREDkidWISNiQDLFJmREDEiuWISMiAHJFvmQETEAGkJWlPW5OVkvqg+b4IWMiAGwhR+ywg0ZNgwZvlFQK07OCxkRA2ALPWQP871uiAZm5bFad1JeyIgYAFu4ISuuyoTpRciUidXmzi+JGIByoYascGNYjHRGMoYbImP4hjRzgknEAJQLMWQbMpNNycDs/2R9OqtGVQMy28T5JREDUC60kBVXJ8Q0hsW5xv94VgbU6WF2el1OeoJJxACUCylkBbkxbEh68p6KlvuxMyrz4gYATQonZBszkq04jXRGaGpUNtDM+SUAKCGErCirE6bPhX33mpkzKsvOWB8BQHOCD9neogwZWZn2mcrv3MV0RmXNT8UAgMBDtjGTldQvfi0XxsZkrHL5/bvyS3V6+SITZAEkW7AhcybAGjL48S25dct/+edw2g1ZKisznF8CaEKgIXs8f0aM7HTtF4iXTcUwJ1ZPPBUDAAIMmX0x35Az8/VOGAuynDPdUZkxJIt7ajUANCiwkBWWc2KaE9LQNfz1aelSo7JmJsgCSLZgQra3LLm0Faaeq7KlVtVUWJQhFbKU0Sf5LVIGoHEtDtkTWfljv3R2qChZS0dnv5z/ZMX6jB9r+0/Oy2lTzfIvxcyU7sG/yIr/FwHAES0OWUG27/rcnby7XTEZ1lNle2e5K9u8dAlAAwK82A8A4SBkACKPkAGIPEIGIPIIGYDII2QAIo+QAYg8QgYg8ggZgMgjZAAij5ABiDxCBiDyCBmAyCNkACKPkAGIPEIGIPIIGYDII2QAIo+QAYg4kf8D9jykpTqrTYIAAAAASUVORK5CYII=
|
As shown in the figure, Mike's initial position is at point A. He walks 5 meters north to reach point B, and then walks 5 meters east to reach point C. In which direction is point C from point A?
|
A. North by west 45°; B. South by east 45°; C. North by east 45°; D. South by west 45°; E. No correct answer
|
C
|
24
|
iVBORw0KGgoAAAANSUhEUgAAASoAAADNCAYAAAAPDD2hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACBMSURBVHhe7Z1/iFTZlcdrYZIyYE+GYBEXp7OCQge0SQQxQgujEPzByqIwTCaJRqFDMDIDvexkJ6KgbCLCNkGb+cNAQYfsaJTM4EAabDS7iuOMP2gy2ptx3XYaGxwH7Rl0aP2jobJw9n3ve6d9dfu9qldV71W9V/X9wLGr7ntV9d6169vn3nvuOTkhhJCUQ6EihKQeChUhJPVQqAghqYdCRQhJPRQqQkjqoVARQlIPhYoQknooVISQ1EOhIrFza2iTHLpe8p4R0jgUKhIvMxdkoJCTfP9ZmfGaCGkUChWJlfsntkgul3Nsi5y47zUS0iAUKhIfpXEZ7N0iAwO9RqwK+68IB4AkDihUJDZmzvZLF4Z890/IFnhV+X45y/EfiQEKFYmJ+3JiS0H2X4EPNSMjOzH8y8kWjv9IDFCoSCyUruyXQu+Q3PKew7vKw6sq7BejXYQ0AIWKxMAjx4PKS19x0nvuULoi+wvwqvLSz/EfaRAKFWmcW0PSG7DKd2vInVTP9RXFJ2GE1AyFijRISa7sL7iCFGo6d0VIfVCoSGOYFb5eGRwPEqL7cnpb3ogVA0BJI1CoSAOUZHywVwoDF8JFaLIofcar6pUhnWknpEYoVKROZuWzq0eMCP3gD585z0KYHZN/63GHgPkNg3L1s9AzCQmFQkXqYrLY580/eRY0YT7nTZWb44ARUhMUKkJI6qFQEUJSD4WKJMrsLOekSONQqAJ4+vSp94g0AkRqz5493jNC6icTQmVPxtLSZWG8/fbb8txzz8nU1JTXQkh9UKhoDVsYHzz/PP7zXCOkAfgbZHHw4MG5L+B7773ntZJauXz5stxQkXKMw2nSCBQqH19++aW88MILc0L13e9+1ztCamXbtm0y6hOqo0ePekcIqR0KlQ+/N6VGr6p2PvnkEzM39cFXvjInVMuXL5e//e1v3hmE1AaFysP2ptToVdXOwMCA6buHhYIRqZdXrzbPKfqkXihUHkHelBq/YNGB4C9cuNB4VP/X3W2E6k/Dw6Yf161b551FSG1QqBzCvCk1elXRwVwU+mzHjh0iixYZocKQb+nSpab9xo0b3pmERIdC5VDJm1KjV1WdeYLk/JR8XmRqSoZ+8xvTbgSMkBrpeKGq5k2p0auqzjvvvGP6ygzxsHXGeSxf/ar5OTM+PjckfPDggfcKQqLR8UIVxZtSo1dVGQjUXD8hGt15LF/7mvvz6tW5SfYDBw54ryAkGh0tVFG9KTV6VeGMjY2ZPpoLQ/jkE1eg1EZG5sIWFi1axM3KpCY6WqgwVFm/fn2Zffvb3zZfOBUm+zgng4N59dVXTZ/NBXZevFguVL/7nWlGICjOO378uHlOSBQ6WqiC+J3zhVKhuogvG6kK5pzgKcE7hZdqsIXqV7/ymi+avl25cqV5TkgUKFQWFKra+eUvf2n6C3NQc8CDgkCp+Y7BU8X5o6OjXgshlaFQWVCoagNzTfCk4FFhDmoOW6h8YQnax5s3b/ZaCKkMhcqCQlUbb731lukrzD2VgaEeBErNG/oBiNvixYvN6/761796rYSEQ6GyoFDVhi4+IK1LGQcPlguVxa8c4cLrmAGURIFCZUGhis7IyIjpp8CwDQgQBErNAhPwCxYsMPbFF194rYQEQ6GyoFBF5/vf/77pJ6Qcnsfu3a5AVQiS/elPf2peD++KkEpQqCwoVNHA3BL6CHNNgXmmMGcFoarQh1XfgxAPCpUFhSoaVb2h9etdoRob8xqCqeiVEeJBobKgUFUn0vzS6tWuUGHPHyba33pLJCCqv+I8FyEeFCoLClV1Iq3YLV3qChUyJbzxhvu4WPQOlhO6ckiIB4XKgkJVmcgxUM45RpwAhod4jJCFAEJjsQjxoFBZUKgqo/1TNaocwmTba695B8sJjW4nxMP57SF+KFSVibRPDyt4ECYd/qm9+qp3wnwC9wsS4kGhsqBQhfPnP//Z9AvmlCqiSfNsocJKYAiffvqp8aiQBXQuAwMhHhQqCwpVOJFzSalQISUxfqotX+6dEMy8nFaEeFCoLChUwWDuCH0SKTsn+g3CpLFUaqhKUwHNEooCEQwAJX4oVBYUqmBee+010yeYS6qKChXmpPATduQIOtc7IZy1a9eaz0H2VUIUCpUFhWo+mDOqqYLMqVOuOOl+P1hEyirZEOJBobKgUM1ncHDQ9EfkmnzwnCBOGugJi4i/NiCGgoQACpUFhaocCMeLL75Ym3A4wmbEKSTAsxoqjJhcJwRQqCwoVOXUNRTTpHl1rt7VPNQkbQ+FyoJCVY5ObtdUfBVBmxAqDAHrRIuVRpq8J20PhcqCQvWMq1evmn6oOVxAJ9H9K3fYcIxtN1j9i4CGQ2BrTdVwCNL2UKgsKFTPePnll00/1ByA6bzOCJW//yBaaMOxiGiAKTYtk86GQmVBoXJpaEuLBnr607agL9FWYRuNTeQtO6TtoVBZUKhc3njjDdMHdW0SXrvWFSXdSuN/jP1/NaCboJFgj3QuFCoLCpXI06dPG0u7opuR/UKFeSb8dN63FvT/AymLSedCobKgUMWQyO7FF11RAvipj51hpHlcw8Q8i5USQKGyoFAhycHyxu4fYgSzHyN7Ah7D06qBgwcPOi/LmYISpDPxfoOI0ulChXgp3HtDxRYgRvCq9DEM6CT71avu84j4i0kwALQzoVBZdLpQNVy+6tNPXTHSSXM8hgGITJ1VkeFN4bpYrLQzoVBZdLJQ3bhxw9w35oTqDrLUCXSs/AE8hjVILNdGMguFyqKThWr37t3mvhvyWjCsgzBpvBQew2JAvT38H5HOgkJl0alCFamoaBTQZxCmGiLQo8JipZ0LhcqiU4XqwIED5p4bXlnTrTLY75cAuiKJqHXSOVCoLDpRqGKNVcKwDEIVUsPP0IDHxmKlnQmFyqIThapYLJr7rVpUNArYwAyhCkqahyh3HGtg6AZRRdQ8rpfFSjsHCpVFJwrVypUrzf3Gsp9Ok+YFpXPB5mYc0xirOtF9iCg4QToDCpVFpwlV7BkKNE86hoBBPPece7wBWKy086BQWXSaUG3dutXca9WiolHRpHkaMIrHMEU3LCMwtAG0WCnyq5P2h0Jl0UlCdfv2bXOfsWbR1Fp+2nd4DFNWr3af37jhNdSHZh9F4QkWK21/4hWq0rR8fOaY7NrYIz09PbJx1zE58/G0lLzDWaCThKqmoqJR0f18YUKFCXs8Hx31GuqHxUo7h/iEqjQhw5u6zC9OuXXJpuGJzIhVpwgV5nYQ3Bl7pRcVKs2QgMcwRYeGYXNYNaAVciBYpL2JSahKcv3QClm7b1TuPIEkleTJvasypMKV75ezM+6ZaadThOrIkSPmHmOvnedPmgfwGKZgNRDpXurd9OzDX3MQQ0HSvsQjVJPD8otigNc0c1b68+6XfuCC15ZyOkGo8AXXAM/YqxGrUOm8ER7DEkKLlaIQBWlfkvsNMkxKsQ9f+l4ZuuU1pZxOEKpTp06Z+0tkyGSHH+Cx/3nM+IewCFsg7UnCQjUugz05yW87Lfe9liBm716U4r7tsqYHk/AbZdexM/LxtO2fzcrj2855r2+UH55yhxWzd0fl2K6N7sT96ydkbO41JZn++EzIscp0glCtXr3a3F8ik9AQJcdbmwPPYQmiiwIIBCXtSYK/QY5YnNkp+e4BufDIa5rHI/loaJN0db8iQxdvy4MHU3LzZL90O790ua5NMjzhisvDDwZlx5olkke7Y33OMPPeiHNe1xJHiJZJwRte5roPyfVSSSaGnffMF2TZvGPm7SrS7kJ1+fJlc281FxWNAiblnfeeS5rXJPzFSlGYgrQfiQhV6ckdGd23Vrpyy2Tfh0+8VhtHUIobHPHpk+OeILk8lNPbPHFxPLGHXqs4PtmJLW57z6bd8s/FMVEnqTR9RnYaQcrLhk0/kh+VHRuVvQX32MCF6krV7kKlRUUTCZTUpHktSMOigassVtqexC5UHx4szHk+ruVl2S/OzwnHHDrRvnNE7AXBW0O95rX5V971CZXIhQH3Pdccn/BalJKc3xt27Nnr+oqTXks47SxUU46QJLr1BBPzTr9VLTKKFTqnn+NEtwIhDQxpP2IXqtnHD+TB7WvyXvF1WdvlfuFhvYPjZauCD0+75bqDxWNWHj/4XEykg49KglPvMZt2FioUE8V91VVUNAroL+f9HffGawhBVwYbSdAXgBYrRYEK0l7ELlRllO7JSH+3+eXJ5QfEP/IaH+wx7VHEQ6FQ1Y8WFcV9JZYeBQLhvH/VpHnr1rnn3b7tNcSDpqthsdL2I1mhAo9GvPmjPvHrhIpHj+NpRYVCVT9Hjx4195RowjkM55zPkD17vIYQ4HHhvJj7158AEMUgSPuQvFDJjIzsxBd/m5z2TThNFvvML1Sud0jCQqxK18/Jf/lGBxSq+sDqXsNFRaOADAzOZ5QlzcNzmB87w0KMaLFSFKog7UPzhMoWpOuHpOD8QuVyBdl7PiB+oTQhx/vLX0Ohqo9YiopGQZPm+avY4DnMj56XwAodi5W2JzEJFSa/Hzv/zqc0UZQN+W4ZmBdMdUuGel1ByOU3yOCYL8vC7F05079Mtp0uDxOlUNXHunXrzP3g3hLlwAFXgPyfg+cwP5XSFceAlv1CwQrSHsQiVH857E6Y55dtlcOjd9zVutITuXe1KK90h2dPcEXMFQVY1xJEpi+RLjzeNCxl4VWlcRn0hK3nyEfW+z2SMz9wjxX+9X1LMJ8dy+8ccZ5Vpt2EqqmFO4MyI+A5zA+GfGhLaHjGYqXtRyxCNXP938tCEYzlC7Jq+2EZvVv5FwXbYPat9aWHcV730r7zcs+nRFOnfijLCnnf++elsKxHfv1h0DFX8KodC6PdhGrHjh3mXppSCl2Fyt9veA7zg9U+bHdJMIxAi5ViJZBkn1iEygXDvwdmXuDB508CPahKmPirgNgpUHryufu+lj12NLDeY2G0k1DhXhHg2bT5GjtpHsBzWJPReTkUriDZp/m/QSmnnYQqtqKiUVGh8sdp4TmsBbBYaftAobJoF6HC3MyiRYvMfTRcVDQq2L4CUdKkeQDPYS1Ai5ViHyDJNhQqi3YRKlSVwT00NUpbt8akJIOBPxofhSxIdqFQWbSLUMVaVDQqCxa0zHsKg8VK2wMKlUU7CNXo6Ki5/tiKikYFIuV4MJHAahxWCRP2dLRYKRYUWKw0u1CoLNpBqDZv3myuv6m5mZAJAUIVNWnejh3u+U5/J43m4EJBC5JNKFQWWRcqTJzj2mMtKhoFTZoXNRwAqWZwPqLUE0aLlSIAlMVKswmFyiLrQrVnzx5z7bEWFY0CVhYhPNWS5inwbnB+k7a5aLFSFLYg2YNCZZFlofrCGX61rCIL+grCg0rIftAGs8GQD+0JbaOx0co7KGxBsgeFyiLLQoVtMrju2IuKRgEl2oOEB20wmzBhSwh/sVIUuCDZgkJlkVWh8hcVbUnVYPWQ7Ch4tMFsdKjYxHLsWh2axUqzB4XKIqtC9fbbb5trTqSoaBQQbgDhsVO3oA1mU+sqYQz4i5Wi0AXJDhQqi6wKlRY2SKSoaBQ0GV5UoQLo36Tyt4egxUoTK3BBEoFCZZFFocJ14noxB9Oy5XcVKjutCtpgKQFbadBXCN9gAGh2oFBZZFGoULAB15tIUdGoaC4qzFX5QRssRWixUhS8INmAQmWRNaFC6atEi4pGRYUKq39+0AZLEf5ipQwAzQYUKousCZUWFW35pltkaYAgZcQL1U3bLFaaDShUFlkSKnhQ8KRwrYkVFY2KJs1rVu6rBtFipSh8QdIPhcoiS0LVlKKiUcEePwhVLcv+2DS9eHFi1WgqwWKl2YJCZZEVocLcytKlS811piLVribNq2WezOlr85pqlZUTQlM1owAGSTcUKousCBXipXCNiRcVjQryUEF0agFJ/fCaFkWKo+CFBoA2pfgFqRsKlUVWhKppRUWjAsFZuNB7EhFs9cHrWjhPxGKl2YBCZZEFoRobGzPXl5oCm8iRDsEJ2g6DdlgQmsMqyjaa2cfG67FLsTV6/1qsFIUwUtGXJBAKlUUWhArZEXB9B1swCR2ICk5Q6mO0w4JADBOOIdd6ILNyd/SwbF+BArVdsqTHq6TdtUK2Hx6V21MjsvfQBe/c+lm/fr3z/jlTEIOkEwqVRdqFyp8DPDXzKsh7DsEJSpqHdlgYGC7iuD0JP3tLipscgcovkx8Vx2S6zI36TK4WX5Fu53W5bafloddcL1qstOk55klkKFQWaRcqZO7EtTWtqGgU0E/ONdUlVKgFiKFfWaK/SRnegFL83TJw4ZHXZlOSieIGyfcVnbMbR4uVojAGSR8UKos0CxXmULROXapifxAeATEKytaJdlgNPBrZKXnnNbktJ+S+1xbMLRnqj0eoNCYNhTFI+qBQWaRZqLTyb1OLikbB6TMjRrEI1aQU+9z+3zky47WFc//dd+VD73Ej+IuVNq2yNIkMhcoizUKFORRcV1OLikZBhSpoiR/tsKg8PC3bnPNzuTVyfMJraxJarBQFMki6oFBZpFWoIE64JsylpI6wpHkA7bCoTBalzzk/l+uTYhxjuhpA1k9dqEChDJIeKFQWaRUqDPdwTU0tKhoVFao4lvdbKFRAi5WiUAZJDxQqizQKVcuKikYFQyXn+swQsFZwP2NjiLx0n7dw6AdYrDSdUKgs0ihUCEXA9WAOJZVo0rx65s4gUnjtXGjDs8n0LScqr/kZSrMy64+xigHU/sPno2AGSQcUKou0CZV/42zTi4pGZetWV2zq6S+NavfNvc2c7XfDE3oHZbyiCJVk4vSwXKq+OFgTWqw0NRu+CYXKJm1ChW0yuJZU16LTpHn1xnbhtci+MMcjuTDQbe67u39E7gWKFUTqdTkcGhBaP/4aiWmap+xkKFQWaRIqzEe1tKhoVOB5ONdYU9I8P0EpYkrT8v7htdLltOeXbZXDJy/JzakHxsO8fe2kHN6+Ufadny7boBwnWqw0FUkJCYXKJk1CpdfSsqKiUdGkeUF7D9EOqwSGfTgnQOhm716Tk8f2yvY12JDs2MZd8uviRbnzJCmJcvEXK215mmdCobJJk1BpUVHMmaSaRYvCxQjtYccUHTpiYj1FIPAT/c9ipa2HQmWRFqHSkk4tLSoaFYiM43kEgmOwSmD+DeekIaWyDy1W2vJSZIRCZZMWoUpFUVEfYZHaf/nwQyMyX77wgpn4h/eBrJlqOGbMAqlVcD6qwUytWSMPnGHdfx46ZPocEeJpiRdjsdJ0QKGySINQYU4En485kmb9JcckNUQRaWQgMEgmh9p3yHyJawmbVH4HQuocn/L6zDbnn0Ch0hTALzj2pXfOWsf0dZcvX/bOLAeR+fg/QjoWCFrS4HNwPSikwQDQ1kGhskiDUKGYKD4/7qKiGMqEVaxRcQyzsPCI//nTn4zIfLp8uek7NexNNP3nHDNmgeIU8KiuO94Ujt/s7jbihTQrmJsLixnTDAdqGJYhQBOvTcr71GKluGbSGihUFq0WqriKisJDwiQ8otrxxYd3pveFlCY28BYgjBAP9AE8CeS8qhpkqmIUlDQP4BgsCNwf5rZgEe4V14jrw3ViSKblwtTCMnRiGNnIUJLFSltPRwsViiT4vQCYbleBYRhkH096uAGvAJ+NL2K96PyWbci8gGOx3oMKVVhtPByDBYHhJI414DlCdP3/j0FAsCHUGM5C6PAHqBbhwrk6BMZnkebT0UKlFUiiGoYdSc4ZwWPAKh8+K0pR0SDPCGBCG14ZxA6TwPhyhZ3bMNgP51yvM/byGiKiAodgz4Tn4dAH6qWqqXAhS0KUrUlarBSFNUjz6WihAmHeR5Dhr3GSRNljBtGBEEHQ4P0FAVFq2sQvvBjnmh3302uIiEazN2lVE/2B6H4IEwTKPxSO8kchE3su25iOF6qoXlXS3hRABDo+C3MifjD0wE5+Pa6Wioj1I0dcwalFxCGiWO5fvdp93ALQpxgCQvSjijpKv6PfMSVAmkvHCxWI4lUl7U358yD5508gWrrfDwbBxGRyavb+oV+c65I0JvRrAHhN8Lz8Cyr6Ry21ecHaGAqVQzWvqhnelGaWtAVRRRTDQYhW6r4gmAh3rs8MAdsInZOCQbD0DwMeoy2VmVbbGAqVRyWvKmlvCn+9w4qKIrsnorhTCybRnT6SNosxwnAQq4ha7w//P0hc+Mc//tE8Z7HS5kKh8gjzqiAeSSf61+onZstJ1tAQA98QqQwcg2UUCBZCRnTyfcWKFfKtb33LPE5dNaA2hkLlI8irSnrnPFboMLTEZ7377rtea4ZwhkLOxWOSzWuwwDEYtsSgYEJG53YQe6bDPqSbwc/U1VdsYyhUPmyvKmgoFjdaVBSGkIPMTdJi5c65dueb7DVY4BgMK5T4iVXCjALvCt7v/fv3ZcmSJeb/jMVKmwOFysLvVSXtTQEN8MQcSCb3kmnSvLDYIhxTW7wYLqR3INtcu3bN/L+FxbKReKFQWahX1QxvCpO1KopIfZtJHKE1IhQGjqnZK4OlJ/L51E25dO6cnDuHVMOPJUv+JMJEmvF7QihUgcCraoY39b3vfc+IFFaWogYdpg4VoTD0OIaISmlaxoq7ZUVXXgqrtsveN9+UN/dul1WFvOQLL8m+0buZEKzp6Wn55je/KX19fV4LSQoKVQDwqprxV/LnP/+5EaowbwrXgYDDMAubzwo6Vy0sUBRxYkHnqyFFTCDO9c86Q7qg11zGqpgnVHeGh93zSxMyvKlLcvkNMjg2LY+doSAmql37Xzl/9B/l73NflX/42R/khtOWdPxaoyDFTCMbyEk0Ui9UOjTKqlVCgzzDlrl1lSnMwrIgBJ2rhtQoQUBYgs5XCwydwOc7x8KS5h11zHlgDPfyrAxWQfaed8tc+Ye/QRYWw6aJ98IM9xMEUrWgD9TwHNemFgY+zzbNaf+Tn/zEO4skBYUqYasEPCn9ZQ/6q4zjQV8QtbD4rqBz1cKqLcN7839hbQv0+jyh+u+vfz3wNf/yne/Ireefl1fXrjVD6dKV/VJAv/QMyrj3FlhA8AuHse6CfA3n/d1C+dmR4BTAuBe7r/0WJlR4/6Dz1cIIOlft2LFj3lkkKVIvVO0O4qh0Lx+2bWQKxEY51+2oktdQiZLjTeXNfRYOXffawpiQ42tcEdh2+qHXFg/YBfBsqDnfwtDhLOz3v/+9fOMb3zDX9+Mf/7ihBIckGhSqFID84JovKentOrECrwVCFamK86QU+1zx6StOem1hlOT8Xvfc/C8ueW3pAHFT+ocFw8bMLoJkDApVSsAQSLdpYBiY9LadWEC9QQiVMwyrzgUZcM6NJlTO2QPuubmBC15L68H/kf5BgUglloyQzINClSKwIqd/rZH6Niy1bmrA9TnXKpFCOWrxqJ4JVRo8KgwXkdnTCKdjmB9jmpfmQqFKGQiLgEelXwr85Q6bGG45Xqksk5MKIJRgz57g0u4yIyM73XuqPkc1JcMb3HPjnqOqBYRGYCiuXhT2ZB4/ftw7SpoJhSqlILWLbq+BYRUNbamaE4FAOdc2l04YmS/xfPNm97nFzNl+yeN+eofkltcWyMxZ6c/jvrfIifteWxOBB4WFDd0sDkN2T0agtw4KVYrB8AKFCfwZPiFeCBVIxRwWhnzONZkhIFbMFixwn4dVaimNy2Av7qMgAxdmvMb53D+9zQha7+C4lLy2pMEfAMSzwZvFvkvtb+xSQOgGaS0UqgwAwcKQA1HQ+gXClwlpRpD1s2WihUl051rMpDrKZeFxlYn10sRpeaXbuYfufhm5N1+GHn00KBscb6r7ldMykbBKQZxQ2AEbi7UcFgyLGpiTokClBwpVxkAVmj179pR9sWAIHEVQJYaHTdt2gtJRzmfLb3/r/ly4MGR+qpzS9PtyeC220SyTrfuK8h42Jb9XlH3bV0hXviAvHX5fphMSKYgPvFR4Sv6hnfYhkuRlYsW1w6BQZRQdqmDuxP7C6ZcuceFCoKfzWbJqlfsTifEiU5Ind67JuZPH5E1sSn7zmJy8dFPuPYlXoSoJk/YTSmgxaDPdUKjahEpfSAwTV65cafYWYhUL8UAIXGx4Yn7dOlegYEuXtjR7Jya6UYYefQCPE4sPQcKEXOc4jhqKnBzPDhSqNqWaJwGzBQxxWwiFgIhF+hJDnJz3kY0b3XmqBME8Hba44PogMhiiIZ4J83Z2FWS/UZjaAwpVh2B7HNW+4GpYZcTwCBP3EAYU34RIQNSeLlpkhApDUN0HB7P3z9mGLUP+8zE8xfvB8N7YOI0hLbwiCE2Y0PoNm403b95shrtYeMBncK6pfaBQdTgQDgiNeihYnoeIVcsyoLY0oC0Jw+IBvD8VTMQ5wUuC58itLO0PhYpUBJ4YhoJYxofHgxgueC0QC79pahc1eGFzaVs8s8/BkNP/HggTwBAUIRfwsrClCEJKCIWKEJJ6KFSEkNRDoSKEpB4KFSEk9VCoSHRm7sgHpgZfiF26KVOfP2naRmLSOVCoSHQeXpK33twlLxXc3Oe5wgb5mdn+AtslG5d0mfauFbul+JFbZYaQOKBQkdoZH5QeCFVfUcpzdZZk+v1Dsgq5pPIbpJh0+gPSMVCoSO1MFqUvUKhcxgd7jGeVtsIMJLtQqEjtVBGqyWKfOzRMUWEGkm0oVKR2KglVaUKOmyIOeek/G57Fk5BaoFCR2lGhKuyU3/pW/U4e8yba8wX5p6GPhNPpJC4oVKR25oTKWvVbVjC5zvOr9kjx4l1hQSkSFxQqUjsVhn6zd89IP3KiO0O/ZfsuCQd/JA4oVKR2qkyml67slwKO5/okQq1RQqpCoSK1U0WopHRe9hqhygkX/kgcUKhI7VQTqvsnZIsRqh4ZHPfaCGkAChWpnYnjsiZMqErTcn6g23hT+Q3DwUJGSI1QqEh0zKbkk3J4oytEuZ698h9l4Ql7Zesydx9gftUhucL4BBITFCoSHbMpWcMRgu3YyXNy6eZnDE0gsUKhIoSkHgoVIST1UKgIIamHQkUIST0UKkJI6qFQEUJSD4WKEJJ6KFSEkNRDoSKEpB4KFSEk9VCoCCGph0JFCEk5Iv8Pf+lWk+T2l8cAAAAASUVORK5CYII=
|
As shown in the figure, triangle ABC is the cross-section of a cone cut along its middle. The height of the cone is as shown in the figure. What is the height of triangle ABC? ( ) cm
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
B
|
25
|
iVBORw0KGgoAAAANSUhEUgAAASoAAADNCAYAAAAPDD2hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACBMSURBVHhe7Z1/iFTZlcdrYZIyYE+GYBEXp7OCQge0SQQxQgujEPzByqIwTCaJRqFDMDIDvexkJ6KgbCLCNkGb+cNAQYfsaJTM4EAabDS7iuOMP2gy2ptx3XYaGxwH7Rl0aP2jobJw9n3ve6d9dfu9qldV71W9V/X9wLGr7ntV9d6169vn3nvuOTkhhJCUQ6EihKQeChUhJPVQqAghqYdCRQhJPRQqQkjqoVARQlIPhYoQknooVISQ1EOhIrFza2iTHLpe8p4R0jgUKhIvMxdkoJCTfP9ZmfGaCGkUChWJlfsntkgul3Nsi5y47zUS0iAUKhIfpXEZ7N0iAwO9RqwK+68IB4AkDihUJDZmzvZLF4Z890/IFnhV+X45y/EfiQEKFYmJ+3JiS0H2X4EPNSMjOzH8y8kWjv9IDFCoSCyUruyXQu+Q3PKew7vKw6sq7BejXYQ0AIWKxMAjx4PKS19x0nvuULoi+wvwqvLSz/EfaRAKFWmcW0PSG7DKd2vInVTP9RXFJ2GE1AyFijRISa7sL7iCFGo6d0VIfVCoSGOYFb5eGRwPEqL7cnpb3ogVA0BJI1CoSAOUZHywVwoDF8JFaLIofcar6pUhnWknpEYoVKROZuWzq0eMCP3gD585z0KYHZN/63GHgPkNg3L1s9AzCQmFQkXqYrLY580/eRY0YT7nTZWb44ARUhMUKkJI6qFQEUJSD4WKJMrsLOekSONQqAJ4+vSp94g0AkRqz5493jNC6icTQmVPxtLSZWG8/fbb8txzz8nU1JTXQkh9UKhoDVsYHzz/PP7zXCOkAfgbZHHw4MG5L+B7773ntZJauXz5stxQkXKMw2nSCBQqH19++aW88MILc0L13e9+1ztCamXbtm0y6hOqo0ePekcIqR0KlQ+/N6VGr6p2PvnkEzM39cFXvjInVMuXL5e//e1v3hmE1AaFysP2ptToVdXOwMCA6buHhYIRqZdXrzbPKfqkXihUHkHelBq/YNGB4C9cuNB4VP/X3W2E6k/Dw6Yf161b551FSG1QqBzCvCk1elXRwVwU+mzHjh0iixYZocKQb+nSpab9xo0b3pmERIdC5VDJm1KjV1WdeYLk/JR8XmRqSoZ+8xvTbgSMkBrpeKGq5k2p0auqzjvvvGP6ygzxsHXGeSxf/ar5OTM+PjckfPDggfcKQqLR8UIVxZtSo1dVGQjUXD8hGt15LF/7mvvz6tW5SfYDBw54ryAkGh0tVFG9KTV6VeGMjY2ZPpoLQ/jkE1eg1EZG5sIWFi1axM3KpCY6WqgwVFm/fn2Zffvb3zZfOBUm+zgng4N59dVXTZ/NBXZevFguVL/7nWlGICjOO378uHlOSBQ6WqiC+J3zhVKhuogvG6kK5pzgKcE7hZdqsIXqV7/ymi+avl25cqV5TkgUKFQWFKra+eUvf2n6C3NQc8CDgkCp+Y7BU8X5o6OjXgshlaFQWVCoagNzTfCk4FFhDmoOW6h8YQnax5s3b/ZaCKkMhcqCQlUbb731lukrzD2VgaEeBErNG/oBiNvixYvN6/761796rYSEQ6GyoFDVhi4+IK1LGQcPlguVxa8c4cLrmAGURIFCZUGhis7IyIjpp8CwDQgQBErNAhPwCxYsMPbFF194rYQEQ6GyoFBF5/vf/77pJ6Qcnsfu3a5AVQiS/elPf2peD++KkEpQqCwoVNHA3BL6CHNNgXmmMGcFoarQh1XfgxAPCpUFhSoaVb2h9etdoRob8xqCqeiVEeJBobKgUFUn0vzS6tWuUGHPHyba33pLJCCqv+I8FyEeFCoLClV1Iq3YLV3qChUyJbzxhvu4WPQOlhO6ckiIB4XKgkJVmcgxUM45RpwAhod4jJCFAEJjsQjxoFBZUKgqo/1TNaocwmTba695B8sJjW4nxMP57SF+KFSVibRPDyt4ECYd/qm9+qp3wnwC9wsS4kGhsqBQhfPnP//Z9AvmlCqiSfNsocJKYAiffvqp8aiQBXQuAwMhHhQqCwpVOJFzSalQISUxfqotX+6dEMy8nFaEeFCoLChUwWDuCH0SKTsn+g3CpLFUaqhKUwHNEooCEQwAJX4oVBYUqmBee+010yeYS6qKChXmpPATduQIOtc7IZy1a9eaz0H2VUIUCpUFhWo+mDOqqYLMqVOuOOl+P1hEyirZEOJBobKgUM1ncHDQ9EfkmnzwnCBOGugJi4i/NiCGgoQACpUFhaocCMeLL75Ym3A4wmbEKSTAsxoqjJhcJwRQqCwoVOXUNRTTpHl1rt7VPNQkbQ+FyoJCVY5ObtdUfBVBmxAqDAHrRIuVRpq8J20PhcqCQvWMq1evmn6oOVxAJ9H9K3fYcIxtN1j9i4CGQ2BrTdVwCNL2UKgsKFTPePnll00/1ByA6bzOCJW//yBaaMOxiGiAKTYtk86GQmVBoXJpaEuLBnr607agL9FWYRuNTeQtO6TtoVBZUKhc3njjDdMHdW0SXrvWFSXdSuN/jP1/NaCboJFgj3QuFCoLCpXI06dPG0u7opuR/UKFeSb8dN63FvT/AymLSedCobKgUMWQyO7FF11RAvipj51hpHlcw8Q8i5USQKGyoFAhycHyxu4fYgSzHyN7Ah7D06qBgwcPOi/LmYISpDPxfoOI0ulChXgp3HtDxRYgRvCq9DEM6CT71avu84j4i0kwALQzoVBZdLpQNVy+6tNPXTHSSXM8hgGITJ1VkeFN4bpYrLQzoVBZdLJQ3bhxw9w35oTqDrLUCXSs/AE8hjVILNdGMguFyqKThWr37t3mvhvyWjCsgzBpvBQew2JAvT38H5HOgkJl0alCFamoaBTQZxCmGiLQo8JipZ0LhcqiU4XqwIED5p4bXlnTrTLY75cAuiKJqHXSOVCoLDpRqGKNVcKwDEIVUsPP0IDHxmKlnQmFyqIThapYLJr7rVpUNArYwAyhCkqahyh3HGtg6AZRRdQ8rpfFSjsHCpVFJwrVypUrzf3Gsp9Ok+YFpXPB5mYc0xirOtF9iCg4QToDCpVFpwlV7BkKNE86hoBBPPece7wBWKy086BQWXSaUG3dutXca9WiolHRpHkaMIrHMEU3LCMwtAG0WCnyq5P2h0Jl0UlCdfv2bXOfsWbR1Fp+2nd4DFNWr3af37jhNdSHZh9F4QkWK21/4hWq0rR8fOaY7NrYIz09PbJx1zE58/G0lLzDWaCThKqmoqJR0f18YUKFCXs8Hx31GuqHxUo7h/iEqjQhw5u6zC9OuXXJpuGJzIhVpwgV5nYQ3Bl7pRcVKs2QgMcwRYeGYXNYNaAVciBYpL2JSahKcv3QClm7b1TuPIEkleTJvasypMKV75ezM+6ZaadThOrIkSPmHmOvnedPmgfwGKZgNRDpXurd9OzDX3MQQ0HSvsQjVJPD8otigNc0c1b68+6XfuCC15ZyOkGo8AXXAM/YqxGrUOm8ER7DEkKLlaIQBWlfkvsNMkxKsQ9f+l4ZuuU1pZxOEKpTp06Z+0tkyGSHH+Cx/3nM+IewCFsg7UnCQjUugz05yW87Lfe9liBm716U4r7tsqYHk/AbZdexM/LxtO2fzcrj2855r2+UH55yhxWzd0fl2K6N7sT96ydkbO41JZn++EzIscp0glCtXr3a3F8ik9AQJcdbmwPPYQmiiwIIBCXtSYK/QY5YnNkp+e4BufDIa5rHI/loaJN0db8iQxdvy4MHU3LzZL90O790ua5NMjzhisvDDwZlx5olkke7Y33OMPPeiHNe1xJHiJZJwRte5roPyfVSSSaGnffMF2TZvGPm7SrS7kJ1+fJlc281FxWNAiblnfeeS5rXJPzFSlGYgrQfiQhV6ckdGd23Vrpyy2Tfh0+8VhtHUIobHPHpk+OeILk8lNPbPHFxPLGHXqs4PtmJLW57z6bd8s/FMVEnqTR9RnYaQcrLhk0/kh+VHRuVvQX32MCF6krV7kKlRUUTCZTUpHktSMOigassVtqexC5UHx4szHk+ruVl2S/OzwnHHDrRvnNE7AXBW0O95rX5V971CZXIhQH3Pdccn/BalJKc3xt27Nnr+oqTXks47SxUU46QJLr1BBPzTr9VLTKKFTqnn+NEtwIhDQxpP2IXqtnHD+TB7WvyXvF1WdvlfuFhvYPjZauCD0+75bqDxWNWHj/4XEykg49KglPvMZt2FioUE8V91VVUNAroL+f9HffGawhBVwYbSdAXgBYrRYEK0l7ELlRllO7JSH+3+eXJ5QfEP/IaH+wx7VHEQ6FQ1Y8WFcV9JZYeBQLhvH/VpHnr1rnn3b7tNcSDpqthsdL2I1mhAo9GvPmjPvHrhIpHj+NpRYVCVT9Hjx4195RowjkM55zPkD17vIYQ4HHhvJj7158AEMUgSPuQvFDJjIzsxBd/m5z2TThNFvvML1Sud0jCQqxK18/Jf/lGBxSq+sDqXsNFRaOADAzOZ5QlzcNzmB87w0KMaLFSFKog7UPzhMoWpOuHpOD8QuVyBdl7PiB+oTQhx/vLX0Ohqo9YiopGQZPm+avY4DnMj56XwAodi5W2JzEJFSa/Hzv/zqc0UZQN+W4ZmBdMdUuGel1ByOU3yOCYL8vC7F05079Mtp0uDxOlUNXHunXrzP3g3hLlwAFXgPyfg+cwP5XSFceAlv1CwQrSHsQiVH857E6Y55dtlcOjd9zVutITuXe1KK90h2dPcEXMFQVY1xJEpi+RLjzeNCxl4VWlcRn0hK3nyEfW+z2SMz9wjxX+9X1LMJ8dy+8ccZ5Vpt2EqqmFO4MyI+A5zA+GfGhLaHjGYqXtRyxCNXP938tCEYzlC7Jq+2EZvVv5FwXbYPat9aWHcV730r7zcs+nRFOnfijLCnnf++elsKxHfv1h0DFX8KodC6PdhGrHjh3mXppSCl2Fyt9veA7zg9U+bHdJMIxAi5ViJZBkn1iEygXDvwdmXuDB508CPahKmPirgNgpUHryufu+lj12NLDeY2G0k1DhXhHg2bT5GjtpHsBzWJPReTkUriDZp/m/QSmnnYQqtqKiUVGh8sdp4TmsBbBYaftAobJoF6HC3MyiRYvMfTRcVDQq2L4CUdKkeQDPYS1Ai5ViHyDJNhQqi3YRKlSVwT00NUpbt8akJIOBPxofhSxIdqFQWbSLUMVaVDQqCxa0zHsKg8VK2wMKlUU7CNXo6Ki5/tiKikYFIuV4MJHAahxWCRP2dLRYKRYUWKw0u1CoLNpBqDZv3myuv6m5mZAJAUIVNWnejh3u+U5/J43m4EJBC5JNKFQWWRcqTJzj2mMtKhoFTZoXNRwAqWZwPqLUE0aLlSIAlMVKswmFyiLrQrVnzx5z7bEWFY0CVhYhPNWS5inwbnB+k7a5aLFSFLYg2YNCZZFlofrCGX61rCIL+grCg0rIftAGs8GQD+0JbaOx0co7KGxBsgeFyiLLQoVtMrju2IuKRgEl2oOEB20wmzBhSwh/sVIUuCDZgkJlkVWh8hcVbUnVYPWQ7Ch4tMFsdKjYxHLsWh2axUqzB4XKIqtC9fbbb5trTqSoaBQQbgDhsVO3oA1mU+sqYQz4i5Wi0AXJDhQqi6wKlRY2SKSoaBQ0GV5UoQLo36Tyt4egxUoTK3BBEoFCZZFFocJ14noxB9Oy5XcVKjutCtpgKQFbadBXCN9gAGh2oFBZZFGoULAB15tIUdGoaC4qzFX5QRssRWixUhS8INmAQmWRNaFC6atEi4pGRYUKq39+0AZLEf5ipQwAzQYUKousCZUWFW35pltkaYAgZcQL1U3bLFaaDShUFlkSKnhQ8KRwrYkVFY2KJs1rVu6rBtFipSh8QdIPhcoiS0LVlKKiUcEePwhVLcv+2DS9eHFi1WgqwWKl2YJCZZEVocLcytKlS811piLVribNq2WezOlr85pqlZUTQlM1owAGSTcUKousCBXipXCNiRcVjQryUEF0agFJ/fCaFkWKo+CFBoA2pfgFqRsKlUVWhKppRUWjAsFZuNB7EhFs9cHrWjhPxGKl2YBCZZEFoRobGzPXl5oCm8iRDsEJ2g6DdlgQmsMqyjaa2cfG67FLsTV6/1qsFIUwUtGXJBAKlUUWhArZEXB9B1swCR2ICk5Q6mO0w4JADBOOIdd6ILNyd/SwbF+BArVdsqTHq6TdtUK2Hx6V21MjsvfQBe/c+lm/fr3z/jlTEIOkEwqVRdqFyp8DPDXzKsh7DsEJSpqHdlgYGC7iuD0JP3tLipscgcovkx8Vx2S6zI36TK4WX5Fu53W5bafloddcL1qstOk55klkKFQWaRcqZO7EtTWtqGgU0E/ONdUlVKgFiKFfWaK/SRnegFL83TJw4ZHXZlOSieIGyfcVnbMbR4uVojAGSR8UKos0CxXmULROXapifxAeATEKytaJdlgNPBrZKXnnNbktJ+S+1xbMLRnqj0eoNCYNhTFI+qBQWaRZqLTyb1OLikbB6TMjRrEI1aQU+9z+3zky47WFc//dd+VD73Ej+IuVNq2yNIkMhcoizUKFORRcV1OLikZBhSpoiR/tsKg8PC3bnPNzuTVyfMJraxJarBQFMki6oFBZpFWoIE64JsylpI6wpHkA7bCoTBalzzk/l+uTYhxjuhpA1k9dqEChDJIeKFQWaRUqDPdwTU0tKhoVFao4lvdbKFRAi5WiUAZJDxQqizQKVcuKikYFQyXn+swQsFZwP2NjiLx0n7dw6AdYrDSdUKgs0ihUCEXA9WAOJZVo0rx65s4gUnjtXGjDs8n0LScqr/kZSrMy64+xigHU/sPno2AGSQcUKou0CZV/42zTi4pGZetWV2zq6S+NavfNvc2c7XfDE3oHZbyiCJVk4vSwXKq+OFgTWqw0NRu+CYXKJm1ChW0yuJZU16LTpHn1xnbhtci+MMcjuTDQbe67u39E7gWKFUTqdTkcGhBaP/4aiWmap+xkKFQWaRIqzEe1tKhoVOB5ONdYU9I8P0EpYkrT8v7htdLltOeXbZXDJy/JzakHxsO8fe2kHN6+Ufadny7boBwnWqw0FUkJCYXKJk1CpdfSsqKiUdGkeUF7D9EOqwSGfTgnQOhm716Tk8f2yvY12JDs2MZd8uviRbnzJCmJcvEXK215mmdCobJJk1BpUVHMmaSaRYvCxQjtYccUHTpiYj1FIPAT/c9ipa2HQmWRFqHSkk4tLSoaFYiM43kEgmOwSmD+DeekIaWyDy1W2vJSZIRCZZMWoUpFUVEfYZHaf/nwQyMyX77wgpn4h/eBrJlqOGbMAqlVcD6qwUytWSMPnGHdfx46ZPocEeJpiRdjsdJ0QKGySINQYU4En485kmb9JcckNUQRaWQgMEgmh9p3yHyJawmbVH4HQuocn/L6zDbnn0Ch0hTALzj2pXfOWsf0dZcvX/bOLAeR+fg/QjoWCFrS4HNwPSikwQDQ1kGhskiDUKGYKD4/7qKiGMqEVaxRcQyzsPCI//nTn4zIfLp8uek7NexNNP3nHDNmgeIU8KiuO94Ujt/s7jbihTQrmJsLixnTDAdqGJYhQBOvTcr71GKluGbSGihUFq0WqriKisJDwiQ8otrxxYd3pveFlCY28BYgjBAP9AE8CeS8qhpkqmIUlDQP4BgsCNwf5rZgEe4V14jrw3ViSKblwtTCMnRiGNnIUJLFSltPRwsViiT4vQCYbleBYRhkH096uAGvAJ+NL2K96PyWbci8gGOx3oMKVVhtPByDBYHhJI414DlCdP3/j0FAsCHUGM5C6PAHqBbhwrk6BMZnkebT0UKlFUiiGoYdSc4ZwWPAKh8+K0pR0SDPCGBCG14ZxA6TwPhyhZ3bMNgP51yvM/byGiKiAodgz4Tn4dAH6qWqqXAhS0KUrUlarBSFNUjz6WihAmHeR5Dhr3GSRNljBtGBEEHQ4P0FAVFq2sQvvBjnmh3302uIiEazN2lVE/2B6H4IEwTKPxSO8kchE3su25iOF6qoXlXS3hRABDo+C3MifjD0wE5+Pa6Wioj1I0dcwalFxCGiWO5fvdp93ALQpxgCQvSjijpKv6PfMSVAmkvHCxWI4lUl7U358yD5508gWrrfDwbBxGRyavb+oV+c65I0JvRrAHhN8Lz8Cyr6Ry21ecHaGAqVQzWvqhnelGaWtAVRRRTDQYhW6r4gmAh3rs8MAdsInZOCQbD0DwMeoy2VmVbbGAqVRyWvKmlvCn+9w4qKIrsnorhTCybRnT6SNosxwnAQq4ha7w//P0hc+Mc//tE8Z7HS5kKh8gjzqiAeSSf61+onZstJ1tAQA98QqQwcg2UUCBZCRnTyfcWKFfKtb33LPE5dNaA2hkLlI8irSnrnPFboMLTEZ7377rtea4ZwhkLOxWOSzWuwwDEYtsSgYEJG53YQe6bDPqSbwc/U1VdsYyhUPmyvKmgoFjdaVBSGkIPMTdJi5c65dueb7DVY4BgMK5T4iVXCjALvCt7v/fv3ZcmSJeb/jMVKmwOFysLvVSXtTQEN8MQcSCb3kmnSvLDYIhxTW7wYLqR3INtcu3bN/L+FxbKReKFQWahX1QxvCpO1KopIfZtJHKE1IhQGjqnZK4OlJ/L51E25dO6cnDuHVMOPJUv+JMJEmvF7QihUgcCraoY39b3vfc+IFFaWogYdpg4VoTD0OIaISmlaxoq7ZUVXXgqrtsveN9+UN/dul1WFvOQLL8m+0buZEKzp6Wn55je/KX19fV4LSQoKVQDwqprxV/LnP/+5EaowbwrXgYDDMAubzwo6Vy0sUBRxYkHnqyFFTCDO9c86Q7qg11zGqpgnVHeGh93zSxMyvKlLcvkNMjg2LY+doSAmql37Xzl/9B/l73NflX/42R/khtOWdPxaoyDFTCMbyEk0Ui9UOjTKqlVCgzzDlrl1lSnMwrIgBJ2rhtQoQUBYgs5XCwydwOc7x8KS5h11zHlgDPfyrAxWQfaed8tc+Ye/QRYWw6aJ98IM9xMEUrWgD9TwHNemFgY+zzbNaf+Tn/zEO4skBYUqYasEPCn9ZQ/6q4zjQV8QtbD4rqBz1cKqLcN7839hbQv0+jyh+u+vfz3wNf/yne/Ireefl1fXrjVD6dKV/VJAv/QMyrj3FlhA8AuHse6CfA3n/d1C+dmR4BTAuBe7r/0WJlR4/6Dz1cIIOlft2LFj3lkkKVIvVO0O4qh0Lx+2bWQKxEY51+2oktdQiZLjTeXNfRYOXffawpiQ42tcEdh2+qHXFg/YBfBsqDnfwtDhLOz3v/+9fOMb3zDX9+Mf/7ihBIckGhSqFID84JovKentOrECrwVCFamK86QU+1zx6StOem1hlOT8Xvfc/C8ueW3pAHFT+ocFw8bMLoJkDApVSsAQSLdpYBiY9LadWEC9QQiVMwyrzgUZcM6NJlTO2QPuubmBC15L68H/kf5BgUglloyQzINClSKwIqd/rZH6Niy1bmrA9TnXKpFCOWrxqJ4JVRo8KgwXkdnTCKdjmB9jmpfmQqFKGQiLgEelXwr85Q6bGG45Xqksk5MKIJRgz57g0u4yIyM73XuqPkc1JcMb3HPjnqOqBYRGYCiuXhT2ZB4/ftw7SpoJhSqlILWLbq+BYRUNbamaE4FAOdc2l04YmS/xfPNm97nFzNl+yeN+eofkltcWyMxZ6c/jvrfIifteWxOBB4WFDd0sDkN2T0agtw4KVYrB8AKFCfwZPiFeCBVIxRwWhnzONZkhIFbMFixwn4dVaimNy2Av7qMgAxdmvMb53D+9zQha7+C4lLy2pMEfAMSzwZvFvkvtb+xSQOgGaS0UqgwAwcKQA1HQ+gXClwlpRpD1s2WihUl051rMpDrKZeFxlYn10sRpeaXbuYfufhm5N1+GHn00KBscb6r7ldMykbBKQZxQ2AEbi7UcFgyLGpiTokClBwpVxkAVmj179pR9sWAIHEVQJYaHTdt2gtJRzmfLb3/r/ly4MGR+qpzS9PtyeC220SyTrfuK8h42Jb9XlH3bV0hXviAvHX5fphMSKYgPvFR4Sv6hnfYhkuRlYsW1w6BQZRQdqmDuxP7C6ZcuceFCoKfzWbJqlfsTifEiU5Ind67JuZPH5E1sSn7zmJy8dFPuPYlXoSoJk/YTSmgxaDPdUKjahEpfSAwTV65cafYWYhUL8UAIXGx4Yn7dOlegYEuXtjR7Jya6UYYefQCPE4sPQcKEXOc4jhqKnBzPDhSqNqWaJwGzBQxxWwiFgIhF+hJDnJz3kY0b3XmqBME8Hba44PogMhiiIZ4J83Z2FWS/UZjaAwpVh2B7HNW+4GpYZcTwCBP3EAYU34RIQNSeLlpkhApDUN0HB7P3z9mGLUP+8zE8xfvB8N7YOI0hLbwiCE2Y0PoNm403b95shrtYeMBncK6pfaBQdTgQDgiNeihYnoeIVcsyoLY0oC0Jw+IBvD8VTMQ5wUuC58itLO0PhYpUBJ4YhoJYxofHgxgueC0QC79pahc1eGFzaVs8s8/BkNP/HggTwBAUIRfwsrClCEJKCIWKEJJ6KFSEkNRDoSKEpB4KFSEk9VCoSHRm7sgHpgZfiF26KVOfP2naRmLSOVCoSHQeXpK33twlLxXc3Oe5wgb5mdn+AtslG5d0mfauFbul+JFbZYaQOKBQkdoZH5QeCFVfUcpzdZZk+v1Dsgq5pPIbpJh0+gPSMVCoSO1MFqUvUKhcxgd7jGeVtsIMJLtQqEjtVBGqyWKfOzRMUWEGkm0oVKR2KglVaUKOmyIOeek/G57Fk5BaoFCR2lGhKuyU3/pW/U4e8yba8wX5p6GPhNPpJC4oVKR25oTKWvVbVjC5zvOr9kjx4l1hQSkSFxQqUjsVhn6zd89IP3KiO0O/ZfsuCQd/JA4oVKR2qkyml67slwKO5/okQq1RQqpCoSK1U0WopHRe9hqhygkX/kgcUKhI7VQTqvsnZIsRqh4ZHPfaCGkAChWpnYnjsiZMqErTcn6g23hT+Q3DwUJGSI1QqEh0zKbkk3J4oytEuZ698h9l4Ql7Zesydx9gftUhucL4BBITFCoSHbMpWcMRgu3YyXNy6eZnDE0gsUKhIoSkHgoVIST1UKgIIamHQkUIST0UKkJI6qFQEUJSD4WKEJJ6KFSEkNRDoSKEpB4KFSEk9VCoCCGph0JFCEk5Iv8Pf+lWk+T2l8cAAAAASUVORK5CYII=
|
As shown in the figure, the area of triangle ABC is 3 cm², and its height is equal to the height OA of the cone. What is the length of the base BC of the triangle? ( ) cm
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
26
|
iVBORw0KGgoAAAANSUhEUgAAAS0AAADQCAYAAABSmDedAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACTRSURBVHhe7Z1xiFRXnu97NlkqC/asO6RIQDtk6MzrgCMbIYiMA6ZZMZEnswoZ1wnj2INZyDRx6ceOa0Qh/SYRYXvZsZ9/uEuBs7wo9qwZXWjQURldZ3ZtxZ2oOxHREX3EFqNBQxtmG2pYfu98z72/7tu376m6VXVv1b1d3w/8tOrcW9W3TlV963fO+Z3fr0MIISRHULQIIbmCokUIyRUULUJIrqBoEUJyBUWLEJIrKFqEkFxB0SKE5AqKFiEkV1C0CCG5gqJFUmP8w13ywU3/DiEJQdEi6VC+IkOLO6S445yU/SZCkoCiRVJh4thmKXR0SEdhsxyb8BsJSQCKFkmBcTmwerH09halwwjX4uGrfjshjUPRIolTPrdDiqsPyPjVYVkMb6u4Q85xjEgSgqJFEmZCjm3ulM12TAiPy4hWR8G/T0jjULRIssC7CnhW4wdW2yFix+Jh4SCRJAFFiyRIWc7tKErP0BX/vmHimGwuwNsqyg6OEUkCULRIcowfkNUdi2XmvLsnZPC2ChtH5aHfSki9ULRIYlwdXmzEqVMW9PRIT9AWdHpDxFmCRkjtULRIMthhYFH6R2/LvXv3QjYmuxdDtBhsShqHokUSARPuhbUjMu7fD1O+MChd8LYKa2XEdRIhMaBokYYp3z8iGwsd8pfHJ/2WKK7K//lTz9vqGjgp9+lukTqhaJGGuH3oW9Jp56tgnbLgO4fktn9situH5DtT81q+dS6Q9//dP05IDVC0SEOUHz+YOX/14PHsOavyY3kQPMe3R5UcM0IcULQIIbmCokUIyRUULdIUSqWSf4uQxsiVaM2YyKVlzlycOXNGnnrqKTuPRUijULRoiZmLQy++KL8yx4/++Z/7LYTUD4eHDo4ePTr1Zbx06ZLfSmrlt7/9rVyCoPk2OcklQ9IYFC0HL7300pRorV271m8ltTIwMCCnAqLFuS3SKBStCIJelhq9rdr5/PPPZd68eXLG9B8EC/b1r3/dP0pIfVC0Igh6WWr0tmpnaGjI9t21+fOnRAv3T5065Z9BSO1QtEJEeVlq165d888i1fj9738vzz//vO23/3rmGStY/7Bzp72/Zs0a/yxCaoeiFSLKy1Lr6+vzzyLVOHz4sO0zOxxcuNCKFoaLCH1AO38ASL1QtAJU8rJgTz75pF0NI9VZtmyZ7TM78W7+t2Z4++23bTv+J6QeKFoBKnlZavS2qnPx4kXbV08//bQX4mBuyx/9kZjxotz+1a/sMXhc8LwIqRWKlk81L0uN3lZ1NmzYYPtq586dIrdve6JlRMr+f+mSndPC8d27d/uPICQ+FC2fOF6WGr0tN3fu3LHCPrVtR0XrK1/x/j91yq4eoh8XLlxoJ+wJqQWKliGul6VGb8vND3/4Q9tH3/3ud70GMxw0DdP2k5/YZv2ROHTokL1PSFwoWobPPvvMOAS3Z5jGGOkXK3z8iy++8B9NFMxfzZ8/3/bZVDDumTMzRcv0K/iJES+c9/LLL9v7hMSFouVAv1QwZCkg1dm7d6/tr1deecVvMRw+PFO03nnHNkPgnn32WXv+2NiYbSMkDhQtBxSt2nnhhRdsf2G4PQWGgxArtcB84LvvvmvPf/311/0WQqpD0XJA0aqN0dFR21cQrhmT6z/+8UzReu01/4DYiXpM2GOOEENuQuJA0XJA0aqNlStX2r76MUQqiPGmpgQLFuLNN9+0j8MEPiFxoGg5oGjFB5Pu6CdMws9aoIAYQazUQlR8LCERULQcULTiU9FbwhwWxEotAqeXRkgEFC0HFK14VJ2X2rDBE6sKfeicDyMkAoqWA4pWPKquACL8oYpogciVR0IioGg5oGhVJ1as1Te/6YmWemH4P2LuKjLGi5AIKFoOKFrV0T6qGNX+/PPTovXWW95t87gwkdH0hERA0XJA0apOrP2DKlqYq9LwB0d2h3feecc+39S+RUIioGg5oGhVJnamBogUDGhCQEdM1qwMEYREQNFyQNGqDAp9oG+q5sSCSD377LR4wSqk9pmRi4uQCChaDihabpCWB/1SNfsovCWIlA4R1Vau9E+Yzaysp4SEoGg5oGi5iZ3nHZPvEClM1ON/tZde8k+IZkZ+eUJCULQcULSiCVbUqZoI0XhNVqQ0VksN1XkqMKOSDyEhKFoOKFrRaHLEWLUL0W8QKRS6xf8wCFiVVDTBmonHjx/3WwnxoGg5oGjNBmKC1UL0Sawq0Yhuh1AF9x/GpCZxJG0FRcsBRWs2iMdCfyA+KxamD61QaVApLCYYhs6bN8/+PRZ2JUEoWg4oWrOpeYJ8715PqII5tWpgYGDA/r23IHqE+FC0HFC0ZoK9hegL7DWMHYqgYvXee35DbWCiX4NNWdiVKBQtBxStmSCLA/oCWR1igyIWEC0ME+skdhAraRsoWg4oWtPUvb1GJ+CDooX5KQwvY6agQd/jPYCHx1xbBFC0HFC0ptECrDVX1lbRCvYfBAxtNWyK1o3ZH3zwgd9C2hmKlgOKlgfyttedMiYqASBuo62GvFkQK/x9FnYlgKLlgKLlocn5kMe9ZlS0gpHzGB6irYZo92CywV+hzD5payhaDihaHpoGGXnca8Y81gqU7kGEffaZ9z8yP9TAe++9Z68DE/OkvaFoOaBoYa78qH39EK660OwOCJHA/zDw5JPTt2PymRE7LASwsCuhaDmgaE2X9sIQsS6MyEyJE/7X2ypmd+5492OipcoQdEraF4qWg3YXrWAR1brzWkGYnn56+jYMLFvm3f7Nb7z7MfmNOV+vicGm7QtFy0G7ixbCG/Da6y5Xr3NX8KoAbsOA6VtrdaRUfu211+x1sbBr+0LRctDOohUswIrA0rrQyXddJcRtWIMgVQ3eExZ2bV8oWg7aWbS0ACvytdcNYrogUhqPhduwBHjxxRft9bGwa3tC0XLQrqIVjIlCvva6QZ9BpMxwzoLbsATYt2+fvb5vohAsaTsoWg7aVbSQdgavGWloGgJxXRCpWrf+xADCisIXuE4Wdm0/KFoO2lW0kJcdrxl52hvC9J8VrTff9BuShYVd2xeKloN2FC0twIr87A1Pcmth1qhUNlhZRGR7tWo+FcBiARYKYCzs2l5QtBy0o2ghHzteL/KzN4wmAIwSLYgMjmk4RJ3Ay8L1srBre0HRctBuooU87HityMueSOCmihaGiVHgGLbzNIAGwLKwa3tB0XLQbqKlBVgT2yITlQAwCDZM43iDAokVRFw3VhRJe0DRctBOolVTAda4qGhpqTHchikIOsX9Bivt6KZuFnZtH1ISrbI8vnFeDu7ZJtu2bZM9B8/Ljcdl/1g+aCfRQv51vM5E074g/xZESfsOt2FKVILAOsCCgabPYWHX9iAF0Xoo5waXSMF8iPRLb62wRAbPPfTPyT7tIlrBAqyJvk4VJd0UjdswRT2xBFIoYx8irh/7EsncJ3HRurm/V4rLtsuRy7fl3r3bcvnnw7K+yxeu4g45lxOHq11Eq+YCrHF58UVPlDT3FW7DFMyd4X4CK5UY3mpKaGSCIHObZEXr4ahs3Xra+Fohxg/IavOB6ugoyNazflvGaRfRQt51vMbEi0ZoziydaMdtmIJ2CFqDE/EKC7u2D8mK1uRjiZ66uiml5RCAogxe8JsyTjuIVl0FWOMyb95MkcLt4P2EQTZTLXOGLKdk7pLep2gG12XfUiMAi4flqt8SyeRdM5wsyfvbMIG/Rw6evxEtgjjvyB7Ze/ZT//4tOX9wjzfpf+RjuR94TPnxDeexSrSDaGkBVuRfTxwIFIRLwX1Yimhh11ReD8kMTRGt8oVB6Sr0Sum6SzHKcv+Xu2RZsVvW7DooJ04cldJb3mR+Ycmg6Pz9xI1R2bVukXSadnw4l5duyuTVkrza6d1XK/TuN76dGa2eG5Qlhehj1ZjropWqZ/LFF55ABSPecR+WIqjUg/eLhV3nNimL1qTcOr7VCEeX/K8z7pXDh6cHpKujSwZOB8/RIaURms3HZMK0lM0Qply+IkOLvfal/Vulr68kY3cxtDHCd3G3LDftGIb2D26XVTj2yWNzBMeGpNcKWLwh6lwXLS3AirzriaMJADEZ32RSm6MjmSE10fr4/66TJcXC1Be/o3OR9I1cN/IRonxOdhTN8dUHZNxvUi4MFr3HGu8oWH/l9ID3nD27Pwo934SMbvSP/eiikcwgZTnZ7x2Dh1aNuSxawQKsqay2aW3DGgqyJkVqq6EkM6QmWuOXTsiJg3ukPzCcw+rh2pGZ0jRxbLMdBi7dd91vCYC5qhNn5ePQRJSKVpT41HsszFwWrdTjmtBf5vltgGklFi70zsNwMiEwLGRh17lNaqIVZPLuGRlc4ntdxUEJjs6u71tq2+MIiULRqp9gBHldBVjjgK075vmrJgCEN4TzNJYrIVKJ8CeZoSmiZblZ8ueblktQM1RIIj0tBxSt+tG9esiznhqm78wfqS5autUnYY9I91JioSGxvZQkMzRPtORTGVkLEeiV/YEfVvW0oua0prh5Ra5gJt6HolU/r7zyin1NqWZFUNGKyqUVRLfypFCgAkGmeJ0s7Dr3aKJo+RPhoeFh+fSAv09xsQxdiQqJeCijA7tmPIaiVR9Nyz8VlQAQ92FBUFMRbchymjCaH4yFXecezROthyelv1iQ3v0hwdDVQ/MB6+gakJMzJt0n5eq+Xnl5eGZIKkWrPjTTJ/Krp4qKVtCbw31YkN27vbZqHlmdaCZWFnadWyQqWjc/eFU6OzplUd+wnLk1/Utevn9RhnoL0jUQsS/R4MVpeQLRUSjKik2IiN8kqxZ0GiHbKmcDQ0Mxg8gDq71zZ8+DTYc19Axd8duU6WPFHedCoRKzmWuiFSzAmnpOdcR+mX6zw0QF92FBdBjZQK74Smhh10Ry3pPMkKhojX+4fkZ4Q7G7R3q6i9JZXCHbj98KxU0FKcsnJ7fLslBke+eyXVPR8ODTs3ulf033dNqbQres6d8mhz/2j80Ir+iUZUb8qh1zMddEC3nU8VqaUr1G56qCq5O4DwuCfkXUPDyulNDqQizsOndIVLTA5KNrcv7ECTkBO3tZbj9ARHpMJh/JtfN47Fm5bCPZZzJx49+85w3ZpfH6j7mYS6IVrBPYUAHWuCD+CwIV7DfchzUZrePIwq5zh+Z/inLCXBKtpn9xNQFgsJAq7sOaDAQ7kYrZJDNQtBzMJdFq+hApKmgU92EtQIfGGzZs8FtInqFoOZgrotWSyWhNABjMHoH7sBbQ1EUIkjoULQdzRbRasuz/9NMtEygXfX19th9SD/cgqUPRcjAXRKtlAZYQLOPZxALzXlhlTNkD0sBa9AULu+YbipaDuSBaLdnKAkGAaAUTAFYCm5px/uHDfkN6NGULE0kdipaDvItWcNMwspQ2DU0AGFe0UIgC5zdBSJqyWZykDkXLQd5Fq2XpWZBVASIUNwFg1D7FFEk9LQ9JHYqWgzyLVksT4aGvIEJxRQubpXF+GmmfI2Bh1/xD0XKQZ9FCfnRcN/KlNx0VrfB2IbTBwsDjQfvrr/sN6ZJ6qmmSOhQtB3kWrZYWdzD9ZkUonAAQbbAwiFJHe1zPLAFSLepBUoei5SCvotXyMloqWuF4KLTBwtQ6cZ8Ad+7cSa98GkkdipaDvIqWFizFRHxLQKFUiFB4Yh1tsCiQmqbJOa9SLVRLUoWi5SCPopWJ0vC6Grh3r9/ggzZYRhgbG7PvLTxSBpvmC4qWgzyKFoJIcb0IKm0Z8JogThgmBkEbLEMsW7bM9hcLu+YLipaDvIkWgkl1VQzbd1qGq1gF2mAZgoVd8wlFy0HeREvjj7BBuqXotpxwn6ENliGwULFw4cLcvMfEg6LlIE+ihS+fRnojFU1L0QSAOUm4NzQ0ZPuNhV3zA0XLQZ5ES/fUIdlfy0FAK0Srlv2O6F/ETLUgjzsLu+YPipaDPIkW0ijjOpFWueVoAsA7d/yGGGCzNB6DOogt4O2337b9x8Ku+YCi5SAvotW0AqxxefZZT4BqAWlp8JhmVAqKAB4W+nDevHks7JoDKFoO8iJaWoAVedAzAcQHVgvoXzymiVt5wmhQLua4SLahaDnIg2gh37kGk2Yi9zm2DUF8at2So1t5Wpjn6tSpU/a9ZmHX7EPRcpAH0WpqAdY4VNpHiHZYFBiS4dj8+X5DBJN35fKRPbJt0yrp6emRnqXrpH/PEbl8F0Picfnww3/3zmsAxGuhPw83IYsqqR+KloOsi1awACvmtTKBilZUfUW0w1wYj9Een+XlTFcfL3S/IcNHz8s141Xeu3dNzh/cJWu6i7LAWKH/ZPyiwA70PUekPMkuFC0HWRct5DnHtSHveWZAwkEIT9Q1oR3mQlcdZ4RKlOX6/lel07R3DZyU+1GqVL4upd6CdCwvyU2/qV5Y2DUfULQcZF20ml6ANQ7oJ3NNElUUFe0wF2NjXmWeoKd1syTLzWM6ijvkXCU36uGobOxtXLTAu+++a/uVhV2zC0XLQZZFSwuwIgo+Uxw65AlTOAEgQDssNhNybLPxoMxjFg9f9dtclOXc0B654N9rhGBhV+TdItmDouUgy6KF/Oa4rqYWYI2D6TMrTFFBomiHxaV8WgYK6P+iDMZRIzO0SypKDRlN0b8s7JpNKFoOsipayGuOa0JGB+Q7zxSIcYIwRVXWQTssLjo07FgupSTGfTXAwq7ZhqLlIKuipQVYkec8c2gCwKgATbTD4tJC0QIrV660/bw3nMyQtByKloMsihaykep8S1MLsMYFe/cgTBgmNkqLRQt1EfHes7Br9qBoOciiaCGfOa4H+c0ziSYAxIR8rSDEAGEPU+ESF2SwiP4vyMDpRiOw6gOChf5mYddsQdFykDXRChZgRX7zTAIxhWjV018amDqVXqcsV4YW29db2HxMJvxWF+UrJ+QXCS/2YWiIv4+hIskOFC0HWROtlhZgjYsmAKynqjUWFfDYhQv9BsPD0zLQhfegy3hbD/3G2ZTvn5Rdf3u2qrDVCibhWdg1e1C0HGRNtHRfHPKaZxZsf4Hw1Dvf9tRT3uMDlK+PyHpfuNaXxsRuNZxiUu6OlWTLlhG5ntIIEmEP6HcWds0OFC0HWRItLcCKfOaZzkAQuRWnBvTx4YwVk7fk+PZVsqAT70dBit09dtN0d/cK2XLgYvT2noQIFnbNRCYNQtFykSXRyk2uJxWdKNDuOqZgozXOcVYTKsvjB9gsbexR8+KnsKUH/Y8tPqT1ULQcZEW0kFVTf+kzn1UTggOLotIxBZWEcE4GhuNBsHkanwMWds0GVT5F7UtWREsLsCKPeZax0fnmOsvPPGP7Sw25qdCXOGYtBGLPEHMG+93KlfLf8+fL5zg/hL4XtMZsLkDRcpAF0QoWYG1WpRh4EhAQFRws+2NY1NfXZ/c8IlYsin/++7+3onTb77OwmX8iRQvPi+NPGvutsc+NLTOGNmQR1fCO4HPR6re5AEXLQRZEqxUFWHVvo8tc+bv+9Z/+yYrS1S9/2Z6DeTgIkhqOWQuxe/due/7/Lhbt8f/3h38oz/rJDWEusdaYNQybsbKKeSc8F1L1pFFhGwsgEFH8TaRmzgqY58xcto+UoWg5aLVoJfklwdAN6WzgMSGaHrm4UHkmaiUS5+I4hARigyV/iCfixNAPznQt8IjMtdpYrShwDBYF5uqMUNnjfvQ5rg0en2u1FPFq2j9hQ0bXNNAfkSwUdsX7oPsj0Q/tBEXLEJxXUdPKwzDERoWPp51hQQuwwouoF7wGpA7GRL6+FjW0JeqRQNjN85pvtN8QAsdgUSAFDI7VEXmO4SyyMuA9gsBCUFw58yH+OA7xqSdFNYbrEHv0XysLu2LYrqm2YZnKXtsEKFoGFYhaLO287EkUYNX5IsyL4csKEUtr+DRVuxBDwShwDBbG/ADYoFIjomZs6jemg2YlVdN+gYjFjXhv5cIIfig111fQKFptikacx7G0hwdxltgxbILngA+xK30KvoiYyHYNsRJFVwhr/TLDK8Lj3nrLb0gPHSbDI8PwMvy+xtltoCEozS7sis8E5q7C1wyjaLUptXhbaXtZlYIZMZTFhDOi4/V6GhlCJobxVszFRCcAdAExxZDQeDzmhfmNzQOig/cdXhP6E30bB/xood+bEeyLHxy831FDfDWKVhsTx9tK28tyFWDFLzy8KrTrtWACFrUP0xbRWECszDWZb5jfUAMZzsUOTxeiEfSqsCCB/k97WxUm2yFI+n67rN2yUFC0AsTxttIWCNcGXR3OQNAQAoFhTqbQyfSIwNA8o6XaMP8Fz1cXYPQHLq3CrnhejdGrZjakJIrJR3L78lk5cf6aPHjcmpxkaUDRClHJ20rby8Kvun5Qw+KIRHSYBM5shRiNxfrgA79hboB5QR0OwuDd4r3QVEFpFHaF94aQG9ccVthmi9ZD+Wj4W1K0hUHUOmVRX0k+cmf4yQ0UrRCVvK20vSz9Vc+lu68T6i0KxE0bvPe6ogv7/ve/L88884y9nVZSRogXFlk0kNZlM0VrQs5u7Zbiii1SOnpCTpw4KqUtK6YFrGtAKqQmywUUrQiivK20vSyg6X2PHDnit+QITAaba3eKFo7BME+XhTm4OoGIaKzW1772Nft/2oVd4YEHvb2wBUWrfGGXvLHv6qxyapNX90mvL1xdgxckz4NFilYEUd5W2l6WFlJ44oknrKfVlDCFJFHRQtxVFDgGwxcMMVmOMI08gEURzDEi5AQLI5hnTHPYDtFSbwuCGVyMgaFC0xTm3OggmbKc21H0HlPYKmf91jxC0XIQ9Laa4WVhlehLX/qS/XtYgs+daGEribn2qqIFwYK1MKI8SX72s5/Z9yzNkm7BoFjcxqoyhErDIKJCYyI57QXGdnSslw+bH2GSGBQtB0FvK20vK7hJGSuDuRMsoKLlunYcU8tizcY6wXuFuS4soLgCgRshmOkjHGwMjw9D07iiNTG60T5PR3FQ4hTtzioUrQrA22qGl/WNb3zDfpjw4WxmlHWiwHuCILnAMRg2MwdeY/n+x3Jk1zpZ2l2UAr5QNp3yKtlSOiO3kteAVNC4rW9/+9t+S3LotiGYa+dDPLGckGObC/Z5Fg9f9dvyCUWrAvC20vayQKarRsfFXL8VpCjgfeE4bN8+v7Esn4z+QLoLBel+oyRjnzz2JofLj+WTy0dk6xLzBet8VYZzskaPRRR4XEmCYaDOXyH8oREPvHx9n1f8tmurnE26bFGToWhlACyf44PpClSsFhWNrBNRRJ2r5kpnol6DyyIDGbEiaI65EgC+aczcsPZnK1bYhzw8PSBd5n7XwGmBLCFYFq9zylYslf/xx+bxfzBfepausHFLUWBDOa7JZa7N4dgkjWGVy1zgOsKGgOBisZi4p4Xr1z5EXFjdaCm2rgE5mWYVkCaRG9EKfgnyaJUIilKUt5V50cLfN8cuhc5Ve8+YuWENr0XGR2Qtlt8Lm+WY/6uPL3/UY9X+yiEkwS92lOH1RIHXH3W+mouoc9UqiV2t6MZsPC+mKeoFNSG3dhek89VhZ2Bp+f5FObDdDNF7vCpHS9dtl9KZW45VyNZD0WqSVQMfUl0+z1JmzFigpD1eIwTJRSAk4OqwVzm6Y+PoVIFVbI8J5ivz7F9k4Cvov6/IX5984J85E3hSECY1eKtBLyi4fzNIPZ4WhmfqwcG+973vyXPPPWdfy1e/+lVb6q1W4EHhufD+BwnGZdW3Zass93+5S5YVu+WN0kfWm51NWa6PvOEN0X9wZGoOcfLWEdlsPDP1grNGbkSrHcBEKz6kiMWp5wvQMuDNmOu21XSqclv293pfxuWlm36bi09lZK13bs/QFb8tG0DAkAUW14ZVvXrjtNTDxA8WJt0hspqaCGY90xqB51R6Y5EseqMkFysMB3WIXjA/HmFxGtv5J+bvF2TtyLjfkh0oWhkDMVr4sMLjaiQBYFNBimRzzcZl8BsqcUEGi3FFC6FF3rkd5lc/K0BYsOcQ1wXBaiSpYnhYjBXk4J7DWrYIlR/fkOPbl8mCZdvleLWl17J5H2zl7uUS9TZM9fvaEfPTYfj4sGzbtk02rfKGkD2bDkurdsFStDIIKt7ofAaGCZndJK2YL5652JiJ/K7IUI/3hcijaCFRoEanY16s0SywYdEKGnL1xwlnsGK1a40sWdInpbG7seaiysbLsiEmy0sS9S7c/NAfNv7tr/0WQ/mX8jdYHDGPs57v5F25/POSvG/E7P3Sz+XjJk3yU7QyCuYxNNEfhotIOJdG8GIiIIzBXKcE54Kc8zDTw8Ol+677bS4mZHRj3HPTBaEvWkgChnJqScTU6SZ5l+EzAGGLDncYl19sn94MXSgukXXbS/Lzy9WF68Kgt6WnsLWGDT0To7LRXtefyP/8q7+RH/Rvs95X/5puTwALvVK6nr5wUbQyDL4UyKulH2D8wmMCOe2iGjUDsTLXZ1xE7756Xo6NxFET8dGoV1aUwRaFcEOsgpPieA8aCj8IgUl/fe5KhiFjVEgMvKzzB/fIphUanOtb5wJZtWmPHDx/zQ5n7107Lu/uPSu/s4+aniuM4+0qU95Zz4/k4gxVfCgn+30RNB4xZKv8+BO5fBZZJk7I+Rt+DF5CULRyQPiLA88LAamYsM0EO3d6IgWxgjdovIOp+1FoyEPHajlQYZ63/NFu6cEXoXd/5BAmLfCjgPlEnbeCYa4JApP0joW4ogXDe17pB8sKxREjYKsWSGf48TNS0kx7u/GH3dMbrqMWRSaP/6X3fEu3yb7tq7x5r55u3ws0w8ytya1EUrRyBMQLK1Y63wVDDA/mwFyxWk0BE/DmWqxIwdvC7Zdf9g9GUZbrpV77q13sPxn9YS5fl1JvoWlDDgy9sQMC5cc09QwMwzN4t2ltr4ojWigXhmurCX++afu6RdIZ0Yc6POwo7pBzkd37UO4H56jK52SHXUDpkaiF3CtDPfb5ihv/WW4EsqSW7x+Xfvu45LxlilYOgbuPD7tOCKthGwnaEa/U1PkvFa2f/tQrUoHbVUM2ECO03ouKX+/YxtO1XkZSFCwIPeaLwkKFHwVsXEe6oEa2zsShmmhhHi2NhZjylSFZ7P+N5btDcVzl+/LLXVvkg6B7e2FQijg/crP1VRlejOcqyGaNFg6giym9+5P5YaVo5Rh8obSMWLB4JwxfPAxvsMUEk/qpzoMhlsj8TfnWt7z/a0iKN3nrjJS2mOHEgk7/2jtlwdJ1sv3AmNxNWHdVpBDMGRURD9GHV+UKSE0D7IAIXwcMcVu4lvR4aMSka+rvdS5aJ/3bMLG+SVYUu2UglN5UPbNilLt0ddgTwMAOh2luSmm59zeSWgCmaM0RVMDwy42AxHCiOBUxxIEhiBXeWNySWVVR0XriCa/waiuHqj4QKIg1vvgukYKnitQuWMFrVVgJri18XQh1aMZGfQjXR6U+WdSpf7tg0zQfmLXfR2Prood4N0vL7eMLm4/NXlj5dETW2udeKyM24KtxKFpzFAwPIUwuEVODh4bjQTGreX7shRc80fryl71J+SYBoUacFOZ7UOYLwzxkFA0O9YIWFKlG46uSIixaeB+aH9pSlscP7skjx58tn9tRYWionlT00PDTEX8BSYNUE4Ci1Sbgi4CtQRAmfDEgVOEhZdjwJcdEP+ZV8OVCjUV4LgiwVHGD/fdzz3miNT6OpTf/L9YOREifEyuj8JQwnMNCA7a4QJRw3UgDU+3a4VlhXgqPw0pgVkQqjIoWXg/m0LLEF/85Ij9c+6fTRTH+4sjsRZObJS/lTcdGGZ3tZk2FVqxNys0yULTaHMzf6DAKS+oYQoYn+KvZBmN9gft4PEQjakhGS97SZvLRNTlT2i7rlq6S7cdvSLCEYsWYu6mhYeXQllqhaBEn6vHAA4DHg6EmhA1hF5i0VmGqVeRoyVozmXz0wIjWF3LxwA7Z2b9Gun0vLCpIdWpouPqAJLntmqJFUgEenA71XNb8uRuSJMFg1mLvPvnPGVWsp7dgrU7SzTJQtAghDWMF7D9uyMTvfi3HDp6Qo8NeDF5Hx1JJetsoRYsQkiyTj+TaGUTjL5FioSj9x+97gcMJQdEihKQHBOz8T+Vsgou3FC1SO+XH8gCZA1z2INld/YQEoWiR2rl9SL7TE8gkYIYA3X5RhB5tN20rthyomO6XkHqgaJG6mYqUDme/nLwrY8OveuI1IyUKIY1D0SL1o9HQkSl7p/MvRW6yJaROKFqkfiqK1vRG2iwVpSD5h6JF6qeiaD2U0Y2FVIILSXtD0SL1o6LV8yP5t8Dq4bXzB2WXX+yga/2INCHxKGkjKFqkflS0olYPjf3xun+UXyedyY+0PRQtUj+u4WH5sdw4vlWW2M20XbJ+5DrjtkhiULRI/VSZiH84utGvh7dePkwunRJpcyhapH6qiNZ0cc/k8oMTQtEi9RNbtFpXbJXMPShapH4qilZZru/z47S6BuUCJ7VIQlC0SO3YDdPX5MxOX5SW/p38x4yQh6My/IYX8tDR+arsZ8wDSRCKFqkdu2FaQxyibdWmbfJ+6cyMasOEJAFFixCSKyhahJBcQdEihOQKihYhJFdQtAghuYKiRQjJFRQtQkiuoGgRQnIFRYsQkisoWoSQXEHRIoTkCooWISRXULQIIbmCokUIyREi/x+6/vP0YCvlygAAAABJRU5ErkJggg==
|
As shown in the figure, the height of the cone is OA, and the diameter of the base is BC. What is the volume of the cone? ( ) cm³
|
A. 3π; B. 1π; C. 2π; D. No correct answer
|
B
|
27
|
iVBORw0KGgoAAAANSUhEUgAAASoAAADNCAYAAAAPDD2hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACBMSURBVHhe7Z1/iFTZlcdrYZIyYE+GYBEXp7OCQge0SQQxQgujEPzByqIwTCaJRqFDMDIDvexkJ6KgbCLCNkGb+cNAQYfsaJTM4EAabDS7iuOMP2gy2ptx3XYaGxwH7Rl0aP2jobJw9n3ve6d9dfu9qldV71W9V/X9wLGr7ntV9d6169vn3nvuOTkhhJCUQ6EihKQeChUhJPVQqAghqYdCRQhJPRQqQkjqoVARQlIPhYoQknooVISQ1EOhIrFza2iTHLpe8p4R0jgUKhIvMxdkoJCTfP9ZmfGaCGkUChWJlfsntkgul3Nsi5y47zUS0iAUKhIfpXEZ7N0iAwO9RqwK+68IB4AkDihUJDZmzvZLF4Z890/IFnhV+X45y/EfiQEKFYmJ+3JiS0H2X4EPNSMjOzH8y8kWjv9IDFCoSCyUruyXQu+Q3PKew7vKw6sq7BejXYQ0AIWKxMAjx4PKS19x0nvuULoi+wvwqvLSz/EfaRAKFWmcW0PSG7DKd2vInVTP9RXFJ2GE1AyFijRISa7sL7iCFGo6d0VIfVCoSGOYFb5eGRwPEqL7cnpb3ogVA0BJI1CoSAOUZHywVwoDF8JFaLIofcar6pUhnWknpEYoVKROZuWzq0eMCP3gD585z0KYHZN/63GHgPkNg3L1s9AzCQmFQkXqYrLY580/eRY0YT7nTZWb44ARUhMUKkJI6qFQEUJSD4WKJMrsLOekSONQqAJ4+vSp94g0AkRqz5493jNC6icTQmVPxtLSZWG8/fbb8txzz8nU1JTXQkh9UKhoDVsYHzz/PP7zXCOkAfgbZHHw4MG5L+B7773ntZJauXz5stxQkXKMw2nSCBQqH19++aW88MILc0L13e9+1ztCamXbtm0y6hOqo0ePekcIqR0KlQ+/N6VGr6p2PvnkEzM39cFXvjInVMuXL5e//e1v3hmE1AaFysP2ptToVdXOwMCA6buHhYIRqZdXrzbPKfqkXihUHkHelBq/YNGB4C9cuNB4VP/X3W2E6k/Dw6Yf161b551FSG1QqBzCvCk1elXRwVwU+mzHjh0iixYZocKQb+nSpab9xo0b3pmERIdC5VDJm1KjV1WdeYLk/JR8XmRqSoZ+8xvTbgSMkBrpeKGq5k2p0auqzjvvvGP6ygzxsHXGeSxf/ar5OTM+PjckfPDggfcKQqLR8UIVxZtSo1dVGQjUXD8hGt15LF/7mvvz6tW5SfYDBw54ryAkGh0tVFG9KTV6VeGMjY2ZPpoLQ/jkE1eg1EZG5sIWFi1axM3KpCY6WqgwVFm/fn2Zffvb3zZfOBUm+zgng4N59dVXTZ/NBXZevFguVL/7nWlGICjOO378uHlOSBQ6WqiC+J3zhVKhuogvG6kK5pzgKcE7hZdqsIXqV7/ymi+avl25cqV5TkgUKFQWFKra+eUvf2n6C3NQc8CDgkCp+Y7BU8X5o6OjXgshlaFQWVCoagNzTfCk4FFhDmoOW6h8YQnax5s3b/ZaCKkMhcqCQlUbb731lukrzD2VgaEeBErNG/oBiNvixYvN6/761796rYSEQ6GyoFDVhi4+IK1LGQcPlguVxa8c4cLrmAGURIFCZUGhis7IyIjpp8CwDQgQBErNAhPwCxYsMPbFF194rYQEQ6GyoFBF5/vf/77pJ6Qcnsfu3a5AVQiS/elPf2peD++KkEpQqCwoVNHA3BL6CHNNgXmmMGcFoarQh1XfgxAPCpUFhSoaVb2h9etdoRob8xqCqeiVEeJBobKgUFUn0vzS6tWuUGHPHyba33pLJCCqv+I8FyEeFCoLClV1Iq3YLV3qChUyJbzxhvu4WPQOlhO6ckiIB4XKgkJVmcgxUM45RpwAhod4jJCFAEJjsQjxoFBZUKgqo/1TNaocwmTba695B8sJjW4nxMP57SF+KFSVibRPDyt4ECYd/qm9+qp3wnwC9wsS4kGhsqBQhfPnP//Z9AvmlCqiSfNsocJKYAiffvqp8aiQBXQuAwMhHhQqCwpVOJFzSalQISUxfqotX+6dEMy8nFaEeFCoLChUwWDuCH0SKTsn+g3CpLFUaqhKUwHNEooCEQwAJX4oVBYUqmBee+010yeYS6qKChXmpPATduQIOtc7IZy1a9eaz0H2VUIUCpUFhWo+mDOqqYLMqVOuOOl+P1hEyirZEOJBobKgUM1ncHDQ9EfkmnzwnCBOGugJi4i/NiCGgoQACpUFhaocCMeLL75Ym3A4wmbEKSTAsxoqjJhcJwRQqCwoVOXUNRTTpHl1rt7VPNQkbQ+FyoJCVY5ObtdUfBVBmxAqDAHrRIuVRpq8J20PhcqCQvWMq1evmn6oOVxAJ9H9K3fYcIxtN1j9i4CGQ2BrTdVwCNL2UKgsKFTPePnll00/1ByA6bzOCJW//yBaaMOxiGiAKTYtk86GQmVBoXJpaEuLBnr607agL9FWYRuNTeQtO6TtoVBZUKhc3njjDdMHdW0SXrvWFSXdSuN/jP1/NaCboJFgj3QuFCoLCpXI06dPG0u7opuR/UKFeSb8dN63FvT/AymLSedCobKgUMWQyO7FF11RAvipj51hpHlcw8Q8i5USQKGyoFAhycHyxu4fYgSzHyN7Ah7D06qBgwcPOi/LmYISpDPxfoOI0ulChXgp3HtDxRYgRvCq9DEM6CT71avu84j4i0kwALQzoVBZdLpQNVy+6tNPXTHSSXM8hgGITJ1VkeFN4bpYrLQzoVBZdLJQ3bhxw9w35oTqDrLUCXSs/AE8hjVILNdGMguFyqKThWr37t3mvhvyWjCsgzBpvBQew2JAvT38H5HOgkJl0alCFamoaBTQZxCmGiLQo8JipZ0LhcqiU4XqwIED5p4bXlnTrTLY75cAuiKJqHXSOVCoLDpRqGKNVcKwDEIVUsPP0IDHxmKlnQmFyqIThapYLJr7rVpUNArYwAyhCkqahyh3HGtg6AZRRdQ8rpfFSjsHCpVFJwrVypUrzf3Gsp9Ok+YFpXPB5mYc0xirOtF9iCg4QToDCpVFpwlV7BkKNE86hoBBPPece7wBWKy086BQWXSaUG3dutXca9WiolHRpHkaMIrHMEU3LCMwtAG0WCnyq5P2h0Jl0UlCdfv2bXOfsWbR1Fp+2nd4DFNWr3af37jhNdSHZh9F4QkWK21/4hWq0rR8fOaY7NrYIz09PbJx1zE58/G0lLzDWaCThKqmoqJR0f18YUKFCXs8Hx31GuqHxUo7h/iEqjQhw5u6zC9OuXXJpuGJzIhVpwgV5nYQ3Bl7pRcVKs2QgMcwRYeGYXNYNaAVciBYpL2JSahKcv3QClm7b1TuPIEkleTJvasypMKV75ezM+6ZaadThOrIkSPmHmOvnedPmgfwGKZgNRDpXurd9OzDX3MQQ0HSvsQjVJPD8otigNc0c1b68+6XfuCC15ZyOkGo8AXXAM/YqxGrUOm8ER7DEkKLlaIQBWlfkvsNMkxKsQ9f+l4ZuuU1pZxOEKpTp06Z+0tkyGSHH+Cx/3nM+IewCFsg7UnCQjUugz05yW87Lfe9liBm716U4r7tsqYHk/AbZdexM/LxtO2fzcrj2855r2+UH55yhxWzd0fl2K6N7sT96ydkbO41JZn++EzIscp0glCtXr3a3F8ik9AQJcdbmwPPYQmiiwIIBCXtSYK/QY5YnNkp+e4BufDIa5rHI/loaJN0db8iQxdvy4MHU3LzZL90O790ua5NMjzhisvDDwZlx5olkke7Y33OMPPeiHNe1xJHiJZJwRte5roPyfVSSSaGnffMF2TZvGPm7SrS7kJ1+fJlc281FxWNAiblnfeeS5rXJPzFSlGYgrQfiQhV6ckdGd23Vrpyy2Tfh0+8VhtHUIobHPHpk+OeILk8lNPbPHFxPLGHXqs4PtmJLW57z6bd8s/FMVEnqTR9RnYaQcrLhk0/kh+VHRuVvQX32MCF6krV7kKlRUUTCZTUpHktSMOigassVtqexC5UHx4szHk+ruVl2S/OzwnHHDrRvnNE7AXBW0O95rX5V971CZXIhQH3Pdccn/BalJKc3xt27Nnr+oqTXks47SxUU46QJLr1BBPzTr9VLTKKFTqnn+NEtwIhDQxpP2IXqtnHD+TB7WvyXvF1WdvlfuFhvYPjZauCD0+75bqDxWNWHj/4XEykg49KglPvMZt2FioUE8V91VVUNAroL+f9HffGawhBVwYbSdAXgBYrRYEK0l7ELlRllO7JSH+3+eXJ5QfEP/IaH+wx7VHEQ6FQ1Y8WFcV9JZYeBQLhvH/VpHnr1rnn3b7tNcSDpqthsdL2I1mhAo9GvPmjPvHrhIpHj+NpRYVCVT9Hjx4195RowjkM55zPkD17vIYQ4HHhvJj7158AEMUgSPuQvFDJjIzsxBd/m5z2TThNFvvML1Sud0jCQqxK18/Jf/lGBxSq+sDqXsNFRaOADAzOZ5QlzcNzmB87w0KMaLFSFKog7UPzhMoWpOuHpOD8QuVyBdl7PiB+oTQhx/vLX0Ohqo9YiopGQZPm+avY4DnMj56XwAodi5W2JzEJFSa/Hzv/zqc0UZQN+W4ZmBdMdUuGel1ByOU3yOCYL8vC7F05079Mtp0uDxOlUNXHunXrzP3g3hLlwAFXgPyfg+cwP5XSFceAlv1CwQrSHsQiVH857E6Y55dtlcOjd9zVutITuXe1KK90h2dPcEXMFQVY1xJEpi+RLjzeNCxl4VWlcRn0hK3nyEfW+z2SMz9wjxX+9X1LMJ8dy+8ccZ5Vpt2EqqmFO4MyI+A5zA+GfGhLaHjGYqXtRyxCNXP938tCEYzlC7Jq+2EZvVv5FwXbYPat9aWHcV730r7zcs+nRFOnfijLCnnf++elsKxHfv1h0DFX8KodC6PdhGrHjh3mXppSCl2Fyt9veA7zg9U+bHdJMIxAi5ViJZBkn1iEygXDvwdmXuDB508CPahKmPirgNgpUHryufu+lj12NLDeY2G0k1DhXhHg2bT5GjtpHsBzWJPReTkUriDZp/m/QSmnnYQqtqKiUVGh8sdp4TmsBbBYaftAobJoF6HC3MyiRYvMfTRcVDQq2L4CUdKkeQDPYS1Ai5ViHyDJNhQqi3YRKlSVwT00NUpbt8akJIOBPxofhSxIdqFQWbSLUMVaVDQqCxa0zHsKg8VK2wMKlUU7CNXo6Ki5/tiKikYFIuV4MJHAahxWCRP2dLRYKRYUWKw0u1CoLNpBqDZv3myuv6m5mZAJAUIVNWnejh3u+U5/J43m4EJBC5JNKFQWWRcqTJzj2mMtKhoFTZoXNRwAqWZwPqLUE0aLlSIAlMVKswmFyiLrQrVnzx5z7bEWFY0CVhYhPNWS5inwbnB+k7a5aLFSFLYg2YNCZZFlofrCGX61rCIL+grCg0rIftAGs8GQD+0JbaOx0co7KGxBsgeFyiLLQoVtMrju2IuKRgEl2oOEB20wmzBhSwh/sVIUuCDZgkJlkVWh8hcVbUnVYPWQ7Ch4tMFsdKjYxHLsWh2axUqzB4XKIqtC9fbbb5trTqSoaBQQbgDhsVO3oA1mU+sqYQz4i5Wi0AXJDhQqi6wKlRY2SKSoaBQ0GV5UoQLo36Tyt4egxUoTK3BBEoFCZZFFocJ14noxB9Oy5XcVKjutCtpgKQFbadBXCN9gAGh2oFBZZFGoULAB15tIUdGoaC4qzFX5QRssRWixUhS8INmAQmWRNaFC6atEi4pGRYUKq39+0AZLEf5ipQwAzQYUKousCZUWFW35pltkaYAgZcQL1U3bLFaaDShUFlkSKnhQ8KRwrYkVFY2KJs1rVu6rBtFipSh8QdIPhcoiS0LVlKKiUcEePwhVLcv+2DS9eHFi1WgqwWKl2YJCZZEVocLcytKlS811piLVribNq2WezOlr85pqlZUTQlM1owAGSTcUKousCBXipXCNiRcVjQryUEF0agFJ/fCaFkWKo+CFBoA2pfgFqRsKlUVWhKppRUWjAsFZuNB7EhFs9cHrWjhPxGKl2YBCZZEFoRobGzPXl5oCm8iRDsEJ2g6DdlgQmsMqyjaa2cfG67FLsTV6/1qsFIUwUtGXJBAKlUUWhArZEXB9B1swCR2ICk5Q6mO0w4JADBOOIdd6ILNyd/SwbF+BArVdsqTHq6TdtUK2Hx6V21MjsvfQBe/c+lm/fr3z/jlTEIOkEwqVRdqFyp8DPDXzKsh7DsEJSpqHdlgYGC7iuD0JP3tLipscgcovkx8Vx2S6zI36TK4WX5Fu53W5bafloddcL1qstOk55klkKFQWaRcqZO7EtTWtqGgU0E/ONdUlVKgFiKFfWaK/SRnegFL83TJw4ZHXZlOSieIGyfcVnbMbR4uVojAGSR8UKos0CxXmULROXapifxAeATEKytaJdlgNPBrZKXnnNbktJ+S+1xbMLRnqj0eoNCYNhTFI+qBQWaRZqLTyb1OLikbB6TMjRrEI1aQU+9z+3zky47WFc//dd+VD73Ej+IuVNq2yNIkMhcoizUKFORRcV1OLikZBhSpoiR/tsKg8PC3bnPNzuTVyfMJraxJarBQFMki6oFBZpFWoIE64JsylpI6wpHkA7bCoTBalzzk/l+uTYhxjuhpA1k9dqEChDJIeKFQWaRUqDPdwTU0tKhoVFao4lvdbKFRAi5WiUAZJDxQqizQKVcuKikYFQyXn+swQsFZwP2NjiLx0n7dw6AdYrDSdUKgs0ihUCEXA9WAOJZVo0rx65s4gUnjtXGjDs8n0LScqr/kZSrMy64+xigHU/sPno2AGSQcUKou0CZV/42zTi4pGZetWV2zq6S+NavfNvc2c7XfDE3oHZbyiCJVk4vSwXKq+OFgTWqw0NRu+CYXKJm1ChW0yuJZU16LTpHn1xnbhtci+MMcjuTDQbe67u39E7gWKFUTqdTkcGhBaP/4aiWmap+xkKFQWaRIqzEe1tKhoVOB5ONdYU9I8P0EpYkrT8v7htdLltOeXbZXDJy/JzakHxsO8fe2kHN6+Ufadny7boBwnWqw0FUkJCYXKJk1CpdfSsqKiUdGkeUF7D9EOqwSGfTgnQOhm716Tk8f2yvY12JDs2MZd8uviRbnzJCmJcvEXK215mmdCobJJk1BpUVHMmaSaRYvCxQjtYccUHTpiYj1FIPAT/c9ipa2HQmWRFqHSkk4tLSoaFYiM43kEgmOwSmD+DeekIaWyDy1W2vJSZIRCZZMWoUpFUVEfYZHaf/nwQyMyX77wgpn4h/eBrJlqOGbMAqlVcD6qwUytWSMPnGHdfx46ZPocEeJpiRdjsdJ0QKGySINQYU4En485kmb9JcckNUQRaWQgMEgmh9p3yHyJawmbVH4HQuocn/L6zDbnn0Ch0hTALzj2pXfOWsf0dZcvX/bOLAeR+fg/QjoWCFrS4HNwPSikwQDQ1kGhskiDUKGYKD4/7qKiGMqEVaxRcQyzsPCI//nTn4zIfLp8uek7NexNNP3nHDNmgeIU8KiuO94Ujt/s7jbihTQrmJsLixnTDAdqGJYhQBOvTcr71GKluGbSGihUFq0WqriKisJDwiQ8otrxxYd3pveFlCY28BYgjBAP9AE8CeS8qhpkqmIUlDQP4BgsCNwf5rZgEe4V14jrw3ViSKblwtTCMnRiGNnIUJLFSltPRwsViiT4vQCYbleBYRhkH096uAGvAJ+NL2K96PyWbci8gGOx3oMKVVhtPByDBYHhJI414DlCdP3/j0FAsCHUGM5C6PAHqBbhwrk6BMZnkebT0UKlFUiiGoYdSc4ZwWPAKh8+K0pR0SDPCGBCG14ZxA6TwPhyhZ3bMNgP51yvM/byGiKiAodgz4Tn4dAH6qWqqXAhS0KUrUlarBSFNUjz6WihAmHeR5Dhr3GSRNljBtGBEEHQ4P0FAVFq2sQvvBjnmh3302uIiEazN2lVE/2B6H4IEwTKPxSO8kchE3su25iOF6qoXlXS3hRABDo+C3MifjD0wE5+Pa6Wioj1I0dcwalFxCGiWO5fvdp93ALQpxgCQvSjijpKv6PfMSVAmkvHCxWI4lUl7U358yD5508gWrrfDwbBxGRyavb+oV+c65I0JvRrAHhN8Lz8Cyr6Ry21ecHaGAqVQzWvqhnelGaWtAVRRRTDQYhW6r4gmAh3rs8MAdsInZOCQbD0DwMeoy2VmVbbGAqVRyWvKmlvCn+9w4qKIrsnorhTCybRnT6SNosxwnAQq4ha7w//P0hc+Mc//tE8Z7HS5kKh8gjzqiAeSSf61+onZstJ1tAQA98QqQwcg2UUCBZCRnTyfcWKFfKtb33LPE5dNaA2hkLlI8irSnrnPFboMLTEZ7377rtea4ZwhkLOxWOSzWuwwDEYtsSgYEJG53YQe6bDPqSbwc/U1VdsYyhUPmyvKmgoFjdaVBSGkIPMTdJi5c65dueb7DVY4BgMK5T4iVXCjALvCt7v/fv3ZcmSJeb/jMVKmwOFysLvVSXtTQEN8MQcSCb3kmnSvLDYIhxTW7wYLqR3INtcu3bN/L+FxbKReKFQWahX1QxvCpO1KopIfZtJHKE1IhQGjqnZK4OlJ/L51E25dO6cnDuHVMOPJUv+JMJEmvF7QihUgcCraoY39b3vfc+IFFaWogYdpg4VoTD0OIaISmlaxoq7ZUVXXgqrtsveN9+UN/dul1WFvOQLL8m+0buZEKzp6Wn55je/KX19fV4LSQoKVQDwqprxV/LnP/+5EaowbwrXgYDDMAubzwo6Vy0sUBRxYkHnqyFFTCDO9c86Q7qg11zGqpgnVHeGh93zSxMyvKlLcvkNMjg2LY+doSAmql37Xzl/9B/l73NflX/42R/khtOWdPxaoyDFTCMbyEk0Ui9UOjTKqlVCgzzDlrl1lSnMwrIgBJ2rhtQoQUBYgs5XCwydwOc7x8KS5h11zHlgDPfyrAxWQfaed8tc+Ye/QRYWw6aJ98IM9xMEUrWgD9TwHNemFgY+zzbNaf+Tn/zEO4skBYUqYasEPCn9ZQ/6q4zjQV8QtbD4rqBz1cKqLcN7839hbQv0+jyh+u+vfz3wNf/yne/Ireefl1fXrjVD6dKV/VJAv/QMyrj3FlhA8AuHse6CfA3n/d1C+dmR4BTAuBe7r/0WJlR4/6Dz1cIIOlft2LFj3lkkKVIvVO0O4qh0Lx+2bWQKxEY51+2oktdQiZLjTeXNfRYOXffawpiQ42tcEdh2+qHXFg/YBfBsqDnfwtDhLOz3v/+9fOMb3zDX9+Mf/7ihBIckGhSqFID84JovKentOrECrwVCFamK86QU+1zx6StOem1hlOT8Xvfc/C8ueW3pAHFT+ocFw8bMLoJkDApVSsAQSLdpYBiY9LadWEC9QQiVMwyrzgUZcM6NJlTO2QPuubmBC15L68H/kf5BgUglloyQzINClSKwIqd/rZH6Niy1bmrA9TnXKpFCOWrxqJ4JVRo8KgwXkdnTCKdjmB9jmpfmQqFKGQiLgEelXwr85Q6bGG45Xqksk5MKIJRgz57g0u4yIyM73XuqPkc1JcMb3HPjnqOqBYRGYCiuXhT2ZB4/ftw7SpoJhSqlILWLbq+BYRUNbamaE4FAOdc2l04YmS/xfPNm97nFzNl+yeN+eofkltcWyMxZ6c/jvrfIifteWxOBB4WFDd0sDkN2T0agtw4KVYrB8AKFCfwZPiFeCBVIxRwWhnzONZkhIFbMFixwn4dVaimNy2Av7qMgAxdmvMb53D+9zQha7+C4lLy2pMEfAMSzwZvFvkvtb+xSQOgGaS0UqgwAwcKQA1HQ+gXClwlpRpD1s2WihUl051rMpDrKZeFxlYn10sRpeaXbuYfufhm5N1+GHn00KBscb6r7ldMykbBKQZxQ2AEbi7UcFgyLGpiTokClBwpVxkAVmj179pR9sWAIHEVQJYaHTdt2gtJRzmfLb3/r/ly4MGR+qpzS9PtyeC220SyTrfuK8h42Jb9XlH3bV0hXviAvHX5fphMSKYgPvFR4Sv6hnfYhkuRlYsW1w6BQZRQdqmDuxP7C6ZcuceFCoKfzWbJqlfsTifEiU5Ind67JuZPH5E1sSn7zmJy8dFPuPYlXoSoJk/YTSmgxaDPdUKjahEpfSAwTV65cafYWYhUL8UAIXGx4Yn7dOlegYEuXtjR7Jya6UYYefQCPE4sPQcKEXOc4jhqKnBzPDhSqNqWaJwGzBQxxWwiFgIhF+hJDnJz3kY0b3XmqBME8Hba44PogMhiiIZ4J83Z2FWS/UZjaAwpVh2B7HNW+4GpYZcTwCBP3EAYU34RIQNSeLlpkhApDUN0HB7P3z9mGLUP+8zE8xfvB8N7YOI0hLbwiCE2Y0PoNm403b95shrtYeMBncK6pfaBQdTgQDgiNeihYnoeIVcsyoLY0oC0Jw+IBvD8VTMQ5wUuC58itLO0PhYpUBJ4YhoJYxofHgxgueC0QC79pahc1eGFzaVs8s8/BkNP/HggTwBAUIRfwsrClCEJKCIWKEJJ6KFSEkNRDoSKEpB4KFSEk9VCoSHRm7sgHpgZfiF26KVOfP2naRmLSOVCoSHQeXpK33twlLxXc3Oe5wgb5mdn+AtslG5d0mfauFbul+JFbZYaQOKBQkdoZH5QeCFVfUcpzdZZk+v1Dsgq5pPIbpJh0+gPSMVCoSO1MFqUvUKhcxgd7jGeVtsIMJLtQqEjtVBGqyWKfOzRMUWEGkm0oVKR2KglVaUKOmyIOeek/G57Fk5BaoFCR2lGhKuyU3/pW/U4e8yba8wX5p6GPhNPpJC4oVKR25oTKWvVbVjC5zvOr9kjx4l1hQSkSFxQqUjsVhn6zd89IP3KiO0O/ZfsuCQd/JA4oVKR2qkyml67slwKO5/okQq1RQqpCoSK1U0WopHRe9hqhygkX/kgcUKhI7VQTqvsnZIsRqh4ZHPfaCGkAChWpnYnjsiZMqErTcn6g23hT+Q3DwUJGSI1QqEh0zKbkk3J4oytEuZ698h9l4Ql7Zesydx9gftUhucL4BBITFCoSHbMpWcMRgu3YyXNy6eZnDE0gsUKhIoSkHgoVIST1UKgIIamHQkUIST0UKkJI6qFQEUJSD4WKEJJ6KFSEkNRDoSKEpB4KFSEk9VCoCCGph0JFCEk5Iv8Pf+lWk+T2l8cAAAAASUVORK5CYII=
|
If the cone shown in the figure is cut along the middle, the area of the triangle ABC at the cut surface is 3 cm², then what is the volume of the cone in cm³?
|
A. 3π; B. 1π; C. 2π; D. No correct answer
|
B
|
28
|
iVBORw0KGgoAAAANSUhEUgAAAVkAAADVCAYAAAD994PMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABhnSURBVHhe7d1/aBznncfxpS1s/6i4/tGFgisoqKCAa1pDMQL3aAXFrmkKEgSnMTExpxYS1Tn0R3WucbioV5tw6KBRDWeu27M5YmPTBLmgw65VkHBztix858i0rlBqIkgTFDvIReofgu0f39vvzDyrkbS/Znee2fnxfsE09WjX1u4+z2dnnnnm+eYEAGANIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyqO6jm3L2xAk50WA7XbwqN27ckcWVJ7LhPRXAJkIW1a29K/9z46oUX+6TrlxOcrrlC/KNF07I65dulIO1vF0tyunhQdnd5f28a7ccm3hb3i95fwcAQhaNfCRXBrwQ3V+Uh97eLUqP5G7xiPTk3cfle0Zl+hFJCyhCFg3NjDQIWc/q7THZ6wVtrntUbq55PwAyjJBFQ82GrHp4vl/y+tjy1j02LxzPIusIWTQUJGSldFtOFbzH5w/LWx95+xOitP5YVlZW5AlX8RASQhYNBQrZsvvjve7jy9vAlQSk7MZ7cv3MoOwt5J3fuWtXr5y+5f0MaBMhi4aChmxpergSsvnRm97eOCrJo9+dkT6dHdHVJycnF+T9dQY4EC5CNpAH8ot/+EX5f7MlaMjK0jnZ54Vsrv+8LHu746UkS1cOS7d+EfSPy71VbzcCWpbLz/VKb2/Q7bRk5WSBkA2gdPuUFHIFOXU7W0c7gUP2YVH2m5Bt9jkRW50Z8QK2KEscvLahJOuPV2RlcVbGBwruZ17efnC1vG+lyrZ4Ry6N7pV8bkRmvL8h7QjZpn0gVwbcMbv80SnJ0oFP4JC9Py69XmfLld+r2M3kWp2So85Us/1SDPgNsPHEDYvHdYYVNp48ls0fb8gTDZcqV9Lci2z+xybczdHKzJKRugn6gVw8FPy9TypCtlkPJmSPCY7cHpnI0JhB0JBdmzrqvU85KYzNe3vjoiTzY93u73bqtjPFzMwoqBecq/eKcmx3l3NRrLen4IRJV99JmTa3t218KAu/KcrL39CfuQGizznS434x53J56Rmdcb+cV+9J8UhPJZByXQflfBoOp31nMPVDVmT5/CghC7+S3D5VkMLAQKURmQ6aBcFC1n2vTLCMzMTsXSrNyIhzFFuQH/znr+Tkd74iX+ntkYKzr0t2/+PUjtuC3aGFbhmZflT5zFcnn3VfY/cZ+T/98x8XZPGdn3vtY7+8VnxVnn11UhaWV2R5riiHu933Y+jStJwZPCYTv1mQ5eUFmXROncs/O3SxfHyXcAFCVjbW03ME3wAh24wPLsoh5+jVFyD5IbmWkTuaAoXs2jUZqtz1NSbzcetI82NScIJgj4xcf3ezo288kHP97lFndzkhKsNB3uvZ8aW6elvOHOiVfcfe8r0nD6W4X//uXvmXu1uHBz66MuC+J9/5r20hPi9jzrziozKV9PbUVMjeksuX43kp1BZCtgkPJvZsHmn4hg32Z+R8p/mQXZObo+6puB4pDk/Hb+S6Enb7zsmSt6/C+TJ1f3czyuE+Pi/NzUQzIVtlvLF8NOz8uzvSp85zkqaZkC0/ZiQr4wQeQrYR5w6mQrnRmMMMHbR3G1KucEqyMNGguZAtydL5g96KXb7xx5h5WNxf57VsLoZjvkBvjurRbbMBSMjWD9lVmXtlT2YOTgxCtoEPLh6S3J6JLXNj164NeRct8jKU+jEDEwLlrUbIbnw457uQ0yUHJ+7FdvZF5aJcjddi7lYzQWC+YGqf/voRsiZknQuE2+bG7vKWxCRk4fNAJvbk5NDFbZckSvMy5lzIKG9puGBRjbNo97AM7u5yX6du+YL07BuU4cqi3S/IAe9Ke65rlxx4uSiz78X8pn8zvawwJtXmPZgj3f7z7rjh/Jg7Bt87ft/5804bslF5yYSsCdlq82QXZyecC4CELCrWyh2jUGNIwDnCdRrUHhm/n8IxA2fRbm9x7nrbnUVZebyeoJkW7henXpyqlpvu8MAhMd+rpXIbcL5E8kdlqsrh+erUT+TfK6c5hGyjMVm9oWeAkIXLG3stH6FtP+1xNnMEV97yQ9fiN+EeNa3dHHXv9tp+U8nqtAwXctI9enPz8yzdl3EnlMuP73lJJt/1vlB0Xuyll2T34Su+MxlCtuGFr7UpGSdk4XBmERySX/5x52mPuy3L1LCZD7p55IMkMBfp8tLz0iV3LuvCpIzuzUvXwfM7brMtLZ2Xg6bEjm/TChAzXkrrDQ3Lc695IZOX/vE5WXaO8PWOr0WZHPJmXXQPyeSiu5SiPmdx9ifS70x5856T5DUWmwnZ8vuxnpUJsh5Ctqo1uTaUb3zDgW86154s3QKWCiV59IdJOTO4zzkz2Tc4LK9ff692McjVP8rk6y/IAT2L2TcoJy/OyYe+By9ffm7n2c5zl2VZbsnp7fvLmy6lWPU5SV5jsamQ9fngLfmP//7Y+0N6EbLVOPMlmzl9W5Wpo95tk4URqczyArIoUMiuyczI85k4AyRkd/DubW9yYZPKhZHylrWrpsAWvoWBGoVsaX5Muhve3JIOhOwW5VPIaXcJvNyzv5JmCq5u/O6fvNs0y1u+X849qH7COTDg3WnExpaS7Wc/+5nXulVJls55N3qUt2cna82ULvexuxPOGHdWDkoI2Ypb8qpXfqSy6bzQmmNkt+S0b4aBf+vatXVB4r/+9a/y6U9/esfj2NiSvP35z38ut2530e6ean1n+3hzedt8XPUpdGlEyFZ4635u32pe7a3xeGd7suUCSrFYrDS+tPne977nvK6vfvWrsrE5Kx8pdfXqVefz/vrXv+7t8RbtrtoP6m1b+0iaEbIR+Na3vpXakNWj9C996UvOa3vxxRe9vUirZ555xvmstw4VoB5C1rKPP/5YPvWpT6U2ZNXdu3crr1GPdJBOZthLP2tt12gOIWuZfuObgE1ryCrzOj/72c/K8nK21gvNijfeeMP5jPXMDM0jZC3TsasshKx6+umnndfY19cnf/vb37y9SItvf/vbzuer1xjQPELWIr36qo3yM5/5TCZCVk8hv/CFLziv88c//rG3F2lghr10uECHDdA8Qtain/70p07gHDt2LBMhq95+++3K+Oz169e9vUi6c+fOOZ+pzvdGMISsRTqtSRvmb3/728yErHr11Ved1/r5z3/ema6D5DPDXm+++aa3B80iZC35/e9/7zTKz33uc5kbn9TXa6at6X8Zn002/7AXc6GDI2QteeWVV5yGOTIy4u3JFu2Y+gWj78Frr73m7UUSjY+PO5/j888/7+1BEISsJWaCvo5RZpWOyep7oGO0WX4fks4MezHG3hpC1oK5uTmnUeqV9qz70Y9+VHkv/vKXv3h7kRR/+tOfnM8vi8NeYSFkLdAhAm2YOmSQddoxv/a1rznvB1emk8cMe3HLdOsIWQvMXNF33nnH25NtegeY3gmm7wn3vCcLw17tI2RDZqZrPfXUU94el+7TLasuX77svH6dzM6XTzLo56SfGcNe7SFkQ/b973/faZh6I4Jf1kNW6Smnvgd6dMRdQ/Fnhr10XB2tI2RDpOOPZtqSXjDwI2TFmWP55S9/2Xkf9C44xBvDXuEgZENkFjTWCz3bEbIuvUnDrOVw4cIFby/iRsdg9TPSsw60h14fIp2srQ2z2sUdQnaTuQ9ew3b7ET/iwQx76S3SaA+9PiR6KmyO0NzaR1sRsltRtia+6g17ITh6fUjMgsbf/OY3vT1bEbJb6YWvL37xi857cvz4cW8v4mBqasr5XPQLEO2j14fElPyutaAxIbsTZWviqd6wF4Kj14dAbxel9lFrKFsTL42GvRAcIRsCU/Jby68gOFPWRNcs5f74zjI3jWyW/Ea7CNkQmLVTdVwWwVG2Jj4aDXshOEK2TbryP7WP2jc7O1sZn9VbkxE9hr3sIGTbZMYUdUoS2kPZms5i2MsOQrZNpvYRV8fbp+OxOgVO309q+0ePYS87CNk2mAWN9cp4own1+jjdUB9lazqDYS976PVtMCW/9RbERgjZ5lG2JnoMe9lDr2+Dv+R3I4RsMGaZPb0rjLI19jHsZQ+9vkVmQWO9SNPM3E5CNhh9TylbEw29CUTfZ0p+20Gvb1HQkt+EbHDa+c3dR2fPnvX2ImxBhr0QHL2+RUFrHxGyraFsjX1Bhr0QHL2+BWZBYx0vbBYh2zrK1tgTdNgLwdHrW9BKyW9CtnUarJStsSPosBeCo9cHpN/21D6KHmVr7KDkt32EbECm5LceWSFalK0JVyvDXgiOkA2oVslvRIOyNeFpZdgLwRGyAWinpvZRZ1G2Jhw67KUXu/R9ZNjLLkI2AFPyu6+vz9uDTqBsTfvMsBd1vOwjZAOg9lF8ULamPQx7RYeQbZKeprZT+0ifpxvCQ9ma1uiwl3456XvHsJd99PommZLfra5zSsiGj7I1rTHDXtTxiga9vknt1j4iZO2gbE1wDHtFi17fBD1iarf2ESFrD2VrmqfDXqYtU/I7GvT6JpjaR+0suUfI2qPjsZStaU67w14Ijl7fhDBqHxGydlG2pjlaJFHfI0p+R4de34B2Xm2UOrOgnRWgCFn7/GVr5ubmvL0wdKhL3xsdLqDaRHTo9Q2Y+Zh6saAdhGw0KFtTWxjDXgiOXt+A3t2lDZM7i5JBx2cpW1OdGbem5He0CNk6TMlvHetjMZLk0M/N3DiiK3dh67AXbTlahGwd1D5KLsrWbBXWsBeCI2TrMKvxM8k9mcz9+U899VRbFy3TwNTxmpqa8vYgKoRsDab2kd62yX3xyaTBStmarcNetOXoEbI1UPsoHbRsjQ4Z6GeZ1Qs+DHt1FiFbg1kYOqzaR/p36YboZb1sjanjpes8IHr0+ipM7SNtnGEhZDsrq2Vr/MNe6Ax6fRU2ah8Rsp2lNyaYs5MsDQHpEpBZe81xQ6/fRi8M2Kh9RMh2XhbL1pj1dvW1ozPo9dvYqn1EyMbD+Pi48zloZYC0L/VnY9gLwdHrtzFzK8OufUTIxkdWyta8+OKLzuuk5Hdn0et9bNY+ImTjIwtla/TLg/L18UCv97FZ+4iQjRcdFtLxWd3SeEefrWEvBEev96H2UbakuWyNacssYN55hKyH2kfZo6fUetaiYaTjtGmhw17tlK9HuAhZD7WPsklDKG1la958803n9VDyOx4IWQ+1j7JLV6bSz17PYtJQtsaUr2ct3XggZMuofYS0lK3xD3u1Wr4e4SJky6h9BB2fTUPZmgsXLjivgWGv+CBky6KofaR/v26IrzSUrQmjfD3ClfleH1XtI0I2GZJctsY/7JX1ShBxkvleH1XtI0I2OZJatubs2bPO782wV7xkvtebcTjbqzIRssmR1LI1Zs4v5evjJdO9PsraR4RssiStbE1Uw14ILtO9PsraR4Rs8iSpbI1py1kuGBlXme71OuamDTOKBUII2WRKStkaU/I7jYvdJF1me33UtY8I2WRKQtmaxcVF5/ej5Hc8ZbbXU/IbzYp72RrTlo8fP+7tQZxkNmTNos1puFcd9sW5bI0p+R1W+XqEK5MhS+0jtCKOZWv0IEF/J0p+x1cmQ9YsBkLtIwQRx7I1tOX4y1zI6hGIWT9U50ICQcStbI0J/aTdApwlmQtZah+hXeZCk5at6eRygqYt61RExFfmQtZWye9G9N/UDcmnZ0NxKFvTqbaMYDLV6/21j5aXl7290SBk06XTZWu0LZt/n5Lf8ZapXm+z5HcjhGz6mPak47M6lzZK5t/u6+vz9iCuMtXrn3nmGadhdqLkNyGbTp0qW0P5+uTITK/vdO0jQjaddHzWrBugX+JR0LZshr3idmMEdspMr+90yW9CNr2iLltD+fpkyUyvN3frdKrkNyGbblGWrTElvylfnwyZ6PVxqH1EyKafruWqn7FWVbDVzrQtd3LYC8FlotdT8htRiKJsDW05eTIRsmbiuJ7SATbpUIEpW2OjvVHyO3lSH7LUPkLUbJWt8bflTg17IbjUh2xUJb8BPzMnW6d3hbUsIm05mVIfsmYO49TUlLcHsM9G2Rq9u0v/Pkp+J0uqQzbKkt/AdmGWrfG3ZYa9kiXVIRtlye9G9PfQDdmii8eYcGzn7qw4tWUEk+peb2ofzc7Oens6h5DNrjDK1kRZvh7hSm2vj7rkdyOEbHbpTQO6wLd+/q2UiYlbW0Ywqe31WoNJG2bYJb9NWLa6IZvaKVtjKjGE3ZYRjdT2elP7KOx1Pv2B2cqG7Gq1bI1py5SvT6ZU9nqbJb9bDctWn4f0aKVsDeXrk69DvX5DnqysyEqj7fG6lLxnBHH8+HGnYdook9xqWLb6PKRL0LI1zZX89vWnHX2mJOvrTPnqpA71+ltyurdXdnW5wVPZunZJb3m/s/UUJO/sz0th76CcmfyDPGoicfVowTTixcVFb294zO8aVKvPQ/o0W7bG35Z3lq/fkPdmi/LygV3SVf55vtCz2W/yBdk7eEYmF5ZlefYV2TMy4z0HndDZXl96JL961gvY3IjsaAobT2Tx+qjszbuPyfePy71V72c12C757f6uhCXa00zZmlptufT+tJzs6yr/rEv6Tk7KwofbjlQ3PpS54hHp8fpNjpDtqI6nxcPifrchVAtZT2npnOx3HpOTQrnBrHn7qzG1j2xVEHV/V0IW7dGj1EZla8z6tP6S36Wl83LQOQPslpHpR3WH00pLRenXoO0/L9HWZoZfIkK23FxketgNt1xuQK585O3exl/y21btI/d3IGTRvnpla6q25bWbMtrttr/usfmmrlesTh2V/P6iPPT+jOglJGT9j9svxRotxox12Sz57f4OhCzCUatszc62XJL5sW6v/R2Six94uxt6IBOD43Lf+xOil5CQXZOpo2645XJHZarGeIGpfXT27FlvT/jc34GQRXiqla3ZUb5+7ZoMmTHWgStS42SuqodvvCG3vP+P6CUiZFdnRqTbeUzt0yRtnFHUPnJ/V0IW4dletqZaW14rn/abtrfv3JKzD8kQo5D9jvzrnUXfPNllWbh5VYov9zlTVHQqV89LU/J+jYGoqMokm4YeVKvPQzb4y9b88Ic/dP7rb8v3x3srbWh4upnRWMRFjEI2L4Ueb47slnmyuv2d/P0//1r+UGeirKl9dOHCBW+PHaahB9Xq85AdpmzNJz/5See//rY8M2L6Qk6YkZUsMQrZKsMFpXV5d3ZCjvTkvcd0ycGJe7J9qqyeUumplR4J2K59ZBp6UK0+D9ny3e9+12knn/jEJ7bMnyVkkyveIWtsPJCf7zeNLC9Hp7bGrDkCYGNL0+YvmTQ/VqjsP1rryi9iKRkhW1a6fUoKXiPLbZv3Z2ofsbGlZRsdHfVat8t/4at3nAlZSZKYkC23MjnqNbKGjwXSxj+Fa8+EPPB2N6ckJa6VdUwyQzY/Kje93UA2+G9GKMip282mZkmWzp+UN7jlq2MSE7LO7YFeyDZavyBSpXV5XJl21uz2RFh8DoGtzsiId1ttrrvcXxoslqRWZ0blSHGp6txyRKPjIbs5/692yJben5Ih07jyA3Kl6VsKI7B8WZ7r7ZGCOZVzfseC9JipaJXN/5h+Oc+KHWhBaemKHK4E7WEp3q21SMyGPLh4WPrKByRNZDEs6lDIuosML85ObDYYvRnhxh1Z9B3xLd65IZfOPF1Zsi3fc0QuPojpMeDqtAwXvNdSc0EOt+F311l/AWho9Z4Uj/RUzuy6dg/K8OmiXL1xQ27cuCrF0y/IN3btLh/B7pzuiOh1KGTdRbu3HunV2A68ICdOvC6X7rwr6zE/56nMZay76tGaXBvqJ2TRto0PF+Q3xdMyPLiv0l8OvHBCXr90R96Ne2fJkI4PF6RJcyFbPuWbf0t+zXABkAmEbIiaDVkA2UHIhqhRyJbW15lVAGQMIRui+iGra+JyEwWQNYRsiCohu+/f5H99syRWVhblzi+HpJs71YDMIWRDVAnZHfNk3bLN3A4MZA8hG6J6wwVu5VBCFsgaQjZE9cdkteIuIQtkDSEbovohKxS0AzKIkA1Ro5AFkD2EbIgIWQDbEbIhImQBbEfIhkZvNvBCtjAm895eANlGyLbLWbR7WRYu6c0GXsjm8rJ3dFIWllfkMashAZlGyLbLWbTbf+PB1u25yyy3BWQZIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsA1oj8P/kbVbRR+tAfAAAAAElFTkSuQmCC
|
As shown in the figure, quadrilateral ABCD is a trapezoid, with the lower base being three times the length of the upper base. When the upper base is extended to point E, it becomes a parallelogram, specifically parallelogram ABCE in the figure. What is the length of AD in cm?
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
B
|
29
|
iVBORw0KGgoAAAANSUhEUgAAAVcAAADTCAYAAAA1Z1BiAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABssSURBVHhe7d1baBxXmgfwfgh0HiI2gTQEHEFCBxRwzEaQCIGCbUFwYkYsEmucOETYrLMhEfaiAWsdo0A0Gwsz0wOWxsvqoUGBjbQW40FeENixwkooF9nGM7a0sSPkGGtRFBw5yMHKg6Dy8G19Vee0qlt9qequU9f/DyqXktruyzn/rjp16nwJAgAA1yFcAQAUQLgCACiAcAUAUADhCgCgAMIVAEABhCsAgAIIVwAABRCuAAAKIFwBABRAuAIAKIBwBQBQAOEKAKAAwhUAQAGEKwCAAghXAAAFEK4AAAogXAEAFEC4AgAogHAFAFAA4QoAoADCFQBAAYQrAIACCFcAAAUQrgAACiBcwR5tne7fu0f3Kmz31zXxAIB4Q7iCPUtn6UBDmlLJBCUS+VvdtgZqaNC3dIqSxr462tawhw4OjNPNVYQtxBPCFZzZuEb/1iCCtemP9L8bYr+kH+Henh6kt9JJEb71tD97ndbEjwHiAuHqp40HtHDlEl26dImuLDygwpwKqqluEa4tWboj9m2hrdJkd70I2CSle6YCGbAbP8zRZ9mT1NXRZBx9n/xa/ACgRghXn6zN9lNznQgpsSXTPTQVgkM8W+FqWKOJTnkEm6KuyQC9uI27dPFEM9Xpz61uewedyJ7Xv+Du0YOwfMNB4CFcbXlIt2/c1v/pkjvD9Nr2t2hwesG4CLRgOY1Oto/Rivi1oLIfrrqVEdprhKu+7cjQfACGYLXVSerh9zuZpvfH74bmjCFY9D7xlXnW5Wy7Efj27RaEqx1GQOylEVdahX40lxmiW4U9OhdC3TQldgWVo3DVO+GFw5tHr72zPqfr2hR11+vPJdlKmesYCa7ejzRz5jgdP7gr7yLnjn/U9x0vsh3cQ9uMM7Xgt2+3IFwr0mg+s8NsOIO3xL7aaFqxgFmkoSa98aX66KrYE1TOwlXvhmPtuc7XkJkXe/1wh4ZbOeiT1DmBYHXLw4nO3OfbXS451yapK9VOYz+K/484hGslDy/QYfnNnDxMF1wbGyhgHLkmqX2s3OHxBj1YuGKeXs3M0VLRAUKN1m9foa9uiyfKV++Ni2ZX6HbeHFT995bnaEb/s2bmfnB0auw0XOlqH6VE50t0Trg3vOLQmh4CxlQxu8+baat0c3yADu4xp5s1dXTRwMWCoQRjhkSWju45QGeX+P9X6drIUdrD09P2HKWR3BGyRqvXRuiEcfGsiTr6J2k5CjPVFoeoSXy+ZcNVN5/ppKztNz/cEK4VrIzs1UM1KeZvJmivO2MD+dauU6a1jhr7ZkteUd+4NUJvpesoteugfprVRR3b6/TnU0fN/eIxG3dpOntC7E9Qi96CtcUxy5QofdNPhbOLem/WFmnsrXTuNfFWr/cKu8dyjsP1TpZa5N/lJNhcdYsGd5jPoX3s/+iuHoZmyHFg9tP4t0Ve/dos9TUmqX7/IE0v3KN7S3M0eticASHfr+WJfuo+2CjeyxbKXtc/y39opI6u49TVJt5j/X0fvrNBt4Zeo22NHdTV1UHbxcXM+r6reuSGnOXzrRSu2vz/0AyOXIG0q9RXn6TDF+Yp22I2nsSOQb2buuPh7QkayI1Z6UF54iLdLXIIqS1mqVUP+Nbs4mZH1PRTLKNBJ6lnhv9/ndY3Nq/ON3WdoN9+dNE8WuUjqUyr2dH39tIf3n2XspeXaV3jo9xxOsxjkIkdZHfUo6ZwbR0mPrjzXO45pGh7x28pa1xMXKK58R5qNN7/ej0YrAErhhBahoi/j3L+1k/1/Ocke4jfdtM8ZYy5v/XU9odJy2eo0fVTDcbrTm0/RP9xbXXz81sbpze2/DkhZStcV+i2PJuKCYRrGQ8vHKZkqpf4Gozx30YDcu+izI8zZ+i4fhTTmNo8ukw2DhRcUV+hkb36z7aEukbLkwN0/OQIWa/L3Mm2GH9O09Ci2CM8nKBO4+/4Z7pYEODzGTMA2m0OhjkO16lu8/d5q3Roo4g22WX+/UXGtNf0nxnDFsl2kqMy2myvsa9zYmsgbDwovM33jvjy1Y9cC98Q+dq3vO4yjwkbO+Gqt79MXMYDBIRrSWao5S5iabPUmzIbUGLviMvTSTbo7vj7lBZju3kXzpaGqVXfl9JPH+2Q4crDAvmmqJufe5GrtaUfU5zTcF0cajJ/X9/sBrjb5Gss/pzlkefm8zO/cJqo8DuqOIRrpXDlg5NWhCsw7Wof1RdcwLo1aM4acHIK7YQxvst/vvXUWXTOLUeiJQQvXDfHOhOuTWdzbmm4texznukxzx7ke2C+xhTZ+05DuMpw/c3vrXNazW104IAx9GK3fUUFwrUoc25mqnc2/2KDZUL8lp+5QZ66WwNAds6uSVt/X9DCNXfKrW++XryZ6TGHdZqGqNjXVOF7IF+jvSNthKsM12LzXA/uMhf0QbiCCNFijV6j2d6U2VmUTMsyO1xS74i5EJrPUAP/fWLsdyuNlpc3DweDFK7a8jh1yqGU+h6a8fN6Rm5KXfF5luYwwOZ4em5ubqnXeOcsnb0i/hvhWmFYQKPFoRaEK4gAbTpBfyk4vTG2fz9AT4iG5NZNBTnGkWtKb6DWFLpKfSKgWoYsswUEbXGIei3n2urD9SFNdJrPp3S48nzOLO03ZiGYayZM+r704ObNIFtfZ5GLhitj1G6EcZJaMwWrevHUuf19li87hGvFC1pLw9QT+hfqDMK1kHGEk6LWd7ee3phbF+0RoVH6aLKcNfp2Rg/pK4X3tK/p/bC+6HzTFf0oypypkKTGnnGaW+KFqRdoOvseNerBZT0ilBePXA9XY7Fs69QlfWvoov/kmxlyi2Uv0JXzWToqTgMT+vu4q8T0Ml9oi5Tl6VV5t77y/NNWSso5wDn60VZWTF/TN17cpYs/f2PqXMG0rdzFzgY6dT2/QayNv2G+V2+M53+u2nU6ZVxE2/qY0LETrnSTZuIywVVAuBYwgqbC6e7mtCyeA+vwXFdc/Zcdtn9UD1oOpOZt1Nz/BRU/wFuj2X5zBSejo8qtfj+NyUB4eJu+Oj+YO1rknw2e/4p4auHKjUs02iMnunNAj9KlG/rRLj9mtH/zy8J4TImFNYzFssWi2OW2PQfp+Mksnb+yEMwVpjZu0cih7fp7maRUuoHSqSTVNZ+gi0W/AXgWx7/kJvzzlky30cAXm/NVl84eMP4M+XP+QkkfOEtL9DWdbNiW95nxouK8pCE/xrzP3vKYMK91aCtcLbRl+jYGc14RrlbGEYiNwDRuLhAdw/G0LP2U+eZnlD0pj4QHaFQ/+luuWB7FvK11dIAfc5Kyn93MD+IfZ+hM3hE2b2eMu2Funivcr2/nbpZ4zDn9GCP6tPX7xtG2vbI0G/SAj8zvr+dCVZJ/Tt5m/J54TMHGXzhFHxPmtQ4dhuvK2D9Rf9AX0HABwtXCuPfc5h1YuWlTLt5UABBKTsKVF2/ZEfzFidyAcJXkUnS2zmt0t/5Efy8a1JZbJC0ymQzt3r07ktvOnTuL7scW7S2bzYrWbcrd/VYpXLVlmjhcr2YaYwAhXPWT+svZE9QmFzhJpqntRJbO85hkUSt0wxgjNRdIkVtd80EaGM0fr/z111/pySefzPs9bNjCvn355Zd66zYXyz6v953cmL2+JVt/R+eLzLLh3zP7WFIP4Hic6SFc6Sad2zLuqG88JllUid83tvzxys8//zzX6KanpyOzXbhwgZ599lnjdb3++utFfwdbtDY+A+PP++mnnxatWyyWXbQflNuG6Wr0r2UZEK4KvfPOO7lwjZobN27Qo48+ary2s2fPir0QVd3d5nxd/jfYg3BVZGNjgx577LHIhisbGhoyXhu/zu+++07shSjiI1b+rK9duyb2QCUIV0XOnz+fC9aohivbt2+f8fpefPFFY4wZokcObz333HNiD9iBcFXkzTffjEW4/vzzz/TMM88YrxGnjNEkh7c+/PBDsQfsQLgq8Msvv+TGI6MeroxPFR955BHjdfIRO0QHD2/JGS8LCwtiL9iBcFXg008/NRrjK6+8EotwZadOnTJeJ3fE77//XuyFsJPDWzzsA84gXBVoa2szGiRPto5LuDKelsWvlb9UMP4aDW+//bbxmfKXJziDcHXZTz/9ZJwi88b/HSf8ep966imjM2J8Lvx4eEvOeMHZiHMIV5fJo1U+eo0jvrIsv1z4vyG8rMNb4BzC1WVynJUbZlzxUSu/B3wUG7ej9yhpbzerMZw5c0bsAScQri7iUydujDxTgE+p4orHW+WXDI/DQvjwlyK34zgOb7kF4eqi06dPG4HCc1zjjr9o5BQeXAwJHzm89eqrr4o94BTC1UU8XYUbJOZ6muQ0Hj76wW2T4cKhyp9dnIe3aoVwdQnfW8+Nka+u8sRriffxFldywQ++i4vv5oLgw/CWOxCuLvn444+NBsm3ClrFPVx5/FUe0fM6BBB8cniLL2hB9RCuLuFFLbhBFk4/inu4Mj6ql/MleSUtCLbm5mbjs8LwVm0Qri7gtU25MfIFnMI7kxCuJjlnkk81v/nmG7EXgqbU8BY4h17vgg8++MBokMVWhUK4bjp06JDxXrzwwgsYywsoObzFt71CbdDrXSAXEjZrC+VDuG7iQH3++eeN96NwbBqCQX4+uLuuduj1NeJA5ca4WVsoH8I1H8rDBFe54S1wDr2+RkeOHDEaZKmFShCuW6E8TDDJ25a5TUPt0OtrwN/u8i4k/tYH++R96y+99BKOkgKi3PAWOIdwrYGsLcTjVOAMysMES6XhLXAO4VoDefWbr7CCc5cvXzZujeX3cGJiQuwFP8g76XjmC7gD4Vola+lsjBtWD+Vh/IfhLTUQrlWSi5LwmCHUBuVh/IXhLTUQrlWS9fr5Pmyozb1793LlYT766COxF7yC4S01EK5V4Mnwcq5mpVNZ/h3eoDw+ekJ5GO9heEsd9PoqyPvk7SwkjHC1T95GzFessfq9NzC8pQ56fRXkQsK8WnslCFf7eLwV5WG8heEtddDrHeIjKnn6aufoCuHqDA+zPP7448Z7lslkxF5QwcnwFjiHXu+QvHXT7kLCCFfnUB7GG3J4a/fu3WIPuAm93iGnpbMRrtVBeRj1nAxvgXPo9Q5UU1sI4Vodvooty8Ogmq77nA5vgXPo9Q7wGCB3dicLCSNcq4fyMOo4Hd4C59DrHUDpbO+hPIwaToe3wDmEq02ythBfyUZtIW+hPIy7qhneAucQrjbxbZncIFGexHscACgP455qhrfAOYSrTaVKZ4M3UB7GPRje8gbC1QZZW4gXF8GqTf5BeZjayeEtXmIQw1tqIVxtOHbsmNEgsWK+/1AepjayThaGV9RDuNpQS20hfhxv4A6Uh6kNhre8g15fgawtxB26GghX96E8THXk8BYfLOCoXz30+gree+89o0GWKp1dCcJVDZSHcU7eUowjfm+g15fB3+611hZCuKqD8jDOoHS2t9Dry5C1hXjyerUQruqgPIx909PTxvvEY67gDfT6MniSNTfIWmoLIVzVQnkYe3h2ALfDaoe3wDn0+hLcqi2EcFUP5WHKsw5vYX0G76DXl3Du3DmjMfJ4Xi0QrupxeKA8TGk8o4LfG74zC7yDXl+CnKyO2kLhsLS0lCsPg88snxvDW+AcwrUIWVuIx/EwzSc8UB5mK+vwFn8BgXcQrkV88sknRmO0UzobguXIkSPGZ8c3fWA5PTIWueH3o9bhLXAO4VoEaguFF8rD5MPwln8QrgVkbSEeFsCV53BCeRgTr8Mgh7fQlr2HcC1w5swZo1OitlC4yaEdDtm4Tj/iMy9+DzC85Q+EawG3awvxn8UbeC/u5WEwvOUv9HoLWVuIj3bc6owIV//wZyiX2OMFeOKEbw2Ww1u4sOcP9HoLudKSm7WFEK7+imt5GL6Axa8Zw1v+Qa+3UFFbCOHqPzmOzmckcZnrKYe3UG/MP+j1gqraQgjXYIhTeRjZlvnLBHWy/INeL6iqLYRwDYY4lYfh21z5daJ0tr/Q6wVVtYUQrsHBi0TzRR7+PC5evCj2Ro8c3oryawwD9HqdytpCCNdgiXp5GNmW+fWhOoO/0Ot1qC0UL3L+5+7duyMXQCidHRwIVx1qC8VLlMvDyOEttGX/xT5cZels1BaKF1kfjcdgub5UFMi2zAcL4L/YhytqC8VX1MrDyOGtY8eOiT3gp1iHK4+3obZQfPHnH5XyMPxa5FBHtWXgwV2xDlfUFoKolIeRwxwY3gqOWIerF7WF+M/nDYIrCuVh5PBW1C7QhVlse71XtYUQruEQ5vIw3Jbl0XctZeDBXbHt9V7VFkK4hkOYy8PII28MbwVLbHu9V7WFEK7hEdbyMPxlwM85k8mIPRAEsez1fNonawvxhHKVEK7hErbyMLIt83NGGfhgiWWv97K2EMI1fMJUHobLEfFzRens4Illr/eythDCNXw4UMNSHqatrc2ztgzOxK7XW0tn8xqfqiFcwykM5WFkW+YNpbODJ3a9HrWFwK6gl4eRw1thv7ssqmIXrm6XzoZoC3J5GLTlYItVuFpLZ6O2ENgR1PIwsi3z0EXYbnqIi1iFK2oLQTWCWB5GDm+F7YaHOIlVuKoonQ3xELTyMGjLwRebcF1YWMh1jqiV9gBvyCl8/G8/2xBKZ4dDbMLVr9pC/HfyBuEXlPIwcngLdbKCLTa9XlXp7EoQrtHCY678efIYrF91qvxqy+BMLHo9r9HJjdGP2kII1+jxszyMLJ3NR9AY3gq2WPR6P0tnI1yjh0OtubnZ+Fz59lMvcX0sv9oyOBOLXi9LZ/uxyjzCNZr8Kg8j2zJKZwdf5Hu937WFEK7R5XV5GFk6m29qgOCLfK/nK6rcIP0qnY1wjTZeNYs/X/7yVn2nlPy7UAY+HCLd63lsTJbO5nmufkC4RptX5WGsbRmls8Mh0r0etYXAC/zFLcvDqFpXVU4B4wW8IRwiHa5elM4GYKrLw6Ath09kw5VP1+TRBGoLgRdkAPLRpZu3pVrbMkpnh0dkwxW1hcBrqsrDnDt3Dm05hCIbrl6VzgawUlEeBm05nCIZrrzAMTdw1BYCP8i1Vvkmg1rLw/DRsGzLGN4Kl0iGq5elsyvh58EbxItb5WHkhbIgtGVwJpK93svS2ZUgXOOJz57kraq8HkC1gtSWwZnI9Xpec5NPoYJSWwjhGl+1lofxugw8uCtyvV6Od7ldOluGZLUbxFMt5WFUtWXwRuR6vSw37NaVWkmGZLUbxBOPt8pTe/63k/FXlM4Ot0j1er4yy41RRW2hakOy2sdBdFRTHkaWzlbRlsEbker1KktnVxuS1T4OosVpeRiUgQ8/j3v913SyoYEaKm1NHdR1/CRlP5ujHxx8acvViSYmJsQe91QbktU+DqLHSXmYsqWztXW6fWWUBo4fpD3WPnMyS5/N/UBGl3k4Qx+d/tr4dfCHx71+gx7op0gL04O0v94MnUTiN/T7KwvGqZOxLc3RzOgAHWyuM3+eTNNbY4ukiT+hFF4sg39fVels87kiJKF63C7tlIcp3ZY36O7FE9Rcp7fFuu3U0T9KM3NLln7TT23pJCVTaUqnkpTonhKPAz/4lhbzmQYRWN1UvAms0fVMKyWN30lS+9iK2F+c6tLZ5nNFuEJt7JSHKdqWtWWaOFxv7K/fP0K3Sp3Raat0Tfabzgl6KHaD93xLizvZFhFYpcKV3aFsixlqiVQvzZY5fJULZqiqLWQ+V4Qr1K5SeRjZlqenp8WeNZrqNoM10TJEi5VO4+Tvt2T1HgR+CXi4Wo9wWyhboqXI2kI8lqWK+RwQruCOUuVhLl++vKUtr012UcpofynqLXeEYbU2QZ2tCFc/BT5cr/alxO+10nCJNTC8KJ1tPgeEK7iDp1cVKw+ztS3fosEdZttLNGRoXuytTKPZ3r6yfQvUCna4rk1SV0o0rBKnODzgL+/hVllbyHyuCFdwT7HyMLIt54YLrvaJo9YEpfqumvts0tbXzZkD4IuAhqtG67cvUk9j0vydutdouMRAk1els83n6vztqvZxEA/W8jByNTdrW97sJwlqH/tR7IUwCEC4cnhus8xzTVMqKfYn/o5e+tc/083V0uNMXpXOls/VqWofB/Ehy8M88cQTxr+tbXmqW/aFBGFmVbgEIFzfoP9aEnNc5Xy981k6uiuVm4aVbuunyeWtAcvjVrLcsOraQrKBO1Xt4yA++IJWOp3OtRVrW0a4hlcAwrXUmKtGq1/0UaM8ik220nDBoKuc0sJLsh06dEjpJht4sZ+V26p9HLZ4bTt37sy1FesdhgjX8ApwuJqswwfJwxfyJkXv27cv9zNs2KKwvfzyy3kLtSwNt+Z+1lJqLiIEUuDDVW9d1CoaVyLZQzNiN+NlBfmCADZsUdl4aCzPrUHaIds/7rgKleCHq/7Tbtm4Kv4uQNSs0Mhe2f730kj5u8DzaIt/of+eE/8Dngt+uM5nqEGGK27ngxjSrvZRvegD9d1TtCb2l7U2RT3vjenRDH4JeLiu0USnmOuaSFH3VIBOipbO0oHc9DG72zG6hPM6cEyjxezmIkaNfV9QmdmJpK1+QX1tPTRlK4VBFX/CVVulP79hfhOXCteNHy5Tdr9YrMJoULP2vrG9oq3T/XtLNDd6OHdUkWj6I/1VTinLbfrvzIyKGyJKr48AUJ5GyxPvU1rMnkmm26h/fI6W7q/rPzF/vn5/gaazR2lX4/s0UWTqInjL43A1F8vexutRykAytjraZjnC2/y5vn/PURq5tioaUBA91I+uxfMtN2yhzVNmB8IVaqOt3qTx/g5q5PVa8/pQguq27aGjI9fKHtWCdzwOV3Ox7PwjuxLbg/DcFZ2bi1hhTHhlpBfhCq7R1u/n+kuIukts+DbmGiV2w5W0DdrAUQVALCBcXWA7XAEgNhCuLqgUrn87fZpQKg4gXhCuLigbrsaatLj5ASBuEK4uyIVrMkVpy6yHhoZtVMf7cWcZQOwgXF2QC9ct81wXaPp3PPkb4QoQNwhXF5Qfc+V7wxGuAHGDcHVBpQtaV/tQKA4gbhCuLqgUrigUBxA/CFcXVApXAIgfhKsLEK4AUAjh6oJcuDYN0aLYBwDxhnCtlXGTgAjXRAv96RZGVwEA4Vo9Y7HsNKVkddrclqRUuoEOnF0SvwgAcYRwrZaxWLb1hoH87f46lr8CiDOEKwCAAghXAAAFEK4AAAogXAEAFEC4AgAogHAFAFAA4QoAoADCFQBAAYQrAIACCFcAAAUQrgAACiBcAQAUQLgCACiAcAUAUADhCgCgAMIVAEABhCsAgAIIVwAABRCuAAAKIFwBABRAuAIAKIBwBQBQAOEKAKAAwhUAwHVE/w+EwC7FGdXQwAAAAABJRU5ErkJggg==
|
As shown in the figure, quadrilateral ABCD is a trapezoid with an area of 48 cm². Its lower base is three times the length of its upper base, and the length of AD is as shown in the figure. What is the height AF of the trapezoid? ( ) cm
|
A. 6; B. 7; C. 8; D. 9; E. No correct answer
|
C
|
30
|
iVBORw0KGgoAAAANSUhEUgAAAVgAAADVCAYAAAASNejyAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB3mSURBVHhe7Z1vaBznncf3RWH6ogspdMHgCgIbUMBVL4YiBAo42xYn5kyRuOA2osLm1IZUJLAHEapQwToSN1z2RaT6QIXlFLhIRNTBerFgn1VOQk0qWxhi6WqdkCqiQ1GQ7CIbqS8Ekxe/m9/M8+zO7s7uzuzuzM6f7wceJD07s9qd/T3ffeb3/PnGCAAAgCtAYAEAwCUgsAAA4BIQWAAAcAkILAAAuAQEFgAAXAICCwAALgGBBQAAl4DAAgCAS0BgAQDAJSCwAADgEhBYAABwCQgsAAC4BAQWAABcAgILAAAuAYEFAACXgMACAIBLQGABAMAlILAAAOASEFgAAHAJCCwAALgEBBYEDvX4Me3v79PjY1XUAOBPILA+JRaL6QUUUB/dp2xfkpT4aWpvP03xmEKJc9foT48gtH4myrGMFuxTILAlHC5Qui1Gbel5knqq7uZoQKuLtaVp4dCoA/4DAgt8BwTWzBHdGlAolhil5ZLO6tFCmhLadVL6cwSN9ScQWOA7ILAmDmaph6+HJqJHoqrACo0l+Fp10MS6qAK+AgILfAcE1oTWS9WvR3pBVJhRaX7QuFapqR1RV4wcFNt/ciJqyuFjCg+rdPxYO/7xsfZbCSdP9Oeq8lSghCjHMlqwT4lyUJYhBTY1RVYSupA2rpUytCRqDNTdeRo5l6B4IikGxbRjkn2U/VwkE9Rj2ro3Q9d6z+iPsX7r53TF89c//vIUbbLKqrs0P9KlH6c/piRpCIlfW8hrGUXQgn1KlIOyjJUxPc8aUwboVnmOIC+w5h6uupmllKJQanKdZGdT/fw9atef5xJ9csCa+ZBWN3I0qKcYYjQ4+RG9/voELW5ovdeN2zR0VtHrOzI5mr3SSyMz92hjf4MWJy5RGz+PRU4YlBPlWEYL9ilRDsoy1DXKdBjXo3tys+S2/Yhy/cZjndpjBus0wcdfmKY9UaOjbmpC2Unt59+nFZNQS4H+6R8eFT+3FPb2Yfq0qLN6QLM9fE47ZdZEFahIlGMZLdinRDkorTB6pHxN2ujSxKLWk9ynDe32/v3B85TUr5Wi3eILeRTCWCknW4oU2LIU73aWuvm5u7O0LaokFc8BZUQ5ltGCfUqUg7ISvNBgeqSXOtvbqbN3kMZvPqRHy+Xpg52plCPxg8C6S5RjGS3Yp0Q5KO1zpAldQr9OHdq9ury9385263Xd2VJZtAYC6y58nbhEEbRgnxLloLSLujJmDDa1DdGSKad6MNtjXD/LebOMSicnhWwrBNZdohzLaME+JcpBaYf8MlklRVl9HpUJKYyxDsqslTymoa5N0G9N0xEgsO4S5VhGC/YpUQ7KWpysT9MlFtf4yzQh57QWcUi5fmOKlX7M3a+MqVo873Xxt/TymTFaMekuBNZdohzLaME+JcpBWc4JPdnfoHt35KIAhZJ9WbpfbRetwwUaSgqRNRdNcKdkj5dXZW38gfrFPNi2gZu0sf9E+2+8kmuH7mZSpPA5Wi85c3fH2B5RO2dndcboPctzrFZ8gTzy2kcRtGCfEuWgLOfP9G57O7V39tLg+Azd27IpaOoufZodod5O7dz283R5/DZtmfeQ/fO7Wj0/Zi7vav9thz5+rbS+nV77eMf6nNc+tlxhBgwgsMB31BOUT58+patXr9Lc3JyoAaC5vPPOO/Thhx/S119/LWpqA4EFvsNJUEphfeaZZ/RzuAEA4AZXrlzRY+y5556zLbROYjlsQGB9ip2gLBVWWSCwwC2kwMpiR2jlsVEEAutTqgVlJWGVBQIL3KJUYGWpJrTymCgCgfUpVkFZS1hlgcACt6gksLJYCa18LIpAYH2KOSjtCqssL774ot4QUFCaXVhArWKutJiFVtZFEQisT5FBef36ddvCioLit2IW5CgCgfUpMihPTk7ogw8+oFOnTuXrUFCCUF544QV9yqD8O4pAYH1KaVA6EVrkYIFbcJrAKubMRQqrRNZHEQisT6kUlHaEFgIL3KKawJYKq0Q+HkUgsD6lVlBWE1pfCezRFn125w7dqVGWVndoX98HAPgZK4GtJKwSeVwUgcD6FLtBaSW0vhLYgyW6PjxIvWcKTq1c4qfb6fzlYRoe1spgL3UmE8bGKrE4nT7/Fk3LHbCArzALbC1hlcjjowgE1qc4DUqz0PozRbBN2W7jPVlt/8ecfHWXsn1JIbS8Y9asYZkNfAMLrF1hlUBgge+oNyhZaL/88kvxl7+Qe6hWElgDlTanXqa4eP9KKguR9RF//etfxW/2qTeWwwAE1qeEMSjtCSyj0spYm7gGCqWmqh8N/E0YY9kuEFhXOaKtB1sVfKGqE8agtC+wGke3aEC36dZKIk0L9VxE4AvCGMt2gcC6yd40XYhdoOk98bcDwhiUjgRW68UujxqOsdyLHTB5aIFgEcZYtgsE1jVUWst06IHVMbEu6uwTxqB0JrBaJzbXn78OibEVUQuCRhhj2S4QWLcw3+IqA+S0AxbGoHQqsNo3FLWL6xDrmaUDUQ2CRSGWj2jrM+t50NXLA6rjJtAXQGBdYm/6giasiphyFKMLDvMEhaAMD44FNm+/7eAc4DsKsXxAS9eHafjyOUrIzodWOv5JzIcuLZfP0+k4H5OmoJr3QmDdQF2hsTbOG64V5n52TJCTREEhKMODY4HdnKROcR3Qgw0uVrFsTv9UtT4/nKfBRA/NBvTDh8C6wNGtAVISo7Ssit/1QErQKFfYxCoog45TgVXnB/PXQRlaErUgaFjGsunLs6rAaqxl+ikb0NsXCGzT2aPpC6aBLXWZRoXvfuzCtO1ckmVQBhynAruWac9fh/4cZhEEFctYNqV/agmsuvbftIQeLGDUlTFqKxnUWp8wZhPEYh1kd0KBZVAGHEcCa/5iqmOQEPgHy1i2JbB7tLUV7A8eAttUjujWgEKJ0WUqSgbo82GNYCp7rAKWQRlw7AusSpvZVH5PAqzkCjaWsWxHYI9ylAlqbkAAgW0mupB2W+SLTJPmbfbGLIMy4NgV2MPlMTorRpmxF0HwsYxlGwLL4xcpCCwwECLaOUKfWM3l+/fX6NsioOwsPLAMykBzQLM9xnuqKLDqI7qf7aOkENe2S9hNKwxYxrJJYP/x38rby8z4a/qXbDcEFujoCwsSlHrdYj6fXgbpfJsQGDHDoBqWQRlE9A235yj7Vld+h6xYIkWvv5uluXyDmqHxwV46o895jFH8TC9du/0F9oMNCZaxbBJYq3mwl88Z+wNDYIHOdra75q1vYcpW7bX1lkEZRPQNt8sbUFkZn6E7S6u08wSyGjZqCax1ikClzcluCCzQ0Ee8bWxIoi9AMILKyZQtAEKHnUGunSkagsCCw1w/KTZXaulLaPXAcrbwAIBQYUdg6SEtBXUCrAAC2yiHC5TmXmnlKClm/Xf0DyKwYt2TFQdx3nnnHXrppZdCWV588UXLepRwl48++khEt4YtgTWh7tL/BnBOLAS2bvbobnaELiYVQyyVJF0cydLcg0o3/nv0YC5Lb3WVmP91XabxmeLdgr7++mv6zne+U3QcCkrQy4MHD0SEazgU2L3Zf6ZrAdyxEgJbNw/phtVgzY2H4vFSKhyvlxvaowVyuVw+KBcXF0NTeMbAc889p7+vH/7wh5bHoISrZDIZ/fPmz70IJwLLG750jFEQdwSGwPqQn//853mBDRtsmvetb31Lf2+Tk5OiFoSVN998U/+sf/Ob34gaA/NGPlUFVt2l3ECb7RWQfgMC6zPYFVYKEJcwwrk4fm/f/OY36S9/+YuoBWHDnOra2NjQaowNt+eyI4U54VpRUv9qmhNdKHyckYJTNBEO5oAwBNZnfPzxx/nA4xJW2F+f39/3vvc9+vvf/y5qQZj44x//qH/GL7zwgqgRG25bpsmqlSlaCeieLxBYn9HT0xMJgWVRff755/X3+Itf/ELUgjAhv0R5RkxUgcD6CBYdvm3+xje+EXqBZXhUmd8vv0/uuYPwYE51ffnll6I2ekBgfUQ2m9UD8pVXXomEwDI80MXvkxsjD4CBcDA3N6d/rjznOcpAYH3Ej3/8Yz0o5SBQFASWkWmRH/zgB/rACAg+8jP94IMPRE00gcD6hP39fT01wLfMURv0efr0KT377LN6g0yn06IWBBVzqutvf/ubqI0mEFifwN/0LDCvvvqqqIkWd+/ezeeeeaEFCC7yDozvyKIOBNYncK6Kg5JzV1Hlvffe068Bz52M8sBI0JGprg8//FDURBcIrA/Y2dnRA5IHenj0NcrIAT7+wkE+NnhwSiCqqS4rILA+gOcJsqjwvMGow7noU6dO6dfj6tWrohYEhevXr+ufHQ9yAQisL+CVLhyUvPIFGCuAuBfEBdckWMhU140bN0RNtIHAthhei88ByXlH8y0x13GJKr/+9a/19//d73438iPRQYHz5vyZIdVVAALbYniXIQ5K3nXITNQFlr9sZG+I87LA/8hBSt4NDhhAYFuM3B/1008/FTUGURdYhntEzzzzjH4doj5hPQjIVNft27dFDYDAthCe+8kBybfBpUBgDeSSS87H3r9/X9QCv8HLnPlzKk11RR204BbCq5Y4KDnfWAoEtoDctJlXe2Hqjz+Rqa433nhD1AAGLbiFcM+Vg7LIq0gAgS3AAyby9vNnP/uZqAV+olKqK+qgBbcIuRlxmVeRAAJbDKxm/AunbvhzsUp1RR204BbBm0xzUFbajBgCWw4vveRrwkILqxn/IFNdb7/9tqgBErTgFsCDANKrCHugOgNWM/6jWqor6kBgW4AcGS94FQG7sKjKfB8GVFoPW3PzZ1Ep1RV1ILAtQNpyY25nfcBqxj/IVBf2jbAGAusx8CpqDnJTEb6WvBsZ8B6kumoDgfUYuRlx1L2KmgGsZloLUl21gcB6jBQFNjgEjQGrmdaCVFdtILAewrtC2fUq4sDlAqrDE9v5evK1whp470Cqyx5owR4ibbkvXrwoaioDgbUPrGa8B6kue6AFe4jZlrsWEFhnyGv70ksvIR/rAUh12QMt2CO4Z8W3sna9iiCwzoDVjHdw7hu23PZAC/YIacttd7MSCKxz5P4O3PB5AjxwB5nqwkbotUEL9gi5O79dW24IbH3AasZ9nKS6og5asAfIzYh51NWuVxEEtj44/wqrGfdwmuqKOmjBHiBtuXlZoV0gsPXDK7tgNeMOTlNdUQct2ANgy+09sJpxB6eprqgDgXUZ3piEAxJeRd4Dq5nmUk+qK+pAYF1GehVhKaf3wGqmudST6oo6EFiXgVdRa4HVTPPgTc75OiLVZR8IrIuwqHJAwquotcBqpnGQ6qoPCKyLSK8iThOA1gKrmcZAqqs+ILAuwd/yjXgV8XlcQHOA1UxjyG0hkepyBlqwS8hlm88//7yocQYEtvnAaqY+ZKqLRRY4Ay3YJWrZctcCAusOsJpxDlJd9YMW7AI8PahRryIIrHvAasY+fH3kLmX1pLqiDlqwC8hVRNyA6wUC6x6wmrGPTHXx4CBwDlqwCzTDqwgC6y6wmrFHo6muqIMW3GR4tFoOpDRiXwKBdR9YzVTH7LsFW+76QAtuMtKriK1LGgEC6w1yb1P+iXxsMTLV1dXVJWqAU9CCmwy8ioIFrGYqw/s38HXBlo/1A4FtIryDPuf1uLi7m/4JPdm4R3fu3NHKPdp4gp2NGoFzsCwk/LlhIr2BTHXxNUH6pH4gsE3EiS13vaibs9SXVEhJnKPLw8M0fPk8nY4rlOybpU1VHAQcA6uZYmSqi1MnoH4gsE3Eda+iwwVKt8WoLb1Ah6KKUR/dpsGEVj+0REeiDjiD86+ca3T7CzIosN0OXwukuhoDAtsk+DaKA9JNr6KDWc7vdtLkpqgwsTKW0B7rpxwUtm5gNWMgU10cy+jNNwYEtkl44VW0ne3W/keCRpfLcwG6wCppWkCaoCFgNVNIdfGALWgMCGyTkLeXzfIq4ufiYkZdHqUE17dpQlqUI1ihsbYYdWTWyFpfTYNiS6u0YzkoptLx1j36bEt0gdVj2rpnDKJtHZufVTtud5WWtOdaWv1Ke+bwwbtt8bXn3beiuLWh9N2CLXfjQGCbgBteRVYCS7RHsz2K8VjbJcp+rqmsukmzl5KUHJqnRxbqerI+TX3JOCXOXabh4UHqPRPXzo9T17VlI4978gUtZkdEfYy6s9v5gTT5GmJKirI8gsb/qy9JiqzXSmk+OAxE2WpGpro4lqP45dJsILBNwA2vIilgZWgiN/WyIYaxWBudOdNF6fldy56rupmllKJQKrtZeFydp0H9XIWGlvjvYzo+OaRcvyGonYMj9C9Xbxu9VvUR3c+kDEG9MErvv/46Ze/u0rHKvd2bNKD1mmOxDppYN546TGxsbORXMUVpoEemuni5N2gcCGwTcMOryBDQCh+Pukv/edF4nIXSeorWHk1f0B7vmKBi/VNpd36cht+dJu4AS4z8riawpSNoRznq1//PL+l2Sed8LdOun9MzeyBqwkUUrWZkzx223M0BAtsgbnkV8XNyKUNPCXTRQO4L+mJ+iM4qxnFKKlMkmLQzRSmtPjG2IiqqIwWWUwTFLFBafy1p7bdiKp8THuTGPfwl2qz0j1+RqS6O5bC/V6+AwDaIW15F/JxcitmmqZRCidHl/C2/upsTt+qayPbMav1WwYKxSXJZj7QCEFhrOA8ZFasZXirM7xO23M0DAtsgbnkV8XNyMXPwySVSYu2UWRMVAvXRvL4Agadw5TusQmBjg/OW+dlSILCViYrVjPwigS1384DANoD0KnLDlpufl4uZhTTXdZOVnh3dGtAHo1JTwgZlLUPt/ByJUbKYNquh0u5uvr8Lga2BHPzhhQhhtJqRqS5YzDcXCGwDeO1VtDTEI/3lPVidzUnqjCmUzq80WKGxhCHS3ZOmWQQCVTt+dBoC64QwW828/fbb+nuDw0NzgcDWSSu8ilStV9qh/b+EdttfPPdU1TqsHRRrG6MVk5LuzfaIOasKnR26Sas7+7S/v0GL2TfobHKIlkzLajcnOyuIJQRWwlYz0oqdBSlMyPd19+5dUQOaAQS2Thq15a4PlTZn+yipxCje9RZl53il1Qxdu5ikeLKPZsvmah3S8rUuiusCaSptlwrHHm3RZ3MTdEkMlPFjE3OfES/o2ntwh2aGzppEeobuPNB6vXzOzDU6X3TOg8IAW4gJo9WMTHVxDhY0FwhsnbTSq0g93qJ7M+M0zNsVDo/TzL0tKlrNWoSxBHZmnI99l7L/9bB4xdfBEl3Xn8dcrtPSAdHDG6X1WrnxsMI5N0h7JBKEzWpGxjJsuZsPBLYO4FUUbTg9FBarGX7t0mI+KospvAQCWwfNsOUGwSYsVjPSzYFXcIHmA4GtAy+8ivj5uQD/EgarGblSDbbc7oAW7BDpVcRB6Wb+DQIbDIJsNWNOdcF3yx3Qgh3SLFvuWkBggwHnMINqNXPjxg39dfP+r8Ad0IIdwo2Ig9LtLewgsMEhqFYzcuFEkF5z0EALdoD0KuLi9u0gBDZYBM1qRqa6vIjlKIMW7AAvbLklENjgESSrGRnLsOV2F7RgB3DelYPSC68iCGzwCJLVjJzHGyW3hlaAFmwTL2y5zUBgg0kQrGZkqsurWI4yaME2kdvVRc0EDzjH71YzMpZhy+0+EFib8KotDkp4FQE7+NlqRtpy8zQt4C4QWBu4YcsNwg3fevvRaoanlCGWvQMCawM3bLlB+PGj1YyMZdhyewME1ga85ysHJbyKgFNkvtMvVjNylkNY9rL1OxDYGrhlyw2ig1+sZnjADbHsLRDYGrhly10L/p9cQPDhaVHSkoU3h2kVMpaR6vIOtOAayIbh9XZ0ENhw4QerGTnoFtStFYMIWnAVpFcRi6zXQGDDhxxg4lt03rDbS1oZy1EGLbgKb775ph6UrfAqgsCGD857tspqRlrMh80N1++gBVeAg196FXlly20GAhtOuOcq48orFwGOZZnqakUsRxm04ApIW25eidMKILDhxWurGRnLsOX2HrTgCly5ckUPylZ5FUFgw42XVjPSljvI5oxBBS3YArNXUatsuSGw4YZv2+X+Fm5uusKxLFMSsJj3HrRgC+Tu9Oy1BIBbeGE1I2MZttytAQJrwauvvupq0AMgkcaDnI91YwBK7uqVyWREDfASCGwJ0quIgxJWxsAL3LKaQSy3HghsCdKWG15FwCs4T+qG1YyMZdhytw4IbAmvvPKKHpTwKgJewhuxyIFVdkRoBnKTGcRy64DAmpBeRVxgZQy8pplWM4hlfwCBNSGtjP3gVcSvgwuIFpwi4M+dUwaNOA7IWOY7MtA60IJNSK8iL2y5awGBjSbNsprx0mIeVAYtWOC1LXctILDRhadr8a09f/71GBP6LZajDFqwQFp7NNurSAplvQVEk0asZuS5PJ8btBa0YIGcJtNsW24plPUWEF3qtZqBxbx/QAvWkLbc3FtotpVxvUJZ73kgPPDov9xm0K7VDCzm/QVasIabttz1CmW954Fw4dRqxs1YBs4JSAteoLQQnKpFSVCyvZN6R7K0uHVMqji7FnLU1g1bbvnanFLveSB8OLGaqWYxf/LVKt0cv0zn209TXMSX3mY6e2kku0hbxyqp/zdNPUML4gzQKIFqwSdf3aX3ukVgxH5Jc09Mt0DqMT3euEczI10ieBRKDs3ToxoqK225T5065YqFh/FaIZSgfjgu7VjNyFhmIS465uQLui3aRbzrLcoubtBjTUx19HazSBN9SVJErMbSENhmEbiWvznZKUQrrfVrrVDp0Xya2kSwdGTWqvZk2aOIj3PLltt4rRBY0Bh2rGbkJt5FsXy4TGNnFa1eoVTmczoU1eWY2k3PLB2IWtAYgWv529luIVqVBJY5pJs/NYQtpgzQrSNRbYEcRHDLusN4rRBY0Di1rGbKYlndpGyKxTVGSn+uirhKVK0Do7Wv7ixtixrQGCEVWHNPt5uyFaKFA5GPefbZZ0VN8zFeAwQWNIdKVjMylrlesj2VErf9HTSxLiproS7T6IVJ2hR/gsYIqcCqtJA2vrljsR6arXC/I/fhdNOW23gNEFjQHDi3amU1U2Yxz0KZMGLPaY90LZOp2nkB9gmlwKqbWUopRnBVujXiQJU5LTetjI3XCoEFzaPUasYqltWFdH7Qqj2zptcB7wmwwJbMItB6rcePd2j15gh1xYW4nh2j5QqJJ69suY3X6vwy13seiAZmq5nf//73+u/mWC6kyGLUn6syCAFcJcACW618m1KZP9F+lYUs0qvIbVtu+ZqcUu95IDrIFFc8Htd/mmN5IV1oD5h11ToCLLCDNG+ef8Xz+XZW6ea1i5SU6YHEObr2p0dl07R4CaFXttwyyJ1S73kgOnAcf//738/HijmWIbD+IMACWyUHu5ujgTYZYG00tlIssdLKmG+veN9MN4sMcqvHqpV6z0OJVjlz5kw+VnK5nIhwoqUhOcgbo8GingjwklAKLHOY6y+sTCmZOC13KUJBCUv50Y9+VLR662C2EOOdk5h01SpCK7BahFGPCLDSY3nO4OLiIgpKaMrTp09FdAv2pumCjP8L07QnqoG3hFdg1XkarCCwAISfI7o1INMEDhYaaBwuvE//sSr+AA0RWoFVl0cpIQRWufQJ1laD6LE9VZgPnsrSpo1ULM8h7xtZ0uQZNIPACWztzV40Ttbpd/ldtzoos+ajJP92lrqF8NsvlVejAVCNw4Wh/Kya+MsTdL/K9nKHn0/QT35iT4iBPQIlsGXbFe4/IfNU15Mn+7SxOEF9SXFrpCTpV7ndsmlarUel4/+ZzPcurJcy8sKJDbr5K95GrvJ+CgDU4mR92tQmEnTurSzNLa3Szv4+7e/v0OrSDF3rPUtn+6ZpHSYITSUgAmtzw20u8dPU3n6eLo/fpIe1NoNtKSrND4rXXHWt+B5NX4DAggZRj2lrMUsjvZ2UTBSmcMVPt9P5y+N082H5fHHQOIFLEYSJ/GTwGptxHN2aoCkILACBAwLbQuwKLAAgmEBgWwgEFoBwA4FtIdUFlve0HcL8XQACDAS2hVQW2BN68oBnGWCBBABBBgLbQvICW7FAYAEIMhDYFlKtB/vVbXb4hMACEGQgsC2keg72iHL9EFgAggwEtoVUF1iYzwEQdCCwLaSWwAIAgg0EtoVAYAEINxDYFgKBBSDcQGBbhmmzl/YMwbkegPABgW0JJdsVxtpo4OYWHWM7IwBCBQTWa2psuN2NfQkBCA0QWAAAcAkILAAAuAQEFgAAXAICCwAArkD0/2bBPtPUep8aAAAAAElFTkSuQmCC
|
In parallelogram ABCE, the lengths of AF and AE are as shown in the figure. What is the area of parallelogram ABCE? ( ) cm²
|
A. 45; B. 60; C. 72; D. 90; E. No correct answer
|
C
|
31
|
iVBORw0KGgoAAAANSUhEUgAAAVkAAADVCAYAAAD994PMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABhnSURBVHhe7d1/aBznncfxpS1s/6i4/tGFgisoqKCAa1pDMQL3aAXFrmkKEgSnMTExpxYS1Tn0R3WucbioV5tw6KBRDWeu27M5YmPTBLmgw65VkHBztix858i0rlBqIkgTFDvIReofgu0f39vvzDyrkbS/Znee2fnxfsE09WjX1u4+z2dnnnnm+eYEAGANIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyqO6jm3L2xAk50WA7XbwqN27ckcWVJ7LhPRXAJkIW1a29K/9z46oUX+6TrlxOcrrlC/KNF07I65dulIO1vF0tyunhQdnd5f28a7ccm3hb3i95fwcAQhaNfCRXBrwQ3V+Uh97eLUqP5G7xiPTk3cfle0Zl+hFJCyhCFg3NjDQIWc/q7THZ6wVtrntUbq55PwAyjJBFQ82GrHp4vl/y+tjy1j02LxzPIusIWTQUJGSldFtOFbzH5w/LWx95+xOitP5YVlZW5AlX8RASQhYNBQrZsvvjve7jy9vAlQSk7MZ7cv3MoOwt5J3fuWtXr5y+5f0MaBMhi4aChmxpergSsvnRm97eOCrJo9+dkT6dHdHVJycnF+T9dQY4EC5CNpAH8ot/+EX5f7MlaMjK0jnZ54Vsrv+8LHu746UkS1cOS7d+EfSPy71VbzcCWpbLz/VKb2/Q7bRk5WSBkA2gdPuUFHIFOXU7W0c7gUP2YVH2m5Bt9jkRW50Z8QK2KEscvLahJOuPV2RlcVbGBwruZ17efnC1vG+lyrZ4Ry6N7pV8bkRmvL8h7QjZpn0gVwbcMbv80SnJ0oFP4JC9Py69XmfLld+r2M3kWp2So85Us/1SDPgNsPHEDYvHdYYVNp48ls0fb8gTDZcqV9Lci2z+xybczdHKzJKRugn6gVw8FPy9TypCtlkPJmSPCY7cHpnI0JhB0JBdmzrqvU85KYzNe3vjoiTzY93u73bqtjPFzMwoqBecq/eKcmx3l3NRrLen4IRJV99JmTa3t218KAu/KcrL39CfuQGizznS434x53J56Rmdcb+cV+9J8UhPJZByXQflfBoOp31nMPVDVmT5/CghC7+S3D5VkMLAQKURmQ6aBcFC1n2vTLCMzMTsXSrNyIhzFFuQH/znr+Tkd74iX+ntkYKzr0t2/+PUjtuC3aGFbhmZflT5zFcnn3VfY/cZ+T/98x8XZPGdn3vtY7+8VnxVnn11UhaWV2R5riiHu933Y+jStJwZPCYTv1mQ5eUFmXROncs/O3SxfHyXcAFCVjbW03ME3wAh24wPLsoh5+jVFyD5IbmWkTuaAoXs2jUZqtz1NSbzcetI82NScIJgj4xcf3ezo288kHP97lFndzkhKsNB3uvZ8aW6elvOHOiVfcfe8r0nD6W4X//uXvmXu1uHBz66MuC+J9/5r20hPi9jzrziozKV9PbUVMjeksuX43kp1BZCtgkPJvZsHmn4hg32Z+R8p/mQXZObo+6puB4pDk/Hb+S6Enb7zsmSt6/C+TJ1f3czyuE+Pi/NzUQzIVtlvLF8NOz8uzvSp85zkqaZkC0/ZiQr4wQeQrYR5w6mQrnRmMMMHbR3G1KucEqyMNGguZAtydL5g96KXb7xx5h5WNxf57VsLoZjvkBvjurRbbMBSMjWD9lVmXtlT2YOTgxCtoEPLh6S3J6JLXNj164NeRct8jKU+jEDEwLlrUbIbnw457uQ0yUHJ+7FdvZF5aJcjddi7lYzQWC+YGqf/voRsiZknQuE2+bG7vKWxCRk4fNAJvbk5NDFbZckSvMy5lzIKG9puGBRjbNo97AM7u5yX6du+YL07BuU4cqi3S/IAe9Ke65rlxx4uSiz78X8pn8zvawwJtXmPZgj3f7z7rjh/Jg7Bt87ft/5804bslF5yYSsCdlq82QXZyecC4CELCrWyh2jUGNIwDnCdRrUHhm/n8IxA2fRbm9x7nrbnUVZebyeoJkW7henXpyqlpvu8MAhMd+rpXIbcL5E8kdlqsrh+erUT+TfK6c5hGyjMVm9oWeAkIXLG3stH6FtP+1xNnMEV97yQ9fiN+EeNa3dHHXv9tp+U8nqtAwXctI9enPz8yzdl3EnlMuP73lJJt/1vlB0Xuyll2T34Su+MxlCtuGFr7UpGSdk4XBmERySX/5x52mPuy3L1LCZD7p55IMkMBfp8tLz0iV3LuvCpIzuzUvXwfM7brMtLZ2Xg6bEjm/TChAzXkrrDQ3Lc695IZOX/vE5WXaO8PWOr0WZHPJmXXQPyeSiu5SiPmdx9ifS70x5856T5DUWmwnZ8vuxnpUJsh5Ctqo1uTaUb3zDgW86154s3QKWCiV59IdJOTO4zzkz2Tc4LK9ff692McjVP8rk6y/IAT2L2TcoJy/OyYe+By9ffm7n2c5zl2VZbsnp7fvLmy6lWPU5SV5jsamQ9fngLfmP//7Y+0N6EbLVOPMlmzl9W5Wpo95tk4URqczyArIoUMiuyczI85k4AyRkd/DubW9yYZPKhZHylrWrpsAWvoWBGoVsaX5Muhve3JIOhOwW5VPIaXcJvNyzv5JmCq5u/O6fvNs0y1u+X849qH7COTDg3WnExpaS7Wc/+5nXulVJls55N3qUt2cna82ULvexuxPOGHdWDkoI2Ypb8qpXfqSy6bzQmmNkt+S0b4aBf+vatXVB4r/+9a/y6U9/esfj2NiSvP35z38ut2530e6ean1n+3hzedt8XPUpdGlEyFZ4635u32pe7a3xeGd7suUCSrFYrDS+tPne977nvK6vfvWrsrE5Kx8pdfXqVefz/vrXv+7t8RbtrtoP6m1b+0iaEbIR+Na3vpXakNWj9C996UvOa3vxxRe9vUirZ555xvmstw4VoB5C1rKPP/5YPvWpT6U2ZNXdu3crr1GPdJBOZthLP2tt12gOIWuZfuObgE1ryCrzOj/72c/K8nK21gvNijfeeMP5jPXMDM0jZC3TsasshKx6+umnndfY19cnf/vb37y9SItvf/vbzuer1xjQPELWIr36qo3yM5/5TCZCVk8hv/CFLziv88c//rG3F2lghr10uECHDdA8Qtain/70p07gHDt2LBMhq95+++3K+Oz169e9vUi6c+fOOZ+pzvdGMISsRTqtSRvmb3/728yErHr11Ved1/r5z3/ema6D5DPDXm+++aa3B80iZC35/e9/7zTKz33uc5kbn9TXa6at6X8Zn002/7AXc6GDI2QteeWVV5yGOTIy4u3JFu2Y+gWj78Frr73m7UUSjY+PO5/j888/7+1BEISsJWaCvo5RZpWOyep7oGO0WX4fks4MezHG3hpC1oK5uTmnUeqV9qz70Y9+VHkv/vKXv3h7kRR/+tOfnM8vi8NeYSFkLdAhAm2YOmSQddoxv/a1rznvB1emk8cMe3HLdOsIWQvMXNF33nnH25NtegeY3gmm7wn3vCcLw17tI2RDZqZrPfXUU94el+7TLasuX77svH6dzM6XTzLo56SfGcNe7SFkQ/b973/faZh6I4Jf1kNW6Smnvgd6dMRdQ/Fnhr10XB2tI2RDpOOPZtqSXjDwI2TFmWP55S9/2Xkf9C44xBvDXuEgZENkFjTWCz3bEbIuvUnDrOVw4cIFby/iRsdg9TPSsw60h14fIp2srQ2z2sUdQnaTuQ9ew3b7ET/iwQx76S3SaA+9PiR6KmyO0NzaR1sRsltRtia+6g17ITh6fUjMgsbf/OY3vT1bEbJb6YWvL37xi857cvz4cW8v4mBqasr5XPQLEO2j14fElPyutaAxIbsTZWviqd6wF4Kj14dAbxel9lFrKFsTL42GvRAcIRsCU/Jby68gOFPWRNcs5f74zjI3jWyW/Ea7CNkQmLVTdVwWwVG2Jj4aDXshOEK2TbryP7WP2jc7O1sZn9VbkxE9hr3sIGTbZMYUdUoS2kPZms5i2MsOQrZNpvYRV8fbp+OxOgVO309q+0ePYS87CNk2mAWN9cp4own1+jjdUB9lazqDYS976PVtMCW/9RbERgjZ5lG2JnoMe9lDr2+Dv+R3I4RsMGaZPb0rjLI19jHsZQ+9vkVmQWO9SNPM3E5CNhh9TylbEw29CUTfZ0p+20Gvb1HQkt+EbHDa+c3dR2fPnvX2ImxBhr0QHL2+RUFrHxGyraFsjX1Bhr0QHL2+BWZBYx0vbBYh2zrK1tgTdNgLwdHrW9BKyW9CtnUarJStsSPosBeCo9cHpN/21D6KHmVr7KDkt32EbECm5LceWSFalK0JVyvDXgiOkA2oVslvRIOyNeFpZdgLwRGyAWinpvZRZ1G2Jhw67KUXu/R9ZNjLLkI2AFPyu6+vz9uDTqBsTfvMsBd1vOwjZAOg9lF8ULamPQx7RYeQbZKeprZT+0ifpxvCQ9ma1uiwl3456XvHsJd99PommZLfra5zSsiGj7I1rTHDXtTxiga9vknt1j4iZO2gbE1wDHtFi17fBD1iarf2ESFrD2VrmqfDXqYtU/I7GvT6JpjaR+0suUfI2qPjsZStaU67w14Ijl7fhDBqHxGydlG2pjlaJFHfI0p+R4de34B2Xm2UOrOgnRWgCFn7/GVr5ubmvL0wdKhL3xsdLqDaRHTo9Q2Y+Zh6saAdhGw0KFtTWxjDXgiOXt+A3t2lDZM7i5JBx2cpW1OdGbem5He0CNk6TMlvHetjMZLk0M/N3DiiK3dh67AXbTlahGwd1D5KLsrWbBXWsBeCI2TrMKvxM8k9mcz9+U899VRbFy3TwNTxmpqa8vYgKoRsDab2kd62yX3xyaTBStmarcNetOXoEbI1UPsoHbRsjQ4Z6GeZ1Qs+DHt1FiFbg1kYOqzaR/p36YboZb1sjanjpes8IHr0+ipM7SNtnGEhZDsrq2Vr/MNe6Ax6fRU2ah8Rsp2lNyaYs5MsDQHpEpBZe81xQ6/fRi8M2Kh9RMh2XhbL1pj1dvW1ozPo9dvYqn1EyMbD+Pi48zloZYC0L/VnY9gLwdHrtzFzK8OufUTIxkdWyta8+OKLzuuk5Hdn0et9bNY+ImTjIwtla/TLg/L18UCv97FZ+4iQjRcdFtLxWd3SeEefrWEvBEev96H2UbakuWyNacssYN55hKyH2kfZo6fUetaiYaTjtGmhw17tlK9HuAhZD7WPsklDKG1la958803n9VDyOx4IWQ+1j7JLV6bSz17PYtJQtsaUr2ct3XggZMuofYS0lK3xD3u1Wr4e4SJky6h9BB2fTUPZmgsXLjivgWGv+CBky6KofaR/v26IrzSUrQmjfD3ClfleH1XtI0I2GZJctsY/7JX1ShBxkvleH1XtI0I2OZJatubs2bPO782wV7xkvtebcTjbqzIRssmR1LI1Zs4v5evjJdO9PsraR4RssiStbE1Uw14ILtO9PsraR4Rs8iSpbI1py1kuGBlXme71OuamDTOKBUII2WRKStkaU/I7jYvdJF1me33UtY8I2WRKQtmaxcVF5/ej5Hc8ZbbXU/IbzYp72RrTlo8fP+7tQZxkNmTNos1puFcd9sW5bI0p+R1W+XqEK5MhS+0jtCKOZWv0IEF/J0p+x1cmQ9YsBkLtIwQRx7I1tOX4y1zI6hGIWT9U50ICQcStbI0J/aTdApwlmQtZah+hXeZCk5at6eRygqYt61RExFfmQtZWye9G9N/UDcmnZ0NxKFvTqbaMYDLV6/21j5aXl7290SBk06XTZWu0LZt/n5Lf8ZapXm+z5HcjhGz6mPak47M6lzZK5t/u6+vz9iCuMtXrn3nmGadhdqLkNyGbTp0qW0P5+uTITK/vdO0jQjaddHzWrBugX+JR0LZshr3idmMEdspMr+90yW9CNr2iLltD+fpkyUyvN3frdKrkNyGbblGWrTElvylfnwyZ6PVxqH1EyKafruWqn7FWVbDVzrQtd3LYC8FlotdT8htRiKJsDW05eTIRsmbiuJ7SATbpUIEpW2OjvVHyO3lSH7LUPkLUbJWt8bflTg17IbjUh2xUJb8BPzMnW6d3hbUsIm05mVIfsmYO49TUlLcHsM9G2Rq9u0v/Pkp+J0uqQzbKkt/AdmGWrfG3ZYa9kiXVIRtlye9G9PfQDdmii8eYcGzn7qw4tWUEk+peb2ofzc7Oens6h5DNrjDK1kRZvh7hSm2vj7rkdyOEbHbpTQO6wLd+/q2UiYlbW0Ywqe31WoNJG2bYJb9NWLa6IZvaKVtjKjGE3ZYRjdT2elP7KOx1Pv2B2cqG7Gq1bI1py5SvT6ZU9nqbJb9bDctWn4f0aKVsDeXrk69DvX5DnqysyEqj7fG6lLxnBHH8+HGnYdook9xqWLb6PKRL0LI1zZX89vWnHX2mJOvrTPnqpA71+ltyurdXdnW5wVPZunZJb3m/s/UUJO/sz0th76CcmfyDPGoicfVowTTixcVFb294zO8aVKvPQ/o0W7bG35Z3lq/fkPdmi/LygV3SVf55vtCz2W/yBdk7eEYmF5ZlefYV2TMy4z0HndDZXl96JL961gvY3IjsaAobT2Tx+qjszbuPyfePy71V72c12C757f6uhCXa00zZmlptufT+tJzs6yr/rEv6Tk7KwofbjlQ3PpS54hHp8fpNjpDtqI6nxcPifrchVAtZT2npnOx3HpOTQrnBrHn7qzG1j2xVEHV/V0IW7dGj1EZla8z6tP6S36Wl83LQOQPslpHpR3WH00pLRenXoO0/L9HWZoZfIkK23FxketgNt1xuQK585O3exl/y21btI/d3IGTRvnpla6q25bWbMtrttr/usfmmrlesTh2V/P6iPPT+jOglJGT9j9svxRotxox12Sz57f4OhCzCUatszc62XJL5sW6v/R2Six94uxt6IBOD43Lf+xOil5CQXZOpo2645XJHZarGeIGpfXT27FlvT/jc34GQRXiqla3ZUb5+7ZoMmTHWgStS42SuqodvvCG3vP+P6CUiZFdnRqTbeUzt0yRtnFHUPnJ/V0IW4dletqZaW14rn/abtrfv3JKzD8kQo5D9jvzrnUXfPNllWbh5VYov9zlTVHQqV89LU/J+jYGoqMokm4YeVKvPQzb4y9b88Ic/dP7rb8v3x3srbWh4upnRWMRFjEI2L4Ueb47slnmyuv2d/P0//1r+UGeirKl9dOHCBW+PHaahB9Xq85AdpmzNJz/5See//rY8M2L6Qk6YkZUsMQrZKsMFpXV5d3ZCjvTkvcd0ycGJe7J9qqyeUumplR4J2K59ZBp6UK0+D9ny3e9+12knn/jEJ7bMnyVkkyveIWtsPJCf7zeNLC9Hp7bGrDkCYGNL0+YvmTQ/VqjsP1rryi9iKRkhW1a6fUoKXiPLbZv3Z2ofsbGlZRsdHfVat8t/4at3nAlZSZKYkC23MjnqNbKGjwXSxj+Fa8+EPPB2N6ckJa6VdUwyQzY/Kje93UA2+G9GKMip282mZkmWzp+UN7jlq2MSE7LO7YFeyDZavyBSpXV5XJl21uz2RFh8DoGtzsiId1ttrrvcXxoslqRWZ0blSHGp6txyRKPjIbs5/692yJben5Ih07jyA3Kl6VsKI7B8WZ7r7ZGCOZVzfseC9JipaJXN/5h+Oc+KHWhBaemKHK4E7WEp3q21SMyGPLh4WPrKByRNZDEs6lDIuosML85ObDYYvRnhxh1Z9B3xLd65IZfOPF1Zsi3fc0QuPojpMeDqtAwXvNdSc0EOt+F311l/AWho9Z4Uj/RUzuy6dg/K8OmiXL1xQ27cuCrF0y/IN3btLh/B7pzuiOh1KGTdRbu3HunV2A68ICdOvC6X7rwr6zE/56nMZay76tGaXBvqJ2TRto0PF+Q3xdMyPLiv0l8OvHBCXr90R96Ne2fJkI4PF6RJcyFbPuWbf0t+zXABkAmEbIiaDVkA2UHIhqhRyJbW15lVAGQMIRui+iGra+JyEwWQNYRsiCohu+/f5H99syRWVhblzi+HpJs71YDMIWRDVAnZHfNk3bLN3A4MZA8hG6J6wwVu5VBCFsgaQjZE9cdkteIuIQtkDSEbovohKxS0AzKIkA1Ro5AFkD2EbIgIWQDbEbIhImQBbEfIhkZvNvBCtjAm895eANlGyLbLWbR7WRYu6c0GXsjm8rJ3dFIWllfkMashAZlGyLbLWbTbf+PB1u25yyy3BWQZIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsAFhGyAGARIQsA1oj8P/kbVbRR+tAfAAAAAElFTkSuQmCC
|
As shown in the figure, quadrilateral ABCD is a trapezoid with an area of 48 cm². Its lower base is three times the length of its upper base. When the upper base is extended to point E, it becomes a parallelogram, specifically parallelogram ABCE in the figure. What is the area of parallelogram ABCE in cm²?
|
A. 45; B. 60; C. 72; D. 90; E. No correct answer
|
C
|
32
|
iVBORw0KGgoAAAANSUhEUgAAAVIAAADuCAYAAABrqo9VAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACWSSURBVHhe7Z1fiF3VvcfHUphCm9IHB0o1tDSChSo1IOlAChoIqUIeDARvLQblJrd4Q6TzkGiCggErPkxBrQ+hDCilEYWIXhiuuSpEcr03VnLxz01tiIqCWqxXUok+BKYP685nn/2brDlz9jn7rHX+rbW/H1gY9zkzc87ae3/379/6rSknhBAiCgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUjEW3l/Y7KamprqOdVdc7TbtOOQWXvnAXSx/TohJREIqxshF98Fzu916E89Nv3VvfrlUvLL05Ufuraf+1W2YLkV19iF36nzxkhATh4RUjJmT7kApllObF9z75VHj/Im5FaGd3rLgzrV0VoiJQkIqxsz7bmFztZA694k7enP5+tS0mzshJRWTh4RUjJleQurc2/NXl0I65a6ef7s8KsTkICEVY6a3kJ47sklCKiYaCakYM72E9IJb3FW+vjx2LV4ojwsxOUhIxZjpLqRL5464zaWITq0/4E5KR8UEIiEVY8YT0k2/df/z97JidOlL9+7xQ252Xfnaup+7J5SyFxOKhFSMGU9IZza6GzZd7a4w8ZyadjMbNrkdDz3n/vyZRFRMLhJSMWZ6J5uEmHQkpGLMSEhF+khIxZiRkIr0kZBmyocffujOnDnjXnnllWL88Y9/dE8++aR75JFH3AMPPLBqcIzXeI+9n5/ldwyfyRbSr776qpiH1157rZiXxcXFYq4YDz744Jq5tNeef/754v2vvvpq8fNffPFF+RtFjkhIE+bzzz8vbnBu3IMHD7pbbrnFXXPNNe4b3/hGS5gGMPhd/E5+N3+Dv8Xf5G8PhskQ0rNnzxYiyUPlrrvucjfeeKP77ne/u2Y+Ysbll1/ufvazn7k9e/a4+fn5Qmz5u//4xz/KTyFSRUKaEG+++WZxoyNq3JSdblZ/fP3rX3c/+MEPijE7O1uIw/bt292dd965anCM13iPvZ+f7fQ7/cFn4LPwmfhsYYxeSLEyEbG5uTl33XXX1f6uzMuPfvSjYq4Yt99++6p55P/tNd7H++ucJwYPKwT86aeflvWaIBLSCQZr5ciRI4VYfec73+l4A37rW99y119/vfvFL35RuJrHjh0rRO3ixfgOnvwOfhe/k9/N3+Bv8Tc7fRY+I5+Vz8xnr8fr7vBM+TuGJKQI5/HjxwuLmodFlXBeeeWV7qabbnL79u1zjz/+ePEzH3/8cflb4vj0008LV5+5QcB5eF111VUdPwcDged9CL6EdfKRkE4YuM3cyJ3cSgQAIUAQcEO5OccFf5vP0E2c+A58F75TZ9r6kU5tdg+/9teBNHFGPAlDYB12+myIPg8GhI2HBe8fBzysiEfzWbFqq8IJhAQQ98GFVMQgkZBOACQjsPg6WShmmSBa47rZ68Bn4zOau9z+PXB1+Y5m4fXqkD93onhb37z88suFi91uNfP/WIFxYYjRYJ4IQt/uifBQwOrHSxiE1yEGg4R0TCA8CwsLhcXUfqNs3bq1yKCn7NLx2fkOfBf/+zE4hgU2qAcDwoNljGvu/x3ikwg7mfOUEzqnT592999/f8fvR1yV7yfGi4R0xOASc3O3Z9ZJNjz88MMDi8lNEnwnvhvf0f/OWFuUDIU+MIg5tj+ImNedO3cWscUcs+FY3IQA2i1uvAC+sxgPEtIR0UlAzWKadFdzkGBd8Z39bDaCyrG6Md9OAkoMEXe4KYkZ3Hqz+P0YMIKK26+SqtEiIR0ynQSUWCiubZMvdr47c+DHhZmjboKKxYVg2vstXtikB1En3nvvvcJK1TU2PiSkQ4LsKhlr/+LGtdXFvRoTVN/tN0G1DDVlSH4CCwFFOBAQcYmqhzaWqxguEtIBgzDgYvrZVsWv6sEc+YL57W9/2/3kJz9Z+X8EguSKBLQ7COr+/ftXXYNY8pRZieEgIR0g1EtSsG4XLyU/lASJ/nj22WfdzMzMyjxedtllbseOHbVjqKIF8WKy/WahYsljsU5yGV2qSEgHAC4o66ftxiejSpZaLnz/kJXmAWRz+bWvfW3l38yxCtL7BwueFVs2j5RRsRRVDA4JaSTtbjxF1DmWMA0b5oy5s3lkTu+55x63bdu2IqHkH2fORf8QOmH9v80lGf/6S3lFNySkgeA2+Tc4VhTWlOgfkkl+ORSJJNx4S0DxOsPP8DP3TSl1GiSUTfnuPt4TyT4Rh4Q0AGoh7clO3ElufBjMGSuSTBwRSlulw1JO/zgCYCJgdZOcA86F6B/cfb+UjIeXYqfhSEj7hBtcN3I8uPL+jYxbbzcy1qiFS2yuWadvYPlbcw9e55yI/ml/kOEBKLMfhoS0Ju2uvFzLcHxXHhezPeZJ0xG7sel4ZO/zO/aTdPITKDof4fjnQ65+GBLSGlDW5LvysoDCwTU38SOu3L4qieWf9ro1G7GSMsSyHcIq8hDiafcQcPUVrqqPhLQHuJHWIEI3ajjclGZp2o3aHpPjPVb6xHsNHmT2c1hP7SC41hmJc4UYi/5pd/XpZ6C4aT0kpF2g+YNZOzyt5TqGwc1oYZFuFj3WJe8hPtpefM+KJl6zxFM7uPpmUfE3OHciDObOsvp4A1oI0RsJaQV+1piGwHoyh8HDp47A4Vqa5d9JaPk9FsfzE08+nCPOlf0t4qsiDKx8Ox94Cao37Y6EtAOsU+YCYuBiKlYUBpaMueq9XG4rxifBVDXfNMLmPe2JJx9+1i/srxJd0Rsy+FYdwX+b3mWrGxJSD25CYnd2E7IuWYSBBWMJOm7C6n2bWnFom/Ne3d7ZH4r3kbHvBufOfqfOYzicR/9h2Ov8NBUJqYefDGHfcREGbrpZMohpN7eQh1enBFMVJPssbt2roxbn0M6nxDQcPAvryiUx7YyEtMR35xVbC8d35/lvr0SFn2Cq25DEEk+IdKfEk48f65abHw7xZ4t1c64UM12NhHQZ/2bjxhZhcLOZ641F2qtvqJ9g6qcRiZ94oi61FybWDD0kw+FBZw9Jzi/nT7RovJDSTsxuMrl/4eCi2z5KiGOdxISVRFFiU5VgqsJPPNVp9GwxU5VGxeGHbRBVtTVs0WghJclh8TZ2nuz3ZhYtmDfmz4SqTkE8hfW8n9EtEdWNuoknCPmMojO49eZJ4O6rNLDBQsrNaxcDlpRENBz2pjKBqmPtEde0lnh79uwpj/ZPP4kn4BxbnI9zHyrgYnWdKbW7Tb9/GimkuCO2pJBspJ6o4RDbZB4ZVSuW2iHpw/v7STBVYS57ncQTcK4tA801INc0HB6a9iBjaWmTaaSQWtcgYj1a/hYOcVBbSlg3vkwhvf3MIDrdk3iymF3dm5lzbj9TJywgqvETtZ36IDSFxgmpZXB5kqqjfThYduae95MsikkwVcF2w3ZO65bl+PFxVWrEYeeUSoqmZvIbJaTEdezmeeCBB8qjIgRbhol7XrVcs51BJJiqsNgn+xDVhWuAn+GaUJF5OHgFtoqN89DEeGljhNSPi3KzNT04HoMfF627X/+gEkxVsC7cHpJ1d8jkGuBa4GcUL43DT/w1MV7aGCFVXHQwhMRFwaw/3D8smGFgiSdEsW4CUfHSwdHkeGkjhNROME9MxUXDwYKzlS39xDgpmDfxpZB+WIQknsCPl2rlUxx+vHRYD8xJJHshxeIgjsfJrbOcUFRjiTrqB+vGRcG8AQroh01I4glsCxSuFXks4SCeFkKjJ0JTyF5IraNTVWd1UQ+/bKluvSgQQzVhG9U2LSGJJz+GW6cLlajGzjmjKYseshZSXDY7oXLp4zCXjWL2ui494mTZ3FFaJyGJJ9D1Mjhsp4JBlrlNMtkKqR/Po1RHhLO4uLgiMP1YGOYujyNeZpu4ETPt529bWRfXThMEYFj4HkwT4s7ZCqnF8xTziiPUqhxVgqkKsvYWq+unusCPqatQP44m3YNZCumglyE2mVCrcpQJpiqsRSJuPu5+XaxOlmuon6SaWI3vFeYed85SSG3fJW5iuWfhYEVYrJFseF3GkWCqwgruSUDVhWvGWvRxLYlwWDHGPDJy3jwvOyHFpbSbXz0n47ACdxIGdfFdatrrjRtKoEIeBlw7/Aw/W6dxtKjGEpX8N1eyE1KzRukxKsLBGrXwSN1loBCa5BkmoZ/JOv7LKo0DS5R5ZORqlWYlpP7NL2s0DouNUu5Ul1Drb9iEJp7MKuWayj1ZMmzMKs01VpqVkJor2k88TKwFq80y1/3sbxQSjxwVoYknK+7vR4DFWoiV2/znGCrJRkhDXVGxFmswwkqfusm6UKEaJSb0/VQSWOJMVmk8OYdKshFSu/n7cUXFWqgbtcYfTz75ZHm0O6Gu86gh9GAP235qW21rEvWwjSPnUEkWQsqNbK6orNE4WIXCPPZjjU5igqmKkLpYs0q5xrjWRDhmle7fv788kgdZCKl1/OHmF3GY9VW3McmkJpiqCF2pZT+TwnecZOyhxIMspxrvLITUYl9YGyIcYpvMI8JYt1u8WRgpJfjsZuZ71l0wYJZsPx2lxFoQT0SUuaSHQy4kL6RstsVJYahwOg5z0et2ijdPYJITTFX0u4SVa8u+a1M3eBsUeALMZU7NhJIXUmuM0M/qG9EZSxjVcV+JL1pSKsV4F8LYb+KJa4z3q5lJHLZslPnPJeacvJBec801xUnpp9mwWIv14qT7fZ2L22p2Ed9Ub4Z+E0+2ZQ3XnIjDYs7j6Aw2DJIWUlt6hrulGr84bCeBOitPcOOZc97fT+PkSaPfxBPXmH3vnBtwjAJ7iOWyeCZpITWrSAmAOLAosUSZyzq7P9pqnxzm3RJPjDpNqy2xqZVOcVDtYfOeQ6vCpIXUYnQqSYnDViUxn71KUvwEEzdDDljiqc62GPb9CWmIOKzULoeYc7JC6j/RJr0IfNKxLGqvpXt+gokMfy700wicObDrLpcHybiw1Yh1q0QmmWSF1LqYa0loPNbFvNeS0BwSTFU8+OCDxXdj9VKvGlqzpLT7Qhy2ZJSwUurF+ckKqW1SlpNlNA5IoDCPjG6xKgrXc0gwVUHiybZj3rNnT3m0M/ZA0aaKcSCeFptPfdvmZIXUVkfUSY6IarBCmUey192wrTdyTuxxLfEde93Y/jJHEYfFp1NvCJOkkFrZE3EtLAkRju0o0C0+Sq0f78kpwVSFNSDulnjy46Qqg4pjfn6+mMfUd7RIUkitMDr1yZ8ErI6yyl1HNMz6b0Ivg7qJJ7PQtRAkjlyMoiSF1KwGEgQiHESDeWRULWiwjD6C2xTr3088Vc2L9SXIeUO3UWEP6pS3B0pSSG3iUw9QjxuriSRr3wk/wURcsCn4iaeqlV50LuJ1xUnj2blzZzGXKdeTJieklKYw6QzVj8Zhy/S4kDth7msOdX794ieeaLLRjt91rG7LQdEZ8wBS3hgvOSHFCmXSZQnEY5ZApxIySzARu2pqe0ILIdGkpFPiKZfSnXFjK+tS7uCWnJBauU4uzQ7GiRWWty+xxcJqUoKpCqxOE8tOSSWbv7p7W4nO2A6jxKRTJTkhtSB/r6Jp0RsTifYu8cwtx5uUYKrC+t12SjxpUchg8MvJUg2TJCekOQSmJwE/xufHmi10wmhSgqkKXHpbQtsew7PYXlWMWdTHejh0ikenQHJCao2cjx07Vh5pEOf/4v7ySfnvSKyRMxewgWhYF/gmJpiqsLlqv9G5BjnWudHzBffuf73oXnyx9/jT2U/d/325VP5cM7HWjKk2ek5OSK1YOrU9guJZcqfum3Ez951a/lc8tu2yv6jBGsE0OcFUhbnxfuLJLyZfy9/cycfvdffeMevWLb+H9zGmZza6HXuXj9/bGnds2+BmpluvrfvxDvfQ8Q9cE4MpFk5KdZvmpITUd0cbF7u78ILbzQ03vcstni+PRWCNN/bt21f8P7Ep4oAc00KHtfiJJwsrcQ3a9cjrVZx/7p9W3rd54f3yqMfFD9zxAxvddPGeabfx8Ck3gFOcFBaLTnWBQ1JCaj1IKRJvGp8cvXnlZrz2sXfKo+HYGntrFmEWAYXoTU8wVWE3O4JqwmkLFrr2IDh3xG1afg/v6yikBefdibn1xXumpmbc3IkL5fFmYNU4qS77TkpIrX9hr05F2bH0tpu/tnUjFmPmPncq0r/3hdRPMKmbVjV+4sla6Fmvgq7LG99fcJvL+a0W0mU+OepuLt83dcsz7m/l4SYgIR0hTRXSCy/sdtPTu93CEbNKp93uF+IsFi5Yftfvf//7lQST1o33xk888e+BCql73R2eKYV0+oA7WR5tAjavqd7bSQmprQ1n6WJz+MQdvXmqlWSyOCk32s1Hl18Jx4T0tttuK/5LwiSHTchGgSWesE5/+tOfFv9uX9SwitpCesLNle+bunrevV0ebQKpG0lJCWnq5n8Q7zzmrp261rXCoq3MfXGjrRwLw8rIvvnNbxb/VYKpPhTmW2Luhz/8YfHfrqubagrp0qn73Ez5vkFVZ6SCVUAQf06RpITUSna2b99eHsmdC+6F3dOrrc9CWONvNnNJGUow9Y/1xLVkE9dmJTWEdOmzl9zc+tZ7ptbPuRMNS9v7LR1TJKlPbbsO9trtMhuK5EN7PPQd95glniJKoWZmzLJVgikEEk9m1TO6bpXhCenMlv1u4XmvIP+pR929d9xwqZZ09pB76aPmFef7pY1Wp5sSEtIJ5p3Hru2YoY8theJCtZ/XGMzYtWtXObsdWCWkv1opxm8V5F/trlhX/p7pDW77oQX3ygfN9A5sLlOM1SclpNY/sxENS5ZOuftmKoTSTzoFlELZCiaNwQ26ZVVaUj1d+4vur68tuFvNtZ9a537+xLlGxUjB5lJCOmSaZJG2rM7vu1894bmBK+Pf3W+22U3XfykUyRJz7Z977rniwtUIG9ZE59e//nWEkLZYOrfgttgDcmq9O/x6c6SUa7L1vdNctZiUkFqAP/96x1YcdHrjbavcwFVj7za3vrzwQkqhatU/ip6Q+GQeu26CV1NI4fXDl2LX03MnGmOV8lCy750iSX3qppQ/tcpgepU3feKeuWW6vPj6L4WyFTrsPTQczrs3jt7ttl2xrvUZ113htt191L2RWTba6nEHUf4ESy/tbc0XY/OC6/7ufKAJEd+5cwOYyScpIbWC/Ly74593i7um3fTuF1wvhz2m7rCWAARTrhufnnEbrr7abZgxwV8e6w+4kxktI7d9rQZTkO/c355pbW9SjL0vNcYiVUH+CGnCEtGlt+e9AvxetFY9tW68m93RPvz7YQrp+cXdbvbAcXcp+bzkPvvPw25jGf+7uZ8POuHUCpHUFtL33cJmO5/NalwiIR0h2Qvp0jm3sGXZevv+w+6N8lAvzh3ZVN54y1bpsgVT13Om2zs/07X+MYg/uz88cqLD5/BWZc2dKI+lTx0h9d31SiFd+sgt7rbuT1Nu/fIcNakm38J2qXqbSQlp6nGUai64dxcfdXfMlvFEelLe9hu38Pyb1UmkT950zy/c7WatBrEc62bvdgsvv9szLNDeRm8UvL+wufibOVmktrJpbaPxskP+U4dWnaPpDdvd3nsfdU+tVGA85R7du8P92Ksl/eXCafdZw2qfUs9/JCWkfmYvryWNZTf1Ndn5Y8v2XQV/Ptbh/eV4/GTPFmw0dGYerbHz8Ckt0q4x0ovug+MPuR0bZ8omx+vcFdvudkdXZaiW3Jfv/sk99RDis9kVBh6NkQ9tKwvb17kf37lwKal1/g139O6K1yLxGztzba6m6px2Gjw0X3Qn3/rQ/b2hK3Xn5+eLeVRj5xGBNcqEN2+rkcFifQu2bt1aHhku59942G2e3uIWzlWYWkvn3DO3rnfTW+bda39FTZYF83+PlHWV691csfj8Y/fy/D1u7zZzgZeF9I1T7vDsFe6GO5YFae92t6GMw5KsO8/69Q0zbuOOvWteG0T0MV8PafTcddddxVxqq5ERYeubtcNlHKyvZx79ze8Gz7IYfvSWe+5Qa9+i9f/yvHu34yZvF9zJA2T523sHXHCLu1riN7XlCbdi811YdLs4NjXjZu9+wp32/OBLlQzrl63Px1a/ViTyeG357wxASbtvfif6wZKfrLpLkeSEFNOfCccVEOH4TSK++uqr8uiAOdHaF2rVWLZK59t967IzfKcC9E+evXVZhKfdhkMnPSvS+naWrv0qQl/rn9T3GZoktB3ziDl48GAx4bgCIg4Lk5w+fbo8Mgwuur9/iFV6qcPR1Myc8yt7PnxiS3G8V43lJSZDSK3BM9ekCIcHeXFdLA+WiqZIckLKvtdMeN5F+aPhuuuuK+by6aefLo8Ml4vv/G6lnnKX51vbssjUhNS2aEl1L/ZJwZo60yw7VZITUtuobbixvWZgDTfoqjUaLtWS+qJ58kBr5dPM4dfLI72YDCG17Zm5JkU4FmvmwZQqyQkp+68z6YyhxfYagoVJENRRYcXpvkVqrn23loDnF59w//Z5+T8TIKR+tyKuSREO29wwj7Yza4okJ6Rg++UMN7aXP9a7YJRZ59Za8rblrCvbp0y7LQsd+nCeXxbAf/Y7XI1fSGn2wtyl7I5OCuYZpbxvWJJCetNNNxUTT9ZUhHP27NliHhmDC/JfdB/86UX3p3e/7CyI6zuJpd/Jar27deE1V5SSkqg6e9wd2EgdqV+vNH4hNWuea1HEYRn7lLe8SVJIrexkVMXkOWMX8cASTv99qKgZxbqcueGQe+6tD5dF+kP31n885n65YcbNPnSq8xryQmT5ufYx7TYe9n9myX12fG9ZKzrj9h7/zBNlivgtoTXtdvzhg2UpNvzXptzm373jvdY/1vVJD/M47GHOUtuUQ3VJCqll+Sjf0e6Xcdia+4GVky195F5aWa7ZErSZDZvcjjp7Ea1a6rn8cxt3uIeO+2Lod0fyx9yyrRn6Wv9ww9sae65FEY41a091jb2RpJCCxUm7ti8TPbFmETR6FvWwVWGKj8ZjOwyMsnnOMEhWSG2Fk4qh4/AbwbDaSfTG4qNa0RQHe1xZCVnqBlGyQmpNN4hViTisp+ZwuuXnhy1k4BoU4VhNeA4humSF1A9Sf/HFF+VREYJ13mnC7qyxcK0xVwyuQRGO7QqcQ+VDskIKlnHuul+O6AkZe+bxyiuvLI+IKqz2Vivr4mGZN3OZQ+VD0kJqzYkVq4qDLLQ1MHn55ZfLo6ITFpsfXUPsPHnvvfeKeWTw79RJWkgtxoJ7r2V6cVgnoz179pRHRDtcY1b2pPX1cdiy0FxyHEkLKVx11VXFCUm1IeykYEseyaKqNrczXGPMEdeciCO3+zZ5IbUnm9rqxUEpysBXOWWGxfRSXhM+CfjZ+lw8yeSF1K+DzCHWMk7m5lod7RVzXosf01u70Z3ohxyvs+SFFGy/F1kKcdjSW8Wc12KeT+pLGccNns/ll19ezGVO+65lIaTWNV+xq3hsc0HFnFdjMT11w4/DltcipjnF4rMQUr98R7uLxmGdtRAOrAfhimuKOeEaUzPxOMx7zK18LAshBYu7aMloHKzcsYYwSjq1sJZ5XGMiHL9cMbd8RjZCSmNis0rVESoOW7rHmvKmw7XEXHBtpbrD5aRgixlyXIqcjZCCrRlXQiAOrFKFSlqYK6rtv+OwRCYjxx4FWQkp7oKtPJFVGoeFSppslZo1mqMrOmrMGs21tC4rIQXr+K5ayDj8UElT19/n7IqOEr8GN9cdBbIT0jNnzmR/0kZFk0MlvivKNSXCMeMm540CsxNSMEtCy0bj8EMlx44dK482A1sOKs8mDjL1TQi3ZSmkCIC5per6HofFSulV2pQaStvHimtIsdFwqEO+/vrrG/FAylJI4f777y9OICso1EE/HMQTEWUum1BHybViSxi5hkQ4tkMoHcVy3w8sWyFl+ZntRaQem3FYB31ctNzjzlwrfFeuHbUTDAfhtIUdTdj7P1shBVvXy3j11VfLoyKErVu3FvOY88oxrhG7Xrh2RDjWKJxtvpuw1DhrIQVLPNGMQ2vHw/Hjzjk2NOHasIYtSjDF0UQDJnshpXek7Z3dBBdjmFjcGZctt+WS1iaPa0X9RsMhpm4htdtvv708mj/ZCynMz88XJ5YY3+nTp8ujol/8uDOufi4WPlaTlehwrYhwzKXP8WHbjUYIKTe8xfgQAmXxw+FBZKJDc5PUoYG1VSXk9HAYB7anFaNpPRoaIaTA09H2JFIMLA4ra0FQU18+ymobvgvXhro7hUM1h8XQm9husDFCCtz0Zk0hBiIcS+KlLEDWxDqHB8I4IS5qOwhQgN9Eq75RQgrWa5ObR/HScAiPpBwv9eOiOYQoxokfF21qoq5xQqp46eBINV6quOjgaHJc1KdxQgp+vJTmFNqHJxyLlzJS6GvAubaGJIqLxuGHypq+DUsjhRRw7Sw4TrxPVkk4O3fuLOaRm2pxcbE8Onlwji22y7lvSrH4MMAbsfpsHkxNv38aK6RAazh7ou7RevxguIks+83NNakCxTk2wW9aW8BBwlYh5tGxGkweXcOFFB5//PHigmCo20847S7zpO3Lc/DgwZXzrL3pwyEUwvp55pFMvUIjLRovpGCZfIbKosIhiWM3GcmcSbnJ/DiuVi6Fw8OSPbyYx0l8WI4TCWmJbashty8OxNMy4ojquMXUD980PSESg+9xEL6h8724hIS0hDifnzTB5Rdh+DG0cYop59BEtEkNNAYNJYImosynFi+sRULq4Yspg45AIgxfTMfhBlo3JwYi2vSscig8BC1cgyUqb60zEtI2uOHMzWfgDuomDAPxtJuQ7TtGkc3nXHHO/PMnwuD82eo1Vi2pXKwaCWkFfgIKK1ViGgYWjTVMxqIZZud5zpHvUSixFA4x0HF6FKkhIe2CH2NjKaHq5cLwExXMJ3tADRr+hi395W+oxCkctk22Yns8itw3rhsEEtIeEBOyFVBYVmfOnClfEf1AU2jfWhxkyIQWbtZ9iHOlOF44dMQy44GHHyVtojcS0hoQGzI3hye19soPA+H048+0XIvdN56mGfag4xwpjhcGgmmr0xgspZUHVh8JaU2I9ZnryLjzzjt1oQWCa2+uI/8NcfWZe2vfxuDcjLtmNVV4+FjtL9aoFqX0j4S0D7CoSEKZ6yNXPxwsUVslw8BSrbuPPA0zLJvMueCcKBkYhu/KM6fq0RuGhDQACpJ9Vz/H7YlHAcLpu/oIa7cHE2JJJt5ufM6BisPDIIHU7sqrN284EtJA2l392dlZPc0D8V19RJJEVPtNTTmOlVEx5MqHwcMIK9Sfb7ny8UhIIzALyb8osbD0ZO8fXH3/wYS1icCSBLH2dwzmmjmXK98/WO+2QIJBso+KBxGPhHQA4Cb5iQ9W8aiOMQzE0xIfDHPjGcyxahr7p/36ZJUS4Sg9jAaHhHSA8MS3ekYG7j7FzaI/XnjhBfe9731vZR4vu+yyQghk6fcHMWjfjWdg3as2dPBISAcMFy8NM6y2kXHjjTdKUGvAHDFXNm/T09Nuw4YNK/+PJUWDZsVGu8MDBwG1hCgDN16t74aHhHRIsC0ttaa+a8pKkSbvtFgFc2JLSBnMGXNnW/vi7vuWPg8pElIS1NUgoJSC8cCxuUJM5cYPHwnpkCGJ0i6olPlIUFsC6teSmoB2Wu2EELCizM/cI6i4qrGro1KHBwoPlnYBJRtftzZXxCEhHRGdBBUrCwuiSULAd+U7W0E9A0GsEtBOdBLg7du3F5ZrU4SDBws7thI79sNIXFMkOiWgo0VCOmI6CSoD15YbIMeECt8J99J33xmxLnq7oDJIrGCl5rrmnnIl5ozKEP97I6BY7HLhx4OEdExQkkI9ZLsQIC50ScLaSNmq4LMjdHwX32JikPjA7RxU9hjRpH7Xd20ZWL3sDJt6L01ixSSP/LAGg3nFIuVakYCOFwnpBICVsX///lVZVrtRyGLjCiMWk3yz8NnIuvNZ+czt4kltKBn3YfYmQLxpoYeb327xM7d4AlhtlsSaVLDQCVNgWfshEBvML96LmuZMDhLSCQIxooM8ewz5tX82OMb6aKwTlqOO80bib1NOw2fhM1V9Xr4L9bWjfghg7WL1tlv8NhAorFgEa9zCineC9b5v375VK4/8getOWd2kPwSaioR0QkF4ECpunk4Wng0sPYSMm5CO/gjxIFf/cOPyOxEl/gbLONstZxtmQSOufPZJsaDNwkM4q4SKz47oEoogHMD7B/mw4vfgefB7sdpxyfl7nR5ADIQ+FQtaSEiTAbfVd53bXdf2wQ3Kzcjg/QxEgpsTQeH3MHAfOUb3H95DQsh+rkq8bZhw8nv4bKnEdBFWBIrvzffs9N38wYOD9xGjtLnkZxmEZPj+hC3sGA8b3oNQ8nP+kteqwd9AXEnKSTjTQ0KaMFQAkGjAWkQcu1mLMYPfye/GIuVv8TdzKtnCWsT6xFrEGu1lLYYOHjyIMQ80hBcxx3LX0tf0kZBmiAkDViLxSW5YBlUC7dYT/+YYr9n7+Bl+Fld0UK5tqhAmYS4YxDGZHxI9zBmDhwvz6Fv5WJW8j8SX/WxODx6xFgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGFc/8PdAbrNvV8RroAAAAASUVORK5CYII=
|
As shown in the figure, circles A and B have equal radii, both equal to 3 cm. A and B are the centers of the two circles, point A is on circle B, point B is on circle A, and point P is the intersection point of the two circles. Which of the following relationships between the lengths PA, PB, and AB is correct?
|
A. PA = PB = AB; B. PA > PB > AB; C. PA < PB < AB; D. PA = PB < AB; E. No correct answer
|
A
|
33
|
iVBORw0KGgoAAAANSUhEUgAAAVIAAADtCAYAAADtPv37AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADV5SURBVHhe7Z1tbBzntd/X175Z98a8zm2yQRqZSAC6pVGZbQi4BBEaVVi4VJQwAdUYTqxrgULpugohowSuVZqV2zANGQGXKExGARhgEfqiJmECCsgPvJEiCqBAv0giBOilFs1SFqRCpqAXgwqofCCw+XA6/5nn7D47nNmdndnl7sycH/BA4szs7swzM/85zznnOZMgQRAEIRAipIIgCAERIRUEQQiICKkgCEJAREgFQRACIkIqCIIQEBFSQRCEgIiQCoIgBESEVBAEISAipIIgCAERIRUEQQiICKkgCEJAREgFQRACIkIqCIIQEBFSoSpkHt6nO3fuFGwPNtXGglDjiJAKVeHmey9TY+MOqkskKKG1ZKrBWN5IDamk+ruZ9g6fpBsiqkINI0IqVJXN5V9RGwtpW5quq+WGzUoP/88kvVSv1tXtponVjFonCLWFCKlQZZZoMOUkpBaZ1fGc0NYfpsUNtUIQaggRUqHKXKd0m7uQEm3Q3H613mj750RJhdpDhFSoMsWElGh1vCUrpKnBJbVUEGoHEVKhyhQX0isjjVkhbRlfVUsFoXYQIRWqTDEhXaPJPWp9Ikl9CxJwEmoPEVKhyhQW0vWFPqpX1miyPU0SuBdqERFSocpoQtrYS//7/IqVkH/zMs0MtGbzTJPNg3R2XX1EEGoMEVKhyuhCup8Gh/qpu6PRTMpvbGyhvb1DlD5zjR6KJSrUMCKkQpUpHmwShFpHhFSoMiKkQvgRIRWqjAipEH5ESCMIgjVnzpyhubk5euedd8z2i1/8gn72s59RX18fHThwIK9hGdZhG94en8V34LsqS+0K6ebmJn388cdmP7z33ntmvxw7dszsK7RXX311S1/yurffftvc/t133zU/f+nSJfrTn/6kvlmIGiKkIQU35YULF8wbHDfuT37yE/rWt75FTzzxhCVKZWz4Tnw3fgO/hd/Eb5dHGKovpJ999hmdPHnSFEk8VL773e/SN7/5zS39UI721FNP0QsvvECHDh0yxRa/++mnn6o9EcKKCGlI+OMf/0izs7PmjQ5Rc7pJ9fa1r32Nnn76afrOd75jNoggLCbcwGw1ccMyrMM2vD0+i+9w+m69YV+wT9g37GPpbL+QrqysmCLW1dVFX/rSl7Yck94ee+wxU1Sfe+45s18gsmx9vvXWW3n9iL95HbbD9vgcPv/44487fj83PKzwmaNHj5rWqxAuREhrFFh7sFbefPNNV+H8yle+Qq2trfTKK6+Yw3JYiuUeQuK78J34bvwGfgu/id922ifsK/YZ++5tPxbpcFJ9vmWcKjEBFMI5Pj5uPijcHg54cEDI8FCAZVoJSxGW7+nTp819eeONN6izs5OeeeYZU6zt+wOBh9BD8EVYax8R0hoCPjkIFm4wp5sLlg38ctjm888/V5+qHvCfYl+wT05DYRwDjgXb4Nh0rAr5K3TycDMls5+pp5fGztBKGarj37x507QS3fYL1iLWnzt3jv785z+rT1UPiCWsUYi5k/UKlwDEV0S1NhEhrQEQjIAY2f2bsEpefPFF04IJgx8N+4h9xT7bh8z4G8f4wQcfmNtaFfI58X5rG/rI3KwkYAGn02l6/vnn834b7dlnnzWtTe+WcvXAQwfXBCx7WP/2Y4HVPzIysg2BQMErIqRVAqIDn5rdYsKQWRecMINjwLHY3QAYRsMahNUYFFiTEEcM2+2WHPyTGBpjSB1mMPrAAwJWtH58sKxhwSIzwG7xC9uLCOk2g6EZfF/6DQEBgBWHgE0UbwgcE44Nx6iLHYQAgRk/w1UIKNKLIMp6X+LBhAdUVCPheCjABQALWz9u+H7x0PAX8BOCIkK6TcA6swso0mBgadT6ULOc8PDbbl2hb7wIKkQZgqFb8nAbHDx4MBJWfCmgv+A31QNo6AtY+yKo24sIaYWBr8uvaEQdJ+scfYU+swNhgF9QFw38H5kEcRcNfrjo1jkEFT5W8aNuDyKkFQLRYF1AMYxF6pAI6FbQJ+gb9BH3F/qOI+oYyurBKx7Gil8wHyd3B1wpENQ4jXqqgQhpmUFgAAEWvpDZDxhVn105QR+hr3RB1QUUAoGsABHQwkBQkXKm5x8jfQrLhMogQlpG4PvTb3xEkkVASwe+zvr6+mw/PvLII6bFCoEQSgPiCRHlvoRfHhMUhPIiQloGMO9cz/eD5YSUHKE0eBiv59N+8YtfzP4ffYy+FkoDw3oEpdjSx78y3C8vIqQBwIWIeep8gcIfhYipDD1LB1YopkuyaOL/v/zlL+nb3/62edPrIoA+FxEoHVSy0icrwFJFlS8hOCKkPsFFqefyITFahvH+gBWqP4w4Es8pTkg4x3BUFwH0Pc6BUDpwQemTJDDjS9wmwRAh9QEiozz8hE9UnPj+QGAODyC+oSGU/DBCUj0vR5SeU5wgAtz3+BfnQigd9Cd8+NzHmAVWjplmcUWEtAQwnERUWS6+4GAorwdBMHxnqwhiyjOgWDRhNTH20QDOiQz1/YEsCO5rGAWYgSaUjgipR+w3rwyH/KMP5THEtAfm2EqFhQprH//H9vpQHn5ozGbi8yFDff8gj1fPPZVru3RESD1w/PjxvKG8PLX9AatRH8oj6d5eUMRJOJGyg2UQVjvYXh/q41wJpYNzYx/qy6wo74iQFgEzaPSLS4by/oBPjoNFEElkN9itHtzMPNzXh/IINLEFi8CTHbgCOPkc2+GcCf7Qh/rInJDr3RsipAXQAx6oXCTDHX/AsuHUpkJWI/yk2EYPLjF8LpzWAQz1cY74fMF9IPgD/muO6qO/JYG/OCKkDkAwkavINyV8cSKi/sBNqIuoW4WmYlYnhJLToXBunMA50v2mulUrlAbOB0QU/Qh3ltt5EyxESG3gZtQtG1hCgj/0m7GYZVPID8rAN41tILiFZjixZYsmU0v9Yx9JSPK+OyKkGvDR6RWbxNfmH1gwHATCzVhosoJbZN4JDlZhumghdN+2uGX8AzHVfdsSzHNGhFSBG42tIrlggoF0GhbRYtFftwCTG3qOKZLzC4FzyO4CEVP/6NkWcm84I0JqoA/ncaFIepN/9OE8LBnchIWAeGJbiGmxbRkOPCEg4hR40tHFFIn7gj/s94j4TPMRITXgmxlNpnv6B5YnW5cYzheyRAGG8SxypfS7HnhCcKkY7DpAkwCUf/Cg42E+RhxSiStH7IUU+Yx8k4lP1D96YAIWaTERBXxTwqVSKl4DT4zuM8UrSwR/QEx5hl+xAGKciLWQ6jcXIr2CP3RLBcNtLzcXUpywPYTQ782oB568+D9Rk5PP97Fjx9RSoVTwkOQppRgZeHloRp3YCiksGh5Wvvrqq2qpUCoQMH2458V3Br8m+1GDPMD0wBNm5HgB5xrb49yLL9w/ui8cIxGv/u2oEkshxQ3IUWWJ5gaDczYhTF7fCuAnwOQGapfiu5A0jrJ8xdCDJrgGCqVlCYXRszMwTz/OxE5IEajgednw9eBvwR8QTvQjmlf/st8Akxs4fzzM9Dqy0P18uBbkGvAP+6rRvI4KokjshJSnEOJJKmXX/IOqTTwfG++m9wq/28pPgMkNXdDxCmcv4NyzNeUl8i+4wyMMuFni+rrxWAmpngYTrsrqGXp4/w7duXOfHmbUoiqi+0URbCiWy8kggR6fCRJgcgNiju/GBACvrhpcA3w9ZK3jzQdm8OTOA7FSvYL+Rr+jHzE6iKO/NDZCqvtFw5OYnaF77w/TrlQye8MnkinaNfw+3auioOp+Ua+5hBBbtmArkSGBcm+lBp4Av/HgiSf+iv7Xf/jnVIc+Vq1u5wGaXBZB9QL6H35q9Fsc/aWxEFLdLxqmJ+b6Qh/VQzi7+6m/v5s6dtRlb/L6wSVDZrcffRhdSj4mu1RgwVbKJ1lq4AngWni64Rvm5/7i8SfpP//d31Hv3mZKJZWgJrtoek1tLBQEs8jMPjNa3PylsRBStqBC5cPZWKDDL43QhTzTc50uHm1TN3gPndhQi7cJ3apEDqdXYLVygKmSKUd64AlVn7wy9z866NG/tKx+tpYzt2Zof8oShaaxZXOZUBx+YOJei1NGROSFFL44vonDlIT9+Ye/p7Pr6g+djTnabxxLItFG6etq2TbBNwnE1KvFBzjAVIr4+kW3mL3NB1+hU79fpVHj2sBndP/tlZFG67v6Fsy/heLgYcYz3LbjfNcKkRdSruhUShCitlmgPtzcTWNUzE7afIAA1R26XzBCtUkP7j/U3ATG3w7BFt2q/PVvJtTS4nCAaTstFA48IcXJ6znXAyacUXA9Des/ST3FTP/MQ7qPPrvzwOg9dzYf5AcLrfPj/JlC62odPMDQj2hxmfQQaSHlKH0pQZFaJ3NlhJoS9dS34GSuggzdu5CmAztTlGpopEbTr5qk1K5hel9zE2zevkwzo91WIKstTdeNz92aH6DWOusGwGca9k3TqvmRTfrXT6fUcvs6d2C1sitgOwtkI/DBgcVS6ifoD4v33kvT3P4kJdvT7se5eYNODuyiVGoHNTY2WH7Vup10YHI5J4Cbt+nyzCh170pRUo0iMrfmaaA15+9ONuyjafUjm8uTxrlzXhcmOIhXSZ94LRFZIdWnIbq9miJsZO69T4PNddSeXnUJNGVodWI31SXbaTwbbTaWjSu/av1hWoRxdXeJ5gxL4eftKhugbZzmJ35IzZ3DNHXqFM2O7aMGFWzZY4jCf39xp/n/v3j0Ufr1f+vU1hWOwryqpmNW42bCO5vw2wg8lTIXnF8x85UnH6cdO35Krs+r9QU63JCk+r75XAbF+jz1mn7VJLVPwO9yl5bmZmn25+2GiGJ5G43PT9APmztpeOoUnZodo33Gd+D3EnsmafniCO3e2UkD6dkt68IW78JDlKP4cXjLRGSFVJ+G6DXPsTbJ0MNr52lqWAlYsoH2jZ2hGw66lFkapHrjmLcI3Oo4teCGNJru7svM91o3at1uGrtwL0+cl8earHVPPEd/9eQ/zbsh1ib3WOu6pg2pcAaJ8eY2RqvG8A5DdfbVeQ48GdbjB78boye+8Ij5uS/8s39DM1fz+8Vijaa7DJFLHaGzeSszNN9rHbNl5SsyhsCafVFHu8cu5KeuLY8ZIwxrXas9rW1tkvaY67po2q2ja5hquHWqRSSFtNzTEKvLTXrv5UZq0HNJjZZsHrQFozboRA+2cbrprtPvDrRQY8dw/mcWVB1W/aZneN3Xdpn/5lmVhT5noPsbqxlwOH36tLWfRvMUePpoyBii76B/oj5jta/RS9O2EYASv9TgklqQY2Pp76mjsYUO5H1G+bUdA4R+14WD7Qw0VpNICikHG6J28jZvn6PJg81qmGjPJeWbrs/4n0e8CKlqeQVJiggpcgixvhYsESSHY19gnXoONmYe0r997l9kj92eS2oFoRLU5lnd4iukulFz5swZtTR6RE5IkSfKN0A05/1m6MqIGnanBilrE92coHbzuMsvpG32efEFPqf7xlA0u9qgJgAHnkp5171+HaF1aWb+4mFrdCBC6g0OPOHFklElckLK1mgphTRCRzaXVBPNu9PU5eGmy2S0QWoBQfz0XeviR5uyWxIFPscBJiTG10q0lgNPEFQIq1f4WkLTRXNp0MpgSPYt5A/5dYx+lqG9BUYlUbdKIyWk+gmLdhWa65RuM26wlnFaVUuM25sGi83E2VigkfQV9YdBAUHs+1Gzte7Jxi3r3D6nB5jyXAFVRg88lTIPXLdK//YfckVW7k4rgS0wu+x6eoTmsuviLaSArdKoGjiRElI+WZ2dnWpJRMkYN1jSLpgZOntE5Xom2ym9Jfdw3dC/3ZT3ERdBRLrQ41+wHkiJf/lfPAkpxIprfNbizaIHnvB/r/y7f2VlLPz7v9UK3WSj6QmqN6xSe4ZUZjVNu396gnIaK0KK2WLc/1E0ciIjpEjCjtLwYf3iJA0NpenMljwnCGK9c6L49QlqVzmeibpWGpi5TDcNUbx5+Q80tq+B6vbP5d302fQnm5Dqb1V1slazQqpZxPz+KwSYcC5qEcfAU+YWzY/20+jM1fzUIwMIYvNfftX8DK6t3HFt0OLheqsPzMkJY3RmBTORVuj8FCY1NNHIFe3LsulPfoW0hcZzQ4/QEmW3W2SElG/+aDi079J0F24gdaOqRPlTU6PU3Zoybtw0XXRJFF9fOJxNmNdbsn0k9xlMabx5jkY4Id+wYEfO3TSnhf7x/mf05F/nZtYkEk3Ud3LFmjJqfu4yTfWwiNRTz8wKXfm//y8bYEIFploF/lHez2zgaWmQUnysxsPndSTDn5ql9EAnNaSMh9H8LdplXFNYj2ssS2aVJnbr/cTN6JO5W8o/ijqyN+ncCCfkJ6l95JzxcMPUT2vd5akeM/cXn23qO0krLuvqe2bUuvDCrhI8lKKWVxoJIUWkGJYQTlJUnNmZexdocmAvtTQ2UiNaRzf1j07R+Wv6vHhn8j5rfG6LtXXzPXqZv1dvQx/R0f9qWW3JZHLLOrfP/fW3dpufqaUAkxtbLedNunHSeEB18PG00N7eIUr/4TLdVoeCa4o/k1+sRf+s8bkB+wjCygG291dj4xB95HtduGGrNGpvJYiEkKKqE04Oao4KweAydJiV4gW9QEUtBZjc8OvL5c/Ia5yDwb5qZFBEaQ5+JISUZ0+UkicobIWj7rC8vBS/rvUAkxt+xJ9TqHCtCcHAtG30ZfhnHeYIvZDq0cBScgSFrXC9Ubyu2AuokI/taznA5Abm32PfvbojcG3xdVbu903FjTfeeMPsxyjNPAy9kKKQBk5KlGdNbAcQEy5556XIiN8ZQ7UCUrxKDZDhGsP2cahmVEn0oFMplblqmdALKQ8TvPr0BGf4fTsQUy8Wmq857DVGqSlbXM0I15wQDHYJlfLer1om1ELKjmvcCOEulVd9OJqKKZ7F8JvcXmuU6uPFNYZrLezHXQvwiwqjEiAOtZBGfdrZdoGUHp7MUKzcHMTHz3TLWqXU12LwAwfXnuAf3ecchZlOoRZS9nHF5b0wleKdd94x+xE1R4vhtwBILcOBJy+V/HGtYVtce0Iwnn/+ebMva6FKWFBCK6S6wzos76mvVdiyL5YkHfYAkxulvBYD1xpb71GcM76d8EM5CoHi0Aopp95IXl9wvOb1IS0K24U5wORGKcWoOW85KoGSaqHnLYc9OT+0QoocNJyEKAwLqomeh1soFUV/X3wUAy14MHh9Pcqbb77paTuhODwSCMOsuEKEUkhx0fMQM8qvL9gO2BKDlekGrAWeOhqFAJMbXl/Yxw8VXINRs8y3Gw7e4eEUZkIppHzBy4UcHM4HLeQf5VSVKAWY3PDyCmndT4prUfAPP8jD7qILpZCyk1qGVsHhd/+7WWBIVOfcSSSwRx098FTISuJZTlEKulUDdi2FPWgcSiFl/6g4+4Oh+0fdJjTw0AuJ63Gx/tlKws3tNq8evnlsIw/z4HCwM8x+0lAKKVsMkn4SDJ7y6Da7RA8weXovfETQA08v2N+gquDZXZJPGhzO4w1z4Dh0QorIMt/ckj8aDI4+OwWQ9AATLvS4oQeenNLC9OswKoU3qgW76sIcyAydkPKUPvj2hGDwsN3JEuCqWrC44ioUHHjC0NPpoc0jozhZ65WAC+aEed596ISU/VduQy7BO1yww25xISE9TgEmN+A35tKCToEnHv7jmhT8w7MUkRUSVkInpFwUNmrvfKkGblMdOZgXpwCTG+xHdgo88dRaXJOCf2Dtox/Rwjr6CZ2Q4p316HCJ2AcDVidfvPqwlYtyoMmQ1YKnhNrnhLNvD9ekEAyO3Id11lzohJRLuMWy4tP6J/TJmvp/QObm5sx+1IsUI8CERHQsj2OAyY0LFy5krfd3331XLc09dJxnhW3QtQ9P0Sm8RrtIO79yh+4/LPZu2GgDVx36MqwvFwyVkGKYyRe0W35fdMnQ2SMpSh05W/R1zF7g6vB6HqQEmNzh91khyMk5tx9//LG5DNfkVhfIXVo81k/93a1UZ2yD7dCSqWba22ss77dad0cDpZLWurqde2n45I1Qv7veL9y/fX19akm4CJWQYpYNX5Cx891tnKAe3HDJ/TS3rpYFwH7h6gEmCZ5sRQ88cZ/hGuTrsdCrStZnfpzdri19XS3V2LxBJw83U9LcJknNg2epDKc4VHA1t7C6SUIlpBzdww0fN9Ym92RvxqaxZbXUPxwo4dQnHlohEh33AJMbeuAJ1ijgh0/BySGr49RibIPtHIXUZJ0W+urNbRKJFPUtbKjl8YCLi4e1NmmohBSVntDZXiq5R4rMFRppsm5Es6WO0NmA43suVoKCJEh/4u+WIhyF4cATqrsD9ikXrEJ2PU1tqn/dhdRgbZL2qO0SXdN0Vy2OAyykYS1eIkIaAjZO9FAy2UPpcbZKk9RzIpjFwkU3fvOb32Qjpl5efBd37IGnsgopLdFgSglp8jAtqqVxIOz3dqiElJ9abA3EgzWa3JOwgkzsJ8WNtmfSWOMfFtLvf//75r8IMKHykVCcQ4cOmX2GwBNbqLg2XfEspAvUp7ZLNI7QFbU0DoiQbiNh96P4YnmMmhJNZLlFrci9eaNll/mD08geffRR818JMHkHgScuP/j1r3/d/LccQpo5e4RSartyZWeEBc6ACGv8I1RCypG9+Lx+eYNO9CTzrU9TWIPfbDwkRZMAU+lgWI++e+SRR8x/C04Q8SCkmXvz1FdvbZOo76OFmIXt9YycMBKqveYakLF5p7gZfLD7Q5dpjANPAVKh6urqshcugk24kKWV1rhWAVrBEnCakKba36D0rJaQPzVK/d27crmkrQM0fyt+yfl6Na0wVnUTIa1hlseaHCP0QVOh9LnN0srTfvCDH6jedSBPSF/LJuNbCfmNtKNOfU+ygToH0nTmRhxT8g0xUn2Eh1TYECGtVTJn6UjKRSj1oJOPVCiewSStfA2Vi9zeMlB8aL9Jt8+l6SUe2ifqaPfEaqx8pID7UoS0wsRJSC2r8xv02oQ2DMy239NQB990/lKhOOVJCpMEwz6xwRGvwabVNLXzAzJRT4NL8ZFSiKd13OGctRgqIUVBA3R09N+TY/lBk80v5w0D81pvB9WrC89PKpSn/MdysPnA9H/deRDN4SqXHCxYbMOjkIKlQc7KMM5/30JsrFJdSMNIqPY6LulPVhpMsfSmNZruSqqLr/RUKFQjx2crVkVrc5kmD+zMK9hRt/MATS5HS1A5H7c8eaTGuZ/vzfZXoi1NhbeODpjogGMO6zuwQiWkPJUR6TrRZZ3m9icp2XOCig3Yg+QdehIAv2RWKd2eNKsZ9RrWc+/e5mxUOpHsoukylQKsBbhKvtN7nbKUIKR3p63Xv5itdz42Fqkk5G8jYe9sL2SujGgJ+MWwZj1ZN94emixBoFhIUYij3FxPv0Q9M/nl4DK3Zmi/mv5YjqIrtYInF4lnIb1O6TY+n/EqXMJvrBUh3QYiL6TKkkt84yhdVIuKsTreom48wyo1LBivaaWegiS+WKFTv3eOOF8ZabT2tW9BLQk/XoRUH667CmnmFs31cPWnBNUbfRSnnPywu+1CJaQo5swXWrTYoGtzo9TdyknySWp+eYjSs5fcg0hrl2g2/Tq1cg6ianWtr1P69LWiboHKCak719Nt5rEVzTLIPKT7CFDdeVCwyPHmg/ukF5bffOD+mULrgsD9vrXQuKqQPzWQd46SDZ3U2z9KU9kMjCka7d1LO7Vc0n3pC3QvLmN6hQjpNvLZZ59lL8gwzn5wR1VTt0fm+4/TVbXFFq4ed9hetWOLRUuwoTgx+nH7XiKofL/taVp1EwkUOB7YRanUDmpsVJXj63bSgcnlnABu3qbLM8ZDZ1eKkok2goGXuTVPA9mHEMRqH02rH9lcnqQDO53XBUWf2IBrMx+3c+rU8NA8RYuXb1JEkxuKgnKO6McXX3xRLQkXoTPtkPiMDi9YSFcoCr/WensqaW3S8uRLVF9oDvn6Ah1uSBpD2vmcNbY+T72mXzVJ7RMYEt+lpblZmv15u6om30bj8xP0w+ZOGp4yrLvZMdpnfIcpbnsmafniCO3e2UkD6dkt68oR7+JIc5hfI1wr4B1h6Eun116HgdAJKaftHD9+XC0R/MD+Zrw+o2LAevxDml5X1iLmkc9cvefgP1WpXFtmaWVovtey+PJSgTKGwGIZZgCN2YbB2aIuddQ6/H7+umzh5C6aLkPVZM4iwTUpBMNTOcIaJnRCCtMfHY6hgOAfvUiE69TGoHw0ZAzRd+TlkmLGzkvTtmCUEr/U4JJakGNj6e+po7GFDuR9hut2WkP7fPyuKx2eahvW4Wgtwe/DCusbGkInpHzxyuuCg8NukopfvJmHdO3kMHXwXHJbLqkVhCqeY5mjNoSUH+q4JgX/4EFuXhdGC2tx8dAJKdeBDOu7XWoJTibftuHU+hztV4n5XdrYevGw5bsMm5Cym0l/171QOuxrrqibqcKETkij0Om1Ar8Abzsd/JxLqosmzy8vOLc8k6m5oT2/QRTXpOCfKBhHoRNSfRhQMd9eTOBqWtv6xoEFK+2qdz4ni9lpkckecksxvZ4eobnsuuoLqV5kQ67DYLC7LsxV3UInpIAd01ICLhgcdX766afVkspj+kPtgqm9hthpRg/Ky+3+qV57oPpCimIv2F8ZGQUHD3L05dGjR9WS8BFKIeWO385ZOVFEt6rKVkw3c4vmR/tpdObqltk5Vr3Neurbkky6QYuHeXpkkhr2jdGZFcxEWqHz5sygJhq5on1ZNv3Jr5C20PiqWuQTntAQn/eHVQ5UfEJfFqxXUOOEUki5Lmm8XstcGXiueNkCTkuD2YpUibpWeh3J8KdmKT3QSQ2pVhqYv+XsB82s0sTu3AykXKunnjn+TIYe3r9J50Y4IT9J7SPn6KY59dNad3mqJ1untanvJK24rKvvmVHr/MGBpoJ1SIWicMwD/ubNzfBO6wqlkPKc+8ceeyxiU0W3H0wRRV+Wzz+1STdOjprvImpsRGuhvb1DlP7DZbpd9D7RP2t8bsv7i27Sey/z9+ptiD7yva50dD/91jn2QilgOI9+DHux9lAKKeD3iqP8luAf9pNGtqJWBWD/KK5BIRgvvPCC2Zdh9o+C0Aopp+7AVyX4R5/h9Omnn6qlQiEOHTpk9heuQcE/GMpzCllYZzQxoRVSFCTGCZB5zsF55plnzL5EIROhONxflSiKHSe43gNm2IXxhXc6oRVSPeIMq0rwD0egxcIqjm7Bly3TIaZgIgj6MQqZD6EVUsARZ7EMgjE3N2f2I3Iiw24ZVBoeCYlPOThRynwItZDyEy2sVbVrBfiquIBJxd4qGhH4XVdhrZtZK6CeMPoRbWtR7PARaiH9+OOPI3Uyqsmrr75q9qOUhHNHf0MDrj3BP2+88YbZj4jaR4FQCyng4UHY0yeqDTv+EUWVuePOcM6jBDiDAffRU089ZfZlVCpnhV5I3377bfOEPPvss2qJ4BfxORcG1xj6B9ec4J/Tp0+b/Qh3UlQm1IReSBFFxQwnnBh5j1MwuAqP+Jy3wj49XGuSJRIMfoNtlIqzh15IQWdnp3liJDk/GEjIRz+iic85H04Rw7Um+EcPbMIyjQqREFKe5gi/i6TvBINfQibvxMqBa4qnJONaE/zDRZyjdq9GQkjxlONSXGF9C2GtwJW1IBxhrsZTTnBNoU9wjUmfBIODw1FLH4uEkAKu9o4ixWKV+gdCwdaXBFUsaxTXFPpD6t8Gg4u9IDMkan7myAgpUnbEKi0PnAkhVmm+NSppYcFgazSKsYzICCngJF/J8wuG7iqJeyoU3/y4tgT/cMoTsh6iGMiMlJBiuMBluWSqYzDEVRLtoeh2w1Nrw/yCu0JESkgBp6mIVRoMcZVEeyi6nfCsOVijUa15GzkhRWkzTtAXqzQY7CpB/c24WaVsjeJaknJ5wWBrNMp1HCInpIBnTsRRAMqJ7iqJUwQfPmIu3hzVoeh2wQ8ktCjPPIykkEIAeFgqieXBQP+hH9GfcfETxvGYKwHm0XP9BlQXizKRFFLAKTywqGRo5h9Y9GydxaGCPq6VOFrhlYDrBaNgeNRTxyIrpBAADhbI/OhgcOoKWpTmRzuB1wLjOHHtiFvIP3hNNccq4pBCF1khBXgzIQuABJ6CwW9thXUa1SR93Z8X9rdaVpvnn3/e7EfUbogDkRZSwJXf4auJSu3DahB1vzOuDS42HHV/XqXhwiSwSOPyJoHIC+nnn39u+mhwYmV2SjB0v3PU8gE5/xjXCq4ZwR944PL9Fqf828gLKeD50mgnT55US4VS0f3O+DcqQ3x9SC91GvyD6wPvYEI/wrqPU22CWAgpYB8fnpZStNg/sES5MO/BgwfV0vCCKD27LOS9/sHgacUY0n/wwQdqaTyIjZDCB8bl0OAIl4isf7iQNlqYCx3jGnjuuefM48C1IT50/yCbg6P0cXwRZWyEFGBmBecIynvJgwFrFP0I6zSs/lL2i+KakPd9+Qd+Ua5hi/SxOBIrIQXj4+PmCUcTf6l/4B8Ns79U94vimhD8YfeLxjVQFzshBeIvLQ+6vzRMKUPiFy0fcfaL6sRSSHV/KRLMZT61f3R/aRjyS3Guecqr+EWDwfmiaHH0i+rEUkgBprCxVYLgk9xQ/mFfI1otTwfEOeYZNzj3uAYEf8AtxsGlKJfH80pshRRgKMJDU8zHl0i+f7h0IW6uWpyOi3OLc4x9xDmP8zA0KJg+y/cNao3KfRNzIQXHjx/PPlml9qR/cDPBMqlVoXrllVeyQj83N6eWCqUCK54j9Egdk5GcReyFFGA4igsDTaaR+qdWh85c6R8tzHmv1Qb+Za4vKrGFfERIFVzMF03qUPoHYvrss8+a/QjLpdpiyvUB5LwGQw/S1cJ5rTVESDX0oIlYpv6x33TVqgCkW6IyAcM/SBfj8wm3jUxe2IoIqQ1dTJEbKY50f+hiut0+U5wzLp+I9tZbb6k1QqnoPlH8K0E6Z0RIHUBOHN+ECKCIQ90fEFP2mWIaJgJ7lQbnioNeaDKc9w9Ek1ME4RuV4bw7IqQuoJwaR/Mlz9Q/6DeeQoj+rGSeKX6LhRu/tR3CHVWQwsYpThJYKo4IaQH0iwkBFLmY/KGnRqFVYhYMpvpykAvnTOoo+AczlsSIKA0R0iJgeMMVv+EjivrL3yqJ7n/u6uoqW+FfiCafI/wrfjx/oPAMV/VCw8Mvqu/nKjcipB6Ab4itHTypUahBglD+gDXK1g78bkFED+eAX/mLhnMkfjx/oAANV/NCw0NPrnHviJB6BMMbngaJBr+fDPX9AfHkF81BVP0M9TGUZ38oGs6NDEH9gUkK7MJCcKkWp/jWOiKkJYIgFF90MtT3D+pW8jvk0fB/r7UscaNzNBnnQt6z5A/7UB5TPpEzKpSOCKkPkGCuD/UxvBRfkj/0oT6s1EJBIvhUDx06lL3xcQ7i8rrfcnPhwgUZypcREVKf2If68PfJkMgf+lAfDYEou2WE4ScnhqPJUN4feBjBCuWHlwzly4MIaUCQq6iLAIaoUXvn+3aAYb0+GwkJ/LBWr169ms1DRUNfS36oP5DDy9kNaHhgyRsiyoMIaRmAZYThPT/lIQKYlijD/dJBrUt+syfaI488Yv7LLhSxQksHw/jW1tZsn+LNAJJnW15ESMsIUm/0SDKG+wiEiO/JO+ir3/72t/TlL385249o3/ve98TSLxFklejDeDzgUeVMHvDlR4S0AmBmiO7PgwUggloY9A36iN+lhfbVr37VrMDOf0MQ8LI6qT5UGDxwIKAQTu47J7+zUD5ESCsEnPpI3Oc0HTRYqCiiIRZBDvQF+gR9w/2EPkPf8cwnDPd1QUWDMIig5gMBRRCOLVA0ROZlGF95REgrjJOgwlqNu6DC14k+0C13/F8XUDvw9UFAeXs0BKLOnDmjtogneKCgX3QBxYNHBHT7ECHdJpyEA8nksCDilNSPY8Ux86QGtFIfLBAOvINJFw7klCLKH5coNLIcjh07lhdEQoOAxv3BUg1ESLcZHsrqKVNo+BuR/ijOFccxIeJuP2b2Hfu1zHkoq/sC0WClwk8dtQg/+gk5n3brE01cHdVFhLSKOFlnaEj/gbUR5uAA9h0PDD2VCQ3HinzRclpNcAWMj4/nZUzwb8FyxRA3rKIK8URfIXik54Cixc0Kr2VESGsA3OSwoGBJ2S0NBGEgtlhfy0VSsG+wLrGveuAIDceEiQo4Br/Wp1dgpcKyd9oHDHvhg4UwVXo//ILsBQTXIJC4HuzWNsQU0znhLxZqBxHSGgPWxcjIiOn7sosqGqqVwzrB7B7MM69GShVECL+NaZvYF343k96w7zgGHEu1LCYIJoRd90tzg0BB3CFY2K5aDyn4OjFFFtZ7Z2fnltEJGgKVsKzxPn5JoatNREhrGFiqGJbCAtELTNgbhAw3Id6aiSEubkyvlZQKAXGByOA7sQ/4DT3P096wj9iuFofS8NPiOJCH6iSsaBAsuCIgWhBYflgFtV4hfvge+DfxvRB3PGT0TA77fsDnCXEVv2c4ECENEfAF4maEWOGGd7JenBpuTAx10XADY4irNyzj9W43t73ht7EP2Bfsk1vKUq0CgYJQQbDsboBCjfsJDy97P6LBb8nbOI0onBqEHQ8piCyG9UL4ECENOQjqwAKEKGCYjZvZHpQI0vBd+E58N34DvxXF4AasTogr3BXwo+I1GxBFu4/Sb4OoQnwh3MhggL8Yfs6oZRbEFRHSiIKhPUQWDVYOhuhouIERFNIblvF6bMufC5uVWSm4PxDI4n7CA8Xej2jwY/I2cCfwZ8W3GW1ESAVBEAIiQioIghAQEVJBEISAiJAKgiAERIRUEAQhICKkgiAIAREhFQRBCIgIqSAIQkBESAVBEAIiQioIghAQEdKqsEaXTp2iU65tkS7fvEMPSig6tPbJJ7Su/l8RNq7Rh477yu08rdy5Tw8zavssxY7VaouXb9KdUg64bGzQtU9u0Zbd3oKx3YfO+57Xzq/QnfsPPXxfMDIPb9HlRfymca3cqvzvCYURIa0KV+l4fz9170pRkgtbJFPUvLeX+o3lvXubKZXE8jraeSBNF+4VuU0yZ+lIKkVHzlbwdrq7SMf6e2nvzrpcMY66HdTR3W/uc3fHDqpTx7Fr4CTdyGpi4WO1jreFdtRZ6+p27qXheS/CVibWJmlPYg9Nrqm/XblLi8ewrzut4zRbHe3o6M4eR393BzWkkua6ZGoXvT55sQIPt3W6OLZb2wfVb7vH6GJFn6RCIURIq8oaTe5RN0Nbmq6rpSBzb5766tW6+j5aKHCTrE3uMbdL9pww7KYKY4q22q++BbXQYnN5nNrNB4CxL+1pWs1Tw3Wa+bH6nO1YTTL36EL6JarH+kSS2tOr2yCmGTp7JGXuU9PYslpWjAxdPNpoHUfCOC9qaY5NunHyMDWrfqg3+qh8+pah1XQ71TV00vAUrNEpGu1uzYrqtpx/wRER0iqz0GfdBE7ikrkyQk3FbpLMFRppUt+RaKP0FoUqN9cp3aZ+zyakYH1uf9bytIvT0qAlWo5CamIIxXibOpYm8qxtflmfo/1K8BIpQxQ9qtDdaX4ltJOQWqzP91LK3CZJPSfKJG9r03Tw8DzlD1AydG+G+7yLpu+qxcK2IkJaZQoJKZEhko1qvctNu3GixxhG1lO9EoTUkbPGrVVJCgspbRjiZO6v0WzHdD2tRNJVSA3uTlOX+nzjyBW1sDIsjzUZ1r7Rd+r39hQf31ss9FnHUUBIjccGDbLlvn+uLJbixrVP6JbTyc3MU6+5P+00Ed73JYYaEdIqU1hINdFyvGkt10DT2JXsEDWR7KFyGUDOFBFSYy/7zP01mh8hzYqCYYUfXlQLK4DpooC1uJpzrzSNkScj2JOQrtJ4i/re9gmqrL6pPt8zaVwRBdh8QCvnraDY4uVbDoFBi83bl2nxEn9Thh7eMv42P3Ob8sOBhdbFCxHSKlNQSAtYdyBz9ogxfFSBkuWxrBugkL9v7ZKKLpfULmk3aBEhvTJCjWo/ksZ6/V71IqTWMVmf78qOUz1GzO3tw2uulqDpV04dIcTnTKve/E2Pw3AvQmoGsazjSA0uqYXlPw6wYexPKtlO6XyntMY6XUzvo4bUTtrbi6DYLiuYWbebxjhCtXmbLs8M095mFRTEuc2s0vS+hlyQ0Gh1uycs3/f6RRrbrQUe9XUxRIS0yrgL6bqxrl5dpCnqnbeHLNZpbn9S851qgSslEE5cPa4izCW143RVfb6gkBo3XrrdilrDXztuu6uKCqlxcx7l764fpKXsx62IufO+FWjHFo1POqD8ytkHjh5AK2bVgWJCmrlFM/t5hNBF09kvLPNxwD96YYx2pxrosGs0Ul1HtoDl+syP8/dv7Qat3LlEv+L+7x2n9A930cDMZbp55w6tZANoxsNmap4GdxnrppDyZltX2eFQzSJCWmWyQppqp9dGpywLZGqUulvV0z7ZQPumHSLYpgWan/KkW1b758oXK85HE9KmH9FQetbc59n0AHU2KBGta6Xhs1t/PyukxrEOmlFn1WbTNNS7l3aaKVBJSu0apveLpXwFwOqn/JQn019q9l0TjVwp8ttZIW2i/6iO32pTNNrfTbtUClTdzgM0uVyJAa9h2c4Z10g2pSxJDZ3DNO/gQLWO1UHgbk5Qu/nZBOnPw9zD7leUv+u5DIdE29EtqVZXRqxMhoq6Y2oYEdIqkxXSlv9J/7h4iqZG2RIZpalT5+maoyNLXdR2n55uWXn195WMJqT/6bd0/tQspYfUPg+laXbxMt120Q5dSF/TLS4t/xIi3D06Q1crJqSW5b4lC0IbihdNI9KE9Ef6cRgPg5YduQdg50CazuQSassI57Tm8m+tvttN7+aZ+jxK2U9zWw7IGO5PDlH/6HxeACt7jhzcNn7XxQER0ipTONjkgrrpnaLMOcvKOUG/4j7SAuSsHadjzdDDazP0U7ZqDSHKDVfL51u0fLBOfbNBJ3rYLVEkQb/I0H7z9jnNf1hHuyd4RFEBH2nmHl2d+ik1qKyN/IcAB/4KBcXyESH1hwhplfEjpJZYttDA7xxuuonX6BvmzWPcVF3TW/x9FfWRFqGwkCr03M5sBkK5fItKLP/mZfq1vd+M9vuhDut3jVY/uLTVncIU85GCvPxezoktt480x9p0lzXMTx6m7OD6epraiu2nDRFSf4iQVpmShXTjBPUYQlPfkZtiaW8/2nIDl5MKC6lBNnHfaL3zrnJWOqZfOUnNLzv3W3//a9TOrpFCaWRehNQgl7ifoJbxVbW0QmQM69N8AGn7lM36aCT3lNwM3buXc3iKkPpDhLTKlCqkZtpOcj8ViiVllgazSeblT9CvvJCujrdY2xmtfELKfuURKhRLylp2RnNN0PcopJn53uxxVFxI+bzk5azmJnS4Xgdr0zQ4kTsbIqT+ECGtMiUJqQomtRWdB2qlRpnf66kgRyn4F1KO7BY+Vi2Nq5z7bvqVU9RXbB6oPiR3SSPbmNuv9q+QkGpRbhd/dVlZn6EfG9Z2Vy7XyiTnM683jt329DXT1bry+liE1B8ipFUlQ/O9uMiNlhokTtt2hueh95IXI01PbE/1zhvSWi60GTtd00V9dzm0Y3UTUhQuGWnPpvSUr3DJuvHbhqi1jBt7XxwuAoPWZliS9n3IWcxuQrpJN2Z6sqOC8hQuMc7/9AFqadlLwyev5c9K2lym8fak8++sG0N+Ln6TqKPW19M0eyqXrmb3BWcfdoXE0rie7H2SXVem6bBhQ4S0Klg1OqeGO7I3m5kLuG/MvMizs/MUG9fmtCo/xs3QjdQoPZKug++eouEOTuZX3905QOnThWfIFMSsRzpL6YPN2aGvuS8DyH39kK65frHDseo5s2Yzvncol39p5s6my1OCbu1cmgY61ewclZI06xYFxzHOpulgM1vzaKq/L62YEffZ9MFsZScz/QkpX9njQPqaXmoQ/ZOfXuQfPasgYZbp64Zft7uDdqTQXxdsxUxyZFanaR9nQ2SbcU3oBVDWLtGpqVzVqkSymQ5PnaIPcWLNdcPUwYKM8zM267zOsHxf4nUxQoS0Klg1Op0DHv10PBciN7m7eMxhOz2SrlPguz1Ef10x65E6fKfZjtGi6xcXPla9jSJJ//xKSQWti+GYpeDWD4WO8fii54i7OUlh8TLdcpvM7hekOv0hTUP8W3gYee0v/bPG585fsxWDvnp8y3GgHcOJ9bsuRoiQCoIgBESEVBAEISAipIIgCAERIRUEQQiICKkgCEJAREgFQRACIkIqCIIQEBFSQRCEgIiQCoIgBESEVBAEISAipIIgCAERIRUEQQiICKkgCEIgiP4/nrfEPVZbvAoAAAAASUVORK5CYII=
|
In the given triangle PAB, the lengths of PA, PB, and AB are as shown in the diagram. What is the measure of ∠PBA? ( )°
|
A. 45; B. 60; C. 72; D. 90; E. No correct answer
|
B
|
34
|
iVBORw0KGgoAAAANSUhEUgAAAU8AAADrCAYAAADpNxS+AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACg0SURBVHhe7Z1fqFXXve93k5bVh9ibh+62kMgtmGJpKo1QimCg8VBMAhKUUzw9UklAcykbc7GtYkoCDRhP4HqhsVJ8WGAfVCJHiA9yYjWgSIomeG6MGCuaEItNSGwxRfsgrD6Muz5zzd/eY8+9/o65/swx5/cDg52stfZ277HW+I7fv/EbU04IIcTASDyFECIAiacQQgQg8RRCiAAknkIIEYDEUwghApB4CiFEABJPIYQIQOIphBABSDyFECIAiacQQgQg8RRCiAAknkIIEYDEUwghApB4CiFEABJPIYQIQOIphBABSDyFECIAiacQQgQg8RRCiAAknkIIEYDEUwghApB4CiFEABJPIYQIQOIphBABSDyFECIAiacQQgQg8RRCiAAknkIIEYDEU4ydU1un3NRUt1Fz00uWutVPv+pef/+ma6TfJ0SRkHiKydC46c7vXuVqJpjPHnWf3209dffzK+70fzzuFqVCumTDYXdVCioKhsRTTI7r+90qE8+tp9IHjYa7Wp8T18XN52+lzwhRBCSeYoKccls7imeTxln3wnT6/NRKV/8wfVyIAiDxFBOkh3i62+7YRhPPKbfx2O30cSEmj8RTTJBe4tlwJ2cknqKYSDzFBOklnhfd7qUmnkvd7ovpw0IUAImnmCDdxfPWyRk3nT5fW7XfKeQpioTEU0wQTzyfPer+eietR7r7iTtX3+CW1FLhXLLdnVKqXRQMiaeYIJ54LlvhVi9d4qZTwZyaWuQeWLraPVc/7T5K6z+FKBISTzFBesU8hSguEk8xQSSeIl4knmKCSDxFvEg8S8Y///lPd/36dXfhwgV3+vTpZPz+979Pxu7du92vf/3reWPfvn3Jc6+99trs6z/44AP36aefpj9xlBRbPP/+978nc/nWW28l83L06NHZuczO486dO2efO378ePL6c+fOJd//j3/8I/2JokxIPCMFcWOBIn7btm1za9ascd/+9rfdF7/4xZYYDWHcd9997pFHHnE/+clP3IsvvpgI7Pnz5xNRGQ6TF8+7d++6S5cuJcL4yiuvuM2bN7sVK1a4r371qwvmI8948MEH3Y9+9CO3ZcsW95vf/MYdO3Ys2aREvEg8IwBrEisGC+exxx5LRK3dAvXHl7/8ZffNb34zGY8++mjyfWvXrnXPPPPMvPHEE08kz33/+9+ffX27n5cdiAGiinhfuXIl/U0HZfziyabDJvCzn/3Mffe7313wd7Ub3/jGN5J54fXMFSM7j8yFPffQQw8lr7///vvb/jx/sNmxQW3dujWxWGWlxoPEs6DgdmMJIW6dxJLFiZXE4sUlx3pCyBDbvLCIsTIRGqzOH//4x4l4IMrtfhfElN8DtxVXtS8+O+zW2s8YkXhiJTMviFM3sUTwsN6x4tkQcNX/9re/pT8lH3/5y18SYdy7d29ieWKBIsjtfg/ElPf0+eefTzwLLGNRTCSeBeLNN99MBKidxYJoYdVgffK6YS3sEHA3ewkSYoTodnRNs/08pze6/7x2ZyiNj5kbhAoRyv5eDF/ocdknJVC2QeHG4xV0et/ZQA8cOCAhLRgSzwnD4sXKYEH7i8YsEMSy6BaI7woTd/X/DgZ/B2Jmgt+9k3xY6znm58iRI4kIZeO+WHn5QwzjAY8DMW3ncfD/iD6bp5g8Es8JgIiwQIgz+osDK4NFjlUXc+wLMUWospYffx/ixt83rM0A9xrRzlptWL5sPEUXy24QfuHvw8LPJrDYbLHsY/77YkfiOUZwYbEcspYRCZ16vT7ELHZx4G9mkWcTUViDbCChIooAk2jxfyYCSrYcwSkbCCl/M7HnbNyZcA7eiRgvEs8x0E40zTLqO7lSAljgiJvvjiKizEM/GwcCQpzSDw0wpyR6cNmrEhNkrrDs2XRtHhgS0fEi8RwhxK9ww33RxFXHgqgyiBxWp59xxmrsJKImmmw49nqsL9zZ8RTzFxc+Y9k4L6Ja9c/YOJB4jgDiUHyg7cPMkFWwEBNR36U3EbWYL+EMXzR5XqK5kHbeDWENSqTEaJB4DhHEgPie/wHGpZRodqedZfm1r33Nfetb35r9/26WqZgDESWB5sdFiZNSayqGi8RzSOAm+RYUhdC4VKJ/ENHf/e5382Ki99xzj/v5z38u0RwQLHNE1DZy5pRDF8yxGA4Sz5yQ8PFddOJ41DyKwaEQ3I+DfuELX0i+YkVh0VclITRMKML3S+I41FDGaoRJIPEMhB2cTjrmHrHDE4uThTQ4xIix1G2BY8HPzMy4Z599dl5GGbdeMbzB4bNKdp7Qh83lT3/604meUisDEs8AiB/5i5picE4KicEh1mluulmYf/7zn5OFzobEvGYtUjYpuZ+Dg1iSVLJ5pNBeVmg4Es8BwfKx0x4serLBYnDIpvsLmc2IZAdgFfmPAxY9MTx7HFe0SjWywwTBtPg8GxSxUDE4Es8+wdLhDLotXspAbLGLwcCa9BuKMK9mSbKw7XFLdmB5GsSTzVLFOlU9YxhsRn6snrP0cuMHQ+LZB1k3HQtIyYswfDcdC96PYSKgJqosZrM0cdn9WDKbln80U258ONTZ2iYlN34wJJ49oOO376Yrkx4G4pZ107O1hyxkniP2iUAimDb3CKQPm1fWjVfhfBhk5OXGD47Eswu4i7Yry00Ph/gmJ6xM6Hw33UD4LBtM0sggpmyLul1SznfjsZzUZSiMrBtP02ZZ892ReHbArCAGJzTkpoeBKFqdISJHA492WJIICyg719bazpJHWRBMs5xw8eV6hoPVyTwy+NxLQDsj8WwDLqJ9gHAN9QEKA1GzDkhYlZ1EzU8StUsA4Va2Sx75INL2byHShFtEGMSlbb7ZsGLuLTtKJJ4eiCRdkGwhc5ZahMHRVKvN5Gsnd5o5tyQRfQA6gRtpP8tPHvmwyC2xx+LvJLSiN2w+Fg7h/VE8eSESzxQWHhleW3icyBBh0AjFFh7WYLemFH6SqFvdJoJpYpxNHvng8uNu8joGP1+EgUdgCTtOdymePB+JZxOsH0tosIg7xeVEb1hwJpxYgd1qB/0kEUdde4ElyWs7JY8M3k+zVBkS0HAQTLtfi81L3ZnmkHg2MUuFRa9kQzgsNBNDNqNesTJLEmHV9JuQM7e8U/LIx49dq8QsHD+ezFcV07eovHjaAsOa0WmVcLBIzK0mu95LOHHtTdgGafaBxWnJDBIbvbBaUL5HTUXCoUzP3l8lkVpUWjz9sgydUQ8HS8S3THolF3Cr7fXUFg6KbXjE4zoljwz+Ld+zOHfuXPqMGBSSgBaSIbnH3FaZyoonVgsfAkY/8TbRHj/DjWXST1LBNq1eSaJO+MkjLMtehPyOoj14DGb5c2KsylRSPHHP7QPQLXMruoPlgQXCPGKR9NM5H/ferJc8m5afPKIOtBcIrlm7FNSr9CYcEqq2frZt25Y+Wj0qJ57Ebmzx6gRFPqzLFAup33uarI4WIcs799ZAmRNI/YBgWuYYS1TvfTj+CbyqJuMqJZ5kdK0bD0kNLZ5wSL7Y4ukncQNvvvnm7Pfw33nB/TYLqN+YNQkn2zwRfxGOxZ6Zzyr2faiUeFrmlXIaNdINB9fbiqf7jXuxUZnbjPU5LMz67Sd5ZPjxbmXgw+E9tb4FGCVV6/9QGfHEtbAFo5KkcFgwlnzh2F6/JSuWJMJKGWahNf++ueL9JI8Ma4+H6KrwOxyMEKvtHWT+y0AlxNOPcypBlA+z9JjPbqd8fPwk0Sh6RdrG2G/yCBBdO1Ov+Gc+MEaYR0aV4p+lF0/FOYdHSJwThpkk6sSgySNQ/HN4VDH+WXrxtDdVcc58EE8cNM4Jw04SdSIkeQR+/FNHc8Px459sYFUwUkotnv5RPjX7yIcl27Ae+41zsoAsScQ59lFDB3r+rUGSR2Bn7HHj5ZmEg3FilnwVupKVWjwtsUGrOREORxqZR8Yg1qMlibD6x1GUTojGOsoPkrzgeKklPUYRk60S/nte9gYipRVPu/sm9AigaOG7Y4OUGPlWyDhbwlnyAo9jkHPsWEp8H7+zsu/h8HmxRNw4vI1JUkrx9ONzOreej7179waJil0mNglX2JpaD5Ig9DcJTp6JcPxrVcocRy6leFp8bpA+kWIhuNrmzg5iPfpZ+UksHrK9eBz8+4PE3vy7klQ8n48qxJFLJ55+fE4LIB8hC4DNik2L75uk22bJo0Fjb9p4h4O/8ZY1jlw68bTrNIZ5BLCKYIUxj4xBrEfCJHwPC2eSnYv85NHmzZvTR3vjh3x0fUc+LI7MZ2GQ6odYKJV4WndyXK8qNioYJhazHCT+R5LI3GVipZOGGyD5XRiDJI+sYxC9P2V9hoO3Yl5IGW+iLZV4mtVZ9SateaEvp4lOPz06DRPcIp3kCvmdEExrtizrMx92CKGM1mdpxFNW5/AwweFrv/hJoiJddeFbw4Mkj2R9DocyW5+lEU+zOsteWzZqfKuz3yYbiIstkEHii+PCj8P2mzzib1LsczhYzXXZrM9SiGeomykWYhl2NqN+CRGncRIq7lhKfA/fW5QwRIyUNQxSCvEMcTPFQgh3WJ1jv9dqhLrF4yYkrICVxIbA9wzSRUospIxhkOjFk+YftihkdeYDq4x5HMTqDEnITIqQ39W3PkU4vvVZhEqMYRC9eFrLOfo5inD4cNtZ9H477VspENZqv/HRSeI3Ze53AROGMGtcLevyYRsR/XXLQNTiifVgu5ncqnxYN3aSJP1YZYhtSAejSRPS6cks1iImw2KCEA/zyOj3FoIiE7V4WhyLmFu/PSZFe0wg+r2mJLR35qRhYxi0xyi9YHk9gluWeN2ksDaRZejcH7V4WmZY5Un58F3Tftxvv/HGIF3bi4Lf3b4fVxzBtLKlqt5RPiysbIlL+2InWvHE0rQFPMrrHaqAnUHGIusHa/k2yH1BRcPuVeq36Yk1DFmzZk36iAgBL6Us6zZa8fR3sH4zp6I95kr10/3GbzYcQ5KoE37yqJ/aQyxU+7uLWMsaE7Zxxe4xRiuedqJo27Zt6SMiBD+I36vZcaxJok4MmjyyQnudOMqHVWmwecWcq4hSPPmgM/mMMmTtJokJSD+lXpYkosKhDMfs8FgGuTLCTlJhqYtwmPcyxJCjFE8rq8EKEvmw+GUva8pPEh04cCB9NH7MHWf0Sh7ZMWBcd1V35IPOZ8xlzB5MlOJpwXu1nssHFoDF/XqdzjKRLaPVZVUb/SSP7LimbinIh7Wq6zdJWUSiFE+r01NhfD7syhIEoRt+kqiMYRL/yoheFrjVw5ahTnGS+LH2Sd44kIfoxNOPd/IGiHDsuByC0Ak/SdRvAX2MWOOKXskjex3n40U+7HMVqxEUnXgq3jk8rGKhm7VVpCRR484N996ZQ+7VHTvcjiPvp48ad91Hb7eee7l+2n3U7iBQ46Z7//VX3Y4dL7v6H/7kbqUPQ7/JI7/9YRmSZpPE4p6xht+iE0+Ld5ahVGaSYFFaAujKlSvpo/PhcTt5NNEkUVP0zu95yk3Xptyih9e5mZfr7uiFj9MnmzRuuGObFrvakg1uz9ET7tD25a62eL07fLWRvgBuuVNbV7j19XPu+qdX3Ok9692K7Wfc7fRZ8JNH3Qq4rZ9Cvw1URHtiN4SiE0+Ld+qYXD7s2hKEoBOUL/GaQVrUDZ27l1398UVuqrbcbT/+UdO+XMiH+1e5Wm2tOzyrp7fcsY01N7Vst7to+vnZYbd24zFPLD9zh9dudMd89Wxi1hCfs07JIyvyLnMYYxzEHoKLSjwpD7HJjjXIXBSsZrHT7ZhmFWB5drJMR07jqquvaopgbZWrz7MiPW6/4TY1LdKpecLY/NazL7jpqZrb9Eb66O1jbuOTB92cvfph82dvdacyP5bTQ5Y86nTiinZ2PK+4Z35iNoaiEk+7S5wCW5EPs54Q0SxsUhx75flJZpU/PrzW1Zq/w5MHPRc9Q+PU1uQ1K+sfpo+kYGk2H5+aOela+thwV+uPu4c37HFHTxx1ezYsd0/tv5o+N5+nnnoq+dsp42p36srce54X+WDzZi6JrcdGVOJJ3I2JjrkhRVGgIS1zSbu1LAgmzyGgEysGb5x1L0w3xa+21Z38/Jp7+xCJnh3u1dffc594vvuH9ZXJ7zpzMiuDp9zW5uNTK+tNG9NouDvX3nYnTpxx7/k/JIW/1TaVe+65J/nK/2fBOuU5hjygfNhnrZMHVGSiEk+baDWlzU+n4ng/STRRV+qdl5pud1Ogph9265591R06ccId2rXaLW4+Vluy3Z1KU+Vntjfd+uZjW0+1/n+OVDynmq55+kg3EEHbUPj7f/nLXyb/zWiXPDLXvt+7nkR7zCCKsbt8VOJpBcq7d+9OHxEh+AXK2ea+liSa9LUmnzVddn6P+e44rveqxE2ffuFs4nL3FM/adncmfaQTJIZMOAkJmViySfNYu+QR3g/PFfnSuxiwUFyMIZCoxNPq8FQikg/rwJ+91KwQSaKUju44iZ/m4+aO2+s6iuc8t709dg8W1iRn+I1uySMTVnX1yge1sswjo1dXr6IRjXiy85s7OemFPQkaN/7krmXKakKxUzJ+Y9+iJImMxsmZ5HdZe/iz9BHjQ1df6Yli6t4vSBh9WHcrm49Pv/RO+kB7/CuJ223K1ig6mzzC++Hx9s2RP3YXTpxwJ3qOM+6965+6z9vVX1UIq5uNrTlyNOKJYDLBCGin+rvy8rE7+GT3rPMg2EEDv07R4skULGdd+YmQliDVNr0xrwTJuYtu99I5t302sZQpVbp9bGPz75l2L5xtl09vgWVprdG6HbowF91PHtl5f1z6hbzvjuzY4WbWLElCDLyOseiB1e5pTkclY8at+8EDblHyXM1N//A5d/D8zbbZ/7JjJ91iu5I4GvG0Dyuue+W4vMctY5H5Rd85sLimxev8JFFxQiIW31zmXnl3TsxvNS3S6doqt98zNFslTSvdPqsFbVx1+5rWaW3tYa+ucyFmPSKA3TYM4nI2P2Yd+Zt5Zxru3VeWJq9jLAwtNF9x87yrr1+cvmaxW3+4fflUmWm3mcdANOJpLawmetplIjTc2Rem08XlFX3nwCwpa8hgYkrbuWJxy53a3rTeatPuh083rbWnV7hFi1a4XWf9U+lwy519abmrNZ97umnRrVlSc4se3+Pezb4sgzWm6MfisQVuyaNuSTcfCz8w2olngh0GSF630mUjEGXHGtTEdsZd4ll0bh1zGzlBky7AqXmnZMIw0cCKslIRzrn7yZLi0HB3brznzhAjfPtK1/jg3U9ar3v72p2e1ptdBcHf3U+DD15jLj4HCxDQ5P1ojq5HC0+1klGMjuLZpHUiqvW6XnHasiHxHDH9tE8rI5f3LEvc9fqs9bnM7bmcPhmIiScCYsH6GE945IFED3/3IA1m7NJBBNe3PIchnrMnohir9rsqNVu0eY3NMIpOPGNtXxVEmgxJEkUW92yO2WRJIBa/W79+ffK1MEmiMRJa5G4hDzZxm8eu13f0K55pdUDy2kzyq+zE6lVGI55btmxJJrhK4nn7jU2uVtvkWmHOVsY9WVyzj4WR/IzmuPfee5OvVaub9bv5DHqNsJ88+vrXv5587SrAfYrnxwefnH3dsKoqYiHWZHA04mmtwopQgzgeLrs9y+ZbmYmY5lxgfmcqRtXCIECsl789tMGMFdV/6UtfSr4S/uhIH+J59/I+tyqNa9dW1V2nBlJlxdoj4gHFRDTiaZd04b5XgVYCIRPftPZrLMbAsiU/Vler1brH60qKtZQLbTBD8shixYyu10h44rnsX1tn9K1I/mj9ZTez7uHZWs8lG+o9KwTKiHWp4pBGTEQjnlZIWw3xvO3e2FRrk1nPX7Z08eLF9Ps1hjW69lqYJ55WIG9F8kuS7vjJ85RZvfq6e/9mxczOJv6GHhPRiWe7/pOl4+OD7slO4ugljkLKljZu5ORN+v0aQxnf+9730tltQy+3vXHHXTu+3S03Ea0tcdutZVRFkHiOGOuzWH7L06zL1e7l/5pz8ebGfve//me60ALKluy6YQZWKB9cjbDxne98J5nHfi3PbgmjW83X0W4vee28K0XKj30mu10JU0SiEU9LGJW+HjGNay5ePeO5eJnx78tnE0eDli35XWwQABGO1ct2rVboUzxbdyql4tkcCxqdlBgljEaMHY8re6lSUrLSqxSp8Y57aXG60ALKlmyBjkw8GzfcyV3r3PLp1pHD2vRyt27XSXejZOE8E89hlCrB1X0/mH3tVK8Xlwg77dW+yUpxiUY8K1Ek37jodi+bcsv68MXz1AVanSLu0tCxc9qLHnBLly51DyxKxaA5aqv29+ytGRN2dfNQiuSbvPOSJQOn3A/2XU0fLT8qkh8xJp4x3nXSL7eObfSK4ntgrdhYbNMvuC6d1xbQl8UURMNd3P24W18/7+aSxnfd5YPr03he9xZxsZHMfXN0teD7Fc/bp9xWez8r1hxE4jliYj3/2je3mosHV/zfXnf95Vob7uSMLbYpt7JpqfQrSyMTz7/9we090O73mDsdVaZYns19N/H0XfGO4nnrXbd7tqtSza2qV6stnRlG1HLHRDTiWd6uSh+7c/VfJW3UWotnsVs986o79MdrHc833772R3do1xq3xMpb0kW3ZM0ud+hCbxee+8b5nq7F3UPm1FZ+x/JYngimzf3CG0ZbneSP7tkw7z1atOJpt+PlujtqlRNH6+7lp384r9bzV8c/atrq1SLWkFw04skVuUxw+Zoht7qOL8io7z3jshdQGJ+d2bvw9TaOvJ++qjNWMzu+y8talmfXmGfjpjt/8Dm3+oFFLSGpTbvl63a5k/OyTHfdJ+/9wdWfQ3Bat2ImzYSfWd4SIPp+/mouMdW4cdLtWtf+ubxYM2TGQjq8p21H69TR21f+6u5Uydz0sL4VaoY8Ii5dupRMcPfO3aIfrHJhPJeXNdyN1ze66cVNsesUj7h11r20vOYWb3rdXUsUpCmSx9O6x9oqV08Oe/+3O7T1Rffvzde1RGurO3n1sFv/8MNu3UxThGiUnDzeSrgl58WnH3CrrYmy99wwiDVDXESsGbeu4RgRfvPZKl4AN0zaXQA3fO66z6+cdns2cI/P/3D/8n//6D5p649+6PYT71twVr91VxG/Z227d3nwxd1uafI5WOLW/J/j7iPvZ85WIEwvcT/836/Pey5JxvHc0ua/kz6Wh+4XwIlBsD4BXMYXE9GIJ7DLM8ldu9iInozDarIrgeeNxZvcsYzfbB3UFyaSGu6dXQjvIvf4Ae+52b6XLbd9HqHPBRDrvTtFw+/ypauHRwjt05jkrsfhRE/8ZMdImyA37ri/Yn0+Y52DmiNzj/qZ7S03vO+a8IKIpzVFHl/cuJzQH5V5pGY2NqIST2J0TPQgVyeI9liBN7Hk0dNwN4/PpHf0LHW7Z/3muSOJsYmn3WcU213jReO1115L5vGRRx5JH4mHqMTTypUeffTR9BERCh9W5pIqhvEwV+s5J5TX3f5VrcfWHu5UW5ChAOJJ93l+ZwZd6UU49KpgHmM8/BKVeFr3ldAO4GIO61L1yiuvpI+MnlbBuG95zrntndvrNdzF/Qfc/0v/rwjiaZ/D++67L31EhIJoMpcx3hARlXj6HYEGvXtGzGcSx12Ts9uZo6RzV4ssblqkC2uZGlfrbv1LXueoAoindaKP0dUsGpYE5grs2IhKPMEmm1iJCIeyEOZxqD0UGzfd+2fOuPfa1CQhgqtqbQRyXoeo5W778WutYvHGHXfjXFM4F2fOeRdAPM1qV+w9H/5FfDGWH0YnnlYiog9uPigRse5Kw/rg/uXA4+liWOQefmaPO33l0+YCueLePvQrt2J6idtwuP2Z7ZawthbR/LHYrZ/3PXfd5d9aCdRK99vLvkjfdZ8cs6TUMvfiWzfnfd/cc9Nu5rj/3OBYXaI28HxYsii2JshGdOJpE66THfkZ+jHNW+/OHZVMhGqRe2Dp6r7u5pl3zJLvW/2cO3jeF7lTbmvyMzMjKX0KfW5w/GOZhJFEOGYIxdpmMjrx9E19ZTrzYXFP3FDRH2w0zJninfmxENw4G9QMk+jEE2IOMhcJu/4gVrdpEli8UyeL8sFpIuaRMbIbDUZMlOIZu7lfFDhdZMXyFy5cSB8V3bj//vuT+dIR4XxYzXZs9xb5RCmeFveMeeKLwhNPPJHMJc1CRHfYYJgrEm0Le3iKQcDwYS5jTvxGKZ6xlzgUCYrkmUfagonu7Ny5M5krzrWLcOiQ9uCDDyZzGXPFQpTiCRzRZPJLfxXxiPnggw+SecSaUgKuOzTiZq7UmCYf9ANgHgkZxWzBRyuelvVkBxP5sGs5JAqdse4/bDKxtU4rGtxVxFzGXuURrXhyPNOSHcO/BbJaWHNkld90huw6c6TwRj6wNOkJwFzG1vw4S7TiCdZUQFn3fOCu22kjZd0XQozOWtCpPC4flmWnPI55jZmoxfPo0aPJG8FONtKmvhXA7pEZz71GcWGd9/mcKcueD/uclaFONmrxlEUwPJg/5rEMFsGwkYczHPzC+DJ4OFGLJ9i1pdQrinCwqCyGHHssaphwft3mRV3j82FlcWW5Pjx68bTGtAzF6/JhWVAahogWdv5fVR35IKxm3ajKUtURvXiCdQdSg4t82AkaBptS1WHB23FMncDKh5UWMp9l6UZVCvG0BhdkjCn6FuHYDaV8rTpWwoXFpIRkOMTQH3rooWQuseTLQinEE8z6VFA/H771WeUwiO9myurMh5UnlcnqhNKIp6zP4SHrU1bnsCir1QmlEU+wY4bqtZgPPwlXxY2IBU/HLv7+cd4uWkasFpuKhbJ13i+VePpvlJpc5KPKYZCyupmTgCO/zGUZDZpSiSfYm0XZjQjHD4PQFKMqUO9q7dLK5maOm3q9nsxjWY2Z0onnW2+9lbxhDP5bhGOxT/pXVuXUEcdT+ZsRUB3FDAeL3U7/0Qe1jJROPMGKvTnJoKOG4XCczjrgDO2GzQJz6dKl2QYphIBEOHZVDsmisibcSimeuAhW3KwelfmwI3XMJ20Ay4w12NZR33yQcLRNqMxHfUspnmAnGrCc1Lw2HCx3u6108+bN6aPlwxqjEJ9TqVs4fF6s6qXsJ/5KK55VehNHTdnjyFWIz42LKhktpRVPqIr7MA7KHEfGouZvK3N8bhwgllUKl5VaPMFa1nFSRLWf4fhx5DLV7Nk11gxtsOGwoVrMmHLBsm2w7Si9eFJuYrce0sW6Cm/qqLBDCIwyZKOJbVo1gU6l5eP5559P5pH5pGqhCpRePIE30xaJCp/zgcgwj1ih169fTx+ND9xzO1BBbFybajhY7Mwjg9NZVaES4gl25I4YqDqCh4PIWCIuZtGxOsTYN4FJQ5zTkm1VO8pbGfEE3lzeZMU/84HYxBz/9OOcKoYPh43T4pyExqp2IqtS4qn45/CINf6pOOfwqGKc06dS4gl+/FONk/Nh8U/mM4b6T7wNK/hXnDMfFgZjVCnO6VM58YQjR47MvvHsniIMki7mthH3unLlSvpM8cDroMEJvythG8U5w+Eee6ufphSwqlRSPME6hTN0zUI4fiiETkRFjCVjYXJend+xqi7msMDDMM+N++yrbL1XVjzB2o+xi2KNijAQTLtqAbe4aIkDjufyu3FuXW0Kw8GzsHud8Diqfhqr0uIJloFHQGkALMLILqyiCKjFZbVB5oMN0ppEVzGz3o7Kiydux5o1a5IPRSyJj6JCL4EiuXR+aGbv3r3po2JQ/EQbdzsVMTQzCSovnsAuaokPFr+K6MNh7iyZQDnYpCwUK6Nh6FRZOCTWTDjxLIqcFBw3Es8UX0Dl4uWDuTMLlJKgcVoqWLsWimGomiIcPxQj4VyIxNMDAbV7exjKwodD+MNOIWG5jGPh8f5ZCIYNUO9fOH5WnfdPDaIXIvHMgOVi/R0ZZORFGFnL5cKFC+kzw4crQuQ5DAfmjsoE5pLaWMU42yPx7IAfM6MRcJXr2fJA4wiLmWHJjKKiYRz/RlUgsVaEmHUMSDy7gNtnHySsmrJfKzAqslYhl8oNC9qhWVefUVu3ZQaR9GPF1MbKYOiOxLMHNL2w2A+LVN3Gw8jGkznxk+c2Tha27x1Qe6iERhicuLJTYowXX3wxfUZ0Q+LZBwTLrXEug0WrXTkM35qn6DqkrhYPwCxZBhaT3MswaOoh4yAMiWefcBTNGugy5MaHc/78+aTYmnkc1I333XQWfVU7+uQl66br8zw4Es8BoZGuv1OrmW4YXPebdeO7LV42L+tFwMDNVIOPMIgL+266PKkwJJ4BZN14Fr7q4MLw3Xg2Ja6szS5kWqCZpcqQmx4GGxZn/W2+5abnQ+IZCJYQO7Z9EKmL4xhg1TvNhIAbb/ciMbCKiIVyNNC3Tsmmq34zDDwmq7llMK9y0/Mh8cwJrqOfvKA1m3bzwcHa3Ldv3+ypJMa9996bfGWDwmLCchKDQQUC9Zo2p1jwCjUNB4nnkDhw4MBsIoPBzi5XfnBIAH3lK1+ZnUeE8xe/+IUs+gFho/E9I75SgqR5HB4SzyHCB5aMvP+B5XSSCrd7gzXkx5GJf/puJv9NfFSLvzscpUQ0fQsey1M1sMNH4jkCiOE99thjsx9eBpaoRHQ+uOpYmr5oEjvGRaeAnucRzKyI7ty5Uy58BkSTebMz6QxCSMQ6xWiQeI4Qzljb3Tk2+P+qn7020bSrOxgmmu2aUGBtZkUUy4oEXdVFlNAQjWx80WQzYn6zVQtiuEg8xwAWp581ZpBdRhDyHFGMDeaBWk1fBHHPO4lmFhNRuw7Cvp/QCE2YqyIWzAMWJe33LETEQDSVDBofEs8x0k5E+fCzCCjBKWM8D1GkdtN3zRl5LMd2lisDUSXeV9biecq3sDLtkIYNieZkkHhOAFwthCO7+BEUFgeLJGYrigJ2qg8IUfiWEYNYcL1eH0qRO3NEAT0dgHy3lYGgYKX2Y9EWGRI9ZMn9QwIMKjtITnJvlJgMEs8Jg1CyCPzsKAPrAvHBait6ogkhpLYVq4/muVnBpNcmSZ5RFmXzOyDK2USd/fvMMa5u0cWUgwFY1WwIfniDwQaB54KVqaqDySPxLAgsBlx3FkfWimIgrjyHNYVbOsnFg6tN0gvrGbHKiiUDy2jLli0TsYwQIMQ6a9nb4AQTcVZEaNJiimWJWHLkNGtd2uAQBk2KqxQfjwGJZwFBGBGnTpacDcSBeClCwOkcvmeYYsDCxi3G+sVyYxH7BwH8gaVs4l4kS9ksOcTJTzRlf3cSeFh7iC6bGH/DsDYoNhvK1whl8J5yLTMC3m6TZJilzO+hkqziIvGMAHOLEcls4qXdwErFikFcsQwZCAMCgjWIxcjg/xkIMK9BqPk+RifBtmFhBdrJYV3GEqNlQ2CjYT46bQT+sPlg3pkjCs5t3hBC5pEKAnvM5htx5Puyrne7wev4XsQ19hhtlZB4RghCheuO24lVSJKpm1WYZyDAiCTCjeuIiJepoQSuMOJPvBQxxHruZhWGDt+6RXCJv2KNDiNxJiaDxLNk4OYhBrjwCB0uKwMLMWslkcXlMVxtex3fx5h0XLUIUBVh84ELzfxgtTJnDFxr5tG35hFhXsfGxveREJQ1WU4knkIIEYDEUwghApB4CiFEABJPIYQIQOIphBABSDyFECIAiacQQgQg8RRCiAAknkIIEYDEUwghApB4CiFEABJPIYQIQOIphBABSDyFECIAiacQQgQg8RRCiAAknkIIEYDEUwghApB4CiFEABJPIYQIQOIphBABSDyFECIAiacQQgQg8RRCiAAknkIIMTDO/X+cVsO3y9FjLwAAAABJRU5ErkJggg==
|
As shown in the figure, the radius of circle B is marked, and point A is on circle B. A and B are the centers of two circles, and point P is the intersection point of the two circles. At this time, the arc length of segment PA is ( ) cm.
|
A. 3π; B. 1π; C. 2π; D. No correct answer
|
B
|
35
|
iVBORw0KGgoAAAANSUhEUgAAAVIAAADuCAYAAABrqo9VAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACWSSURBVHhe7Z1fiF3VvcfHUphCm9IHB0o1tDSChSo1IOlAChoIqUIeDARvLQblJrd4Q6TzkGiCggErPkxBrQ+hDCilEYWIXhiuuSpEcr03VnLxz01tiIqCWqxXUok+BKYP685nn/2brDlz9jn7rHX+rbW/H1gY9zkzc87ae3/379/6rSknhBAiCgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUjEW3l/Y7KamprqOdVdc7TbtOOQWXvnAXSx/TohJREIqxshF98Fzu916E89Nv3VvfrlUvLL05Ufuraf+1W2YLkV19iF36nzxkhATh4RUjJmT7kApllObF9z75VHj/Im5FaGd3rLgzrV0VoiJQkIqxsz7bmFztZA694k7enP5+tS0mzshJRWTh4RUjJleQurc2/NXl0I65a6ef7s8KsTkICEVY6a3kJ47sklCKiYaCakYM72E9IJb3FW+vjx2LV4ojwsxOUhIxZjpLqRL5464zaWITq0/4E5KR8UEIiEVY8YT0k2/df/z97JidOlL9+7xQ252Xfnaup+7J5SyFxOKhFSMGU9IZza6GzZd7a4w8ZyadjMbNrkdDz3n/vyZRFRMLhJSMWZ6J5uEmHQkpGLMSEhF+khIxZiRkIr0kZBmyocffujOnDnjXnnllWL88Y9/dE8++aR75JFH3AMPPLBqcIzXeI+9n5/ldwyfyRbSr776qpiH1157rZiXxcXFYq4YDz744Jq5tNeef/754v2vvvpq8fNffPFF+RtFjkhIE+bzzz8vbnBu3IMHD7pbbrnFXXPNNe4b3/hGS5gGMPhd/E5+N3+Dv8Xf5G8PhskQ0rNnzxYiyUPlrrvucjfeeKP77ne/u2Y+Ysbll1/ufvazn7k9e/a4+fn5Qmz5u//4xz/KTyFSRUKaEG+++WZxoyNq3JSdblZ/fP3rX3c/+MEPijE7O1uIw/bt292dd965anCM13iPvZ+f7fQ7/cFn4LPwmfhsYYxeSLEyEbG5uTl33XXX1f6uzMuPfvSjYq4Yt99++6p55P/tNd7H++ucJwYPKwT86aeflvWaIBLSCQZr5ciRI4VYfec73+l4A37rW99y119/vfvFL35RuJrHjh0rRO3ixfgOnvwOfhe/k9/N3+Bv8Tc7fRY+I5+Vz8xnr8fr7vBM+TuGJKQI5/HjxwuLmodFlXBeeeWV7qabbnL79u1zjz/+ePEzH3/8cflb4vj0008LV5+5QcB5eF111VUdPwcDged9CL6EdfKRkE4YuM3cyJ3cSgQAIUAQcEO5OccFf5vP0E2c+A58F75TZ9r6kU5tdg+/9teBNHFGPAlDYB12+myIPg8GhI2HBe8fBzysiEfzWbFqq8IJhAQQ98GFVMQgkZBOACQjsPg6WShmmSBa47rZ68Bn4zOau9z+PXB1+Y5m4fXqkD93onhb37z88suFi91uNfP/WIFxYYjRYJ4IQt/uifBQwOrHSxiE1yEGg4R0TCA8CwsLhcXUfqNs3bq1yKCn7NLx2fkOfBf/+zE4hgU2qAcDwoNljGvu/x3ikwg7mfOUEzqnT592999/f8fvR1yV7yfGi4R0xOASc3O3Z9ZJNjz88MMDi8lNEnwnvhvf0f/OWFuUDIU+MIg5tj+ImNedO3cWscUcs+FY3IQA2i1uvAC+sxgPEtIR0UlAzWKadFdzkGBd8Z39bDaCyrG6Md9OAkoMEXe4KYkZ3Hqz+P0YMIKK26+SqtEiIR0ynQSUWCiubZMvdr47c+DHhZmjboKKxYVg2vstXtikB1En3nvvvcJK1TU2PiSkQ4LsKhlr/+LGtdXFvRoTVN/tN0G1DDVlSH4CCwFFOBAQcYmqhzaWqxguEtIBgzDgYvrZVsWv6sEc+YL57W9/2/3kJz9Z+X8EguSKBLQ7COr+/ftXXYNY8pRZieEgIR0g1EtSsG4XLyU/lASJ/nj22WfdzMzMyjxedtllbseOHbVjqKIF8WKy/WahYsljsU5yGV2qSEgHAC4o66ftxiejSpZaLnz/kJXmAWRz+bWvfW3l38yxCtL7BwueFVs2j5RRsRRVDA4JaSTtbjxF1DmWMA0b5oy5s3lkTu+55x63bdu2IqHkH2fORf8QOmH9v80lGf/6S3lFNySkgeA2+Tc4VhTWlOgfkkl+ORSJJNx4S0DxOsPP8DP3TSl1GiSUTfnuPt4TyT4Rh4Q0AGoh7clO3ElufBjMGSuSTBwRSlulw1JO/zgCYCJgdZOcA86F6B/cfb+UjIeXYqfhSEj7hBtcN3I8uPL+jYxbbzcy1qiFS2yuWadvYPlbcw9e55yI/ml/kOEBKLMfhoS0Ju2uvFzLcHxXHhezPeZJ0xG7sel4ZO/zO/aTdPITKDof4fjnQ65+GBLSGlDW5LvysoDCwTU38SOu3L4qieWf9ro1G7GSMsSyHcIq8hDiafcQcPUVrqqPhLQHuJHWIEI3ajjclGZp2o3aHpPjPVb6xHsNHmT2c1hP7SC41hmJc4UYi/5pd/XpZ6C4aT0kpF2g+YNZOzyt5TqGwc1oYZFuFj3WJe8hPtpefM+KJl6zxFM7uPpmUfE3OHciDObOsvp4A1oI0RsJaQV+1piGwHoyh8HDp47A4Vqa5d9JaPk9FsfzE08+nCPOlf0t4qsiDKx8Ox94Cao37Y6EtAOsU+YCYuBiKlYUBpaMueq9XG4rxifBVDXfNMLmPe2JJx9+1i/srxJd0Rsy+FYdwX+b3mWrGxJSD25CYnd2E7IuWYSBBWMJOm7C6n2bWnFom/Ne3d7ZH4r3kbHvBufOfqfOYzicR/9h2Ov8NBUJqYefDGHfcREGbrpZMohpN7eQh1enBFMVJPssbt2roxbn0M6nxDQcPAvryiUx7YyEtMR35xVbC8d35/lvr0SFn2Cq25DEEk+IdKfEk48f65abHw7xZ4t1c64UM12NhHQZ/2bjxhZhcLOZ641F2qtvqJ9g6qcRiZ94oi61FybWDD0kw+FBZw9Jzi/nT7RovJDSTsxuMrl/4eCi2z5KiGOdxISVRFFiU5VgqsJPPNVp9GwxU5VGxeGHbRBVtTVs0WghJclh8TZ2nuz3ZhYtmDfmz4SqTkE8hfW8n9EtEdWNuoknCPmMojO49eZJ4O6rNLDBQsrNaxcDlpRENBz2pjKBqmPtEde0lnh79uwpj/ZPP4kn4BxbnI9zHyrgYnWdKbW7Tb9/GimkuCO2pJBspJ6o4RDbZB4ZVSuW2iHpw/v7STBVYS57ncQTcK4tA801INc0HB6a9iBjaWmTaaSQWtcgYj1a/hYOcVBbSlg3vkwhvf3MIDrdk3iymF3dm5lzbj9TJywgqvETtZ36IDSFxgmpZXB5kqqjfThYduae95MsikkwVcF2w3ZO65bl+PFxVWrEYeeUSoqmZvIbJaTEdezmeeCBB8qjIgRbhol7XrVcs51BJJiqsNgn+xDVhWuAn+GaUJF5OHgFtoqN89DEeGljhNSPi3KzNT04HoMfF627X/+gEkxVsC7cHpJ1d8jkGuBa4GcUL43DT/w1MV7aGCFVXHQwhMRFwaw/3D8smGFgiSdEsW4CUfHSwdHkeGkjhNROME9MxUXDwYKzlS39xDgpmDfxpZB+WIQknsCPl2rlUxx+vHRYD8xJJHshxeIgjsfJrbOcUFRjiTrqB+vGRcG8AQroh01I4glsCxSuFXks4SCeFkKjJ0JTyF5IraNTVWd1UQ+/bKluvSgQQzVhG9U2LSGJJz+GW6cLlajGzjmjKYseshZSXDY7oXLp4zCXjWL2ui494mTZ3FFaJyGJJ9D1Mjhsp4JBlrlNMtkKqR/Po1RHhLO4uLgiMP1YGOYujyNeZpu4ETPt529bWRfXThMEYFj4HkwT4s7ZCqnF8xTziiPUqhxVgqkKsvYWq+unusCPqatQP44m3YNZCumglyE2mVCrcpQJpiqsRSJuPu5+XaxOlmuon6SaWI3vFeYed85SSG3fJW5iuWfhYEVYrJFseF3GkWCqwgruSUDVhWvGWvRxLYlwWDHGPDJy3jwvOyHFpbSbXz0n47ACdxIGdfFdatrrjRtKoEIeBlw7/Aw/W6dxtKjGEpX8N1eyE1KzRukxKsLBGrXwSN1loBCa5BkmoZ/JOv7LKo0DS5R5ZORqlWYlpP7NL2s0DouNUu5Ul1Drb9iEJp7MKuWayj1ZMmzMKs01VpqVkJor2k88TKwFq80y1/3sbxQSjxwVoYknK+7vR4DFWoiV2/znGCrJRkhDXVGxFmswwkqfusm6UKEaJSb0/VQSWOJMVmk8OYdKshFSu/n7cUXFWqgbtcYfTz75ZHm0O6Gu86gh9GAP235qW21rEvWwjSPnUEkWQsqNbK6orNE4WIXCPPZjjU5igqmKkLpYs0q5xrjWRDhmle7fv788kgdZCKl1/OHmF3GY9VW3McmkJpiqCF2pZT+TwnecZOyhxIMspxrvLITUYl9YGyIcYpvMI8JYt1u8WRgpJfjsZuZ71l0wYJZsPx2lxFoQT0SUuaSHQy4kL6RstsVJYahwOg5z0et2ijdPYJITTFX0u4SVa8u+a1M3eBsUeALMZU7NhJIXUmuM0M/qG9EZSxjVcV+JL1pSKsV4F8LYb+KJa4z3q5lJHLZslPnPJeacvJBec801xUnpp9mwWIv14qT7fZ2L22p2Ed9Ub4Z+E0+2ZQ3XnIjDYs7j6Aw2DJIWUlt6hrulGr84bCeBOitPcOOZc97fT+PkSaPfxBPXmH3vnBtwjAJ7iOWyeCZpITWrSAmAOLAosUSZyzq7P9pqnxzm3RJPjDpNqy2xqZVOcVDtYfOeQ6vCpIXUYnQqSYnDViUxn71KUvwEEzdDDljiqc62GPb9CWmIOKzULoeYc7JC6j/RJr0IfNKxLGqvpXt+gokMfy700wicObDrLpcHybiw1Yh1q0QmmWSF1LqYa0loPNbFvNeS0BwSTFU8+OCDxXdj9VKvGlqzpLT7Qhy2ZJSwUurF+ckKqW1SlpNlNA5IoDCPjG6xKgrXc0gwVUHiybZj3rNnT3m0M/ZA0aaKcSCeFptPfdvmZIXUVkfUSY6IarBCmUey192wrTdyTuxxLfEde93Y/jJHEYfFp1NvCJOkkFrZE3EtLAkRju0o0C0+Sq0f78kpwVSFNSDulnjy46Qqg4pjfn6+mMfUd7RIUkitMDr1yZ8ErI6yyl1HNMz6b0Ivg7qJJ7PQtRAkjlyMoiSF1KwGEgQiHESDeWRULWiwjD6C2xTr3088Vc2L9SXIeUO3UWEP6pS3B0pSSG3iUw9QjxuriSRr3wk/wURcsCn4iaeqlV50LuJ1xUnj2blzZzGXKdeTJieklKYw6QzVj8Zhy/S4kDth7msOdX794ieeaLLRjt91rG7LQdEZ8wBS3hgvOSHFCmXSZQnEY5ZApxIySzARu2pqe0ILIdGkpFPiKZfSnXFjK+tS7uCWnJBauU4uzQ7GiRWWty+xxcJqUoKpCqxOE8tOSSWbv7p7W4nO2A6jxKRTJTkhtSB/r6Jp0RsTifYu8cwtx5uUYKrC+t12SjxpUchg8MvJUg2TJCekOQSmJwE/xufHmi10wmhSgqkKXHpbQtsew7PYXlWMWdTHejh0ikenQHJCao2cjx07Vh5pEOf/4v7ySfnvSKyRMxewgWhYF/gmJpiqsLlqv9G5BjnWudHzBffuf73oXnyx9/jT2U/d/325VP5cM7HWjKk2ek5OSK1YOrU9guJZcqfum3Ez951a/lc8tu2yv6jBGsE0OcFUhbnxfuLJLyZfy9/cycfvdffeMevWLb+H9zGmZza6HXuXj9/bGnds2+BmpluvrfvxDvfQ8Q9cE4MpFk5KdZvmpITUd0cbF7u78ILbzQ03vcstni+PRWCNN/bt21f8P7Ep4oAc00KHtfiJJwsrcQ3a9cjrVZx/7p9W3rd54f3yqMfFD9zxAxvddPGeabfx8Ck3gFOcFBaLTnWBQ1JCaj1IKRJvGp8cvXnlZrz2sXfKo+HYGntrFmEWAYXoTU8wVWE3O4JqwmkLFrr2IDh3xG1afg/v6yikBefdibn1xXumpmbc3IkL5fFmYNU4qS77TkpIrX9hr05F2bH0tpu/tnUjFmPmPncq0r/3hdRPMKmbVjV+4sla6Fmvgq7LG99fcJvL+a0W0mU+OepuLt83dcsz7m/l4SYgIR0hTRXSCy/sdtPTu93CEbNKp93uF+IsFi5Yftfvf//7lQST1o33xk888e+BCql73R2eKYV0+oA7WR5tAjavqd7bSQmprQ1n6WJz+MQdvXmqlWSyOCk32s1Hl18Jx4T0tttuK/5LwiSHTchGgSWesE5/+tOfFv9uX9SwitpCesLNle+bunrevV0ebQKpG0lJCWnq5n8Q7zzmrp261rXCoq3MfXGjrRwLw8rIvvnNbxb/VYKpPhTmW2Luhz/8YfHfrqubagrp0qn73Ez5vkFVZ6SCVUAQf06RpITUSna2b99eHsmdC+6F3dOrrc9CWONvNnNJGUow9Y/1xLVkE9dmJTWEdOmzl9zc+tZ7ptbPuRMNS9v7LR1TJKlPbbsO9trtMhuK5EN7PPQd95glniJKoWZmzLJVgikEEk9m1TO6bpXhCenMlv1u4XmvIP+pR929d9xwqZZ09pB76aPmFef7pY1Wp5sSEtIJ5p3Hru2YoY8theJCtZ/XGMzYtWtXObsdWCWkv1opxm8V5F/trlhX/p7pDW77oQX3ygfN9A5sLlOM1SclpNY/sxENS5ZOuftmKoTSTzoFlELZCiaNwQ26ZVVaUj1d+4vur68tuFvNtZ9a537+xLlGxUjB5lJCOmSaZJG2rM7vu1894bmBK+Pf3W+22U3XfykUyRJz7Z977rniwtUIG9ZE59e//nWEkLZYOrfgttgDcmq9O/x6c6SUa7L1vdNctZiUkFqAP/96x1YcdHrjbavcwFVj7za3vrzwQkqhatU/ip6Q+GQeu26CV1NI4fXDl2LX03MnGmOV8lCy750iSX3qppQ/tcpgepU3feKeuWW6vPj6L4WyFTrsPTQczrs3jt7ttl2xrvUZ113htt191L2RWTba6nEHUf4ESy/tbc0XY/OC6/7ufKAJEd+5cwOYyScpIbWC/Ly74593i7um3fTuF1wvhz2m7rCWAARTrhufnnEbrr7abZgxwV8e6w+4kxktI7d9rQZTkO/c355pbW9SjL0vNcYiVUH+CGnCEtGlt+e9AvxetFY9tW68m93RPvz7YQrp+cXdbvbAcXcp+bzkPvvPw25jGf+7uZ8POuHUCpHUFtL33cJmO5/NalwiIR0h2Qvp0jm3sGXZevv+w+6N8lAvzh3ZVN54y1bpsgVT13Om2zs/07X+MYg/uz88cqLD5/BWZc2dKI+lTx0h9d31SiFd+sgt7rbuT1Nu/fIcNakm38J2qXqbSQlp6nGUai64dxcfdXfMlvFEelLe9hu38Pyb1UmkT950zy/c7WatBrEc62bvdgsvv9szLNDeRm8UvL+wufibOVmktrJpbaPxskP+U4dWnaPpDdvd3nsfdU+tVGA85R7du8P92Ksl/eXCafdZw2qfUs9/JCWkfmYvryWNZTf1Ndn5Y8v2XQV/Ptbh/eV4/GTPFmw0dGYerbHz8Ckt0q4x0ovug+MPuR0bZ8omx+vcFdvudkdXZaiW3Jfv/sk99RDis9kVBh6NkQ9tKwvb17kf37lwKal1/g139O6K1yLxGztzba6m6px2Gjw0X3Qn3/rQ/b2hK3Xn5+eLeVRj5xGBNcqEN2+rkcFifQu2bt1aHhku59942G2e3uIWzlWYWkvn3DO3rnfTW+bda39FTZYF83+PlHWV691csfj8Y/fy/D1u7zZzgZeF9I1T7vDsFe6GO5YFae92t6GMw5KsO8/69Q0zbuOOvWteG0T0MV8PafTcddddxVxqq5ERYeubtcNlHKyvZx79ze8Gz7IYfvSWe+5Qa9+i9f/yvHu34yZvF9zJA2T523sHXHCLu1riN7XlCbdi811YdLs4NjXjZu9+wp32/OBLlQzrl63Px1a/ViTyeG357wxASbtvfif6wZKfrLpLkeSEFNOfCccVEOH4TSK++uqr8uiAOdHaF2rVWLZK59t967IzfKcC9E+evXVZhKfdhkMnPSvS+naWrv0qQl/rn9T3GZoktB3ziDl48GAx4bgCIg4Lk5w+fbo8Mgwuur9/iFV6qcPR1Myc8yt7PnxiS3G8V43lJSZDSK3BM9ekCIcHeXFdLA+WiqZIckLKvtdMeN5F+aPhuuuuK+by6aefLo8Ml4vv/G6lnnKX51vbssjUhNS2aEl1L/ZJwZo60yw7VZITUtuobbixvWZgDTfoqjUaLtWS+qJ58kBr5dPM4dfLI72YDCG17Zm5JkU4FmvmwZQqyQkp+68z6YyhxfYagoVJENRRYcXpvkVqrn23loDnF59w//Z5+T8TIKR+tyKuSREO29wwj7Yza4okJ6Rg++UMN7aXP9a7YJRZ59Za8rblrCvbp0y7LQsd+nCeXxbAf/Y7XI1fSGn2wtyl7I5OCuYZpbxvWJJCetNNNxUTT9ZUhHP27NliHhmDC/JfdB/86UX3p3e/7CyI6zuJpd/Jar27deE1V5SSkqg6e9wd2EgdqV+vNH4hNWuea1HEYRn7lLe8SVJIrexkVMXkOWMX8cASTv99qKgZxbqcueGQe+6tD5dF+kP31n885n65YcbNPnSq8xryQmT5ufYx7TYe9n9myX12fG9ZKzrj9h7/zBNlivgtoTXtdvzhg2UpNvzXptzm373jvdY/1vVJD/M47GHOUtuUQ3VJCqll+Sjf0e6Xcdia+4GVky195F5aWa7ZErSZDZvcjjp7Ea1a6rn8cxt3uIeO+2Lod0fyx9yyrRn6Wv9ww9sae65FEY41a091jb2RpJCCxUm7ti8TPbFmETR6FvWwVWGKj8ZjOwyMsnnOMEhWSG2Fk4qh4/AbwbDaSfTG4qNa0RQHe1xZCVnqBlGyQmpNN4hViTisp+ZwuuXnhy1k4BoU4VhNeA4humSF1A9Sf/HFF+VREYJ13mnC7qyxcK0xVwyuQRGO7QqcQ+VDskIKlnHuul+O6AkZe+bxyiuvLI+IKqz2Vivr4mGZN3OZQ+VD0kJqzYkVq4qDLLQ1MHn55ZfLo6ITFpsfXUPsPHnvvfeKeWTw79RJWkgtxoJ7r2V6cVgnoz179pRHRDtcY1b2pPX1cdiy0FxyHEkLKVx11VXFCUm1IeykYEseyaKqNrczXGPMEdeciCO3+zZ5IbUnm9rqxUEpysBXOWWGxfRSXhM+CfjZ+lw8yeSF1K+DzCHWMk7m5lod7RVzXosf01u70Z3ohxyvs+SFFGy/F1kKcdjSW8Wc12KeT+pLGccNns/ll19ezGVO+65lIaTWNV+xq3hsc0HFnFdjMT11w4/DltcipjnF4rMQUr98R7uLxmGdtRAOrAfhimuKOeEaUzPxOMx7zK18LAshBYu7aMloHKzcsYYwSjq1sJZ5XGMiHL9cMbd8RjZCSmNis0rVESoOW7rHmvKmw7XEXHBtpbrD5aRgixlyXIqcjZCCrRlXQiAOrFKFSlqYK6rtv+OwRCYjxx4FWQkp7oKtPJFVGoeFSppslZo1mqMrOmrMGs21tC4rIQXr+K5ayDj8UElT19/n7IqOEr8GN9cdBbIT0jNnzmR/0kZFk0MlvivKNSXCMeMm540CsxNSMEtCy0bj8EMlx44dK482A1sOKs8mDjL1TQi3ZSmkCIC5per6HofFSulV2pQaStvHimtIsdFwqEO+/vrrG/FAylJI4f777y9OICso1EE/HMQTEWUum1BHybViSxi5hkQ4tkMoHcVy3w8sWyFl+ZntRaQem3FYB31ctNzjzlwrfFeuHbUTDAfhtIUdTdj7P1shBVvXy3j11VfLoyKErVu3FvOY88oxrhG7Xrh2RDjWKJxtvpuw1DhrIQVLPNGMQ2vHw/Hjzjk2NOHasIYtSjDF0UQDJnshpXek7Z3dBBdjmFjcGZctt+WS1iaPa0X9RsMhpm4htdtvv708mj/ZCynMz88XJ5YY3+nTp8ujol/8uDOufi4WPlaTlehwrYhwzKXP8WHbjUYIKTe8xfgQAmXxw+FBZKJDc5PUoYG1VSXk9HAYB7anFaNpPRoaIaTA09H2JFIMLA4ra0FQU18+ymobvgvXhro7hUM1h8XQm9husDFCCtz0Zk0hBiIcS+KlLEDWxDqHB8I4IS5qOwhQgN9Eq75RQgrWa5ObR/HScAiPpBwv9eOiOYQoxokfF21qoq5xQqp46eBINV6quOjgaHJc1KdxQgp+vJTmFNqHJxyLlzJS6GvAubaGJIqLxuGHypq+DUsjhRRw7Sw4TrxPVkk4O3fuLOaRm2pxcbE8Onlwji22y7lvSrH4MMAbsfpsHkxNv38aK6RAazh7ou7RevxguIks+83NNakCxTk2wW9aW8BBwlYh5tGxGkweXcOFFB5//PHigmCo20847S7zpO3Lc/DgwZXzrL3pwyEUwvp55pFMvUIjLRovpGCZfIbKosIhiWM3GcmcSbnJ/DiuVi6Fw8OSPbyYx0l8WI4TCWmJbashty8OxNMy4ojquMXUD980PSESg+9xEL6h8724hIS0hDifnzTB5Rdh+DG0cYop59BEtEkNNAYNJYImosynFi+sRULq4Yspg45AIgxfTMfhBlo3JwYi2vSscig8BC1cgyUqb60zEtI2uOHMzWfgDuomDAPxtJuQ7TtGkc3nXHHO/PMnwuD82eo1Vi2pXKwaCWkFfgIKK1ViGgYWjTVMxqIZZud5zpHvUSixFA4x0HF6FKkhIe2CH2NjKaHq5cLwExXMJ3tADRr+hi395W+oxCkctk22Yns8itw3rhsEEtIeEBOyFVBYVmfOnClfEf1AU2jfWhxkyIQWbtZ9iHOlOF44dMQy44GHHyVtojcS0hoQGzI3hye19soPA+H048+0XIvdN56mGfag4xwpjhcGgmmr0xgspZUHVh8JaU2I9ZnryLjzzjt1oQWCa2+uI/8NcfWZe2vfxuDcjLtmNVV4+FjtL9aoFqX0j4S0D7CoSEKZ6yNXPxwsUVslw8BSrbuPPA0zLJvMueCcKBkYhu/KM6fq0RuGhDQACpJ9Vz/H7YlHAcLpu/oIa7cHE2JJJt5ufM6BisPDIIHU7sqrN284EtJA2l392dlZPc0D8V19RJJEVPtNTTmOlVEx5MqHwcMIK9Sfb7ny8UhIIzALyb8osbD0ZO8fXH3/wYS1icCSBLH2dwzmmjmXK98/WO+2QIJBso+KBxGPhHQA4Cb5iQ9W8aiOMQzE0xIfDHPjGcyxahr7p/36ZJUS4Sg9jAaHhHSA8MS3ekYG7j7FzaI/XnjhBfe9731vZR4vu+yyQghk6fcHMWjfjWdg3as2dPBISAcMFy8NM6y2kXHjjTdKUGvAHDFXNm/T09Nuw4YNK/+PJUWDZsVGu8MDBwG1hCgDN16t74aHhHRIsC0ttaa+a8pKkSbvtFgFc2JLSBnMGXNnW/vi7vuWPg8pElIS1NUgoJSC8cCxuUJM5cYPHwnpkCGJ0i6olPlIUFsC6teSmoB2Wu2EELCizM/cI6i4qrGro1KHBwoPlnYBJRtftzZXxCEhHRGdBBUrCwuiSULAd+U7W0E9A0GsEtBOdBLg7du3F5ZrU4SDBws7thI79sNIXFMkOiWgo0VCOmI6CSoD15YbIMeECt8J99J33xmxLnq7oDJIrGCl5rrmnnIl5ozKEP97I6BY7HLhx4OEdExQkkI9ZLsQIC50ScLaSNmq4LMjdHwX32JikPjA7RxU9hjRpH7Xd20ZWL3sDJt6L01ixSSP/LAGg3nFIuVakYCOFwnpBICVsX///lVZVrtRyGLjCiMWk3yz8NnIuvNZ+czt4kltKBn3YfYmQLxpoYeb327xM7d4AlhtlsSaVLDQCVNgWfshEBvML96LmuZMDhLSCQIxooM8ewz5tX82OMb6aKwTlqOO80bib1NOw2fhM1V9Xr4L9bWjfghg7WL1tlv8NhAorFgEa9zCineC9b5v375VK4/8getOWd2kPwSaioR0QkF4ECpunk4Wng0sPYSMm5CO/gjxIFf/cOPyOxEl/gbLONstZxtmQSOufPZJsaDNwkM4q4SKz47oEoogHMD7B/mw4vfgefB7sdpxyfl7nR5ADIQ+FQtaSEiTAbfVd53bXdf2wQ3Kzcjg/QxEgpsTQeH3MHAfOUb3H95DQsh+rkq8bZhw8nv4bKnEdBFWBIrvzffs9N38wYOD9xGjtLnkZxmEZPj+hC3sGA8b3oNQ8nP+kteqwd9AXEnKSTjTQ0KaMFQAkGjAWkQcu1mLMYPfye/GIuVv8TdzKtnCWsT6xFrEGu1lLYYOHjyIMQ80hBcxx3LX0tf0kZBmiAkDViLxSW5YBlUC7dYT/+YYr9n7+Bl+Fld0UK5tqhAmYS4YxDGZHxI9zBmDhwvz6Fv5WJW8j8SX/WxODx6xFgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGJhFQIISKRkAohRCQSUiGEiERCKoQQkUhIhRAiEgmpEEJEIiEVQohIJKRCCBGFc/8PdAbrNvV8RroAAAAASUVORK5CYII=
|
As shown in the figure, circles A and B have equal radii. Point A is on circle B, and point B is on circle A. A and B are the centers of the two circles, respectively. Point P is the intersection point of the two circles. Connect PA and PB. At this time, the arc length corresponding to segment PA is () cm.
|
A. 3π; B. 1π; C. 2π; D. No correct answer
|
B
|
36
|
iVBORw0KGgoAAAANSUhEUgAAASkAAADuCAYAAABlA/E6AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABs/SURBVHhe7Z1daFXXtsd3oXT3wZQWDBTacAsRIlSLBRHBgg3IqeGGSwSpnqI9BS14rb2EfnBatKdetMglDzbXh8DdFws3ioLQPAjmXC0Gj9RUhGoQybEtTTlarJW0aB8Cuw/j7P/KHDvLnf2xPveaa63/DyaatdfOx9pz/dcYY44xZkEIIcRiKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSMXF3AN5UDb/J8kz94vcuXOn9fhlzryB2AJFKhbuy5kdHbLjzH3zNUmcLw9KT0+3dBYLUig8PIqd3ZXXeirjGelwjhWls3uNbPqwJBPfPBA+a5KFIhUHt49JHyZ73zG5bQ4RS5g9K7s7VaDelPFFhtOc/Hjtc/lwbYc5pyjdrx2TGzSwEoMiFQM3hleaCd4pey/xOWwX9+X0dhWpQTlvji5mTm6UXjGWVcXa6h2Sr2fNS6StUKSipnxJ9laf1JXJveNM5bYgNnF+0ItIgbLcLPVK0XyWXYPnhTrVfihSEXP7WJ8UOnfL4PaiuRH65Bh9PqvwLlIVylMytFLP75L9l2kZtxuKVKTckOHKhF45fKNiUO2VTvMExtfEHnyJVIWfTg6Y82kZJwFFKkLmhUktp3nBciZ3515haMoe/IpURaVkwIhUoVh5Dz/LtkKRiozbcnKg+NCT1nH9nMldZDqCRfgWKbks+6txxjUyctMcJm2BIhUVN4ZlZe1qnvsJbGk6AhIYz507J0eOHJGPP/7YGTt37pQ33nhDNm/eLC+//LIznnvuOWesWrXK+XrDhg3OORjvvfee875Dhw7JqVOn5OrVqzI3Z++avX+R+k5K6/Q9BRn09iYSERSpSCjLpb2dUlg5XHHy3CCpUwPoyaUj/P7773LlyhU5ceKE7Nu3T7Zu3eqIzZIlS6o3XhwDorZx40bZs2ePI4Lj4+Py66+/mt8qOShS6YIiFQX3z8iOYkH66izjuQPo7Qy6wpo5fPiwIxKtxOjpp592rCO1jD744APHMhoaGpLPPvvMGRMTE86ApYSvR0ZGFlleAwMDsmLFCnn88cfr/hwdEMjBwUEZGxtLRLTCiVSn7L9sDpO2QJGKgPnkzU3yf9/WqQW7c0H+8i86weNLR/j2228d4YCL9uSTT5qftzAgVGvXrpVt27Y95Jb99ttv5jtEy61btxw3Er8TBKm/v1+WLVu26PfCwO8FYYSl1Q430b9InZfB6u87ICd/ModJW6BIhcUkby7Uf9UZz2iJRbTpCBBBWEuwTPT764AowYqCIE1OTjounw3gd4bbuWvXrrqihd8blhmstrjwLVJTQ9Kjv+O6UsWuIu2EIhWS+2d2SLGVhWTcQWeSh0xHgKWBmxyWyaOPPmputoLzf7hscL8uXrxojSi1YmZmxnEf4S4+++yz1b8HAzEtxNBgJUaJP5Ey8UbzO9Vz6Um8UKRCcVuO9RWkc++llpXyC/V8wdIRIDywMGrjS6tXr3asqXv37pkz0w1cRLiktX/nSy+95LiOUbiDvkTq9kkZ0AdM135hwnn7oUiF4OHkzRbMnpbtOtkXrQI2Bm4PLCS9WTFgcSCGc/36dXNW9kCsbHR01El1cP/tCPIfOHAgVMDds0jN3ZCRXrM6W+yV0k0qVBJQpIJSvikjWPEZOCne4qju6vuibD/dvFQVK1+wHvTmhDuH1AEEl9PiykUFgvCIrbljWFgcgGuLGJc/ZuRor34OjUVq7vtxef9FFagXZf8llhYnBUXKN+g39FcZfrXLTOBe+c+xr2T658bN0coPfpbpiWF5tUtvDryvW14bnpDpmk6QECd3IBzihHhN1HGZNAJxRvzKLVZId8DqYUuxcjpzzshk6VXpMu8tFFbK4PH/lwvXZpz34/VrF47LJ5ueNy1aOuT5N0py5S4tqCShSPnmSzlYbwXvjycqz+j6zJz44+LzdRz80jkHMSfkGNXefBSnxUCssHjgFnNcL7jADVMqnM6cda5/7VizSXb/+aCU/npN/sH+z1ZAkUoYBINfeOGF6s0Gywl5Q++++241WZKj8diyZYsTp9Lr98QTT8jrr79uri7JAhSphIA18NFHH8kjjzxSvcE4ohsIuE9PT5urTdIMRSoBal27xx57TPr6+qplKRz+x9KlS51r+dRTT1Xzx/BvUxeQpAKKVBvBzYJcJxUnHV988YU5gwQBqRgqTCj3wdfulVGkbCD/iqQTilSbwI3jtp70yY+iXBIOzaVCPpkb5FlpvAoihhhW3tI3sgBFqg1g2VwzqHHTwAXRG4erd+E4ffp09VqiYLoWJH3iQYBzMCBo/nOrSJJQpGIE7h3iJe4b5IcffqjWqKFZHAkOrKLly5c71xLXuRkoHdIWMrj+iAuSdECRigm3e+d2NfAvjsHds6EBXJpBIz1cS1ipXqwjWFqaCIrPBFnsxH4oUjGA4K0+teHeadAWN5K6fbjBSHAg8No3C7V8XoF1i/IivA8D/be4+mc3FKmIQXImntK4AWrjH+r6wUVhADccyMbHtUQ7lyCdEfA56YMEK4EUKnuhSEUInuiY9Bh4QruFCD3G9TUUCZPgYLFBHwQojwkK4lJq2eLBwYC6nVCkIgBihM0GVITQdbLWUtK8HXTLJOFAwz9cS5QPhQUPD01TQECdWer2QZEKCcQIVpMKVL0VO8So8Bqe/rwJwoH4nl5rtEWOAnwmuuIKweLKn11QpEKAOIY7sxnL3LUgXqIrSrCwSHDwQNAVU3TvjBK4eprOABeQQmUPFKmA4IZRtwMWEhI264FlbpyDlaistPhNilKp5FxLBLzRCC9qIFT60KFQ2QNFKiC6UgeBgjtXD0x6XSbHHnYkOEg50NgRNmeIC1jHiHXh5+Dn0T1PHopUABB3wiTGqOfiKXDvcA7cvdpAOvGHlhJBOOJOF3C7fvh5XPVLFoqUTyBKKlDNkgjdlfloCUyCg5QDzWlq5FZHDbbaUsuN6QnJQpHyga7SYSCZsBmNKvOJf3T1FNt3tRO4euquM+EzOShSHsHSt1pGKKtoRqvKfOIdBK9xLTHi3NW4Ee6ETzx46La3H4qUB2Dqq+mPth/NJipe05QDNLgj4YD1hGsJayop4K7rAwoF4qS9UKRaANFR1w3i08rk91uZTxqD+BOuJeJRSffd0lQSiBW7fLYXilQLtLUKbpRWrlvQynyyGCTBqvWKlT0bQEkTfh+u+LUXilQT3HEoVM23Quv3glbmkwX04QBBsKXvFpJxtXyG8an2QZFqgDsO1SpQDrASpIIWpjKfzG+rrikHXh4O7QSBdMan2gtFqg5+41BAS2SwVE3Cgbo8XEvU6dlorbjjU0msOOYNilQd8PTGJPQShwJxVObnFVw/vZY2B6g1PkXXPn4oUjUg7qDBby89sPGkj6syP49ogS8sU5txz5M4awkJRWoRunmn1xa/bqsrjsr8PIFYHq4l3Kg0FPa6P3tuTRYfFCkXfl0Nd2U+g6jhgMsE1wnXEqukaQAPMe2YwI6r8UGRMmDCaXazl9U84K7MZ1wiHNofHi6ULSkHXkD7YV3tYyF5PFCkDGq6I1Pci9uWRGV+VkG6h8Z30rjVF/Pj4oUiVcFvsBwkVZmfRTQOmNa+W+1qyJdXKFIVdA83r8Fy5MbgfAy2mA0HUjzUXUL3iLQyOjrq/A2wrlkyEy25FylYUeq2eY0p2FCZnxXQbwvXEsmzaWfVqlXO31JvxyASnNyLlNaIIdfJCzZV5qcdPBRwLWFJoZNp2tGmiGkL/ttOrkUKE0ljUV6C3yiP0diDLZX5aQVutfbdyspWX+6/iSkp0ZFrkVIrymvAVs+HUPFJGQ7snoNriYdElmI4amnTmoqO3IoUloqXLl3qTCgvVpS7Mh/7v5HgBFlNTQtua4rbmEVDbkVKd32BVeTFirK9Mj9NuLf6ymJekXZnZZJvNORWpLR5WbN985S0VOanAXffrUabqqYdCJPGLml1hyeXIqV5Tsgu99IrSuuzbK/MTwPa4iTrfbeQ1Im/k1uahSeXIqVbpHtpreKuzGfKQTjGx8eda4mBmrcsg7mifyu7Y4QjdyIFU1z3UWvluuFcrcxvtRkoaQ7ieLp1OR4SeUAtcG7KEY7ciZSWLyAm1Yq0VubbiLuAOy9lIxpAxwIBCU7uREpjIq0KQXEjqcWVxsp8m4DAa7pHnpIckWqhiwRsKx2cXIkUhEcnTavOjxq38lp0TBqDWjZcS1iveVuS1w060tLIz0ZyJVKa5YxYQTOyUplvAwgg67WEq503dOEFliQfdsHIlUhpxX0r9y1LlflJMzAw4FzLVg+GrOJeqOH2V8HIjUhhsmhZSzNXTyvZ8fTPQmV+krj7buU5JqNxUBYdByM3IqU3DDKBGwFzXOuuslKZnxS4ltpfyWvP+Kyim4kysTMYuREp7WDQ7IZxV+ZjZYYEB+UguJawXmdmZszRfKJlVbgWeVs4iILciJTGmZCvU48sV+a3G6QcaO0ae37PW5WMSwUnFyKF+jxdYWpU2pL1yvx2onVrECovtZF5wGt+HllMLkRKa8ZQ4lIPBMhVxLJamd8u4Nqx79ZitDVQXlc5w5ALkdJNPBvVjOlTjoHN8CDmh2uJoDnzghZA7h2uCx6GtC79kQuRUhGqF4/KU2V+3GB7L72WjL0sRuNSLJHxRy5ESjsZ1HY9wJM+b5X5caJV/9zqqz6akpHHzPswZF6kEATHxMCo7eujVep5qsyPC+0uAXeGfbfqo64wdxryR+ZFCkFxFSI3WCbXlAP2+wkHHgTajpkbYzZGc/Voafoj8yKlZS4wtd3kuTI/avTmQxEt+241RouNvW5ES+ZJQKS+lIM9PdLTcqyRTbv/LJ8evyDXfgwuIlqS4H565b0yP0rgJmvKQaNEWTKPrvDhehHvJCBSc/JLZWLPTJbk1a75WBHGv/7XVzJdOY5Jf+fOjFy7cFw+6e+WovN6UbpfOyk3y+Zb+EC3onLHAbTHD3NWwsO+W95B6oHO97yXCvkhUXdv5mhv9UMbPG8OPkRZ7p4dlC5zTrH3qHxnXvGKrjhpYiEr86MDKRt6LZHKQVqjsTteL+8kG5M6P1id5PVFCpRlamilOa8oO87cN8e9oekHECd3Zb6XnWJIc7AtFa4l8tCIN7SG1Muu2WSeFIhUhZsjssacV9h9tiJb3tEEOsQDWJkfHe6tvlq1YiYLaKiBW7B7Jx0iNfu5bDHnFdaVfLl8+v2npqZYmR8RWA3Vvlvs3e0PjeGxAZ530iFSU0PSY84rvn/BHGyNO5Hzrbfecv5lZX54dMWUfbf8oyLFhE7vpECkZuXs7k5zXpfsv+zd2YNLp99fl8kZCwgHVl81CZYui380p4xlWN6xWqTKD76R8fdfrKYh9JZu+opHuUUKg5X54dm5c6dzLeHu8Vr6hyLlH2tEqlDokGdcyZzdncWF17q2yP9euetLoIC2bdXByvxwuPtucauvYGi9KFdEvWONSL05pomcmsw5JqUPN8nzHUZkOp6XN0pX5K4PpXLnROHJD1ePI/jQlAP23QoOriOvoT/sj0nN3ZCR3gWrqqty4qx5qRXvvPNO9X0c0QxYUkjnIMGgSPknBYHzCrNnZXen3iidsvdSa3MK8ZL169c770HQHJOCI/zg0nk4KFL+SYdISbly6oI11bn/sjneHHX3GvU2JyGZ+1Guff6p/OkPPfKMuuWFonR298gf/vSpfH7tH/KgPCc3/nu3jNw078k5FCn/pESkRL4rraue6zVXCt0OcD5cFBIlc/L9+IeyFsLUsVbeLk3I9M8PzMJGWR78PC1fHTeve/x884Ku7rEsyzspEan7cnr7woQfOPmTOd4cdwoCiYpZOf/+fHeKYu+QfN0sQOiKJ1Kk5mEKgn8SvXvvn95eFZFmk3h2cp+sNOcVuvaL13xOZEPr92cztigoy9Tw6vm8tc7dctbLCsbseRnsKkjvUdZKApQRYT6ynMg7yYlU+a6MVzPJC/LmeJ3Gdoh5HP936S4agep4RY76bCql358FxeEpX95fbZvTd+y2Odqa2crDqLfkt8lONmHtnn8SEKn5zpwPJWvqKHZKtyZ0dneaTPOCdDyzRjZ9Mi7fB2jQqd+bmwOE5bacHNDPbLuc9tMxp3xJRkpT5ot8o5sxUKS8k4BIzXfmXEjcbDZ+qZwdDnc/KRKC28ekzwh+YeCkeIsKklqwqodriFU+4o3MR5TR9B6Tgtunh8MdP/SaAkIWw/non8yL1MDAgDMp0F6EBGdqqKcqUusYXwqMduNg1r53Mi9SunUVqvdJcM4PGlePIhUYzdvDYE8z72RepLRlMIpjSXAoUuFB5whcP2zGQLyTeZG6ePGiMzHQkZMEx53x3zPElbogHD582Ll+GzZsMEeIFzIvUkzojIgL71dTQgrbT4u/PXsI2LVrl3P9mMjpj8yLFNB2t9gnjgSkfEn2aieK4g7xubMYqaDpB7CoiHdyIVKrV692Jge2YSLBcbt8/uJS38nR//gf+bv5Kq/obkXsauqPXIiU9uXmDh0hKd+UkjYgLPZKyVOJEgqS/02Gp/yVM2UNJCerwN+6dcscJV7IhUhpDx9suU5CYgqGnRuu4xUZbtZ7vnxX/ra/X1476W8DjSyim6myt5l/ciFS2rIFfaWYnxIBs19L6bX5di1Ok7v1b0tp7IJcmzHlTNNfyVjpbVnfvV4++Zv/DTSyiFrzbNHin1yIFNAavrGxMXOEhKMsD76ZcDbLWOMqBneKxNdskg9LE4EKwrOKzj/W7PknNyKlT7LBwUFzhJD24G6+yHiUf3IjUhoTwAahhLQTjYkuX77cHCF+yI1IuVdXmNRJ2ok2ukMyJ/FPbkQK4EmGycK4FGknGo9inl4wciVS2l+aO3WQdoEqB8w5rCyjRIv4J1ciNTk56UwY9PRhKgJpB1iowZzbuHGjOUL8kiuRAsuWLXMmDVq4EBIn2EV76dKlznwbHR01R4lfcidSBw4ccCYNd5AlcTM+Pu7MtSVLlsjcHJPGgpI7kXLnrHCbKxIniH1injHLPBy5EymALp2YPNxWiMQFYp7az5w7FYUjlyKlLYURnyIkDjSBk62Cw5NLkXI/5c6dO2eOEhIdaq3v27fPHCFByaVIAc0CZgCdRA3cO8wt5EZx5+zw5FakMHkwiTCZuAcaiRLd65EB82jIrUgBnUz4l5AowAMPc4oPv+jItUhxQpGo4YMvenItUkAn1ebNm80RQoJx/fp1PvRiIPci5S4AZZCThEEXY/r7+80REgW5Fymg+6GxOwIJyvT0dHUhhsmb0UKRqqBbsWPg/4T4BVunY/5wC/XooUgZtM5qxYoVTvU6IV7R1tSwpGBRkWihSBnQXli3Y+c22MQraEWtOxNz89l4oEi5gDhhskGsIFqEtEKb2qFGj40U44Ei5QJuHtw9TDoG0UkrsDKswXL2L48PilQNDKITr2DbfswTBsvjhSJVBw2iY3cZmvCkHhoaYLA8fihSdUA8SntTs0iU1OJ289g4MX4oUg3Q/tQY3L+fKFjN03300DOK6SrxQ5FqApaUMRnRSB91WYRorScs7Vu3bpmjJE4oUk3AU1I7LGLVj/GpfKNxKAxY2qQ9UKRagKcl41PEHYdi0mZ7oUh5gPGpfIOFFMahkoMi5RGNT+FpeurUKXOUZB24+KtXr3Y+e8ahkoEi5RE8PdEYD5MVO80w0TP74DPXNj5YPOFnngwUKR+4A+mYtIhTkGzifijBemagPDkoUj6B+a/1fah+Z7ZxNtmzZ4/zGWPQvU8WilQAEEjF7seYwKh+Z8eEbIEschUotu1JHopUQGBBaR8h1PhRqLKBOxeKuw/bAUUqBJOTk05sChOarl/60d5QGPg/sQOKVEgQPFeLCv9CuEi6QJB8586dFChLoUhFACwojVFxqTpduFfxMBiDsg+KVEQgJrVq1SpnojPhMx1gpVZTSvCZjY6OmleITVCkIqR20rOExl6QOa6dNWH9Mg/KXihSEVPrPqAomd0T7AKCpEXjiCPSPbcbilQMQKiwfA1rCjcCkj/Zjyp58LloDSYG3HNurW8/FKkYOXfuXHXlDy4F3b/kmJmZqbriGLt27ZK5uTnzKrEZilTMIKCuW3Bj0P1rP2NjY9WNX/GwYIA8XVCk2gDcDJRaqPuHDHVYWSRe0I8cFpM+IOh2pxOKVBtxu38YW7duZX+imCiVStXgOAYt2PRCkWoz9+7deyi7Ge7HoUOHHGuLhAeWkqYWYKCjJtw9kl4oUgmB8hnt+IhBFzAccO1QzqIuNRoTYoWVwfH0Q5FKEFhPIyMj1aAuBnKsrl69as4grYAIoZTF7UZv3LiRqQUZgiJlAbUuIAb2d6NYNaaeONG1yyYUKYtARwXdfFIHemxPTEyYMwjcOqyUuq1PCBUEi65dNqFIWQgsqHpihXKOvAbYsQpaK07oPEFxyj4UKYtBXAVL5xoMxkC7YpR25KHBHsQHiZdIhnVfA4gTsve5IpoPKFIpAGKFmBXSFfRGxcDq4JEjR5yYVpbAKifEufbvRWoBY075gyKVItSywOqV27LA/+EewrpAjVrawN+FuBtSBmApuoUJX+M4V+vyC0UqpaAmcGhoqNpozz3gDqEc5MSJE1ZuEAE3DXliBw4ccGJtyGly//6woGBJccGAAIpUBkCgHdYG3CG3haUDiaIQLeRkwZVqp3DBSsLvh06lECVYgbVuHAZW6FAmBEuRgXDihiKVMbBEj7gNsq/rWVk6IBR4HcmjCMTDVYTlgoGgPNzGZrEuCAnOwUDTOLwPPxfWHQQRwe5a1809sEoHFxWrc9xlhzSDIpVxYDXB7cOOvLBimglHs4FESYx6VlCrgfcgyA9LCaLEJFXiB4pUDnG7YChu3rZtmyMiKkT1XMZmA90G8D64lf39/Y4VB9cS1pWNMTGSLihSpCFobaIunbqCEDd8zRYzpF1QpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGIxIv8E1cXN6ji3MKUAAAAASUVORK5CYII=
|
As shown in the figure, quadrilateral ABCD is a parallelogram. What is the relationship between the lengths of AB and CD?
|
A. AB = CD; B. AB > CD; C. AB < CD; D. No correct answer
|
A
|
37
|
iVBORw0KGgoAAAANSUhEUgAAASoAAADvCAYAAABFaJmcAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAByhSURBVHhe7Z1taFVXl8fzoXALVZDSgFDDFCKk0AoWRAIVNCBPlZEhQtunT1FasAVH7EMsllqUqYMtZcgH60gJzB0URkWhUD8EzDNaDD5SUwlUg0gmtVR4arG2pEX9EIgf1tz/yV7X7fW+nHPuednn7v8PNibnvnhz7j7/s9baa63dJYQQ4jgUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81Co0mTuntybNz+T/Jn7XW7fvt16/D5nXkBcgUKVGnflzLbFsu3MXfM7yZ1vPpG+vl7pLnVJV9ejo9TdW3msrzKelcXBsZJ0966WzR+VZfz7e8L7Tb5QqNLi1nHZiAm/8bjcMoeII8yelR3dKlLvythjBtSc/Hz1K/mof7F5Tkl63zwu12lo5QaFKiWuH1phJnm37L3E+7Fb3JXRrSpUQ3LeHH2cOblefsVYWBWra2BYvps1D5FMoVClwfwl2Vu9Y1cm+LYzlUuDuMT5oTBCBeZlpjwgJfNd9gydF2pV9lCoUuDW8Y3S1b1DhraWzMWwUY7T/3OK8EJVYX5Khlfo83tk/2VayFlDoUqc63KoMqlXHLpeMaz2Sre5E+N34g6RhKrCL6cGzfNpIecBhSphFsRJLagF0QomePdeYajKHaIKVUWpZNAIVVep8hp+l5lCoUqUW3JqsPTIHTdwA4MJXmKqgkNEFiq5LPurccfVMjJjDpNMoFAlyfVDsqJ2lc++EzuYqjA3NyfXrl2T06dPy2effSb79u2Tt99+OxibNm2SdevWSX9/vzz33HOPjOeffz54DGPLli3B83fu3Ckff/yxjIyMyMWLF4PkSVeJLlQ/SPllfU2XDIV7EUkIClVizMulvd3SteJQxeGzQeKnBtXzS1W4f/++nDt3Tg4fPixDQ0OyYcMGWb58efXCS2ssWbJEVq1aFYjZgQMH5Msvv5SbN2+aT5UfFKpiQaFKirtnZFupSzbWWd6zg+pZBWJhKY2PjwcWzpo1a+SJJ56oXmS148knn5QXX3xRBgcHA8sIVhVed/DgQTl69KgcO3YseC97jI6OBo9h4LkYsKjwevx/S5curft/6YBVhufi9XkIV3tC1S37L5vDJBMoVAmxkOC5Wf7nRp3asdsX5N/+SSd5eqkKExMTgfu2fv36QHxUFHQsW7YscOdgUcGyGhsbkxs3bphXJ88ff/whk5OTcvLkycCaglUF66qeaMK62759e/Dc3377zbxDekQXqvMyVP28g3LqF3OYZAKFKglMgufDerE641ktx0g2VQFCA2umnhsHtwtWEkRpenravCJ/4IZCJCGYsORqPzdEFp8bcbMHDx6YVyVLZKGaGpY+/Ywvlyv2FckSClUC3D2zTUqtLCXjGgYTvc1UBVgqCFjDxdKLGwOWCoLbsKpgXaV1kScNrE64l3AFYfXZf9MzzzwTuJSwzJIkmlCZ+KP5TPXce5IuFKq2uSXHN3ZJ995LLSvsH9b/xUtVQFzo1Vdffcytg2DBasrCZcoCBP3feecdWbRo0SN/J1YaIcIQ6naJJFS3Tsmg3mR69gsT07OHQtUmjyZ4tmB2VLbqhH9sdbAxcIFWrlxpLqyFAVcPLl+aMaa8wYIAVgnhBtriDJd29+7dgSUWl9BCNXddRgbMqm1pQMozVKk8oFC1w/yMjGAlaPCUhIut2lX7Jdk62ri8FW4bVsRsgcLFCjcIOUq+AWsR7m7t+UCcK/qq4U05MqDfQ2OhmvtxTD54SUXqJdl/ieXIeUGhigX6Ff1NDr3eYybxgPz76W9l+tfGDdbm7/0q0+OH5PUevUDwul5589C4TFsdJVWg7OC4XpDtWBCdRK2Fidgc4lstrcugw+dNmSi/Lj3mtV1dK2ToxP/Khas3g/OLx69eOCGfbn7BtHdZLC+8XZbJO7Sk8oRCFYtv5JN6K3t/OVm5V9fn5sm/PP58HZ98EzwHF6AtUHBx4N5RoOqDlUMsHtiChdhWw1hd0OGzzvmvHas3y44PP5Hy367KP9hL2gkoVA6AxMpaC2rt2rXy4YcfVpMpORqPt956K0ggtc/fa6+9VphVT9IaClWOIFi8a9eu6gXGkexAjWLSaQ0kHyhUOQG3pTZJ86mnnpKtW7cG8RaO6AM5VziP+BdWFX6GO4iM9yRSGkh+UKgyBhcMcqFsgcLQnCHkCZHowHLSc4mbADLxUUqkxyBeiAGSYkKhyhBcTHYs5emnnw7+feONN4Kld/wMwfrpp5/MK0hYNEsfXSFskPFuF0hj9ZSxq+JBocoIBMy1GBcXzvvvvx/8DBcFeUC4eLTuDcJFwoOkUJw3nN96NY2wYpE0iudgoDCaN4NiQaFKmdqLBO7IzMxM9S6PlioKEjn1eSgjIa3BgoTG+pAM2wzcLDR2BVcQLiIpBhSqFLFdPdztsZQOywnihGMQK3QSsIE1hcdgXdFFaQ1iejhfyDkLU+t45cqVRxYx9uzZw/NcAChUKYHYiO3qqYUEN0/v6shArwUuiQbWy+WyOUrqgURYCBTO1fDwsDnaGtwc9IaAgaTR2hsGcQsKVQrgotGLAK6enVmuFwhKQBrdydEJAe/BO31zkIWOcwkLKc65wgKG3jQQt2IFgLtQqBIGq0oqUkhDsC8gOwaFdr4kPtiQQi3WdtIO8J2oBYs2Mi41GCQPoVAlBATJdifqLYPjro3HIGCkPTRHCm5bu0D0dHED/yKORdyCQpUAiG/YyYXoD14LYlZ4DK5GJ/eQygI0EMS5hEWVlKjAkoJFhfeFhUWL1y0oVG0CkdJkQ1w4iC/VgiV0bbGLhm8kPrBSddUOMaokQYxK28fgu0R+FnEDClUbQIBskWo0sZGWgOcgdydOzRkuTuQAsV5tYaEB5xKrfWkEv2tvPD42KXQRClVMIB5as4cJ3Sigi3QDXVnCKlMcsMUVXo/iWp+BUGs6Qj33OilssYIbyA4M+UOhigmyoDGRMbAXXSNQ1Y/ntJPACRHEe0AQEfj1FT3nSKKFNZsmECstaUKAnauB+UKhioG6chhwyRpRW9HfDii2xfvgTu8jEAoINc5BsxtDksC11HgYxJF5VvlBoYqIdjnAsOv06qHuQ21FfxywUqguJFYQfUPd36yFGgKpqQtYFWScMB8oVBGAVaR3deRJNQN3fTwPz0/KbbBrBH26YFB+hL8bI494EVIgNCkUeVtxXXgSHwpVSBAU1w6StRnntUSp6I8C3leLnFFM6wM4zxor2rJlizmaPVj905uUL+feJShUIcDFom4cLhoEWpthV/QnbfloYB1uoA9Wlbra+Hvz7iGFeCQ+CwZbxGQLhSoEuINicsL8b7XqhoBrnIr+KCCY70N2O4RYrVj8zS6gvcXwudh8LzsoVC3AnRMTE6NeW5Za2q3oJw/RGwRicmmnI4QF4qnuN6xsfsfZQKFqgh2XQj5UKxB01TgG6tFIfOxVzjA3iCxBQJ/xqmyhUDXAjkvBOmoVlwJamIx/SXto1j86TriIxiExGK9KHwpVAzRwirt6mAr9NCr6fQWdC1QEXK610yRcFJyHuZGR+FCo6mAHxMPsswfrK62K/jDgYu4kF0T7drm+Gw96tOs8oQuYLhSqOiBfB5MPmchhgqXaehiTNusyC8TRNF7SCS4I4lH4W2DJFmFlU9Mn8B2wHjA9KFQ1RHU7sAoUxfpKA21/DKvOldWxOMB90nKVIlko/f39wWdOotsoqQ+FygLWk3Z5DJsFnWVFfyPsfKM025+kTVFLhOzVXh/rMLOAQmVhZ5SHceHyqOhvBLbWwueAy4QtuYoGXFhNRyjiNmHo3IrP7lsdZlZQqAwQJi08rddOuB6utV5RFwTZ00VD44JF3XgVbivbTacHhcqgcZ5m++3Z5F3RX48k+19lycTERPVzF3kre7Sixt8AyzDrRZVOh0JVAZNK3Y4we8RByLSiP0zGepZoCU8eaRJxUUsQPaeKjm4O0aoNEIkGhaqCxhcwycLgUkV/LcjtKVJAV7cRQ6yvEwqt7e4W+C5IMngvVHZ6QRhryl5hc6Wiv6jY/bU6yQJRq4rzIzm8Fyrtf460hDCo9YXAaZFzllwAqRQ4l7hRdNJKmXZ37bS/K0+8FioIjVpTYSr0Xa7oLxpxVlmLAmKYWlKVVxJwp+G1UGnhcdjeUa5X9BcJ3UYsbJlS0dBSIJd6aRUZr4VK817CWEdFqeivBa4HVgDjbn6aBnYmd6e2SIH4avytiAmsruGtUGkeFNyPVnc8TDoNkLpe0V+LXTDtyioUauLwmTq9b5fG4FxJCC4y3gqVuh5h8o3siv6iladAZLV+0YXcKk2KhEXV6bs+Y67gb8UoYlmTS3gpVCh30EAuXLpmFLWi38aVLHpYrhpk3r59uzna2WiXWKYqtIeXQqVJhoghtKJTNv2Ey4q/A1ngeeGiG5o2mhwMgSbx8VKotLd5qy3ZYa5rOkLRA6LIoFcrMo+/xe6G6dOSPf5uXTgo0iKMa3gnVLhgMWkwWpVsaEV/2EJl19E2Nsisz9o6hKuH/7vozf3ioHsBFqn+0jW8Eyq9WFu5QHZFf6s4VlHQwDrcWPx9WYGguVoVCKb7hp2pzpyqeHgnVLo03iobupMq+m3Q7C9ra0pdbV9b9UKcwi7ekPp4JVSYMBpzataIv9Mq+vPE3mna523EtMkiV//i4ZVQ6TI9XJ9GQMzYqTEZ7Bwu1/p2ZY2GHJj8GQ+vhAp5UJgszbLLO7WiPw/gXuNcwu3xveOlxjxhpXOz0uh4JVQad2pU29fJFf3NSGNFEyKv6QhF3hknKXCO9XxwC/joeCNUuIvpylOjcoZOr+ivB1akkPiadPxI+3bluY2Ya2iaAndVjo43QqVB3UbZ6LhQ8TiGT3c8LfFIMnaCBQi9KXCfu4doW6E8qwOKijdCpfGpRkFdTVvA6oxP2DlOSe1NiJQOXpCPozdDxqmi441Q6fJwvfIRnyr666FbhWG1s90LyC6AzjKptChoDJTnJhreCJWmHNTWWyF+4ltFfy0IfGuHiFb1j81AXE/7doXdEt830B0W54fN9KLhhVBBjDA5MGqXyTW/BSsyPm9vpEmuSIiNm+SKi0/fg/2X6qNdLBhQj4YXQqWxAZjdNnZFP1qQ+I4G1uNsCZ+UVdbpaJ5eEbfdzxMvhEpjULUbjNoV/b6kIzRDA+uo8o96PnSxAmLFQHFjdC5ip20SnpyE6hv5pK9P+lqO1bJ5x4fy+YkLcvXn+Lk4ehfDLjKK7xX9jYiz87Pdt4vbiDXHXvkj4clJqObk99u35eZEWV7vWYgdYfzzf3wr05XjiCPdvn1Trl44IZ9u6pVS8HhJet88JTPz5i0ioH2lbJfE94r+JNG4S63FSh7Hjpey4D08ubt+N48MVL+4ofPm4CPMy52zQ9JjnlMaOCI/mEfCoistmnw4Ojoa/I67WtIZ2b6BVVT9/tjCJBy6jRbmIQlH/jGq8ws5PBj1hQrMy9TwCvO8kmw7c9ccD4dODFxIiL2woj859CZgu9WkOZpcTDc5PAURqgozI7LaPK9rx9mKdIVH4yewnljRH51GXSTsbcToxoRHa/586h3fLsURqtmv5M/meV0vlyO5f/r+U1NTrOiPAMQHGf31+pzjd02iZU5QNLT4nU30wlMcoZoalj7zvNIHF8zB1tjBSyy7419W9IcDFmcjYcdFhuN5bBRRdHQeUuDDUxChmpWzO7rN83pk/+Xwjh+WzvX9NR0hqeJbH9CKfzvbHCkM6k5j3zoSDRV5xkjD47xQzd/7XsY+eKmaojBQnokUn7KFCoMV/dGwFx+0M6qmeyBpkYmy0aFQRccpoerqWizPWgmfvd2lh4/1/Fn+e/JOJJEC9vI5BqvWo2N3RPjiiy+qP+M4iY7unoxcPhIOp4Tq3dOa7KkJn6el/NFmeWGxEZrFL8jb5Um5E0Gtvv766+r7I/iLuxlH9AHrCedQXT7f+nYlia6WMtk4PMWIUc1dl5GBh9ZVT+WJs+ahVuzatav6Oo5kBmJ9zbYbI82hUEWnIMH0CrNnZUe3XizdsvdSOLMKiYh4DfKmEBPgaH/4tPFFGlCoolMcoZL5ylMfWlXd+y+b481BNjqe36hXOmmTuZ/l6lefy1t/6pNn1UXvKkl3b5/86a3P5aur/5B783Ny/T93yMiMeY3nUKiiUyChEvmh/HL1uWFzqZC0qK8hSTInP459JP0Qp8X98l55XKZ/vWcWO+bl3q/T8u0J87g5/62+X19AzA/ng11Qw1Mgoboro1sfTvrBU7+Y482x0xNIUszK+Q8WulqUBoblu2YBQyu+SKFaQIUKbjQJR+5X793RrVUhaTaRZyf2yQrzvK6e/RI25xNZ0/r+PrcaTo55mTq0aiGvrXuHnA2zqjF7XoZ6umTgCNsTg507dy7M96Ehc4S0Il+hmr8jY9WM8y55d6xOWQtiICf+VXpLRqQWvyJHIjal0vfXzGoSn/nL+6stdzYev2WOtma2ckMaKEdt0NOZwJLC+YNlRcKRk1AtdPh8JKFTR6lbejXps7fbZKR3yeJnV8vmT8fkxxglevreXFJvl1tyalC/s60yGqXbzvwlGSlPmV/8RhsNUqjCk5NQLXT4fJjc2Wz8Xnl2e9j9qEgb3DouG43odw2eknBRQlIL+1FFx4sIs2ZVszd6e9jxxLDpIeRxOB+j44VQadInG5W1x9RwX1WoXma8KTbaxcPHXbnj4oVQ6VZOXA5uj/NDxu2jUMUGcVI9h+yJFh4vhEozgdnipT0oVO2jG4uwUiIaXggVWrtgcqAbJYmPXRnQN8wVvDhgR26cP3afiIYXQoVET73A2Da3DS58UE0X6do6KtH2AiJAd+dG0icJjxdCBWBNYYJMTk6aIyQy85dkr3awKG2TiLuWkQpr1qwJzh87UETDG6FCfAoThP3S28N2/6LFqX6QI3/9L/k/85uv6A1zbGzMHCFh8EaodOeP3bt3myMkFvMzUtYmhqUBKYcqZ0IR87/IoalopU+dhl0gjw0ySHi8ESpd+Vu5cqU5QmJjioyDi27xK3KoWS/7+Tvy9/2b5M1T0Tbl6ER0DnLFLzreCBXuYHo3Y0A9AWa/k/KbC61egkZ5a9+T8ukLcvWmKX2a/lZOl9+Ttb1r5dO/R9+UoxPRYmRY9yQa3ggV0G2fTp8+bY6Q9piXe9+PBxtwrLYKyIPC8tWb5aPyeKwi8k5Fa04ZJ42OV0KlS8PsA0Syxo5PweIk0fBKqHAnw0SBZUVIlpTLZc69NvBKqOzET97VSJZoDyomesbDK6ECWPXDhGGcgGTJ0qVLg3nH+Gg8vBMq5FFhwqD1CyFZcPHixWDOob0LV5zj4Z1QXblyJZg02Jqck4ZkgS7iDA4OmiMkKt4JFdAOiyMjI+YIIenw4MGDatkMO3rGx0uhQqdPTBz2pyJpg5gU5tqSJUvYKK8NvBQqO0sdOykTkhbaBpvZ6O3hpVCB9evXBxNo37595gghyYIYKGKhmGcIqJP4eCtUx44dCybQsmXLzBFCkkWTPJcvX26OkLh4K1T379+XRYsWBRPp3Llz5ighyaE90LjRaPt4K1RAe1RhQ0hCkgSb3WJuIXcKdX6kPbwWKgTSdY817qJMkkR3Q+YWbcngtVAB7RGE4DohSWBnonNVORm8FyrNVMfAz4S0CzLQMZ+YiZ4c3gsV4MQiScEbXzpQqCpwcpGk4E0vHShUBg1+coKRuNg3PC7OJAuFyqABUAzmVZE4aN4UF2aSh0JlsWXLlmCioV0sqt4JCYtmoWOlb3p62hwlSUGhskB7YlS5Y8KhwwIhYUCLa23lsmfPHnOUJAmFqobDhw8HEw7lNdzNloRBKxywHRZKs0jyUKhqgMu3atWqYOKhIT8hzZiYmAjmCgb7oacHhaoO9uRjYJ00Ajc17Ra7YcMGc5SkAYWqAdrnGi06aM6TeqArAuYIek6x8DhdKFQNQNMz9KrCRKQLSGqBpa0F7cPDw+YoSQsKVROQW6WTkRtBEAWrw7pPH12+bKBQtUA3goB5z/IagriUtrGGxY3UBJI+FKoQ4K6Jicl4FdG4FCxt9kHPDgpVCHDXZLyK2HEpJgRnC4UqJHa8isFT/2BcKl8oVBHQeBUGd731B6wAo/4T3zvjUvlAoYqIti6GdTU2NmaOkk4FMck1a9YE3znKqq5du2YeIVlCoYoIVn02bdpUnbgMqHYu+K51p2N+1/lCoYqBfZdF1TzbenQmWmwM65mufr5QqGKCOIXGLRBkRbCVdA7Y6h/fLcbRo0fNUZIXFKo2QBsYXQmCaLEtTGeAVV0VqYMHD5qjJE8oVG0Ct0/FCv/SDSw2Q0NDVZHCz8QNKFQJYIsVYlYMuhYPBM61FTXGgQMHzCPEBShUCYEYlcassEI0OjpqHiGug8URXclF4Bz9z4lbUKgSBImBuhqICX/y5EnzCHEV+zvDDYare25CoUoY3J11E0oM1oS5y40bN6pWMDb1oMvuLhSqFEC8Q3NwMCBcuHMTd4C1CwsK3w8XQdyHQpUiWNrWQmbsUDI5OWkeIXkxNzdXbTONAbePaSXuQ6FKGYgTRAoXBUSLeTn5Aatp5cqVVZHCHnywfon7UKgyAG6fHbeiK5g9yC5XVw/xKBaUFwsKVYbUuoLcBy594NZpYTEG9mzkjjHFg0KVMbYriIEmbFh9IskClw43BrWiMJBpTlevmFCocgApDIiPqHWFjSNQBItAL2kfpBnoxqAY+JmpB8WGQpUjCO7qjiYYdAfbAx0ttLEhBmJRsKpoRRUfCpUDHDt2rForiLFu3ToZHx83j5JWYGECu8NAmPQcYhMOph10DhQqR8DFhhiKuoMUrNbUEyhkmmO3GNJZUKgcA4F1uC+2YCH3hy7hQ1AADlFHbE/PEfZcRAoC3bzOhELlKCpY9sUIwULRrK9Bd8T0agUK5wSuMwWqs6FQOU496wGuDspAfFjJQoD88OHD0t/fX/37MZAPRSvTHyhUBQGCtXv37keC7hhwedDkrZMCx7AYIULI4LddYPyMvDPG7fyDQlUw4OKg/AOrWraVhYHgO5bjr1y5Yp5dHBAYhzih6wS6pNp/F/Kg0Mecq3j+QqEqMEgcRTdKCJR9YWPgYoeYjYyMONnCBJ8dggsr0S4Utj8/XN4iii5JHgpVhwBrA0364BrZZSM64DKiJzgsE7RJzlK8EGeamJgIRBXChHiT7dLpQGoBYm/4fAyOExsKVQeCGA/iOMgxgrVV6yLqgFjArUIsCCU9WN7H6zAgLCjexWjU6UEfh+jp6+C+QQzhwkGQat04eyATHyub+H/p1pFmUKg8QN0s1BNClCBO9SyaNAcsOojmzp07A2FiBwMSBQqVp8C1giUECwguIywbLPnDysGws73DDH0d3Dfs6AIXD64eLLNGFhkhYaFQkZYgxqRunj0YRyJZQaEihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCHOQ6EihDgPhYoQ4jwUKkKI81CoCCGOI/L/5KbxyK+aZhsAAAAASUVORK5CYII=
|
As shown in the figure, points A, B, and D are exactly on the circle with center C. Then the lengths of segments BC, AC, and CD satisfy ( )
|
A. BC = AC = CD; B. BC > AC > CD; C. BC < AC < CD; D. BC = AC < CD; E. No correct answer
|
A
|
38
|
iVBORw0KGgoAAAANSUhEUgAAASoAAADvCAYAAABFaJmcAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACMCSURBVHhe7Z1/aBznmccF/bGFVtS0FQ04agMKuOC41BCEwIFWEOKaM0GCoKRuRAROSyyaQ1ALxSg0Omo3HPojVn0g7rY4cLax7lzkP3RnWUqRUZM4dsVF8sWqkG2sYsvYSpGLbI6F7R/PzXd2ntXsan/M7M7svrvz/cBra0ezq93Zme88z/M+z/M2CCGEGA6FihBiPBQqQojxUKgIIcZDoSKEGA+FihBiPBQqQojxUKgIIcZDoSKEGA+FihBiPBQqQojxUKgIIcZDoSKEGA+FihBiPBQqQojxUKgIIcZDoSKEGA+FihBiPBQqQojxUKgIIcZDoSKEGA+FihBiPBSqMEk8kkdJ52dSfRIP5f79+8XHw4TzBGIKFKrQ2JALBxvl4IUN5zGpOh8flR07WqQp1iANDZkj1tRi/W6HNbZLo70tJk0trdJ5JC6XbjwS3m+qC4UqLFZPyz6c8PtOy6qziRjC+rT0NqlI/UwmtxhQCbm3MC5H2hqdfWLScuC0LNLQqhoUqpBYHNnlnORNMniZ92Oz2JCJbhWqPplxtm4lIYvxvY6FZVld7cPy6brzK1JRKFRhkLwsg+k7tnWCH7xgXRrEJGb6vAgVSMpyvF1iznfZ3Dcj1KrKQ6EKgdXT+6ShqVf6umPOxbBPTtP/MwrvQmWRvCbDu3T/Zhm6Sgu50lCoAmdRRqyTetfIomVYDUqTcyfGY2IOvoTK4sFYh7M/LeRqQKEKmJQ4qQWVEi37BG8aFIaqzMGvUFlKJR2OUDXErOfwu6woFKpAWZWxjljGHdd2A+0TPMZUBYPwLVRyVYbSccdWGV12NpOKQKEKksUR2ZU9y+e+ExuYqvDXv/5VPvnkE4nH43L48GHp6emxx/PPPy8/+tGP5Nlnn5WnnnrKHqmLtEG2bdtmP3766aftfTBeeukl+3lvvPGGDA8Py/nz52VpaUn+/ve/O3/JLPwL1S2J79HnNEiftyeRgKBQBUZSLg82ScOuEcvhc4PETw2qVy9VARnX586dk3fffVdeffVVaWtrswVHL7ywxhe/+EX53ve+J/v377eFcHR0VObn5513VT0oVLUFhSooNi7IwViD7MsxvecOqlcqEPu3v/3Ntmr6+vpsodALLNeAYEG4YBG988479oCgvP/++7a4Xbp0yR4rKyv2mJubsx9PTk7a+2D8+te/tp+HvwdRgrWV62/pwN/s6OiQ9957ryrCVZ5QNcnQVWczqQgUqoBIJXh2yr/fzFE7dn9WfvVdPcnDSVWAi/XBBx/IW2+9ZbtrKgju8eSTT2ZYNh9++KHt+oVFIpGQzz77LMOSw3uDlZX93p544gl55ZVX7Pd19+5d5xXCw79QzUhf+v12yNgDZzOpCBSqIHASPDfrxXKM7VqOEWyqAqwbWDHf+ta30q+vw33xI15kCo8fP7atsUKiihgZLDXsGwa+herasOzQ97cnbtlXpJJQqAJg48JBiRWzlBzX0D7Ry0xVgMUBC+WZZ55xLrbU+NrXvpZ2p2DJ1ApuNzXbZcRngiUGazFI/AmVE3903lMu956EC4WqbFbl9L4GaRq8XLTCfrP+z3+qAly7U6dO2ZaGXjAYcKN+/OMf27+Dq1UPIGYF0YKr6v6seAwrDO50ufgSqtUx6dCbTPOQMDG98lCoyiQzwbMI6xPSrSf8ltnB3ECg4AJlWxpwmWA5BXHRmorG3RDkh2Wln/0rX/mKvP7663Lz5k1nT/94FqrEooy2O7O2sXaJL1OlqgGFqhySyzKKmaCOMfEWW3VX7cekeyJ/eSusIwhRdv4SLAqT4k2VAsfj7Nmzds6WHg9YkxAx/7OGK3KyXb+H/EKVuD0p/btVpHbL0GWWI1cLClVJoF/RRRnpanZO4nb5p/NXZOnz/A3Wko8+l6VLI9LVrBcIntciB0YuyZKro6QKFALhuh8EClP/iOUQsVMj3IKFgdhcUcGyO3yuyCfxLmlOP3eX9J2ZktmFFWeGdkUWZs/Isc6dTnuXRtnZE5e5NVpS1YRCVRIfy9FcM3s/OWvdq3OzcvYnW/fXcfRjex/EmdyzdxAriBYFKjfIqIdA6fHCwCxn3vQGu8NnjuOfPVo7pXfgqMQvLsgd9pI2AgqVAfzyl7+Ub3/72+mL7atf/aq0trZKd3e37dpwFB4vvviifOc730kfvy996Uu2xWVq+Q7xD4WqisBSghjpBcYR7EBGftBpDaQ6UKiqBNw8dxwK4+tf/7oMDg6my1g4/A09ntu3b8+YJSzoDpKagEJVYRCwzc6F+sIXviDf/OY37Z9RM0f8g3IgPZ4ItkOY0NFBt0G4kOZBahMKVQWBG6J3fUytf+Mb37B/RpwFbVbwM3KEUPhL/KGlOBAnNyjVcad44FiHVZZDwoNCVQEQ1IVrosW4uHD6+/vtn3Gn16RNdDDANsxkEe/AUsJxg8jnSgKFMEGgsA8GSo+imItWy1CoQibb1YMI/eUvf0n3gnK7ephu1/1gCZDiIO9MS23QFaIQiAtq7Ar/I4GU1AYUqhDJdvWQEwVQx4ZtsKyy6/NQGoLfoWQm+3dkK7BUcbyQf+Yl3wwW1w9+8AP7ORjoSMrjbD4UqpCAKOnFAEFCOxaAC0VdQNzhs0F/KLW20J6F5AcBc7h7fo8VhAkCpd/Pc889F2pfLlI+FKoQePvtt9MXARrVue/0eIztiEflA4F1DCYsFkbjTog5lXKs4PqpK4icq3ou8K51KFQBgovlF7/4RVqkcNd2X0BwBfV3iEeR0oGFqseynKROvI6654h1MchuJhSqgIAgufN20OXADX6vje7QCI6UB9w1HEv04ioXiJOmMEC0eBMxDwpVAGD6213Nr0FzN+48KWZJlwdcNhxLxPqCsoDg9ukiGHAHkTRKzIFCVSYQKb2748LBQgbZIEal7gXiV6R0EAhX6wdudpB4+S5JdaBQlQEuGj2xcRfOl/sENxD7QKxKyYrG38E0fHkzUw9k9sS/yh9rvK8SesXjWGJmNIz2N/h+tHUMxAqlOaT6UKhKxB2TgjuX74RGOoJOoZdaa6YzhcixKou1/5RONOuLz0kt6hXcM03dwGrMYYHvVo85bkCaWkKqB4WqRHR2r5iLgMp97IdatFIJYrYwcXtcDrWk2uo2th2RmRpcSAVCjfePZFj3bGoYuN1AWMKcDawuFKoS0GxojEJWUnZFfzmULHiJ2zJ5pC3VVteypg6N35ZazMNGm2HcFHAMJiYmnK3hAldbA+yIizHPqnpQqHyCDGgVn1yze27yVfSXAmYKNTkRM4jFScra3IjsbcR7jUnLgdru+62zqqibrCQQJ60lhGiFERcjxaFQ+QB3cr2rFyuALVbRXwoaSC5W15Zcm5P4gRaJWfvGWg5IfG6t6JqDJoPjjs+NY+9/xZnygduns7ZwB8N2O8lWKFQeQY8oDeQi47wQmKXTEzs78bMccIGoK+J+D7eWl1NClFyTufgBabHXDmyUtiOTcrvG623xmXVNw7InE8oAbrxatCgqJ5WFQuUBXCzqxuH/YndUvxX9ftDAOkRT0xWS107Km729st8VLJ+sdYVywOyeft5qx4jUSsbAEvSkclCoPKBtWXCxFOu+WWpFvx9OnDiRld2elKtDzal1Ak8v1mSwPBcQebVi4faaAMqfvJ4LJDgoVEXAnRMnJoaXRmt6Ipda0V8yG7PSPzRd07GobDQFxKTeXEhbUFfUi3VNgoFCVQA/cSng7tBZTkV/qazPzsqC87Ob5Np1GT/+mrxgL7D5grx2fFyuGz4DiAC2TlyY1okTAX21mhmvqgwUqjzgDq5xKXSE9HJH1wRBZDWbQVLuTBxKBdctt3D/sTNyZem+3F+6JCM9PXJy2VyxQlcEHEscUxNxp6kwXhU+FKo8oJc5TkLM9HhJLwijor9c1mf6pBkXU/NBGc8Oricvy+Crp8XEBHXUTKoImFy+okm4YUyakEwoVDmAy+cnIA5rK6yKfi/gwt7qmi7KyC5c7Ltk+FoOy2l9Wnqb2uWkYfFgxHy0bxc6eJoMxAkihffqJTRASodClQOtnvcaLFXrC/GsSt9ZIaoay8lwQW7FZY+1raF7QjacTZv8jxxrhoiZJ1TqUuFGUQt9u9D3Hu8X3wGLl8ODQpWF2+3wUgDsruhH2kA10DYysOrSsbSVk9KOz9E3k3qcwar8vqtJWvpnZN3ZYgJuCwW5aLWClvcU6oNPyoNC5QIXuU49ezXlK1nRnw9MmWs92mZjvlsS32MJVfOQXC0UM797UU6MmZF7hbIkfAZ8Fi+TF6aAmKSGCrzVYRK/UKhcqAvnNThajYr+fGgwHxeMBv+Tdybs1i6x3f1y5sqSZf2tyL1sE8qOVTVIc1dcPq2ieeXu25VrGTHT0ZWHGFgPBwqVgzuA7vWuWK2K/nxoekTmggcJebh0RaamZmVh5aHLckrKnekj0qbdFQ6NV7UuUJsQIi5Yi5RijRPvUKgcdI04r3EGzViHRfXZZ585W6sL3kfOwHoW2d0VRv7jrIwcG5R/Gb8u1cgDRa8uvGeMWm79q/FNfAdBdcwgKShUFgiI6wXupcEdYlF696xmRX8utC4xM2P6jnw0uyxJd3eFLS2Jk7Icb5fG9rhUMg8Ux1KXWEdeUq2jVnY10lTqGQqVhV7cXq0pkyr6s0F8JNciE+vTvdJkvWe8b3RXmL6TQ43slIaY9M86jyuAu2/XliLfxD1Z+HNt9UxWqwqfx7Rzo5aJvFDhZNLYlJdSCLRW0XQEUyr6vbEuE90x2fPbPDN8lrU13ddsfa7KCRVmK3MtI5Z8dEMmj3XKTsTPcqZXmI1aiKwDDI7IC5XO1uDk8oKJFf2eWf29nJzamv6ZuD0pR9oa7c/V8N1fyeznjyrShUGPPcRqc6YsKY8eWn9/fVxexvupQaHS+CXKrzgDGAyRFiqcRGodebGm3BX9tbo4ZTKZsIbzwL3wQ2ObHJm8bYmv5W6N98sPd/fIWIjBquKzrE4eWA0KFVCrqpYSV00m0kKlnThhHXnB9Ip+TySXZWzkdzJ1xpWakGPhh/Xxl4sni5aBFvTigs6dKOtFqCzr686CzE5NydSVJXmYbeAmHsrSlflU4XXykdy4Yu03657ZtJ5/w0nduBesdaylNdUoq6pHIitUuDg0m9vLwqDu0ppaqulCDA7N/NzF1clrw7ILn6W5K+/CDxsT3dZn3SPxW86GAHH37co/y1pEqBKLcvpAizTt7JTeAacNc+PeVOua/7suE++87PSO75PptWnp390iO1qaUikZmNlM3JGJQztle4v1GvZ+zdI/u9UtLhX3zHBYnV6jRGSFSnuPI5O4WKwJJ50uqmB6RX82WNIL7xt39s0l4dG6uENGl52HGSRl7Y9DshsXb0gWFWZX8Z4K9+0qJFSrMtYRk6be6c1aRUt8d1iv2dAxJg/sDRsy0Q0BslzamRvyyP4cSVke3WNti8nun5/atCLXJ6Qbn9d6vSA/rq4aVNMWuCFEVqi0ZbCXLGKt6EdwtNamnCGy2jYlI+dr42P5r0sqXCmyE0HDiFG5uw0UToosIFS2KO2Q4WvOY5C8I9PHB+S4awnomT4IVZ9kvIIjaJkv6/ytPXHrp+BA9wd8VgwmgJZHJIUK0+IayC2WCY34Qi1W9Ltxr9ic0RHiwbIswySp0DJbsFzV3S62LmIhoVo52W69RnG3NKdQOe1vKiFUQBNA3ekXxD+RFCpNMvQSRK/Viv5s1ILM7LG1LhOHWqSlqTLLbPkr+s4vVLficN+yLCpldTXdtdQEocKMJj4zWvCQ0omkUKGIGCcPLpxCwFzXdIRarOh3414SPiO4uzomHbFm6Qp5mS24zPr3vfXtyi9UMttvu6dNg5ezYkobMjNyUhadRyYIlR/rneQnckLljhtsKdnIQjt91ktDNA3uZgbWrcv05IhcCG7CKyda9I1JiU2LrhDLMtpqfU+5OpQmr8qQ3aEUAvu/qUB54p58MvKiHBjzFqPqnXZLXHhCBbQzhGl1obVE5ITK60xMvVT0u9HZS7ixGSkWyUfyKERzCn9Lj2WuOsRsVuen5PxIV2phithu6T8zJfNZJX/rnw5Lux1T2xzNBy84bt+qzJ8flo4mbLfEbOS8/fzV+fMy0oUyoYZUj66PbsjG6rxMnelLpWvYf+sjuRGwaGumOm4QtRw+qCaREyoNbhbKbcEFXU8V/W6QXQ93pJLoMc/sk5Wf6+cGZGAgc5y77vzSBdYrvBg/av3+qMQv3Xa5rtflXI7nb3ndE7Py4Pq5zG0DJ2Q2ld8QGBAndXu9dOcgW4mUUOGE0XhBoSWtNACKfYu5h6QwKDXCsUSsz5RlxKqBVjWwpKY0IiVUml2OIth85KvoJ/7BjUGzs6Pe9VJDDlwAojQiJVS6Wkuh7HJ3RX+lXaR6I1/wPoqgvz6OBSxLnlf+iZRQaelGvtq+Uvqm1wNhBHiRjgCBwrFEo0Ei6ePhZUKBZBIZocJdTHOi8sWdilf01xf4jJhUwAXkZQ1DP8DVw7GE6xeFY+kFTXeBZU/8ERmh0inifBnC7jKTKM3MaPJrkKu/uBeZqNW+XWGgBeJemzSSTSIjVNoXPV98St1C3PWihLsZYFDuroof0hLIJhqnwmCPKn9ERqj04sl1MXqv6K9PdJIhsyVwaWAhVj2WuDBJJppPxXIaf0RGqDTlIPsEQSDZe0V/fYL4XRDHQDPf8TosF8kNXGwcnyhN1gRBJIQKFyJODozsflLajjjqS3HrkvCwhEpNzESxMV6jFvt2VQqdsInqTbFUIiFUGhvABeQGF5OmI7Bd7KZ77LXUxQ1EXqffi3WliDLa6iZqsdByiYRQqbWQPbPlv6K/voElBeHG3d7v8dBlxDCrGkZeVr2gJUU454h3qiRUH8vRHTtkR9HRKp29A3L8THmrhKh75y4w9lvRHxVKcX/dfbtwUyD5QeoGjhOOF/FOlYQqIQ8tt2vlk7h02X2FUuMf/vmKLFnb4ZLdv78iC7Nn5Nj+VA/v1LJOY1JKG2+NC7hr99DmBdtKcXNIJlikAceSdWzFgbWp53uUi7T9UnXXL9X/OvXF5WrmKFgVZbov1ZvIGrH2k76bm+lMi3bpZEV/cOhqPhhBZ7fXK1qojVQO4o3qx6hmUomYGLmFCiTl2vAuZ7+YHPTZjhJxEzwXGefuin7EVUjpII6lK9ygJzvxhvbn8rKeJElRI0JlsTwqrc5+ftdf05k9xAdY0e8ftG/OhS4jhuObbx+yFa35w7lIvFE7QrU+Li87+/ntba2v/6c//YkV/T6AW4y4U66ZPATdNYmWzeD8obPNPG7eqR2h0pVwrRHrn3U2Fsed7PnTn/7U/p8V/d6AGOmahtlNBN1lN+yv5A9k7ePYMenTOzUiVOsy3dvk7NcsQz7WGUdLF319nUJHJwXiDbd7p3WQ+F/dacZZ/KPpMoUaOJJMjBeq5KMbMtm/O52i0B5f9hWfcgsVBiv6/QHLU2dNNZVDl38KsjVMlKBQ+ccoocJy4ttdCZ+6gq89ml+W382t+RIp4O4zBYuKFf3+cR/D3/zmN+mf2QGgNNRKRckS8YZRQvWz85rsqQmf5yV+pFN2NqZ+39C4U3ric7LmQ63+8Ic/pF8fQWHczTj8j+9///v2Mfzyl79s/w+ripQG3GUcQ1r33qmNGFViUUbbN62rZmvHdedXxTh48GD6eRzBDHe8iviHQuWfGgmmW6xPS6+98i1GkwxeLm5WIb7S2dlpPwedExAT4Ch/5OullHio1vDnqWXW3SQebd0WUShU/qkdoZKkteumVdU0dNXZXhhdmj1fr3RSHonblyT+5guyHe55rEla7PhiizTFGqRx+wvyZvyiLKwsyfjBdhm+5jwp4kDocU5SqLxTQ0Ilciu+J72v11wq96xf2NgX7X/nWHu8HknekekjbdJoHdfGtiMyvnDPtaQ6SMjDpUk50taYPv7Fvt+ogJgfjgesU+KNGhKqDZnoTu2H0TH2wNlemPCFKilrf56S377sdHmIwtWYXJa4EzNs7psuMrmxbn3Fzfa+FKoUFCr/VF2oNia600JS6ERe/+Rt2eXs19A8JF5zPpFdra8fam1fckb6LHen/oXKlXy7a1iuefkeLGEb3dMge+J++17UJ7rmIVZGIt6orlAl12QynXHeID+bzNEcL3FPFs4ckhaIAPZr3CsnfTal0tfPt/BoMNySuHUx1rtQbVw4mE6+9dPFInl5UDooVDawpHA+wrIi3qiSUKU6fGYkdOpIB2St0dLkXBQIzLZK57FJuV1Co08tnQm395QHobKE+frFuBwdGJCB42fkSsaHSci9hYsSPzkrcGrteNdR7Of6zInbcil+VAYGjsv4df/Jr+WzKCO79Hvqkxlfb2BRzp5dcH6ONprZz97y3qmSUKU6fG4mdxYaD7OCtP5x96MKj8JClbwzIYcs4W17My7np87LSBfiNs2Wu7sucueP8m+D+1PNAfeMyocT/ygvdPbKwGupYDWaBS4vj0lP6wvy2sBr8kNb4P3VPAbC4sim+909If66ghEFs304hqyT9E7VY1SVAEto48QIt593AaFKXpNhyxLZNXxt0wrS/lp7T0mqk9OyjLZaj5v7ZDodnU7Kp+/usEWp6/TipmCvnpZ91nN3VHi+/8FYqo8SRqX/dj2hax+yON47kRCqypjaBYTq6pA0NbTK6LLz2CYht69Mudw/5/lZvbaS073We98jmeGdGemDYFQ4HnZ1aDOeyMB4aSAJWUMRaORIvBEJodLeSeG2y80vVKn8r2yxySa3UKXSN8wQqpm+lEhRqEoHcVI9hlxWzDuRECos6oATI9xVUvILVWoBi9xlP8lr1ySVImq+UM32b05+UKhKA+4ejh+aNxLvREKosDoKTg50qwyP/EKVcv0aJNY9kVVMvSpjw2PWv8B8oXKvGOS1hIlkghbYOH5cps0fkRCqyiR9XpPhHdbf6Biz0wsycUQIaxMeOiMLK/fl/tIlGelqk/5ZnTtzgulZQpUKYO/IrJNLTksvPk+FhUoF1z6WOT8nKYa2IWaypz8iIVRAe3+Hsfbc9XMD0pteKLVR2l4bkHNZJX/JtWnpb3HnjTXK3rgzk/dgVk44qQip55+Q2QcPZPbEa9Lm9OKKteyXXutFH8ye2PxbsRbZ33vOcR0rgSuPqmGfnE6Zgp5JJhJVyP0yC4QfcPxOnDjhbCFeiIxQ6Qmii5AGyer8lExNZY75XBdx8pHcWZi1fp+1RP3GDfko4/kfyY2NDbnxkXubNawX3bjxUea2qXnHdawM6xPd6STcZsv98yw8yaty7A11c6OL3jAnJyedLcQLkREqLDaKE4Qmd7lsFhmnE1aLgSLmvV0yFnGVchfIc01Jf0RGqJDsiRMEyZ+kTCzhOblX27c0S1eB9tDJtTkZefFFGf7Ua0/W+kUb5iHhk/gjMkKFchzezQIkuSZz8QOuYvGd0tl7VOLnHZf0zHHp7dwp29uOyPSdqEemUiCPD8cK3ROIPyIjVEBLF8ItpYkY6G6BQuveTmnVYvLWTuk9GpeLW5rpRRtdWZrnn38iJVQap+IdjVQad0Y6LXr/REqoNCuYMQJSaXQtP8ZISyNSQuVO/ETMipBK8corr9jnHWedSyNSQgUq0/KFkEw0PsXWLqUROaHSTgodHR3OFkLCRZdsw8Ktjx8/drYSP0ROqNADCCcNegIxqEkqgdb3cRn80omcUAF1/9577z1nCyHhgJ5TWKUb5xvdvtKJpFBBoHDiPPvss84WQsLh3Llz9rmGGj909ySlEUmhwowf28GSSoBYKM4z5PCR0omkUAE0LsMJdPjwYWcLIcGCGKjeEOfm5pytpBQiK1RapPzkk0/SJCehgJ5TOMeYYFw+kRUqBjlJ2OikDRcaLZ/IChVAljBOJJY1kKDRci3kTrEKonwiLVTuoHq4qyiTqKGrITOIHgyRFirQ09Njn1A4sQgJAs1Ex03w5s2bzlZSDpEXKpxItKpIkKg1hZsgCYbICxXQynautUbKRdeQxEAPKhIMFCqL+fn59MmFnwkpFU3wZNF7sFCoHPQEo1VFSsVtTfGGFywUKge3VcW8KuIXJA2jdhTnD62p4KFQudB2HE899ZSdEEqIVzQLHXlTnOkLHgqVC7Qq1pVs3377bWcrIYVBPt62bdvs84ZZ6OFAocoiHo/zzkh8oev1Pf3007TEQ4JClYO2tjb7xGNgnRTjgw8+sM8VjMnJSWcrCRoKVQ7Qo0qTQBlYJ/lAAF0XtUUuHgkPClUetGAZbWDYW53kQhcKQReOu3fvOltJGFCo8oDAOmb/cCLSBSTZwM3DuYGBGT8SLhSqAqAro7qA7777rrOVRB1YTzo7zJypykChKoIuBAHB+vDDD52tJKogLvXcc8/Z5wQsbljeJHwoVB7Q8hrGq4jGpXDjYh/0ykGh8gDjVQS441JcE7KyUKg84o5XMfs4eqBlC+NS1YNC5QONV2Fwpic6oERG86UYl6oOFCqfaH4VrCusgkvqm8ePH6dXk3niiSfYDK9KUKhK4KWXXkqLFWcC6xfM8GlbYSR1MnhePShUJcATOBrwhmQOFKoSgUugjdLoEtQfdPHNgkJVBu4gK3KsKFb1gYoUxujoqLOVVBMKVZlAnGBRqWWFvtmkNoFL/7rT5RWDuVLmQKEKgJWVlbRlhZgV1wesPeDKu2NSFCmzoFAFBNxAbbjHuEZtAZHS+j1+d2ZCoQoQnPAoseFduXbADeaZZ56hNWw4FKqAQZxDV17GeOedd+xtxDywRBr6nON7QnyRa/GZC4UqJNwzR88//7x95ybmgNk8LOCB7wfxRc7Ymg2FKkSwog3cCb1jYyEAUl3gnrstXrjqbN1jPhSqkMFCERoDQdyKrmD1QAWBunr4Lti1tXagUFUA3MV7enrSd3G6gpUHExsQJxx/WLcMmtcWFKoK8v7776ddQfQ2gmtIwgWLyOpMLG8StQuFqsK4XUEM5F6xqDl4sGIxluXXgDnd7tqGQlUFcBGhS6j7InrjjTfYkC0g0DJYW0fzZlAfUKiqCEpvdOEIDLqD5cHjWb9QqAwAFoDORmGgfQyXkvcOYk7IW6OFWr9QqAwh2x3EQAtcCBbjKrnBQqBugcKgm1efUKgMI9fFB2sLM4YUrBSYyUO6h6YbYKiok/qEQmUo6s5oOoMKFko/ourSoNdXtkChJTQFqv6hUBkORAnT6tu2bUtfnLC2UAaC2Fa9W1mwMOESu2N4GMiHYtJmdKBQ1QgQrFwXLLKsDx8+XFeV/8jkx2ydLqChQwWaXQ6iB4WqBsGKKJjV0pV7dSBOA+sLlgaC87UEUgsQh3v11Vcz4nMYaGoH4YKAkWhCoaphIEboRoncIXfcBgOxLZSOoPAWsR3TXETE4M6ePWv3KHcnZ+qA5QjRhYARQqGqE9CqBFYHXKNsSwtDheutt96SU6dO2VP4lQrKY5ZuYmLCLgyGMGl/efeA0CK1AO+Pa+iRbChUdQriOBAGWFvumcPsgRgXYkFwJbE/3C+ICtxHDIgMrBoEtRW4YNiGAcHTfSGAeD7EBgsloKYx241zD7iqmNnErB3dOlIIClUEgNsH9294eNi2aGC5uGcRwx6wlmBFQTQhYhAmZo0TP1CoIgzcRVhCyM2CZQPXEIFrxIwwClli7oHFV7E/LChYZ3A/ERuDIKFbBBNVSblQqEhRELRXV08HezqRSkKhIoQYD4WKEGI8FCpCiPFQqAghxkOhIoQYD4WKEGI8FCpCiPFQqAghxkOhIoQYD4WKEGI8FCpCiPFQqAghxkOhIoQYD4WKEGI8FCpCiPFQqAghxkOhIoQYD4WKEGI8FCpCiPFQqAghxkOhIoQYD4WKEGI8FCpCiPFQqAghxkOhIoQYD4WKEGI8FCpCiPFQqAghxkOhIoQYD4WKEGI8FCpCiPFQqAghxkOhIoQYD4WKEGI8FCpCiPFQqAghxkOhIoQYD4WKEGI8FCpCiPFQqAghhiPy/8Vmd0a3pwa6AAAAAElFTkSuQmCC
|
As shown in the figure, a circle is drawn with center C, and points A and B are exactly on the circle. The lengths of BC, AC, and CD are as shown in the figure, and AB = CD. What is the measure of ∠ABC?
|
A. 45°; B. 60°; C. 72°; D. 90°; E. No correct answer
|
B
|
39
|
iVBORw0KGgoAAAANSUhEUgAAASkAAADuCAYAAABlA/E6AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABs/SURBVHhe7Z1daFXXtsd3oXT3wZQWDBTacAsRIlSLBRHBgg3IqeGGSwSpnqI9BS14rb2EfnBatKdetMglDzbXh8DdFws3ioLQPAjmXC0Gj9RUhGoQybEtTTlarJW0aB8Cuw/j7P/KHDvLnf2xPveaa63/DyaatdfOx9pz/dcYY44xZkEIIcRiKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSBFCrIYiRQixGooUIcRqKFKEEKuhSMXF3AN5UDb/J8kz94vcuXOn9fhlzryB2AJFKhbuy5kdHbLjzH3zNUmcLw9KT0+3dBYLUig8PIqd3ZXXeirjGelwjhWls3uNbPqwJBPfPBA+a5KFIhUHt49JHyZ73zG5bQ4RS5g9K7s7VaDelPFFhtOc/Hjtc/lwbYc5pyjdrx2TGzSwEoMiFQM3hleaCd4pey/xOWwX9+X0dhWpQTlvji5mTm6UXjGWVcXa6h2Sr2fNS6StUKSipnxJ9laf1JXJveNM5bYgNnF+0ItIgbLcLPVK0XyWXYPnhTrVfihSEXP7WJ8UOnfL4PaiuRH65Bh9PqvwLlIVylMytFLP75L9l2kZtxuKVKTckOHKhF45fKNiUO2VTvMExtfEHnyJVIWfTg6Y82kZJwFFKkLmhUktp3nBciZ3515haMoe/IpURaVkwIhUoVh5Dz/LtkKRiozbcnKg+NCT1nH9nMldZDqCRfgWKbks+6txxjUyctMcJm2BIhUVN4ZlZe1qnvsJbGk6AhIYz507J0eOHJGPP/7YGTt37pQ33nhDNm/eLC+//LIznnvuOWesWrXK+XrDhg3OORjvvfee875Dhw7JqVOn5OrVqzI3Z++avX+R+k5K6/Q9BRn09iYSERSpSCjLpb2dUlg5XHHy3CCpUwPoyaUj/P7773LlyhU5ceKE7Nu3T7Zu3eqIzZIlS6o3XhwDorZx40bZs2ePI4Lj4+Py66+/mt8qOShS6YIiFQX3z8iOYkH66izjuQPo7Qy6wpo5fPiwIxKtxOjpp592rCO1jD744APHMhoaGpLPPvvMGRMTE86ApYSvR0ZGFlleAwMDsmLFCnn88cfr/hwdEMjBwUEZGxtLRLTCiVSn7L9sDpO2QJGKgPnkzU3yf9/WqQW7c0H+8i86weNLR/j2228d4YCL9uSTT5qftzAgVGvXrpVt27Y95Jb99ttv5jtEy61btxw3Er8TBKm/v1+WLVu26PfCwO8FYYSl1Q430b9InZfB6u87ICd/ModJW6BIhcUkby7Uf9UZz2iJRbTpCBBBWEuwTPT764AowYqCIE1OTjounw3gd4bbuWvXrrqihd8blhmstrjwLVJTQ9Kjv+O6UsWuIu2EIhWS+2d2SLGVhWTcQWeSh0xHgKWBmxyWyaOPPmputoLzf7hscL8uXrxojSi1YmZmxnEf4S4+++yz1b8HAzEtxNBgJUaJP5Ey8UbzO9Vz6Um8UKRCcVuO9RWkc++llpXyC/V8wdIRIDywMGrjS6tXr3asqXv37pkz0w1cRLiktX/nSy+95LiOUbiDvkTq9kkZ0AdM135hwnn7oUiF4OHkzRbMnpbtOtkXrQI2Bm4PLCS9WTFgcSCGc/36dXNW9kCsbHR01El1cP/tCPIfOHAgVMDds0jN3ZCRXrM6W+yV0k0qVBJQpIJSvikjWPEZOCne4qju6vuibD/dvFQVK1+wHvTmhDuH1AEEl9PiykUFgvCIrbljWFgcgGuLGJc/ZuRor34OjUVq7vtxef9FFagXZf8llhYnBUXKN+g39FcZfrXLTOBe+c+xr2T658bN0coPfpbpiWF5tUtvDryvW14bnpDpmk6QECd3IBzihHhN1HGZNAJxRvzKLVZId8DqYUuxcjpzzshk6VXpMu8tFFbK4PH/lwvXZpz34/VrF47LJ5ueNy1aOuT5N0py5S4tqCShSPnmSzlYbwXvjycqz+j6zJz44+LzdRz80jkHMSfkGNXefBSnxUCssHjgFnNcL7jADVMqnM6cda5/7VizSXb/+aCU/npN/sH+z1ZAkUoYBINfeOGF6s0Gywl5Q++++241WZKj8diyZYsTp9Lr98QTT8jrr79uri7JAhSphIA18NFHH8kjjzxSvcE4ohsIuE9PT5urTdIMRSoBal27xx57TPr6+qplKRz+x9KlS51r+dRTT1Xzx/BvUxeQpAKKVBvBzYJcJxUnHV988YU5gwQBqRgqTCj3wdfulVGkbCD/iqQTilSbwI3jtp70yY+iXBIOzaVCPpkb5FlpvAoihhhW3tI3sgBFqg1g2VwzqHHTwAXRG4erd+E4ffp09VqiYLoWJH3iQYBzMCBo/nOrSJJQpGIE7h3iJe4b5IcffqjWqKFZHAkOrKLly5c71xLXuRkoHdIWMrj+iAuSdECRigm3e+d2NfAvjsHds6EBXJpBIz1cS1ipXqwjWFqaCIrPBFnsxH4oUjGA4K0+teHeadAWN5K6fbjBSHAg8No3C7V8XoF1i/IivA8D/be4+mc3FKmIQXImntK4AWrjH+r6wUVhADccyMbHtUQ7lyCdEfA56YMEK4EUKnuhSEUInuiY9Bh4QruFCD3G9TUUCZPgYLFBHwQojwkK4lJq2eLBwYC6nVCkIgBihM0GVITQdbLWUtK8HXTLJOFAwz9cS5QPhQUPD01TQECdWer2QZEKCcQIVpMKVL0VO8So8Bqe/rwJwoH4nl5rtEWOAnwmuuIKweLKn11QpEKAOIY7sxnL3LUgXqIrSrCwSHDwQNAVU3TvjBK4eprOABeQQmUPFKmA4IZRtwMWEhI264FlbpyDlaistPhNilKp5FxLBLzRCC9qIFT60KFQ2QNFKiC6UgeBgjtXD0x6XSbHHnYkOEg50NgRNmeIC1jHiHXh5+Dn0T1PHopUABB3wiTGqOfiKXDvcA7cvdpAOvGHlhJBOOJOF3C7fvh5XPVLFoqUTyBKKlDNkgjdlfloCUyCg5QDzWlq5FZHDbbaUsuN6QnJQpHyga7SYSCZsBmNKvOJf3T1FNt3tRO4euquM+EzOShSHsHSt1pGKKtoRqvKfOIdBK9xLTHi3NW4Ee6ETzx46La3H4qUB2Dqq+mPth/NJipe05QDNLgj4YD1hGsJayop4K7rAwoF4qS9UKRaANFR1w3i08rk91uZTxqD+BOuJeJRSffd0lQSiBW7fLYXilQLtLUKbpRWrlvQynyyGCTBqvWKlT0bQEkTfh+u+LUXilQT3HEoVM23Quv3glbmkwX04QBBsKXvFpJxtXyG8an2QZFqgDsO1SpQDrASpIIWpjKfzG+rrikHXh4O7QSBdMan2gtFqg5+41BAS2SwVE3Cgbo8XEvU6dlorbjjU0msOOYNilQd8PTGJPQShwJxVObnFVw/vZY2B6g1PkXXPn4oUjUg7qDBby89sPGkj6syP49ogS8sU5txz5M4awkJRWoRunmn1xa/bqsrjsr8PIFYHq4l3Kg0FPa6P3tuTRYfFCkXfl0Nd2U+g6jhgMsE1wnXEqukaQAPMe2YwI6r8UGRMmDCaXazl9U84K7MZ1wiHNofHi6ULSkHXkD7YV3tYyF5PFCkDGq6I1Pci9uWRGV+VkG6h8Z30rjVF/Pj4oUiVcFvsBwkVZmfRTQOmNa+W+1qyJdXKFIVdA83r8Fy5MbgfAy2mA0HUjzUXUL3iLQyOjrq/A2wrlkyEy25FylYUeq2eY0p2FCZnxXQbwvXEsmzaWfVqlXO31JvxyASnNyLlNaIIdfJCzZV5qcdPBRwLWFJoZNp2tGmiGkL/ttOrkUKE0ljUV6C3yiP0diDLZX5aQVutfbdyspWX+6/iSkp0ZFrkVIrymvAVs+HUPFJGQ7snoNriYdElmI4amnTmoqO3IoUloqXLl3qTCgvVpS7Mh/7v5HgBFlNTQtua4rbmEVDbkVKd32BVeTFirK9Mj9NuLf6ymJekXZnZZJvNORWpLR5WbN985S0VOanAXffrUabqqYdCJPGLml1hyeXIqV5Tsgu99IrSuuzbK/MTwPa4iTrfbeQ1Im/k1uahSeXIqVbpHtpreKuzGfKQTjGx8eda4mBmrcsg7mifyu7Y4QjdyIFU1z3UWvluuFcrcxvtRkoaQ7ieLp1OR4SeUAtcG7KEY7ciZSWLyAm1Yq0VubbiLuAOy9lIxpAxwIBCU7uREpjIq0KQXEjqcWVxsp8m4DAa7pHnpIckWqhiwRsKx2cXIkUhEcnTavOjxq38lp0TBqDWjZcS1iveVuS1w060tLIz0ZyJVKa5YxYQTOyUplvAwgg67WEq503dOEFliQfdsHIlUhpxX0r9y1LlflJMzAw4FzLVg+GrOJeqOH2V8HIjUhhsmhZSzNXTyvZ8fTPQmV+krj7buU5JqNxUBYdByM3IqU3DDKBGwFzXOuuslKZnxS4ltpfyWvP+Kyim4kysTMYuREp7WDQ7IZxV+ZjZYYEB+UguJawXmdmZszRfKJlVbgWeVs4iILciJTGmZCvU48sV+a3G6QcaO0ae37PW5WMSwUnFyKF+jxdYWpU2pL1yvx2onVrECovtZF5wGt+HllMLkRKa8ZQ4lIPBMhVxLJamd8u4Nqx79ZitDVQXlc5w5ALkdJNPBvVjOlTjoHN8CDmh2uJoDnzghZA7h2uCx6GtC79kQuRUhGqF4/KU2V+3GB7L72WjL0sRuNSLJHxRy5ESjsZ1HY9wJM+b5X5caJV/9zqqz6akpHHzPswZF6kEATHxMCo7eujVep5qsyPC+0uAXeGfbfqo64wdxryR+ZFCkFxFSI3WCbXlAP2+wkHHgTajpkbYzZGc/Voafoj8yKlZS4wtd3kuTI/avTmQxEt+241RouNvW5ES+ZJQKS+lIM9PdLTcqyRTbv/LJ8evyDXfgwuIlqS4H565b0yP0rgJmvKQaNEWTKPrvDhehHvJCBSc/JLZWLPTJbk1a75WBHGv/7XVzJdOY5Jf+fOjFy7cFw+6e+WovN6UbpfOyk3y+Zb+EC3onLHAbTHD3NWwsO+W95B6oHO97yXCvkhUXdv5mhv9UMbPG8OPkRZ7p4dlC5zTrH3qHxnXvGKrjhpYiEr86MDKRt6LZHKQVqjsTteL+8kG5M6P1id5PVFCpRlamilOa8oO87cN8e9oekHECd3Zb6XnWJIc7AtFa4l8tCIN7SG1Muu2WSeFIhUhZsjssacV9h9tiJb3tEEOsQDWJkfHe6tvlq1YiYLaKiBW7B7Jx0iNfu5bDHnFdaVfLl8+v2npqZYmR8RWA3Vvlvs3e0PjeGxAZ530iFSU0PSY84rvn/BHGyNO5Hzrbfecv5lZX54dMWUfbf8oyLFhE7vpECkZuXs7k5zXpfsv+zd2YNLp99fl8kZCwgHVl81CZYui380p4xlWN6xWqTKD76R8fdfrKYh9JZu+opHuUUKg5X54dm5c6dzLeHu8Vr6hyLlH2tEqlDokGdcyZzdncWF17q2yP9euetLoIC2bdXByvxwuPtucauvYGi9KFdEvWONSL05pomcmsw5JqUPN8nzHUZkOp6XN0pX5K4PpXLnROHJD1ePI/jQlAP23QoOriOvoT/sj0nN3ZCR3gWrqqty4qx5qRXvvPNO9X0c0QxYUkjnIMGgSPknBYHzCrNnZXen3iidsvdSa3MK8ZL169c770HQHJOCI/zg0nk4KFL+SYdISbly6oI11bn/sjneHHX3GvU2JyGZ+1Guff6p/OkPPfKMuuWFonR298gf/vSpfH7tH/KgPCc3/nu3jNw078k5FCn/pESkRL4rraue6zVXCt0OcD5cFBIlc/L9+IeyFsLUsVbeLk3I9M8PzMJGWR78PC1fHTeve/x884Ku7rEsyzspEan7cnr7woQfOPmTOd4cdwoCiYpZOf/+fHeKYu+QfN0sQOiKJ1Kk5mEKgn8SvXvvn95eFZFmk3h2cp+sNOcVuvaL13xOZEPr92cztigoy9Tw6vm8tc7dctbLCsbseRnsKkjvUdZKApQRYT6ynMg7yYlU+a6MVzPJC/LmeJ3Gdoh5HP936S4agep4RY76bCql358FxeEpX95fbZvTd+y2Odqa2crDqLfkt8lONmHtnn8SEKn5zpwPJWvqKHZKtyZ0dneaTPOCdDyzRjZ9Mi7fB2jQqd+bmwOE5bacHNDPbLuc9tMxp3xJRkpT5ot8o5sxUKS8k4BIzXfmXEjcbDZ+qZwdDnc/KRKC28ekzwh+YeCkeIsKklqwqodriFU+4o3MR5TR9B6Tgtunh8MdP/SaAkIWw/non8yL1MDAgDMp0F6EBGdqqKcqUusYXwqMduNg1r53Mi9SunUVqvdJcM4PGlePIhUYzdvDYE8z72RepLRlMIpjSXAoUuFB5whcP2zGQLyTeZG6ePGiMzHQkZMEx53x3zPElbogHD582Ll+GzZsMEeIFzIvUkzojIgL71dTQgrbT4u/PXsI2LVrl3P9mMjpj8yLFNB2t9gnjgSkfEn2aieK4g7xubMYqaDpB7CoiHdyIVKrV692Jge2YSLBcbt8/uJS38nR//gf+bv5Kq/obkXsauqPXIiU9uXmDh0hKd+UkjYgLPZKyVOJEgqS/02Gp/yVM2UNJCerwN+6dcscJV7IhUhpDx9suU5CYgqGnRuu4xUZbtZ7vnxX/ra/X1476W8DjSyim6myt5l/ciFS2rIFfaWYnxIBs19L6bX5di1Ok7v1b0tp7IJcmzHlTNNfyVjpbVnfvV4++Zv/DTSyiFrzbNHin1yIFNAavrGxMXOEhKMsD76ZcDbLWOMqBneKxNdskg9LE4EKwrOKzj/W7PknNyKlT7LBwUFzhJD24G6+yHiUf3IjUhoTwAahhLQTjYkuX77cHCF+yI1IuVdXmNRJ2ok2ukMyJ/FPbkQK4EmGycK4FGknGo9inl4wciVS2l+aO3WQdoEqB8w5rCyjRIv4J1ciNTk56UwY9PRhKgJpB1iowZzbuHGjOUL8kiuRAsuWLXMmDVq4EBIn2EV76dKlznwbHR01R4lfcidSBw4ccCYNd5AlcTM+Pu7MtSVLlsjcHJPGgpI7kXLnrHCbKxIniH1injHLPBy5EymALp2YPNxWiMQFYp7az5w7FYUjlyKlLYURnyIkDjSBk62Cw5NLkXI/5c6dO2eOEhIdaq3v27fPHCFByaVIAc0CZgCdRA3cO8wt5EZx5+zw5FakMHkwiTCZuAcaiRLd65EB82jIrUgBnUz4l5AowAMPc4oPv+jItUhxQpGo4YMvenItUkAn1ebNm80RQoJx/fp1PvRiIPci5S4AZZCThEEXY/r7+80REgW5Fymg+6GxOwIJyvT0dHUhhsmb0UKRqqBbsWPg/4T4BVunY/5wC/XooUgZtM5qxYoVTvU6IV7R1tSwpGBRkWihSBnQXli3Y+c22MQraEWtOxNz89l4oEi5gDhhskGsIFqEtEKb2qFGj40U44Ei5QJuHtw9TDoG0UkrsDKswXL2L48PilQNDKITr2DbfswTBsvjhSJVBw2iY3cZmvCkHhoaYLA8fihSdUA8SntTs0iU1OJ289g4MX4oUg3Q/tQY3L+fKFjN03300DOK6SrxQ5FqApaUMRnRSB91WYRorScs7Vu3bpmjJE4oUk3AU1I7LGLVj/GpfKNxKAxY2qQ9UKRagKcl41PEHYdi0mZ7oUh5gPGpfIOFFMahkoMi5RGNT+FpeurUKXOUZB24+KtXr3Y+e8ahkoEi5RE8PdEYD5MVO80w0TP74DPXNj5YPOFnngwUKR+4A+mYtIhTkGzifijBemagPDkoUj6B+a/1fah+Z7ZxNtmzZ4/zGWPQvU8WilQAEEjF7seYwKh+Z8eEbIEschUotu1JHopUQGBBaR8h1PhRqLKBOxeKuw/bAUUqBJOTk05sChOarl/60d5QGPg/sQOKVEgQPFeLCv9CuEi6QJB8586dFChLoUhFACwojVFxqTpduFfxMBiDsg+KVEQgJrVq1SpnojPhMx1gpVZTSvCZjY6OmleITVCkIqR20rOExl6QOa6dNWH9Mg/KXihSEVPrPqAomd0T7AKCpEXjiCPSPbcbilQMQKiwfA1rCjcCkj/Zjyp58LloDSYG3HNurW8/FKkYOXfuXHXlDy4F3b/kmJmZqbriGLt27ZK5uTnzKrEZilTMIKCuW3Bj0P1rP2NjY9WNX/GwYIA8XVCk2gDcDJRaqPuHDHVYWSRe0I8cFpM+IOh2pxOKVBtxu38YW7duZX+imCiVStXgOAYt2PRCkWoz9+7deyi7Ge7HoUOHHGuLhAeWkqYWYKCjJtw9kl4oUgmB8hnt+IhBFzAccO1QzqIuNRoTYoWVwfH0Q5FKEFhPIyMj1aAuBnKsrl69as4grYAIoZTF7UZv3LiRqQUZgiJlAbUuIAb2d6NYNaaeONG1yyYUKYtARwXdfFIHemxPTEyYMwjcOqyUuq1PCBUEi65dNqFIWQgsqHpihXKOvAbYsQpaK07oPEFxyj4UKYtBXAVL5xoMxkC7YpR25KHBHsQHiZdIhnVfA4gTsve5IpoPKFIpAGKFmBXSFfRGxcDq4JEjR5yYVpbAKifEufbvRWoBY075gyKVItSywOqV27LA/+EewrpAjVrawN+FuBtSBmApuoUJX+M4V+vyC0UqpaAmcGhoqNpozz3gDqEc5MSJE1ZuEAE3DXliBw4ccGJtyGly//6woGBJccGAAIpUBkCgHdYG3CG3haUDiaIQLeRkwZVqp3DBSsLvh06lECVYgbVuHAZW6FAmBEuRgXDihiKVMbBEj7gNsq/rWVk6IBR4HcmjCMTDVYTlgoGgPNzGZrEuCAnOwUDTOLwPPxfWHQQRwe5a1809sEoHFxWrc9xlhzSDIpVxYDXB7cOOvLBimglHs4FESYx6VlCrgfcgyA9LCaLEJFXiB4pUDnG7YChu3rZtmyMiKkT1XMZmA90G8D64lf39/Y4VB9cS1pWNMTGSLihSpCFobaIunbqCEDd8zRYzpF1QpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGI1FClCiNVQpAghVkORIoRYDUWKEGIxIv8E1cXN6ji3MKUAAAAASUVORK5CYII=
|
As shown in the figure, quadrilateral ABCD is a parallelogram. A circle with a radius of 1 cm is drawn with center C, and the other three vertices of the parallelogram ABCD are exactly on the circle. What is the measure of ∠ABC?
|
A. 45°; B. 60°; C. 72°; D. 90°; E. No correct answer
|
B
|
40
|
iVBORw0KGgoAAAANSUhEUgAAAVMAAADYCAYAAABWSwDbAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABeGSURBVHhe7d1vaFRXnwfwvBDGFw7rggOCDSukEMEGFCSETZdGEJ9K+yJCkVoIyqYsNrTLvNBViWyE6pMXeaBNA09gh7UsWgzrkrzIYjSFhKw2VnxWk0ezIRociBETJUrSFwPji9/e35l7kkk8k/mT30zP3PP9wEFzZzKTnPObb+6fc++tIAAA2DCEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhGmaZCJBSf//AOUsufSSXrx4kbG9TvhPBDEI02WzdOVQDXVO+F8ClLH41aNUvSNMFRUVqoUiVVRdXZ1qVREK8fLwDjr4TYyGnyJZJSBMfcm756nSK7BI6yjWTiEgkjTaGlFhWh+b9pelJJce03DnEVXzFRWVdKRnCnW/QQhTZZGuN4dSf8VDTdS/4C8GKHPTsXpjmGoLQ9HlQD01sugvhUIgTNl0jOprOijm/xWvwbY+BES2MOW11/GOmtSKRE0nofILhzD1N4UOXZklmuikGi6qSCuNYpsHAiB7mHpmr9AhrvuKauoY95dB3hCmC/3UFG6m62oLZ5pi9VxUIWrCtj4EQE5hSuPUUc11X0GNPXP+MsiX82E60Vmz6qDT7JVDqqiwyQNBkFuY6pWIbM+D9bgdpotDFI1E6Pxd/2u2eJ2aQ1xYEWrFtj6UOYRp6Tgdpmot9O/+lUZWTWh+Rv/d8jeqsEKNPTTrPxegHOUWpiN0Sq1AhCg6hBWIQrkbpslx6qipoPAOfyJzetOTmiswiR/KWy5hmhxtpQjXe0gfO4BCOBumi9ebKVR5nu4a/xBP06X9qXmnmMQP5SxrmCanKObXek3HOGp9A9wMU6+AuuvXP2KfHO9ITZOqOEQ8awqgHK0bpskZ6m+uVI+H9sdoCkm6Ic6FaeL5GPWe2uttxkeo6T/GKG664kPiNcXvtFO9ClOv0Paeot6xGVrKodiePHlC165do+HhYdX463g8rvbHApSKutDJ5DCd8w8s1f7pLyvHBeJjdCP2DX0U4TXSEFV9cYUmcHr+hjkXpr9cWLN/9MIv/iNpfrmw+jmqHaWrcf/xdfz444+qeNHQitmyURc6eaeGV9rBY6fpQuwGjT1Hikpxdp9psSBM0UrRwD4YFWHpYZrJs2fP1Kb/gwcP1C6B9vZ2On78ONXV1dG2bdtWfWjS265duygajVJfXx+9efPGfzVwia4FsA9GRVguYZoNB+WdO3fo8uXLdO7cOWpsbKStW7cuv65ue/bsoZMnT9LAwAD99ttv/ndDkOmxB/tgVIRJhKnJ27dvVcDyWmxDQwNt3rx5+X24bdq0iQ4cOKACGMEaXMWoLZCBURFWrDBdK5FIqNkCZ86cUbsHOEz1+27ZskXtNuDHIVhKUVtQGIyKsFKF6VqvXr2i7u5u+vDDD5ffn9t7772ndhXwFC0of79HbUFuMCrCfq8wTcfB2dbWRu+///7yz8KN12D55+NdBlCefu/agswwKsJsCNN0t27dohMnTqyaJcBrq999953aVQDlxabagtUwKsJsC1ONg5OnYfEMAP3zbd++Xa3BYppV+bCxtiAFoyLM1jBN19/fr2YE6J+Tp13xgSyc8mo/22vLZRgVYeUQphof7U8PVZ5uxScFIFTtVS615SKMirByClON96vyiQH65+Y11a6uLhyoslC51ZZLMCrCyjFMNT69lSf+659/37596kQBsEe51pYLMCrCyjlMtatXr6oj/vw78MkAPBsAB6nsgDC1F0ZFWBDClPEpqXxQSp9ZxVOr+FTV4kvQ68lfqS92gU6fPu21CxS7MUYz/sVkH929Sy7fWQNhai+MirCghKk2OTm5atOfz7Aq1tlUiacDdLYuTBWhKvq05Xv66eZNuum1n74/Rh9FIrT78FHa3xgjl++fGaTaChqMirCghamWvunP5/7z15IWRs/T3hDfPqOD7pvuJpOcp3sd+ylU3UHj/iIXIUzthVERFtQwZbzpzxdQ0b8f70sVOYtqtoca+VbDlVEaynxbLs8C9TedoiH/KxcFtbaCAKMiLMhhqvHvyGun/DvyGVUPHz70HynEIg1FI+q1DuVy58LZWXL5/oZBr61yhlER5kKYMg7QDz74QP2eHKz8exdkzlsrVf3VSD1z/jLICGFqL4yKMFfClK3d7Of/531h6qGo//3eJr6/aK1H1/io/pp27ZH/qFtcqa1yhFER5lKYaumb/by2ms/pqPFL+/3+yhymsw9u0k8XD1Kl36+VRzqp74GbG/uu1VY5cW5Ust0Cd7kdvUo53Nn5HS6GKUvf7OerUfGUqpwsr5m20GBqKmkGU9Rdy8+rpe4pf5GDXKytcuHcqCSXXtKLyQGK1qSKsvZPf1FrUsstPkY3/vgHChc4BcfVMGW8ia+v9M+T/Pmc/6ymY1Sv+itCraPrpek0xer5efUUc3iiqau1VQ6cHZXpWL0qynrjJ5OPMJ8vaAqOy2HKeKrUZ599pn5/3vTny/2tb5Z6GkPq+aGmfso8MwphylyuLdshTDN9Mr1QKGQGpethyvhqUzwHlfuAT0fNNsE/ORWj/TzPtKKSohknmiJMmeu1ZTOE6dpP5sRNulnIzlIfwnQF38hP9wXfJmU9+gwoPpX0q97H5J+KvyI5QT+ofaYIU9SWnRCmqz6ZSRrvaN7QhxVhuhqHqL5YysmTJ/2lZsn5exQ7vpvC3nNDkSo6eCw1DerYwSqKcNCGd9Phi4M0s+6BqmBDbdnL+TDlD+3yEfwdYW/ZxtZ8EKbv4ntP6UD99ttv/aXrSLymF5O/qoucqDYyRvGXS96fOkBt2cv5MF11ND9+h7obG8XCFM3cYrGY31uQL92HYB/nw/Sdfabj/dSPMC1q47VUXluF/Ok+BPsgTNeGaTJBiQ1sT2Iz30z3CW/m8788bSqneaiwCmrLXgjTjWzTGyBMzdL75Ouvv1b/5xv35XymFCioLXshTBGmJZHeJzwPVU/s51NPeX815Aa1ZS9HRyVB//MvqWtoVrffFz1KjDA1W9snfKaUPvV0165duGFfjlBb9nJuVNSFTtQUqFRRcgvvqKajVzcwUz8NwtTM1Cd8Lj8HKS/n+/ZDdqgtezk3KupCJ3oqVFp7+c4pN4VBmJpl6pN4PK72nfJj2c6SAoSpzTAqwhCmZuv1SV9fn3qMp0zdu3fPXwomqC17YVSEIUzNsvVJNJq6runOnTux/3QdqC17YVSEIUzNsvUJH+Hft2+feg72n2aG2rIXRkUYwtQslz7B/tPsUFv2wqgIQ5ia5don2H+6PtSWvTAqwhCmZvn0Sfr+U56PCitQW/bCqAhDmJrl0yfp+0/5AtOwArVlL4yKMISpWb59wpv4vKnPDefvr0Bt2QujIgxhalZIn+jN/QMHDvhLALVlL4yKMISpWSF9wvNN+UIo/H2XL1/2l7oNtWUvjIowhKlZoX3CIcrfx6GKyfwIU5thVIQhTM020ie8mc/fy9dBdR1qy14YFWEIU7ON9AkfgNIHo1yfe4rashdGRRjC1GyjfaLvwV9XV+cvcRNqy14YFWEIU7ON9glP3tcHo/gsKVehtuyFURGGMDWT6BM+X59fgyf0uwq1ZS+MijCEqZlEn6SvnQ4PD/tL3YLashdGRRjC1EyqT9rb29XrNDQ0+EvcgtqyF0ZFGMLUTKpPeK6pvkyfi2unqC17YVSEIUzNJPukra1NvZaLa6eoLXthVIQhTM0k++TVq1e0efNm9XoPHjzwl7oBtWUvjIowhKmZdJ/oi6C4dosT1Ja9MCrCEKZm0n3Ct+fWa6dPnjzxlwYfasteGBVhCFOzYvTJ559/rl7TpQtIo7bshVERhjA1K0afDAwMqNfk25u4ArVlL4yKMISpWTH6hG9v8t5776nXvXXrlr802FBb9sKoCEOYmhWrT86cOaNe98svv/SXBBtqy14YFWEIU7Ni9cnDhw/V6/JEfhfuZIrashdGRRjC1KyYfaLvZHrt2jV/SXChtuyFURGGMDUrZp90dXWp13Zhzilqy14YFWEIU7Ni9gmfEaWvxM//DzLUlr0wKsIQpmbF7hNeK+XXj8Vi/pJgQm3ZC6MiDGFqVuw+0f3OE/mDDLVlL4yKMISpWbH7JB6Pq9fni0cHGWrLXhgVYQhTs1L0CZ8Jxe8R5CtJobbshVERhjA1K0WfnDhxQr0H3ysqqFBb9sKoCEOYmpWiT65evareI8hTpFBb9sKoCEOYmpWiT/iyfPwefDZUUKG27IVREYYwNStVn+zatUu9z7179/wlwYLashdGRRjC1KxUfaL3m/JdTIMItWUvjIowhKlZqfpE7zf9+OOP/SXBgtqyF0ZFGMLUrFR98uzZM/U+27Zt85cEC2rLXhgVYQhTs1L2ib6vPt9jP2hQW/bCqAhDmJqVsk/0Jfnu3LnjLwkO1Ja9MCrCEKZmpeyT48ePq/cK4kVPUFv2wqgIQ5ialbJP+Eg+v9fJkyf9JcGB2rIXRkUYwtSslH3S19en3uvTTz/1lwQHasteGBVhCFOzUvaJvi8UT+APGtSWvTAqwhCmZqXsE74FNF91n98vaDfZQ23ZC6MiDGFqVuo+0aeV8lpqkKC27IVREYYwNSt1n+jbmATtjqWoLXthVIQhTM1K3Sd6ehSPR5CgtuyFURGGMDUrdZ+cO3dOvV9bW5u/JBhQW/bCqAhDmJqVuk84RPn9EKZQKhgVYQhTs1L3SUdHh3q/aDTqLwkG1Ja9MCrCEKZmpe4TPQ687zRIUFv2wqgIQ5ialbpPEKZQahgVYQhTs1L3yc8//6ze78CBA/6SYEBt2cu5UZmO1S8XpKmFIlVUe/gi9T6ap6T/PflAmJqVuk+Gh4fV+zU0NPhLgqHQfkzOP6Lei4eptipCIfUaYdpRe5gu9j6i+eQC9Xdcomn/uVAYNz/xief0n00hVZT1sbQSSrymyeFOOlLJxRai/bGpvAM1PUzj8Tia30rdJ/piJ3xt0yDR/Zi7JE31fEFVoQoK152lgcmXtKSKOklLM2PUe7aOwvya1R00rp4PhXJ29Umvoa4KU22hn5q84quoqKHOCX9ZjtLDFA2tWC03XpDG9qs10croEC34S1fTz4nSkL8ECoMwNYWpt8ETq08VrVeDeeHTF9OLHg2tGC0nsz3UyCsFoWa6vugvM5qlK4cQphuFMDWFaXKUWiNctPmvmQLY4u75iKrxSOto1t1Vi9f/TJfj/hdQEOfDtLZ7yl/CEvR6cpg6j1R6j4Wo6lSmTSMA241TR3VqLbapf93VUhDifJia29/SF1ee0JL/XIDyM0RRv57z3VUFhcFm/pqj+fGxXjpbF1aPhf/QSfexapqHlQ/w6rayPy7THzG5D3ymn8HQAp0yCNNSQ5ga95lOUbd/ACriVSI2kvKRpKV77VSjPsj19MNfl97dX5d4Sv/+id+/Lf30XPxi+EmaH2ihCP8M9THD/MkEPb/TTvWBTpkROqVmpCBMSwVhajyaTzTXk7q4cEXolFeWkB+9VpT5CHG2/t+wuR5q5J/BGKZskfo7Mj0WBN7v15QK0+oOzCAtBYRphg9zcrAFYVowC8JU/wwZwzT4kqOtqbXzSCuNZjmcn5zqof/6X/8LKAjC1PhhXvD+qqfOkAo1X8dmft5sD9O71NPjQsQu0FCUZ6bwpP1Bms8QqMmZfjp7ETNXNsrNMM10OilPjYrfodgXVanzlyu9MECFFcDmME3Q8/4Waiza+1omOUP9X6XqmU8n7R2L02t/H3VyaYbGes/S4X/up5lsE1EhK+fCVH+IM7cw7aiupcMXe+n/CghS/Tpu02GavRU9TDO04r1vcemfPz9Jmr93hc4erqUdYb8PQhGqOvgNxYafen9eQILrn3pxhRV70GDNtFhQX/bCqAhDsTObw5SN0KVLCFOQhVERhmJntodp+UJ92QujIgzFzsolTKfpUmd5zdZAfdkLoyIMxc6yh+lUd63qp6KFadZJ+3zZ2iZqLrOLgKC+7IVREYZiTz+dtIbO3TLc/iUxQT/o03WLcjpp6iCTmrAeaqHBta+fXKLHA6dob6iReub8ZWUC9WUvjIowt4tdr5GubStrqJmmpsmdP57pZzC0xh4qsyxd/tnBPhgVYSh2KCbUl70wKsJQ7FBMqC97YVSEodihmFBf9sKoCEOxQzGhvuyFURGGYodiQn3ZC6MiDMUOxYT6shdGRRiKHYoJ9WUvjIqwjRT727dv/f+BKxKJ/M5YQJjaC6MirJBif/HiBUWjUTpx4oS/BFyxZ88eamtrozdv3vhL1ocwtRdGRVg+xa5DdPPmzep7jh8/7j8Crti5c6ca+61bt+YUqvnUF5QWRkVYLsW+NkR1Q5i6R4epbtlCVT8P7INREbZesWcKUd0Qpu5ZG6a6ZQpV/TjYB6MizFTs2UJUN4SpezKFqW5rQ1UvB/tgVISlF3uuIarbli1b1IcLzZ22adMmYy2sbTpU9ddgH4yKMF3sDx48UB8A/TUammQD+2BUhKUXe75rptu3b6eGhgY0h1qutYE1U/thVISZih37TCET3tQ31YJu2GdaPjAqwtYr9kAezU+O09XTp+l0ejvXR5P+w7C+TGG6NkQ1/TjYB6MiLJdizxSq5Rimi9ebKZT2O3CLtI6+e98nMFobpplCVNPPA/tgVITlU+xrQ7X8wnSaYvtbqN/7Pfh30e21+A3ygkuHabYQ1fKpLygtjIqwQopdh2q5nZufHG2lGqyFbgjOzQ8OjIqwjRR7eV01apZ6GkNU848x6vv1MS1lS1S+vfKvP9H3vE/1QoxuPFpzC2h+fDhGF649Ul8mng5T7IL33O8H6Kle003O06Mb3nO81/h+4CkFYQUYV40KDoyKMGeKfaLTvze+38K76XjsPi34D6+yMESnqsK094QXvDf7KHZiL4UqQrQ/NqUCdWawjRqrw6nXiQ7S1OWj9MkxL0iP1VGYl9V00Pj8KJ3/aC8dbjlNx+r4ud73X5pOvb5DnKmvMoRREeZKsSeXXtKL+BiN9MXo7OHdqdDzWmV0aE2gTtOl/SGqPH93ZU00OUgt6vkr99On6RjV87KqUzQ0r5+ZpPvt1d7zIlR3tj9tDfU+tVd7z632QtZf5AqEqb0wKsJcLfbE015qruTfPUSNPbP+Ui/3hqLeWmgtdU/5C5QkzT8aoZH0TX0dpl4Yp0sOtqj+XLOYhqL8Xmlh7AiEqb0wKsKcLvbZHmoMeb9/Yw/N+YumumtzC70MYeqlpupPhGkKwtReGBVhrhf73fMRqqiPeRv3KanQa6Qena6ZIExzgjC1F0ZFmOvFPh2rN6yZhrwwXHXsPmVxgibi/v8RpjlBmNoLoyLM7WJP0mhrJTVfX/S/9paMtlKE+6S+m6ZW5WmSxjv/SMtPRZjmBGFqL4yKMDeKfYFG/23tXM8kzQ9Gqc5LPdPRfO6TyiOdNDz5Qs0C6D1bR3/fMf7uAaiWwZVlnsX+JvW9LYOrllJ/E/dzC61a7AA36qs8YVSEuVHsE/TnfamADO8+TC2nT9OxT/6B/injPNNROr839fxUC1HVV/004wfh3EiXP3fUeyxURZ+2dNHI3ByNdB2jurD/PeE6OtY1QnNzI9Sl5596LVx3jLpGsu2QDQ7dh2AfjIowZ4o98Zomf71JN2/epJGxmexnQHnrsM/HRrznj9DYzNLqtc/Ht9XrrLTb9HhxkR7fTl/mtduPaXHxMd1OX+a1249XdisEHcLUXhgVYSh2KCbUl70wKsJQ7FBMqC97YVSEodihmFBf9sKoCEOxQzGhvuyFURGGYodiQn3ZC6MCACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgCwYUT/D0TJaE3HSjmDAAAAAElFTkSuQmCC
|
In the quadrilateral ABCD shown in the figure, which is a rectangle with an area of 20 cm², what is the length of BA in cm?
|
A. 4; B. 3; C. 2; D. 5; E. No correct answer
|
A
|
41
|
iVBORw0KGgoAAAANSUhEUgAAAVgAAADaCAYAAADjY1onAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABhsSURBVHhe7d1/aFTnnsfxgVuY/tFw7x8duGDDFiKk0AoKRcKm0AZEKzd/pNxif9BgWbvQDVfIHxtsUVa7TfGPKVy9QsMyrJeLEQOWeCG7tVpIkG7VYG+TbJWQNjjQRtSWeElkGZj+8d35njknORlnJvPjPGfOj/cLHjRnJjPJ9zz55MlznnNOQgAARhCwAGAIAQsAhhCwAGAIAQsAhhCwAGAIAQsAhhCwAGAIAQsAhhCwAGAIAQsAhhCwAGAIAQsAhhCwAGAIAQsAhhCwAGAIAQsAhhCwTcrncpK3/w8AbgRsU5ZkdO82OXnL/hAAXAjYJuSnj0l7IiGpw1cZxQJ4BAHbsBX57EBSEoWATST7ZWLZ3gwANgK2UYsZ6d6WlszhlBWy25gnAFCCgG1IXq4WgnXv6JLIrZOyTUexqcNylXkCBFB+9Se5e/duxfYgZz8RniNgG7E8If1tB+SzFf1gUTLdhYBNJKWfeQIEUPbcG9K5pa04nVVoyVSHdHZ2FltHSpK6vW2L7D6YkanbpK2XCNgG3Dq5bcOBraXRvcXOu+2kMFGAYCr+1aX9tDuzaG8ryq9+J1Mn91kHbBOJdtk3tsBBW48QsPVamZTBVEqOTdsfq5XP5EBSO2dKDjNPgIBazHSXDVjH8uTgWsgOXbH+PEOTCNg6WaPVf/g3ubJhHutH+a+BX1udN9k3Jkv2c4Eg2SxgdZQ7l95mPYe/xrxBwNYjPyfpbQlp22LPX7mbM5eV4MQDBNPmAVuwNCp7rX7cKek5exsaRsDWYeWzA5JsPybTZWcBFuV0T3FdLCceIIhqClgpDCI6NWAT0jd2z96GRhGwtcovyEh39ZUC+bl0cclWYq/oCi4gSGoLWGdVzGbPQy0I2Brk7szK+NAOSSZS0v+XWcmWWziYeyDZa8el2wrYhCR3DMn47A+yylAWAUHA+o+ArcFXwyXzrcNf2Y+4fDW88TlWe0POZe3HgRarLWCvyJC1IiYpg5OMDppFwAIxUUvA5q8ellThOYmkcyINmkHAAjGxacDmFyRjH6jdlp7jQK0HCFggJqoGbP4HmTjQbj2e7MnIAunqCQLWoO+//17+/Oc/y5kzZ2RqaspqMzMzks1mrQb4wbrYy/yUHLEPXu38+Ov1k2Sys/J55qC8mNKRa1I63hyVW1yOwDOhDVjtKEFsbhqu5Z5Do3nZNmNd7OWRA7Drbff+QzKc+Vxm75CsXiNgPW5uBCzNj4bgYu8UvPTSS/L3v//d/sg77oCt5ueff7amDL744gs5deqUDA4OSm9vrzzzzDMbfpDc7be//a28/fbb1nsw3RBPTl9AcMV+71y4cMHqpEePHrW3eKfWgK3ml19+kfn5eZmYmJB0Om2F6lNPPbX2uk57+umnrcfOnTtnza0h+px9j+CK/d7Zvn271Ul/85vfeD6K9SJgK9HQHRkZkVdffdX62p33cdrzzz8vf/zjH63RMaLJ2dcIrljvHWf06jSvR7EmA7bUjRs35Pjx4/Lyyy/LE088sfa+jz32mPT19Vnfay7HQYwo8atvoXGx3jvO6NVpXo9i/QxYNw1SnSrQeVwNWOdrePLJJ+UPf/iDFcYIv1b0LdQntnundPTqNC9Hsa0KWDedItCpAp0ycH+fegBNtzOqDa9W9y1sLrZ7p3T06jQvR7FBCFg3nbc9cuTIhoNk+v3qLxUTqyhgVpD6FsqL5d6pNHp1mlej2KAFrJsuCdu1a9fa16dBq8vDWIEQHkHtW1gXy71TafTqNK9GsUEOWIeeuqsHwZyv8/HHH5d3333XOs0XwRb0voUYBuxmo1eneTGKDUPAOr799ltrHa1zUEz/1Y85iSG4wtK34ix2e2ez0avTvBjFhilgHTpy1RGsjmT169Z/P/zwQw6GBVDY+lYcxWrv1Dp6dVqzo9gwBqxD52Lfeeedta9fVx3ovC2CI6x9K05itXdqHb06rdlRbJgD1vHll1/Kc889t/Z9vP766xwIC4iw9604iP3e0Qu9aCfVc/m9FoWAVXo9BF0z65whpr949GPdblZOHsxflwuZYTl06FChDUvm81n5wb6T5M3paYnzXU2i0LeijoAlYGv2448/WiNY53vSkxd0FYIJudsX5f2uNkkkO6R34IScvXRJLhXa2RP75cVUSp595Q3p6ctInO97GqW+FVUELAFbN52L3bp1q/V96UEwveiMl5avHpMdSb11SVq+WbY3uuXvy410jyQ70zJnb4qjKPatqCFgCdiG6KoCPTHB+f50ZPvw4UP70SYsjUmf3ja6fVAmy4XrmmWZ6B+SSfujOIpq34oSApaAbYquzNA5Wf0edVTb3IVkVmRyMGW91t7RJXtbFUtLUsOzIivqfSsKCFgCtml6MoJzMRk9QUEPgDXkXmH0atWrT8bu2dtQURz6VtgRsASsJ3RFgXvKQE+/rXuJ26Tz+YMV//S/eV5XE5S08zftR+MlLn0rzAhYAtZT7ikDralewatW2dM9dr0qB+zSzCU5+9Fuabfr2r7vpFyYiedEQdz6VhgRsDUE7GKme60zV23dG5cNxTFglXvKQG/OeO3aNfuRTayNYAfkcnGpawULMrJTn7dTRhbsTTEUx74VNgRsrSPY3G35yytJ67ndmZLVl/lV+WHqmOxoPybT9iYV14BVuqJA76ig37ueoDA1NWU/UsViRrqteqXk8NVqCbsomW59XreU7oo4iWvfChMCto4pAmck+0jAWvIylz654U/bOAes0nnZt956y/r+9eDX+fPn7UcqWZKxvuIvsWT/hFRepUXAqjj3rbAgYD0L2EfFPWAdzsGvWlYY5Bcy0qPrYBPtMlhxISwBq+hbwUfAehGw02MyVuYHnYBdp8Hq1EJvW1ONcyaXnib7L+PfiX3pgXX5W/Inaw6WgKVvBRsB22zA5u7IxEBf2R90AnajM2fOrF3QW0e11eTv35DM289KW+G5yVSH7N5fXJK1f3eHpDR8256VVz66LD9UPRgWbfSt4CNgGwjYR1v5kRQB+6iJiYm1q3JtFrKW3AO5O3/dutCL1a7MSvanVYlxrq6hbwUfAdvsCDZ/X748cmDTgKWVb+l02q4W6uXUEMFFwHoxB7twWS4TsHU3Z7pA64T6OXVEcBGwXgRsBUwRlOfUxDnwpUGrZ4ChPvSt4CNgCVjj9LYzp06dsj/aGAzvvfee9X+dl9XnoXb0reAjYAlYozQ0nYNaeoBLldZEbw+uH+s1DOq5dkHcldYRwUPA1hqwrlNlUwMTcqeGu1jHPWDd4frqq6+u3cOrtCa63TmtVq9doLemweZK64jgIWBrCFhn5FraNhvJxjlgK4WrKlcTvXbBCy+8YG3Xf93PR3nl6ohgIWDrmCKoV1wDtlq4qko10duB6whWH9O5WVRXqY4IDgKWgPWU3jKmWriqajXRGyo6y7cuXrxob0U51eqIYCBgCVhPOX/qVwpXtVlNjh49aj2uo1kd1aK8uPWtMCJgCVjPachWm0PdrCb6ubt27bKeo/9We604i2PfCpvW753F/5bhQ+elVXdVImD9V0tN3POxH374ob0VbvSt4Gvt3skvSKZHlz5VvgeTaQSs/2qtiTMfq42TEB5F3wq+Fu6dvCyM9EjSurgyARtGGnp6kkC9f8LXUxNnPvapp56q/y61ERflvhUVLds7+bm07BmclPFBAjaM3EuxNrtLQal6aqLh7eyjmi5vGCP11BGt0Zq9s3JFhroKobqsNxKtFrA5uTP7uWSG9WLLJ+Ts9duFLW76+LicOHVF7hU+yt+/KeMnCs8dHpUb950rhubk9vWzcuLQIRkevSFrm20EbP02W+e6mXproqfPOlMFugwMRVHsW1HTgr2zXAjVLhm6smJ9VDFg8wtyek+btO/+SM5eWr8Xfnth1Kt3anr4v6fln3ZukaR2su6MfDN5VH732oAcGuiVDut2I/0ycX9Bxt7cIS/uPyQDvR3Wc9uHrkjxnYsI2Po0G66qkZo4F4Xp6upiVYGtkTrCX77vneXJQdmTnlu7In35gF2RK0PtkuwbkyV7y/q98N13D5iUQe1kbXskc2t9bLs8/prV8TrePO0ayS7L+Gv6+YXgdSUsAVs7L8JVNVITXfql+0g/b2RkxN4ab43UEf7yd+8sT8iBPRlZcP2ZXjZg7fvjD1ze+Pd87vZ1ubRhmsAO2MIIdsNVARZGZGdhe+m1AorXFNh4excCtjbff/+9J+GqGq2JXjNWP0+vusUJCARsGPi4d5ZkbF9hpOlO14JyAZu/PFDYVssdQysErB3QBKy39CBTs+GqmqmJc9Wtt956y94SX1HqW1Hl29659+k+Sf3j29adQd3t99u0k2yT31sfF084KAZhSo5NFz+3MgLWb17MfzZTk2w2K48//rj1+bpONs6i1reiyLe9kz33hnR2dj7StrRpJ2mTLdbHw/JV4bnFEWylywEuyq1b/2f/n4ANo2Zromd26ec/88wzsT7gRd8KvpbvnbJzsEujslc7T2pALuuSAZfliQ/kk1v2BwRsKDVbk1wuJ1u3brVeQ2scV/St4AtmwNqrCLTzJHcMyfhsVu7enZepk2/KswcmrGVaRXbA7hyRBXuLZS4tnYXtO0c2bC1s7iy85k5xbyZgH6WrBZ5//nljB5K8qEkmk7Fe47nnnrO3xE8Y+1bcBDRgC/ILMravGLJOa9tzUr5x0vXm+bW1rTrF0LX/kJy/qZsHpLejeGuXRLJDegd0XvemnHfWxxa2Jzt6ZUCfXEDAbuReinX8+HF7q7e8qImOYp2LwcT1jrRe1BFmtXzvLM1ckkuXZlzrXd3ysvrd9cLjl+T6/IONZ3EtzVjb3W2m8CLF13M3fe0lmdmwrdD0yQUE7Dp3uJo8LdWrmji3/d6+fbu9JV68qiPMif3eIWCL/ApX5VVNdBT75JNPWq/l3LE2TryqI8whYAlYX8NVeVkT52pbuh/jxss6wgwCNuYBq7fI9jNclZc10UsY6pld+npTU1P21njwso4wg4BlBGvNZfoVrsrrmjgXgonbKDYMfSvuCFgC1nde10SXkzlnd3377bf21uijbwUfAUvA+s5ETfTOCvqaOpqNC/pW8BGwMQtYPfLeaiZqovOv+pp6a5m4CFrfwqMI2BgF7Pnz560A0jsEtJKpmuj3pq8bl4vABKlvoTwCNiYBq+Gqt1zRr0WXNrWSqZocOXLEel2dLogDU3WEdwjYGASsO1z9XC1Qiama6EXB9XV12VkQpkJMM1VHeIeAjXjABi1clcmavPDCC9Zrnzlzxt4SXSbrCG8QsBEO2CCGqzJZE71fl772yy+/bG+JLpN1hDcI2IgGrPsMpyCFqzJZE/2+dU2s/mKJ+n27WtW3UDsCNsIjWL3GQBDXhZquyeuvv269/qlTp+wt0dTKvoXaELAxOMgVNKZrcu7cOev1+/r67C3RRN8KPgKWgPWd6Zro1IC+vk6RRBl9K/gI2IgEbJjmG/2oid4QUd9jZmbG3hI9fvUtNI6AjUDA6moBPbCj/4aBHzV59913rffQK4VFlR91RHMI2JAHrHspVljCxHRNlDMPG+XlWn7UEc0hYEMcsGEMV2WyJg5nHlbP6vrll1/srdHiRx3RHAI2pAEb1nBVpmpSSm/pre9z7do1e0u0+FVHNI6ADWHAhjlclYmalKMnWOj7mLr9eKv5VUc0joANWcA+fPhw7bJ8YT2A43VNKrlw4YL1PlGdh/WrjmgcARvCEaxez1XPuQ8rv4Lh559/tt5Hb+0dRX7VEY0jYEN8kCus/KyJcz0GDduooW8FHwFLwPrOz5p0dXVZ76XXZYga+lbwEbABD1iCoTnvvPOO9V5hnlKpxM86ojEEbIADVg9i6ecG7XKDzWqmJvVKp9ORrKHys45oDAEb0IB1wlVbWFcLVNJoTRrhrCTo7e21t0SHn3VEYwjYAAZslMNVNVKTRumKC30vE/u31fysIxoTq72j92nS0HM356pLupSn9DFtzRx91s+v94cg6uGq6q1JM/Q0WeekjKjdCNHPOqIxsdo7ejtnp1PW0rZu3drUeez1BmwcwlXVUxMvOKfMRu3ShX7XEfWL1d7R2zo7o5lamgZkM+oJWA1y546oUQ5XVWtNvKJ3NtD30ytsRYnfdUT9Yrd3ah3FNjt6VfWOYPU02KiFQDn11MQLzj5v9hdm0PhdR9Qvdnun1lGsFz+M9QZsXPhdkyNHjljvd/ToUXtLNNC3gi+We2ezUawXo1dFwJbnd000WPX9CFj4LZZ7Z7NRrFd/SlYL2ImJCU9CPIwq1cSUqJ5s4HcdUb/Y7p1Ko1ivRq+qUsA6qwX0/v1xVK4mJjn7Qfd5lPhdR9Qvtnun0ijWq9GrKhewTrjqe4flJoVeK62JaQQsWiXWe6d0FOvl6FWVBizhWuSuiR+++OIL6/30rL0oabqO+VX56e5duXv3gbhPwcjncpK3/4/mxDpgS0exXo5elTtgCdd1Tk38MjU1Zb0fAavycv/GqBx8MSXJRFJSHZ3S2dkhqbaUvHhwVK5lZ+RPgxlZtJ+N5sQ6YJUzivV69KrcAavtV7/6lXzyySeSzWZj3Zx6lHvMRHMu+LJ9+3Z7z0SDU8ea5e/L5aGOQrC2Sdf7F+X2hmHrqnx3cUh2JAuvmTom0/ZmNCe0Aet0rqA1t9KApdFMtNqsyJWh9sLzk9KTWag4BbA8OSjtiUGZtD9GcwhYj5ubTgWUew6N5mWrRX4uLdv0+anDcrXqBOuKfHZgiID1SGgDFkCt8jI5mLTCuDM9Z2+rLD/9qfw1a3+AphCwQORNy7FUcbQ7cJn1AX4iYGFITh5YS4BK2/qSoPzqT2UevysPPLtsa6WvoUzz7k0DaFIG7emEQf729xUBW4dKgeC0n1YZHaz7SoZ1+Y8elbZ/uBPJlHR0DhceKcqee0M6t7StP15obVs6Zdh5QtNKvgbr/XVZkrttkTZ9LNLJQ8C2CgFbh9JASKY61n9Q7e3J1ItycPSG3Cdri5ZGZa9Vr9dkfNnetkFOLg/Y84PHvzGywD3/zXHp1K+hu/z6zvz9cekfvBzhxfVMEbQKAVu3vFw9nLI6a3dm449r7s41ObmnGLTthaFC2TyJHWf0VHnpz2Kmu2w9PbMyIf36NVQIWN2nV86ck+ge11k/yJU6fLWGXyQ5idjddVqGgG1A1UDIX5XD1mghJcdYrV0QgIB1voayAZsvhEkMRnW3ThaXaSX7ZWKT3/zLkxn51NSuiBkCtgHVA2FRMt0aKMx3FQU8YPOTkjkdhzTJy0KmR5KFOiR70vJNhZBdvvqRHDxd+UQE1IeAbUDVQFgu/DlqHVTZK6NL9rZYcwL2n+VCmQOD2r7+eKc/AbvzY/l6w3vPy9QHPdJj7H2DJie3Rt+UDu2fbV1yMHNBrs8Xa5Gd/VwyB3fL7zO31lZ5oHkEbAOcgO389//Z8MN6/exH0tuhc13tsm+MUUCRE7BtsmXD0fv11pEqzg8aD9hHVhEUVxCYe99gyt+/KZ9nhmX/brsOO1+RgRPjMnuHaPUaAdsAJ2DLrSJIJH4tr/zH34S+6nACNphTBHoK6YGYBSz8Q8A2oFIg5Fe/k4tDO6x5rkT7PhlbYAwb9IAV+Zv8lfNCYQgB24DqgbAsE/3FP3mT+z6Ve/bW+Ap6wK7Lra4yrQNPEbAN2CwQVib6rcerhUp8hCRg89Ny4kQta0SB2hGwDag5YLlwccHmATuX7jQbsNnT0lM1YPOyMNIjg5PEK7xFwDagasDmF2TEXgfbfmw6xiMivdBKVmb/0i8pK2BT0jdyTbKlF3uZH5cD7cV6JXs+kKl5ry/2UlyKZc2LJ34n/2kvS1pr2VkZf79L2pIH5LMV+9MAjxCwdSgGwpQcsQN058dfu35Y5+X6hZPyprVMKyFte05LvI9x6YVW7BUWG1rJxV7KPMfbi708+vpl279eEvIVXiNg61ApENbbbtl/aFgyU98JF9YCQMACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYQsACgCEELAAYIfL/jMyUrsX9AE0AAAAASUVORK5CYII=
|
As shown in the figure, in rectangle ABCD, a sector with center B and radius BA intersects BC at point E. The square FBHG is inside the sector. What is the length of BG in cm?
|
A. 4; B. 3; C. 2; D. 5; E. No correct answer
|
A
|
42
|
iVBORw0KGgoAAAANSUhEUgAAAVYAAADWCAYAAACKaKrvAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABejSURBVHhe7d1/aBznncfx7bmw/SNLc+AtOVxxBgVkiA01V4Q4BRJBsGOaP2Say8UlogY1PVfUsH/YpMY9rDY2/kOBxJeCKEsd2ihI1MYqCKxG5mRcN5aN09gm8QklwoJYRraDXKT8sbD943v7nZ2RVtL+3ucZz868XzDYml3trL7P6KNnn3lmJiYAAKMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMIVgAwjGAFAMMI1gYs3rkji+7/AcBDsNbttpzakZSjV7Lu1wCQR7DWael8r8RjMYn3npcldx0AKIK1LvMytCcu8XhMYrFOSc+6q4GAWfr8r/Lhhx+WXK5OL8jCo4z7bJhCsNYhe61fWvYMyeSpHblgjUny6BVhQABBdP/Su/LGj5+TpNMJyO2rXT+VN954I7/07ZWdybizPvHMXjkxfkeIWDMI1potyfnehPSeX8p1XIdkT26njMV7Rb8EgurWQJsToJ0bPl5l5N7UKdmd0OCNS+vhSQ7IGkCw1mo2LZ3Jo5I/ZnVfRrrzPYGNOywQHLPpzrL7aXYmLV1OrzYu3SPz7lrUi2CtSVauHE3KjlO33a9XD2LFVsIWCJ5Kwarmh/Y4z2FfbhzBWov5EemO75CCXM1l7RU5msz/pXeGB4AAqiZYZWlMejRYY0npv+auQ10I1hrc1oNV//pTOb3uyOpv9v1z/i/9jlNSmLlAUFQVrDIjg+0arDHpOj3nrkM9CNZqLU1KKhmXnfvcI6qFS98uaXH/0nPCAIKoumCdlXRnPljLPw+VEKxVcsafOtO5Xa+YRZnoSzo7ZLxnjKOqCByC1V8EazWWLsnhlgq9UW/qVWyHDNyi14pgqSpYsxPS5+zDjLE2imCtYH4qLQc7ErmdLS47D6Rl9EaRqSjzN2T01CvucEBuSXTIwfQF+ZxjWQiIaoKVGS7mEKwVfHZm3Xjqmc/cRwp8dmbtc5zlXbl0330ceMwqBuvipKRatGPAPFYTCFYgAmYG20sGa/bBX6R/Z/7U1pYUZ16ZQLBacuPGDWdHZWGxuVTiXITlgxOyy+mNxqSt7w+rUwVH03Jk7zOS0NdKPCP7058QqoYQrJa89957G34JWFhML5U4F2HZMEy1urzzwYdy6eaXssyYqlEEqyWFwbp//3557bXX5Pnnn3eWp59+WrZu3SpPPPHEml+SYsvmzZvl2WeflQMHDsjAwIBMTU3JP/7xD3criCpv/0Aw0TKWFAZrJX//+9/l+vXrMjw8LMeOHZNXX31Vvv/978uTTz658hqFiwZyd3e3vP32286QA6LH2xcQTLSMJbUEazkLCwty+fJlSafTkkqlZPv27Suv6y0awC+//LIMDg7K9PS0+50IM6/tEUy0jCWmgrUYDVvt3eoQgw4peNvxFh1q0J7vF1984X4HwsZrawQTLWOJzWBdb25uzumt6hCCjsl629VFx2f1sa+++sp9NsLAr30L9aFlLPEzWAvpga3x8XHnYNm3vvWtlfeg/9dx2dHRUclkuAFHs3sc+xaqR8tY8riCtdDXX3/tvI8XXnhh5b3oor1aHa/VIQU0p8e9b6E8WsaSIARrobt378rJkyfXHPzSXqyO0zIW23yCtG9hI1rGkqAFayGd2qXDAt/85jed96f/asAyo6B5EKzBRstYEuRg9WhPVQPVC1hdNHCZGxt8Qd+3oo6WsaQZgtWjswp0zLXwYJcG7Keffuo+A0HTLPtWVNEyljRTsHr0YNahQ4dWzvjSnqx+rQfBECwEa7DRMpY0Y7B69BRb7cF6QwTf/e535cyZM+6jCAKCNdhoGUuaOVg9OhSgJxh4P8eLL77IDIKAaPZ9K+xoGUvCEKwevU6Bd0aXjsO++eab9k8yyNyRqx+8I31726WtrS23tMveI2n58817kpGsXDr7J4nyDRoI1mCjZSwJU7AqHR74yU9+svIz6fUI9OIw5mXly4kj0pGISeKZ/XJq9KpMLyw447/TVz+QEy+1SiK5RZJdpe6YGw1h2rfCiJaxJGzB6tHrweolDfXn0jFYPenAnKzMnN7tXNG+JTUhD4pefDkrDyZS0pLslyjfSJRgDTZaxpKwBqvS6xHo1bO8g1s69mriIi/ZWwOyQ2vWOSgzZa9on5Vr/Sdk0v0qigjWYKNlLAlzsHouXLggTz31lPMz6swB/bp+8zLSrTe0i0vv+SruG57JSJQvJUOwBhstY0kUglXp2Kd3kRftwWpPtq5bx8ympdOpV4+MVZGrUUewBhstY0lUglWtHxrQoK35ylmTKbdeqZIf8T86rrMD1i3HP3IfjZao7FvNipaxJErB6ikcGtB/azkldu50l1uv0sGaebQg0xd/6fZsY9J5ckrmHkVzQCBq+1azoWUqmE13ruzEZZfOtdN/ohisqnBoQG96WPWUrJUea6WhgFlJd+rzOiUd4flWUdy3mgktU43MHfn9Xj2wkuslrf9tzi7Llxf7ZWfL2uk/UQ1WpUMDenND/dn1hIKqToe9PyLdTr0qHbwiWFVU961mQctUyeu5bghWR1ZuDZxa8xE2ysHq0esN6M+vY696363ylnKd1mS+Zut6/2sRrCrq+1bQ0TJVKh+sGxGseXoCgVeHiicTLE5KqkWfG5eu9Ezuz1UxBKti3wo2WqZKJYP12oiMFPkFJ1hX6bUGvBkD2ostJ/vlmPysNT+fdefhc/LZmtOvsrL85f/KG20EK/tWsNEyVSoarJl7MtbXXfQXnGBdS8dZ9WCW1kPHX8vOdc0+kOtDB2XXloTz/MSW/NSqLYlcPeNJad11UNIX73CCAPtWYNEyVSo9O6B4z4lg3UhnCHjhqhd0qUrmkTPTwFkeLpcYHoge9q1go2WqVLTHmutZXf5lb8VgZSm+/OIXv3CrhVp5NUQw0TJVKjnGOjMhEwRrzYs35vr222+7FUMtvDoimGiZKpUM1hIYCijOq0lhfbjtS+282iGYaJkqEaz10XHVwo/8hTXxpmJp77WxK2NFD/tWsNEyVSJYa1d4sErrodbXxDuJQJ+nF9FGddbXEcFCy1Sj4JTWZN+Y3Ktink/Ug7UwVAunV62vSeHpr3rhFm5WWJ31dUSw0DIVeD3V9UulnmuUg7VUqKpiNdHHvbvBfu9737N/o8IQKFZHBActY0lUg7VcqKpSNdGbFW7dutV5rNLZWSBYg46WsSSKwXr9+vWyoarK1US/35uGNTo66q5FMeXqiMePlrEkisH69ddfOx/pS4WqqlQTndeqjz/55JMyNzfnrsV6Udu3mg0tY0lUhwJ0fLRUqKpqatLd3e08p6Ojo+xrRVkU961mQstYEuWDV+VUU5PC8VZOey2OfSvYaBlLCNbiqq3JjRs3nLsP6HPHx8fdtfCwbwUbLWNJ2INVT0N99dVXa/6oXktN9K4D+tzNmzc7vVisCvO+FQa0jCVhDlYNVe/ovf6ctai1Jt7JA1VfZjAiaq0j/EXLWBLWYC0M1Xrmm9Zak7t3765M4eKU11W11hH+omUsCWOwNhqqqp6aeBdr2b59O7MEXPXUEf6hZSwJW7CaCFVVT000TLdt2+Z838DAgLs22uqpI/xDy1gSpmDVI/QmQlXVWxO9rKB+nw4L6PBA1NVbR/iDlrEkbD1WDdRGQ1U1UhOdhaDfqycQRF2Y9q0womUsCevBq0Y1UhO9oaCe6qrfPzY25q6NJvatYKNlLCFYi2u0Jt61BJ5++ulIH8hi3wo2WsaSZg5Wm4HVaE30vWmo6mtojaOqWfetqKBlLDEarHpvfZ/uqa9H/3Vak37stsFETbzaRrnXamzfghW0jCXmgnVRJvqSEutMS3V326pf4ZQqnTtqg4maFPZa33//fXdttJioI+yhZSwxFazzI90S19exHKym5qlWYioQ3n33Xed19FYuUWSqjrCDlrHESLDOnpbdu1PS1243WP0KVWUqEPS6r3rzQX2tKN5twFQdYQctY0nDwZqdkfTuV2RkflbSnZWCNSOPFhZKj8Nml+XhI+8GfVlZfph7rvt1Yaj+1+uvy8rTLDEZCN4MgSj2Wk3WEebRMpY0FqxZmRnskp6xxdz/ywXronyS3i/PJJPS2tYqyXhM4q0/kpGZfLxm7t2Ucyf2yjOJ3PenJiX75YQc6Ui47ysh//bf51euefrtTfn3GkvsltPu99tQf0020lvBePNao3bNVpN1hHm0jCWNBGv21oDszgWhxmrpYM2Fb7pL4p0n5ZP8E0Xmh2SPbrPlhPwt92V2+aEs/PXX0qbrOg/Kb89OyT3tkWZuy2BXPPfeOuUH//GS/PsPe2U5l6WZ24PSlQvnWPeI3Hde0DzTgXDs2DHn9Z5//nl3TTSYriPMomUsqTtYly7J4Y6UTHphWSpYZ9PSGUvK0SuFvctZObu/Xdr3n119rvO83Pf3TawZJrg/kr+vVN9E4dolGevR95zbvrvGNNOBoBfA9i4rqNc0iArTdYRZtIwl9QXrokymOqT/2tqwLBasc6e7cq/dI2NL7opSvGDN9YDXmEw5723jan3PzROsSi+C7fwslg+8BYmNOsIcWsaSeoJ1MRd2e45/JHf1QNTK8rG8pbMC2t+SjwsOUF06rB/l+2RNh7OYgmBdc3uTEAXr5cuXndfUWQJROWHARh1hDi1jST3Bmg+1Covbc73Wn8x93SYDt/Lfu1ZWsl7gesH6g2POgR4NIUeIglV5JwxE5SCWrTrCDFrGknqCNfOosKfqLcV7rN4YaUv/tTVjp2ppMi0j3rhBLli36fv4p03O83VivSNkwfrmm286r/vaa6+5a8LNVh1hBi1jSd0HrzYocfBq6bz06hH8WIukJh6shGvmzjn52YERmXe/PvObA/IN933ovM8VIQvWubk553V1+phOwwo7W3WEGbSMJdaDNUfHZFvcbSS2tElba1LiBfNQR/7wO9m06Rv59/Evu+Ti3ENZzuoJAtPyxx4dSsj1eHvPybT2gvUkguk/Sk9SX69Fes9Ny0Odg2WYmZoUp1Ou9LW19mFns45oHC1jiblgnZPhfbnQ3Dec+99Gi/93Tk7sbZe2tnbZe2RIrj/Ih6GeUeWF6ne+853c47nXaNsnw7menfN6ztfuoq89Nyz7Ctflln3DxbbYGJuB4NX8hRdecNeEl806onG0jCXmgrV2evTfOyNpzcf/ALBZEx0C8M4kC/t9sWzWEY2jZSx5nMGq9Oj/yoGqALFdEz14pa8fxJ/dpMe5b6EyWsaSxx2sQWW7JsPDw87rh/2Gg+xbwUbLWEKwFme7JjpFTV9fh0LCfLIA+1aw0TKW+BmsX3zxhfu/4POjJtu2bXO2MTU15a4JH7/2LdSHlrHEr2DVg1N6PVWdBdAM/KiJXjNAt2Hr9jJB4EcdUT9axhI/gtW70LMuQTv6X4rtmii9o4Bu48UXX3TXhI8fdUT9aBlLbAdrM4aqslkTj043023o5QTDOs7qRx1RP1rGEpvB2qyhqmzVZD29XYtuZ+WiMyHjVx1RH1rGElvB2syhqmzUpBhvnFXvMBBGftUR9aFlLLERrHpnUu+IdzOGqvIrELxx1rDessWvOqI+tIwltnqsOk9TX7tZ+RUIX331lbMdnc8aRn7VEfWhZSyxOcbazPysyebNm51taciGDftWsNEylhCsxflZk46ODmdbFy9edNeEB/tWsNEylpgIVgKhMQcOHHC2NTg46K4JDz/riNrRMpY0Gqze0f9Dhw65a8LBz0AYGBhwthXGu7f6WUfUjpaxpJFg9UK1mU5VrZafgTA2NuZsK4xnYPlZR9SOlrGk3mANc6gqPwNhenra2dbWrVvdNeHhZx1RO1rGknqCNeyhqvwOBO+OAmG7waDfdURtaBlLag3WKISq8jsQtm/f7mzvxo0b7ppw8LuOqA0tY0ktwaoXCnn22WdDH6rK70B4+eWXne3pnQXCxO86oja0jCW19lj1o+qFCxfcr8LL70DYv3+/s710Ou2uCQe/64ja0DKW1HvwKuz8rolehEW3F7aLsbBvBRstYwnBWpzfNSFY8TjQMpaUC1a9NXPYjlJXy+9A8A4K/vznP3fXhIPfdURtaBlLSgWrd53QsF7OrhK/A8FrBx1rDRO/64ja0DKWFAtWL1SjcPS/FL8DgWDF40DLWLI+WAnVPL8DQS9ko9sL2yeEhuuYXZaHCwuysPBIMu4qlc1kJOv+H/UjWC0pDFZCdVXDgVAjgrVQVh5cH5KDzyUlHotLsrVN2tpaJZlIynMHh2Rq7ob8Tyots+6zUT+C1ZLCYNVl06ZN0t/f7/yiR3nx6lHsMRuLXjJQt6c3FwwTr45Vyz6QicOtuUBNSMeRcbmzppu6LJ+PH5ad8dxrJvvlmrsa9SNYLVkfrCwsNpbqLMmlwy2558elKz1T8qP+4mRKWmIpmXS/Rv0IVkvGx8c3/BKwsJheqpG9NSA79PnJo3Kl7ADqkpzvPUywGkCwAqGWlclU3AnhtoFb7rrSstfOyp/m3C9QN4IVCLVr0p/M9277Jjje7xeCFRZk5JEzlWf9sjq1J7v8sMjjC/Ko8KBKQ0q9hyKLuY0G0KSk3GGDFJ/xfUOwVqlUEHjLw2V6A6s+kuM6jUePMru/1LF4UlrbjuceyZsb3idtWxKrj+eWxJY2Oe49oWHr3oOzfZ1eVLhskYQ+FurEIVgfB4K1SuuDIJ5sXf0FddfHk8/JwaHr8oCMzZsfkj1Ovf5Tzi2669bIyESfO/538hMrE9Ozn5yUNn0PncXnZ2YfnJOe1ESIJ8UzFPA4EKw1ycqVo0lnJ+1Mr/01zdybklO78wHbkusaFM2RyPF6S6Wn8MymO4vW05ilMenR91AiWLVNL70/LOE9XrN68Cp59EoVf0AykgnzyIhPCNYalQ2C7BU56vQOktLPLOucAASr9x6KBms2FyIR6MXdPpWfbhXvkbEKf/EXJ9Ny1lZTRAjBWqPyQTAr6U4NEsaz8gIerNlJSZ+OQopkZSbdJfFcHeJdA/JJiXBdvHJCDp4ufQIBqkew1qhsECzmPnY6B0v2yNC8uy7SvGB9XUaLHPDT5eO32v0J1va35OM1256Wi7/qki5r2w2ajNwe+pG06v6Z6JCD6VG5Op2vxdzNP0v64C75Yfr2yqwNNIZgrZEXrG2//uuaX9KrH5yQl1p1LKtFXhnhr36eF6wJ2bLmaPzq0prMj/9ZD9YNswLyMwLsbTeYsg8+kz+nj8uPd7l1aN8rfe+ck5v3iFSTCNYaecFabFZALPZt2fvbvwn7qMcL1mAOBeipnr0RC1b4g2CtUakgyC5/LuOHdzrjWLGWV2Rkhj5r0INV5G/yJ87fhAUEa43KB8GijPXkP9rGXzkr99210RX0YF2VWV5m+AbGEKw1qhQES2M9zuPlwiQ6miRYs9fknXeqmeMJVIdgrVHVwcoFg3MqB+utgTa7wTp3WrrKBmtWZga7JDVJrMIcgrVGZYM1OyOD7jzWlv5rEe4B6QVQ5uTm73sk6QRrUroHp2Ru/UVYps9Jb0u+XvGuX8nFadMXYclPqXLGvWM/kN+504tWlrmbcu5IhyTivXJ+yf02wACCtUr5ILgov3SDs/2tjwt+Safl6ugp+ZEz3Somid2nJdrHrvQCKO6MiTXLuouwFHmO2YuwbHz9osuhD4VchUkEa5VKBcHqskt+/MZxSV/8XLjQFRBtBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBhBCsAGEawAoBRIv8PXLBCAx21JjIAAAAASUVORK5CYII=
|
Given the length of the diagonal BG of square FBHG, what is the area of square FBHG? ( ) cm²
|
A. 16; B. 8; C. 6; D. 4; E. No correct answer
|
B
|
43
|
iVBORw0KGgoAAAANSUhEUgAAAVMAAADYCAYAAABWSwDbAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABeGSURBVHhe7d1vaFRXnwfwvBDGFw7rggOCDSukEMEGFCSETZdGEJ9K+yJCkVoIyqYsNrTLvNBViWyE6pMXeaBNA09gh7UsWgzrkrzIYjSFhKw2VnxWk0ezIRociBETJUrSFwPji9/e35l7kkk8k/mT30zP3PP9wEFzZzKTnPObb+6fc++tIAAA2DCEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhCkAgACEKQCAAIQpAIAAhGmaZCJBSf//AOUsufSSXrx4kbG9TvhPBDEI02WzdOVQDXVO+F8ClLH41aNUvSNMFRUVqoUiVVRdXZ1qVREK8fLwDjr4TYyGnyJZJSBMfcm756nSK7BI6yjWTiEgkjTaGlFhWh+b9pelJJce03DnEVXzFRWVdKRnCnW/QQhTZZGuN4dSf8VDTdS/4C8GKHPTsXpjmGoLQ9HlQD01sugvhUIgTNl0jOprOijm/xWvwbY+BES2MOW11/GOmtSKRE0nofILhzD1N4UOXZklmuikGi6qSCuNYpsHAiB7mHpmr9AhrvuKauoY95dB3hCmC/3UFG6m62oLZ5pi9VxUIWrCtj4EQE5hSuPUUc11X0GNPXP+MsiX82E60Vmz6qDT7JVDqqiwyQNBkFuY6pWIbM+D9bgdpotDFI1E6Pxd/2u2eJ2aQ1xYEWrFtj6UOYRp6Tgdpmot9O/+lUZWTWh+Rv/d8jeqsEKNPTTrPxegHOUWpiN0Sq1AhCg6hBWIQrkbpslx6qipoPAOfyJzetOTmiswiR/KWy5hmhxtpQjXe0gfO4BCOBumi9ebKVR5nu4a/xBP06X9qXmnmMQP5SxrmCanKObXek3HOGp9A9wMU6+AuuvXP2KfHO9ITZOqOEQ8awqgHK0bpskZ6m+uVI+H9sdoCkm6Ic6FaeL5GPWe2uttxkeo6T/GKG664kPiNcXvtFO9ClOv0Paeot6xGVrKodiePHlC165do+HhYdX463g8rvbHApSKutDJ5DCd8w8s1f7pLyvHBeJjdCP2DX0U4TXSEFV9cYUmcHr+hjkXpr9cWLN/9MIv/iNpfrmw+jmqHaWrcf/xdfz444+qeNHQitmyURc6eaeGV9rBY6fpQuwGjT1Hikpxdp9psSBM0UrRwD4YFWHpYZrJs2fP1Kb/gwcP1C6B9vZ2On78ONXV1dG2bdtWfWjS265duygajVJfXx+9efPGfzVwia4FsA9GRVguYZoNB+WdO3fo8uXLdO7cOWpsbKStW7cuv65ue/bsoZMnT9LAwAD99ttv/ndDkOmxB/tgVIRJhKnJ27dvVcDyWmxDQwNt3rx5+X24bdq0iQ4cOKACGMEaXMWoLZCBURFWrDBdK5FIqNkCZ86cUbsHOEz1+27ZskXtNuDHIVhKUVtQGIyKsFKF6VqvXr2i7u5u+vDDD5ffn9t7772ndhXwFC0of79HbUFuMCrCfq8wTcfB2dbWRu+///7yz8KN12D55+NdBlCefu/agswwKsJsCNN0t27dohMnTqyaJcBrq999953aVQDlxabagtUwKsJsC1ONg5OnYfEMAP3zbd++Xa3BYppV+bCxtiAFoyLM1jBN19/fr2YE6J+Tp13xgSyc8mo/22vLZRgVYeUQphof7U8PVZ5uxScFIFTtVS615SKMirByClON96vyiQH65+Y11a6uLhyoslC51ZZLMCrCyjFMNT69lSf+659/37596kQBsEe51pYLMCrCyjlMtatXr6oj/vw78MkAPBsAB6nsgDC1F0ZFWBDClPEpqXxQSp9ZxVOr+FTV4kvQ68lfqS92gU6fPu21CxS7MUYz/sVkH929Sy7fWQNhai+MirCghKk2OTm5atOfz7Aq1tlUiacDdLYuTBWhKvq05Xv66eZNuum1n74/Rh9FIrT78FHa3xgjl++fGaTaChqMirCghamWvunP5/7z15IWRs/T3hDfPqOD7pvuJpOcp3sd+ylU3UHj/iIXIUzthVERFtQwZbzpzxdQ0b8f70sVOYtqtoca+VbDlVEaynxbLs8C9TedoiH/KxcFtbaCAKMiLMhhqvHvyGun/DvyGVUPHz70HynEIg1FI+q1DuVy58LZWXL5/oZBr61yhlER5kKYMg7QDz74QP2eHKz8exdkzlsrVf3VSD1z/jLICGFqL4yKMFfClK3d7Of/531h6qGo//3eJr6/aK1H1/io/pp27ZH/qFtcqa1yhFER5lKYaumb/by2ms/pqPFL+/3+yhymsw9u0k8XD1Kl36+VRzqp74GbG/uu1VY5cW5Ust0Cd7kdvUo53Nn5HS6GKUvf7OerUfGUqpwsr5m20GBqKmkGU9Rdy8+rpe4pf5GDXKytcuHcqCSXXtKLyQGK1qSKsvZPf1FrUsstPkY3/vgHChc4BcfVMGW8ia+v9M+T/Pmc/6ymY1Sv+itCraPrpek0xer5efUUc3iiqau1VQ6cHZXpWL0qynrjJ5OPMJ8vaAqOy2HKeKrUZ599pn5/3vTny/2tb5Z6GkPq+aGmfso8MwphylyuLdshTDN9Mr1QKGQGpethyvhqUzwHlfuAT0fNNsE/ORWj/TzPtKKSohknmiJMmeu1ZTOE6dpP5sRNulnIzlIfwnQF38hP9wXfJmU9+gwoPpX0q97H5J+KvyI5QT+ofaYIU9SWnRCmqz6ZSRrvaN7QhxVhuhqHqL5YysmTJ/2lZsn5exQ7vpvC3nNDkSo6eCw1DerYwSqKcNCGd9Phi4M0s+6BqmBDbdnL+TDlD+3yEfwdYW/ZxtZ8EKbv4ntP6UD99ttv/aXrSLymF5O/qoucqDYyRvGXS96fOkBt2cv5MF11ND9+h7obG8XCFM3cYrGY31uQL92HYB/nw/Sdfabj/dSPMC1q47VUXluF/Ok+BPsgTNeGaTJBiQ1sT2Iz30z3CW/m8788bSqneaiwCmrLXgjTjWzTGyBMzdL75Ouvv1b/5xv35XymFCioLXshTBGmJZHeJzwPVU/s51NPeX815Aa1ZS9HRyVB//MvqWtoVrffFz1KjDA1W9snfKaUPvV0165duGFfjlBb9nJuVNSFTtQUqFRRcgvvqKajVzcwUz8NwtTM1Cd8Lj8HKS/n+/ZDdqgtezk3KupCJ3oqVFp7+c4pN4VBmJpl6pN4PK72nfJj2c6SAoSpzTAqwhCmZuv1SV9fn3qMp0zdu3fPXwomqC17YVSEIUzNsvVJNJq6runOnTux/3QdqC17YVSEIUzNsvUJH+Hft2+feg72n2aG2rIXRkUYwtQslz7B/tPsUFv2wqgIQ5ia5don2H+6PtSWvTAqwhCmZvn0Sfr+U56PCitQW/bCqAhDmJrl0yfp+0/5AtOwArVlL4yKMISpWb59wpv4vKnPDefvr0Bt2QujIgxhalZIn+jN/QMHDvhLALVlL4yKMISpWSF9wvNN+UIo/H2XL1/2l7oNtWUvjIowhKlZoX3CIcrfx6GKyfwIU5thVIQhTM020ie8mc/fy9dBdR1qy14YFWEIU7ON9AkfgNIHo1yfe4rashdGRRjC1GyjfaLvwV9XV+cvcRNqy14YFWEIU7ON9glP3tcHo/gsKVehtuyFURGGMDWT6BM+X59fgyf0uwq1ZS+MijCEqZlEn6SvnQ4PD/tL3YLashdGRRjC1EyqT9rb29XrNDQ0+EvcgtqyF0ZFGMLUTKpPeK6pvkyfi2unqC17YVSEIUzNJPukra1NvZaLa6eoLXthVIQhTM0k++TVq1e0efNm9XoPHjzwl7oBtWUvjIowhKmZdJ/oi6C4dosT1Ja9MCrCEKZm0n3Ct+fWa6dPnjzxlwYfasteGBVhCFOzYvTJ559/rl7TpQtIo7bshVERhjA1K0afDAwMqNfk25u4ArVlL4yKMISpWTH6hG9v8t5776nXvXXrlr802FBb9sKoCEOYmhWrT86cOaNe98svv/SXBBtqy14YFWEIU7Ni9cnDhw/V6/JEfhfuZIrashdGRRjC1KyYfaLvZHrt2jV/SXChtuyFURGGMDUrZp90dXWp13Zhzilqy14YFWEIU7Ni9gmfEaWvxM//DzLUlr0wKsIQpmbF7hNeK+XXj8Vi/pJgQm3ZC6MiDGFqVuw+0f3OE/mDDLVlL4yKMISpWbH7JB6Pq9fni0cHGWrLXhgVYQhTs1L0CZ8Jxe8R5CtJobbshVERhjA1K0WfnDhxQr0H3ysqqFBb9sKoCEOYmpWiT65evareI8hTpFBb9sKoCEOYmpWiT/iyfPwefDZUUKG27IVREYYwNStVn+zatUu9z7179/wlwYLashdGRRjC1KxUfaL3m/JdTIMItWUvjIowhKlZqfpE7zf9+OOP/SXBgtqyF0ZFGMLUrFR98uzZM/U+27Zt85cEC2rLXhgVYQhTs1L2ib6vPt9jP2hQW/bCqAhDmJqVsk/0Jfnu3LnjLwkO1Ja9MCrCEKZmpeyT48ePq/cK4kVPUFv2wqgIQ5ialbJP+Eg+v9fJkyf9JcGB2rIXRkUYwtSslH3S19en3uvTTz/1lwQHasteGBVhCFOzUvaJvi8UT+APGtSWvTAqwhCmZqXsE74FNF91n98vaDfZQ23ZC6MiDGFqVuo+0aeV8lpqkKC27IVREYYwNSt1n+jbmATtjqWoLXthVIQhTM1K3Sd6ehSPR5CgtuyFURGGMDUrdZ+cO3dOvV9bW5u/JBhQW/bCqAhDmJqVuk84RPn9EKZQKhgVYQhTs1L3SUdHh3q/aDTqLwkG1Ja9MCrCEKZmpe4TPQ687zRIUFv2wqgIQ5ialbpPEKZQahgVYQhTs1L3yc8//6ze78CBA/6SYEBt2cu5UZmO1S8XpKmFIlVUe/gi9T6ap6T/PflAmJqVuk+Gh4fV+zU0NPhLgqHQfkzOP6Lei4eptipCIfUaYdpRe5gu9j6i+eQC9Xdcomn/uVAYNz/xief0n00hVZT1sbQSSrymyeFOOlLJxRai/bGpvAM1PUzj8Tia30rdJ/piJ3xt0yDR/Zi7JE31fEFVoQoK152lgcmXtKSKOklLM2PUe7aOwvya1R00rp4PhXJ29Umvoa4KU22hn5q84quoqKHOCX9ZjtLDFA2tWC03XpDG9qs10croEC34S1fTz4nSkL8ECoMwNYWpt8ETq08VrVeDeeHTF9OLHg2tGC0nsz3UyCsFoWa6vugvM5qlK4cQphuFMDWFaXKUWiNctPmvmQLY4u75iKrxSOto1t1Vi9f/TJfj/hdQEOfDtLZ7yl/CEvR6cpg6j1R6j4Wo6lSmTSMA241TR3VqLbapf93VUhDifJia29/SF1ee0JL/XIDyM0RRv57z3VUFhcFm/pqj+fGxXjpbF1aPhf/QSfexapqHlQ/w6rayPy7THzG5D3ymn8HQAp0yCNNSQ5ga95lOUbd/ACriVSI2kvKRpKV77VSjPsj19MNfl97dX5d4Sv/+id+/Lf30XPxi+EmaH2ihCP8M9THD/MkEPb/TTvWBTpkROqVmpCBMSwVhajyaTzTXk7q4cEXolFeWkB+9VpT5CHG2/t+wuR5q5J/BGKZskfo7Mj0WBN7v15QK0+oOzCAtBYRphg9zcrAFYVowC8JU/wwZwzT4kqOtqbXzSCuNZjmcn5zqof/6X/8LKAjC1PhhXvD+qqfOkAo1X8dmft5sD9O71NPjQsQu0FCUZ6bwpP1Bms8QqMmZfjp7ETNXNsrNMM10OilPjYrfodgXVanzlyu9MECFFcDmME3Q8/4Waiza+1omOUP9X6XqmU8n7R2L02t/H3VyaYbGes/S4X/up5lsE1EhK+fCVH+IM7cw7aiupcMXe+n/CghS/Tpu02GavRU9TDO04r1vcemfPz9Jmr93hc4erqUdYb8PQhGqOvgNxYafen9eQILrn3pxhRV70GDNtFhQX/bCqAhDsTObw5SN0KVLCFOQhVERhmJntodp+UJ92QujIgzFzsolTKfpUmd5zdZAfdkLoyIMxc6yh+lUd63qp6KFadZJ+3zZ2iZqLrOLgKC+7IVREYZiTz+dtIbO3TLc/iUxQT/o03WLcjpp6iCTmrAeaqHBta+fXKLHA6dob6iReub8ZWUC9WUvjIowt4tdr5GubStrqJmmpsmdP57pZzC0xh4qsyxd/tnBPhgVYSh2KCbUl70wKsJQ7FBMqC97YVSEodihmFBf9sKoCEOxQzGhvuyFURGGYodiQn3ZC6MiDMUOxYT6shdGRRiKHYoJ9WUvjIqwjRT727dv/f+BKxKJ/M5YQJjaC6MirJBif/HiBUWjUTpx4oS/BFyxZ88eamtrozdv3vhL1ocwtRdGRVg+xa5DdPPmzep7jh8/7j8Crti5c6ca+61bt+YUqvnUF5QWRkVYLsW+NkR1Q5i6R4epbtlCVT8P7INREbZesWcKUd0Qpu5ZG6a6ZQpV/TjYB6MizFTs2UJUN4SpezKFqW5rQ1UvB/tgVISlF3uuIarbli1b1IcLzZ22adMmYy2sbTpU9ddgH4yKMF3sDx48UB8A/TUammQD+2BUhKUXe75rptu3b6eGhgY0h1qutYE1U/thVISZih37TCET3tQ31YJu2GdaPjAqwtYr9kAezU+O09XTp+l0ejvXR5P+w7C+TGG6NkQ1/TjYB6MiLJdizxSq5Rimi9ebKZT2O3CLtI6+e98nMFobpplCVNPPA/tgVITlU+xrQ7X8wnSaYvtbqN/7Pfh30e21+A3ygkuHabYQ1fKpLygtjIqwQopdh2q5nZufHG2lGqyFbgjOzQ8OjIqwjRR7eV01apZ6GkNU848x6vv1MS1lS1S+vfKvP9H3vE/1QoxuPFpzC2h+fDhGF649Ul8mng5T7IL33O8H6Kle003O06Mb3nO81/h+4CkFYQUYV40KDoyKMGeKfaLTvze+38K76XjsPi34D6+yMESnqsK094QXvDf7KHZiL4UqQrQ/NqUCdWawjRqrw6nXiQ7S1OWj9MkxL0iP1VGYl9V00Pj8KJ3/aC8dbjlNx+r4ud73X5pOvb5DnKmvMoRREeZKsSeXXtKL+BiN9MXo7OHdqdDzWmV0aE2gTtOl/SGqPH93ZU00OUgt6vkr99On6RjV87KqUzQ0r5+ZpPvt1d7zIlR3tj9tDfU+tVd7z632QtZf5AqEqb0wKsJcLfbE015qruTfPUSNPbP+Ui/3hqLeWmgtdU/5C5QkzT8aoZH0TX0dpl4Yp0sOtqj+XLOYhqL8Xmlh7AiEqb0wKsKcLvbZHmoMeb9/Yw/N+YumumtzC70MYeqlpupPhGkKwtReGBVhrhf73fMRqqiPeRv3KanQa6Qena6ZIExzgjC1F0ZFmOvFPh2rN6yZhrwwXHXsPmVxgibi/v8RpjlBmNoLoyLM7WJP0mhrJTVfX/S/9paMtlKE+6S+m6ZW5WmSxjv/SMtPRZjmBGFqL4yKMDeKfYFG/23tXM8kzQ9Gqc5LPdPRfO6TyiOdNDz5Qs0C6D1bR3/fMf7uAaiWwZVlnsX+JvW9LYOrllJ/E/dzC61a7AA36qs8YVSEuVHsE/TnfamADO8+TC2nT9OxT/6B/injPNNROr839fxUC1HVV/004wfh3EiXP3fUeyxURZ+2dNHI3ByNdB2jurD/PeE6OtY1QnNzI9Sl5596LVx3jLpGsu2QDQ7dh2AfjIowZ4o98Zomf71JN2/epJGxmexnQHnrsM/HRrznj9DYzNLqtc/Ht9XrrLTb9HhxkR7fTl/mtduPaXHxMd1OX+a1249XdisEHcLUXhgVYSh2KCbUl70wKsJQ7FBMqC97YVSEodihmFBf9sKoCEOxQzGhvuyFURGGYodiQn3ZC6MCACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgAgAGEKACAAYQoAIABhCgCwYUT/D0TJaE3HSjmDAAAAAElFTkSuQmCC
|
As shown in the figure, quadrilateral ABCD is a rectangle with an area of 20 cm². Taking B as the center and BA as the radius, the sector intersects the length BC of the rectangle at point E. A square FBHG is drawn inside the sector. The area of square FBHG is () cm².
|
A. 16; B. 8; C. 6; D. 4; E. No correct answer
|
B
|
44
|
iVBORw0KGgoAAAANSUhEUgAAAQgAAADQCAYAAAD77P8JAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA8FSURBVHhe7dxBSFsLvsfx7M4q3FVWxZULF8WFG5EnQ3FzS7ld6KYXCuIwbuYGLriRUIT3XNiBwU19s3AR8G0U5BXsBQd77SIliystZVp96CsWqdCxtF5IQd9COJv/O0lONGZMzd/5z8zfc76f4cB4jLfw//3yNzlJzAgAtMGCANAWCwJAWywIAG2xIAC0xYIA0BYLAkBbLAgAbbEgALSV6AURHn+R4zD+Amh18kU+ffp06fFrikuU4AVxJGvjWRlfO4q/Blr8MiM9PTckm8lIpunI3uiJzteP7lxQPx/kpG/koaxsH0qa1kVyF8TBotypBntnUQ7iU8BFwsP/lu8bC2KiFJ89c/LlrTyd7JOgdptAhmZfSyX+XtIldEGEsjGVi38jdMn0S55n4Gv2pDjYfkHUhbI7Pxh3KicTpXQ8Mk3mgjhak/EgDjw6gvG16AkH0E4nCyISPpN83KnM8LJ8jk8nWSIXxF4x2vR3/kt+mu6Kl8QdWeR5BtrqcEE0326wGH2VfMlbEOGGTOWC+sXJxnWI6Oid24lvALTqcEEcrcpo3KfM6GoqHpUmbkEcrY1LkJuSjdplh+orGY2r0OPCCxq4WCcLoiKlicYj0vRc10rYgqgHfafp+US4MSW5eOs3nwfONC2I7/4oL942vQ9if1PKT4ry40C2/v2gW35Y/ZCalzoTtSBqy+BvHinsyFxvHH7vXPQV0KppQQQ56Y7fA3HufRDV45vfyL//tC2HKXpRLEELov50omv65d9s98rqaPwadk6m6s89gCZff4oRHr+T53P3pbvxylj2tsy9Tsc7IZKzIHbmpDfzG/nTZtPDw8bx1z9L/pt6uMHwMm+cQotOrkGInOz8pwzWftFERzAqqynYEQlZEPU3RgW57tOHhq3H2UPFXuEFDZzX2YJo9Kzeo4wMFpP/QmcyFkRlVUaDS64sN73kmZvaSM1FJnSi0wVRfaVz9HRBXHbbJEjEgtiZ6+3gMxc2L3meloPD7aF3tQURTJbjs8l1/RdE7Y1RHV58rF2nqId71TdONcrB4ffQ63RBVGR1tPFUNR2fx7jmC6LxAZoJ6ezB3pbM9sRFuOJFpquXEP9oV8+mqRdtF0QoH1bHpSv+N9JysfvaNv3k46b8PHcvDqxL7s39LJv7X+Qk/n6rky/7srkycfoIohZy36QsvXgrX9r90AUaPwt/1NnU/mDMW3l+2qPo+O6Psh514uxVsLfyYn1JHt7tPv24d/f9RdlRdOY6u7ZN/2XmolcrZuSX+PutLr59/Zhp90MXYEH4pc6m9gdjLu5E6/HtWEEKj5bkxbvjVF3gpulKLAi/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2dhjmkqU0C+yscc0lSihX2Rjj2kqUUK/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2dhjmkqU0C+yscc0lSihX2Rjj2kqUUK/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jG3vWZ5slH2SwvyaNCQQqPt+OT/3yU0C+ysed/muGhvCrel+4gI9kb38rYTFGevDmIv/nPRwn9Iht7vqd5siPF21nJZAfk4fOPchKf/leihH6RjT2/0wx3pTgUSKZrXFY/hPHJfz1K6BfZ2HM7zb2FIQkyOZkoHcVnviaU43cvZOlRQQqFGSn+vC2H53bKiXzcXJFHfyrL5+ir8HBbVqq3nVmUV6c3PJH3L+rXOGYWX7X8/BlK6BfZ2PM5zaM1GQ+isHvnZCu6M/9cnInu+AV5tNJ6x6+qSGmyW7J9v5fik3V5Uvy99EU/GwwVZTe67f/9z4L8rv9GtGyi/95gUV6X/kO++z4vhfzd2nWNTDAqq4e7sny/T26NFSR/t7t2267Jsly0miihX2Rjz+U0j1ZHa0F/03VTvv2xKE/Wn0jxxwHJRueCvmnZqMQ3jNQeaXRNy8vTxRHKs3y9KBOl+JSUZKJanuxtKe6cXcmorHxfu133/YWmRxIVWfm++vPR4rhgQ1BCv8jGnstplieDWtD5Z80PF0LZmu2tne+afhl9VT0V3fGjRwH987u1WzRUn0KUy82PNuIFET2C2IvP1OzOS390frB47qzsFQejf2dQWk7XUEK/yMaew2l+luXhatD90nK/j761LMPVEuSiRwzVr+M7+NkjhXbaLIi9ogxG51kQyUA29hxOs/EU4aI76K7M91e/NxHd5SOliVohhperlx6/hgWRBmRjz+U0t2Z7oqCD6JFB81OMqj0pDkYlaHkEEUQPIVpvKXIkOzv78f9nQaQB2djzOc2/PJSuKOjc1EbLHf+lTOeazocbMhV9Xb0zz1dfsmgSbs3JH9YaVxlZEGlANvacTrMSPXvoqt1Jz+74oXxYGpEgGJblpnda198vERWj657MPX8rnz7ty+bKAxn4t1nZOt0Z8YLon4+epDTZmpWe6HzrRc76I5gLroFEKKFfZGPP7zTDXVm+Fy2JoFvu5guSH7kp2ZaXKesqsjHdV18S8RF0/3D27svtx6fvbchksjIwVpDqZ722H+flbnf91ZL6v/FYtqP/PW68P6L237kr+ZYPhjX+DfhDNvacT7P+Dsn19XUpb36Q4/PPIs45+bgp5Ytud/Cm9vPNR/WzXgdvzp9bX38jB9H/3pw7Fx0tHwyjhH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2dhjmkqU0C+yscc0lSihX2Rjj2kqUUK/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2dhjmkqU0C+yscc0lSihX2Rjj2kqUUK/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2di7vtPcfiyFQuHS49HSuqyXN2X/12MJ4x/9e1BCv+yyCeX4w6aUnxRlptGlR0uy/uKtfDmJb1LZkJ/Kn+Mvkuv6Nv3gjayvL8nDu90SxMXIZG/KSH5Gik+ipbAeHUuPpDB2S3JB/ftB7pY8WPlfqcT/iatolJDD73F1oRy+Kspvb2aj/05Wbo7k679g4i7lR25KNsjJrbGCjA1kZbC4F/9cciXgV+FLmc7F5ZgoxedanLyXpw8GJBsXKHu7KDuN3wRKzUXk8HlcSXgozybrv2yyt+fk1eHFjzdP3j+Vyb6g9u/0z+/GZ5MrAQtiT4qDcTnaLYiaUHaX70lXXKJgaCH6SaCqIqWJrrgXRdm97LlopSQTXZf1LRlStCCqjqQ8WS9CJhPI8PJBfB5pVlkdjZ+m9srsVmdXqo5KE5JjQVwHmgUROViUO7UyREfXQ/lLfBopFW7IVOMp6p1F6fxXxo7M/bAg+/FXSZW+BRE9ilgdjW+fycn0y/g0Uulobfz0Irf2ouPBu3dRm5IthQtCZHe+P14QGRlaSPrvAHxNebJ+wbH6lHOyHJ/EqVQuiPBZ/nRBBLQixfZlYSjuTmZQUvCqpVoqF4SUJk4XRMc/gwRq6g4L4kKpXBBHq6OnC6Jndis+i/RhQVwmlQtia7bndEEMLyf/7bJoJ5Rn+caC4BrERVK4IA5k8U6jFPzWSLvPy8NxF/SvYqRB+hbEzpz0xoUIhpcVr3sjkY7WZDz+rE6md0524tOdCHdfy1bCX+dM2YLYk4WhxstagzJ/6XtqkXxh9JSzN+5ETvLPOvwoX6Ukk5Orf9cH/66DFC2IipTiD+NUP6l3e2E3qgYQCXel2PjFEQzJ7OtL7vaV1zJ7f1JKSd8Okeu/IMKSTDQeIl64IEI5fvdUHgxUP8JbLUC3/LD6geWA8052ZPFe43M6WRl4sCKbH1s+8hsey7vnc3Jv4J4sp+TR5/VdELU/GDMmt3KNpwzRkb0hPd+Onf3BmPyI9N+oL4Yg1ycjD1dku83HeIFoS8j7pw9lpPb3IJo61dMTHTfqfwviwVN5f8U/FXAdXd8FUfuDMfEf8/jKUd7cl0+nfwYI6MzJl0/y9kWjR2XZ3P9VjlP4uyUB1yAA/KOwIAC0xYIA0BYLAkBbLAgAbbEgALTFggDQFgsCQFssCABtsSAAtMWCANAWCwJAWywIAG2I/D+mSvte5AUQrQAAAABJRU5ErkJggg==
|
The perimeter of rectangle ABCD is 20 cm. What is the length of AB in cm?
|
A. 4; B. 3; C. 2; D. 5; E. No correct answer
|
A
|
45
|
iVBORw0KGgoAAAANSUhEUgAAAQgAAADOCAYAAADCMJziAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABFqSURBVHhe7dxPSJv7mgfw7N5VOKusJKssXBQXbkRGLsVNpZwudOOBgngZN7eBgosJoQgzLnSGO250unARcOBeBZle7IEMbeMiJdDj6HROq4NOiUgFx1I9kEKchfBuvvN7/yRGT1L92efe++TN93N44eT1jdLn+ebJ+y+JgYioBQ4IImqJA4KIWuKAiBD36L9QeLOPaviY6FtxQESFW0Zu0EFsIIeDcBXRt+KAiAQXO3M9iMViHBAkigMiAtytafRP5vBPAxwQJIsDot1Vipjsz6BUPUDumgFx/uUDNgsFFErbODpzw7UXzj9to/T+uPYA2yWz7eZHnAdrDBdnR2Yb8zs2P16speiK9IBwz76gyesgQiooTvZjesv7R35lQLhlrD5MIXFnBOlsGiN34og5KWSKFf/HJ/+5hMd3E3C8Q5TJIiobs7jX3Y3uLrOdWRcf/ROO3SPkH91BV6obXXGzXSyJyfD5bev8Cz5//nzt8ku0Q/RVER4QVbyYiGPiRXTP6VfW0xheLJv3dU+rAeENkSScsTWc1nJezWPMGwaO2fMIV6G8iD5vXeq3+OO70/B3VrCeTphh0I2hx/+Ml7W9hso60olmf6vN/DSD7u4uxL1/d8MS7zLD0RuQZkklnGC9k0DvyCzWdmu16QzRHRDHy7jvNfb+MsKd5mg5XsXoUA7lelpbDIifZ5E0L/C5nfCxr4J3yzOYWX5n/i90kMOAVy+zB9Gomh/zXyCXV7tmcHgvpklc3ro9uaf/hh+8f3uTf7/HOzR7mekN9rBiDgbnGuoWcREdEC42prx3Pq+hyXAXPEoOsDQ0hKVLk6D5gDjIDZgapLF+XQlaDAiz++HX8dervdpGY0DUa9diQARcs5Pl1dLbLmHq0Rl3m0RzQFRfYMIJG24WZ+JFpG4eOlgaRN/fraLgnXCsL39Autv8e7vT+IP3OLxhKnghjyF/XQE4IIK8tBwQhmsOrcJMxYZXcRKujrJIDgj/XfP+v+LH6WTQzNh9LEfoOCN4cV6zhHsSO3Pd5nHC7EUFz73EPcVpbV+ZAyKo29cGRON27X7+5YaiNyDcDUwlnODkZO08hFl6FvbCDaKq+SFG9cWEf+zsjOV/ddx8vDqPP9XeBjkgrh8QtZO73mLq2QkHGZEbEP4LIjGFDf+Y27uSUTsLPYEIX9Awmg8IuFuYTnqh9k6u/Qc+eRci3DPsv8zgXqZ4EfIWA8JdT/v1u7w6WicpbzYggqtB/jaRPK/VXMQGRNDo+w3HE+7GFBJ+Uy+vj54WA8Jwy0sY8u9duFic3mlshLsU1f03WKmdpU8MY+75G+xXq9h/s4JMbzBgnd4MVrzzGtV9vFnJoNc/x+OgN7OCN/vtPnkbBsT3v8fmh4b7IA63UXqew+P+4J4Q7/6RR/mjjrnUGakB4Q+DX+0p7GGhJ2x+z4J5FFUnKD3NIvu01PTkmXu2j9e5GWSzM8i92r24J8I4KT01681z68tTlE7C39e43vvdJyU8bVxnlqeldj9d1zAgnARS4T0Ql+6D8JbvfoO///Fy7aIuQgMiOJxITm/9arpX8mPhNewEpoJjD6IGXz/E8IfrwkOkalfG4kNYeNcZd0JEZ0DsLaAn9hs83W7YPawt//vvSH8XNNcZXo3mjVP0Db4+IGrO9/4lOE/jLc4Y8h0wIyIyIIIbo5xEqr5reHW52FXsQeQvaJClmw2IWs6CHMUwkIv+hc5oDIhKHmPONWeWGy55JqY2OuYkE93ETQeEd6UzuPX8JttGQSQGxN5Czw0+cyFzybMeDi5qF3u3GxBOpv5Rt8hq/wHh3xh1w5OP/nmKoLm3vXGqFg4uehd7Nx0QFeTHaoeqnfF5jDYfELUP0Nz0hp0dzHmfV/AafMuTTLcPIf253b43DbloOSBcHOUnkAz/Rqec7G7bpHvffvRqYTRsWBKjC6+wffil4duPLjv/cojttcn6HoTfZO/mn80P+GLx5Ui155I+1r3xvzDmA17Xc2SW73+PgsnExVUw71u4VjD7IFX/uHfq4TL2OuQLtdo26T/NNLtaMYOfwp9f1Xz7YJlp9aQmOCD0su6N/4UxzTNxdbk3nkV2fgWb+2cddYKbSbfEAaEXeyOP1bTEEOrF3shjNS0xhHqxN/JYTUsMoV7sjTxW0xJDqBd7I4/VtMQQ6sXeyGM1LTGEerE38lhNSwyhXuyNPFbTEkOoF3sjj9W0xBDqxd7IYzUtMYR6sTfyWE1LDKFe7I08VtMSQ6gXeyOP1bTEEOrF3shjNS0xhHqxN/JYTUsMoV7sjTxW0xJDqBd7I4/VtMQQ6sXeyGM1LTGEerE38lhNSwyhXuyNPFbTEkOoF3sjj9W0xBDqxd7IYzUtMYR6sTfyWE1LDKFe7I08VtMSQ6gXeyOP1bTEEOrF3shjNS0xhHqxN/JYTUsMoV7sjTxW0xJDqBd7I4/VtMQQ6sXeyGM1LTGEerE38lhNSwyhXuyNPFbTEkOoF3sjj9W0xBDqxd7IYzUtMYR6sTfyWE1LDKFe7I08VtMSQ6gXeyOP1bTEEOrF3shjNS0xhHqxN/JYTUsMoV7sjTxW0xJDqBd7I4/VtMQQ6sXeyGM1LTGEerE38lhNSwyhXuyNPFbTEkOoF3sjj9W0xBDqxd7IYzUtMYR6sTfyWE1LDKFe7I08VtMSQ6gXeyOP1bTEEOrF3shjNS0xhHqxN/JYTUsMoV7sjTxW0xJDqBd7I4/VtMQQ6sXeyGM1LTGEerE38lhNSwyhXuyNPFbTEkOoF3sjj9W0xBDqxd7IYzUtMYR6sTfyWE1LDKFe7I08VtMSQ6gXeyOP1bTEEOrF3shjNS0xhHqxN/JYTUsMoV7sjTxW0xJDqBd7I699qnn+CdulFcxns8g+2w1X/uUxhHqxN/L0V9M9xdvcQ6ScGOJd9zA+k8Pz98fhD//yGEK92Bt5uqt5vofcUByxeD9mX3/Cebj6r4kh1Iu9kae3mm4ZuUEHseQE8kduuPKvjyHUi72Rp7aaB0uDcGIJTBar4ZqvcXG2v4mV+Syy2RnkXu3i9NJMOcen7TXMPy3hxDxyT3ex5m07s4y39Q3P8XEzOMcxs/z2yvMvMIR6sTfydFaz+gITjml2zwJ2zIv5VW7GvPCzmF+7+sL3VFDMpBDv/R1yzwt4nvsdes1zncEcymbb//vvJfxtX5cZNub3DeTwrvgP+P6HNLLpB/55jZgzhvxpGasPe3F3PIv0g5S/bTJTQrPRxBDqxd7IU1nNan7Mb/R3yTu49ziH54XnyD3uR9ysc3qnsVEJNzT8PY3kNLbqg8PFejoIymQxXIUiJr3wxIeQ27s4k1FZ+8HfLvVwqWFPooK1H7znm8HRZEIwhHqxN/JUVrOUcfxGp9cbdxdc7Mz1+OuT01vmkbfKvPDNXkDfYtnfosY7hCiVGvc2wgFh9iAOwjW+8iL6zPqB3KW1OMgNmL8zgCurfQyhXuyNPIXVPMHqsNfoPlx53ZsfrWLYC0HC7DF4j8MX+MWeQistBsRBDgNmPQdENLA38hRWs3aI0OwFWsZin/ezSfOSN4qTfiCGV71Tj1/DAdEJ2Bt5Kqu5M9dtGu2YPYPGQwzPAXIDJgRX9iAcswtxdUugir29w/D/OSA6AXsjT2c1f55F0jQ6MbVx5YW/helEw3p3A1PmsfdiXvQuWTRwdxbwjy9qZxk5IDoBeyNPaTUr5ugh6b9IL174Lo5WRuA4w1htuNM6uF/CBCM5ioXXH/D58yG2156g/2/msFOfGeGA6Fs0BykNdubQbdZfPckZ7ME0OQdiMIR6sTfy9FbTLWN11AwJJ4UH6SzSI3cQv3KZMlDBxnRvMCTCxUk9urj7cvdZ/d6GWCyO/vEsvM967T5L40EquFoS/I1n2DX/PavdH+H/ngdIX/lgWO1vkD7sjTzl1QzukCwUCihtH+Hs8lHEJeeftlFqtt3xe//5jYv3Wa/j95fXFQrvcWz+e39pnVmufDCMIdSLvZHHalpiCPVib+SxmpYYQr3YG3mspiWGUC/2Rh6raYkh1Iu9kcdqWmII9WJv5LGalhhCvdgbeaymJYZQL/ZGHqtpiSHUi72Rx2paYgj1Ym/ksZqWGEK92Bt5rKYlhlAv9kYeq2mJIdSLvZHHalpiCPVib+SxmpYYQr3YG3mspiWGUC/2Rh6raYkh1Iu9kcdqWmII9WJv5LGalhhCvdgbeaymJYZQL/ZGHqtpiSHUi72Rx2paYgj1Ym/ksZqWGEK92Bt5rKYlhlAv9kYeq2mJIdSLvZHHalpiCPVib+SxmpYYQr3YG3mspiWGUC/2Rh6raYkh1Iu9kcdqWmII9WJv5LGalhhCvdgbeaymJYZQL/ZGHqtpiSHUi72Rx2paYgj1Ym/ksZqWGEK92Bt5rKYlhlAv9kYeq2mJIdSLvZHHalpiCPVib+SxmpYYQr3YG3mspiWGUC/2Rh6raYkh1Iu9kcdqWmII9WJv5LGalhhCvdgbeaymJYZQL/ZGHqtpiSHUi72Rx2paYgj1Ym/ksZqWGEK92Bt5rKYlhlAv9kYeq2mJIdSLvZHHalpiCPVib+SxmpYYQr3YG3mspiWGUC/2Rh6raYkh1Iu9kcdqWmII9WJv5LGalhhCvdgbeaymJYZQL/ZGHqtpiSHUi72Rx2paYgj1Ym/ksZqWGEK92Bt5rKYlhlAv9kYeq2mJIdSLvZHHalpiCPVib+SxmpYYQr3YG3mspiWGUC/2Rh6raYkh1Iu9kcdqWmII9WJv5LGalhhCvdgbeaymJYZQL/ZGHqtpiSHUi72R177V3H2GbDZ77TK/UkChtI3DX87ghk/9FgyhXnK9cXF2tI3S8xxmalmaX0Fh8wO+nIebVDbwY+kkfBBd7Zv04/coFFYw+yAFJwxGLH4HI+kZ5J6boVAwy8o8suN3kXCCnzuJu3iy9j+ohL/iNmoh5KJ3uT0Xp29z+O2duPk9cdwZSQdvMGGW0iN3EHcSuDuexXh/HAO5g/B50RWBt8ItTCfCcEwWw3VXnH/Eyyf9iIcBig/lsFd7J7DUGEQuOpdbcU+xngnebOJDC3h72nx/8/zjS2R6Hf/v9C2Ww7XRFYEBcYDcQBiOVgPC56K8OopkGCJncMk8k8hTQXEyGeYih/J1x6KVIiaT1+UtGjpoQHiqKGWCIMRiDoZXj8P11Mkq+bHwMLUHczs3O1NVLU4iwQHRDmwGhHG8jPt+GMySnMXP4WrqUO4GpmqHqPeXcfO3jD0sPFrCYfgoqjpvQJi9iPxYuH0sgemtcDV1pOqLifpJbtuTjsf7+yZN0daBAwIoL/aFAyKGwaWovwfQ15QywQlH75AzUwpXUl1HDgh3PV0fEA5T0cEOsTQYZic2gA64ammtIwcEipP1AXHj51AENWSHA6KpjhwQ1fxYfUB0z+2Ea6nzcEBcpyMHxM5cd31ADK9G/3ZZasXFero2IHgOopkOHBDHWL5fCwXfNTrdyepwmAX7qxidoPMGxN4CesJAOMOrFte9KZKqLzARflYn1rOAvXD1Tbjld9iJ+HXODhsQB1garF3WGsDitffUUvS55pCzJ8xEAun1G36Ur1JEJpP/pg/+tYMOGhAVFMMP43if1BtaKptoEBluGbnaG4cziLl317zsK+8w9zCDYtSng9H+A8ItYrK2i9h0QLg423+JJ/3eR3i9AKTwKH/E4UCXne9hebT2OZ04+p+sYfvTlY/8umfYf72A0f5RrHbI3mf7Dgj/C2PGcTdRO2QwS7wL3ffGL74wJj2Cvq5gMDiJXozMrmG3xcd4icyUwMeXsxjxvw+iIVPd3WbpCr4L4slLfLzlVwW0o/YdEP4XxoRf5vGVpbR9iM/1rwEiupnzL5/xYbOWoxK2D3/BWQe+t0TgHAQR/blwQBBRSxwQRNQSBwQRtcQBQUQtcUAQUUscEETUEgcEEbXEAUFELXFAEFFLHBBE1BIHBBG1APw/4ddI0Y+kseYAAAAASUVORK5CYII=
|
As shown in the figure, the rectangle ABCD is a front view of a cylinder. The length and width are marked in the figure. What is the height of the cylinder ( ) cm, and what is the radius of the base ( ) cm?
|
A. 6, 4; B. 6, 3; C. 4, 2; D. 6, 2; E. No correct answer
|
D
|
46
|
iVBORw0KGgoAAAANSUhEUgAAAQgAAADQCAYAAAD77P8JAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABceSURBVHhe7Z0PcBVFnsejYoICJVnNkQOiuQp1QQWNCqgXtgRkFUQxbGGIwT8s4JINruZWEBRQFDRgThERA2bVLeXUNSypFQoIWfOknsjfNSBspaBQtgRFlspyyl2lKqi/m29n5jnvZZ52IJ30i98P9avw5s2bPz3dn+nu+dNJQgghcaAgCCFxoSAIIXGhIAghcaEgCCFxoSAIIXGhIAghcaEgCCFxoSAIIXGhIAghcaEgCCFxoSAIIXGhIAghcaEgCCFxoSA6GYcPH5ZDhw5FYuvWrRIKhSJRWVkpr732WiTw2f895vf/HssjP10oiAQBBTUcDqsCXV5eLo8//rhMmjRJRo0aJTk5OdK3b19JSkoyFlg+1oP1Yb1YP7YD24Ptokg6JxSEZdTX10tVVZWUlZWpgjho0CDp3r17YKENivT0dMnMzIwEfj9s2LBI5OXlqeV6gc/+7zG///dYXtB6ggLbid9judh+7Af2hyQuFEQHgio8qvkoUDg7d+3aNbDgIfr3768K8F133SUlJSWyYMEC9duamhqpq6szfgbH8rEerA/rxfqxHdgebBe2L2i7Edgv7B/2E7/FfpPEgIJoR/xCwNk5qDChoOGsPnv2bHnrrbdUoWxsbHSXYDfYTmwvthvbj/2IJw7sf1FRkZr36NGj7hKIbVAQhkH7HGfaICH07NlTxo8fr9ryiSSC1uKJA/uJ/cV+x6YFRDJ37lw1H7EHCsIAqI7jDBrbcYg2Ojr5SktLf/IFAfuPdEB6xPax9OvXT8mCHZ8dDwXRhuAyIarVXbp0iWR2SAI1CNQkTp065c5J/CBdkHZIJ79UkY5IT3xHOgYKog3A2XDkyJGRjI1OOXTeQQqk9SDdkH7+TlvUNNj8aH8oiDPgxIkTqqPNy8S4JIjLe8ePH3fnIGcC0hH3W/j7LJDeSHfSPlAQp8mGDRsi1WG0oZcsWdJpOxk7GggBovD6KpDuuNxKzENBnAa4B8DrZ8A9ALyu3z4gnZHeSHekP2prxCwURCtBzzsyKAI97aR9QYcm0t07BjgexBwURCtAtdarObzxxhvuVNIRIP1xHHA82NwwBwXRCnC7MDIl7nEgHQ+OA44HjgsxAwWhCS69ITPiSgU7I+0Ax8F7mIyXlM1AQWiybNkylRFxMw+xBxwPHBccH9L2UBCa3H///Soj4nIbsQccDx4Xc1AQmuAJTGRE/CX24B0XCsIMFIQmXkbE7b98PNkOcBy827EpCDNQEJp4gkDguQA+eNWxIP39z79QEGagIDTxCwJRUFBASXQQSHe8V8J/PCgIM1AQmniCmDp1auSZgKFDh7K50c7gHRFId6S/934NCsIcFIQmniDwyridO3dGrr/jSUNMI+ZBOntPdiL9cRwgBgrCHBSEJn5BANQcbr31VjUNgYeI+GITM+Dt2N5drAiku1dzoyDMQkFoEisID7x01atNIK677jr1nADvtjwzkH5IR78YkM5Ibz8UhFkoCE3iCQIgM+N9EH5RXHTRRepZAb4FqXUgvWbMmKHSz0tLpGu8921QEGahIDT5IUF4IAPjewwe42VuBF7CigyMYe145SMapAfSBY9wI5386YZ0RHr+UG2MgjALBaGJjiD8oAMt9iWsCK/nHe8x+CkKwxNCvDdaey/5RfrpQEGYhYLQpLWC8IMnDZHp/e1pLzxhIINjnMu9e/d2GmlgP7A/2C/sX5AQEKgpoDl2Ok9kUhBmoSA0ORNB+MH7FdHRhpevxht1Ci9BGTBggLoZyC+OkydPukuxC2yXXwTYbmy/93Kd2MB+Y/9xdeJMX0BLQZiFgtCkrQQRizccH2oYOMP6OzqDAmdgtNX943Siuo5l4DIrBsvFMr1orVQwv//3WB6Wi+VjPVifNx4ntiOoRuAP7A/2C7/DMtp6MBwKwiwUhCamBBEEzqpog2Nd6NHHdX8Uxnhn5NYEbjTyRu5GBA2D19rAdmH7sJ3YXmw3tr89Xk9PQZiFgtCkPQXxQ2CsiB87q/sF4B98Ricwv//3P1Zb6egxQCgIs1AQmtgiiDMFBdrfhEj0QX4oCLNQEJp0FkF0NigIs1AQmlAQdkJBmIWC0ISCsBMKwiwUhCYUhJ1QEGahIDShIOyEgjALBaEJBWEnFIRZKAhNKAg7oSDMQkFoQkHYCQVhFgpCEwrCTigIs1AQmlAQdkJBmIWC0ISCsBMKwiwUhCYUhJ1QEGahIDShIOyEgjALBaEJBWEnFIRZKAhNKAg7oSDMQkFoQkHYCQVhFgpCEwrCTigIs1AQmlAQdkJBmIWC0ISCsBMKwiwUhCYUhJ1QEGahIDShIOyEgjALBaEJBWEnFIRZKAhNKAg7oSDMQkFoQkHYCQVhFgpCEwrCTigIs1AQmlAQdkJBmIWC0ISCsBMKwiwUhCYUhJ1QEGahIDShIOyEgjALBaEJBWEnFIRZKAhNKAg7oSDMQkFoQkHYCQVhFgpCEwrCTigIs1AQmlAQdkJBmIWC0ISCsBMKwiwUhCYUhJ1QEGahIDShIOyEgjALBaEJBWEnFIRZKAhNKAg7oSDMQkFoQkHYCQVhFgpCEwrCTigIs1AQmlAQdkJBmIWC0ISCsBMKwiwUhCYUhJ1QEGZJAEE0ydf/qJdt1dVSXXfEndb+UBB2QkGYxWJBNMmxnRUy6fIeTgboIX2GjJPiyn3ud+0PBWEnFIRZLBVEg3w4/ypJccRw89Mh+bTRndyBUBB2QkGYxUJBNEhtSYYkpVwl8z9scKd1PBSEnVAQZrFOEA2biiUtKUXy3tbsb2j8p9Rvq5bq6s2y+7OvnYZJNE1fH5BtHxyQr5o/yAHMu3mfHPPN2PjP5j6OzfuOtfi9BwVhJxSEWewSRNN2mZ+RJElpc+TDxq/ls92bnYJfLdsOtCz46KPY/3ahZKVdLuOKZ0nxuMulhyOWrJm1Th1E5P8+WS9PqWnO8nIrZP/+t2XSkGzJzkpzmi5JkpL1lGxvapCPlt4sffpkO8tJcTJaigyv2B8oCQrCTigIs1gliKbaElV4U3NvljE/nyDFs4plnOqkdAr+b9bKZ76S2+DMm5Fyt6yJVAW+krV3OzJw5p252Z3UtEmKIYi0G+Tx9Z9Kc1eGI5byXJWpcgufkVd3urWGpv1SnuvMm1IitQGGoCDshIIwi1WC2D4/TR3sCW9+7hZm0CCbipun51YcdKf9VZ5yahrZZXvcz800fLRKFi5cJR9Fui5qpcT5HWoQ3i8Ve8okO2p5zewvH+KsJ1diJisoCDuhIMxikSC8GkC2xJR7kYMVkouCnl0m6iv3c/GmoMaAnziCcH8fK4iDFahZUBCJBAVhFgsFEVRA90hZNr5zqv/46DQvkCnuXqu6Hn8ACqKzQ0GYxcImRprM3+5OiHBQKlT/wExR3QtuEyGt5YwOTXLsmNfGoCA6OxSEWazspIztW/BqEClT1jdfrvxqvUxJgTDulrWxt0oceVueX/2l+4GC6OxQEGaxShCoKbw6PKVFwW/8cI5kJA2Usj1en0OTU9vIUBkjZXiZbP0cXZpN8vWBDTLzpplSG2l5xBHE/nIZEiAIdlImHhSEWSwThENDrczMSpGUrEJZWlUtVRVFclVKhkxZ+1nz5UiPpv3y6s24BOoIwAv/3ZdH6qRqab4jFnw3UEr+u1rwrNeRuipZmt8sl6SMfGcddXLE+VdXtVTycQ+GMz0jf6lUxTwYRkHYCQVhFvsEARo/l91rnpdZs2bJwoqNslvVEALAnZGhClnozrfPf3vkvkr1e3/gWa99ldHTZs2qlH3Ov8qoaU7EPBhGQdgJBWEWOwVhIRSEnVAQZqEgNKEg7ISCMAsFoQkFYScUhFkoCE0oCDuhIMxCQWhCQdgJBWEWCkITCsJOKAizUBCaUBB2QkGYhYLQhIKwEwrCLBSEJhSEnVAQZqEgNKEg7ISCMAsFoQkFYScUhFkoCE0oCDuhIMxCQWhCQdgJBWEWCkITCsJOKAizUBCaUBB2QkGYhYLQhIKwEwrCLBSEJhSEnVAQZqEgNKEg7ISCMAsFoQkFYScUhFkoCE0oCDuhIMxCQWhCQdgJBWEWCkITCsJOKAizUBCaUBB2QkGYhYLQhIKwEwrCLBSEJhSEnVAQZqEgNKEg7ISCMAsFoQkFYScUhFkoCE0oCDuhIMxCQWhCQdgJBWEWCkITCsJOKAizUBCaUBB2QkGYhYLQhIKwEwrCLBSEJhSEnVAQZqEgNKEg7ISCMAsFoQkFYScUhFkoCE0oCDuhIMxCQWhCQdgJBWEWCkITCsJOKAizUBCaUBB2QkGYhYLQhIKwEwrCLBSEJhSEnVAQZqEgNKEg7ISCMAsFoQkFYScUhFkoCE0oCDuhIMxCQWhCQdgJBWEWCkITCsJOKAizUBCaUBB2QkGYhYLQhIKwEwrCLBSEJrYK4vDhw1JXVycbNmxQ27ZgwQJVWBBVVVXuXNFg3mHDhkUF9s+LiooKd85oTp48KUePHnU/2QEFYRYKQpOOEsTx48eVBIIoKytT2xQv8vPz5bO//z0SBw8cULF40aLA+b34TVGRHP3iCxXHvvxSGhoalByWLVumvu/SpYtkZmYqsRQUFMiMGTNkyZIlSlTtDQVhFgpCE9OCaGxsVAUMy0eBGzVqlKSnp6t1Tpw4Uf5x7Jh88fnnkYJe/7e/yYInn5SePXtKv379ZNCgQTJ27FiZ/KtfSdG0aSqWPPus7P7ooxbxl5oa+f3LL6tYueA+ye3dVa1HRZefydBfl8rmgN/NdLYL64vMGxP3T58u3377rbtH3wO5mIKCMAsFoYlJQaAp4C9o/ujRo4cUTJjQorC2SYRWysS+qXJNwTxZsny5lE7/uWQkY73JMnhelewK+o0T27dtk7V//rMSzJPz58v04mL55bhxUvbMM+p7yOvQJ5+oGsj/nDghj8yerWodkNjcuXMlHA7LqVOn3L0/MygIs1AQmrSFIE44hcXju+++k/9Fm94pRDWbNqllZ2RkyPDhw1WBw9m/esOGFoWzLWPNzOtl4spQ1LRdVY9KDuSUfK+84pt+JvGLkSPV/vmje/fuMn78eNXfgWbU6UJBmIWC0OR0BbF3717VZECbHdXzL48eVWfXj3fvjipE4c2boz6bj1pZVrpctrSYHpYXxqAQ58hj78Z+1xzb369xminvyZYdQd/vkC3vvS/b3c+7wu85874vm2prZVFpqapp9O79rxFRINDkOV0oCLNQEJq0RhDoT0CHHqrU/oJw/vnnS9WaNTEFyr6oKHS2N3WarIqZvvnNeTI2K1VS+2ZKRmqyU8voK6MXuU2RbdXyzrPTZURWN2dfC6VixwZZMXmgdHP3vdvAB2VV2JHL6oUyuq/zWzU9WX7W/1rZvnOn7K+vV/0srW16UBBmoSA00RUErix4nYsISAGdh2iv/9UpCP4CZ2fUyOLhSZI+7fWoPohdVfNkcHKOPPCm1yTZKE/nYh97yf1vOp93hCVU86oUZ2Jajtw5t0xer97mzLdN1jw6WJKdtMgpnCZ3TXtR3g3vcISyWuYMhiiGy+Ka79ezp65ODn36qRw8eFDVupCe/qZZLBSEWSgITXQE8c0330hJSYma77LLLpOnFi5UHXpe5k+I2LhQhiaPkRdC/unvymM5SZI65Q9R0lhbNlYGDBgr/xVpijTPl5SULyv8zY+aRTLcSZOk/Jeifr9l6RiVVhNX+uZ1A1dM8B0CTTNcRkXNLBYKwiwUhCY/JAiIAZ2Ne/fsiVxCjM3wiREhWZHfv0XH5e5182Wws++3Lg1HT28RniCcJkbU9JUyEYW9cKVvmhMrC1WaBgkCgXT0N9NwOTcUCrmp3gwFYRYKQpNYQXhtZVzG2/fxx4EZPNFi80uFclPQ5c3f36uaCPkvOU2D2O+iom0F4cXyF1+U7OxsNS8CtTQv/SkIs1AQmvgFgctyQ4cOlT84/w/K0IkY21fPk7GTVwbeILX79WmS6ux7ZskfW37nxK4dnjjMCAKB/psHfvtbOeecc+Tiiy+OXBqlIMxCQWjiCQJXJ7yz2b9lZgZm5kQLdECOvrelHHaFw82XK70+hF7TZFXspc3wSnls0bvuZ3OC8OKPb72lAlc8AAVhFgpCE08QAwYMUH/RHkZ/Q1AmTqTYVTXfqTm8JLWxBR9XGWYuc++TCMuLec2XJtMLffNuWyvP3TFeFm90P7eDIPyBZ0QoCLNQEJp4gkBcdOGFnUIO21c/KoOTk9V9Dbik+H30ldTkmE5J3Jbdq3n/k7r9iztPN/mP+W6fBS5zrlkst6Zinn5y38vrJBTeoW6Uqlo8RjVRknrlyXNrcIMVbqZaI2VjUtXy0vOelar3wi37Pn4kcLPZnDlz1DIoCDNQEJrcc889zYXDiZXl5YEZNqGidrnc9e+xYvDHL+V53/0JKkJ/kuemD5cBzvcDhk+Wp1f95ftCva5URscsY3TpOllfOipqWmbmKFm0bp0sGuWf5sSoUlnvX5dmoF+CgjAHBaHJTTfd1Hy2S08PzKiMjon8O+5Qx2X69OnukSJtCQWhyZAhQ1RGzM3NDcyojI6JfllZ6rjcfvvt7pEibQkFocmVV16pMuKNI0YEZtRECuxHZ4nIcbnxRvdIkbaEgtDkhhtuUBkRd/YFFbpECn8BS/S45OKL1d8JEya4R4q0JRSEJo888ojKiOedd17iPV/RSeP92lp14xSOy7x589wjRdoSCkKTUCikMmK3bt1UxgzKsIz2jcI771THBBGKeUaDtA0URCu44oorVGZ88IEHAjMso/0CL5/x5NC/f3/3CJG2hoJoBXhdPDIk3q/4/JIlgRmX0T6Rd/vtEUHguBAzUBCtxLu1F5J46He/C8y8DLMx46GHVPrjOPAGKbNQEKcB3szsnb2uv+46ycnJkdXvvBOYmRltF7i9fcSIEZG0x3EgZqEgTpPKysqoMSLOPvtsGZeX1yme0bAp8Hr9hQsWyKyHH5YLL7xQpTXSHelPzENBnAEYhu62226LSAKBqu+E/HyVsYMyPEMv8Ej3LbfcosR71llnRdIXr8q3bfi/zgwF0QaEQqHIFQ4vkKmH5ubynolWBNIKg+/kuHdH+uPqq6/mpcwOgIJoQzBC1uDBg6MyNp5U/PV996kzYlChYDQH0qhrV98QgG5ce+21cQchJuahIAyAwXKmTp0qqanN7zvwIi0tTY25OXnyZJl0770/6Y7N9evWyWPz5qn0QLr40wmjbt3nCAPpSDoWCsIgeLFqTU2NkkW8QW9x6/YQp9aBS3eoZSTG2Bn68eEHH8ibq1apgX2vysmRSy65RPr06dMiHXr16qX6F5BebTVuJzlzKIh2BKN3Y3yH66+/XpKTvdGlogN9FxDGf5aUyAtLl6ozbVDBszX+VFkpo51aQVZWlqoJBO0jAsIsKCiQ8vJyqa+vd1OI2AYF0YFAGA8//LAMHDhQPeMRVJAQGJ0LA/Hgbc44++L/eLr0TqeAzXRqHi8tXy6bNm4MLLBtFVj+iy+8ICUPPqjO9Fh/0bRpcofzfwzOi23CdgZtPwKyQEcuHnrDfpPEgIKwiJMnT8qWLVvklVdekdmzZ0teXp56ziCowAXFeV27Su/evVVc4UgHj6Yj8BYsTMPo4UGBfgAUcm9+BH6PWo73tKRuYHsvvfRSGT16tDzxxBNqf7BfJDGhIBIADDmHs+7ixYulqKhIFb5rrrlGXSG54IIL5Nxzz426V8BEYPlYD5oGWC/esIUXxmKcEDwLge0LGhqPJDYURCcCg9weOnRIxdatW9V9Awi8KwHvbJwyZUpgrFixQt2Z6M2PwO8R4XBYjhw54q6B/NSgIAghcaEgCCFxoSAIIXGhIAghcaEgCCFxoSAIIXGhIAghcaEgCCFxoSAIIXGhIAghcaEgCCFxoSAIIXGhIAghcaEgCCFxoSAIIXEQ+X9hoD73/lihPAAAAABJRU5ErkJggg==
|
As shown in the figure, the surface area of the following cylinder is () cm².
|
A. 24π; B. 16π; C. 32π; D. No correct answer
|
C
|
47
|
iVBORw0KGgoAAAANSUhEUgAAAQgAAADQCAYAAAD77P8JAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA8FSURBVHhe7dxBSFsLvsfx7M4q3FVWxZULF8WFG5EnQ3FzS7ld6KYXCuIwbuYGLriRUIT3XNiBwU19s3AR8G0U5BXsBQd77SIliystZVp96CsWqdCxtF5IQd9COJv/O0lONGZMzd/5z8zfc76f4cB4jLfw//3yNzlJzAgAtMGCANAWCwJAWywIAG2xIAC0xYIA0BYLAkBbLAgAbbEgALSV6AURHn+R4zD+Amh18kU+ffp06fFrikuU4AVxJGvjWRlfO4q/Blr8MiM9PTckm8lIpunI3uiJzteP7lxQPx/kpG/koaxsH0qa1kVyF8TBotypBntnUQ7iU8BFwsP/lu8bC2KiFJ89c/LlrTyd7JOgdptAhmZfSyX+XtIldEGEsjGVi38jdMn0S55n4Gv2pDjYfkHUhbI7Pxh3KicTpXQ8Mk3mgjhak/EgDjw6gvG16AkH0E4nCyISPpN83KnM8LJ8jk8nWSIXxF4x2vR3/kt+mu6Kl8QdWeR5BtrqcEE0326wGH2VfMlbEOGGTOWC+sXJxnWI6Oid24lvALTqcEEcrcpo3KfM6GoqHpUmbkEcrY1LkJuSjdplh+orGY2r0OPCCxq4WCcLoiKlicYj0vRc10rYgqgHfafp+US4MSW5eOs3nwfONC2I7/4oL942vQ9if1PKT4ry40C2/v2gW35Y/ZCalzoTtSBqy+BvHinsyFxvHH7vXPQV0KppQQQ56Y7fA3HufRDV45vfyL//tC2HKXpRLEELov50omv65d9s98rqaPwadk6m6s89gCZff4oRHr+T53P3pbvxylj2tsy9Tsc7IZKzIHbmpDfzG/nTZtPDw8bx1z9L/pt6uMHwMm+cQotOrkGInOz8pwzWftFERzAqqynYEQlZEPU3RgW57tOHhq3H2UPFXuEFDZzX2YJo9Kzeo4wMFpP/QmcyFkRlVUaDS64sN73kmZvaSM1FJnSi0wVRfaVz9HRBXHbbJEjEgtiZ6+3gMxc2L3meloPD7aF3tQURTJbjs8l1/RdE7Y1RHV58rF2nqId71TdONcrB4ffQ63RBVGR1tPFUNR2fx7jmC6LxAZoJ6ezB3pbM9sRFuOJFpquXEP9oV8+mqRdtF0QoH1bHpSv+N9JysfvaNv3k46b8PHcvDqxL7s39LJv7X+Qk/n6rky/7srkycfoIohZy36QsvXgrX9r90AUaPwt/1NnU/mDMW3l+2qPo+O6Psh514uxVsLfyYn1JHt7tPv24d/f9RdlRdOY6u7ZN/2XmolcrZuSX+PutLr59/Zhp90MXYEH4pc6m9gdjLu5E6/HtWEEKj5bkxbvjVF3gpulKLAi/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2dhjmkqU0C+yscc0lSihX2Rjj2kqUUK/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2dhjmkqU0C+yscc0lSihX2Rjj2kqUUK/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jG3vWZ5slH2SwvyaNCQQqPt+OT/3yU0C+ysed/muGhvCrel+4gI9kb38rYTFGevDmIv/nPRwn9Iht7vqd5siPF21nJZAfk4fOPchKf/leihH6RjT2/0wx3pTgUSKZrXFY/hPHJfz1K6BfZ2HM7zb2FIQkyOZkoHcVnviaU43cvZOlRQQqFGSn+vC2H53bKiXzcXJFHfyrL5+ir8HBbVqq3nVmUV6c3PJH3L+rXOGYWX7X8/BlK6BfZ2PM5zaM1GQ+isHvnZCu6M/9cnInu+AV5tNJ6x6+qSGmyW7J9v5fik3V5Uvy99EU/GwwVZTe67f/9z4L8rv9GtGyi/95gUV6X/kO++z4vhfzd2nWNTDAqq4e7sny/T26NFSR/t7t2267Jsly0miihX2Rjz+U0j1ZHa0F/03VTvv2xKE/Wn0jxxwHJRueCvmnZqMQ3jNQeaXRNy8vTxRHKs3y9KBOl+JSUZKJanuxtKe6cXcmorHxfu133/YWmRxIVWfm++vPR4rhgQ1BCv8jGnstplieDWtD5Z80PF0LZmu2tne+afhl9VT0V3fGjRwH987u1WzRUn0KUy82PNuIFET2C2IvP1OzOS390frB47qzsFQejf2dQWk7XUEK/yMaew2l+luXhatD90nK/j761LMPVEuSiRwzVr+M7+NkjhXbaLIi9ogxG51kQyUA29hxOs/EU4aI76K7M91e/NxHd5SOliVohhperlx6/hgWRBmRjz+U0t2Z7oqCD6JFB81OMqj0pDkYlaHkEEUQPIVpvKXIkOzv78f9nQaQB2djzOc2/PJSuKOjc1EbLHf+lTOeazocbMhV9Xb0zz1dfsmgSbs3JH9YaVxlZEGlANvacTrMSPXvoqt1Jz+74oXxYGpEgGJblpnda198vERWj657MPX8rnz7ty+bKAxn4t1nZOt0Z8YLon4+epDTZmpWe6HzrRc76I5gLroFEKKFfZGPP7zTDXVm+Fy2JoFvu5guSH7kp2ZaXKesqsjHdV18S8RF0/3D27svtx6fvbchksjIwVpDqZ722H+flbnf91ZL6v/FYtqP/PW68P6L237kr+ZYPhjX+DfhDNvacT7P+Dsn19XUpb36Q4/PPIs45+bgp5Ytud/Cm9vPNR/WzXgdvzp9bX38jB9H/3pw7Fx0tHwyjhH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2dhjmkqU0C+yscc0lSihX2Rjj2kqUUK/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2dhjmkqU0C+yscc0lSihX2Rjj2kqUUK/yMYe01SihH6RjT2mqUQJ/SIbe0xTiRL6RTb2mKYSJfSLbOwxTSVK6BfZ2GOaSpTQL7KxxzSVKKFfZGOPaSpRQr/Ixh7TVKKEfpGNPaapRAn9Iht7TFOJEvpFNvaYphIl9Its7DFNJUroF9nYY5pKlNAvsrHHNJUooV9kY49pKlFCv8jGHtNUooR+kY09pqlECf0iG3tMU4kS+kU29pimEiX0i2zsMU0lSugX2di7vtPcfiyFQuHS49HSuqyXN2X/12MJ4x/9e1BCv+yyCeX4w6aUnxRlptGlR0uy/uKtfDmJb1LZkJ/Kn+Mvkuv6Nv3gjayvL8nDu90SxMXIZG/KSH5Gik+ipbAeHUuPpDB2S3JB/ftB7pY8WPlfqcT/iatolJDD73F1oRy+Kspvb2aj/05Wbo7k679g4i7lR25KNsjJrbGCjA1kZbC4F/9cciXgV+FLmc7F5ZgoxedanLyXpw8GJBsXKHu7KDuN3wRKzUXk8HlcSXgozybrv2yyt+fk1eHFjzdP3j+Vyb6g9u/0z+/GZ5MrAQtiT4qDcTnaLYiaUHaX70lXXKJgaCH6SaCqIqWJrrgXRdm97LlopSQTXZf1LRlStCCqjqQ8WS9CJhPI8PJBfB5pVlkdjZ+m9srsVmdXqo5KE5JjQVwHmgUROViUO7UyREfXQ/lLfBopFW7IVOMp6p1F6fxXxo7M/bAg+/FXSZW+BRE9ilgdjW+fycn0y/g0Uulobfz0Irf2ouPBu3dRm5IthQtCZHe+P14QGRlaSPrvAHxNebJ+wbH6lHOyHJ/EqVQuiPBZ/nRBBLQixfZlYSjuTmZQUvCqpVoqF4SUJk4XRMc/gwRq6g4L4kKpXBBHq6OnC6Jndis+i/RhQVwmlQtia7bndEEMLyf/7bJoJ5Rn+caC4BrERVK4IA5k8U6jFPzWSLvPy8NxF/SvYqRB+hbEzpz0xoUIhpcVr3sjkY7WZDz+rE6md0524tOdCHdfy1bCX+dM2YLYk4WhxstagzJ/6XtqkXxh9JSzN+5ETvLPOvwoX6Ukk5Orf9cH/66DFC2IipTiD+NUP6l3e2E3qgYQCXel2PjFEQzJ7OtL7vaV1zJ7f1JKSd8Okeu/IMKSTDQeIl64IEI5fvdUHgxUP8JbLUC3/LD6geWA8052ZPFe43M6WRl4sCKbH1s+8hsey7vnc3Jv4J4sp+TR5/VdELU/GDMmt3KNpwzRkb0hPd+Onf3BmPyI9N+oL4Yg1ycjD1dku83HeIFoS8j7pw9lpPb3IJo61dMTHTfqfwviwVN5f8U/FXAdXd8FUfuDMfEf8/jKUd7cl0+nfwYI6MzJl0/y9kWjR2XZ3P9VjlP4uyUB1yAA/KOwIAC0xYIA0BYLAkBbLAgAbbEgALTFggDQFgsCQFssCABtsSAAtMWCANAWCwJAWywIAG2I/D+mSvte5AUQrQAAAABJRU5ErkJggg==
|
As shown in the figure, the rectangle ABCD is the front view of a cylinder. The perimeter of rectangle ABCD is 20 cm. What is the surface area of this cylinder in cm²?
|
A. 24π; B. 16π; C. 32π; D. No correct answer
|
C
|
48
|
iVBORw0KGgoAAAANSUhEUgAAAZAAAACeCAYAAAAcwlwIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAyZSURBVHhe7d1PSFtrHsbx7M4qzCqrklUWLooLNyIThoubljJdWAYsFIrlurlXuJBNkOLAZMDOxk3DLFwc6GwsI1NGLzjYaxcpgbmO0plWh0pHkQodi/VCCjqLQDbPnCRvNP43p974vsfvp7xQ37xxc97feTznPW8SEwAAIRAgAIBQCBAAQCgECAAgFAIEABAKAQIACIUAAQCEQoAAAEIhQAAAoRAgAIBQCBAAQCgECAAgFAIEABAKAQIACIUAAQCEQoAAAEKJdIBUdj9rt2J+AABcqAgHyI5mB+ManN0xPwMALlJ0A2RzQrdiMcVuTWjTdAEALk5EA6Si+ZGEYtUAiSWVW+Q+FgBctGgGyM6sBr1qeNSbNzgrbmQBwMWKZICs+2nFbv1J3+eSJkRuaYL7WABwoaIXIJV5jSS8+uJ5Yx0kaJ35FTMAAHARIhcgO7OD8hIjmq8te1SfxPLqVyHeoHggC4iYH0fV0dFxZrsxMKzhUV/TxSV94Nn+CxOxAFmXn47pVtP9qsr8iBLmKqS5H0AElD9ra+udXub7lTR1Huv8Wv50UUsbW8FrQXu3oLmnj3Tnerz+eiyunu/+qpWy+R0ILVIBUguLI1caK8p3NiZWPvgJQPQsa6zD1HmmYPoOK+v986y6Gg/YJAc184GrkS8RoQCp365K5hZ1eEqUZu7Lq/3lkdBI/d4WgEip3304PUDqSq/H1LsXIjnxlH940QmQlbw6Y7/SH5fMZWtz++/fNPSL+oTx+ibZWAhEzvkDpLpPbHU8XR8bNB6wCS8iAVLfOOglUscuoFVbKmEW02OdYr4AUdNKgASa94p5GRW4CgklGgFSmtF974wd502P9CZG5o/c5gLgshYDJDgDvBgy42OeskXTjZZEIkBW8p3n+MwrHukFoqvVAAneUd1wXAuQmNL+uulFK9wPkNrGwXMujtfWSeoThvueQJS0HiAqZPYC5NzvwQGOB0hjMSyj8x3+pkf9vPuaKZluAI4jQC6DswFS/rikH/Y2DyXVn/9BSxufddLeoPLnDS1NZfauQKrN68rq6cI7fWZDEeC41gPk02Tf3rmge3zV9KIVzgbIj6PHPW01qh/N64cdP77eRk96EwBHtB4gi7nGVz7EdH+GRdEwIrGIDuCqazVAmj6hItanyU+mGy0hQABEQGsB0vwZeYlgPNcf4RAgACKghQCpLCqXNGN5mOaLECAAIuCcAVJe0XhvYz9Yl3LzpMeXuLIBUptANBrNyXZYZfsvutt4/bgAKX/U0tRD9cTrY7zUPU3wee5fjACh0WjOtT21L5S6pvjhMfFr+09aphL1T+MO+rrvPJT/ck18p9TFuPIBAsAdR+q29oVSx3wC96H2E4nxsyBAADiDurULAQLAGdStXQgQAM6gbu1CgABwBnVrFwIEgDOoW7sQIACcQd3ahQAB4Azq1i4ECABnULd2IUAAOIO6tQsBAsAZ1K1dCBAAzqBu7UKAAHAGdWsXAgSAM6hbuxAgAJxB3dqFAAHgDOrWLgQIAGdQt3YhQAA4g7q1CwECwBnUrV0IEADOoG7tQoAAcAZ1axcCBIAzqFu7ECAAnEHd2oUAAeAM6tYuBAgAZ1C3diFAADiDurULAQLAGdStXdp4JCraXXspf3RYw8Oj8n94q+2KeekSMBEB91C3dmnTkaho1e+VZw5+o3mprAolM6TNmIiAe6hbu7TlSFQWc0r1/l4v13aDKJHKH/8hvz9ZD5G+SW3Wh7UVExFwD3Vrl7YcieKjjF4cvtKozGskUZ0M9zWzY/raiIkIuIe6tUsbjsSO1taOv8YoZKqToU+Tn0zHnup6yYKePj5pvaSsj0tTevzHoqpvrWy/1VR17OiEXu0NLOv9wlM9Hh7W6MSrI+stTETAPdStXS71SNQCJO1r3fxcV1Ihm1K86xv503Oa9r9RlxeT1+trNQiB//37ib7uvlZfTwne+7rwO/367pCGh24rFYyLecEVzfaqJu916auBYQ3dTtXGJrPFIMr2MREB91C3drnEI7GssQ5P92cO3ttaf9IrL5nT4t4VQ0UvhuqTJlMwXSooU51I8ZvyV8qmL4ieqbu1cal7T5quREqault9/8FbZUxEwD3UrV0u7UjsFDJK9j45ePVRCYIhuIroHl81HXXVW1TFYvNtLBMgh69eVsfVHfSn/YPXNOt+Oph0aTV3MxEB91C3drmcI7FTVLYnc/QRXhMA+1caJzkhQNZ9pYN+AgSIJurWLpdwJKprHPfkVxc0DguuSqqTo+/oqvohBAhwFVG3dmnzkShp/tF3yr8+YfeguQLxgkuQo/Gyo5WVDfN/AgS4iqhbu7TxSJS14j/Qw2O2nm8uLKgWDXt7Q9IaP3SFUlnO6w+zjVVwAgS4iqhbu7TpSJT0eqxPA3/+j7a2tprahpamsrrxaNGMC0721aewqpMk2a/8y3dmzEP1/HJMy4cX0bvHdWC5fXlMHUH/4UX45bGOYNJ1B6FkOgJMRMA91K1d2nAkSprPdR35HKz9llBuPz8CR8d7qW8188Gkx9tne3s7YrG4egaG9exttXtIt1Ne/T1eSreHnult8O9ZY39I7ffc1lB1cKDxuwG4g7q1y89/JHbW9Pe5Oc2d2P6pRjY0K39cUjF4vbj0QbvNr2++OfI73mxWuw/2zc290Wbw782BvqBVBweYiIB7qFu7XNkjwUQE3EPd2oUAAeAM6tYuBAgAZ1C3diFAADiDurULAQLAGdStXQgQAM6gbu1CgABwBnVrFwIEgDOoW7sQIACcQd3ahQAB4Azq1i4ECABnULd2IUAAOIO6tQsBAsAZ1K1dCBAAzqBu7UKAAHAGdWsXAgSAM6hbuxAgAJxB3dqFAAHgDOrWLgQIAGdQt3YhQAA4g7q1CwECwBnUrV0IEADOoG7tQoAAcAZ1axcCBIAzqFu7ECAAnEHd2oUAAeAM6tYuBAgAZ1C3dnHnSLx9puHh4TPbqD+tueKSPuxWzBuPx0QE3HP+uq1o98OSitO+Rhvnh8dPNbfwTp/LZkhpXt8XP5kfEIY7Z9DNN5qbe6pHt1PyzCSKdf5Gj5/OBf31Nu2PauDGNcVrr8d1/YGv1yXz/kMIEMA9Z9dtRduvfD24Hq+fA+4M7Z8jnj7W0J3rinsJfTUwrIGeuNL+unkfwnDwDLqoXMIESKZg+g4qr0yoP1kf46UeqrhjXmhy9kQEYJtT67ayrRfZ+h+Y8Zt5vdo+/i5E+f1zZbu82u/pHl81vQjDwTPouvz06QFSVVnMKWkmW2d+xfTuO3UiArDSyXVbUiGTrL3m9fpaPf0OdjC8oEz1j8xTziE4W2QD5MCVStoP3nXQyRMRgK1OqtvSzH1za7tTY8tnpUfdTiGjBAHyRSIcIMsa6zDjTgkQGo3mXjugMq+Rxh+Ltya0abrPtqL8t0+0YX5C6yIbIJXlMXWayZZ89C/Tu68xEWk0mnut2c7s4N6DNa0uim+uremYJVKcUyQDpPx+SoNmET2WzKhwwpNYANxXzNYXxGMxT9mi6URbuB0g8Wu6MdC0D2TojrpTifpfI9VH9b6bOPExXgBRsKEnveZ8EEuLp3Lby+0ASf9W02YPSGMfSO05b/PXSKLrgfIv36uxbwhA1DSdDwiQtovkLazK9ivlb1Y3EtWDJJUtiAsRIIoIkMsUyQCpqSwq11gHiSWVWzzfo30AXFLRi6FGnbMG0m7RDZDA6ni3mVgxJXKLphdAlHya7Nurcz6apL0iHSAqZPYm1pljAbhpZ1aDnqnzzryOfu7EySqrr7XMc7yhRTpA1v30XoB0jC2bXgDRUtHyWKep9YSGXpxzxbNUUDY7w/roF7gaayBenybPvz0VgGsqq/J7zX4Qr1djZz2/X3qtsXtZ9oh9IfcCpFJQpnG5ekKAHHwKK66bT1aDv1EARFp5RRP99Q9UrNZ9z8MpLX089BB/ZVdrL/Pq7+nX5JmfuIizuBMgtS+UGtBXicau06DFr6njxsD+RsLg9Rsdje8DiSl+/YH8V9uEB3BllPX++SPdqX0fSNN5oqMjaMG5obrB+OFzvWdz2IVwJ0BqXyi1v2nwtLbwbktbe187BuAqKn/e0ruFxnmhqKWNn3TGF5WiRQ6ugQAAbECAAABCIUAAAKEQIACAUAgQAEAoBAgAIBQCBAAQCgECAAiFAAEAhEKAAABCIUAAAKEQIACAUAgQAEAoBAgAIBQCBAAQCgECAAiFAAEAhEKAAABCIUAAAKEQIACAUAgQAEAoBAgAIBQCBAAQCgECAAiFAAEAhEKAAABCIUAAAKEQIACAUAgQAEAI0v8BcNV3Xs5x4PsAAAAASUVORK5CYII=
|
As shown in the figure, the area of the rectangle is 12.56 cm². What is the length of AD (in cm)?
|
A. 50.24; B. 3.14; C. 12.56; D. 6.28; E. No correct answer
|
D
|
49
|
iVBORw0KGgoAAAANSUhEUgAAAY8AAACdCAYAAABM8/TDAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABE0SURBVHhe7d1PSCRpnsbxvMUp2VOeijzlwUPhQVhEVpbGi02xxWCxYLMFhcUIy7RQSw6sK1ID64BOH7yYOwcPAe7FYmR6VxtcqloXUrJ3yi2pbVuHEtdCFGotbBuyQIchIS7PvpERqZlp+ieqq9N4s76f5oU2MlLtjvcXT7zxvpEmBABARIQHACAywgMAEBnhAQCIjPAAAERGeAAAIiM8AACRER4AgMgIDwBAZIQHACAywgMAEBnhAQCIjPAAAERGeAAAIiM8AACRER4AgMgIDwBAZC0dHt7JO5144RcAgA+mhcPjWE8Hkxp8ehx+DQD4UFo3PA5mdSeRUOLOrA7CTQCAD6NFw8PT6uOUEn54JNIaW+PeFQB8SK0ZHsdPNej4wRE0Z/CpuHkFAB9OS4bHrtutxJ1/1Vdj6TBA7miWe1cA8MG0Xnh4q3qccoKJ8sq8h2ntua1wB9y8kt5uzGtq6J4629r0d7/bD7dforSnFfeRes3+bW29Gph6pr1S+Fo9s++zqYFw307dG3X1X2+4dQl8SC0XHsdPB+WkHmu1fK7wV1w5wejDGRQLr26e92ZZo11JczwyumtO6gsvtvXDVeupvR25PeY4Jm+ZMMgoVbklmc4qXwz3qSjmlU07ytzPaWX7UIf7G5of7pDj9MjdIUBazvNx0yf8i4TLW+/AiEbGTX8rbOgN6/c/iBYLj1253QndqbpH5a0+ViocfVRvR/MV1yfVY0786X5X6/Un/Uts5f5SPdN/PHtmx4ws5geDW5L181lrYyklul3TE6oVNf+Z6QMPFpn7ajWldzo83NZKrl/psM4T7T+Xu1DQxr65eDg0bfuFlp5M6N5tc9FS3ieprkf/rq2LRq64lpYKj3JQnBthbCnXXulUOfMVbsTuTBAc2WUdRbrwM6OOLxbN6b9OZVFEakxr4SZfPmu2nQuPcHvfnL4Pv0ar2dRkW1jn2Xy4rV5Je8+G1XE6ch3UIrcz31sLhUdwiyo9tqb67lBcfCCnfMWR0uPgfhaa6kBzfY4SzgMtRhhxBEo6aXibIRhlJtomzWnjzFauvXycH8y/OesH5XmwtIYL58cdpb0VuaPB3Etb74Cmnu2Zn1jh6eS1ef1RbzAv4x3p5Www79L50NXLMAVLe880NdArf37lobt+PujQBGF/uDQ8ApURcBAg5uKDU8J7aZ3w2MqpPfHX+u1GOFStbv/3Hxr6i6CzOObqk5tXzVW5dZj6p//U9rMpDfT696E7dW/ikknvK+1outN8T3OxUOO4oNGMP8/lqGN4WW9OtuT+rEOfL1aFSaiYzyqd/FS/Wdk2/WRbK7/qLr+vx90x+/5Zr37/aw31BrfHuv/lmWZ++Uu5C0taqNwiMSOc9fyoeu9N6MnSgnL9/r6O+uboYc13/fDwLwp2pv1jHezPYpr30yLhETwU6KQyNZNk1S2TCifOE+2irzRXeR7C/L9Pdfy9cpUTdXgCdjKjajAguJq/ks7pU8PzdHFVYx2V492hiW9PwheqHMypz0kpm6/64fsz6vHf0zOj0/VfJmDKv/vQctWIwtPykP+908ouH52FkpdX1r+i5fbYDYgSHkb1s2BOVnlGH5G1RngUF/XAueJJ8qplu6nHq2cFj59Ypai75dZMRHgmVIKr+uhXfv57M+EIoQHvSN9M3FPvJ5ngdqUZXeTqZug3J9vMSWNYhfDritK7Q72rHg2F4dFd+8sHzxKd+28K/1sbzLngpxYxPEzPCS4A/OZouL4j4EotER7l+9xXfoYVy3ZvRkHD5Ss8c3UXbjm1Oak2/3hUX+lfg7c2pi5zgmg4t+DtaK6/Q0PL/que3ix+roz/850OTW1WouZYiw/Mtuuc5AkPS0QNj8oxDN5Tf3xxNfvDozwZes2J8PK8SNBZuM/ZLJWibhAeZkvWPx5RTrbFvIbvu7rokY3yCaFuVd3pBOnp9vB3ajDyOIfwsET08Kgc20jvwSnLw6My8dXoxNRI1XK+91r5g+g8U6P+iK9Nk9XLosrC8Lju8xcmOEYfupeszw9PIA1OBAezd8zv0KOZcIhTXrprfqcv1s+nkLdW0B/+FH5BeFiC8Gg2a8Oj9HZDX58+GJRWf+5rbey/q1pmWav0bl8b89nTkYffnI5hPXmxXXuPGx/csSlSf7VVu0mPmlP1rqvuRPhRMlcpriv3aEKr5wK/qKWvCvpz+d/3NdNjjm2Dk7e3PGSOublgCH9U+ZMI/D7QUzeK8XY0/bjqFijhYYno4fH9XF+wv2md0zvhVlyXteHxfLzRqqpxPQ9fr9d4/6CNX/QmfCBFcw5Om9Fej6YrwwZzkp7tS5mT90zNiXZ3psec1JPq/7eqGazy6qlO/ePckpaWqtsTTdy9rc+rwid4pietwfmq5zVKW5ruqXsGqPKRJ+bEkex6VF6C6z+FfDeTqVl4EYROQm01w6bKR/7XjVzKt1DNyajtCzUY0OAnFT08KqsA/fagclWBa2uJCXNYwHujxX+4raQJhlsmsG8lk7r9cO7c3MW3E3XPSvhzHOXnNsITw7l2NpoIeNqZe6jbSTOqKC/dziiVTOmTiW/OP9nuj2Z+ZgKs8r2SXZr45mzp7fPxqs/RKv/e/sXJc41nqt7jpJTxrz6ej1ctBw9+NhclzRQ1PKo+eSLRpznWVkdGeKCpvJMfyg9uXnyrsKR3h1W3H8ufXdTgwc9K++Gk9lbYKf/7+Pv8cOXfsfeX5x5W/8xQsL26+ftUvm9V8/9jGvye3A5tpmjhUf2ZdymzP+OO6AgPAC0gQnh4axpLh/uycOa9ER4AWsA1wyOc/wqCo0Nj51dg4Jo+2vAodx4ajWZlq+cd/V6fVV5vFB6lt9qYH1VXMtjHydzXLJ/J/qMQHjQazbp2qvzHoG4pWb9P+Q+HhSsqKwsczLbOe6NyV15fOQ+Gq3304QHAHufq9qoFFWG78q9VIjLCA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jY8mHgVPJ69X5I6PaGRkXO7Xr3TkhS/dADohYB/qNj6adBQ87bg9csIDX2lOZlj5YrhLk9EJAftQt/HRlKPgrY0p0/Nrrbw+MTEild7+t9z+dBAgfXM6CHZrKjohYB/qNj6achQKE1kt148wvFU9Tvkd4YEWj8NtTUQnBOxD3cZHE47CsV6/bjy2yGf9jtCnue/DDaf8+ZEXejJ10fxISW835jX124L8t3pHrzTv7zs+q5enO5a09+KJpkZGND778tz8Cp0QsA91Gx83ehTK4dHtajf8OlBUfjijZMcv5C4sacH9hTqchJweVzsmAP70xxn9vPNWMH9i3rue/2f9zWdDGhm6q4zZL+GYkczRjubud+iTgREN3c2U900PF0yMnaETAvahbuPjBo/CpibbHD1YrL2ftTvTIyc9prXTkYKn5aGgw2Tz4SbllfU7UfJTuVulcJuJnfnPyvtl7s9UjUCKmv/Mf3/t7TE6IWAf6jY+buwoHOezSvfM1I46PBMKZvTQOb0Tbgj4t6UKhepbV2F41I9adqbVabZ3u7VjmV2323S4blVvphMC9qFu4+NmjsJxQcNd2fPLdMOT/9kI4yIXhMeuq26znfAAWhN1Gx83cBT8OY37cv0JjHpmNOJ3jL7zM+h1CA/gY0TdxkeTj0JRqxOPlFu/4MnAcOThmKHH+Wg51tbWfvjvhAfwMaJu46OJR6GkLfehRhs8Un7w4oXKsXD67Ee3putGJt5mTr95WpnxJjyAjxF1Gx9NOgpFrU/2aeB3/6vDw8Oqtq+N+WH1TqyF+5kTvb/ayu8g6X7lVrbDfUbV9VeT2qyfMO+cVs3U+uak2sz2+gn3zck20+E6TSCFGww6IWAf6jY+mnAUilod6zj3uVZnLaWxs+wwzu/vZD7X4pswOV59efrsRiKRVNfAiL585W8e0t2ME7zHyeju0Jd6Zf75svL8R/n73NWQv7NR+d4A7EHdxsdPfxSOX+sPS0taurD9jyq5UK30dkMF83ph441Oql8/+O7c9/juwN9cu21p6TsdmH++q9lmmr+zQScE7EPdxsdHexTohIB9qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4IDwAWIO6jQ/CA4A1qNv4sOcovPpSIyMjV7Zxd0FLhQ29OfHCNzZGJwTsc/269XTyZkOFBVfjlfPD1BMtvdjWu1K4S3FVXxW+D79AVPacPQ++09LSE03czcgJO1Ci/W819WTJbA/agjuugd5bSpZfT+r2Q1frxfD9dQgPwD5X162no5euHt5OBueAe0Nn54gnUxq6d1tJJ6VPBkY00JVUt7sbvg9RWXj2XNNYKgyPbD7cVqu0Nav+dLCPkxlV4Th8ocrVnRBA3Fxat96RloeDi8vkpzm9PGp896G090zDHU75+3RO74RbEZWFZ89dud2Xh4fPWxtTOuxo7bmtcOuZSzshgFi6uG6LymfT5decHlc7l9+1NrvnlfUvMC85h+ByLRseNSOUbte8q9bFnRBAXF1Ut8XFB+Ht7HZNbl6VHIHjfFYpwuO9tXB4bGqyLdzvkvCg0Wj2tRreqh5XLhTvzOog3Hy1LeU+n9F++BWiadnw8DYn1R52tPTEt+HWM5VOSKPR7GvVjp8Oni6iiToBfvD6tRpMieIaWjI8SnvzGgwnzBPprPIXrLgCYL/CcDD5nUg4Gi6EG/GTszs8krfUO1D1nMfQPXVmUsFViL8c79HshUt1AbSCfc30hOeDRLdYeds8dodH96+0ED7jUXnOo7yOO7wKSXU8VG5lT5VnggC0mqrzAeHRVC1528o7eqncp/5DQkGIZIbzYgACtCLC46a0ZHiUeWsaq8x7JNIaW7ve8j0ANvG0PFSpc+Y8mql1w8PYme4MO1VCqbG1cCuAVvL9XN9pnfNxI83T0uGhfPa0U125LwA7HT/VoBPWeXtO5z9P4mLezro2Wav7Xlo6PHbd7tPwaJvcDLcCaC2eNifbw1pPaWj5mjOcxbyGhxeZD31PH8ech9Onues/dgrANt6O3J7weQ+nR5NXrdEvrmvy/jDPgP0I9oWHl1e2MkS9IDxqV1sl9enMjrk2AdDSSlua7Q8+HNGv+67ReW28rVuo753o9UpO/V39mrvy0xNxGXvCo/zHoAb0SaryNKlpyVtq6x04e0jQvN7bVvl7Hgklbz+U+/KI4AA+GiXtPZvQvfLf86g6T7S1mWbODf7Dw6PPtMfDXz+aPeFR/mNQZw8EXtZebB/q8PTPhQH4GJXeHWr7ReW8UNDG/g+64g+MIgIL5zwAADeN8AAAREZ4AAAiIzwAAJERHgCAyAgPAEBkhAcAIDLCAwAQGeEBAIiM8AAAREZ4AAAiIzwAAJERHgCAyAgPAEBkhAcAIDLCAwAQGeEBAIiM8AAAREZ4AAAiIzwAAJERHgCAyAgPAEBkhAcAIDLCAwAQGeEBAIiM8AAAREZ4AAAikv4fV39IAjNO3qkAAAAASUVORK5CYII=
|
The lateral surface of a cylinder is unfolded into a rectangle ABCD as shown in the figure. What is the diameter of the base of this cylinder ( ) cm, and what is its height ( ) cm?(Use π = 3.14)
|
A. 6.28, 1; B. 1, 2; C. 6.28, 2; D. 2, 2; E. No correct answer
|
D
|
50
|
iVBORw0KGgoAAAANSUhEUgAAAY4AAACdCAYAAACjMZ/9AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABOSSURBVHhe7d19cBVVmsdxVCRqwCIKikIspsIYfC0siS8lCkwpL8oi7DDIRBGEWCCDM7EkBkUkCizDpJTB6ABGwTdExILSuEaBTSZDVl7CEFhHI6CmCnAAqUwW+SNrKH22n5Pbl76XG0jDSTiB76fqKUjfvm/9x/ndc053nzYCAEAIBAcAIBSCAwAQCsEBAAiF4AAAhEJwAABCITgAAKEQHACAUAgOAEAoBAcAIBSCAwAQCsEBAAiF4AAAhEJwAABCITgAAKEQHACAUAgOAEAoBAcAIBSCAwAQCsEBAAiF4AAAhEJwAABCITgAAKEQHACAUAgOAEAoBAcAIBSCAwAQCsEBAAiF4ECrV1dXJ9XV1bJu3TpZsWKFLFmyxNSCBQtkxowZ0crKypKxY8eays7Ojm6fOXNm9DlaxcXFUlFRIbt37468A4AgggPOq62tlfXr15sg0Ab/gQcekH79+kmPHj2kY8eO0qZNm2atLl26SK9eveTOO+80oaNhowH1+eefy+HDhyOfEjhzEBxwSlVVlRQWFpqAGDRokGm0EzXmwTrvvPOke/fu0qdPHxk2bFi0V6E9DL9XoaXB4/cq5s2bF93+9NNPR5+jpQHRu3dv85qJ3i9Ybdu2lWuvvVZGjBhhXmvVqlUm6IDTGcGBU0qDQhv0UaNGNRoS2qu45ZZbZOLEiabB18ZZh6V0eOrQoUORV2o+Bw4ckJ07d0ppaaksW7ZM5syZYz6v9kI0tBJ9Zn1Mw48gwemI4ECLq6ysNI1qoqDQbToUpQGhcw179+6NPMtdGn4aEDpXor2k9u3bH/W9tAejgcO8CU4HBAdahP5q1zDQX+LBBlV7EzrMo70ObYBPBzrvoXMyGhQ6FxPslejQloaL9lx0Uh9ojQgONCsNDB1i0gbTbzw7deokkydPNsNNZwINCO2RaEAGQ0RDMz8/nwl2tDoEB5qFNoYFBQXRs560wdSJa21Az+Rf2hqk2rvSORs/QHr27GmG5YDWguCAdXoNhDaGfsM4ZMgQM7mMWGvWrDnqOGmwAK4jOGCVjt37wzF6mqo2jmic9sx07sfvmekpwKfLXA9OXwQHrNEJYX8uQ+c1GLtvOj3bSs+88sODngdcRnDACg0JvZJbGz6d+EZ4ek2KP/ehFyICriI4YMVbb71lGjw93ZaexonTnocO9WnPTS9wBFxEcMAK7WVocOgZQzg5elW6Hks9Aw1wEcEBK/SiNm3s9D5QODk6TMWxhMsIDlihV0hrY8f8xsnRYT7/6nqCA64iOGCFHxw6Nn+mXBHeHPQ2JXocCQ64jOCAFX5waOmNCnWtCoSjQRG8NQvBAVcRHLDCDw7/jrd6h1g90wrHp7ddnzJlSjQw/LvrEhxwFcEBK/zg0Hsu6W3R/UZQL2pj6Coxnc/QRav8sNXehl5FzuQ4XEdwwAo/OHSxI6W3HgmuoKc3OCRAGuhNHnXp2eAt5nX1Qr3HlyI44DqCA1bEB4fSBlIne/37MGnp1eW64NGZuKCRBoOedaa3lQ8eDw2RIIIDriM4YEWi4PDpKn66HnewB6LDMrq2tw7N6IqApyMNTj0e+t3jF7DSW4voxZKJbjFPcMB1BAesOFZwBOnj2jDGL6+qvRIdzvKDpDXetkTvNeUHhR6P4KJNWt26dZOpU6ce9+63BAdcR3DAiqYGh08bWZ0H0bvoBtek8Et7JHpbdl01TxtiHc7RU3xdCBT97DrspA27ng2l62gEe1PB76A9Cw0Lvb18Uz87wQHXERywImxwxNMb+mlDqY1mokbYL/0Vr4/rZLKGis4ZaLDoc/WMLu2t6Gv5pcNkxxPcX0sn8fU+UTqUpK+tn0nDQc8Q015Dos+lpUGhQ1LZ2dnm+RowJ4LggOsIDlhxssERT69t0PU9tPHWhljvheWftnqqq7l7QwQHXEdwwArbwdEYDRRdhlbfRy8w1DkRHQrSxlYn27VB1x6JX8EzmBor7UUEn6PDS9rDyMrKMsGg4aU9CO2JaI+kuYfLCA64juCAFS0VHGcCggOuIzhgBcFhD8EB1xEcsILgsIfggOsIDlhBcNhDcMB1BAesIDjsITjgOoIDVhAc9hAccB3BASsIDnsIDriO4IAVBIc9BAdcR3DACoLDHoIDriM4YAXBYQ/BAdcRHLCC4LCH4IDrCA5YQXDYQ3DAdQQHrCA47CE44DqCA1YQHPYQHHAdwdGa1H0nW8s+lU8/LZOtu36Q+shmFxAc9hAccB3B0UrUlORIWlJwHYkkSct8V7Y7kh4Ehz0EB1xHcLQGXy+W/mkDZPbKrVK9d69Ulc6XzLQk07ik5pTJwchupxLBYQ/BAdcRHK3AxtkjpTC+a1FTJKNND2SSrHag10Fw2ENwwHUEh/MOSHnZtgTzGfWyepIGR39ZXB3ZFFT3L6nacIz5EDNfUil7Gv6Q77aWeftukG/rzAaj/oddDXMqG7719jg2gsMeggOuIzhasZJsLzjS82Vb5O8G9bL93UxJ63yNDJ+UK5OGXyMddD4kp0Rq9OF9m2Txo32ls+mtZEtJzWcye0C6pKd39fbztnUYKe/vqZddRY/INV3TJL1rB9OIpWZHnt8IgsMeggOuIzhara+l8LY2clvh15G/G9SUZEtq0mhZud/vYxyUotEaEkmSUxbZJNtlwU26LU3GvrVF/F1rVk+Szl6DlT7wUflTsd/LqPF6Np29fW+TuLeKQXDYQ3DAdQRHK1W/LV+uS82TjTFjUH+X2alew58f2wep2fK2zJr1tmyJdhkaQsf0OCJbjINFMtprsNp4vYugei9QtCGL2xyD4LCH4IDrCI7WqH67FA4cePSE+deFcpvX4Ew67mx5I8Hh/ZWdIDjE68UQHC2H4IDrCI5Wp162F2ZKTkmCGYdIAz+66Hgn6BIcLiM44DqCo1XRSesn5dF3tx99lpTali/pXoPTOW9jZENQvezf74cNweEyggOuIzhaEb16PLPw6NA4+M03ss/852MZr2dLJY2WovgOyZ535c/vm708BIfLCA64juBoFbzewupEoVEvP+xYKY/MLolsr5eNeamm0Unqny/rv9PzonSfYskZkCMl0RGsRoKjfrVMShAcTI63LIIDriM4nKfDU+MlVRv0hJXkNeiBOKnfLosHNlx7Ea2kGyTvs0gX5OAOKV+aIzeY6zg6y7D8VVK+46C3uVyW5twgSZH9c5aWy46DB2VH+VLJuaHh9iZJN+TI0vIdCW9xQnDYQ3DAdQSH6w6Uy8LcXMlttBbLxviWvP4H2VFaKLO8x2cVfiL/iF7T4dlXJgVxr1FQts/bXBCzLTe3QMr27ZOyguA2rwrKGobF4hAc9hAccB3BASsIDnsIDriO4IAVBIc9BAdcR3DACoLDHoIDriM4YAXBYQ/BAdcRHLCC4LCH4IDrCA5YQXDYQ3DAdQQHrCA47CE44DqCA1YQHPYQHHAdwQErCA57CA64juCAFQSHPQQHXEdwwAqCwx6CA64jOGAFwWEPwQHXERywguCwh+CA6wgOWNGywVEvu1bPluHXRG4f36GrDHiyWL7V5UdOAwQHXEdwwIqWDI6akmxJTeosfcfkSu6k4ZLevmHdkaT+hbI9bnnEyspKmTFjhmmME1VhYWFkz1h79+6Vqqoqqa2tjWxpOfq5CA64jOCAFc0dHNXV1aYhzf79fXJ1Srpcd0sf6d69u7Rt29a8b79u55h/7371K6mpqZF9XsO/95//lD/Pm2e2N1b3jRxp9tP6fv9+89x/ebVw4cLoPu3bt5cePXqY76iN+tSpU2XdunWRT2YfwQHXERywojmD46effpL58+dHG/L46tChg4wefJ2keP9vN+ZV2bplS7SWL1smEydMkOfy8hLWksWLY/b3a/asWZKamipJ7dolfM9HHnlEfvzxx8gnPOLQoUNy+PDhyF8nhuCA6wgOWHEywbF+/XqZOXOm9OnTR0b8+tfyw8GDsn/fPqn+9lv56ssvTUOuATBo4ED53aRJpsF/9ZVXZNXKlfJZeXlDY//hdOnlvX+v6R/GBMDWLRvkP1/6nfyqZ4q000Y/+RK5ddxf5JNNkcc3fCrvPe89npZsnrt57dvyzNA0Sfb2bddtsDzzTqn8tWS1LHx6uFzV8TzvO54jHX5xhzz30gLz/P/ZulV2bN8uu3ftkgPffy+PP/64dOzYUUaMGCELFiyQnTt3Rr5l0xEccB3BASvCBIf+Ii8qKpJRo0ZJp06dzPP80r9jG/4m1vJs6d6mhzzxfnD7JvlgeoYk95wgr366wft7g6yZe48JkC5ez+S/vcc/WfqyzMvqZd772rFPSs6U5+W9j9bIx29kS0Y77zNdOkHm5g2VoTleUK35SN7MzjDP/2XO+4H3OVJDhw6N+T5aOqQ2efJkqaioiByBYyM44DqCA1Y0NTh0KKdbt24xDevll18uv/F+of9xzhxZV1aWsEE+Xq3M6SEpmYu8MDiybbMXJr/0wuSx5ZuO7LvmBRmc3EaSB78g/+VvW5RpPkf3R9+Rzf42r14bo8NU3eX37wSev+VNmZjife6MPPk4sG+w1q5ZY3pF99x9t3S6+OKY71rahGAlOOA6ggNWNCU46uvrzRDUTRkZ8gvvV3jOlCny8UcfJWx8Q1XpfBnSLVMKS2O3vz0hRdqkTJC3A9sSViQ44oe5iqZrT6SXPPNhYN8tH8ozvbwQ6DVdigL7Hqvef+89GfPgg2aCXYe1/re2Vn7++efIUTkawQHXERyw4ljB8X91dVL9zTeyrbLSNKT6izy+cT3xKpUXh90qz6wK9gq01sjc/k1s4Js5OBLVPz7/3Jz59fNPP5ljFJxQJzjgOoIDVsQHx7Jly+TFF180p7lu27o1YeN58qVzGINlzKLSBI99JM9m6PDQSFnoT4Q3VqcgOPyq+vJLKSgokN69e5uTBBTBAdcRHLDCD461a9fKxIkTzf/POeccKfrgg4QN5snXsUKjoRrmKFLk/kXrjnqsbP5cWfBZ5O9TGBx/r6iQq6++2ry/1rx58wgOOI/ggBV+cNx1113m3wsuuMBMECdqLE++vND44ygZP784ZjJba/OqWfIfrzcMW21+fby5tqPNpbHzH5vX/kXGjCs4MpF+CoNDa+OGDfJwVpb5DFo333yz+ZfggKsIDljhB4eWhkZjF9adfHmhkXerJF/RVx7wfpk/FKx/u1FSLh0vb0aHpkqlMPPShs+VnCa/GhnZJzlDno2GwSYpmTvA7JMy5jXZ6L/PprXywj0NPZaRL62NBtTmtc/LED1NN2WkvLw2fl7l5EpPFtDPcfbZZ5t/CQ64iuCAFbfffntDA+3VvOefT9gw2qiivIbrKPz3iq92mYtieyFeACye0l/SkvXxZLnk1nGysPhIg1+YGf8aXu9kyyK5P2abV97r+j2TYN2/KPBeFmrcQw9FX5vggKsIDlhx5ZVXmsYuPT09YYNINa102Oq8pCRzLJ999tnI0QXcQnDAiq5du0Z/KVN2iuCAqwgOWHHZZZclbPyoEy+GquAqggNWZGRkmMau9403JhyCoZpeejNHPZYrVqyIHF3ALQQHrJg2bZpp7HR9jESNIdW00qvqkyJzHCdyZ12gJRAcsKKurs6si6ENnl6TkKhRpI5dejGgXkGux3DYsGGRIwu4h+CANcXFxdEV+fS00kSNI5W4lrz2mlx6ySXm2HXp0kV2794dOaqAewgOWKWLF/nhcf1118mbb7yRsKGkGkpPv+3fr5+cddZZ5pjpMrXNuSwtYAPBAetKS0vN4kXaEGrpEqyLvEBJ1HCeyTXl8celXWBpWu1pfPXVV5GjCLiL4ECz0DkPXQ723HPPjTaMumBT9h/+kLARPVNq3d/+Jr8dNUouvPDC6HHRY/Tcc89FjhzgPoIDzeqLL76IXlXul941V0/fbb77WblXukb6vw8fLhecf370OOjwlN4UUldFBFoTggMtQtea6Nu3b3T+w6+LLrrIrNOty8baXeDp1Nby5csl94knpH///tGzzfzSYbwHH3xQ9uzZEzk6QOtCcKDFzZ07N2YOJFi6pKyuP/7o5Mny+pIl8ll5ecKG2aX6a0mJvLJwoYwfN86srRGct/BLv+/UqVOlqqoqchSA1ovgwCmjQzTaE5nj9TYGDRpkziiKb3C1zj//fElLS5MBd90l06dNM8M+ukBUS4aKhoOuHa6T/FNzc2XUfffJ1VddFTOHE186RKe3Damuro58Y+D0QHDAGbrutgbJU0891WiIxJeu/aGT7nrhnM4X3D14sNyfmRmtsWPGyDTv9XRRqcYqKysr5jl33HGHXOP1HPT+W8nJyQnfN1FdfPHFZhGm/Px8rsPAaY3ggLNqa2tNkMyaNUuGDBlieh06DKShcv3110tXLzASNeC2Syexr7jiCrnpppvk3nvvlezsbHO9il7wOH/+fKmoqDBnkQFnCoIDrZ7+uq+srJSXX35Zevbsaapz587SsWNHU/6pr3qdhK7nHSydd3jsscfMfvq4/3wdOnv44Yclz+uRcLNBIBbBAQAIheAAAIRCcAAAQiE4AAChEBwAgFAIDgBAKAQHACAUggMAEArBAQAIheAAAIRCcAAAQiE4AAChEBwAgFAIDgBAKAQHACAUggMAEArBAQAIheAAAIRCcAAAQiE4AAChEBwAgFAIDgBAKAQHACAUggMAEArBAQAIheAAAIRCcAAAQiE4AAAhiPw/sgTq8hMqi1MAAAAASUVORK5CYII=
|
The lateral view of the cylinder is a rectangle ABCD as shown in the figure. Therefore, the front view of this cylinder is a ().
|
A. Cannot be determined; B. Circle; C. Rectangle; D. Square; E. No correct answer
|
D
|
51
|
iVBORw0KGgoAAAANSUhEUgAAAZAAAACeCAYAAAAcwlwIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAyZSURBVHhe7d1PSFtrHsbx7M4qzCqrklUWLooLNyIThoubljJdWAYsFIrlurlXuJBNkOLAZMDOxk3DLFwc6GwsI1NGLzjYaxcpgbmO0plWh0pHkQodi/VCCjqLQDbPnCRvNP43p974vsfvp7xQ37xxc97feTznPW8SEwAAIRAgAIBQCBAAQCgECAAgFAIEABAKAQIACIUAAQCEQoAAAEIhQAAAoRAgAIBQCBAAQCgECAAgFAIEABAKAQIACIUAAQCEQoAAAEKJdIBUdj9rt2J+AABcqAgHyI5mB+ManN0xPwMALlJ0A2RzQrdiMcVuTWjTdAEALk5EA6Si+ZGEYtUAiSWVW+Q+FgBctGgGyM6sBr1qeNSbNzgrbmQBwMWKZICs+2nFbv1J3+eSJkRuaYL7WABwoaIXIJV5jSS8+uJ5Yx0kaJ35FTMAAHARIhcgO7OD8hIjmq8te1SfxPLqVyHeoHggC4iYH0fV0dFxZrsxMKzhUV/TxSV94Nn+CxOxAFmXn47pVtP9qsr8iBLmKqS5H0AElD9ra+udXub7lTR1Huv8Wv50UUsbW8FrQXu3oLmnj3Tnerz+eiyunu/+qpWy+R0ILVIBUguLI1caK8p3NiZWPvgJQPQsa6zD1HmmYPoOK+v986y6Gg/YJAc184GrkS8RoQCp365K5hZ1eEqUZu7Lq/3lkdBI/d4WgEip3304PUDqSq/H1LsXIjnxlH940QmQlbw6Y7/SH5fMZWtz++/fNPSL+oTx+ibZWAhEzvkDpLpPbHU8XR8bNB6wCS8iAVLfOOglUscuoFVbKmEW02OdYr4AUdNKgASa94p5GRW4CgklGgFSmtF974wd502P9CZG5o/c5gLgshYDJDgDvBgy42OeskXTjZZEIkBW8p3n+MwrHukFoqvVAAneUd1wXAuQmNL+uulFK9wPkNrGwXMujtfWSeoThvueQJS0HiAqZPYC5NzvwQGOB0hjMSyj8x3+pkf9vPuaKZluAI4jQC6DswFS/rikH/Y2DyXVn/9BSxufddLeoPLnDS1NZfauQKrN68rq6cI7fWZDEeC41gPk02Tf3rmge3zV9KIVzgbIj6PHPW01qh/N64cdP77eRk96EwBHtB4gi7nGVz7EdH+GRdEwIrGIDuCqazVAmj6hItanyU+mGy0hQABEQGsB0vwZeYlgPNcf4RAgACKghQCpLCqXNGN5mOaLECAAIuCcAVJe0XhvYz9Yl3LzpMeXuLIBUptANBrNyXZYZfsvutt4/bgAKX/U0tRD9cTrY7zUPU3wee5fjACh0WjOtT21L5S6pvjhMfFr+09aphL1T+MO+rrvPJT/ck18p9TFuPIBAsAdR+q29oVSx3wC96H2E4nxsyBAADiDurULAQLAGdStXQgQAM6gbu1CgABwBnVrFwIEgDOoW7sQIACcQd3ahQAB4Azq1i4ECABnULd2IUAAOIO6tQsBAsAZ1K1dCBAAzqBu7UKAAHAGdWsXAgSAM6hbuxAgAJxB3dqFAAHgDOrWLgQIAGdQt3YhQAA4g7q1CwECwBnUrV0IEADOoG7tQoAAcAZ1axcCBIAzqFu7ECAAnEHd2oUAAeAM6tYuBAgAZ1C3diFAADiDurULAQLAGdStXdp4JCraXXspf3RYw8Oj8n94q+2KeekSMBEB91C3dmnTkaho1e+VZw5+o3mprAolM6TNmIiAe6hbu7TlSFQWc0r1/l4v13aDKJHKH/8hvz9ZD5G+SW3Wh7UVExFwD3Vrl7YcieKjjF4cvtKozGskUZ0M9zWzY/raiIkIuIe6tUsbjsSO1taOv8YoZKqToU+Tn0zHnup6yYKePj5pvaSsj0tTevzHoqpvrWy/1VR17OiEXu0NLOv9wlM9Hh7W6MSrI+stTETAPdStXS71SNQCJO1r3fxcV1Ihm1K86xv503Oa9r9RlxeT1+trNQiB//37ib7uvlZfTwne+7rwO/367pCGh24rFYyLecEVzfaqJu916auBYQ3dTtXGJrPFIMr2MREB91C3drnEI7GssQ5P92cO3ttaf9IrL5nT4t4VQ0UvhuqTJlMwXSooU51I8ZvyV8qmL4ieqbu1cal7T5quREqault9/8FbZUxEwD3UrV0u7UjsFDJK9j45ePVRCYIhuIroHl81HXXVW1TFYvNtLBMgh69eVsfVHfSn/YPXNOt+Oph0aTV3MxEB91C3drmcI7FTVLYnc/QRXhMA+1caJzkhQNZ9pYN+AgSIJurWLpdwJKprHPfkVxc0DguuSqqTo+/oqvohBAhwFVG3dmnzkShp/tF3yr8+YfeguQLxgkuQo/Gyo5WVDfN/AgS4iqhbu7TxSJS14j/Qw2O2nm8uLKgWDXt7Q9IaP3SFUlnO6w+zjVVwAgS4iqhbu7TpSJT0eqxPA3/+j7a2tprahpamsrrxaNGMC0721aewqpMk2a/8y3dmzEP1/HJMy4cX0bvHdWC5fXlMHUH/4UX45bGOYNJ1B6FkOgJMRMA91K1d2nAkSprPdR35HKz9llBuPz8CR8d7qW8188Gkx9tne3s7YrG4egaG9exttXtIt1Ne/T1eSreHnult8O9ZY39I7ffc1lB1cKDxuwG4g7q1y89/JHbW9Pe5Oc2d2P6pRjY0K39cUjF4vbj0QbvNr2++OfI73mxWuw/2zc290Wbw782BvqBVBweYiIB7qFu7XNkjwUQE3EPd2oUAAeAM6tYuBAgAZ1C3diFAADiDurULAQLAGdStXQgQAM6gbu1CgABwBnVrFwIEgDOoW7sQIACcQd3ahQAB4Azq1i4ECABnULd2IUAAOIO6tQsBAsAZ1K1dCBAAzqBu7UKAAHAGdWsXAgSAM6hbuxAgAJxB3dqFAAHgDOrWLgQIAGdQt3YhQAA4g7q1CwECwBnUrV0IEADOoG7tQoAAcAZ1axcCBIAzqFu7ECAAnEHd2oUAAeAM6tYuBAgAZ1C3dnHnSLx9puHh4TPbqD+tueKSPuxWzBuPx0QE3HP+uq1o98OSitO+Rhvnh8dPNbfwTp/LZkhpXt8XP5kfEIY7Z9DNN5qbe6pHt1PyzCSKdf5Gj5/OBf31Nu2PauDGNcVrr8d1/YGv1yXz/kMIEMA9Z9dtRduvfD24Hq+fA+4M7Z8jnj7W0J3rinsJfTUwrIGeuNL+unkfwnDwDLqoXMIESKZg+g4qr0yoP1kf46UeqrhjXmhy9kQEYJtT67ayrRfZ+h+Y8Zt5vdo+/i5E+f1zZbu82u/pHl81vQjDwTPouvz06QFSVVnMKWkmW2d+xfTuO3UiArDSyXVbUiGTrL3m9fpaPf0OdjC8oEz1j8xTziE4W2QD5MCVStoP3nXQyRMRgK1OqtvSzH1za7tTY8tnpUfdTiGjBAHyRSIcIMsa6zDjTgkQGo3mXjugMq+Rxh+Ltya0abrPtqL8t0+0YX5C6yIbIJXlMXWayZZ89C/Tu68xEWk0mnut2c7s4N6DNa0uim+uremYJVKcUyQDpPx+SoNmET2WzKhwwpNYANxXzNYXxGMxT9mi6URbuB0g8Wu6MdC0D2TojrpTifpfI9VH9b6bOPExXgBRsKEnveZ8EEuLp3Lby+0ASf9W02YPSGMfSO05b/PXSKLrgfIv36uxbwhA1DSdDwiQtovkLazK9ivlb1Y3EtWDJJUtiAsRIIoIkMsUyQCpqSwq11gHiSWVWzzfo30AXFLRi6FGnbMG0m7RDZDA6ni3mVgxJXKLphdAlHya7Nurcz6apL0iHSAqZPYm1pljAbhpZ1aDnqnzzryOfu7EySqrr7XMc7yhRTpA1v30XoB0jC2bXgDRUtHyWKep9YSGXpxzxbNUUDY7w/roF7gaayBenybPvz0VgGsqq/J7zX4Qr1djZz2/X3qtsXtZ9oh9IfcCpFJQpnG5ekKAHHwKK66bT1aDv1EARFp5RRP99Q9UrNZ9z8MpLX089BB/ZVdrL/Pq7+nX5JmfuIizuBMgtS+UGtBXicau06DFr6njxsD+RsLg9Rsdje8DiSl+/YH8V9uEB3BllPX++SPdqX0fSNN5oqMjaMG5obrB+OFzvWdz2IVwJ0BqXyi1v2nwtLbwbktbe187BuAqKn/e0ruFxnmhqKWNn3TGF5WiRQ6ugQAAbECAAABCIUAAAKEQIACAUAgQAEAoBAgAIBQCBAAQCgECAAiFAAEAhEKAAABCIUAAAKEQIACAUAgQAEAoBAgAIBQCBAAQCgECAAiFAAEAhEKAAABCIUAAAKEQIACAUAgQAEAoBAgAIBQCBAAQCgECAAiFAAEAhEKAAABCIUAAAKEQIACAUAgQAEAI0v8BcNV3Xs5x4PsAAAAASUVORK5CYII=
|
The lateral view of the cylinder is a rectangle ABCD with an area of 12.56 cm² as shown in the figure. Therefore, the front view of this cylinder is a ().(π = 3.14)
|
A. Cannot be determined; B. Circle; C. Rectangle; D. Square; E. No correct answer
|
D
|
52
|
iVBORw0KGgoAAAANSUhEUgAAASgAAADQCAYAAAC0sfzZAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABJCSURBVHhe7d1PaBxnmoDxPhj6ErG5NCQIZQM6yGDE4osRKBB0STAMiwzGQwImDGJgERh6WYwIXrAO1g6M5mDFBx0aDMvaWOCMfRA4icLKaOLINrPrkXCEkOOxwCuh2KENUg4NncO79VZVS9XVVa3uUv/5qur5wQdRqVpWvv76UVV1S50RADAUgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoCxCBQAYxEoAMYiUB2yvr4u77zzjmQyGUZKB5rHrHUAcWLoQPOYtTYLihOSb2dnR44fP879fkTMWht543T27FkWakp44+SNFJrHrLWJP06//vorCzUF/HHSj7nfo2PW2iAoToqFmmxBcVLc79Exay0WFifFQk2usDgp7vfomLUWqhcnxUJNpnpxUtzv0TFrLXJYnBQLNXkOi5Pifo+OWWuBRuKE5GkkTopARcesHRFxSqdG46QIVHTM2hEQp3RqJk6KQEXHrEVEnNKp2TgpAhUdsxYBcUqnKHFSBCo6Zq1JxCmdosZJEajomLUmHDVOLNR4OkqcFPd7dMxag1px5MRCjZ+jxklxv0fHrDWgVad1LNR4aUWcFPd7dMzaIVp5zYmFGh+tipPifo+OWauj1RfEWajx0Mo4Ke736Ji1EK2Ok2Khmq/VcVLc79ExawHaESfFQjVbO+KkuN+jY9Z82hUnxUI1V7vipLjfo2PWPNoZJ5irnXFSBCo6Zs1FnNKp3XFSBCo6Zs1CnNKpE3FSBCq61M8acUqnTsVJEajoUj1rxCmdOhknRaCiS+2sEad06nScFIGKLpWz1q04sVC7qxtxUtzv0aVu1rp55MRC7Z5uxUlxv0eXqlnr9mkdC7U7uhknxf0eXWpmzYRrTizUzut2nBT3e3SpmDVTLoizUDvLhDgp7vfoEj9rpsRJsVA7x5Q4Ke736BI9aybFSbFQO8OkOCnu9+gSO2umxUmxUNvPtDgp7vfoEjlrJsYJ7WdinBSBii5xs0ac0snUOCkCFV2iZo04pZPJcVIEKrrEzBpxSifT46QIVHSJmDXilE5xiJMiUNHFftaIUzrFJU6KQEUX61mLW5xYqK0Rpzgp7vfoYjtrcTxyYqEeXdzipLjfo4vlrMX1tI6FejRxjJPifo8udrPmjdMHH3wgP/74o2xubsZiVBZq0OcY9cfTp09jGSdVud/RvFjN2s8//yxvv/32/h3OSN+IW5xU5XtH82I1a/qTVO/oY8eOyfvvvx+7UVmoQZ9j1B96n+vc6ZFU3FTudzQvloHSBRtHLNTo9D7XudM1EDfc79ERqA5ioUZHoNKJQCEWCFQ6ESjEAoFKJwLVgM1bn8jAwEDoOHVmXK4U7suzvbJ7C7RakgNV2l6RO1cn5LOPDtbT1Tsrsl2yPrn1pXz5vbNfGhGoBpT3XsvO+n3592FnoZ360//YT3XbY/2R3Jz6jfRnrc9l++XiYtG9FVopkYEqv5SFz4ekJ5OV/k9n5O6j9eo1leu1RlbGF9L7g49ANeF5Ydj+94cLz90tB0prX8iwLsTsqMxtuRvRMokLVHlDrn/cY23vk/zCKwlKUHmjICPWD76g9ZYWBKoJ9QJlfVYK7hFWftHdhJZJWqAqayl3aTkwThXF+fMyQqDiwexArcr0gC7EnEw+djf5BC1UNCZRgdq9J2N6SSAzKDNr7rYw5WWZvhqyoFKAQDUhNFClbXk4PSJZ63PZkevWsVSwmoWKhiUpUOXFvL1WMrlJaSQ9pZJeLU8nAtWESqAyPb2eZ/F6pcdegP8gp//wnbysc7zuX6hoXJICtb+OhguhP8zgIFBNqCws/7N4dwsXZKjHWnDZnHw49Rd5FRIp/0JF4whUOhGoJoSe4qniouT7nIU4OL1a98JnEHvB1hlhgvb1jjBB+3pHmKB9vSNM0L7eESZoX+8IE7Svd4QJ2tc7wgTt6x8VBKpx4TNuIKMDZdlfeAHXFvRPxdT7w3r27eqMMEH7ekeYoH29I0zQvt4RJmhf7wgTtK93hAna1zvCBO3rHWGC9vWPfY8nJafbsnlZbPYnWcqEz7iBTA+ULObdxWgtPHeT0lNB/TtGvKlDdHE8xfvll1/sP6qo37f+kcV95VWZHtR1kpWxe7vuxjBlWf3mv+X/3I/ShkA1oX6gyrJ8KWd/PjM6Jz+5Wytx0u26WHXRonlxC5Q/TvqXYL2K1g+zPl0rfdYPs9BfPijLq4Up+ePSYRFLLgLVsIMA1QSq/Er+WjjnLLjsiBQ2nON24tQ6cQrUYXFylGVjzl0zfeek8HBbql5MoC9dKVyQC3Mb1p7pRaAaYP+ycK/+WoIelmckm+sPeJlBVnIfXpA/rznLjDi1VlwC1VicDpRefCWff+SuoWxO+u011S/91lq68dfgX4FJEwLVAPuXhfUlBaHjTdVPP91GnForDoFqNk5Vynvy2l1Pb9L7uswaBKoN8nnnYjlxah3TA3WkOCEUgWoDfabu8uXLxKmFTA4UcWofAoVYMDVQxKm9CBRiwcRAEaf2I1BHpO9szKlc+5kWKOLUGQTqCHRR6uLUhUqk2sukQBGnziFQEVXipN8PgWo/UwJFnDqLQEVAnDrPhEARp84jUE0iTt3R7UARp+4gUE0gTt3TzUARp+4hUE2YnZ0lTl3SrUARp+4iUE26desWceqCbgSKOHUfgUIsdDpQxMkMBAqx0MlAESdzEKgQuihZmOboVKCIk1kIVABdlLo4deivsqD7OhEo4mQeAuVTiZP+O7pYddGi+9odKOJkJgLlQZzM1c5AESdzESgXcTJbuwJFnMxGoCzEyXztCBRxMh+Bsty+fVuOHTtGnAzW6kARp3ggUK5vv/2WOBmslYEiTvFBoBALrQoUcYoXAoVYaEWgiFP8pC5Q3333nT0QL0cNFHGKp1QFSsP01ltv2ePp06fuVsTBUQJFnOIrNYGqxElvf/bsWfvNNREfUQNFnOItFYEiTvEXJVDEKf4SHyjilAzNBoo4JUOiA0WckqOZQBGn5Eh0oHRh6gIlTvHXaKCIU7Ik/hRPb0Oc4q+RQBGn5EnFRXLE32GBIk7JRKAQC/UCRZySKzGB0gvi165dcz9C0oQFijglWyIC5X227v79++5WJElQoIhT8sU+UN445fN5dyuSxh8o4pQOxgVq68sp+a/n7gc+/kARp/TwBoo4pYdZgSqvyvRgRnKXlqXsbvLyBoo4pUslUPpL3sQpPYwK1O69MclaCy+THZN7u+5Gj0qg3n33XeKUMpVAHT9+PCBO38uVgQEZCBunzsj4xBUpfL0i2yX3JogFgwK1JTdOD8rISM5egIMza+72A5VAvffee/ZPUeKUHpVA1cZJleTNzqas/Od5ydn7/F7u7uzIjjvWH92UqTMnpEc/l+2XT2+sWbdAHBgTqPLyJcmdviFbazMyqAspd0mWfed5lUAx0jvqn9YtSt7eL2/9V63ik2kZyernszJS2Ai8jACzGBKoXbk31iNj9nmdHkk5i8j5+ACBSvc4/JpT/UCp4mJe+ux9hqUQ8mQMzGFGoPSoyXPEtHXjtLMoB2ek9kQPCHN4oA5+AGYkN/nY3QZTGRCosixfysnA9Kr7sWX3nozZh+I5ueQ/zwNCNRIo60j8+ojzA/DUrGy422Cm7gdq64aczgxK9TVxJ1q6iLLn56XobgXqayxQYp3m2YE6bD90XdcDtTYzaC2UHun1PzXc2+MuIn+8gDAEKmm6Gyj7VC4n4/Ob+08JH4yH8odBXUThL9wEqjUWqN35806gcpPCVSizdTVQejE8OzonW+7HfuXHk84zLtlRmQvbCdjXSKA8lw/yi/zgM1zXAlV+dUfOZzPy+6/qvWRuTb74J+coqi+/IK9YTairgUAV5+11l8n0yeRjFpTpuhKozVv/7Lyq1x490vvJLan5M2Sbt+ST/etQ7ujplSvfu58HahwSqPKGFEay9lrqs46eePLFfF0JVHnvdfX1ptd7tYfa5T157d3HHW/4HQWEsZ8RDgpUSbZX7sjFk26czs3JBgdPsdDdi+RAS+gvC/dLzj5101H9rHBvj7vtowtSuP+C38OLEQKFBNBfFq492t4fQUfoiAUCBcBYBAqAsQgUAGMRKADGIlAAjEWgABiLQAEwFoECYCwCBcBYBAqAsQgUAGMRKADGIlAAjEWgABiLQAEwFoECYKwEB2pL/vbNN/JN4Hggz3bd3WApy97LFVmy52ZJVl7yB95ghgQH6ge5PTEhnw1Vv/FCz4kzMj5xTZZ+cndLu+KyTOkc9ZyQM+MTMjF+Rk7mstIzNCXLvKsAuiwFp3irMj3gxIm3Ufdx3+UkO1KofhOB0pp8MWzN18h1ee5uArohBYEqy8K4E6jhAg+3Ko8nJWfNy/hC7QndT3Oj1pwNyPSquwHoglRcJF/ME6hAi3l7Xk7fqH3bZidQw8KUoZsIVJpV3kcuOyKFqnO8LZkbtU79Qk+JvRfVH8l6yLumlLatff5WiZ++N92ScxF+u/qNn0pv1uWRfq1Hz2SPq/PwIFCxV+/ZyuDxYP8pzLJ1ltdnz00me1IuLry0thRlefKk5D4uyFrAG8iVX/3FvqjuPNkwIZ99mJNsJiv9n7pvhll+JT/cueput75ufvHgQrx+bI8+yS9q+qx/a2rI8y7Tet3Ldz0MqUagYs95tnKiiXGt6inMoixe7HdioqE5MSTnZp8EHzkVFyXf53/b8A2ZPeXM78h1fQP7kuztlWR1etCJzm8vyh//tSAP7aOmkry4MyZ9uj03LpOXfyuXv1q33y26tP1Qpu23Jc/K2D1eAwIHgYJlTx58/o9OUKwR/BKDsixfyllHWmPi70fxyQ25MnFVFl56Dn3c61uZ8QXf6V/lWdVT8sVa9Wd258/bt8lNPna3IO0IVOwd5RRP6SndkHw8/URePCnIOesIyQ5L35jMe4MjS3JR31p8dE4aeglZJVB6ilfluRSG9d8IuAAfehukFYFqiPOgCrx95UEVOPIS9lB7Xhiu2td+TD4vSN76N/yf84/qx+9RTvF2Zelin2RO37Ay5yo+cU+1rH+rb1IeVxplfW/Duq3miCgEgUILEKhG7EcoLDhBAQt7IC5KPuBr1X6Pzn7+x2plv8xwwfoXjuh/p+zrQefnfedspTWZdSM1OufGrBKoU7Oy4Wypj0ChBQhUlV35+99rT2D09vm88+AJfuyEHGG5D2rvdud7CQ6dHjkdFihVOcI6/P+nvsrXCfx/WpuRQetz2YtLzse783Le+jiTOS0BL5uyFV++tGbQRaDQAgTKo7w6I//hvwKskbGPVtwjn8AHT0ig/LcJCFY1a//9rx8eqIMHefgpZCM2r4/Y81JzBKXKCzJe9b3+JHOjzjzmrNO8mmvoxQW5NL18cPpHoNACKQjUwdPgp2brnJzoU+j91gPed4HFe1TjHHEERSE4UE4YDx6IdY9YatQLVO3XjqRoHRXphe9h67TN9/9dnD8v2eyozHmOlsqPJ52XCFij79yM3F/fkZ2dTVm5MyUf9Y/Idc/3Ul4Yt/cjUDiKBAfKeXbr5ueeFwL2nZOZu/5ntW7K1fEzcqLHOp2xHhjVj1ONhCdIoUdAlQedf1THrJWBau5rhSsuT8mQ/r/3/0ambup83JXCBWvOeoZkqua1BmXZmPtU+jVq+/+P1sielMn9fXXeb8rFk+6Fdn0BqPV19QXlu88eyN2Zc1WRu/vgmXVaaN3mbkH+peo2/EkcJDpQzT+7dWvVdxihP9GrCuCGqOYCdb0jKGu4X8O4I6iK0rasfF2QK/Y8XJHC1yvi+22UKvorLF8XrthzdvXmI3lRtW/wvN/+wTpJXLpWs33i2pJ18hh0G/4kDlJyDSqasKMiHf4wBAdKVYXEPYUJ2q9WvUBVvrejXYMCTEegwuxfHPdzwlEdmQYDdWhYrK+9/2+GB6pyJNZY6ID4IlCBnJCEnV45gfAeRQUHqhKSqlNC9zpWbaQ0SN5twYHynzYCSUagajhhcE7laqOzH4jK5//td1Uf14zAkFSOpLzjIE77YQscLbruBMQAgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoChRP4f5E8ddsyCe24AAAAASUVORK5CYII=
|
As shown in the figure, the perimeter of square ABCD is given. What is the length of its side in cm?
|
A. 4; B. 3; C. 2; D. 5; E. No correct answer
|
C
|
53
|
iVBORw0KGgoAAAANSUhEUgAAASgAAADQCAYAAAC0sfzZAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABOiSURBVHhe7d1NaBxnnoBxHQJ9sdhcmhicDgEdFAg+GIIxKw+OcpAxGwaLMQ4JGJkIlkQQ6MNobWHDaMDCDH2IRQ5atkGGiUS066x80KyNdZBRknGiNXgisNEqETJoZGQb5CCFoaF8+G+91VVSdXdVf1V/vFX1/KDA7m4pTtWrR/VdHQIAmiJQALRFoABoi0AB0BaBAqAtAgVAWwQKgLYIFABtESgA2iJQALRFoABoi0AB0BaBAqAtAgVAWwQKgLYIFABtESgA2iJQALRFoABoi0AB0BaBAqAtAgVAWwSqBV6+fCkXL16U8+fPM8V0Qn0IVJOpOJ05c0Y6OjqYYjyhPsy5JvKK0/Xr15liMB0/frxguaM+zLkmccfpwIEDDNQY+fzzz/eWN8s9GOZcExTH6dtvv2WgxoQ7Tu4/oz7MuQbzipPCQI2+4jgpLPdgmHMN5BcnhYEabV5xUljuwTDnGqRcnBQGanT5xUlhuQfDnGuASnFSGKjRVC5OCss9GOZcQNXECdFUKU4KgQqGORcAcYqvauKkEKhgmHN1Ik7xVW2cFAIVDHOuDsQpvmqJk0KggmHO1Yg4xVetcVIIVDDMuRoQp/iqJ04KgQqGOVeloHFioIZXvXFSWO7BMOeq0Ig1JwZqOAWJk8JyD4Y5V0GjNusYqOETNE4Kyz0Y5lwZjdznxEANl0bESWG5B8Oc89HoHeIM1PBoVJwUlnswzDkPjY6TwkANh0bGSWG5B8OcK9KMOCkMVP01Ok4Kyz0Y5pxLs+KkMFD11ow4KSz3YJhztmbGCXprVpwUAhUMc85EnOKrmXFSCFQwsZ9zxCm+mh0nhUAFE+s5R5ziqxVxUghUMLGdc8QpvloVJ4VABRPLOUec4quVcVIIVDCxm3PtihMDtf1aHSeF5R5MrOZcO9ecGKjt1Y44KSz3YGIz59q9WcdAbZ92xUlhuQcTizmnwz4nBmp7tDNOCss9mMjPOV12iDNQW6/dcVJY7sFEes7pEieFgdpaOsRJYbkHE9k5p1OcFAZq6+gSJ4XlHkwk55xucVIYqK2hU5wUlnswkZtzOsYJraFbnBQCFUyk5hxxii8d46QQqGAiM+eIU3zpGieFQAUTiTlHnOJL5zgpBCqY0M854hRfusdJIVDBhHrOEaf4CkOcFAIVTGjnXNjixEBtnLDESWG5BxPKORfGNScGamOEKU4Kyz2Y0M25sG7WMVCDC1ucFJZ7MKGac2He58RADSaMcVJY7sGEZs6546Sm119/Xd59993QTM6/2+s9pvLT8ePH9+ZfmOKkOP9u1Cc0c+7x48d7C5spnlMmk7FHQ3g4/3bUJ3SBOnjwoNy9ezd0kzNQvd5jKj+pZa7mnRoDYeMsd9QndIF688037VfChYFaP7XM1bwjUPFDoKA9AhVfBAraI1DxRaAq2PnpO7lz547vtPjjY3m+a9ifRjNEPVC5F1uy8sP+eHqRs98wNmRj0/5zTBGoCp4ufiEXBk5IMpEfaMnef5ULFy7kp4E+OdSpXu+Ut89n5cG2/UVoqKgGKrd+W0ZOJCWRSEpX38D+mEom5cTItNz8Y68ML9gfjikCVaXlTLf13+/Jrtmv2Ixn8s3oEUmY7yV6s7LKylTDRS9QhmzMDUrKfD11Niv3nxUNGnNM3c/0WmOqdzJ8/8+NRKCqtJbt8Q6UZVky3WogJmR40X4JDRO1QBlLo1acOnomyvxC25aFdMpnvMUHgapS+UCtSbYnPxDTPqvkXgMV1YlWoJyxkpDBWzv2az42p+TfJlbtv8QTgapSuUAZqxPSowZiYlD8xlzpQEW1IhWo5Yx0W68NyXzF3QE7srT00P5zPBGoKjmBSp77d9dRvGm5Zu9ATyR/K+Nl9pKXDFRULUqBejzZm3+tJ2uuS6ESAlWlvUAVHcXrSibM1xNy5JOs3F13jg+XKh6oqF6UAuWMIwJVHQJVJf9NvJysz+aPyHQkumRk0Xsbr3igujnv+U1+vD7rnvx4fdY9+fH6rHvy4/VZ9+TH67PuyY/XZ92TH6/Puic/Xp8tnhwEqjb+c10z+gZKMeTepWTdA8/6ujKTH6/Puic/Xp91T368Puue/Hh91j358fqse/Lj9Vn35Mfrs+7Jj9dniyfHzty5/GvdGVm2X4M//7muGb0DZSZqfsgejGkpPpB38eJFHugQQFg38W7cuGGPCdeP2dOv5ax10u9hGX9kv1bGzuamVDjWF2kEqkqVArU5dSo/GIt+M6bTaev1V199VX755Rf7VdQijIFScXrllVesf7caA/sMWRpNWa8nh+al7MUH2wsyPrlsfkV8EagqrU4ctf77nqcZPJuXdEr9VkxI7+T++06c1EBVAxb1CVug/ONkM1Yl22sfXBn9RopPJFfUmBo5Pxn7KxMIVAXWxcLTY9JnBahDuof+XHiawdD70mWtsqvBdm/vNyJxapwwBapinBzGhsyPHJNO83OJ5AkZuJKVm3unrvTJ0fMzXDZlIlAVWBcLO6cVeE7XZPrOovz4ZP8UA+LUWGEJVNVxcsm9WJEfbmblij2erk0XjqW4I1ANdvnyZeLUYGEIVD1xQmUEqsFWVlasJ84Qp8bRPVDEqXkIVBPkcqyiN5LOgSJOzUWgoD1dA0Wcmo9AQXs6Boo4tQaBCkANzLA96TaMdAsUcWodAlUnNTDVv+fAgQOytbVlv4pm0ClQxKm1CFQd3HHiGrvm0yVQxKn1CFSNiFPr6RAo4tQeBKoGxKk92h2o2uKUk/Xb12Sgv1+Grs3KQ68L7VA1AlWlq1evEqc2aWegaouTIavZ/OOi1OetqfOkTHJRXd0IVJXUjvB33nmHOLVBuwJV82bd0xk53ZGSwdkVc7ysyOynXflYEam6EShorx2Bqmuf0+KwHL76wHX/pm1ZGLYjlTorM0SqZgQK2mt1oGrdrNt9viVbz3fFWBj2eHBr/gGc6nt1pAZlboNI1YJAeXj58qX9J+iglYGqKU7Gqsx8ZK8hmVNnZ694P2fTHam0zFs7znPy5EnZ+2nCRKCKqDidOXOm+tV6NF2rAlXrZp11G+hEUrq6u+VQZz5SKkALXt0xnsm8E6nOQ9L9m9/LLdamKiJQLk6c1H9HHa37+eef7XfQTq0IVO37nB7LZG+PucZkRyb3SKbO5gOUODIq9zwjtSoT6rHne2tRqIRA2YrjxNE6fTQ7ULXFaU2+HFH3Cl+TbGau8IkrZoAmT3bmI9WbkdIHTW/K1MfEqRYEykSc9NbMQNW65rSzkJakFaC0TMx7POFn74EI6jMT8sh1a7B//N//yjK7nWoS+0ARJ/01K1C1b9aZa0Cn7H1N5pTozXo/2KAgUhn5fuVH+c/P/0tW7LdRvdgHKpPJWN+XOOmrGYGqPU6mv/9FvlzYth4JNdyVD1DqrM/TV3KPZMIVqdLNPVSDNShzDer8+fPESWONDlRdcSq2vWA/C9GMVHre+9l280Mlm3moDfugoL1GBqqWOBnPvpFr7zvnOSWka2SxcKd4QaQWip4SvCZf/eFLnm0XEIGC9hoVqJrWnFR8jvXJ2PS0jPXZ5y8dHpdH9tuO/adKuyKVeyKcg9kYsQqU2pz79ddf7b8hLBoRqNo267ZlbvCszGzaf1W3UPnhB1n32VQzNuZk0I5U56Fu+c3vbwnnYDZGbALlHK07fvw4kQqZoIGqeZ+TuitBT9bcSCvj4ZIsubb3jOWMHDa/f2pwjjg1UCwCVXwqwf379+13EAZBAlUSJ2NXnm9tydbWC3O9yMdaVnq6M7Js/9WTGbHhcdcG3+aUfOyzsxz1i3ygOM8p/OoNVGGcPpEH2Y+kK5HfFLOmzmMy9s0z1+1RbCpQHUm5dK9cbRYk7VrLery8XLSTHI0Q6UARp2ioJ1DFcdq7m0DJlJLhxYJjc6YlGU2a7/ld+KuYa0ynOsz37b+iOSIbKOIUHbUGqnizzrh3yb48JSPfb+xaa0zG7k9ye/hI/hQCj6NzmzOnrfcSXZ/KbMnecfv2KZU2AxFYZAN1/fp14hQRtQTKa4f40mjSXBsalpIVpb17iCdldMl+aY/rHk4dnfJ2/4hkb96RO3f2TztImV/ELqfmivQm3uXLl4lTBFQbKK84KQvpDjnqfSc5dfhNMod93jc2ZM65r3jRlOga9t/8Q8NEfic5wq+aQPnFSXlqbq6dmto7qamEdeO5tN/eJEOePZyVawN90t3dbU598ln2ru85UWgsAgXtVQpUuThZtuckPVayDbdvOSPdXuc9GQabcG0WiUCpEy/VY6EQTeUCVTFOtu2NjcLr6AoUnjLgWMtekjIrXmiB0AdKxUmdHf7WW28RqYjyC1S1capsVSaGigNlyIOr3XLYfTImWi7UgXLipF4/ePCgrKxwS7Ao8gpU4+KkrEm2p/Ccpu0HGelVJ3Umh2XxH/aLaDmtAmVsrPtex1QcKOIUH8WBamyclMJA7cUp0SXDHKprK40CtSO3BhO+R1vcgSJO8eIOVOPjpOwHavveqByx4nRERj0fzYJW0idQj8atq8G9zupVnEC98cYbxClmnECp2zOXxmlT/nZHnUDpMy3+KI+3nstu2cNx+UDNLgznr9UjTtrQJFCG3LuUkoR1IWdS0gulx1ucQL322mvWICVO8eEEypkK15weyo0LQ9L/dv5xTx0dh+V3Fy7IBXsa6Dskner1RFJOfDYl9z1vN6ACZX//RK9kuIG4NvQI1OaMnE5dkvm5wfxZu6emzN+LhZxAqUtX3nvvPenv77fuJc4U/Uktc+84uezMyTnrM6UX8Krr7madM8I7T8pkyX147UCZcZrgBuJa0SJQj8YP5w/nGvfkkrqK3PwtWHx01wkUU3yn8vucFiRtfc7vDgOua+tSo7JU0KhVmej1Chfarf2B2jEHVvLU3glx1oWd5iBKphcKTqxTO8bVBcBM8ZzUzvHyKgXKtPcLsKPoYIwhuRxx0lHbA7U5dUoSg7f2Y+TsLO/YjxZQWRWBMi1nuq1AdZyekaf2a9BXewNlLMloKiGDt9zrSvtPb+UsXlSvukCpZ9VZgUoMy6L9GvTV1kDt3FI7xfvkyv8UHhr+euSoPYgGpaBdkZKT9dvXZKj/qHWV/NH+Ibl2e93/PtmooLpAyUI6P7YqfQ5aaGOg8kdOUn1De4eE96cP8yfLmQOp3G0yQstYlcmTzmHxwqnz5CQPe6wLgYqitgXKug1r0hwknmtIhqxO9OQH0uGMLEfsB1bdfyh1dlzurthPFsk9ke+zZyVlR4o7NdajukCtTthr5+yDCoU2BWpNJnv9L2ux7B1xSci5uSidOLcs44NZj7UkV5STo1Lm7kXwVE2gHsn4YfWZiK6ZR1DLA7Xz05yM2c+7T/WNyfR3P5Xep2fnJ/luenhvM09dtPn+2LT8LRJjKie7ftddlDnZEJVUCpRz/3HzMyXnQUFXLQ/U08UvCvc3fbFYuqr9dFG+cH/Gnm48tN+PLPuHzOdpIbn1u5Id6Zej9q1nB66UXrqRe/KjzI6Zn7ny1/zf12/LmLUj/qj0j83v3y0ity63rw1In/pefZ/JVNgv7zDmZcg3UDl5NGVvQid6JctOvtBo405ylFCP3DZ/iEpPrzB/+8+YP2CJIzI8qy5+3ZKVu3+0bwli/8D9el8mh4ekL6V+SM0pbcZo7lM5cmLAjPuAHOvMv54aXpTtZ/OSfvuQ9A1ckIETyfxaReK0zIRyDVVdLHxTsp/Yj5Dq+Bf5k+uI8LQZ4RPJhPl6QpInRmSe55KHCoHSyM7cOTMU56R4l9vO4rD52z8pQ/PuN57K12fVD16H9E7u38jN+h7qB/XYZ/L1fddTc7dn5QPrB7hLTvxh1nXT//ydI4u/T3ioi4VL17b3pitZuXnnB1l5wQkcYUSgdGE9/sjrgIB94qrXZp+xK8+37COBDucweslTSpwr9nskW3zzbd+vAdqLQGkhvwO3ywxEyZ4gZ8f50Pz+2lA5BAoRQqA0sG0G4m2/EzTXstKj4lHteTsEChFCoNrMWM3KyZNe50XZnEBVe24UgUKEEKg2Mp7Ny/BHGSl/hH9JRq0TVr3vNGpuA8riV3+Rv9t/I1CIEgLVJlac3h8V71tfb8vCf9yQn60/G7I06txobVDmCg6TG7IxNygfu8+KJlCIEALVBsbqjJxN/ZP883mPw+IXBqTvUGfhuVDbC5J2zm9S99YeUJ/L34c70Vu4eajur2V97oPZwh3uxgO52q2+R7dcfVC4Pbk9+4H31wBtRqBazFidlJP2SZP+U+nN+oxn92X8t/ZJldbUKcc++2/Zv4X2X+VKt/2AAHvqPNQt6oTyx199KF3WyYr2e2bkuj78Sh6rr+lyf0/1NR/KV2E8HQqRRKBazNh9bj2ivfxUdG6Ti/P1pecd5uRFyffJf87zv/l819xA9PqaSo9oAlqHQAHQFoECoC0CBUBbBAqAtggUAG0RKADaIlAAtEWgAGiLQAHQFoECoC0CBUBbBAqAtggUAG0RKADaIlAAtEWgAGiLQAHQFoECoC0CBUBbBAqAtggUAG0RKADaIlAAtEWgAGiLQAHQFoECoC0CBUBbBAqAtggUAG0RKADaIlAAtEWgAGiLQAHQFoECoC0CBUBbBAqAtggUAG0RKADaIlAAtEWgAGiLQAHQFoECoC0CBUBbBAqAtggUAG0RKADaIlAAtEWgAGiLQAHQFoECoC0CBUBbBAqAtggUAG0RKADaIlAANCXy/3RPARUdjkmGAAAAAElFTkSuQmCC
|
As shown in the figure, the volume of the rectangular cuboid is 4 cm³, and its base is a square. What is the height of the rectangular cuboid in cm?
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
D
|
54
|
iVBORw0KGgoAAAANSUhEUgAAASgAAADQCAYAAAC0sfzZAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABU9SURBVHhe7d1vaBtngsdxvyioL6IXBxUtpIaAX6hQ/CJQjMGFVm9iDH3hQHFJwKTUUO4CBR/UGOOF+pZ4C9Ub6wLrBbF+sedcfc3ivBCXrF1q40vrxJR1Yhqfzq6JwE2InaCAXQ7B9MVv5xnNyCNpRpoZ688zM78PPLSWRnYYjb+eGc2fDhARSYqBIiJpMVBEJC0GioikxUARkbQYKCKSFgNFRNJioIhIWgwUEUmLgSIiaTFQRCQtBoqIpMVAEZG0GCgikhYDRUTSYqCISFoMFBFJi4EiImkxUEQkLQaKiKTFQBGRtBgoIpIWA9VCL168QC6X4wjpIPcYqBa5e/cuzpw5g46ODo6QDnKPc60FKuN07tw5jhCM1157jYE6Jc61JrNac6Lge/bsGd566y2+76fEudZE5jh9+OGHXFBDwhynd999l+/7KXCuNUllnH777TcuqCFQGadff/2V7/spcK41gVWcBC6owWYVJ4Hvu3ecaw1mFyeBC2pw2cVJ4PvuHedaA9WKk8AFNZhqxUng++4d51qD1IuTwAU1eOrFSeD77h3nWgM4iRMFj5M4CQyUd5xrp8Q4hZPTOAkMlHeca6fAOIWTmzgJDJR3nGseMU7h5DZOAgPlHeeaB4xTOHmJk8BAece55hLjFE5e4yQwUN5xrrlw2jhxQfWn08RJ4PvuHeeaQ41Yc+KC6j+njZPA9907zjUHGrVZxwXVXxoRJ4Hvu3eca3U0cp8TF1T/aFScBL7v3nGu1dDoHeJcUP2hkXES3L3vCo6PC/r/E39bbDQ6ToK7BZXaodFxEpy97wU8Xk3js94oOkZX9MeIvy0WmhEnwdmCSu3SjDgJ9d73/3/0X5ie/B0unY8Up2WgSvjbUqFZcRLqLajUPs2Kk+D4fV8bQ0RMy0CV8LfFpJlxInk1M06C40DtpdHHQJVhoHSMUzg1O05CswKlHD/X/v3PXtrvVBfTnDyt4Pi5Ov3zY/X/KhReat+rxrdqCwZKxTiFUyviJDQ6UMr+MibeiyEa60I8fhZR9TWRrstIb+b1CY6xe/8Gpi++rT0nvp32GrEDXv+3RPvnsCMqpexjeaJXm057LtKFsRX9+0gg9IFinMKpVXESjCjU5SBQyk4aiUgEidltGCs7yuaXiIvXRYbw1wPRnEd4mM3gaqz4c6/O/gc+/TSF1ay69pS9gzF9Z3x3MoOFjy9i4sZ9ZJ9lsZoaQqf4PrFJrFetYrVHqAPFOIVTK+MkiJ8jRl11A7WNVLf6/MA8nuiPaJQdNTQ9iF/4ChtH+mOqldHiz/3om8PyTbqNKcTEz4mP427ZytIBFgbFa+JIbukPtVloA8U4hVOr4yQ0LFB6WBJzOf2B2oxAVX074+f0pbGnP2SwfU2bhDJQ7YqT4wWVmqIdcRIcv+91ApWbS2jfx2k8GCgfaueak/iZYlDrtStOguP3vU6g9tJ92vfpS1dmxRoD5TPt3qwTP1cMaq12xklw/L7XCdTBwmDxew1nYNrVZKKgUDjZ28RA+YgM+5y0hUsd1DrtjpPg+H2vE6jS8x3dSG5Vf8ymbKXwh9sn6WKgfEKWHeKOF1RqCBniJDh+33dm0SOmHVzAgf5QuTwyw/r5etF+pO49LR5qII57Wv0D+t+ewoapWwyUD8gSJ0FbsNRBzSdLnIS677samOfPsrgz2l2cNpLAv61mrY8Qz69grEuPlHmowZrTjrxUiaPCs99gWD8OqnNkEdlnL9WYiSPJc7iXTBTP+VN/TvJeDs+P1depr8k9vIGRTtNrrI44b7FA/7bIFCfBWJiouWSKk1D3fc99jUvxOOKV49oP+gQVlH3cTU/gYo+Y7gKuzNzBroiM4Ydr1d8rfg0/IIevL1U+Hselr3PWr7n0tfqK9grsb4tscRLqLqh0arLFSeD77l0g55qMcaLmkzFOAgPlXeDmGuMUTrLGSWCgvAvUXGOcwknmOAkMlHeBmWuMUzjJHieBgfIuEHONcQonP8RJYKC88/1cY5zCyS9xEhgo73w91/wWJy6ojeGnOAl8373z7Vzz45oTF9TT81ucBL7v3vlyrvl1s44L6un4MU4C33fvfDfXzHESC+u3336L1dVVXwxjQbV6jqP2EO+zH+MkGO87ueerufbixYtSnDjCOfwWJ8H4t5N7vppruVxOe6NfffVVvP/++74bxoJq9RxH7SHeczHvfv75Z31p8A/jfSf3fBmoc+fO6Y/4CxdU78R7LuadWAb8hu+7dwxUC3FB9Y6BCicGinyBgQonBop8gYEKJwbKAeN2P3YjEutCz8VpLD6quIMrNUxwA1XA49U0PrsQx9noyfJ04bM0Vh8XoGwlkZLk+uDtwEA5VXiKb/QL1pfdl6zwEtnVFIa0azlHkEjvMFJNEMhA5dcx3RtFR6QLl9P3kDOuQa4vU5f1a48PZ6xvMhUGDJQLNW+cmM9gOCIWxG6ktvXHqGECF6j8CkbFH7VIAmnjZgeV9Gmc3qgziBgoF2rf2XUP6b7igijLLXuCJFiBUrAx1ak91l3nr5myPolBBsofpA6Uso5J7TY/9mtQ1QsqORWoQB0sYFB7bADzT/THbG3jj39c0/8/fBgoF4xA9czu6I8IBbzMriI1JP4iRtA1toK8/kylqgWVHAtSoI4yw8XH4kls6Y+RNQbKhdqf5v0TLs//jGN9WivGtORekAJVWo4s7uxL5RgoFyw38bQ7si5iQnwaoz4X7U9h02YVSlso1UHuMVDhxEC5YBkog7KDWX0neWx0BW4/GNYW2BrDjtW05mHHalrzsGM1rXnYsZrWPOxYTWsedqymNQ87VtOahx2raSuHITeXKD7GQNVlP8clJHWgVAcLg8UFLzKGyt2a4t9e68J62utqDDtW05qHHatpzcOO1bTmYcdqWvOwYzWtedixmtY87FhNax52rKatHCVbScS1x4YR4kOcHLGf4xKSPVDK8tXiwlgRqGw2izfeeIM3dTgFP27iietWietXiX+3uNjeiSeYHyhGa6Dux3h5rCws4UD/KmwYKBdqByqPjH6keWTkdmkTz4iTeNyPF1uThd8CVRkncbliM2UnjYQ4sDeSwOy2fgR5lTw2UxOYszuQMwQYKKfsTnURhxnk7iF9uQsR9bmOzlGs6DvJGafG8VOg6sXJkN9MoV+cfydOdUmtIvv8WD9NSj905eOPkbL7xCUkGCgHSp+62I4ozsZ7cHF6Ef/LODWFXwLlNE4lhce4M3MFF7pixT9w6oieLS5Ljw55VicD1QSMU+P5IVCu40R1MVBN8MUXXzBODSZ7oBin5mCgmuT69euMUwPJHCjGqXkYKPIFWQPFODUXA0W+IGOgGKfmY6BOSewQ54LZfLIFinFqDQbqFIxP68QCKu56TM0jU6AYp9ZhoDwyH0rAU1iaT5ZAMU6txUB5wDi1ngyBYpxaj4FyiXFqj3YHykucCsfGqSvkFQPlAuPUPu0MlOs4GbeTUqfviL6Nj+e3YXc6MNXGQLkwOzvLOLVJuwLlfs1pD3OJiBqms4jHzyIqIiXulzjLSHnBQLmUyWQYpzZoR6A87XPamUWP6YoW+c1k8bIqvKmrJwwU+UKrA+V5h/jKKAYXyi8vx0h5x0CRL7QyUG7jpBz+iPlr4xi/lsbqn3+PpMW9pPLrUzivRSqK/jlGyikGysbdu3e1neIkh1YFyvWa096cvnZkjBiGF/ctA5RfGUOXNm0nhuYf4FluFX/J7OrPkhUGyoKI05kzZ7RP7FrxF5vqa0Wg3G/WKeoWXQSdQyncWlrCjYlefad4J0aNnVAV8uomYKc2Te2bvFIRA1XBiJP4Ofy0Th7NDpTbOBUK4jO5PaQHJ7FeWl1ScLhsBMguUgqWrzJOTjFQJoyTvJoZKNdrTke3MRJNILm5iYWFDf1Bg4L9zEgxUpEujFVESjlcxszMOuPkEAOlY5zk1qxAud+sA7ZT3dr0HZFODM7v6I+aKdhZGNIjdR5T68UcKYeHyCuK+iw5xUCpGCf5NSNQXuIEZR1TFy7h6gf6XXwiCaQtbwulRmquv7hPSl2T+uDKR/h0jgdrusVAqYxAMU7yanSgPMVJONrHvrZClMdmMlE3UltJsbbFQwu8YqB0P/30E+MksUYGym2clMNHWFtawtLSWsWtoPJYnzqv3w9xCAsWkcovjmJogXHyioEiX2hUoNzFybQvyRjdKWzrzxblsTJm3LR1BJl9c4qyWFuxPiaKnGGgyBcaESi3a07iwMoPplbxtFDA09Vp9Eaj6P1qo3Rb+xNqpEY7iwFTI7WYfYbc6l/AYzBPL3SBEvubbt68qX9FfnHaQLnf5/R3TCe+xKbj1R9TpGocqEnuhCpQxs7wV155BQ8ePNAfJT84TaA87RDfS6OvL409/UtLG3NIb5kKdpTBsMWxT+RdaAJlPpRgdHRUf5T8wmugKuO0/9PfMD9xET3xOOLxC7gycwePrT77F4GKjOB29fbcCWVZXZZWSvuY8iszmNGPeaLGCEWgGCf/8xKoyjhlM5/rVxQoH5GusdL1m0oOFjCoPtc3W+sTuBWMxqZgHEuuKNwd3miBDxTjFAxuA1W1WffgTxgUcRIHTU6ktZN7b6U/Q2+0GKmYuiZUvrL0BAuDEfW5TowuH1pGSlmfRKxjVM0UNUugA8U4BYebQFntc9pL96lfd+N39ypWlfKbSIpL9HYMYP6J/phO2Unrl1KJonfiDnaPTzKl7Gcw0qk+l5iD+71i5FSgA2Xc5IBx8j+ngbLbIb4yqq4lTa5bb649UTfn1BBVXglTOLk8ihgRxLrEvquTa40PZ7jPqZkCv4nn6BMbkp6TQNnFSdhKxjFQuYpUomB9MobI2Jr+dbn8ZhqXu8RalhEqMaLoT22CeWquUOwkJ/+rF6hacdL8fRqDs1ZXHihS1DWlyOACqtehDAW8zN7HknbKy/2yzT1qHgaKfKFWoOrGSZPHyl+/wwv9qyriGCaL454Olv4bG2xR2wQmUOLo8M8//1z/ioLGLlDO4uTEBqYGqwO1l05gpObBUNRMgQiUiJM4Olw8d+vWLf1RChKrQDUuToK4fO/JMU0aZQvJ7g50DMzDbu8VNZfvA2WOEz+tC67KQDU2ToIaqD7TMU3KDtLa4Qcd6BzJoOwiBdQy0gVqO9WPKZuN/spAMU7hYQ5U4+MkmAJV2MasEafRZZRdAopaSq5AHYlTBzoQGbltcUmL8kAxTuFiBEpcWLDxcRL0QJUO3BRx4p1X2k2qQD2ZH9AWDKujegUjUK+//jrjFDJGoESUjP+exEn9w6YtNzYjEkNXvAcXJ9JY3T22ObdOBKob58+LOPG2ULKQJ1DaDskBNTjFO2ZYHfVrBOrs2bN455138Mknn2iPcQR/vPnmm6XgWK85KTj+8Ut0a9OUnx9XeJnFaum8OzU+/2K1T0kEqvj8+SneFkoW0gTq6PYIomLT7sk8BsRCZnGpC7GgGgspRzhH7c06Y03K+gRecU+6UXH+nDpN9eabCFQEiSSPDpeJJIF6gvmBGCa1W7QeITNcXIgqT0345ZdftFV9jnCO3t7eOvucagdKUHZm0adN01nxYUwOa8u8LZRspAiUdtkK08XoxdqUdhH6mPm20kT11A+U+AN4e6S4EzxiutgcyUmCQOXVNaYI+tKmY3iVdUzGxIIW4VG85IKTQIlr0Q1qgeqIJ7GlP0Zyan+gtlPotvjUrnR76XrXhfa7wkvkHq5pJ6GuPczhJbcxTsFZoLAyWly26k1HbdfmQBUvc1FcWOyGsW8qaBTsL0+UruhYGtFeTCzzXmreMFBB095AaZ/YdSNpvjNGiXHJVfsDN/1M2ZhCZySG967M4Ia4hMeNaXxQuuYQb1vkDTfxgqaNgSret776WtAm4s4a2gLXjVT57Vx97gALQxb38zed/xX4TdumcLeTPDZVdmowSahNgSrg6b0vtfh89J9P7T/aLfyI38fFAqeuRSWSuPc0KDtoHuG772zOj9f2ydX7JSNr9QN1cphBH8yfy5Cc2hKo4gXsi+GxXVsorT2VD3WFK+D0X7LIGKwvQKvgeP8h1vQrO2afW5+6UXiqTvPAiKD6B0HbEb+GhxWRF0dZ3xff6/4u/H+RyNqBOjlQM4JEutbtpEgWbd5JTlWUZVxVf8ms9rsph/+D6d4oom9fxNXxcVx5L4aIOHXj8gK0rUXlEI8WZ/TH1V9EUfP8uvaak8gb+7fyWJ/u1S/+XxyRRLr4fXzJ6akuvJa4nzBQstmYQqzqKGdVXl07UP/6l5+isYPZnmJcEnPiOkkFHB8XtH17WnQ+GsNX/5rWN40LeLw4UrxDSewqpr74CF/cyWqHNRSe3tPP4PfrcWfGmpPN0E4WFncRXqxagyS5MVBSOcLKaMziPDH9cAyL8xPzm/O4Nj6DZfPZr8bH6FeXKzZjtpDU9un14N+3y585ygxrr+GOY5IJAyURZSuJ7k5186Rq+2MNY+IGkjXvOmJiBKpqh51xxr7FDmLb1xC1DwMlC7EJ12Vx6IFgfGBQtUZkg4GigGCgZCCOf+rvx+y2zf4RI1A9s7C/s5sJA0UBwUC1XR4rY+9hrNaR4+KebSIeNlcaFfL7+yef+jFQFBAMVFvVjlN+d1ff53SAhUERlg7E1M28qqnzy5hMmq5AykBRQDBQ7aIcYnnsPK58/X/aRdjKRxb3b4yhd+zkekXauXsiIOroHEphNSumy+Hh4jQudCUwZwqOsnyVgaJAYKDaQdlHZqSzGATbUXkVBwU7C5fRJT7NM08XOY+pdWOd6gkeLN3AmHbh/+JzYzeWIA4oP9r9HrdSQ2WRu/X9rrpZqL7mVhr/XPaa77Hrx8OhKHAYqDZ48f2fMD4+XmfcxCN9ejNxCsvf0te0aWZu3Mfjsv3qj3Cz6vuM46b6jQ7Wrlc9Pn59Td14tHrNdaw5Op6BqLkYKCKSFgNFRNJioIhIWgwUEUmLgSIiaTFQRCQtBoqIpMVAEZG0GCgikhYDRUTSYqCISFoMFBFJi4EiImkxUEQkLQaKiKTFQBGRtBgoIpIWA0VE0mKgiEhaDBQRSYuBIiJpMVBEJC0GioikxUARkbQYKCKSFgNFRNJioIhIWgwUEUmLgSIiaTFQRCQtBoqIpMVAEZG0GCgikhYDRUTSYqCISFoMFBFJi4EiImkxUEQkLQaKiKTFQBGRtBgoIpIWA0VE0mKgiEhaDBQRSYuBIiJpMVBEJC0GioikxUARkbQYKCKSFgNFRNJioIhIWgwUEUmLgSIiaTFQRCQtBoqIJAX8AzKEYKHbH5DEAAAAAElFTkSuQmCC
|
As shown in the figure, the rectangular cuboid has a square base. What is the surface area of the rectangular cuboid? ( ) cm²
|
A. 16; B. 12; C. 6; D. 4; E. No correct answer
|
A
|
55
|
iVBORw0KGgoAAAANSUhEUgAAASgAAADQCAYAAAC0sfzZAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABJCSURBVHhe7d1PaBxnmoDxPhj6ErG5NCQIZQM6yGDE4osRKBB0STAMiwzGQwImDGJgERh6WYwIXrAO1g6M5mDFBx0aDMvaWOCMfRA4icLKaOLINrPrkXCEkOOxwCuh2KENUg4NncO79VZVS9XVVa3uUv/5qur5wQdRqVpWvv76UVV1S50RADAUgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoCxCBQAYxEoAMYiUB2yvr4u77zzjmQyGUZKB5rHrHUAcWLoQPOYtTYLihOSb2dnR44fP879fkTMWht543T27FkWakp44+SNFJrHrLWJP06//vorCzUF/HHSj7nfo2PW2iAoToqFmmxBcVLc79Exay0WFifFQk2usDgp7vfomLUWqhcnxUJNpnpxUtzv0TFrLXJYnBQLNXkOi5Pifo+OWWuBRuKE5GkkTopARcesHRFxSqdG46QIVHTM2hEQp3RqJk6KQEXHrEVEnNKp2TgpAhUdsxYBcUqnKHFSBCo6Zq1JxCmdosZJEajomLUmHDVOLNR4OkqcFPd7dMxag1px5MRCjZ+jxklxv0fHrDWgVad1LNR4aUWcFPd7dMzaIVp5zYmFGh+tipPifo+OWauj1RfEWajx0Mo4Ke736Ji1EK2Ok2Khmq/VcVLc79ExawHaESfFQjVbO+KkuN+jY9Z82hUnxUI1V7vipLjfo2PWPNoZJ5irnXFSBCo6Zs1FnNKp3XFSBCo6Zs1CnNKpE3FSBCq61M8acUqnTsVJEajoUj1rxCmdOhknRaCiS+2sEad06nScFIGKLpWz1q04sVC7qxtxUtzv0aVu1rp55MRC7Z5uxUlxv0eXqlnr9mkdC7U7uhknxf0eXWpmzYRrTizUzut2nBT3e3SpmDVTLoizUDvLhDgp7vfoEj9rpsRJsVA7x5Q4Ke736BI9aybFSbFQO8OkOCnu9+gSO2umxUmxUNvPtDgp7vfoEjlrJsYJ7WdinBSBii5xs0ac0snUOCkCFV2iZo04pZPJcVIEKrrEzBpxSifT46QIVHSJmDXilE5xiJMiUNHFftaIUzrFJU6KQEUX61mLW5xYqK0Rpzgp7vfoYjtrcTxyYqEeXdzipLjfo4vlrMX1tI6FejRxjJPifo8udrPmjdMHH3wgP/74o2xubsZiVBZq0OcY9cfTp09jGSdVud/RvFjN2s8//yxvv/32/h3OSN+IW5xU5XtH82I1a/qTVO/oY8eOyfvvvx+7UVmoQZ9j1B96n+vc6ZFU3FTudzQvloHSBRtHLNTo9D7XudM1EDfc79ERqA5ioUZHoNKJQCEWCFQ6ESjEAoFKJwLVgM1bn8jAwEDoOHVmXK4U7suzvbJ7C7RakgNV2l6RO1cn5LOPDtbT1Tsrsl2yPrn1pXz5vbNfGhGoBpT3XsvO+n3592FnoZ360//YT3XbY/2R3Jz6jfRnrc9l++XiYtG9FVopkYEqv5SFz4ekJ5OV/k9n5O6j9eo1leu1RlbGF9L7g49ANeF5Ydj+94cLz90tB0prX8iwLsTsqMxtuRvRMokLVHlDrn/cY23vk/zCKwlKUHmjICPWD76g9ZYWBKoJ9QJlfVYK7hFWftHdhJZJWqAqayl3aTkwThXF+fMyQqDiwexArcr0gC7EnEw+djf5BC1UNCZRgdq9J2N6SSAzKDNr7rYw5WWZvhqyoFKAQDUhNFClbXk4PSJZ63PZkevWsVSwmoWKhiUpUOXFvL1WMrlJaSQ9pZJeLU8nAtWESqAyPb2eZ/F6pcdegP8gp//wnbysc7zuX6hoXJICtb+OhguhP8zgIFBNqCws/7N4dwsXZKjHWnDZnHw49Rd5FRIp/0JF4whUOhGoJoSe4qniouT7nIU4OL1a98JnEHvB1hlhgvb1jjBB+3pHmKB9vSNM0L7eESZoX+8IE7Svd4QJ2tc7wgTt6x8VBKpx4TNuIKMDZdlfeAHXFvRPxdT7w3r27eqMMEH7ekeYoH29I0zQvt4RJmhf7wgTtK93hAna1zvCBO3rHWGC9vWPfY8nJafbsnlZbPYnWcqEz7iBTA+ULObdxWgtPHeT0lNB/TtGvKlDdHE8xfvll1/sP6qo37f+kcV95VWZHtR1kpWxe7vuxjBlWf3mv+X/3I/ShkA1oX6gyrJ8KWd/PjM6Jz+5Wytx0u26WHXRonlxC5Q/TvqXYL2K1g+zPl0rfdYPs9BfPijLq4Up+ePSYRFLLgLVsIMA1QSq/Er+WjjnLLjsiBQ2nON24tQ6cQrUYXFylGVjzl0zfeek8HBbql5MoC9dKVyQC3Mb1p7pRaAaYP+ycK/+WoIelmckm+sPeJlBVnIfXpA/rznLjDi1VlwC1VicDpRefCWff+SuoWxO+u011S/91lq68dfgX4FJEwLVAPuXhfUlBaHjTdVPP91GnForDoFqNk5Vynvy2l1Pb9L7uswaBKoN8nnnYjlxah3TA3WkOCEUgWoDfabu8uXLxKmFTA4UcWofAoVYMDVQxKm9CBRiwcRAEaf2I1BHpO9szKlc+5kWKOLUGQTqCHRR6uLUhUqk2sukQBGnziFQEVXipN8PgWo/UwJFnDqLQEVAnDrPhEARp84jUE0iTt3R7UARp+4gUE0gTt3TzUARp+4hUE2YnZ0lTl3SrUARp+4iUE26desWceqCbgSKOHUfgUIsdDpQxMkMBAqx0MlAESdzEKgQuihZmOboVKCIk1kIVABdlLo4deivsqD7OhEo4mQeAuVTiZP+O7pYddGi+9odKOJkJgLlQZzM1c5AESdzESgXcTJbuwJFnMxGoCzEyXztCBRxMh+Bsty+fVuOHTtGnAzW6kARp3ggUK5vv/2WOBmslYEiTvFBoBALrQoUcYoXAoVYaEWgiFP8pC5Q3333nT0QL0cNFHGKp1QFSsP01ltv2ePp06fuVsTBUQJFnOIrNYGqxElvf/bsWfvNNREfUQNFnOItFYEiTvEXJVDEKf4SHyjilAzNBoo4JUOiA0WckqOZQBGn5Eh0oHRh6gIlTvHXaKCIU7Ik/hRPb0Oc4q+RQBGn5EnFRXLE32GBIk7JRKAQC/UCRZySKzGB0gvi165dcz9C0oQFijglWyIC5X227v79++5WJElQoIhT8sU+UN445fN5dyuSxh8o4pQOxgVq68sp+a/n7gc+/kARp/TwBoo4pYdZgSqvyvRgRnKXlqXsbvLyBoo4pUslUPpL3sQpPYwK1O69MclaCy+THZN7u+5Gj0qg3n33XeKUMpVAHT9+PCBO38uVgQEZCBunzsj4xBUpfL0i2yX3JogFgwK1JTdOD8rISM5egIMza+72A5VAvffee/ZPUeKUHpVA1cZJleTNzqas/Od5ydn7/F7u7uzIjjvWH92UqTMnpEc/l+2XT2+sWbdAHBgTqPLyJcmdviFbazMyqAspd0mWfed5lUAx0jvqn9YtSt7eL2/9V63ik2kZyernszJS2Ai8jACzGBKoXbk31iNj9nmdHkk5i8j5+ACBSvc4/JpT/UCp4mJe+ux9hqUQ8mQMzGFGoPSoyXPEtHXjtLMoB2ek9kQPCHN4oA5+AGYkN/nY3QZTGRCosixfysnA9Kr7sWX3nozZh+I5ueQ/zwNCNRIo60j8+ojzA/DUrGy422Cm7gdq64aczgxK9TVxJ1q6iLLn56XobgXqayxQYp3m2YE6bD90XdcDtTYzaC2UHun1PzXc2+MuIn+8gDAEKmm6Gyj7VC4n4/Ob+08JH4yH8odBXUThL9wEqjUWqN35806gcpPCVSizdTVQejE8OzonW+7HfuXHk84zLtlRmQvbCdjXSKA8lw/yi/zgM1zXAlV+dUfOZzPy+6/qvWRuTb74J+coqi+/IK9YTairgUAV5+11l8n0yeRjFpTpuhKozVv/7Lyq1x490vvJLan5M2Sbt+ST/etQ7ujplSvfu58HahwSqPKGFEay9lrqs46eePLFfF0JVHnvdfX1ptd7tYfa5T157d3HHW/4HQWEsZ8RDgpUSbZX7sjFk26czs3JBgdPsdDdi+RAS+gvC/dLzj5101H9rHBvj7vtowtSuP+C38OLEQKFBNBfFq492t4fQUfoiAUCBcBYBAqAsQgUAGMRKADGIlAAjEWgABiLQAEwFoECYCwCBcBYBAqAsQgUAGMRKADGIlAAjEWgABiLQAEwFoECYKwEB2pL/vbNN/JN4Hggz3bd3WApy97LFVmy52ZJVl7yB95ghgQH6ge5PTEhnw1Vv/FCz4kzMj5xTZZ+cndLu+KyTOkc9ZyQM+MTMjF+Rk7mstIzNCXLvKsAuiwFp3irMj3gxIm3Ufdx3+UkO1KofhOB0pp8MWzN18h1ee5uArohBYEqy8K4E6jhAg+3Ko8nJWfNy/hC7QndT3Oj1pwNyPSquwHoglRcJF/ME6hAi3l7Xk7fqH3bZidQw8KUoZsIVJpV3kcuOyKFqnO8LZkbtU79Qk+JvRfVH8l6yLumlLatff5WiZ++N92ScxF+u/qNn0pv1uWRfq1Hz2SPq/PwIFCxV+/ZyuDxYP8pzLJ1ltdnz00me1IuLry0thRlefKk5D4uyFrAG8iVX/3FvqjuPNkwIZ99mJNsJiv9n7pvhll+JT/cueput75ufvHgQrx+bI8+yS9q+qx/a2rI8y7Tet3Ldz0MqUagYs95tnKiiXGt6inMoixe7HdioqE5MSTnZp8EHzkVFyXf53/b8A2ZPeXM78h1fQP7kuztlWR1etCJzm8vyh//tSAP7aOmkry4MyZ9uj03LpOXfyuXv1q33y26tP1Qpu23Jc/K2D1eAwIHgYJlTx58/o9OUKwR/BKDsixfyllHWmPi70fxyQ25MnFVFl56Dn3c61uZ8QXf6V/lWdVT8sVa9Wd258/bt8lNPna3IO0IVOwd5RRP6SndkHw8/URePCnIOesIyQ5L35jMe4MjS3JR31p8dE4aeglZJVB6ilfluRSG9d8IuAAfehukFYFqiPOgCrx95UEVOPIS9lB7Xhiu2td+TD4vSN76N/yf84/qx+9RTvF2Zelin2RO37Ay5yo+cU+1rH+rb1IeVxplfW/Duq3miCgEgUILEKhG7EcoLDhBAQt7IC5KPuBr1X6Pzn7+x2plv8xwwfoXjuh/p+zrQefnfedspTWZdSM1OufGrBKoU7Oy4Wypj0ChBQhUlV35+99rT2D09vm88+AJfuyEHGG5D2rvdud7CQ6dHjkdFihVOcI6/P+nvsrXCfx/WpuRQetz2YtLzse783Le+jiTOS0BL5uyFV++tGbQRaDQAgTKo7w6I//hvwKskbGPVtwjn8AHT0ig/LcJCFY1a//9rx8eqIMHefgpZCM2r4/Y81JzBKXKCzJe9b3+JHOjzjzmrNO8mmvoxQW5NL18cPpHoNACKQjUwdPgp2brnJzoU+j91gPed4HFe1TjHHEERSE4UE4YDx6IdY9YatQLVO3XjqRoHRXphe9h67TN9/9dnD8v2eyozHmOlsqPJ52XCFij79yM3F/fkZ2dTVm5MyUf9Y/Idc/3Ul4Yt/cjUDiKBAfKeXbr5ueeFwL2nZOZu/5ntW7K1fEzcqLHOp2xHhjVj1ONhCdIoUdAlQedf1THrJWBau5rhSsuT8mQ/r/3/0ambup83JXCBWvOeoZkqua1BmXZmPtU+jVq+/+P1sielMn9fXXeb8rFk+6Fdn0BqPV19QXlu88eyN2Zc1WRu/vgmXVaaN3mbkH+peo2/EkcJDpQzT+7dWvVdxihP9GrCuCGqOYCdb0jKGu4X8O4I6iK0rasfF2QK/Y8XJHC1yvi+22UKvorLF8XrthzdvXmI3lRtW/wvN/+wTpJXLpWs33i2pJ18hh0G/4kDlJyDSqasKMiHf4wBAdKVYXEPYUJ2q9WvUBVvrejXYMCTEegwuxfHPdzwlEdmQYDdWhYrK+9/2+GB6pyJNZY6ID4IlCBnJCEnV45gfAeRQUHqhKSqlNC9zpWbaQ0SN5twYHynzYCSUagajhhcE7laqOzH4jK5//td1Uf14zAkFSOpLzjIE77YQscLbruBMQAgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoCxCBQAYxEoAMYiUACMRaAAGItAATAWgQJgLAIFwFgECoChRP4f5E8ddsyCe24AAAAASUVORK5CYII=
|
As shown in the figure, the volume of the rectangular cuboid is 4 cm³. Its base is a square. The surface area of the rectangular cuboid is () cm².
|
A. 16; B. 12; C. 6; D. 4; E. No correct answer
|
A
|
56
|
iVBORw0KGgoAAAANSUhEUgAAAXgAAADyCAYAAABHwd6sAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABm4SURBVHhe7Z1PaBxXmsB1CHQyM8qcBANOswEFPOD4oIsxeMCji0TAzEgXDTEYmxV7iMCghcjGZCHaYRUfdEiUGSKWnhUZRslqh6BZEEREw1p4sutMcMbESZysjInBseN4BgXsPQj6kG/fq6pXXd1d1apu9Z+vSr8ffGB39Z+q9733q1fvvSr1CQAA5BIEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwfeQ27dvy5kzZwiF8fOf/1yeeeYZefbZZ2O3E72PixcvBi0JkkDwPeL+/fvy4x//WPr6+giF8f3vfz/2dUJP/PSnPw1aEySB4HtAVO4/+tGP5OWXXyaUxAsvvBDK3eYo7j1Eb+LFF1+Uxx57DME3AYLvMrVy//zzz+W7774jFMSnn34qP/zhD0O5f/3117HvI7ofjx49kp/85Ceh3BF8OhB8F0HuegO5642o3L/3ve/J2NgYgk8Jgu8SyF1vWLk/+eSTyF1h1Mr9N7/5jTdcg+DTgeC7AHLXG1bu/f39yF1hxMn9o48+QvBNgOA7DHLXG8hdbyTJHcE3B4LvIMhdbyB3vdFI7gi+ORB8h0DuegO5643d5I7gmwPBdwDkrjes3H/wgx8gd4WRRu4IvjkQfJtB7noDueuNtHK3geDTg+DbCHLXG8hdbzQjdxsIPj0Ivk0gd72B3PVGs3K3geDTg+DbAHLXG1buVhzIXV+0IncbCD49CH6PIHe9gdz1Rqtyt4Hg04Pg9wBy1xvIXW/sRe42EHx6EHyLIHe9gdz1xl7lbgPBpwfBtwBy1xtW7k888QRyVxjtkLsNBJ8eBN8kyF1vIHe90S6520Dw6UHwTYDc9QZy1xvtlLsNBJ8eBJ8S5K43kLveaLfcbSD49CD4FCB3vYHc9UYn5G4DwacHwe8CctcbyF1vdEruNhB8ehB8A5C73kDueqOTcreB4NOD4BNA7noDueuNTsvdBoJPD4KPAbnrDeSuN7ohdxsIPj0Ivgbkrjes3B9//HHkrjC6JXcbCD49CD4CctcbyF1vdFPuNhB8ehB8AHLXG8hdb3Rb7jYQfHoQvAG56w3krjd6IXcbCD49+17wyF1vIHe90Su520Dw6dnXgkfuegO5641eyt0Ggk/PvhU8ctcbyF1v9FruNhB8eval4KNyf+yxx+SNN96QS5cuEQrizTffDOVu/1D222+/Hfs+ojfRa7nbQPDp2ZeCf+aZZ7wKQhBE89FLudtA8OnZl4J3FdUOzTz99NOEonC5eeqpp2K3E70Ld2V17ty5WPF2KxB8eva14Dc3N4NXQAsuN7dv3w5eAS1YodrcWMHGibdbgeDTg+BBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9aFF8GNjY95+IPjdQfCgCpcbBK8PDYI/efJkWEd+9atfBXsGSSB4UIXLDYLXR68FH5X7q6++GuwVNALBgypcbhC8PnopeOTeGggeVOFyg+D10SvBI/fWQfCgCpcbBK+PXggeue8NBA+qcLlB8ProtuCR+95B8KAKlxsEr49uCh65twcED6pwuUHw+uiW4JF7+0DwoAqXGwSvj24IHrm3FwQPqnC5QfD66LTgkXv7QfCgCpcbBK+PTgoeuXcGBA+qcLlB8ProlOCRe+dA8KAKlxsEr49OCB65dxYED6pwuUHw+mi34JF750HwoAqXGwSvj3YKHrl3BwQPqnC5QfD6aJfgkXv3QPCgCpcbBK+PdggeuXcXBA+qcLlB8PrYq+CRe/dB8KAKlxsEr4+9CB659wYED6pwuUHw+mhV8Mi9dyB4UIXLDYLXRyuCR+69BcGDKlxuELw+mhU8cu89CB5U4XKD4PXRjOCRuw4QPKjC5QbB6yOt4JG7HhA8qMLlBsHrI43gkbsuEDyowuUGwetjN8Ejd30geFCFyw2C10cjwSN3nSB4UIXLDYLXR5LgkbteEDyowuUGwesjTvDIXTcIHlThcoPg9VEreOSuHwQPqnC5QfD6iAoeuWcDBA+qcLlB8Ppwgn/66afDPCF33SB4UIXLDYLXhxO8C+Sun30teIIgWgvkng0QPEEQTQVyzw77UvD28p/QGe+//74XcduI3sdXX30VtCLIAvtS8AAA+wEEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwe+B8qObslk6K8cHCjJ9KXhxV8ry6OamlM4el4HCtKT+mFJ27n0sq3Pjcqj/mJRuBS/2kPKDq7J8dkQO9PdJX1+f9B8YkQvrX8pOsL1TaCsHAIsCwV+SadMQbWNsLqZkoxx8RQ+4uTYr504flf5gf9IJ/qaszZ6T00f7g2PIsuD/T94vTcs/PT8kBe9Yei+28taSjBrBXrz6wJxGd+Te+rQUvX0ryPBSp3bub/LHhWn5x5FikNP8Cn7ny3W5MDJoOiZ+mQ4MjsjZ5avyoJl2uG3ae9F8/lhJOA92nt4L/psVGesryuTqF/JttJt1aTq+wezckw9KE6bh7q0h3VhYaINct2TxiN3HtIIP2FqUI96xZUvw8WV2WWa8Bt9rsd2S0rFacZRla+WkDBb6ZeKdu8FrHeLhmpzKseC3TXv0T5b1URguyVYqyW+bZh2cCBF8V+i94G+VZOylK6Yp1pAkeI+yXHlprPWG9ND0IgbaIddAKmY/mxK8OeZj3rFlSPCJZebKoMdic2XaVCLaibsSzaHgH74rk+YkOfrKptx85LfUnXsfSOnkYHD11ifF2Q/r23AN22unpL9Q8N6P4LuDCsGX4tpkQ8EbLpnPtVRDyvLhrO1FIPj0NCozJYJ39QXBt51vViZkuLQVI/BtWTsVCHtgVj4MXo3l1pIMF6dkYzXIE4LvCnonWXcTfEuYS/al0WDcHMGnY7cyQ/A+eRV8WTbmF+RG8L86PpyVgd3qcnlLSsODpo1sV/KE4LtCLgRvJ3/mxo+EKycKA0MyPrcqn1XN/tySdyKXlFURkUL5zvuycKbyXX2FARkcOSvL10zlrKNDgt/5UtbnxmVoIOgd9R+QkbPLUr0LMatxtq/Jsvd/f7+Pz10xfaw4yvLg6rKcHTkQiLsgA0PjMle32iRNmdUIvnxHNi64VSz9cujMSsrx2Sg78uX6nIwfqdm/1c/qJvQuTQf7Exdpk1J+IFeXz8rIgWDy25Td0PicbNxJ2HGvnEdkMMiPv1Ln3+QfvN+Nr69+HR0KJij9zzSeoEzI0cYds6UGsz+lM+67++XAkXGZOv+8DM00UylbxNXlg/NyPXipGtNBWDxWGcJJIfjalVB+e96QqnSUH8nNP79lyvSQ9Aff5U8CB+XVf0jOlK6F9X/7WqQsa7blmYwLvix31ial6E3S3hRveDCchLWJHJWlOru4nlaMXO1lpGkkheF5ueq1vB2598G891pfYVjqF2J0QPDeKoOiTJSCxm+PZ37Yl2zRvN+rlf5qnKlw5ca0kdGaTB4yJ4LT5+X86UDyRgpjK7WTi6bBlez3FWR4/gO5Z41ufmNz1q2GqUTlmBqUWVTwN27I4ugBOW73YeqEDAYySzM+G2JOEGuT5riKk7J685H3OW+8d8I/1v7RpfgTRqs9eK932W9kuC5f2rKw4li1dcp8l8l5qebHylsrMlG0+7EgH/iFV6kjXhnV11c3QVmcXPXHsM1vfLIc1NFIHAs/6Oeof2hG1v2dMifzVZm0q09s3qLDJeXrMn84kktvf0rePlbKwuWvyUhTltfn5aB5b3HuL8EL1ZRND794bLGSs10Ev31lVoYK1e15PZiYDSdzv/qjzJ+bkhGvPPzvumY+d/TAcTl9/rxMnXCdkoJMvrstDzamzcnYnCSmarc99H4zz2Ra8OWtRU+Uh+ev1wjE7zV4ny/OyOWqPCbL6sPZAe8zlYZmMZeoU/b9fUaW3wSvOdot+FuyNFyIOZ67svyc/zsD0Qnp8HuKctT08G94Ddzn7vJz3vv7hpfkdvCax91lec6+XtfjuiELh+13/Z1c+K+v5P79+5FVTWkEb650TszJnyJd0vKVl/zL993GZ0Nc3g7L/PXqErAiXgzKujhzWeqaZkuCfyiXZ4pSOLVW05uzk/h+Xeh7btmUfoAnU/Na0RxPze7ZCURfHDX1tXxFXhqwr5+StaqdfijvTvpXACeW/tcr778GE5gPL89IsWDeX9PFDMuz7zlZdjtl3luIaSMPTXkMNHuya4FbJZOvwpjU9SMstrMyWHOSbCT4oINVV/+Dk4iVskl9yENT5t53DRyVs0vRq6FI/oqmt75Qve36/GF/m8l73hWfYcG7BnLQyCB4KUrYsPrkubA1WJJldfedCXMJVzSVqDrtbhigWvyW9greb8BHZHEreCHC1uIR73f6CuaEFbwm5Q2Z8r4n5p4AtxSzRq7frIz53xPTwK7PH/S2FaKtyCON4GP2u9H+xeGt1jDvT7jcjxWcoxXBBye7qZidK29M+d/XZ67cgjOkO2lW16eA8Fhr6muDMepQUFUn4eBkPrVRLTlL+Bt9Mux2yjvuml69hzkZzTdTKVug/KHMFpPuMbBLIgfrtyUK3kk5pr2b35kbNG3dXJH/Lrqt0cmi1W05I7uCD9cdm95Dbcfao9Lzrm5AjWQVpSwPPluV18Lhjs4L3gm2cVSE0/BYEn4jlEpM5fZ6Y3Zb3cGkEXxcntznkk7S1YT7NrYi8SmNEZzD1ZcmEhH+XsNwvUZ3hTMgs7GXIwnHGvY+Y8ouTjRhvW4c4Un47oqMefWzIIMnS8GwUTcIxtZNeceNZXtLIuuujAyJcnX3U8TVsQQaibrVbTkju4IPe0bJvcNQWFW92N0EvyNfbi7ImUMDMnD8rJQ2b8pacKLotOD9K4V0MvRpXvCm5ckpryHV9oIrl7WHF2rXTHRH8G6ILLb36lEp74Fay7r60kQiXP1I9ZFdb2RKOFY3rGNODC9dqT4qd0VQmHy3MlTg8tbEcWxfK8lJ28P1ft+I/sRcMHbvcPvWZDTYBzs8Opx0g5Mdahk0dSXO/Ely9W54tL8bV8cSaFXijbbljOwK3ht7bLDdEAr+yKJURg8ayKq8JSt2Mq84ISXvdnefbg3R+L+TMOQUS4NjSRK8YfvSjDcBaieTaycK4+9KbPA7YRnE5SFBeglcngkkldjwKuV9pHY8yNWXFgR/qnpwPJ6wPJPyk3ys/iMUzLZw4jgyaRpOnAe432l2fDhYCXTUrf7q65fRpbi163un/GBDZk7MypU4gRvCPKaKoLxum5OC9/+kK/IYEPyuZFfwYYWIH0O1uAZcMI2+8o4kWfkTbnE9rW4J3vVg6ydZK9xd+bX859+C/yQei6GB4O346NVfDsvRkehDuY7I+FywkqSO7gj+9tKwty/JV2Xut+zD3Wre0ILg3XxE/SRrhfKVX8u/fmz+ERk6iT8hNDrWstz5/SkZOj4SLn0tDAx6S1/91VoRXE82ZpI1pHxFfu3tVAxW9AvuvoWizNbOBu+V7Usyc3wmvnce8D//clAOHkyIyFLUQe+15+XfvdE2N0STMMdhMVdDS7+LrNZB8LuS4UnWysqSqkvcCP6Ydu1yqCRZudfr5dK1SVZzzN5VSWFYFqNLYhwPTSP4+8iqjsRjMSQK3l+CV4x7PEQiDX4nLIO9Cz5c4VOXM8d1mT9othcmpW6zqy/NJCIso6JMb1Su2CrckqUJ01P1NlRyXbWyJiT5WL1lkrGfiaPyO8Xpjdh18reWJmTWdUIuzcdcUVRWitTX2T1g5H5h5EJDue9Kolwrq4rqrmo8bL2NHLcl8bsMrW7LGRkQfPyqEou3nMx7T9yyOn/sszC8VJNE1xArY9B3L1+WL8LXB8wVQaV22Zsnpr0xVDcssC1bW+4asr2Cr4zXmigMygtvfSx3vKVz/k1N/zw8WL3CJ+xVNiH4b96RCdNTOvjL/65+uFtDksrM4h64Fjd00aTgw6so85nD81Kf0nk5bOQft2oj7P03NbQRudXeDmm8silfBIViH//71mT1KpDKUkizD4s3pKr4tlflF9622vr6F5mzQzG/eDvI5e5Ufseut39FNr/41v+tnXvy8VuTMhit06adxF2BuFVA9Ut7W8MOyyTLfUe+/WJdZk6+kXzHq6OBXL0188FxF+w9AMF9EOVHd/x7W2o/06rEG23LGToFH7m5wcaxi0l3/JmzuruN3o6bf3DPawj2Oe2rk0UpDMZdSrrVELYSPS/nTx+VUdMiy6Z/tTIWNHZ7F+jp8zI1fkgOjC7Ib88Hq1uKI3J6/Ex481T5wWowYZnc26qnLA9WXQOu7zmG47Xe9mgUZHAmumLBfM/6VDDRbE5K69Hv2ZF7v3e/cVguXouoKJycronwknlEzpber75rMLHMzInnk9eDE4nJ0+uf+DeneJhtVy8aIdttBTm1GtdDjqG8JUuj/mV8ccKtCnFj1rVl4FN+9IksDrvcJVz9JGGHHMIJyuqov6kq8jREm48Tc/LWe+/JH+zfBPjZcFgOtozOzfyHfGY/Ek4e1ka/HPDK2w6NrcrnVQdlfmcm4Q7i2pv3All5ZXWncmPYvCmPwuBc3Xr9VnA3d9XtS00kDq1EaShX/+oy9rhN+16JHnf5gaxPBZPyA1OyHm189kay14P5t8K4/DY67hjdZjoerzdTVzKIOsG74ZDYiO0mu1u63XOq7XiyldRmwniyaT7XFuRndiy09nb+7Ssyd3zAq2D29mh3O3P5+msyZL67/9AZWQ4qRDiBWxW79VQjl/nRqKnsu//RioTv8XrrrtdcE2HZbcuVucpz7JOiMLZSNaQQV2bxubJlkO44E3GPDhj0c+HJcMSuaKr/wx2N6kvqq6qaR0P4uU/qVNjHKFwIH2tQea8pd1s2Z0uyGfQ8fYy0vEcWx+9jGHU3TwWPaxgKysB899CZUv2Y/aUZGToxLkcOukcamLCPtriQNJ/SJMHNR3X7WxcpJ0d37T3b9lySM+64g8d0VB13eHVaEzbhrW7LKXqHaKBD2F7oqDektfPtfe8OSi+++LO8Z3qj7733lrzm/SGT6Hp7aB3bKx2VybVt03n8a6W8b38sl73y/oOULtjHOlTfpQnQDhD8vsK/BN59gvWhrJ1KO24OjUg7wWoXBOS4Iwk9AsHvJ4K7HnddWVG+JhfHGzwiFtLh3cqfZghgW1ZPxawMAtgjCH4/4cY/7Q03SQO03tMcj5reZO1UJjSNG/MtDMt85Ma5arbl2vyojMb+QQ2AvYHg9xORFSp2FYh9vvjU+fNy3sXpETkwMCSzf0q54gV2oXo1jJ0st4+zDct7yk7sDsrEcs2SS4A2geD3HfZZOyW5EPkDKf6SPX/lkfubm9Au3EPrKn8gxDu5DvrLIz/u2sPBYD+C4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAconI/wNBW877Sxj3oAAAAABJRU5ErkJggg==
|
As shown in the figure, the rectangular cuboid can be divided into two identical cubes. The total length of the edges of each cube is marked in the figure. What is the edge length of one cube? ( ) cm
|
A. 4; B. 3; C. 2; D. 5; E. No correct answer
|
C
|
57
|
iVBORw0KGgoAAAANSUhEUgAAAXMAAADwCAYAAADy6YRQAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABQLSURBVHhe7d1vaFT3msDxtHU5UMyFfTHbggwrjHReiGx9sRKaQju+0AptSXdb1xvIGsibtXAv86JpGyzohXphzYvqvqiXzGpfGIlwWwWl1sgmWl3/YfUq11izTQ1We2MkEQ33KjMv+uz5zZxJZiZn5oxJJnnOL98PPNCc38koTv16PH/GOgEAhB4xBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEHMAsAAxBwALEPMFcubMGWltbWWUzdq1a2XFihXyyiuv+K4z5aZFNr69QdatWycb3t4oLb77zH4OHz7s/Q5CKWK+AEzIly5dKnV1dYyyefbZZ323Mzpm27Zt3u8ilCLm86ww5A0NDdn/OZmFH3NEmQ/5G2+84bsP4z8fb26Q5+uek79/6Z+l8Z/+UZ5/Lhfe5158Xdo+9P+eamfTpk2TITdjtsEfMZ9HhSF/9dVXZWJiQn755Rdmgaerq2sy5O+++65kMhnf/Rj/OdXuyKqdVyXtfZ2+fUTaol6Ao0npvZee9j3VzI0bN+SFF16YDLkZYl4eMZ8nhFznEPLZT1+ySXpGirel7/VKe8zJRTi6UXpuPl3QC0O+fPny7DUMYl4ZMZ8HhFznEPKZT/rRoJw/flzO3xiXY8mk9Pns88vYWdm22gt6/Xrpuv7YW0tLOl2yb8GUhry3t1feeustYh6AmNcYIdc5hHzmM9bXLjFn6tRHXd2/yVdj/vv+8vi6fJ7wgu7EpHlXl3y6+VPpK7O/X8i/++47Yl4FYl5DhFznEPJZzMOvpc0NuROJSTy+TOpNpM1UOjeevik9G6Pefm1y5Lb/fuVCTsyrQ8xrhJDrHEI+y+lLipPokpveaRJzsXNLNefGb34ua5yEdJVZrxRyYl4dYl4DhFznEPKZT/r2j3LbDfj9PzZLsq8kyGOXZWf+VErRufH8pOXm3g7ZWyHkL774YtmQE/PqEPM5Rsh1jgn5M888Q8hnNHdk/4Y694h8p1z+aq/sveWzz+Pr0rW+Phd09wh85+WxovXHj0sDn5tqQk7Mq0PM5xAh1zmEfJZzZ79sMJF2x3GaZP8dn33MFJ4bd2KyJXVcDu36jXzaVxz2/FQbcjPEPBgxnyOEXOcQ8tnP9V3rZd3mN6fuYKl4sfOe9Ca9oNdFpe3I7cmHiQrnaUJuhpgHI+ZzgJDrHEI+FzMip/4n93Rn1Q8Cpc/K1ogjia6bcxJyM8Q8GDGfJUKucwj5bOexjP9lVB6VPtwTeLHTjf7NLmmfw5CbIebBiPksEHKdQ8hnM2Nyuat56pSKE5OOUw+L9wm42Dn2448yVvB1fmYacjPEPBgxnyFCrnMI+WxmTPqSMYm9+b58tLnBeyDIkY1/HJm+b+nFzq9uyF9uHZP//K/z8tfSfd2ZTcjNEPNgxHwGCLnOIeSzm4d9SUn8/rI89r4eGzglx08N+B5lZ6foYmedRDf2TD5MVDizDbkZYh6MmD8lQq5zCPlsZ0R6mhL+95AXzP0zx+XCw4Jt6auyc5W5B33qqdDCmYuQmyHmwYj5UyDkOoeQz8WcknYnOObmnvNkwWeXm5jv2vK5XH9csI83cxVyM8Q8GDGvEiHXOYQ8eNKPbsufTh2X48fPy41x/ycxczGvkw377/isFY57JN64Vc7mj8LvDMiAzycgzmXIzRDzYMS8CoRc5xDygEnfliO/XTn1yYbZcSS25Uj2c1aK9zenWdz1aLLsx9Pm5oJsizRK1w9+a7mZ65CbIebBiHkAQq5zCHnApG9KV/5+cJ+JJvumXdh8+HWbOO6aE2sv+4Rn+uxWidSVj3ktQm6GmAcj5hUQcp1DyIPnzv4N2V8fJ7ZFuv90O/vwjzndcm7yHvKIbD1bGuwfZO/kPySxWv5j/zm5O3kuPC2Pru2Xjebf9nTco/caXuz0G2IejJiXQch1DiGvZm65UXajG3lfen1OmYxd/r00ur9+TtvX8rBkregJz+w4EonFJb7Me0jInei2C9Oe7qxlyM0Q82DE3Ach1zmEvNr5X+mor5PGrh981syk5ebnje6vY4scKbzNMD/p29LbkX9oqHAciTVPv5e81iE3Q8yDEfMShFznEPKnmdyRebLPb82b7D//FpFtF3zWvMn+o83dn8lHH30kH33WLaf+fG/ej8jzQ8yDEfMChFznEPKnH3POvOVIyWeqFE1a+pKOJPbemr72+PHkU6CVZr5CboaYByPmHkKucwj5DMc8mdneIyN+a948PNIi8Z1Xp21P9251j+or/UEwvyE3Q8yDEXMXIdc5hHx2k06X+bzx/FzdKfFk37TtJvJ1jV3yQ8n2/Mx3yM0Q82CLPuaEXOcQ8nmYkR5pajlSfEfLWJ8kze2HdRFpP/XX4v3dWYiQmyHmwRZ1zAm5ziHk8zVuuAuPwAseNKpfv3dB7lopN8Q82KKNOSHXOYR8Pueq7GzxYu6GfK/3D074fQLiQobcDDEPtihjTsh1DiGf7/lBuhrN05xTn0vurN4mZ0seNFrokJsh5sEWXcwLQ75kyRL54IMPsv+DMAs777333mTIzfvzySef+O7HzOX8Vt6KrpSGhl9lf93rftUgmz+cvt9Ch9wMMQ+26GL++uuv5/7HZRim6lnIkJsh5sEWbczN6ZXW1lZGyeSjYU6v+K0ztZh/lVf+wf11/7tl0vgv/+6z3jp5VG4i6hfZ+RpiHmzRxvyLL77wtkCDfMyHh4e9Lai9IUklEpIazHhfT5f//ULM9SPmUIGYLwxzkbkSYh4exBwqEHOdiHl4EHOoQMx1IubhQcyhAjHXiZiHBzGHCsRcJ2IeHsQcKhBznYh5eBBzqEDMdSLm4UHMoQIx14mYhwcxhwrEXCdiHh7EHCoQc52IeXgQc6hAzHUi5uFBzKECMdeJmIcHMYcKxFwnYh4exBwqEHOdiHl4EHOoQMx1IubhQcyhAjHXiZiHBzGHCsRcJ2IeHsQcKhBznYh5eBBzqEDMdSLm4UHMoQIx14mYhwcxhwrEXCdiHh7EHCoQc52IeXgQc6hAzHUi5uFBzKECMdeJmIcHMYcKxFwnYh4exBwqEHOdiHl4EHOoQMx1IubhQcyhAjHXiZiHBzGHCsRcJ2IeHsQcKhBznYh5eBBzqEDMdSLm4UHMoQIx14mYhwcxhwrEXCdiHh7EHCoQc52IeXgQc6hAzHUi5uFBzKECMdeJmIcHMYcKxFwnYh4exBwqEHOdiHl4EHOoQMx1IubhQcyhAjHXiZiHBzGHCoExz0zI/ZERGbk/IRlvE2qPmIcHMYcKZWP+5JZ809Eg9d56dupXSmvqkoxS9Zoj5uFBzKFCPtRFMc8MSirhuNsdicTiEo8vK4p6NNkv496uqA1iHh7EHCrkA10Y87vdG8RZvV1O/vzE2+L2ffSSpDZGvf0daTv2yFtBLRDz8CDmUCEX58KYD7nRTkq/36F35qJsj+b2d9q/9TaiFoh5eBBzqGDeEzOTMf9bn+z/8m7uv31c64znvifZ723x80QemIumI/dlotL59ScP5H7hDu7XI+73PZj6C8GUSmsWIubhQcyhQjbM7ky7AFrGUKoxu39jasjbUiAzKpdSrbIyEpFYPC7L6t3XdiLy2o7TBRdNn8jPVw/Jrs2vScTxXifzk5wovNjqxKT54GDu7pknA9LdutJ/zWLEPDyIOVTIBtKdamN+cXvE3b9RprU8Myj71teLk9gjA/mjZ3fbnsbc60fbvxVzlv3exaNy+PDvJOGG3Gxv3HNC9r29Wt7ccUB6ew/L7uaYONmf0wbpHrginetXypsdKTlculb+Lw9WIObhQcyhgnlPzFQX82vSGZ8K85SMG3lzcXR6ZAf3rPF+jKRMnZjJyIn3cz9u/frdcqnoXscB2b3KW2vYIaeL1u5K94bcWtPBe942OxHz8CDmUMG8J2aqifn40RZxoj4XRx8dkzZzpN10UKYlduhLaV0Tl3U7zhXdztifzP24fqdrZrpmE2IeHsQcKpj3xExgzMf7JRlLSGrQ52x1fzL3OhUvihYj5pUR8/Ag5lDBvCdmKsd83I1ogyR971cUGd6XyL0OMZ8zxDw8iDlUMO+JmfIxH5crnc2y5ehPZe8guXewKfc6jSkpn9iMZApegJhXRszDg5hDBfOemPGPeUYGU83BtwJe3C6R7Ouskt0D3rYSj/o7JXXN+8JFzCsj5uFBzKGCeU/MTI95UMgzMjHh3YOYOSdbI7nXcRIpmXZa3ZxvX79bCjtPzCsj5uFBzKGCeU/MFMfcnFppkrWfnZU72Sc5S+b7C3Kgo0E2FtyHOLQv4d0Dbm4p7JBDV4fdfYfl6vHd0hyrl5ajhefbp25NnGnM1+wZ9LbYiZiHBzGHCuY9MTMZ88yonGjPP5xTYZw2Kf6srXHp9/0+RxKdVyZvS8xM3Jfh852TDw05iU45P5x7TD+7dvWAtHmf/1K3KinffF9mLdomh7w1GxHz8CDmUCEbRnfyMb/+h7USj5uPvQ2YD3pLHhwyMjJ6qVs63lmT3Wfd5l1y6Ppo0Wma4Z5fT38tdz49O/M1GxHz8CDmUKE05tCBmIcHMYcKxFwnYh4exBwqEHOdiHl4EHOoQMx1IubhQcyhAjHXiZiHBzGHCsRcJ2IeHsQcKhBznYh5eBBzqEDMddIQ89OnT8tLL71EzAMQc6hAzHVa6JibkL/88svZn8PSpUvl/Pnz3s8MpYg5VCDmOi1kzEtDfubMGe9nBT/EHCoQc50WKuaE/OkRc6hAzHVaiJgT8pkh5lCBmOs03zEn5DNHzKECMddpPmNOyGeHmEMFYq7TfMWckM8eMYcKxFyn+Yg5IZ8bxBwqEHOdah1zQj53iDlUIOY61TLmhHxuEXOoQMx1qlXMCfncI+ZQgZjrVIuYE/LaIOZQgZjrNNcxJ+S1Q8yhAjHXaS5jTshri5hDBWKu01zFnJDXHjGHCsRcp7mIOSGfH8QcKhBznWYbc0I+f4g5VCDmOs0m5oR8fhFzqEDMdZppzAn5/CPmUIGY6zSTmBPyhUHMoQIx1+lpY07IFw4xhwrEXKeniTkhX1jEHCoQc52qjTkhX3jEHCoQc52qiTkh14GYQwVirlNQzAm5HsQcKhBznSrFnJDrQsyhAjHXqVzMCbk+xBwqEHOd/GJOyHUi5lCBmOtUGnNCrhcxhwrEXKfCmBNy3Yg5VCDmOuV/v3z44YeEXDliDhWIuU753y/PP/88IVdu0cb8448/lpMnTzJKJh/znp4e33VmYSZ/NE7I9Vu0MWcYpvoh5Potuphv2rRJli9fziibJUuWZCcSifiuMws3K1asIOQhsOhiDgA2IuZAqcyE3B8ZkZH7E5LxNgHaEXMg78kt+aajQeoLzxfXr5TW1CUZpepQjpgDRmZQUgnHDbgjkVhc4vFlRVGPJvtl3NsV0IiYA6673RvEWb1dTv78xNvi9n30kqQ2Rr2gO9J27JG3AuhDzAEZcqOdlH6/Q+/MRdkezR2dO+3fehsBfYg58Lc+2f/lXe+L6a51xnNH58l+b4ufJ/LAXDQduS8TFc6vZybuy4Opg//s1+W+p9IaUIqYAwGGUo3ZmDemhrwtBTKjcinVKisjEYnF47Ks3o2+E5HXdpyeumiamZD/O5mSjndWZs/DZ/9MGL8iqeaYONlTOO7UN8iOc7m/GmRGT8uO1yK+a0A5xBwIcHF7xI1qo0xreWZQ9q2vFyexRwbyR9vutj2NuQhH278Vc5b9ev8B6f3vNol6cU4e6pf21a/Jb1KHpbf3gHQ01OeiHdkqp28dlbaVDbJ5l/s9JWvnOEJHBcQcqOiadManwjwl40beXBzdIN0lZ2gG96zJBbguKVMnZtzIr8nFPLblqNwqONUij45Jm2PWHIk1d0/9wWBkzsnWiFmLyPaL3jbABzEHKhg/2iJO1OfiaD7ATQflnrdp0tCX0romLut2nCu4nXFIUt4R+/RT7zNdA6YQc6Cc8X5JxhKSGvQ5v9GfzAa28kXRQsQctUXMAV/jbq8b3ID6X3gc3pcg5lCFmAPTjMuVzmbZcvSnsp/Ncu9gUy7mjSk3t+VkJDP5AsQctUXMgSIZGUw1S/PBwcofsnVxu0RMzOtWye4Bb1uJR/2dkrrmfUHMUWPEHJgUFPKMTEx4t5pM3mVSJ04iJdNOq5vz7et3y1TniTlqi5gDWebUSpOs/eys3Mk+yVky31+QAx0NsrHgPsShfYnJB3vqGzrk0NVhd99huXp8tzTH6qXlaOH59qlbE2ca8/dPVPy7AhY5Yg5kRuVEe8HTmOXGaZPiz9oal37f73Mk0Xll8rbEJw9G5PtDUw8NRdsOyffeY/rZtZO/k0T2PvM6iTTtkfPD/mtOonNyDShFzLHoXf/DWonHzcfeBswHvSUPDhkZGb3ULR3vrMnus27zLjl0fbToNM3ZT31eK/5r6Rme+RpQipgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQBYgJgDgAWIOQCEnsj/A1V4JoAxAHJ4AAAAAElFTkSuQmCC
|
As shown in the figure, the rectangular cuboid can be split into two identical cubes. What are the length, width, and height of the original rectangular cuboid in cm?
|
A. 2, 2, 4; B. 2, 4, 2; C. 2, 2, 2; D. 4, 2, 2; E. No correct answer
|
D
|
58
|
iVBORw0KGgoAAAANSUhEUgAAAXUAAADyCAYAAACyP1UcAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABSaSURBVHhe7d1faFRnn8DxgRYGSgcs7Vy8hGELc5GCeOGNZJuC5i0oghfKCylvQVo2UDAgnYvNvgQvdFm7LAZa2wu7zayWknQVtrpg9tXqbtLaEjVrFd2N26SxSqvvxpSkqLybMHPR355z5jxx8uTMTCaZPz+ffj/wQzPnZJSMzzfHM2cmMQEAOIOoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA4BDiDoAOISoA2iYhZ+nZXp6Wn5eCG9AzRF1AA0wJyM9aYnHYhLzJ56WPUM/Sj7citoh6gDqbm5odxD0REurpJPxQthjcenou+blHrVE1AHU2X05sTMm7R/clMJZlwW5OdgpqTDs6Z4Rwl5DRF2xO3fuMApnampKvv76a7l06VLkdsaeL+Uf/vKv5J+nim+bkotHX5PfhKdjfvPaUbm4ZPvaxj9v/2tF1JXKZDLhf1EZhql2tmzZEq6kXx+irhBBZ5i1DVGHGsVB93//yy+/MAomn89LW1vb4mPz7rvvRu7HeHP3uOyML41s4dz5sMxG7e/N/Hi/bEuE+6Y65fhELnK/UuM/HsV/HlGHCgRd5xD06ub20Q6JdxyR8Xnv49xDuTFgnhSNSarrtPyQW/45/jw4vVti8Q7pX0PQn3nmmeBXoo6mI+g6h6CvfHLz85Lzfv3mYIccur502+zoftkYHr2nOo/LxLKw52Siv0eOjM9bt5ef4qC/+uqr0tXVFfyeqKOpCLrOIejVzLgc3pCQbf3jMt7fL8MR+8xePSQdYdgXj+QXt8/K99/PFn1ceeygj42NyVtvvRV8TNTRNARd5xD0Kuf6IWkNvlZxSXX0y/WofbzJTRxdPHce37hfRm7/r/zPyb+TD6/8OXL/UhMV9G+++Yaoe4h6ExF0nUPQq52cjO5LS0tLIvyalX9SNPfDaelKFb62sVhKOo9PBKdtovaNmlJBJ+oFRL1JCLrOIeirmUty9KPrXpjn5fuTXSt6UjTnHdlv8N8moL92QSfqBUS9CQi6ziHotZnKT4r6UT8se46My7x1e7mpFHSiXkDUG4yg6xyCXt3Mf39G3uveJZtat8ob751bdkRe/knRP8s3w6MlT89EzUqCTtQLiHoDEXSdQ9CrmZxMHH983fniv+fh5fvaT4peuJ+TX2ZH5ZPTk8v2LTcrDbo/RJ2oNwxB1zkEvbrJXd4vbZ0DwZF37v5/yuHftUrr745GnmIJ9l/ypGhMEttK7xs11QTdH6JO1BuCoOscgl7t3JWB7a/JydmobY9n/uHDJU9+5iaOSLv39Y139Nc16P4QdaJedwRd5xD0VcyD07L7L/5erkZtK5q7A/ukf6rottyo7O88JFcrfDMontUE3R+iTtTriqDrHIK+ypnq9464t8vA3YhtxXP7qGzLDC8erf/09b/JaAOC7g9RJ+p1Q9B1DkG3Z1ZunjwouzYmCz8/NNEiW/cORB9V585Jt7fPhkP+NekR2834+8V75MuobRVmLUH3h6gT9bog6DqHoFuTm5DjnanFr8eSSWVkeFnYH8gfu/yfL5qSrtM/lAx7bnSfJGPe50dsKzdrDbo/RJ2o1xxB1zkE3Z6cXN4fBj2xXnb19supz09Jf+8OSZvry3cel7vW5xVeCepvT0jbwRG5t+T6c2/mx+VIhxf+5H65XHx7halF0P0h6kS9pgi6ziHoEfPgj9Llx9s7Ij/nXz9etC13/5z0pP0j8g1yeLzoc4LJycTRbZIIv5bBN4Tu92Tw88/lVP9e2Zz0Py8myX2jK375f62C7g9RJ+o1Q9B1DkEvMcG7KiYlM/wgevvU0eAVocn9lyO25+SH03sWj+iXTeSpm+ipZdD9IepEvSYIus4h6GVm4ohsinXLuTLXjY8f3iCxTUdkImKbP7n7/y0nD+6SjeHReTyZlq29Z+R7+5RMial10P0h6kR9zQi6ziHoFSY3KvuSFZ7MvDsg22O75fSDiG1rnHoE3R+iTtTXhKDrHIK+spk62in7R8v9PNAp6W9vX/pComAeyX988i/LnkRd6dQr6P4QdaK+agRd5xD0KiY3IVevlzinHs6XPfHIN+saziRlX9lvCNFTz6D7Q9SJ+qoQdJ1D0Gs/U/3ty6M+e066k97XePtAVUfr9Q66P0SdqFeNoOscgl6nGc5Ie//U44+9o/t+/zp072tczRt0NSLo/hB1ol4Vgq5zCHod58se6TBRz/0gp7sKL1ha/oMvSk+jgu4PUSfqK0bQdQ5Br/NM9cvO4Fr1WRnOhK9AbeJ16JWGqBP1FSHoOoegN2D8d2bMnJThnnThDb8UB90fok7UKyLoOoegN2j8qMfjYdA75fjEyq54aUbQ/SHqRL0sgq5zCHoDJ3gPde/rHO+QfuVB94eoE/WSCLrOIegNnuBIvUOOjM9Hb7emmUH3h6gT9UgEXecQ9CbMg+vy1dXZ6G3WNDvo/hB1or5McdCffvrp4B8H0/zZvHmzJJPJxcfm2WefjdyPac688sori49Ns4LuD1En6suYf5gMw1Q/zQy6P0SdqC9j/nH6R+z79+9nlMzbb7+9+NhEbWeaO+vWrQsem48++igyto0aok7UlzHhuHPnTngLNPAfD/PYQJ8XX3wxeGyIevOxQiwmHERdF6KuG1HXgxViMeEg6roQdd2Iuh6sEIsJB1HXhajrRtT1YIVYTDiIui5EXTeirgcrxGLCQdR1Ieq6EXU9WCEWEw6irgtR142o68EKsZhwEHVdiLpuRF0PVojFhIOo60LUdSPqerBCLCYcRF0Xoq4bUdeDFWIx4SDquhB13Yi6HqwQiwkHUdeFqOtG1PVghVhMOIi6LkRdN6KuByvEYsJB1HUh6roRdT1YIRYTDqKuC1HXjajrwQqxmHAQdV2Ium5EXQ9WiMWEg6jrQtR1I+p6sEIsJhxEXReirhtR14MVYjHhIOq6EHXdiLoerBCLCQdR14Wo60bU9WCFWEw4iLouRF03oq4HK8RiwkHUdSHquhF1PVghFhMOoq4LUdeNqOvBCrGYcBB1XYi6bkRdD1aIxYSDqOtC1HUj6nqwQiwmHERdF6KuG1HXgxViMeEg6roQdd2Iuh6sEIsJB1HXhajrRtT1YIVYTDiIui5EXTeirgcrxGLCQdR1Ieq6EXU9WCEWEw6irgtR142o68EKsZhwEHVdiLpuRF0PVojFhIOo60LUdSPqerBCLCYcRF0Xoq4bUdeDFWIx4SgV9fyjn2R6elp+epQPb0EjEHXdiLoerBCLCYcd9YXbZ6W3LbG43Z/E+jcle2VGyHv9EXXdiLoerBCLCUdx1POTWemIe7fHk5JubZXWluK4pyQzMhfuiXoh6roRdT1YIRYTjsdRvyeD2+Oy8cAX8qeF8Cbv2HzmSlY6U2HY411y5mG4CXVB1HUj6nqwQiwmHItRv+XFOzMiUcfi+bEDkgr2j0vPhfBG1AVR142o68EKsZhwmKj/3/CAfHYv+G2EG9LXWtjf635p+Ufy0/S0TE//LIsH+xH8J2F/Ltqh8KTsTxL1nGy5bS4i6roRdT1YIRYTjsUj9bJuSbbd379dsrfCm4ot3JazvZslmWyR1ta0JP3z8on18ubgzcdx94L/3RdZ6d21XhLenxt8c5i7JtnX0xIP/y6xRJu8c7Hwf4X8zFfyzuZk5DaXEXXdiLoerBCLCcfKoj4mB5Le/u1ZL++WuRHpSccllTkvM+Zoeu68dPv7x+LScazwGeMjn8q5f+oKT+N4UT/lfd7GzbI3+69y7tynj6+4Se6Tr24PSdf6NnnjsPc51raLjh+xE3XdiLoerBCLCceKon6jT1pjKem5YD9Lek9O7IxHxDYv57sL97/0G8GkfLipcHt6z5DcLj5H8/CMdPlH+N43gvTrg3KzeFv+ouwLvkkk5cBYeJujiLpuRF0PVojFhKNy1OdkaLd/JB7xJOrN92WDdx/JiNI+HDskW1s3yZsnJouubzencaLOza92m1uIum5EXQ9WiMWEo1LU50Yyku7IymTEaY9b2fbgPtojT7RHIeqVEHXdiLoerBCLCUfZqM+NSKYtI6Vec3ShJx7cB1GvHaKuG1HXgxViMeEoGfW5a9L3+h4Z+rH0M5NjB5LBfcS90pbcK5/n9EsViLpuRF0PVojFhCMy6vlJyb7+upyIOudS5P6JnYX7KfNK01vZPhla3EbUKyHquhF1PVghFhOOZVGvFPT8I3lkrky5Nyjbw/uJeiLVfy+ZbXvOyOPeE/VKiLpuRF0PVojFhGNJ1P1TLjt/K++N3g3edteeby/714x3yuDiK08fyoWeVHhf/qWI78sX3/r7fiuXP+2VtsQG6btR/M3h8SWNq4169/ny/3t40hF13Yi6HqwQiwmHiXp+5nzwIiJze6mJdxUfeXu8I/tj25a+VW9hUtI19OPi+fSFn71vCqcev/go1XVKvg1f/h9s++JvC+8Q6W1L7vxQLt2J3hbv6Fvc5iKirhtR14MVYjHhKER9XP7xt63S6r/dboX563NRJ88X5PbZw/LGVn+fTbKrNytfLHllkcjoweX31dr6eznu/fGr3eYioq4bUdeDFWIx4TBH6tCBqOtG1PVghVhMOIi6LkRdN6KuByvEYsJB1HUh6roRdT1YIRYTDqKuC1HXjajrwQqxmHAQdV2Ium5EXQ9WiMWEg6jrQtR1I+p6sEIsJhxEXReirhtR14MVYjHhIOq6EHXdiLoerBCLCQdR14Wo60bU9WCFWEw4iLouRF03oq4HK8RiwkHUdSHquhF1PVghFhMOoq4LUdeNqOvBCrGYcBB1XYi6bkRdD1aIxYSDqOtC1HUj6nqwQiwmHERdF6KuG1HXgxViMeEg6roQdd00RP2zzz6T559/Pvh77NixI/yb/fqwQiwmHERdF6KuW7OjXhz0l156Kfgxk79WrBCLCQdR14Wo69bMqBP0pVghFhMOoq4LUdetWVEn6MuxQiwmHERdF6KuWzOiTtCjsUIsJhxEXReirlujo07QS2OFWEw4iLouRF23RkadoJfHCrGYcBB1XYi6bo2KOkGvjBViMeEg6roQdd0aEXWCvjKsEIsJB1HXhajrVu+oE/SVY4VYTDiIui5EXbd6Rp2gV4cVYjHhIOq6EHXd6hV1gl49VojFhIOo60LUdatH1An66rBCLCYcRF0Xoq5braNO0FePFWIx4SDquhB13WoZdYK+NqwQiwkHUdeFqOtWq6gT9LVjhVhMOIi6LkRdt1pEnaDXBivEYsJB1HUh6rqtNeoEvXZYIRYTDqKuC1HXbS1RJ+i1xQqxmHAQdV2Ium6rjTpBrz1WiMWEg6jrQtR1W03UCXp9sEIsJhxEXReirlu1USfo9cMKsZhwEHVdiLpu1USdoNcXK8RiwkHUdSHquq006gS9/lghFhMOoq4LUddtJVEn6I3BCrGYcBB1XYi6bpWiTtAbhxViMeEg6roQdd3KRZ2gNxYrxGLCQdR1Ieq6lYo6QW88VojFhIOo60LUdYuKOkFvDlaIxYSDqOtC1HWzo07Qm4cVYjHhIOq6EHXdiqNO0JuLFWIx4SDquhB13UzUe3t7CXqTsUIsJhxEXReirpuJ+lNPPRX8StCbhxViMeHo6+uTjz/+mFEy/uNhHpuo7Uxz54UXXlh8fAh6cxF1i/mHyTBM9UPQm4+oW7Zs2cIonJdfflnWrVsnzz33nGzatClyH6a5s2PHDoKuAFEHAIcQdTTZnIxkUt5/3dsleyu8CcCqEXU01dxIRlLB+ViiDtQCUUfzzA3J7kRc4kQdqBmijia5Jcc6UtJ9/pRkiDpQM0QdTZCXyWyHpDMj/hl1og7UEFFHw+UnP5T21AEZy/sfrSDq+Rm5MrhXtrYkvP28feNJ2bjrHTn/Y3AHobw8+u6yfPrOLlmfCO9r4bac7d0qLQn//hOy/s2sXJsr7C1z12Rwb4ltwBOMqKOx8mNyINUuH06aIFeI+txFObAxLqmuU/LdI/9zFuRPZ8MnV+Mdkg3u5678e9/fSPdW/yqa8L6ueZ/X1iKb3/iD/KF7h6Tj/u0xiXedkbmZ85JJ+98Yupdtexj8ocCTi6ijgfzLF9PSkZ30jquNclH3z7vHJbahT24UH5TLDelrDUPccyG8zfNwSHYH95WUtr3H5MrM40/KX9wnyWBbyjsqf3/ptht9siHYtluGqDqecEQdDeNfvpjuOOaluljpqJsQty+rfV7G3klLPJaQbQPF28p9g1jtNuDJQtTRGMHli96R8LLz1qWDeqHHO0r3tmVGwhsqIuoAUUcD+KdR0l6co56JLBXU+3Jip387UQeqQdRRfxd6whcYrWwKp1vueN8ICh/vPHG/cD8VEXWAqKP+Rg9Ka2triWmRRBDUuCTThdt+f7zwA0rM6ZfY9kG5F9xiy8uNYwNyNfyIqANEHU1XOqgPz3SFR/ipyFM3+cmsdB64uMIraYg6fh2IOpqsTFCDa9r9bd7EN0rP2e8kuFQ9/0h+vOQFPWV/DlEHiDqarHxQ/aPxjvDFQUsnJZ0niq93z8vM2e7wWvSkdJ+dWbLt0X99IO3Btrjs+uS2LIRblm6LSfsHN4u2AU8eoo4mq3yUnJ+5Itk3N0oyiHtCWrbulcErxdG+Jdn2QpSXTsa799VuA55MRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAhRB0AHELUAcAZIv8Pe5YQArTbVPkAAAAASUVORK5CYII=
|
As shown in the figure, the rectangular cuboid can be split into two identical cubes. What is the surface area of the rectangular cuboid? ( ) cm²
|
A. 48; B. 40; C. 32; D. 20; E. No correct answer
|
B
|
59
|
iVBORw0KGgoAAAANSUhEUgAAAXgAAADyCAYAAABHwd6sAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABm4SURBVHhe7Z1PaBxXmsB1CHQyM8qcBANOswEFPOD4oIsxeMCji0TAzEgXDTEYmxV7iMCghcjGZCHaYRUfdEiUGSKWnhUZRslqh6BZEEREw1p4sutMcMbESZysjInBseN4BgXsPQj6kG/fq6pXXd1d1apu9Z+vSr8ffGB39Z+q9733q1fvvSr1CQAA5BIEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwfeQ27dvy5kzZwiF8fOf/1yeeeYZefbZZ2O3E72PixcvBi0JkkDwPeL+/fvy4x//WPr6+giF8f3vfz/2dUJP/PSnPw1aEySB4HtAVO4/+tGP5OWXXyaUxAsvvBDK3eYo7j1Eb+LFF1+Uxx57DME3AYLvMrVy//zzz+W7774jFMSnn34qP/zhD0O5f/3117HvI7ofjx49kp/85Ceh3BF8OhB8F0HuegO5642o3L/3ve/J2NgYgk8Jgu8SyF1vWLk/+eSTyF1h1Mr9N7/5jTdcg+DTgeC7AHLXG1bu/f39yF1hxMn9o48+QvBNgOA7DHLXG8hdbyTJHcE3B4LvIMhdbyB3vdFI7gi+ORB8h0DuegO5643d5I7gmwPBdwDkrjes3H/wgx8gd4WRRu4IvjkQfJtB7noDueuNtHK3geDTg+DbCHLXG8hdbzQjdxsIPj0Ivk0gd72B3PVGs3K3geDTg+DbAHLXG1buVhzIXV+0IncbCD49CH6PIHe9gdz1Rqtyt4Hg04Pg9wBy1xvIXW/sRe42EHx6EHyLIHe9gdz1xl7lbgPBpwfBtwBy1xtW7k888QRyVxjtkLsNBJ8eBN8kyF1vIHe90S6520Dw6UHwTYDc9QZy1xvtlLsNBJ8eBJ8S5K43kLveaLfcbSD49CD4FCB3vYHc9UYn5G4DwacHwe8CctcbyF1vdEruNhB8ehB8A5C73kDueqOTcreB4NOD4BNA7noDueuNTsvdBoJPD4KPAbnrDeSuN7ohdxsIPj0Ivgbkrjes3B9//HHkrjC6JXcbCD49CD4CctcbyF1vdFPuNhB8ehB8AHLXG8hdb3Rb7jYQfHoQvAG56w3krjd6IXcbCD49+17wyF1vIHe90Su520Dw6dnXgkfuegO5641eyt0Ggk/PvhU8ctcbyF1v9FruNhB8eval4KNyf+yxx+SNN96QS5cuEQrizTffDOVu/1D222+/Hfs+ojfRa7nbQPDp2ZeCf+aZZ7wKQhBE89FLudtA8OnZl4J3FdUOzTz99NOEonC5eeqpp2K3E70Ld2V17ty5WPF2KxB8eva14Dc3N4NXQAsuN7dv3w5eAS1YodrcWMHGibdbgeDTg+BBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9YHgsweCB1W43CB4fSD47IHgQRUuNwheHwg+eyB4UIXLDYLXB4LPHggeVOFyg+D1geCzB4IHVbjcIHh9IPjsgeBBFS43CF4fCD57IHhQhcsNgtcHgs8eCB5U4XKD4PWB4LMHggdVuNwgeH0g+OyB4EEVLjcIXh8IPnsgeFCFyw2C1weCzx4IHlThcoPg9aFF8GNjY95+IPjdQfCgCpcbBK8PDYI/efJkWEd+9atfBXsGSSB4UIXLDYLXR68FH5X7q6++GuwVNALBgypcbhC8PnopeOTeGggeVOFyg+D10SvBI/fWQfCgCpcbBK+PXggeue8NBA+qcLlB8ProtuCR+95B8KAKlxsEr49uCh65twcED6pwuUHw+uiW4JF7+0DwoAqXGwSvj24IHrm3FwQPqnC5QfD66LTgkXv7QfCgCpcbBK+PTgoeuXcGBA+qcLlB8ProlOCRe+dA8KAKlxsEr49OCB65dxYED6pwuUHw+mi34JF750HwoAqXGwSvj3YKHrl3BwQPqnC5QfD6aJfgkXv3QPCgCpcbBK+PdggeuXcXBA+qcLlB8PrYq+CRe/dB8KAKlxsEr4+9CB659wYED6pwuUHw+mhV8Mi9dyB4UIXLDYLXRyuCR+69BcGDKlxuELw+mhU8cu89CB5U4XKD4PXRjOCRuw4QPKjC5QbB6yOt4JG7HhA8qMLlBsHrI43gkbsuEDyowuUGwetjN8Ejd30geFCFyw2C10cjwSN3nSB4UIXLDYLXR5LgkbteEDyowuUGwesjTvDIXTcIHlThcoPg9VEreOSuHwQPqnC5QfD6iAoeuWcDBA+qcLlB8Ppwgn/66afDPCF33SB4UIXLDYLXhxO8C+Sun30teIIgWgvkng0QPEEQTQVyzw77UvD28p/QGe+//74XcduI3sdXX30VtCLIAvtS8AAA+wEEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwQMA5BQEDwCQUxA8AEBOQfAAADkFwe+B8qObslk6K8cHCjJ9KXhxV8ry6OamlM4el4HCtKT+mFJ27n0sq3Pjcqj/mJRuBS/2kPKDq7J8dkQO9PdJX1+f9B8YkQvrX8pOsL1TaCsHAIsCwV+SadMQbWNsLqZkoxx8RQ+4uTYr504flf5gf9IJ/qaszZ6T00f7g2PIsuD/T94vTcs/PT8kBe9Yei+28taSjBrBXrz6wJxGd+Te+rQUvX0ryPBSp3bub/LHhWn5x5FikNP8Cn7ny3W5MDJoOiZ+mQ4MjsjZ5avyoJl2uG3ae9F8/lhJOA92nt4L/psVGesryuTqF/JttJt1aTq+wezckw9KE6bh7q0h3VhYaINct2TxiN3HtIIP2FqUI96xZUvw8WV2WWa8Bt9rsd2S0rFacZRla+WkDBb6ZeKdu8FrHeLhmpzKseC3TXv0T5b1URguyVYqyW+bZh2cCBF8V+i94G+VZOylK6Yp1pAkeI+yXHlprPWG9ND0IgbaIddAKmY/mxK8OeZj3rFlSPCJZebKoMdic2XaVCLaibsSzaHgH74rk+YkOfrKptx85LfUnXsfSOnkYHD11ifF2Q/r23AN22unpL9Q8N6P4LuDCsGX4tpkQ8EbLpnPtVRDyvLhrO1FIPj0NCozJYJ39QXBt51vViZkuLQVI/BtWTsVCHtgVj4MXo3l1pIMF6dkYzXIE4LvCnonWXcTfEuYS/al0WDcHMGnY7cyQ/A+eRV8WTbmF+RG8L86PpyVgd3qcnlLSsODpo1sV/KE4LtCLgRvJ3/mxo+EKycKA0MyPrcqn1XN/tySdyKXlFURkUL5zvuycKbyXX2FARkcOSvL10zlrKNDgt/5UtbnxmVoIOgd9R+QkbPLUr0LMatxtq/Jsvd/f7+Pz10xfaw4yvLg6rKcHTkQiLsgA0PjMle32iRNmdUIvnxHNi64VSz9cujMSsrx2Sg78uX6nIwfqdm/1c/qJvQuTQf7Exdpk1J+IFeXz8rIgWDy25Td0PicbNxJ2HGvnEdkMMiPv1Ln3+QfvN+Nr69+HR0KJij9zzSeoEzI0cYds6UGsz+lM+67++XAkXGZOv+8DM00UylbxNXlg/NyPXipGtNBWDxWGcJJIfjalVB+e96QqnSUH8nNP79lyvSQ9Aff5U8CB+XVf0jOlK6F9X/7WqQsa7blmYwLvix31ial6E3S3hRveDCchLWJHJWlOru4nlaMXO1lpGkkheF5ueq1vB2598G891pfYVjqF2J0QPDeKoOiTJSCxm+PZ37Yl2zRvN+rlf5qnKlw5ca0kdGaTB4yJ4LT5+X86UDyRgpjK7WTi6bBlez3FWR4/gO5Z41ufmNz1q2GqUTlmBqUWVTwN27I4ugBOW73YeqEDAYySzM+G2JOEGuT5riKk7J685H3OW+8d8I/1v7RpfgTRqs9eK932W9kuC5f2rKw4li1dcp8l8l5qebHylsrMlG0+7EgH/iFV6kjXhnV11c3QVmcXPXHsM1vfLIc1NFIHAs/6Oeof2hG1v2dMifzVZm0q09s3qLDJeXrMn84kktvf0rePlbKwuWvyUhTltfn5aB5b3HuL8EL1ZRND794bLGSs10Ev31lVoYK1e15PZiYDSdzv/qjzJ+bkhGvPPzvumY+d/TAcTl9/rxMnXCdkoJMvrstDzamzcnYnCSmarc99H4zz2Ra8OWtRU+Uh+ev1wjE7zV4ny/OyOWqPCbL6sPZAe8zlYZmMZeoU/b9fUaW3wSvOdot+FuyNFyIOZ67svyc/zsD0Qnp8HuKctT08G94Ddzn7vJz3vv7hpfkdvCax91lec6+XtfjuiELh+13/Z1c+K+v5P79+5FVTWkEb650TszJnyJd0vKVl/zL993GZ0Nc3g7L/PXqErAiXgzKujhzWeqaZkuCfyiXZ4pSOLVW05uzk/h+Xeh7btmUfoAnU/Na0RxPze7ZCURfHDX1tXxFXhqwr5+StaqdfijvTvpXACeW/tcr778GE5gPL89IsWDeX9PFDMuz7zlZdjtl3luIaSMPTXkMNHuya4FbJZOvwpjU9SMstrMyWHOSbCT4oINVV/+Dk4iVskl9yENT5t53DRyVs0vRq6FI/oqmt75Qve36/GF/m8l73hWfYcG7BnLQyCB4KUrYsPrkubA1WJJldfedCXMJVzSVqDrtbhigWvyW9greb8BHZHEreCHC1uIR73f6CuaEFbwm5Q2Z8r4n5p4AtxSzRq7frIz53xPTwK7PH/S2FaKtyCON4GP2u9H+xeGt1jDvT7jcjxWcoxXBBye7qZidK29M+d/XZ67cgjOkO2lW16eA8Fhr6muDMepQUFUn4eBkPrVRLTlL+Bt9Mux2yjvuml69hzkZzTdTKVug/KHMFpPuMbBLIgfrtyUK3kk5pr2b35kbNG3dXJH/Lrqt0cmi1W05I7uCD9cdm95Dbcfao9Lzrm5AjWQVpSwPPluV18Lhjs4L3gm2cVSE0/BYEn4jlEpM5fZ6Y3Zb3cGkEXxcntznkk7S1YT7NrYi8SmNEZzD1ZcmEhH+XsNwvUZ3hTMgs7GXIwnHGvY+Y8ouTjRhvW4c4Un47oqMefWzIIMnS8GwUTcIxtZNeceNZXtLIuuujAyJcnX3U8TVsQQaibrVbTkju4IPe0bJvcNQWFW92N0EvyNfbi7ImUMDMnD8rJQ2b8pacKLotOD9K4V0MvRpXvCm5ckpryHV9oIrl7WHF2rXTHRH8G6ILLb36lEp74Fay7r60kQiXP1I9ZFdb2RKOFY3rGNODC9dqT4qd0VQmHy3MlTg8tbEcWxfK8lJ28P1ft+I/sRcMHbvcPvWZDTYBzs8Opx0g5Mdahk0dSXO/Ely9W54tL8bV8cSaFXijbbljOwK3ht7bLDdEAr+yKJURg8ayKq8JSt2Mq84ISXvdnefbg3R+L+TMOQUS4NjSRK8YfvSjDcBaieTaycK4+9KbPA7YRnE5SFBeglcngkkldjwKuV9pHY8yNWXFgR/qnpwPJ6wPJPyk3ys/iMUzLZw4jgyaRpOnAe432l2fDhYCXTUrf7q65fRpbi163un/GBDZk7MypU4gRvCPKaKoLxum5OC9/+kK/IYEPyuZFfwYYWIH0O1uAZcMI2+8o4kWfkTbnE9rW4J3vVg6ydZK9xd+bX859+C/yQei6GB4O346NVfDsvRkehDuY7I+FywkqSO7gj+9tKwty/JV2Xut+zD3Wre0ILg3XxE/SRrhfKVX8u/fmz+ERk6iT8hNDrWstz5/SkZOj4SLn0tDAx6S1/91VoRXE82ZpI1pHxFfu3tVAxW9AvuvoWizNbOBu+V7Usyc3wmvnce8D//clAOHkyIyFLUQe+15+XfvdE2N0STMMdhMVdDS7+LrNZB8LuS4UnWysqSqkvcCP6Ydu1yqCRZudfr5dK1SVZzzN5VSWFYFqNLYhwPTSP4+8iqjsRjMSQK3l+CV4x7PEQiDX4nLIO9Cz5c4VOXM8d1mT9othcmpW6zqy/NJCIso6JMb1Su2CrckqUJ01P1NlRyXbWyJiT5WL1lkrGfiaPyO8Xpjdh18reWJmTWdUIuzcdcUVRWitTX2T1g5H5h5EJDue9Kolwrq4rqrmo8bL2NHLcl8bsMrW7LGRkQfPyqEou3nMx7T9yyOn/sszC8VJNE1xArY9B3L1+WL8LXB8wVQaV22Zsnpr0xVDcssC1bW+4asr2Cr4zXmigMygtvfSx3vKVz/k1N/zw8WL3CJ+xVNiH4b96RCdNTOvjL/65+uFtDksrM4h64Fjd00aTgw6so85nD81Kf0nk5bOQft2oj7P03NbQRudXeDmm8silfBIViH//71mT1KpDKUkizD4s3pKr4tlflF9622vr6F5mzQzG/eDvI5e5Ufseut39FNr/41v+tnXvy8VuTMhit06adxF2BuFVA9Ut7W8MOyyTLfUe+/WJdZk6+kXzHq6OBXL0188FxF+w9AMF9EOVHd/x7W2o/06rEG23LGToFH7m5wcaxi0l3/JmzuruN3o6bf3DPawj2Oe2rk0UpDMZdSrrVELYSPS/nTx+VUdMiy6Z/tTIWNHZ7F+jp8zI1fkgOjC7Ib88Hq1uKI3J6/Ex481T5wWowYZnc26qnLA9WXQOu7zmG47Xe9mgUZHAmumLBfM/6VDDRbE5K69Hv2ZF7v3e/cVguXouoKJycronwknlEzpber75rMLHMzInnk9eDE4nJ0+uf+DeneJhtVy8aIdttBTm1GtdDjqG8JUuj/mV8ccKtCnFj1rVl4FN+9IksDrvcJVz9JGGHHMIJyuqov6kq8jREm48Tc/LWe+/JH+zfBPjZcFgOtozOzfyHfGY/Ek4e1ka/HPDK2w6NrcrnVQdlfmcm4Q7i2pv3All5ZXWncmPYvCmPwuBc3Xr9VnA3d9XtS00kDq1EaShX/+oy9rhN+16JHnf5gaxPBZPyA1OyHm189kay14P5t8K4/DY67hjdZjoerzdTVzKIOsG74ZDYiO0mu1u63XOq7XiyldRmwniyaT7XFuRndiy09nb+7Ssyd3zAq2D29mh3O3P5+msyZL67/9AZWQ4qRDiBWxW79VQjl/nRqKnsu//RioTv8XrrrtdcE2HZbcuVucpz7JOiMLZSNaQQV2bxubJlkO44E3GPDhj0c+HJcMSuaKr/wx2N6kvqq6qaR0P4uU/qVNjHKFwIH2tQea8pd1s2Z0uyGfQ8fYy0vEcWx+9jGHU3TwWPaxgKysB899CZUv2Y/aUZGToxLkcOukcamLCPtriQNJ/SJMHNR3X7WxcpJ0d37T3b9lySM+64g8d0VB13eHVaEzbhrW7LKXqHaKBD2F7oqDektfPtfe8OSi+++LO8Z3qj7733lrzm/SGT6Hp7aB3bKx2VybVt03n8a6W8b38sl73y/oOULtjHOlTfpQnQDhD8vsK/BN59gvWhrJ1KO24OjUg7wWoXBOS4Iwk9AsHvJ4K7HnddWVG+JhfHGzwiFtLh3cqfZghgW1ZPxawMAtgjCH4/4cY/7Q03SQO03tMcj5reZO1UJjSNG/MtDMt85Ma5arbl2vyojMb+QQ2AvYHg9xORFSp2FYh9vvjU+fNy3sXpETkwMCSzf0q54gV2oXo1jJ0st4+zDct7yk7sDsrEcs2SS4A2geD3HfZZOyW5EPkDKf6SPX/lkfubm9Au3EPrKn8gxDu5DvrLIz/u2sPBYD+C4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAcgqCBwDIKQgeACCnIHgAgJyC4AEAconI/wNBW877Sxj3oAAAAABJRU5ErkJggg==
|
As shown in the figure, the rectangular cuboid can be split into two identical cubes. The total length of the edges of each cube is marked in the figure. What is the surface area of this rectangular cuboid? ( ) cm²
|
A. 48; B. 40; C. 32; D. 20; E. No correct answer
|
B
|
60
|
iVBORw0KGgoAAAANSUhEUgAAAUsAAADiCAYAAADH0+UMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB/vSURBVHhe7Z1/aJTZuccDbZkWNtA/HCi4gUIK2bIGKoiERugKRVfwj8iVbVYM2kaolXXJBb1VXDD3qgRu/uha/5DLgP6hS+Rub/ZCwLQuV7n1qvWGWmXdG2LFFHWJP4hFtxCY/vHc+Z45T/adyTsz75yZeef98f3A2TVnZt457zNzvvOcc57znA4hhBBSE4olIYQEgGJJCCEBoFgSQkgAKJaEEBIAiiUhhASAYkkIIQGgWBJCSAAoloQQEgCKJYk0S0tLphDSbmIvlh0dHSwJKJXI5XJy7tw5+xch7YNiyRKJUok1a9ZIX1+f/YuQ9kGxZIlE8WN6enr58ZmZGVtLSHuIvVi2g7/+9a/y7W9/23Ti733ve/L3v//dPkKaydtvv70sloODg7aWkPZAsXTg6NGjy50Y5ezZs/YR0ixmZ2dLbPz1r39dHj16ZB8lJHwolnXi9Sq10LtsPnv37jW2hXe5bt068+9Dhw7ZRwkJH4plnZR7lVroXTaP58+fyze/+U1j16mpKZmYmDD/xo8Uw4hIu6BY1oGfV6mF3mXzGBsbMzZ94403zN+w6+uvv27qTp06ZeoICRuKZR1U8iq10LtsHAjjd77zHWPP06dP29qVAkpI2FAsA1LNq9RC77JxEIAOW65atapkyA37e4fmhIQNxTIgtbxKLfQuG6PaYs57771nHvvxj39sawgJD4plAIJ4lVroXbpz9epVY0OECS0sLJg6tSvwhhN99tlnpo6QsKBYBiCoV6mF3qUbAwMDxn47d+60NaViCbZu3Wr+3rNnj60hJBwoljWox6vUQu+yfubn541HCft5tzaqTZVPP/3U/I35S/U+CQkDimUN6vUqtdC7rI+RkRFjtw0bNtiaImpPL0iugTp8NoSEBcXSEe3E3/3ud20NccXrvX/yySe2toja2QvStqEOIUYMUidhQbF0RDsxxbJxfvWrXy3bsnz6Qu3sBQKpsZj04ElYUCwd0U5MsWwMiCPmeGFLiGY5audydHrkBz/4ga0hpLVQLB3RTkyxbAwMu2FHDMMxHC9H7VwOFnc0SB2LPoS0GoqlI9qJKZaNgQUd2BELPPWye/du81qEHBHSaiiWjlAsG+dPf/qTsSFChv785z/b2uDo61FcXk9IPVAsHaFYNg6Cz2HDRjxDbH3ENbAVkpBWQrF0hGLZGJhz1CB0bHN0Rec8X3vtNd85T0KaBcXSEYplY3zwwQfGfkic0Si6mj4+Pm5rCGk+FEtHKJbuIE4SKdhgv2acCY6EwLgWEgRzmylpFRRLRyiW7iCpL2yHwPJa4qZ2rsaXX365vAPo448/trWENBeKpSPaiSmW9aN7u5H9vBZq51ocOHDAPK+vr8/WENJcKJaOaCemWNbH9PS0sRsCynEwWS3UzrXAMbm6YHTjxg1bS0jzoFg6op2YYlkfONoWdsNRt0FQOwdhcHDQPBf/J6TZUCwd0U5MsQwOspur3ZD1PAj6/CDAo8Rz4WHC0ySkmVAsHdFOTLEMDrxJ2AzeZVDUzkHBnCWejzlMQpoJxdIR7cQUy2BgflITX2DeMihq56BgNRzPx+o4c12SZkKxdEQ7McUyGMeOHTP2wkp4Paidg4JQJMRb4jWIvySkWVAsHdFOTLGsDQRMk/UixrLVYCcP3gs7ewhpFhRLRyiWwcEuHdgKu3bCGBpjjzj2iuM9p6ambC0hjUGxdIRiGRxkM4etsB88LJCFCO+JrESENAOKpSMUy2AgoxDsFPbRtchvqZ8R8l4S0igUS0colsFArkrYCbkrw0bfe8+ePbaGEHcolo5QLGsD7063ILbDu8PZPHjvsL1akkwolo5QLGuDc3Vgo7feesvW1I/a2RWdL8VpkIQ0AsXSEe3EFEt/sCKtadOQzdwVtbMrOFccr0foEoPUSSNQLB3RTkyx9AdngMM+iHVsJCGv2tkVCKTGeOZyOVtLSP1QLB3RTkyxXAnEEXaBfSCajaB2bgTdPYQhOSGuUCwd0U5MsVyJHiKGYTiymDeC2rkRsLij+9Kx6EOICxRLR7QTUyxXsmHDBmMbLPA0itq5URA+hOts3brV1hBSHxRLR7QTUyxLmZmZMXZByND8/LytdUft3CjeXJoIaSKkXiiWjmjHo1iWguBz2GX79u22pjHUzs0AWx9xLWyFJKReKJaOaCemWH4F5gajfA4OkmqgbZi/RGgTIfVAsXSEYrmSQ4cOGZusW7fO1kSPN954w7QRadwIqQeKpSMUy1IQz4gUbLDJxMSErY0eSAiMNiJBcCPxnyR9UCwdoViWgqS+cRAhiLruLIqyqJPoQbF0hGJZig5vx8bGbE100ekCHG5GSFAolo5QLL8ibgsnOCY3ygtRJJpQLB2hWH4FjraFLVoRkqN2bjaDg4Pmus0KcSLJh2LpiHbitIulN9h7dnbW1jYPvXaz8QbPw9MkpBYUS0e0E6ddLFu9jVDt3Ap0W+aBAwdsDSGVoVg6op04zWL5/PnzlieoUDu3go8//thcuxkJP0jyoVg6op04zWKpqc/WrFlja5qP2rkVeFPJIf6SkGpQLB3RTpxWsQwrqa7auVV4kxQTUg2KpSPaidMqlufOnTP33+rjGtTOrQKhTq+99pp5j0aOvyDJh2LpiHbitIplWAeBqZ1biR6shqxEhFSi9WK59IXcOH9cdm3qkZ6eHlm/7bDkrjyQuB8dpZ04jWJ55coVc+9JOWK23Uf2knjQWrFcvCwHuzPLwuItXSOXZdE+LY7ofaRRLAcGBsy9796929bEnyTeE2kurRPL/JzkNnbK2r05uTK7UPBA5uX2b0/KO10qmBkZuPDYPjl+pFUsk+qFJc1bJs2nZWL5+MJe+cXUQ8nbv5dZvCT7slYwBy7IE1sdN9Iqlkme3wtrHpbEkxaJ5Uu5c+NO4b/+3BzNUixjSNJXjsNa4SfxpPULPD7MnV5vvpS9Jz+3NfEjjWKZ9JhEBKmHETtK4kkbxPKxnN9SEJquUbm5YoxeytKDK5I7vks29RRX0jftOl5hJT0vr+4Vnrt/k/Qcv2arnsrdyROybT1eu0n2n5+Rp573yz+9K5Mf2muv3yYnputboU+bWLZrt4vaOSzC2JVE4knIYpmXh5NDku3cLGfmqihlQeh+f6JPOjv75PDkbZlfWJD52x/JsF0c6nrnghRf/kT+98x+2bS6c7lTdYxcFlm8LqNrOyXbXRBCz2OdwxfNCvzirZOyuTNjHl/daV/XkZGNubmVc6wV0GumRSzbtY9a7RwWYex3J/EktG/h0he3ZfJwQQALX8L1v/wveVDRjVuUyyNd0pHZKLkyQX05NbTceQYuFGc78/nCc/LX5YguGv1kVP7tX87IzLIbmZe53EbJmNf1yNjkGdn9/qTce6WPL8qtsf7iazPDcrHSRGsZ2o60iGW7MvSoncNk79695j1blUmJxJMQvoXX5LjX89NS8C5zn/sMqG+OSlfh8eyR6yu9vMcXZCCD12fknd94l4buS67fXvcnkyvjN/OXZJ99356xWyuvO39GNprHe2T8jq2rgd5HGsSynbkf1c5h0uocnSSehPAtXJIXhWH0wuwf5KMT2+TN5WFvoWSGZKpE2V7KxeFiEPu+SyskzZB/9UwWnr0qE7wncmHAXhPD8BV8Jab9ufu2zstlGbFt8n25D+a9CiUNYtnOrOJq57BpZfZ3Ek/C/xYuPZDJ4cIw23aC0hXxmzJqh9NBRUu5PFJ8HcWyuSBAu53n1aidw2Z6etq8b1zOFSKtJ/xvIcjfkfHeYifoGJryxGPWL1oKxbI1tPskRLVzO4jTiZWk9bTnW1jgfs4uqlQQy56gk4cWimXz8Z6xjdXwdqB2bgdxOQudhEPbxLKgbuaLWCqKnoWaqnGYL+W/z/2nzNu/AMWy+aRdLPBjsWrVKmODiYkJW0vSStvE8vH5LYUvYa+Ub+L5/GTvshD1n/aPe1wsCO3a0Zv2ryIUy+ajw9Dx8XFbkz50GmLdunW2hqSVlonl0hezMjv/wn9XzGJBnLo6pKsgeCvEcDk8CKVT+g5Py+yL4lXyrx7KjdwO6e4ckNKERfNyZqN9DcWyKUxNTZn7w17wNC9wtHuBi0SH1ojlk4LgWTHpfHO3nLxyT4ox4Evyxe2P5BfdnQXP8HrFfJaLlw9K97JglpeugqCVvdKbyWjLWflLuQIvTsmQvV5236UV75u/My699vq943d8vdlytD1JFUtkFcL9MXRGZOfOncYW7QidItGhRZ7lffnNjm67a8ZTMllZu+2ETN59WlOQlh5My+EfZT3XyEj2R/vlP8oC2a8d925ZLJZMttvuEb8mx3u6JVsmvHj83Yn5gkM6Ie/2rDa7iryPd67uEd1iXgl9bhLF0huUjfyVaQd5O2ELeJjz896ZcpImWjtnufTCDGNMWRFIHgwThF54/bPl7YmlLL2w1y8vZuhuA+J9irle/pU883kMxY78K5JksdyzZ4+5N2QPJ0Xatd2TRIe2LfDEnaSKJX4oopRIQu3cbpC/E+0IO5EIiQ4US0e0EydNLDVFGbKGRwG1c7tB6BTyeKItyOtJ0gfF0hHtxEkSS8QVavLbs2fP2tr2onaOAklPfkyqQ7F0RDtxksQSAol7itKxCmrnKIAQKt3RlMRjNUh1KJaOaCdOkljqgV0YikcFtXNU0APb3nrrLVtD0gLF0hHtxEkRy6geBat2jgoIHUriUcCkNhRLR7QTJ0UsESaE+0HYUJRQO0cJtdXu3bttDUkDFEtHtBMnQSwReK73g4D0KKHtihJXr141bYqaF05aC8XSEe3ESRBLnYfDFkcSDCTWgM0++OADW0OSDsXSkaSIJVZ4kSwD94LkGSQY586dMzaLUuQAaS0US0eSIpZIv4b7QDo2EhwEqWtMai6Xs7UkyVAsHUmCWKLDo/24j1OnTtlaEhQcNwHbrVmzxtaQJEOxdCQJYomjInAPCLTmULJ+MIWh++hxwBlJNhRLR5IgljiEDPeAbODEjb179xobbt261daQpEKxdCTuYjkzM2PajwDrR48e2drooXaOKrOzs8ttxL9JcqFYOqIdJK5iOTg4aNqP/0cZtXOUgVeJNsLLJMmFYumIduI4iiU8Sd2yBw8zyqidowzmK9FGzF+m+byipEOxdEQ7cRzFUk8sRPbvqKN2jjpYEUc7sUJOkgnF0hHtxHETS6x6a5oxrIZHHbVz1EGsJdqJ2Ms0nrGeBiiWjmgnjptYIp5S2x2HTq12jjr4EVq1apVp68TEhK0lSYJi6Yh24riJJXbqoN1xORpB7RwHsE8cbcW+cZI8KJaOaCeOk1hi7zfajL3gcVmIUDvHAe9hb8hMRJIFxdIR7cRxEktkFUKbkWWItAbkuISNt2/fbmtIUqBYOhI3sURWb7QXIUPIX0lag9fOyKpOkgPF0pG4iSUyoKO9yPJNWgvO54Gt6cEnC4qlI3ESS+9cGs7aIa0FJz/C1gjR+vLLL20tiTsUS0fiJJZHjx41bcXpjSQccLY4bB6XqANSG4qlI3ERS8T/aZJaZPcm4QCRhM0hmgxSTwYUS0fiIpZnz5417Yzr8Qdq57iB4bfulMKwnMQfiqUj2omjLpYYeqOdx44dszXxQu0cRw4cOGDajgUfEn8olo5oJ46yWH766aemjVjcef78ua2NF2rnOILQIc3uhJAiEm8olo5oJ46yWCJMCG2Mc55FtXNcQXA62r9z505bQ+IKxdIR7cRRFUsEnmsbP/vsM1sbP/Qe4sqNGzdM++HdI4SLxBeKpSPaiaMqlu+9955p39tvv21r4onaOc4gsQbuAYk2SHyhWDqinTiKYokkGUiWgfbF/dRBtXOcQco23ANSuPEUzfhCsXREO3EUxXJ8fNy0DenY4o7aOc4gzvL1118393H69GlbS+IGxdIR7cRRE0t2zGiiP2A4foLEE4qlI1EVSxwVgXZxyBctMDWi+/PjPjWSViiWjkRVLPv6+ky7cCgZiRZJWXRLKxRLR6IolhqmgkBohqlED2841+zsrK0lcYFi6UgUxXJwcNC0iQHQ0WXr1q3mM4rzRoG0QrF0JGpi+ejRI26tiwFJ2IKaViiWjkRNLDVpw4YNG2xNMlA7JwlNbjI2NmZrSBygWDqinTgKYolV77imA8PqPZITa4Ho49AvLWpnP5D1Ha9B7kikotOCUywxf4tEFlHMJZnL5cw9IW0ec13GB4qlI9qJoyCWp06dMm1pV6LZmZkZI3poB7b0QeRwkiRiChHCVM1GXkGsVvzQDPDVSqVDw7DYgmTIENywF8OYkDmeUCwd0c4YBbEM4wiDavNrumhRqWDrZSUwFEW+RyxKqTeJg77U09Rr+AEPDa/Vgh1L+Dw0KB+l0hk4+gOjBZ45wq6w8ILHIKKtjFPVe8O+cRIPKJaOaCdrt1hiyKmdHYHPzQALRBAMxAVCQCB21e4THR9CpaKHoTREEENiiE4jWY/Uzi5U8xjRNrRZPTy/0sojg72HyF29etXWkihDsXREO1S7xRLDXbSj0WNX4aUhWFoTcPiVdpxUqO/dSvAjA8HSHwgsksE7rQSEFj8MmHLAbhxXD1SnIHg8cTygWNYAIqQdtp4Sxql+zTzQHzt+tO0QTIgB7l2HpO0Kctc2RQmNZ9UCDxE/NLBVPd5oMz8/0nooljXwDpeClrAOB6vHM0Enxjk8ldqFRRoIPFaRo7RCqzaNEvBCMfWAHxS/7wbmIYN+/s0aGZDWQ7EMQL3eZRheZZA5LyzKINsNVqW1bTxpsLlAFBFoDs9c4yfriXVtxZwzaQ0UywDU412G5VVWW02Flwivs7zN6MwUy9aCnVTVdlD5CWIY0QykcSiWAQnqXYbxhYcY+8XpoSPqIWVa8DwsRLRyZZcEAz+6mA/Gd8k7B4y5TnxW7YqTJcGgWAYkiHcZlldZbQeIdyiI4wzY+aIDfkj1u4LvEkKsEGGA70xcd2ClCYplHdTyLsMaRlXbW4z5S6xek2gCMdTPDwWhZ5i3TOre/iRBsayDat5lWF6lN2sNFwTiC7x+nUpBwRwzs0ZFG4plnVTyLsPyKnVrYVoCmdW+SQQ/dtheqff4/e9/3/yf+UijCcWyTvy8y7C8SizS4P2+9rWvmYWCNGyTUxsnGSQhQXjXtWvXzL0y0300oVg6UO5dhuVV/vznPzdCifeEQKfhaAK1cdLRhTj9biGCgUQLiqUDXu8yLK8SQzad04JX2UhyijiRFrFU/va3v5lFH57OGT0olo6oBxCWV/nTn/5UvvGNb5j3RCKHtJA2sQT4fHHP77//PgUzQlAsHYF3CQ8grC/zli1bTAdKW+ByGsUSny++W7hvimV0oFg2ALa2hcXPfvYz03mQQqwSCD+pVhDMXgm/53tLtdeWHwVRXqqdNQMvCls3KxUVS/y7WsA2rlOtVFsMQ/IQxKZWKtVCefCjiYxBWppxCBm+V/39/dLb22trSBSItVhqR0pSqYRmp0GBcPjhvY5fgXBVwu/53lLtteoFVSrIzlMJPOb3Gr8Sx/bj2pXAjwweLy+aU5RZ1KMFxTJipRLwzn74wx+a52Bxyc+rhSBUK1H0LPGY32v8SrU2QLSqlWptwK4Zr1jp1kMteH0l8Jj3ueUF16sE7snvNVoQ/UCiA8UyYqUamMvSdGs4EoE7eNpP+TC8vFSbqkHol3e4/+tf/1q+9a1vmc93aGjIvJ5Eh1iLZRpBB9Ntcjgfh8HLyQBzqjr8hqfLhZ3oQbGMIViQ0I4F4YRXQuILws80hhZC2Y6zjkhtKJYxBUHpmjQWHQ2r5ByWxwtsX8XZPfgMUfBvCmV0oVjGGIij98xunEiIMBnmsIw2+NywnVF3geHHrlKEA4kOFMsEgGzp2B6nogmPk6IZPSCSEEXvajvmnXEMCIk+FMuEgGBobMH0ZkTCfCY8mDCD58lKMGWCaRKvSOoPGokPFMuEgdXxctHEMG/79u1mBwxXWcMBP16IC4XnqJ+DVyTp9ccPimVCwZAPB2F5j8FFwSo6kssihyIXhJoL4iKxso0VbV3d1oLFG9icIhlfKJYpAKFGe/bsKZnXREGHhueDeTTE+bEj1wfEEV4iduJgp47XtijwIjENwuDyZECxTBEQQ5zhA+HUwHZvwdAd2/cOHTpkDtGi51lKLXFEwX7uY8eOpSbfaJqgWKYYrMKiY/sNG7VAVDGExDwohAKvSXosIOYbEeiPaQzcN+7f78cFBSc14jmYD+aPS7KhWBIDBBBeJ8QTsZvlySTKCzwrPA9JNBC6BHFBkHVcBANeIqYn4EGPj4+bg8MwJVHrvimO6YViSSqCfegQBWTsGRwcNELhXWWvVOClQkzhseIUSgz7MS+K1WFcTxNH4PoQLS31rtTDA/S+Hl6vXhteMERQMyJhegGLXeXztpUKnofXIOQHHiauSXFMNxRLUjd+IlppmNpIgWBBdLXofvhmFrQbHiU8S6xkT09PMzkJ8YViSZoKAuDh4WF4C08SHiWECB4mRAmi5ydazSwYSmMlGp4hwqQwbMb0ArxNiCEynzNQn9QLxZK0HQiXdzhd65gHrDR7n8/hMQkDiiUhhASAYkkIIQGgWBJCSAAoloQQEgCKJSGEBIBiSQghAaBYEkJIACiWhBASAIolIYQEgGJJCCEBoFgSQkgAKJaEEBIAiiUhhASAYplE5ifk3Z4e6fEtx+WafVoJvq95VyaadNZW/uldmfxwl2wy190kuz6clLtP8/ZRV5bkixvnZf+mCvdUlbzMnfmHpt5j87gvuX5P2rmRy7aetBOKZRLJv5Jns1fk5I5uySzneczKwPhv5fb8i4LE+FB4zb0/fCQH12bM8zPdO+TklXvyqlE9K5CfOyObOz2dX0vnZjkz5/AGaOv0Cdn2Zqe91ojUKyf5udPSb17bL7n7tjISQCg9bbo8Yu6Retl+KJaJ5rGc36LiNCRTL211FfKX9klHZkAuPLYVjZK/KaNv9snhaSu8BaF7eOPksnhmhi9KgGaVsPh/t2V2YUHm/33I/hjUKZZoU5faJXpieb+kPUUvsz9ajUwlFMuEk79+RLJGFDIyfLGWLOXl+pGs9J783P7dOPfPHJScj/f48uKwm9B5uZ+z3mE911gsOGvdsjF3WvZFUizLuSwjjdiINA2KZeLxzH9tOV/wNavw8qIMZ7bI+WZ5ldVQoes9Kc7S7CCWi4VhbffGnMzlIUJRF0t8dhTKqECxTAFfeXFdMnqz8hzh5yd7nYbFTtwZl56CtzvQyHi/XrFcnJKhziGZWsQfQcQyL0/vTsqHuzYVF7zWb5PDuSvyoHzSd+mFzF7Jyf5Nuli0JA+mP5Rdm4qLWfvPz8jyWlb+qdydrPCYh/u5/kLb0L5i4Zxl+6FYpoH8HRnvLXa6zNBUYSDqQ/66HMn2yooReNWV9crl3WpLzAXBmBzKSFdBAXzbEpS6xPK+nNnYXRAdfccaYpl/KFO/6JbOtQdl8va8LCzMypV/3mh+dDLdB6V4mSfyP+M7Zf3q4qKYudZc4XXDXdK5umCH7uzyAlvX6E3J5+fkzOZOyWS7Vz5m3tQHu8DT0Z8r3AFpJxTLlPD4/BbboX0EsYDxPv2G6VhZX1gwx8PWU575LqPn5dW9aTnc1ykd3Yfl2itb7UpgsczLXG6jdJeIczWxxLxml3Rk98mlEjW/KaPZosBlCwK3zOPzssVcq0c27/5Hyc08teJX8Ewn7SJUZqNs3rGj9LHpfcX55Eyh/RXVUr1MDsfbDcUyLRjPsdjRVw61MTcWZAGoEa7J0ax6YLZkuuXgJRUPBwKKpQkT6hqV0hmIKmL5+UnpLTzWM37HVigv5eJw8R66TvzR1gG91no5PWerlPwlu5Dk81hVwfYA75Lj8LZDsUwRmJMsClXpIo5ZMV8hJs1mSV4UPM7ZP3wiuf190mnagdIr43cc3ziIWJowof6CUJW/R2WhujmaNW3z1SfjaZfHqlYTPdfHFDynhpiSUKBYpgmz2o3OWRhGHrluPbqit7Sl0hJ4K+YsC+QfTsmwjXXMFFTJSS5riqWGCc35XL+SUL2UqaFiu4I7c00US52jXC4cfkcFimWqyMudcetdauA55tsyw1JxBN7UOctSFqfsfJ7r4kUtsfzjCenq6JTVPmLe07PaercZyXYX64oC/1Wo1VCQKH5DE8WSRBaKZdpYXozokN7xW/L7I1mPlxkyL6dkCG0ZuCBPbFVd1BLLFV5a9aK7ZC6PFP+uFkb1+He/k9v23xTLdECxTB3FXTpGIDKd0plpY0e1Yum8YyjgAo8/lYXqyYWBon0Kj62c6yyweElGDnqFlGKZBiiWacSu9tbynprC0gtZeOGXuqMYzpPpKgjdimDLvDy89KH88vh5ubXiMQ8tEkvv3G5H17BMeqLQ809nZHxjd1lwP8UyDVAsU4mGwGTlyPVWDsD/KCfMIk5GureekOl7r8xwP//qodzIvSNdlbIOPbkgA0ZEyuIZy8jfGpMe87wtcvYv9d5HdaHCtsgu24bleU0TSF64l4OlwfT5O+P2x6dHxm6VtWNxUn5iHsvKP/2+7Edj+bGMDBW3FZEIQ7FMKfmbo9LVyL7sQLyUm//qDRMqlkx2rWw7Mb1y26CynBWownbIa8dLdsAUCxZy6slNWcury8vTmZzs6PbEhna+KbtztzxCOS8T73ZLVr1QlExWuk3OUJ/HTBtrPUaiCsUytSzJC9/hcQvAULyOVXIDXvOs6ImuwHO90vKsjvybxbjP2q/Jy6tneJ5fHlB9rLzgua6PkahCsSSEkABQLAkhJAAUS0IICQDFkhBCAkCxJISQAFAsCSEkABRLQggJAMWSEEICQLEkhJAAUCwJISQAFEtCCAkAxZIQQgJAsSSEkABQLAkhJAAUS0IICQDFkhBCAkCxJISQAFAsCSEkABRLQggJAMWSEEICQLEkhJAAUCwJIaQmIv8PHPzFihEZDfgAAAAASUVORK5CYII=
|
As shown in the figure, the volume and height of the cone are given. What is the radius of the base of this cone in cm?(π = 3.14)
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
D
|
61
|
iVBORw0KGgoAAAANSUhEUgAAAUUAAADfCAYAAABh/sHMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABx/SURBVHhe7Z1viFRl38eXCKYXLRS4ENiSsIGCBgkhSwYliBrIjUKEWZFkL8xuYR9IVArywUS490XPJjz7YiB5yFAeH/LFQqbBLvsUVshjdle3aKLgH8w79g7txcIW/J75njm/8drxnJlzzcw557rO+X7gQvfMOTNnrjPzmd+5/v36hBBCSANKkRBCDChFQggxoBQJIcSAUiSEEANKkRBCDChFQggxoBQJIcSAUiSEEANKkRBCDChFQggxoBQJIcSAUiSEEANKkRBCDChFQggxoBQJIcSAUiTO8vHHH4f/IyQ7vJViX18fi+elFcePH5dHHnlEZmdnwy2EZAOlyJJbacXw8HCwT7VaDbcQkg28fbbkvffeC76sTz75ZLiF9JozZ840xLls2bJwKyHZQCla8Ntvv8lDDz3U+MLiFo/0nk2bNjXqGOXEiRPhI4SkD6VogUaJWhgt9p5r167J/fffH9TvokWLgn/XrVsXPkpI+lCKCWmOErUwWuwtu3fvDup1yZIl8vXXXzfq+fz58+EehKQLpZiQ5ihRC6PF3oGeZv3hOXjwYLDtqaeeCv7etm1b8DchaUMpJiAuStTCaLE3QISoT9S1DsU5cuRIsO2BBx6QX3/9NdhGSJpQigmIixK1MFrsDbhlRn3iFlr5448/5NFHHw22HzhwINxKSHpQim1oFyVqYbTYHRMTE0E9opMFnS1ar2B0dDT4PwZzQ5KEpAml2IZ2UaIWRovdsXr16qAeMRwHaL0C/DDh9hl/c+ofSRtKsQVJo0QtjBY744cffmjUIQZuA/1b+etf/xr8jY4XQtKEUmxB0ihRC6PFznjjjTeC+sPUPkXrVPn5558b27788stwKyG9h1KMwTZK1MJo0Y6bN282bo2PHTsWbr1XimD9+vXBtg0bNoRbCOk9lGIMV65ckUOHDt1TtIcUBR0AzY9PTU2Fz0CSsG/fvqAuMXvF7ETROjb54osvgm3ojMH1ISQNKEVLnnvuucYXll/M7sBYRPQooy7xA2OiddwMmiiwfWRkJNxCSG+hFC2hFHsHImvU44MPPhg0V5hoHTejx6Bpo/kYQnoBpWgJpdg7Oon6zOjygw8+CLcS0jsoRUsoxd6AtletR/Qs26CjAh5//HEO5iY9h1K0hFLsDehBRh120pNs9lizt5/0GkrREkqxe8wxh5321uvYxmeeeSbcQkhvoBQtoRS7R2endDPY/bvvvmtcB50FQ0gvoBQtoRS7Az3G6G1G/XU7j1nnS7/yyivhFkK6h1K0hFLsDnPFm1bpS7WOW2GurIN2RkJ6AaVoCaXYOebaiJjJ0gqt43ZErcFISDdQipZQip2Duc2otySraGsdt0NX616wYEHLyJOQpFCKllCKnaMJ7tFz3A6t43ZAhLpwx/j4eLiVkM6hFC2hFDvDzMyH9RPbofsmwcwASEi3UIqWUIqdoQnuk+Zw1jpOgpkrmonzSbdQipZQivaY0kKPcRK0jpNiK11C4qAULaEU7Xn77beD+rK5vdU6TgoGcOsxSW7PCYmDUrSEUrQjy44QTPnD6zBxPukGStESStGOqAT3aWEz5IeQOChFSyhFO7C8F+oqi8HVGByOtAZ4vXaDwwmJg1K0hFJMTh7T8LDwLF6TifNJp1CKllCKyWlOcJ8FvVxwgpQTStESSjEZeS7thfQGeF3m4SadQClaQikmo9tFYLWOOwGL2Oq4SCbOJ7ZQipZQiu2JS3Bvg9Zxp3ST7oCUG0rREkqxPZpYqjnBvQ1ax52CCBHHI2K0TYxFyg2laAml2BqMRexFClKt425g4nzSCZSiJZRia6rValA33Sar1zruBvQ+4zmiku0TEgelaAml2JpeRWdax92AW3cmzie2UIqWUIrxfPHFF0G99KIdT+u4WzCzBc/TTfsmKReUoiWUYjzr168P6qUXPb5ax92COdDd9oSTckEpWkIpRmMmuHdtbCBWzcF5MXE+SQKlaAmlGE0vEtynxfnz5xvXjInzSTsoRUsoxXtBz67eoro63xgrcuP8spyHTfyEUrSEUrwXM8G9q50ZyN2Cc8xyxR7iJ5SiJZTifCDBpAnu82bZsmXBeTJxPmkFpWgJpTifI0eOBHXhw2rXSIeAc81iFXDiL5SiJZTifDTBfa/zomgd9xKIcMGCBcHzMnE+iYNStIRSvIttgnsb9Hl7zbvvvhs8LxPnkzgoRUsoxbu88MILQT2kkWtZ67jXmMuaJc1BTcoFpWgJpVjHTHCPnt1eo3WcBq+88krw3EycT6KgFC2hFOt0kuDeBq3jNDBTJTBxPmmGUrSEUhT5/fffU09wr3WcFnodkTaBEBNK0RJK8W6Ce/TkpjW0Res4LY4fPx48vw9DiUi2UIqWUIrZJLjXOk4LDDrX98HE+cSEUrSk7FLUCKsI0+XMxPkczE2UFKU4K5dP7JeNywekEkikXxau2SGHz9ySuXAPHym7FPX9owfXd8y20UOHDoVbSdlJSYozMrlzqCbDmggXL5bFQypGlEEZmZwJ9/OPMkvR7LXF/4uA9qIzcT5RUpHizMSrMvTiYfn7nbsx4ezlT2XrYCjGgXfktKfhYpmluGXLluB9F2mxVlxDHW85NTUVbiVlJgUp/p/8bXNVLkRIb+70OzIQCGWxjH4fbvSMskrRnAmCdsUioTNzmDifgGw7WuZOyfZAKCtk/EK4zTPKKkWdM4we26IlgDLncDNxPslWircn5FV8+J4Yk5/CTb5RRin2KsG9DVrHWfHUU08Fr8fE+SRTKaKtsdI3KDunb4dbopm7dUYO71gjQwOV+pejf6Gs2LhfTlxuHjYxJ3cuTkl1x7MyUFkp1UvYNiP/+HSPrFnYHxzbv3SLVM/e7diZvXxC9m9cKv143sqAPLvnlFy1aN8soxR7leDeBq3jrNB1IZk4n2T2qZu7cFReHByUF49eaDkkZ+b0Xlleqe1X/VpuBA6clcv//Wq9LbKySqraWHllQnY+v0IW9te/PH19NSleuCoTW5fK0o3bZdeu1+RZlWrtuI9qwpyZ3FkT7UJZ89ou2a5irJXBndPSWtN3KaMUdcXqLKMoreOsMFcQR3oFUl5S/9TN/uu8TI1tlqEK5LRcth0+I7dirDh3oSqravs9Mfp9kzinZSeOxxdlw1H5JdwK5iZHwuE+i2Xtjr/NjyZnTsn2gfpxi1f9RTbuOSHzHg4iVzy+QY6aT9qCsknRTHCf5fvVOs4SzTXDxPnlJt1PXU1Y+uE2S//ajyJ6p6/L4efxeJSgbsv0Hox7rMjQnqao7lJVVgbPG915MzkSvu72U/dGqNrGadHxUzYp9jLBvQ1ax1liZiVk4vzyksGnbk7u/LMWLVZ3yHDjVrd2y7r32/mS+uWobMBjK8bFqmO6IUVtU5zPperK+muOTIZbTCZlJDyfyIcjKJMUzXzJWSe419fNGs1fjTQLpJxk+6mbqUlIB3BXRmTStKJGlSurEuG2eCjF1FBBoGc2a7SOswZDcvS1mTi/nGT+qbs7gLtJYirFgb3ybbgpEZRiKuSd4F7rOA/QVIDXZuL8cpLDp+5b2Rt0fqySj0ynNNofo+UWC6WYCgcOHAjeo8sJ7tPC7FxC2gVSLnKQ4iWprqxJpTkibMgtqvf5Lpeq++V/zDVBKcWeYw5PgRzLCBaIwPtn4vzykb0Ub38mWzHsZqx5TstPMvZEXTbzxiMaBEN2NhyW6+HfAZRiz/EpwX1aYCkx1AET55eP3ktx7pb8OH1STn5zWe79KM3U7pIHpbIqesGImVPbw/bGWsGYxuqUnL95U25eOSefB2MdB2Xvt00HtpHihfEV9eeLGpJDKUaiU956neDeJ8ypjUi/QMpD76VojE3EFLuxz8/JlZrYrpz7XMY2D8nA2jExZt01MSNnR1cZay+aJWo2zKz89GEYCfZVZON/zRfx3J2/y4e4VcfjA9tloj5FJmRWbpwYkcHw+Z9498vYQeUmRZeiuTgChuSUmffeey+oBybOLxcpRIpX5dSeNcb0u5ocFy4WzF3+9NyNiOixmTm5deaw7FizsDE/eWjNHvn0H80mvRvlzS/1iLExaLu5BCFh62NbUXQpppng3jeYOL+c5NDR4jdFliLeT5oJ7m3QOs4bpEDFeaxevTrcQooOpWhJkaWIBR/wvrAARN5oHecNkuXruRQlBQNpDaVoSVGlaCZxwlJheaN17AKIEnEuTJxfDihFS4oqRU33mWaCexu0jl0A7Yk4F7Qv+p7WlbSHUrSkiFLEYG1NDI+0Ay6gdewK6IHG+aBHmhQbStGSIkpRE9y7FAlpHbsCxirifJg4v/hQipYUUYr6nlxKcK917AoQIRPnlwNK0ZKiSdHVBPd6Ti6BedA4JybOLzaUoiVFkyKiQ7wXvC/SGjQt6DhOrKRDigmlaEmRpFjkBPdpgTUWUV9MnF9cKEVLiiTFIie4Twusxq3Xn4nziwmlaElRpIiOA4xJxPvIKsF9UXjmmWeCekO6BlI8KEVLiiJFM8E9ZrOQ5CDTH+qOifOLCaVoSVGkmEeC+6KApgbkhkb9MXF+8aAULSmCFLECDs4/6wT3Nmgdu4pOi0TaBrbHFgtK0ZIiSFET3GPtRFfROnYV3DbrYG4mzi8WlKIlvksxzwT3Nug5uowutcbE+cWCUrTEdyki7wrOPY8E9zZoHbsMhuToYG6kcSDFgFK0xGcpmgnukbHPZbSOXYeJ84sHpWiJz1L0KcG91rHroAkC58nE+cWBUrTEVylCgpqy04cE91rHPqCJ899+++1wC/EZStESX6X48ccfB+eM22cfBhxrHfuA1i0HwhcDStESX6WoCe45Na33mFE4E+f7D6VoiY9S1HYvlLInuE8Lba/F4hrEbyhFS3yUovaQYtA2SYdff/2Vy7AVBErREt+kiHPkwqjZoGNAmTjfbyhFS3yToksJ7ouOOVuIifP9hVK0xCcpmvNzXUhwXwbWrVsX1PeWLVvCLcQ3KEVLfJKiruTiY1pOrWPf0BWIXEoXS+ygFC3xRYoYJuJagnsbtI59RNeqZOJ8P6EULfFFii4muLdB69hHdFVzJs73E0rREl+kqHlEfG3b0jr2ETP/Ddty/YNStMQHKbqa4N4GPX9f0UyJTJzvH5SiJT5IsQgJ7rWOfcXMqc3xoX5BKVriuhTxZdTB2j7PrNA69hn9ceJMIr+gFC1xXYpmgnuf0Tr2GbMZg4nz/YFStMRlKTLBvXvo54WrE/kDpWiJy1IcHx8Pzovr+rmDOTSKifP9gFK0xGUp6qBhrgDtFjqInonz/YBStMRVKfqQ4L6sMHG+X1CKlrgqRV2IwOUE92UFTRm6MIfrWRQJpWiNi1L84YcfGufE/MNugiYNXB/X820TStEaF6Woi5sODw+HW/xH67go4LPCxPl+QCla4poUzWXwfbo1Q0/s1NRUoyAj3qFDh4KC5E9ax1HosZALroEW1IXLoGkD74lNHG5DKVrimhT37dsXnEtejfgQFFacVrGhh3X37t3BQhSoK3QARWEm02pVosBrRe2rZdGiRbGzeTCWE9ctjyFLkDjOj51hbkMpWuKSFM3UmnkM98D717qIK3GJ969duxbIyyxY2Qf1a9ZxFJAL9teB6lEF4owC85B1H3R+oMkBA6sRneKYtKNNvB5em8Om3IVStMQlKaaR4B7Pg+gOw0jQVokvcZxwIWWtC0gK+2Ke7xtvvBEssIrB5J2u0qPPawPOHdPpILe4+tC1DluVNNv80MSB1+AAe3ehFC1xSYpYlgrn0e0UMrTjQYBLlixpvDezbNq0KdzzXtJawFZfOy0QqUJ+iBBRf4hSddhMnFCPHTsWRHi4Ne/0Rwg/JGjqwOtwKqabUIoxINowb+20aKcGCj7czY9ntfS/2SbX7WIDKlctmIGBXNFoG4QI8ljMQM8la1pJXle90YLIGBGxbWSJyBvHM3G+m1CKLWiWRbuCBvSsBGKT4B7tZBMTE+Ff94KIBalQcWvnSuoCrVOXQP2g5xg/fnp+WtC+mTRiR5SpP64+L+9WVCjFFuhk/qQlq6X/IV4d8xa3gClu0xDlQZ7YF8X1ISs+gWuAHxMkvlfBoa6TAoHiGDTHELegFNuQNFrMMkrUBPdRS90j0sMwHW230oK/0+xAKDPoMEGnV1yPdxT4rOi1YeJ8t6AU25A0WswqSsStl3YImEmRIEOcg0aQKA8++GAQkaD9keQHpIf2Q3RomWNJtQnE1+RiRYVSTEC7aDHLKFFXXGlOn4n/65hFLCGGXlUO+XADDFHSzwrkiGYNoGMmcfvtSlsuoRQT0S5azOqXHlGGNvJHJVrHl40N9+6B6B7XSyN8FESJGBakP7hZjVog7aEUExIXLWYZJaqcGVn4CeSIcY7axAFJ7tixI/g/E+e7A6WYkLhoMcv2IE1wv3HjxnBLcdH6LSLo8DIHyj/88MPBv0yc7waUogXN0WKWUeKZM2carzswMBAswlBk9L0WFUSFmCmExYG1nRhtwSR/KEULmqPFLKPEl19+ufG6uNWiFIsB5Pjnn3/KY489FrxfJs7PH0rREo0Ws4wS0X543333Ba+L9sQyjDcsixQVXFN8ppg4P38oRUs0WswySnzppZcaksDKM2WgbFIE+EzhPZ8+fTrcQvKAUuwA5NnIKkoEa9euDb4sGONmDv4tMmWUIj5TeM8rVqwIt5A8oBQ7IOvhMK+//nrwZYlbcEDHwbUqcVPJsPxZ1P5m6ebYuOXV2h2rUsT/Wy2xhbUfNY1BVNGB0lHgfWFqnhb8jfPSkvV1RgKy/v5+efPNN8MtJA+8lKJ+YYpUWoFFB7APBBEFvsDNz9dcIIgoIIOo/c3SzbHYJ4okx2rBgPU4zPUto0o3x7ZarKGbYzG0CufVXHT84ocffhjuSfKAUnSktAJL+j/99NPBfhjw2xzBYPUbtEe1KnHzn9GLHbW/Wbo5Nq6XPMmxWlot3Y/FMSCguNJqgVw8ZkrJnHGCguPjwGPmvs2l1bF4rahjtMT9kJBs4O2zJ6AtEePY8KXB4qac15wvmKJn3mo3l1a33uhphvi0vPXWWw0hoqkAzSEkPyhFj0B0pcmacAvG9RH9B3cBKkQms3IDStEzcCuri5qiNxqN88Q/EOnj9l2FiGYA4gaUoodgyp8uIgtBogOGiwn4A3rM8YOmQozrQCP5QCl6CtqsMG9Wv1hYYIDLhrkNxiHqwrIo6NiBIIlbUIqeg2RKZuoByBFDaMoyyNsHIEP0ouuQGxQsPMs2YTehFAsA2qdwC2YOKcGiEVi4FL2kJHvwo4QMipjLbMoQQ3WYK8dtKMUCgVtqNNhrRwyKLjKAxEo+DePR8/cNzIrBj1Fz4jDIsN34Q1/fc9HgFSggGOeGHC06rlELElkhoTumvrk+Fs4XQSAiROQHEZqdJyiI3DE1M+kIAV/ec9HhFSg4+MIiemyOXBBBYqwjbruxj2ttkK4KQiWI8YXo6MIPTXO9Ylom2nVtRwS4+p7LBq9AicAYRwiyOaJBwS03bvEQ8aBHNO9OAD2vvIHYWkkQBXUHESKdQDf1ps9H8oVXoKSgRxS32HFfdBTMnoEocQuIfdEmlpUs9RyyAu2tGP+Jttfdu3cHQ2fMPCpmQX2h3iBK1Emvxojq85N84RUgwS0hOgggPrQ5tluwoFmWGBYEOWDOb686c/S1egXeI84P0TLGc2KxXkTNkFu794u2QUhydHQ01aYGfT2SL7wCJBJ0xEAApjw02X67gkgKooE4X3jhhUCeaLtEOxsKOnogUS2I0MzFFBCN6nMBiNZ8HB0X5vEY+qLPjegNc4ghd7w+or3m1W/iCvbDAsIYUwgB4nnxelmh50HyhVeAWAFZQkSIECE7tKUhb01SYeZdEOWiVx7C3LZtW7AqDdpQs15QNgo9R5IvvAKkp2CwOG7FkZUOkdu+ffuCSFMjNxRIFJGkFl35J2lBx4Z5PKJBfW5EppCdRqaI9hDxZhnxdYq+P5IvvALEOXC7rIKAzFyI4rKAUnQDXgHiJGUUBKXoBrwCxEkoRZIXvALESShFkhe8AsRJuhFEljm5o+j09SlFN+AVIE7SiSAwVEh7ofME858x1tFWjpSiG/AKECexEYTKUI/JW4p6HrZy1ONIvvAKECdJIohmGWpxRYpakspR9yf5witAnKSVIOJkqMU1KWppJ0fdj+QLrwBxkihBtJOhFlelqCVOjvo4yRdeAeIkpiCSylAL5mFDOnmVqHOKKs1y1O0kX3gFiJOoIGxk6GuBHJHdT/8m+cIrQJxEBWEbJfpWzGhRt5F84RUgTtIsCBs5Dg8PN9ZezKNEnVNziWpX1MdIvvAKECeJE0QSOeLxPIk6Jy1xnSxA9yH5witAnKSdIFrJ0UUptpKhovuSfOEVIE6SVBBRcnRJiklkqOgxJF94BYiTJBbE3B25+M13csyQowtStJGhkvg9k1ThFSBO0lYQszfk68M7ZLgf+43IZLgZkSNyV+eJrQwVStENeAWIk8QL4rp8/Z//Js+vGJKBSn0fU4o+Qym6Aa8AcZJ4QczJ3Fz9fxfGV4T7UYqkd/AKECdJJIjJkXA/SpH0Dl4B4iSUIskLXgHiJOlJcVb+deWcTJ88KSdPfiPn/3mndkMeQ9CzfVK+ux7+XdvzztX6sdPnbtSeqYnZG3Juuv68F+/EPmsslKIb8AoQJ0lDijNnq7J5qF8Gnn1Ndu3aJa8N9wfH9w/vl9Mz4U41Zm+ck0/3b5SlQc92n4zgyWfOythfBqQSnldw3NqP5ELgvln56fBmGWp0/NRKZUh2ThpPmgA9luQLrwBxkkSCsJDiTG3fwb5BGTl1y4gMr8vh5+uvU1n1kVzCprnv5dQnJ+X4v69qCHDk00nZs2aLjE2dl5s3r8i5T7bWnqv+2BNjZ+Wn8bWydPOYfH7uitw8PyVjLw7Wz6uyVT67HbxQIurvhV/JvOEVIE6SSBBJpXjpI1lVi+IGaiFfs6O+H10cPsdKqQZWDLk9Ia+G5zC0c1JuzbsbnpPT7wzUj+sflv3/a4q2hnFsEGUmpH4e/ErmDa8AcZJEgkgoxW/3QmCVmqAi2vlqt8WH398l7x8+K/NvdidlJDyHKLH9cnRD/bVXVusR5jwuSXVl/dgNR38Jt7Wn/l74lcwbXgHiJIkEkUiK38voYuzTFAm2pbUUG6/dRoorLV60/l74lcwbXgHiJIkEkUiKKjdKkSSDV4A4SSJBWEmxT7afirh9joVSLCu8AsRJEgkikRSnZWc4VGbgndPxYxLluly9aj5KKZYVXgHiJIkEkUiKt2Xi1fpz9VU2yNHGQOz5zExslZ3zOmIoxbLCK0D8JZEUa1r8bGtjzGFl1aicndfNPCe3zozKqqG98u28MDJ7KRI3oBSJt9yeeLUupjZSxK3x0Q2VcN9aqQzIs6/tkl27tsvG5ZilMlgTX9PsE2OsYVRbZGNIzkBNpuG2u1yQ8RX1Y1eMXwi3EV+gFIl3XP/upByv7pE1g6Hk+ioytH6/fHLyK7kYN4Nk7oIc3Tw0b5peUCrLZe+8wde35eJXx+/OSqmVytBmGTtenwN9++JXcvKT/fNee/m2qhz/6mLtyPqx1W3L775O/7Ds+cScP01ch1Ik3vHjMUR5UeWgTLccKz0ndy5+I5/8B/Z9X6rHv5HL96zq8ItMH2x+3no59mPt0emDkY/tOjhdO7L1scQPKEVCCDGgFAkhxIBSJIQQA0qREEIMKEVCCDGgFAkhxIBSJIQQA0qREEIMKEVCCGkg8v/4QtxkPsf/SQAAAABJRU5ErkJggg==
|
As shown in the figure, the height and the base radius of the cone are given. Then the front view of the cone is a ( )
|
A. Square; B. Rectangle; C. Equilateral triangle; D. Isosceles triangle; E. No correct answer
|
D
|
62
|
iVBORw0KGgoAAAANSUhEUgAAAUYAAADfCAYAAACKyXrPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABW+SURBVHhe7d1faFTX3sbxXBSmFwa8MCBoQIigoIKCiKBgAxItyCEBESlKBb2QoDAXBhWFI4gIzYVYX8jFgOWgL8rrQS8CTY9CRAQ9Ek5t62tDqijYFusrqagXgenF7521Z/2SnZ1JZtb82bPXnu8HNuqaTGZmOXmyZu9n9rQJAGAWghEAIghGAIggGAEggmAEgAiCEQAiCEYAiCAYASCCYASACIIRACIIRgCIIBgBIIJgBIAIghEAIghGAIggGAEggmAEgAiCEQAiCEYAiCAYASCCYASACG+Dsa2tjc3zbSF///vf5d27d/ZfQLwIRrambfOZmpqSJUuWyODgoB0B4sVLaUcXLlwIfqjXr19vR1BvuVwumOMVK1bIX3/9ZUeB+BCMDsxKZunSpdMrnlu3btlLUE/mlw5zjGYiGB3oalE3Vo31d//+/VlzvH37dnsJEB+CsULR1aJurGjqa/fu3cG8hleNT548sZcC8SAYKxRdLerGqrF+fv31V/nkk0+CeTUrR7NaNH8/fPiw/QogHgRjBeZbLerGqrE+Tpw4EcxneLVotk8//ZTqDmJFMFZgvtWibqwaa6cVHTOfelTabObItPmT6g7iRDCWUW61qBurxtpoGJpwNHOu82oC0fxJdQdxIhjLKLda1I1VY2305bN5OW3ovJqX0OaltPk7v3wQF4JxAZWuFnXjB7c6WtExB17MARhD59QwB1/M36nuIC4E4wIqXS3qxqqxOlrRMX8qnVPD1HX031R3EAeCcR6uq0XdWDW6iVZ0lM6norqDOBGM8xgfHw/O8BLd9Cip2bLZ7JzLr127Zr8DKnHs2LFgLsutts0vHPN1Zn/j27dv7SjQGASjo88++2w6GF++fGlHUQ2zKl+8eHEwl+ao9ELMEWn9pXT+/Hk7CjQGweiIYKyfoaGhYB61olOOVneWL19OdQcNRTA6IhjrZ+3atcE8akWnnHB158aNG3YUqD+C0RHBWB937twJ5tAceHn9+rUdLe/IkSPB9bZu3WpHgPojGB0RjPXR29sbzOHevXvtSGXMQTGd/8ePH9tRoL4IRkcEY+3MvGlF5+HDh3Z0Np3jUnbu3BlcdujQITsC1BfB6IhgrJ1WdDZu3GhH5tI5LmV4eDi4jOoOGoVgdEQw1iZc0bly5YodnUvneD4rV64MLqe6g0YgGB0RjLXRio55V9FCFR2d4/no2zWp7qARCEZHBGNttKJz+vRpO1KazvF8THVn0aJFwddQ3UG9EYyOCMbquVR0dI4XQnUHjUIwOiIYq+dS0dE5XgjVHTQKweiIYKyOmatyFZ0wneNyqO6gEQhGRwRjdSqp6FSD6g4agWB0RDC6q7SiUy2qO6g3gtERweiu0opOtajuoN4IRkcEo7tKKzrVorqDeiMYHRGMbrSiY/YBupxFx5U5m7q5Hao7qAeC0RHB6EYrOvv27bMjjfHs2bPp/xeqO6gVweiIYKycmR+t6IyNjdnRyugcu9i1a1dwHao7qBXB6IhgrJxWdDZv3mxHKqdz7GJkZCS4DtUd1IpgdEQwViZc0anmkxN1jl2tXr06uB7VHdSCYHREMFbm0qVLwRyZik41FRqdY1e13i5gEIyOCMbK6Mrt7NmzdsSNzrGrjx8/1rRSBQyC0RHBWF54X1+1FR2d42podaeafZuAQTA6IhjL06PDtVR0dI6rEa7uuB4NBwyC0RHBuLB6hZJ+j2rVI5zRughGRwTjwpLyMrYeL+fRughGRwTj/JJ24KPWA0BoXQSjI4JxfkmrylDdQbUIRkcE4/yStkKjuoNqEYyOCMbSkrpPj+oOqkEwOiIYS9OjwAcOHLAjyWCOkld7Igu0LoLREcE4VyNO+aXfrx7iOvUZ0oNgdEQwztWIk8TqHNdDXCfLRXoQjI4IxtnCBzjq+bECOsf1oh+vQHUHlSAYHRGMs2klpt4fRKVzXC/hD+SiuoNyCEZHBONsjTr/oc5xvdR6fki0FoLREcE4o5FnzNY5rqdaziiO1kIwOiIYZzTyM1Z0juvJ/H9R3UElCEZHBGNRoz+VT793vVHdQSUIRkcEY5Gvn+NMdQeVIBgdEYyNq+jEheoOyiEYHRGMjavoxIXqDsohGB0RjI2r6MSF6g7KaWAwTsmLkXPSt6FDMkGQtMuynqNydeyN5O1X+KjVgzEtH2pPdQcLaVAwTsroQFchEAthuGqVrOrScDRbp2RHJ+3X+afVg3Hnzp3BY29ERSdO5v9OqzsPHz60o0BRQ4Jxcni/dO25Kj99mFkbTr24KQc7bTh2nJIHni4bWzkYx8fHpx97Iyo6YXo7jaTVnb1799oRoKgBz7z/yFdf5GSiRPDlH5ySjuAJv0oGf7SDnmnlYDxy5EjwuLdv325HGkfnuJHu378f3IZZOVLdQVhjn3lR+dvSHzzhN8nQhB3zTKsG47t372TRokXB475165YdbRyd40Zbv359cDunT5+2I0Dcwfh+WPabJ/y6i/LUDvmmVYPxwoULwWNesWJFLBUXneNGy+Vywe2Y6o45Wg0YsQaj2feYaeuUgXvv7Uhp+TdjcvVoj3R1ZIo/IO3LZFPfORl5EX3i5uXDL3cld3SbdGS2SO65GZuUn2+elJ5l7cF129cckNz3Mwd7pl6MyLm+NdJuvm+mQ7advC2vHPZ3tmowrly5MnjMg4ODdqSxdI4bzYThkiVLgtu6cuWKHUWriy0Y8xPXZU9np+y5PrFgXWfywRnZkCl8Xe6h/B7k4JS8+J/9xX2TmW7J6c7Ll8My8PkmWdZe/AFqaysE48QrGT64Rtb09cvx41/KNg3WwvUuF0JzcnSgELbLpOfL49Kv4VjYOgfuycJRPaMVg3F4eDh4vKaiY15Sx0HnOA4nTpwIbmvjxo12BK2u4c+8qT/H5e7FL6QrYwJqgxy+OiZv5knG/EROugtft27wx0h43pMBc33zw9J7Xf6wo0Z+NGurQKtkx9GvZq8qJ29Lf0fxequ6/yZ9J0dk1sXBCtZc3ivXw990Aa0YjFrROXz4sB1pPJ3jOPz6669UdzBLY595hdDSJ3h4a99xucRR69/k6ufm8lIh9V7unTS9yIx0nYys7p7nZEvwfUsf0BnN2tvtvz13par7PB0OBrVaMIYrOk+ePLGjjae3GZfdu3cHt0d1B0YMz7y8fPi/wqoxd1Q2T7/sLbx8PfNodlD9cV16zWWbhsTpgPV0MOo+xtme57YUbzM7akfCRiVr70/Ji0totWCMs6LTTFR3EBbfr2RjshBEWvLOZGU0nIy6utySkxL5Nj+CsWHirug0G9UdqHiDsWCm5B0JMg3GjjPyyA5VhGBsmLgrOs1GdQcq9mCUQuydCQ6IdMvlcK5M748sHXDzIhgbJu6KTrNR3YFqQjA+l9yWQrBEV4bTAVfqqPSM57lz8s/wSV0IxoZoRkUnCajuwIg/GN9/KwdNJedi9L0vT+XiumLgzOorhgR1nt6r8pv9d4BgbIhmVHSSgOoOjPoHY/6N/O+9f8m//v1C5u6lmSy8Yu6UTHfpk0xM3u63+x8Lm+k85u7K+OvX8vrlD/Jd0IXslDOPIlcsE4wTQ5uK369UXYdgLKlZFZ0wvf1moLqD+j/zQt1F83a8i9/9IC8L4fbyh+/k4hdd0rHjooTeoRcxKd8PdofO3RjeSr1rZkqefm1XhG0Z6fvH7DDOf/hJvjYv283lHf0yXHwrjTUlv49kpdN+/3Wn789bPA9rhWDUio5ZNTaLznEzmJWiuW2qO62rASvGV3L7ZE/orXqFgFy2Ssx7nW/+8HuJVWRUXt6MXZWjPcum38/c1XNSbv4cTdOZ1d7srbhynC52R7dgabjwdReS9mAMV3TMfsZm0TluFrOP0dw+1Z3W1LxnnqfSHoxa0TFHpJtJ57hZzFFpc/tUd1oTwego7cGoFR0TkM2kc9wsJgxNKJr7QHWn9RCMjtIcjFrRMS+lm13R0TluJvMy2twHqjuth2B0lOZg1IqOOfjSbDrHzWQOvFDdaU0Eo6O0BmO4omP+3mx6X5rNVHbM/aC601oIRkdpDUZT5DaPqZkVnSQKV3dM+RutgWB0lMZgNPsTzVv/zGNqZkUnqbS6Y94uiNZAMDpKYzCak0SYx9Psik5SaXXHnGCC6k5rIBgdpS0YzenEzGnFzONpdkUnqcLVHXNqMqQfwegobcFoTkBrHksSKjpJptUdczJbpB/B6ChtwWg+ssA8liRUdJIsXN0xH4OAdCMYHaUpGM2Zc/SxJKGiE6b3K0m0umPOvoN0IxgdpSkYk1zR0TlOEqo7rYNgdJSWYAxXdEZGRuxocugcJ83mzZuD+0V1J90IRkdpCUat6KxevdqOJIvOcdJcu3YtuF9Ud9KNYHSUhmAMV3QuXbpkR5NF5zhpzNxR3Uk/gtFRGoJRKzqLFy+Wjx8/2tFk0TlOorNnzwb3jepOehGMjtIQjFrRyWazdiR5dI6TyFR3dP8s1Z10Ihgd+R6M4YrOs2fP7Gjy6H1Mqn379gX3j+pOOhGMjnwPRq3o7Nq1y46gGmNjY8E8Ut1JJ4LRkc/BmPSKjm+o7qQXwejI52BMekXHN1R30otgdORrMPpQ0fEN1Z30Ihgd+RqMPlR0fER1J50IRke+BqMPFR0fUd1JJ4LRkY/B6EtFJ0zvrw+o7qQPwejIx2D0saKjc+wDqjvpQzA68i0YwxWdO3fu2NHk0zn2xdatW4P7S3UnHQhGR74Fo1Z01q5da0f8oHPsixs3bgT3l+pOOhCMjnwKRlMnWb58eXBfh4aG7KgfdI594fNcYy6C0ZFPwairGFPR8W0Vo3Psk/Pnzwf32bfVOeYiGB35FIy63+vYsWN2xB86xz55+/atl/tzMRfB6MiXYHz8+HFwH82RUh/2hUbpHPvm0KFDwf3u7e21I/ARwejIl2DkB7Q5fP+FhCKC0ZEPwchLuubyeRcGighGRz4EIwcBmsvng14oIhgdJT0YqY00H/8H/iMYHSU9GFmtJAOrdr8RjI6SHozs30oG9vP6jWB0lORgTNMRUZ1jn9EM8BfB6CjJwZimH0SdY59R3fEXwegoqcGYtpduOse+Y9eGnwhGR0kNRt3Zn5ZT7Osc+y78kRIcDPMHwegoicEYroek5UOZdI59Z/5v9EPIqO74g2B0lMRgTOO5AHWO08DXc2K2MoLRURKDMY1nj9Y5TgNfz6LeyghGR0kLxvCRzzR93ojOcVro5+5Q3fEDwegoacGoFZ0kfkKdzlO1W5roJzVS3fEDwTgP8xnBJgSjmzm6qD+4mzdvnnO5OTocl3BFJ4mfaazzVO2WNvrZ3lR3ko9gnIc5mrhy5co5P6zlNvPSNi5Jr+jonKCI6o4/eNYu4Jtvvpn+4a5ki3P/kQ8VHZ0XFFHd8QfP2gW4rhrjXC36UNHRecEMqjt+4FlbRqWrxriPNpr9m+Z2k1zR0bnBjHB1Z2RkxI4iaXjWllHpqjHO1eLY2Fhwm0mv6OjcVKOW6yadVnd27dplR5A0BGMFyq0a414t7tu3L7jdJFZ0wnR+qlHLdZNOqztme/bsmR1FkhCMFSi3aoxztfj69etEV3TCdH6qUct1faDVnWw2a0eQJARjheZbNca9Wjx79mxwuz6cRUfnqBq1XNcH4erOx48f7SiSgmCs0HyrxjhXi+Y+LF26NLhdE9RJp3NUjVqu64Pw8+nSpUt2FElBMDqIrhrjXi1eu3YtuF0Tjj4UhHWeqlHLdX1x4cKF4DGuXr3ajiApCEYH0VVjnKtFQys6p0+ftiPJpvNUjVqu6wtT3Vm0aFHwOKnuJAvB6EhXjXGvFsMVHXMAxge1hFst1/XJkSNHgsdJdSdZCEZHumqMe7WoFZ29e/fakeRrlXCrxfj4+PQ8Ud1JDp61VTBP5jiFKzoPHz60o8lHMFZm586dwTxR3UkOL5+1+gOXpm0hWtExmzkJgS+bj/e5GZueyo7qTnIQjAnZ5mOOPmtFhy39mzlSjebjdU7CmSOXd+/eZWuRLe591yiNYASACIIRDvLyZuyqHO3pko5M8aVf+7JN0nduRF5wQmqkCMGICuVl4vIOaY/sE5veOg/K8Ku8/VrAbwQjKpL/cVDWZbrki4t35ZcPxQCc+nNcRgY2SEbDccuQTJCNSAGCERXIy2i2S7Kjk/bfYVPy4FSnXTlmCl9DMsJ/BCMq8EjODXwr7+2/5ng/LPvtqnFL7rkdBPxFMKIOnktuC8GI9CAYUQcajAu9lJ6SFyPnpG/TMnsAJyMdXT1y9OqYvIlcJf/hF7mbOyrbOjLTQTv580052WOv275GDuS+l+kX9lMvZORcn6xpt99320m5zYEg1IBgRO3yo5I19Z2OU/KgVB7lJ+T6nk7JbBiQkV8+iPmS/JsxOW9XmZ3ZURtyL2V44HPZtKw9GC+uQCfk1fBBWbOmT/qPH5cvt3XYgz0Z6b5cCM3JURno6pBlPV/K8X4Nx8LWOSD35n3tDyyMYETN8g9OSUcQYqVeRk/KaLZT2jL7ZThy7Obl5W4bgB1y5pEdNDRoC5et2nFUvhp5UVhvqkm53d9RvN6qbvlb30kZCZcoJ4dlv71u7/U/7CDghmBEjSZleH+msEI7I49KrBY1NDtmJZ/1/IrsMCu89h1yZVamzuyz3DQ0YcdCRrPFYGzrl9tzbvN94f4scF2gAgQjavL+3oB0tq2TwR9L79N7dKa4uuufm2ALKHMw53lOtgTBmJVROxQ2mi1et63wEh2oBsGI6k0WXvJ2ZqQ7NxHsN5xrJuDcMopgRHMRjKiSeQndLhvOPLAHTkqZCTi3/X0EI5qLYEQVJmV0oEu6po8mz2cm4DKFr638xTTBiOYiGOEoLxO5bunac72C90WbtxJmiiFV4qj0tPejcu6//mP/YRCMaC6CEQ6KZ9jp6M7NH4qTwzJo+oXW+28PTp9kYqavGGbqPBvk1KwCJMGI5iIYUSENxSF5WvLci1Py5/iIDGzYKBef2iEjPyFDNuSCcOw5Jzd/eBl8wNf4v/9bTm5ul0zvdfnNfnlRmWCcGJJNwfcrVdchGFE7ghEVmJKnQ90zpxdbaFt3UcK5aORfDcvBzhJfW9gyG87Ig8gycurp13ZFWLi87x+zT4Kb/yA/fb3FXr9D+od/D5W/C9f9fUSyelvrTsv96PsNgQoQjCjrj3/uqSwUC9u6WcvFEPt+5g0dxX2O5szfBy7el+hbmqdXe5EtWDlOF7ujW/El9YLXBRwQjAAQQTACQATBCAARBCMARBCMABBBMAJABMEIABEEIwBEEIwAEEEwAkAEwQgAEQQjAEQQjAAQQTACQATBCAARBCMARBCMABBBMAJABMEIABEEIwBEEIwAEEEwAkAEwQgAEQQjAEQQjAAQQTACQATBCAARBCMARBCMABBBMAJABMEIABEEIwBEEIwAEEEwAkAEwQgAEQQjAEQQjAAwi8j/A9YTcpo79WSAAAAAAElFTkSuQmCC
|
As shown in the figure, the front view of the cone is the isosceles triangle below. The area of this triangle is () cm².
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
B
|
63
|
iVBORw0KGgoAAAANSUhEUgAAAUkAAADiCAYAAADDJjUxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB/hSURBVHhe7Z1viFTZmcYbklAJTEM+WBBwGgId6AljQwZEmihkhKAj+KFlZdIz2IyJQoyMgwu6GXFAd1WE7Q8Z4wdZCvSDDi072Z6FBjtxWGXjqnGbGGWcbXoi00Ed2j+0QSfQUPnwbj2nzttzq/rWrVun6t66f54fnBn7VNWtc9+q89R7znnPe3qEEEJIQyiShBASAEWSEEICoEgSQkgAFElCCAmAIkkIIQFQJAkhJACKJCGEBECRJISQACiShBASAEWSJJrFxUVTCOkWqRfJnp4elgyURpRKJTl79qz9i5D4oUiyJKI0YtWqVTI0NGT/IiR+KJIsiSh+TE1NLT0+PT1tawmJl9SLZDf461//Kt/+9rdN5/3e974nf//73+0jpJO89tprSyI5MjJiawmJF4qkA4cOHVrqvChnzpyxj5BOMTMzU2Pjr3/963L//n37KCHxQZFsEa8XqYXeZOfZtWuXsS28ydWrV5t/v/vuu/ZRQuKDItki9V6kFnqTnePJkyfyzW9+09h1cnJSxsfHzb/x48RwIBI3FMkW8PMitdCb7BzHjx83Nn3ppZfM37Driy++aOpOnjxp6giJC4pkCzTyIrXQm2wfCOJ3vvMdY89Tp07Z2uXCSUhcUCRDEuRFaqE32T4IHIctV6xYUTO0hv29Q3BC4oIiGZJmXqQWepPtEbRI8/bbb5vHfvzjH9saQqKHIhmCMF6kFnqT7ly5csXYEOE+8/Pzpk7tCrxhQZ988ompIyRqKJIhCOtFaqE36cbw8LCx37Zt22xNrUiCzZs3m7937txpawiJFopkE1rxIrXQm2ydubk540HCft4tiGpT5eOPPzZ/Y35SvU1CooQi2YRWvUgt9CZbY+/evcZu69atszVV1J5ekPQCdfhsCIkaiqQj2nm/+93v2hriitdb/+ijj2xtFbWzF6RPQx1ChRhcTqKGIumIdl6KZPv86le/WrJl/TSF2tkLhFFjKemxk6ihSDqinZci2R4QRczhwpYQy3rUzvXoNMgPfvADW0NINFAkHdHOS5FsDwyvYUcMtzHsrkftXA8WbTS4HIs5hEQFRdIR7bwUyfbAQg3siIWbVtm+fbt5LUKHCIkKiqQjFMn2+dOf/mRsiNCfP//5z7Y2PPp6FJfXExIGiqQjFMn2QdA4bNiOJ4gtirgGtiwSEgUUSUcoku2BOUUNHsd2RFd0TvOFF17wndMkpF0oko5QJNvjvffeM/ZDQot20dXxsbExW0NI56BIOkKRdAdxjkiFBvt14kxtJOLFtZCYl9tBSaehSDpCkXQHyXRhOwSENxM1tXMQX3755dKOnQ8//NDWEtIZKJKOaOelSLaO7r1GtvFmqJ2bsW/fPvO8oaEhW0NIZ6BIOqKdlyLZGlNTU8ZuCATHgV/NUDs3A8fN6kLQ9evXbS0h7UORdEQ7L0WyNXBELOyGI2PDoHYOw8jIiHku/k9Ip6BIOqKdlyIZHmQTV7shy3gY9PlhgAeJ58KjhGdJSCegSDqinZciGR54j7AZvMmwqJ3DgjlJPB9zlIR0AoqkI9p5KZLhwPyjJqTAvGRY1M5hweo2no/VbuaaJJ2AIumIdl6KZDiOHDli7IWV7VZQO4cFIUWIl8RrED9JSLtQJB3RzkuRbA6ES5PkIkYyarDzBu+FnTiEtAtF0hGKZHiwqwa2wi6bOIbA2MONvdx4z8nJSVtLiBsUSUcokuFB9nDYCvu14wJZgfCeyBJESDtQJB2hSIYDGX5gp7iPgEV+Sf2MkHeSEFcoko5QJMOBXJGwE3JHxo2+986dO20NIa1DkXSEItkceHO6VbAb3hzOvsF7x+3FkmxBkXSEItkcnFsDG7366qu2pnXUzq7ofChOVyTEBYqkI9p5KZL+YIVZ05che7gramdXcC43Xo8QJAaXExcoko5o56VI+oMztGEfxCq2kwhX7ewKhFFjNEulkq0lJDwUSUe081IklwNRhF1gH4hlO6id20F3+2DoTUirUCQd0c5LkVyOHs6F4TayhreD2rkdsGij+8axmENIK1AkHdHOS5Fczrp164xtsHDTLmrndkEYEK6zefNmW0NIOCiSjmjnpUjWMj09beyC0J+5uTlb647auV28uSwRmkRIWCiSjmiHo0jWgqBx2GXr1q22pj3Uzp0AWxRxLWxZJCQsFElHtPNSJL8Cc39JPmcGyS7QNsxPIkSJkDBQJB2hSC7n3XffNTZZvXq1rUkeL730kmkj0qkREgaKpCMUyVoQj4hUaLDJ+Pi4rU0eSMSLNiIxbzvxmyQ/UCQdoUjWgmS6aRAfiLnuBEqymJPkQJF0hCJZiw5jjx8/bmuSi04L4NAwQppBkXSEIvkVaVsQwXGzSV5gIsmCIukIRfIrcEQsbBFFaI3audOMjIyY63YqVIlkF4qkI9p58y6S3iDtmZkZW9s59Nqdxhv0Ds+SkEZQJB3Rzpt3kYx6u5/aOQp0++S+fftsDSHLoUg6op03zyL55MmTyBNHqJ2j4MMPPzTX7kQiDpJdKJKOaOfNs0hqCrJVq1bZms6jdo4Cb0o3xE8S4gdF0hHtvHkVybiS2aqdo8KbHJgQPyiSjmjnzatInj171tx/1MciqJ2jAiFLL7zwgnmPdo6ZINmFIumIdt68imRcB2ypnaNEDyxDliBC6oleJBe/kOvnjspbGwZkYGBA1mw5IKXLn0vaj2TSzptHkbx8+bK596wc1drto29JsolWJBcuyf7+wpKgeEvf3kuyYJ+WRvQ+8iiSeuj/9u3bbU36yeI9kc4QnUiWZ6W0vlde2VWSyzPzFY9jTm799oS83qdCWZDh8w/sk9NHXkUyq15X1rxj0jkiE8kH53fJLybvSdn+vcTCRdldtEI5fF4e2uq0kVeRzPL8XVzzrCRdRCSSz+T29duV//pz43CRIplCsr4SHNeKPUkX0S/c+DB7ao35Mg6e+NTWpI88imTWYwoRXB5H7CdJF10QyQdyblNFYPoOy41lY/FaFj+/LKWjb8mGgerK+Ia3jjZYGS/L888qz92zQQaOXrVVj+TOxDHZsgav3SB7zk3LI8/7lR/dkYn37bXXbJFjU62tuOdNJLu1O0XtHBdx7CIi6SJmkSzLvYlRKfZulNOzAQpZEbjfHxuS3t4hOTBxS+bm52Xu1geywy769L1+Xqovfyj/e3qPbFjZu9SZevZeElm4Jodf6ZVif0UAPY/17rhgVtQXbp6Qjb0F8/jKXvu6noKsL80un0NtgF4zLyLZrX3Oaue4iGM/OkkXsX37Fr+4JRMHKsJX+fKt+eV/yecN3bYFubS3T3oK66VUJ6TPJkeXOs3w+epsZrlceU75mhzUxaCfHJZ/+5fTMr3kNpZltrReCuZ1A3J84rRsf2dCPnuujy/IzeNrq68t7JALjSZS69B25EUku5UxR+0cJ7t27TLvGVVmI5IuYvj2XZWjXk9PS8WbLH3qM3C+cVj6Ko8XD15b7tU9OC/DBby+IK//xrvkc1dKa+11fzKxPP6yfFF22/cdOH5z+XXnTst68/iAjN22dU3Q+8iDSHYz96LaOU6izpFJ0kUM375FeVoZLs/P/EE+OLZFXl4a3lZKYVQmaxTtmVzYUQ0+331xmZQZys8fy/zj53VC91DOD9trYri9jK9EdG3prq3zckn22jb5vtwH816VkgeR7GYWb7Vz3ESZbZ2ki/i/fYufy8SOynDafvlrV7hvyGE7bA4rVsqlvdXXUSQ7CwKru3kejNo5bqampsz7puXcHhId8X/7QPm2jA1Wv/w9o5OeeMrWxUqhSEZDt08WVDt3gzSdAEmiozvfvgp3S3axpIFIDoSdHLRQJDuP94xqrG53A7VzN0jLWeIkWromkhVVM1/AWjH0LMAExlE+k/8++58yZ/8CFMnOk3eRwI/EihUrjA3Gx8dtLckbXRPJB+c2Vb58g1K/6ebTE4NLArT2lH/c4kJFYF85fMP+VYUi2Xl0uDk2NmZr8odON6xevdrWkLwRmUgufjEjM3NP/XexLFREqa9H+ipCt0wEl8J8UHpl6MCUzDytXqX8/J5cL70p/b3DUptAaE5Or7evoUh2hMnJSXN/2Kud54WLbi9cke4TjUg+rAidFZHel7fLicufSTV2e1G+uPWB/KK/t+IJXmuYT3Lh0n7pXxLK+tJXEbK6V3ozC206I3+pV96FSRm11yvuvrjsfcu3x2TQXn+wMvxvOMr3oO3Jqkgiyw/ujyEwItu2bTO26EYIFOk+EXmSd+U3b/bbXS6eUijKK1uOycSdR02FaPHzKTnwo6LnGgUp/miP/EddAPrVo96thdVSKPbbPdxX5ehAvxTrBBePvzE+V3FAx+WNgZVmF5D38d6VA6JbwBuhz82iSHqDqZE/Mu8gbyZsAY9ybs47E07yQLRzkotPzXDFlGUB4OEwweOV1z9e2kZYy+JTe/36YoboNpDdp5jrlZ/LY5/HUOwIvyFZFsmdO3eae0O2blKlW9sySffp2sJN2smqSOIHIkkJHtTO3Qb5M9GOuBN8kO5DkXREO2/WRFJThSFLdxJQO3cbhEAhjybagryaJD9QJB3RzpslkURcoCadPXPmjK3tLmrnJJD1pMPEH4qkI9p5sySSEEbcU5KOL1A7JwGEQukOpCweX0H8oUg6op03SyKpB2FhyJ0U1M5JQQ9Ce/XVV20NyToUSUe082ZFJJN6pKraOSkgBCiLR+qSxlAkHdHOmxWR1MP5Ef6TJNTOSUJttX37dltDsgxF0hHtvFkQSQSM6/0gkDxJaLuSxJUrV0ybkuZ1k2igSDqinTcLIqnzbNiKSMKBhBew2XvvvWdrSFahSDqSFZHEii2SWOBekNSChOPs2bPGZkmKBCDRQJF0JCsiiTRouA+kRSPhQXC5xpSWSiVbS7IIRdKRLIgkOjraj/s4efKkrSVhwbEOsN2qVatsDckiFElHsiCSOJIB94AAaQ4ZWwdTFbrPHQeHkWxCkXQkCyKJw71wD8i+TdzYtWuXseHmzZttDckaFElH0i6S09PTpv0IjL5//76tTR5q56QyMzOz1Eb8m2QPiqQj2jHSKpIjIyOm/fh/klE7Jxl4kWgjvEqSPSiSjmjnTaNIwnPUrXXwKJOM2jnJYD4SbcT8ZJ7PA8oqFElHtPOmUST1BEBk2046auekgxVutBMr3iRbUCQd0c6bNpHEKram+8LqdtJROycdxEqinYidzOMZ5VmGIumIdt60iSTiIbXdaejMauekgx+fFStWmLaOj4/bWpIFKJKOaOdNm0hiZw3anZYjCNTOaQD7uNFW7Osm2YEi6Yh23jSJJPZmo83Yq52WBQa1cxrwHqKGTEEkG1AkHdHOmyaRRJYftBlZf0g0IMckbLx161ZbQ9IORdKRtImk94B95I8k0eC1M7KYk/RDkXQkbSKJjONoL7Jqk2jB+TewNT32bECRdCRNIumdK8NZNiRacJIibI1Qqy+//NLWkrRCkXQkTSJ56NAh01achkjiAWdzw+ZpiSIgjaFIOpIWkUT8niaHRTZtEg8QR9gcYsng8nRDkXQkLSJ55swZ0860HjOgdk4bGGbrziYMv0l6oUg6op036SKJITbaeeTIEVuTLtTOaWTfvn2m7VjIIemFIumIdt4ki+THH39s2ohFmydPntjadKF2TiMIAdJsSwgNIumEIumIdt4ki6Qeop/mPIdq57SCoHK0f9u2bbaGpA2KpCPaeZMqkggY1zZ+8skntjZ96D2klevXr5v2w5tHKBZJHxRJR7TzJlUk3377bdO+1157zdakE7VzmkHCC9wDEmCQ9EGRdEQ7bxJFEskrkMQC7Uv7KX5q5zSD1Gm4B6RS46mU6YMi6Yh23iSK5NjYmGkb0qKlHbVzmkGc5Isvvmju49SpU7aWpAWKpCPaeZMmkuyQyUR/uHDMA0kXFElHkiqSOJIB7eLQLllgCkT3z6d9CiRvUCQdSapIDg0NmXbhsC+SLLKymJY3KJKOJFEkNdwEAcwMN0ke3rCsmZkZW0uSDkXSkSSK5MjIiGkTA5eTy+bNm81nlOYA/7xBkXQkaSJ5//59boFLAVnYKpo3KJKOJE0kNZnCunXrbE02UDtnCU06cvz4cVtDkgxF0hHtvEkQSaxipzUtF1bjkRRYC8Qeh2lpUTv7gSzreA1yNyIlnBacCon5WSSYSGIux1KpZO4J6euYazL5UCQd0c6bBJE8efKkaUu3ErxOT08bsUM7sPUO4oaTGRETiFCkIBt5hTCo+KEZ14NKo8O4sIiCJMQQ2rgXuZgIOV1QJB3RTpgEkYzjqICg+TNdjGhUsEWyERhyIt8iFpvUe8QBWupZ6jX8gEeG12rBDiN8HhpMj9LojBn9YdECTxzhU1hQwWMQzyjjTPXesK+bJBuKpCPaubotkhhaaidHwHInwMIPhAJxfRAOiFzQfaLDQ6BU7DBkhvhh6AuxaScLkdrZhSAPEW1Dm9Wj8ytRHr3rPZztypUrtpYkEYqkI9qRui2SGNaiHe0eXwqvDEHOmhjDr3Tj5D997yjBjwuESn8YsPgFb7QREFj8IGBqAbtnXD1OnWrgMb/JhiLZBIiPdtRWShyn5HXyIHzs0NG2QyghArh3HXp2Kzhd25QkNB5VCzxC/MDAVq14n538/Eh0UCSb4B0WhS1xHbrViieCzotzbhq1C4svEHasCidpxVVtmiTgdWKKAT8kft8NzDOG/fw7NRIg0UGRDEGr3mQcXmSYOS0stiD7DFaZtW08ua+zQAwRIA5PXOMfW4lVjWJOmXQWimQIWvEm4/Iig1ZH4RXCy6xvMzoxRTJasPMpaMeTnxDGEZ1A3KFIhiSsNxnHFx0i7Bdnhw6oh39pwfOwwBDlSi0JB35sMd+L75J3jhdzmfisuhXnSoKhSIYkjDcZlxcZtGPDO+TDsQHsdMkBP6D6XcF3CaFSiBjAdyatO6byAEWyBZp5k3ENl4L2/mJ+EqvRJJlABPXzQ0EIGeYls7r3PgtQJFsgyJuMy4v0ZpHhRH96gZevUyYomENmFqdkQpFskUbeZFxepG4BzEsAsto3i+BHDtsg9R6///3vm/8zH2iyoEi2iJ83GZcXicUXvN/XvvY1swCQh+1sauMsg+QgCNO6evWquVdmlk8WFEkH6r3JuLzIn//850Yg8Z4Q5jwcAaA2zjq6wKbfLUQkkGRAkXTA603G5UViaKZzVvAi20kakSbyIpLK3/72N7OYw9MukwNF0hH9xY/Li/zpT38q3/jGN8x7IsFCXsibSAJ8vrjnd955h0KZACiSjsCbxC9+XF/iTZs2mY6Tt4DjPIokPl98t3DfFMnuQ5FsA2xBi4uf/exnptMglVcjEEYSVBCE3gi/53tL0Gvrj1yoL0FnucBrwhbLRkVFEv8OCrTGdYJK0CIXknogtrRRCQrJwY8lMvho6cThXvherV27VgYHB20N6SapFkntQFkqjdBsMSgQDD+81/ErEKxG+D3fW4Jeq15Po4JsOY3AY36v8StpbD+u3Qj8uODx+qI5PZm1PBlQJBNWGgFv7Ic//KF5DhaN/LxYCEFQSaInicf8XuNXgtoAsQoqQW3ALhevSOkWQS14fSPwmPe59QXXawTuye81WhDNQLoPRTJhJQjMVWnaMxw9wB033ad+uF1fgqZkEMLlHdb/+te/lm9961vm8x0dHTWvJ90n1SKZR9CxdDsbzp9h0HE2wJypDrPh2XLBJjlQJFMIFhq0Q0Ew4YWQ9IIwMo2BhUB24ywh0hiKZEpBMLkma0UHw6o3h9/pAttMcTYOPkMU/JsCmTwokikGoug98xon/CHchTkkkw0+N2w71F1b+JFrFLFAug9FMgMgOzm2salYwsOkWCYPiCPE0Lt6jnllHLdBkgtFMiMgiBlbJb0ZijBfCY8lzqB3shxMjWA6xCuO+kNGkg9FMmNgtbteLDGc27p1q9mxwlXTeMCPFuI64Snq5+AVR3r56YEimVEwtMMBU97jZFGwKo6krshhyIWezoK4RqxUY4VaV6u1YFEGNqc4pg+KZA5AyNDOnTtr5i1R0JHh6WCeDHF67MCtAVGEV4idM9hZ47UtCrxGTHcwKDzdUCRzBEQQZ+RAMDUg3VswRMc2Oxy0j8Op6GnW0kwUUbDf+siRI7nJ95kHKJI5Bquq6NB+w0MtEFMMFTHPCYHAa7Iey4f5RAToY7oC94379/tRQcHJh3gO5nv5o5JNKJLEAOGDlwnRROxlfZKH+gJPCs9DcguEIEFUEBydFqGAV4hpCHjMY2Nj5kAuTD00u2+KYv6gSJKGYJ84xAAZdEZGRoxAeFfNGxV4pRBReKg41RHDe8x7YrUX19OEDrg+xEpLqyvv8Pi8r4eXq9eG1wvx0wxFmEbAIlb9vGyjgufhNQjdgUeJa1IU8wlFkrSMn3g2Go62UyBUEFstul+9kwXthgcJTxIr01NTU0waQmqgSJKOgsB1eHQYxsJzhAcJAYJHCTGC2PmJVScLhsxYWYYniHAnDI8xjQDvEiKITOMMsCdhoUiSrgPB8g6bmx2ngJVj7/M5DCZRQpEkhJAAKJKEEBIARZIQQgKgSBJCSAAUSUIICYAiSQghAVAkCSEkAIokIYQEQJEkhJAAKJKEEBIARZIQQgKgSBJCSAAUSUIICYAimUXmxuWNgQEZ8C1H5ap9Wg2+r3lDxjt0hlX50R2ZeP8t2WCuu0Heen9C7jwq20ddWZQvrp+TPRsa3FMgZZk9/Q8dvcfOcVdKaz3p3/ZesvWkG1Aks0j5uTyeuSwn3uyXwlKexaIMj/1Wbs09rUiLD5XXfPaHD2T/KwXz/EL/m3Li8mfyvF0dq1CePS0bez2dXkvvRjk96/AGaOvUMdnycq+91l5pVUbKs6dkrXntWindtZWJAALpadOlveYeqZPdgyKZaR7IuU0qSqMy+cxWB1C+uFt6CsNy/oGtaJfyDTn88pAcmLKCWxG4e9dPLIlmYccFCdGsGhb+75bMzM/L3L+P2h+BFkUSbepTuyRPJO/WtKfqVa5NViNzBUUy45SvHZSiEYOC7LjQTI7Kcu1gUQZPfGr/bp+7p/dLycdbfHZhh5vAeblbst5gK9dYqDhn/bK+dEp2J1Ik67kke9uxEWkbimTm8cxvbTpX8S0DeHZBdhQ2yblOeZFBqMANnhBnSXYQyYXK8LV/fUlmyxCfpIskPjsKZLehSOaAr7y2Pjl8o/Ec4KcnBp2Gv07cHpOBinc73M64vlWRXJiU0d5RmVzAH2FEsiyP7kzI+29tqC5krdkiB0qX5fP6Sd3FpzJzuSR7Nugi0KJ8PvW+vLWhuki159y0LK1RlR/JnYkGj3m4W1pbaRvaVy2ck+weFMk8UL4tY4PVzlYYnawMOH0oX5ODxUFZNtIOXClvXN4IWjKuCMXEaEH6Kj3fty1haUkk78rp9f0VsdF3bCKS5Xsy+Yt+6X1lv0zcmpP5+Rm5/M/rzY9NoX+/VC/zUP5nbJusWVld7DLXmq28bkef9K6s2KG/uLRw1nf4hpTLs3J6Y68Uiv3LHzNv6oNduOlZW6rcAekGFMmc8ODcJtuRfYSwgvE2/YbjWCmfnzfHrLZSHvsui5fl+WdTcmCoV3r6D8jV57baldAiWZbZ0nrprxHlIJHEvGWf9BR3y8UaFb8hh4tVYStWhG2JB+dkk7nWgGzc/o9Smn5kRa/iiU7YxaXCetn45pu1j03trs4XFyrtb6iS6lVy2N0tKJJ5wXiK1Q6+fEiNua8wCzvtcFUOFdXjsqXQL/svqmg4EFIkTbhP32GpnWkIEMlPT8hg5bGBsdu2QnkmF3ZU76Hv2B9tHdBrrZFTs7ZKKV+0C0Q+jwUKtQd4kxxvdw2KZI7AnGNVoGoXZ8wK+DIR6TSL8rTiYc784SMp7RmSXtMOlEEZu+34xmFE0oT7rK0IVP17NBaoG4eLpm2+umQ86/pY0yCxc31MwXOaiCiJFIpknjCr1+iUleHiwWvWg6t6R5saLWlHMSdZoXxvUnbYWMVCRY2cZLKpSGq4z6zP9RsJ1DOZHK22K7zz1kGR1DnIpcJhdrehSOaKstwes96kBoxjPq2wQxqOtDs6J1nLwqSdr3NdlGgmkn88Jn09vbLSR8QHBlZab7Ygxf5qXVXYvwqZGg0TfW/ooEiSxEGRzBtLiww9Mjh2U35/sOjxKmPm2aSMoi3D5+WhrWqJZiK5zCsLLrqr5dLe6t9B4VAPfvc7uWX/TZHMNhTJ3FHdVWOEodArvYUudlArks47fEIu3PjTWKAenh+u2qfy2PK5zAoLF2Xvfq+AUiSzDEUyj9jV22beUkdYfCrzT/1SalTDcgp9FYFbFixZlnsX35dfHj0nN5c95iEikfTO3fb07ZAJT/R4+dG0jK3vrwvKp0hmGYpkLtFQlqIcvBblQPuPcswszhSkf/MxmfrsuRnWl5/fk+ul16WvURagh+dl2IhHXTxiHeWbx2XAPG+TnPlLq/cRLFDYvthn27A0b2kCwCv3sr82CL58e8z+6AzI8Zt17ViYkJ+Yx4ryT7+v+7FYeqwgo9VtQCSBUCRzSvnGYelrZ990KJ7JjX/1hvtUS6H4imw5NrV8e5+ylKWnwbbFq0drdqxUCxZoWskN2cyLK8uj6ZK82e+J7ex9WbaXbnoEck7G3+iXonqdKIWi9JucnT6PmTY2e4wkDYpkblmUp77D4AjAkLuFVW8DXvO46nkuw3O92vK4hfyX1bjN5q8py/PHeJ5fHk59rL7gua6PkaRBkSSEkAAokoQQEgBFkhBCAqBIEkJIABRJQggJgCJJCCEBUCQJISQAiiQhhARAkSSEkAAokoQQEgBFkhBCAqBIEkJIABRJQggJgCJJCCEBUCQJISQAiiQhhARAkSSEkAAokoQQEgBFkhBCAqBIEkJIABRJQghpiMj/AzUAvDHo9zwuAAAAAElFTkSuQmCC
|
As shown in the figure, the volume and height of the cone are given. What is the area of the front view of this cone? ( ) cm².(π = 3.14)
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
B
|
64
|
iVBORw0KGgoAAAANSUhEUgAAAS0AAADYCAYAAAC+y7XwAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABaKSURBVHhe7d1vaFTnngfweVGYvjBsXzggaECIkIINKBQJG6EEin9YuRhWeotUFHShDRZmoSEWC5W14otc0OCLXBiwsOrqrrv6IqxWy0Zylai4NOY2ITdRFDSiVmKJvgiML373/M48v+RkMpM5M5k5z/M78/3AoebMjM15kvn6nHO+50yCAAAUQWgBgCoILQBQBaEFAKogtABAFYQWAKiC0AIAVRBaAKAKQgsAVEFoAYAqCC0AUAWhBQCqILQAQBWEFgCogtACAFUQWgCgCkILAFRBaAGAKggtAFAFoQUAqiC0QLEp+r//GaJp8xXUB4QWqJUd6aGWRAv1jpkVUBcQWqDUDF3Zn6REIkGpw0OUNWsh/hBaoNPDDLV5gcWhlUjupAtTZj3EHkILFMrS0OEUJdvb54KrBfuIdQOhBfpM99OeZIoOD03P7SImUodpCPuIdQGhBeqM9bZQoqWXeG6VHTpMKTPb2n4W+4j1AKEFuswMUDoVDKgx6m0xx7ZMkEG8IbRAlamz2ymR3E9XZswKj7/On22lKD0QeABiCaEFemRHqMebVS2qOMxcof1JM9vafpawkxhvCC1QY+bKfkoWLJPmzibmZlsom8YdQguUmKKz271Q+od/pH3d3dSdv/xziwmtBCX3XyHsJMYXQgtUyJ0lTNGeP1+ja9cKLf9B/yoH5BPbCScS4wuhBQpMU/+eJCV3XljyeNXMQHqu/tDSM4JLe2IKoQXOkwuje0ZKxZDZheTgSu6hftz+IZYQWuC27ARl2pOUaMvQQ7NqKdOX/mh2ERPUmB7AbWtiCKEFzhr99w7amDKX6SSSlNrYQZ2nBumFeXyBF4N0qrOD1jeYmZZZGlZvob0XR82TIA4QWuCsqeECB9xvTRY+MzgzSbfynyvLMI7KxwlCCwBUQWiBeq9evTJ/gnqA0AoIHgvB4t5STDqdpnv37pmvIO4QWgGF3ihY3FkKefv2LX3wwQe0a9cuswbiDqFlyYkTJ/w34nvvvUcPHjwwa6Fcp06dmhvHp0+fmrUQZwgtC2ZnZ2nVqlVzM4h9+/aZR6BcH3744dw4Hjp0yKyFOENoWSCzLFkw26rM1atX/fHj3UP+78qVK/1/ECDeEFoRy59lyYLZVvl27Njhj11PTw+1trb6f85kMuZRiCuEVsTyZ1myYLZVHh4rHrf333+ffv/9dzp//rz/9YYNG8wzIK4QWhEqNsuSBbOt8LjmwGP25Zdf+l+/e/dubmxv3rzpr4N4QmhFqNgsSxbMtsKRmgOP2a+//mrWEh09etRfh/pDvCG0IlJqliULZlulSc3h008/9b+WseNmPO8uov4QbwitiJSaZcmC2VZpUnO4fPmy/7WMHTtw4ID/Z9Qf4guhFYGwsyxZMNsqTmoOa9eu9Y9jMRk3Njw87P8Z9Yf4QmhFIOwsSxbMtooL1hyEjJvYvHmz/zXqD/GE0LLk+++/n3uzPX782KyFpeTXHISMo7h48aL/NeoP8YTQsgShVb78moOQcRS827hmzRp/3Y0bN8xaiAuEliUIrfIEaw7j4+NmbY6MY9Dx48f9dTt37jRrIC4QWpYgtMojNYdt27aZNfNkHIOC9QeMb7wgtCxBaJVHag79/f1mTWlSf/jmm2/MGogDhJYlCK3wpOawbt06syYcqT/wbiXqD/GB0LIEoRWe1By4OlIuqT/09fWZNaAdQssShFY4UnNYsWLFgppDWFJ/+Oijj8wa0A6hZQlCKxypORw8eNCsKU+w/vDzzz+btaAZQssShFZpS9UcysHtef47UH+IB4SWJQit0paqOQTJOBbDu5WoP8QHQssShFZpYWsOpUKLcYuen4P6g34ILUsQWksrp+Yg47gUvlkgPwf1B/0QWpYgtJZWTs1BxrEUvmkgPw/1B90QWpYgtIort+Yg41gK3zSQn4f6g24ILUsQWsVxvYHHhesOYcg4lsL1B755ID8X9Qe9EFqWILQK45kVz7B4XMLeCFHGMQzUH/RDaFmC0CpM7vLKx7TCknEMA/UH/RBaliC0CuOzhTwmfPawVlB/0A2hZQlCazHuY/F4cD+rllB/0A2hZQlCazFuvvN4cBO+1lB/0AuhZQlCayG+tpDHgmc/fM1hraH+oBdCyxKE1kLl1hyqQY6fof6gC0LLEoTWvEpqDtUgZypRf9AFoWUJQmteJTWHIBnHcklYov6gC0LLEoTWvOXWHCoNLSa7pag/6IHQsgShlVONmoOMYyWCJwBQf9ABoWUJQiunGjUHGcdKRVm1gOVDaFmC0KreLEfGsVJRlVqhOhBaliC0qnc8ScZxOaK4fAiqA6FlSb2HVjXP3FUjtJZ7BhOig9CypN5Dq5odKRnH5bDVFYPyIbQsqffQcrGNbqOVD+VDaFlSz6ElB75du+4v6usfoTIILUvqObSkYuDiHRZQf3AfQsuSeg0t18uc8tFlqD+4C6FlSb2GlobLZuRDYlF/cBNCy5J6DC0tFyjLx/Gj/uAmhJYl9RhatboVjIxjtfBBeN595b8T9Qf3ILQsqcfQqlXNQcaxmrj2wH8n6g/uQWhZUm+hVcvbG8s4VpN8yjXqD+5BaFlSb6ElHySRyWTMmuqRcaw2PqbFfy/qD25xNrSyL0fp0smLNGq+Li5LL0cH6dzJburu7qaT5wbp/jP374tUT6ElH9m1cuXKmtQcZByrDfUHNzkXWrOPblDm61Zq8H8R0zRg1heUnaALu5soaX5p55cGaj02RNPmaS6qp9CSD0c9dOiQWVNdMo61gPqDe5wKrac3ztN/XrtGl79rM7+IS4XWDA12NVKiYT11HDtH1/h1ma+ptUGCK0ntmQlvHuamegktrjnIx9A/ffrUrK0uGcdaQP3BPc7NtHwPM9Tm/yIuEVpTZ2l7Y5quv8yLpdkx6mtP5n6Rk97rHU2tegmtnp4efxt37dpl1lSfjGMtoP7gHrWh9eJCF/WMFE6k7C/Hqdl/fRtlHpqVjqmH0Hr37h2tXbvW38abN2+atfqg/uAWvaE1ObnEMasBSvuvb6fTxfJg9hnd/ylDP3TzAfyTdO7OJL0plIH8vEsn6dTgC/P1I7pz7mTuoP+lUQpO9LJvJos+lq8eQktqDhs2bDBrdOIZFu/eov7gBr27h0syodXcQyNmzbwsvfzLMWpNNdEO/1jYZcp8udE/mJ/ceISGTBLOTPbTsY715oRAgtq8KdvsWIa2zh0zyy3J9tPEk7npoSO0MVn4sULqIbRqWXOIGrf4eVtQf7AvnqE10uPvHm4/O2VWzJseSFNjopHSA8F52kPKtJmg2X+FZrw12dlZymZHqKclt35TZxft25eh236dwgu+e8fN95iiziPf0hZ+7Mkb7xF+rIfa/QBL0ZG7/v9gkbiHVq1rDlHjFj9vD+oP9sUwtLJeZrVQosWbZeXvnmWH6HDK+3u3n6X8OLt7JJULEW92FIyQgXQuWJqP/+L9zUEz1L/HPPZv92jh2zJL1ztzj/EMrZC4h1ataw42cJuftwn1B7viF1pTF2hnQztlJhYfUJq5st/fDdzUN2HWBPCxqmuDNJp3IEpCq1D4VPoYi3NoRVFzsIFvWsg/L9Qf7IpZaE3RhZ1Nebt+8yb6Ni0ZJIUgtMoXRc0hSMax1ng3F/UH+2IUWlmayGylrUsUSiVICs60ikBolcdGzUHGMQp880L+f6H+YE9MQssLrNN/oD+UaMDLTKvQMa05D0dohI/EGwit8kjN4eOPPzZrak/GMQr8s+LdXr6ZIe8GQ/RiEFpZetL/Fe3uG8s7GL5YdiBtrlNsKVJMnab+9DEKnvBDaJVHag5nzpwxa2pPxjEqUn/gmxpC9JSHVqnA4k7W/9KtV/KlOXvIf/eiS4BmaayvnT7uHTNf5yC0wpOaw6pVqyKtOcg4RkXqD3xTQ4iem6E10Ueb/F/EPdQf2FVbyAuZzFZqaNxKX/ut9vylkzo2piiZtyuY62nlfskTyRR9spefu5e2rG7wgqyLBhf8/6bo7PbccxcfB5uvNTT35FdY5x9LHR7yvlosjqElNYfvvvvOrImGjGOUpP7An+EI0XIrtEYvUndnB21MmQuevSWZ+oT2dp8iuYomZ5qGjuRa7PK8YsueRannzc6ufxu4G0RuaWg9NteGZy8GT1HnjsBtb5JNtKOzmy6OmscCbXn/Vjhe+JV6LChuoRWsOTx//tysjYaMY5Sk/sCfkwjRciu0pob9W8wsXm7RZDB7ZibpVsHn5S95rwuafU3jd/g5g3Tfb7IvNDN5K+/vyi3D3rSt0seC4hZaUnP4/PPPzZroyDhGKVh/4M9yhOi4FVp1JE6hFaw53L5926yNP6k/8Gc5QnQQWpbEKbRs1BxcwG1/1B+ih9CyJE6hZaPm4Apu/fO2o/4QHYSWJXEJLVs1B1dw65+3H/WH6CC0LIlLaNmqObiEb3LIY4D6QzQQWpbEIbRs1hxcwjc55J8j6g/RQGhZEofQOn78uP/926g5BMk42sK7xXyzQ/4eUH+oPYSWJdpDi2sOa9as8b//e/fumbV2yDjaxDc75O8B9YfaQ2hZoj20Ll686H/vra2tZo09Mo42of4QHYSWJdpDa/Pmzf73fv78ebPGHhdCi6H+EA2EliWaQ2t4eNj/vrnmwLuJtsk42ob6QzQQWpZoDq0DBw743/fRo0fNGrtkHF2A+kPtIbQs0Rpar1698msOvLhSc3AptFB/qD2EliVaQ0tqDl988YVZY5+Mowu4/sC7zfz9oP5QGwgtSzSGlks1B5fx1QE8Rqg/1AZCyxKNoeVSzcFlvNuM+kPtILQs0RhaLtUcXMdXCfBYof5QfQgtS7SFlms1B9fxzRB5vFB/qD6EliXaQsu1moMGfFNEHjPUH6oLoWWJptByseagAd8UkX++fJNEqB6EliWaQktqDjzbcpGMo2uC9Qe+WSJUB0LLEi2hFaw58HEtF8k4ukjqD3yzRKgOhJYlWkJLag585tBVMo4ukvoD71qj/lAdCC1LtISW1Bw4vFzlcmgxqT/wZ0PC8iG0LNEQWlJz4N1Dl2sOMo6ukvoDfzYk6iLLh9CyRENoSc2BD8S7TMbRZVJ/4M+IhOVBaFniemgFaw78Z5dpCC3UH6oHoWWJ66Hles0hSMbRZbxbiPpDdSC0LHE5tDTUHDTiqwl4TFF/WB6EliUuh5aGmoNGXH+QXW7UHyqH0LLE5dDSUHPQim+eyGOL+kPlEFqWuBpaWmoOWvHNE3l8UX+oHELLEldDa9++ff735HrNQTO+iSKPMeoPlUFoWeJiaOGYSzT4Jor8c0f9oTIILUtcDC2tZ7dkHLVA/WF5EFqWuBZamt9IMo6aoP5QOYSWJa6FluZdFhlHTbArXjmEliWuhZbmg8MaQ4uh/lAZhJYlLoWW9tPwMo7aoP5QGYSWJS6FlvZ/8WUcNZIiL+oP4SG0LHEltOJwbEVzaMklU6g/hIfQssSV0IrDWSwZR414t1AuTkf9IRyEliUuhBb6Qm6Q2wCh/hAOQisCfBM9Dqbgkk6n50Lr5s2bix5/+/ateXXtuFhzkDEpd9EseMNF1B9KQ2hF4Mcffyz4Riu28Ke3PHjwwLy6dlysOeSPRdhFO7m1NeoPpSG0IsC7YevWrVv0Riu28EXLtSan2/n7cul0u4xBvcHdNcJDaEUk7GwrqlmW1BxOnDhh1rhBxqEe4T5m4SC0IhJ2thXFLEtqDitWrHDuGIqMQz3CHWPDQWhFqNRsK6pZltQcDh48aNa4Q8aiHJW8xkX8DxvuzV8aQitCpWZbUcyy+HuQmsP4+LhZ6w4Zi3JU8hpXafoUJFsQWhErNtuKapYlNYdt27aZNW6R8ShHJa9xlabPm7QFoRWxYrOtKGZZTGoO/f39Zo1bZDzKUclrXCb1B9zyujCElgX5s62oZlnBmoOrZEzKUclrXIb6w9IQWhbkz7aimmW5WnMIkjEpRyWvcR1fpcDbhPrDYggtS2S2FdUsy+WaQ1AlAVTJa1zHVynwNqH+sBhCyxKZbUU1y3K55hBUSQBV8hrX8e8H3xyQtwv1h4UQWhadOXMmklkWvwFcrjkExTGAKsXXIfJYoP6wEH47DHmzaF2WIjUHDi6+JY7Li2xPocfqbZE7gaD+sBBCy5A3i9ZlKRs2bCj4Gix6Ft69hxyEVszxQfdC/4pj0bX09fWZnyggtABAFYQWgCKzr5/T+J1rdO0aL3do/PlrmjWPEc3Q5OSU+XN8IbQ0GJi/NXPxJUmppmbasvckXbr/LPCLrNTDDLUV3M7gktvm5i176YfMT3T/mfqtLmKWHl09Rh3rG7xtbqDV3vZ2d3d7y17a0pSiZMN66jh2ji73fkaN6QHzmvhCaKkxS8+upqnRvGE3/WmY3mTNQ5SlN7+N043e3dSUzD3e+NkFmph7XCtvu/7aR+1mmxL/dIruPw7MLGZf0+P7l+jYjiZKmhBr2p2hX6bN43Ew/Qv1buWwStLGrqv0qEAuzz66Sl0bk7kxasvQQ7M+rhBaqgxQ2n9zJqgtU/hXMzuRmXuTN3YNejsM2j2kTFtuexJFZxFZevmXI7TRbHeyqYsG4hBc0wPU1cRhlKT2zIS3lUvITlCm3XsuQgvcMv8GLhZabKSnOfcmT+ykCy/MSsUG0qVCK2fa242WmWhyTz/pzq1pb7sbc9vd0kMjIWbN2ZEeamn2nmu+jiuElirhQit4DCwOhzjChhYfiB5Ip8y2p+jwkOL947FeajE/wz39YefLM3RlvzfLNF/FFUJLlXCh9TDTZt64m6hvwqxULHxoebzZRrN5sye952uNrbtHJHzLmy3P3L1Lo+bPcYXQUiVEaGXv0pFG8yaPyfGNskKLBqlLDtynjtBds1aXEeppNtuQ7PK2CIIQWqrMh9amP/11Qa0h++Y3/0za3Fmkxs/ogv7Th77yQmt+jBKJPRR6z8op8ydc6uHAerkQWqoE35DFl6av/ov+9tq8JAYqD602WurQn7sQWktBaKlSfPdw9vVjuv9Thr5u5U6P95xkE+3O/KL8DFpO5aHVSddVTjYDobWpj2JwWLKqEFqqFA+tOdmXdF1OlXO/57T+f6crPqal9vT/YzrdbrZB7S5u7SC0VAkRWmz6Ev3R/4X3FrUHo+eVFVqBs4epw0Nqzx7OnwFOUnogHscmqwWhpUrI0Fqwi/QZ/bfy+8eFD61gT6uFesfMao1mrtB+afjvvEChL4P2Ztov43QZUwEILVVChlZ2gNLqT/vPCxtawUZ8HC5hmt+eEJfxsNkx6tv9LQ3GfHcSoaVK6WsPvcSiiUz73AXE+o9pBWaNRUNr4bWHDVtPx+Biceb9LE9vpQbzs2z66hyNviy0YbP07HaGdn/yFfU/if+uJEJLjfy7PPw/vV5Y1KLfxm9Q7+7AHQ+6BpSfPcy7y8O/XKbnwY3Ov8uDf8b0HhV8X6vlBfK9DO3zb0uT+7mmmrbQXv/WNN6ydws1pVLU+m3hO0DEEUJLg1D30+KlgVY3m3tqjb70ft0VC3U/LW9WtbqZNnV00slzd2hy/l49MeQF+JP7NHg5Qz9IYP2QocuD9+lJrLd7MYQWAKiC0AIAVRBaAKAKQgsAVEFoAYAqCC0AUAWhBQCqILQAQBWEFgCogtACAFUQWgCgCkILAFRBaAGAKggtAFAFoQUAqiC0AEAVhBYAqILQAgBVEFoAoApCCwBUQWgBgCoILQBQBaEFAKogtABAEaK/A8EyfH6ZVhoRAAAAAElFTkSuQmCC
|
As shown in the figure, the area of triangle ABC is 48 cm², and it is the front view of a cone. What is the length of BC in cm?
|
A. 16; B. 8; C. 6; D. 4; E. No correct answer
|
B
|
65
|
iVBORw0KGgoAAAANSUhEUgAAASsAAADZCAYAAAB4iRYSAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABsRSURBVHhe7Z1RaBvXmsf1UJg+1NwuVFBIBQEXXEjN1lBCWBdSQ4kbNiwOlNCGhoR1d7kN7aKFepOQQl2aULZ+aH37EFhBCrcOMdtLUvASpy44pKF2vLm3dbbX+DoJNTgOTlKcYvfBMHn4dr6Zc+SRNJJmFOnonKP/Dw61z0iO9OnMr2dm/jqTIgAAMADICgBgBJAVAMAIICsAgBFAVgAAI4CsAABGAFkBAIwAsgIAGAFkBQAwAsgKGIhL6+sb4mfQKkBWwDzWLlB/Wz9dWBO/g5YAsgLGMTfcSalUinaPLIse0ApAVsAs3Ck6nk75skp1DtF1V/QD64GsgFEsj+ymlOOQw7JKOdSPY8GWAbICBjFHw518+Dfp/9efXe0eIRwMtgaQFTCGtQv95DjBiXV/huXPrjI0OINjwVYAsgKGsEwju1OUPj5Fvpr4iqATzK6c/guEg0H7gayAEbhTxymd6qThOdHhKWvqeFrMrnYTLgzaD2QFDGCNLvQ7peen5oap05dVaMYFrAWyAvrjSynqyl9waOjPrsS5LGAvkBXQHHG497vD9D+3V2hlpbDd/ONecSiYou7cLfEcYCOQFdCb5VHqc1LUtqWDOjqiWjulxYn2VPo4TeFY0FogK6A1/ldr0lmaLHuI59L1oeDrNwiJ2g1kBfTFjyc41Dda5VLf2iRl81/BGab8BUNgFZAV0BQxY+r4mH6IcWgnv9zMs6sDY6uiF9gEZAW0Y+POLF0c3kcZ/zxUHw1dnKXF++vR0QR3ne4vztKZ/oyQldecLho4c5XmH2DNK5uArIB2fH8i4kT6G2dpUWwvYPEsvVH8WNlOfC8eBGwAsgIAGAFkBYzl4cOH4ifQCkBWHvlzHWhatnJ8+umnfjAUtAaQlUfUDoKmTyvHc889R0ePHhW/AduBrBRz6dIlfwd88skn6ddffxW9ICnj4+P5Om5s4KpfKwBZKebll1/Ozxg++OAD0QuSsmfPnnwdT506JXqBzUBWCpGzKtkwu6qNmzdv+vV77LHH/P8+//zzYguwGchKIeFZlWyYXSUnm836tXvnnXdo69at/s/ffvut2ApsBbJSRPGsSjbMrpLx22+/+TXj2vEMa2hoyP+5r69PPALYCmSliKhZlWyYXcXn888/92vG56wYFv3jjz/uHxIuLkZm3IElQFYKKDerkg2zq/hwXIFrxlcDJb///e/9vvfee0/0ABuBrBRQaVYlG2ZX1ZFxBRYWI2v3008/+f9FjMFuIKsGU21WJRtmV9WRcQU+FGRk7ZhXXnnF/xkxBnuBrBpMnFmVbJhdlUfGFVjqfJKdkXVjxsbG/J8RY7AXyKqBxJ1VyYbZVXk4psA14tiCRNZN8uyzz/q/I8ZgJ5BVA5menqYvvviioPEldrmT8WX34u24olUKC/yJJ57wa8YzLImso4S/2My/I8ZgJ5CVYvhQT+5kEFM8pIRkXEEi6yiRUkOMwU4gK8VAVsmRh3fhuAJTLCtGHi4ixmAfkJViIKtkyBPnMq4QRtYxzPz8vN+HGIN9QFaKgayS8eqrr/q1knGFOMjnIMZgF5CVYiCr+NQ6S0KMwU4gK8VAVvF5lPNPiDHYB2SlGMgqHo96ZQ8xBvuArBQDWcXjUWUTll04mwXMBbJSDGQVj3ocxkWl3oG5QFaKgayqE/cEuaxjOcIn6OX3CYG5QFaKgayqEzd6IOtYiVqiD0BPICvFQFaVSRJXkHWsRKVQKTALyEoxkFVlksQVZB2rEbW6KDAPyEoxkFV5ksYV4sqqeN12YCaQlWIgq/IkjSvIOlaj+I44wEwgK8VAVuVJGleQdYyDvNcgYgzmAlkpBrKKppbv88k6xiFqWWRgFpCVYiCraFSslFB8wwlgFpCVYiCrUlTdSqv4Vl7ALCArxUBWpciblB49elT0NA7EGMwFslIMZFUIxxXk7d9v374tehsHYgzmAlkpBrIqhO/ww7V47bXXRE9jQYzBXCArxUBWmzx8+JC2bt3q1+LKlSuit/EgxmAmkJViIKtNzp8/79fhhRdeED3JkHVMCmIMZgJZKQay2uSVV17x65DL5URPMmQdawExBvOArBQDWQXIuMJTTz1Vc1xB1rEWEGMwD8hKMZBVQD3iCrKOtYIYg1lAVoqBrOoXV3hUWXFanp+PGIMZQFaKgazqF1eQdawVPvyUMQZe9A/oDWSlmFaXVT3jCrKOjwIv8sd/gxf9A3oDWSmm1WX1qHGFMLKOjwJ/Bnw4yov+8eEp0BfISjGtLqtHjSs0Al7sj18TL/4H9AWyUkwry6oecYVGwIv98evixf+AvkBWimllWalcXSEpvOgfvzZeBBDoCWSlmFaVVTiusLKyInr1QcYYeBFAoCeQlWJaVVYyrvD666+LHr1AjEF/ICvFtKKswnGF6elp0asfiDHoDWSlmFaUlYwrvPjii6KnPsg61gv+PBBj0BfISjGtKKuXXnrJf79ffvml6KkP9ZYVgxiDvkBWimk1Wf3444/+e3366afrHleQdawniDHoC2SlmFaT1VtvveW/1/fff1/01A9Zx3qDGIOeaCmrjQcPKO7/gzcerPiXwh/okzGsSCvJ6pdffmloXKFRskKMQU80kpVL6zfG6eSednJSWZoUvdG4dO9ajva3O/kBm0o5lN55jMZ/1ttarSSrjz/+2H+fjYoryDrWGz5c5ZQ9/23EGPRBC1nd/d+z9OGb26k9LeVTWVark1nK8OPatlBHR0foeV5zeii34IpH6keryIrjCs8884z/PhsVV5B1bAScsue/jRiDPmg0s/K4PkQd/gCsICt3io6nM7Rv5P9oPe+kDfp5fIC6HCGszmGaE1t0o1Vk9dVXX/nvsd5xhTCyjo2AFwVEjEEv9JLVrRx1+wOwvKzcyQHqzS14B4KlLI/2eYeQ/PweOq2pB1pFVo2KK6iEFwfk94AYgx4YJ6u/nf2SZsod5a2N0QH/+d2UuyX6onDX6f4Kn5ivciJ/4wHd35y++b+XPZlfaVuIVpBVI+MKKuHFAfl9IMagB8bJqjKTlOXnO97zo4S28TONH9tJ6TSf62qnNB82tm2jQyNzIWlt0J3Zc/TZQe9x3vZutp67RBPHdlCb/9r477fT/lExu9uYo5FD26K3RdAKsmpkXEE1vEggvxdO4YPmYpes7o5Sn/f8dHaS1kRXntVJGmh3KJOdoHvSJKsTdDjN/55DPaeDqdjdmTFvYH5IPeL8V/epCTr9T1205+QZ+uab8zS8n69W8rbdNDL3Aw31bqM9x3J0vnjbsv/nSrBdVo2OK6iGFwnkz4oXDQTNxSpZrY0d8K8GCu+EWKbRPodS6eM0VTDlcWnicCCOVHeONp+22d/WO0zX8nZj5mi4U2zbcZK+K9i2TCO7g219o3dFXyG2y0rGFd58803RYzbhGAMvHgiahz2ycq/TUKc3Q4o6+T43TJ3e300PzoiOTdZmPqFdHdvpUNGh22Q2EIp/GFhErdsYm2UVjitcu3ZN9JqPjDHw4oGgeVgiK5cWcj3U7h3+rYqeMLdy3f5gKyeQKCCr5Mi4wo4dO0RPY5F1bDQyxsCHt4gxNA8rZOUu5Ki3N0flsqCXB4LQKGTVWGRc4ezZs6Knscg6qkDGGHgRQdAcjJeVuzRGb+8foh+iplSCmcG0P9Acb+ZVxmfeH3JxGPgIhOMKfDioAllHFcgYAy8iqOr9gULMlhVf4dszSFMVRMXcHQ3WKEo5/XSh5DJhwK3cEI2FtkFWyZBxhY8++kj0NB5ZR1UgxtBczJVVNVFtrG9+HWd5hHaLgZ2JOK/lH0a+faEg7gBZxUfGFbipjCvIOqoCMYbmYqSs+NCv/x/+lb7+W7A8TGFbpNmLw7R/hyey/HHdGl0eyIjB7VD7/mG6NM+PnaerZ47RjrZOGroePgjcjC7UKqvtpxZETyE2yqpZcQVZR1UgxtBc9JAVf1VlcZYuftgjQpVp6hu6RPMr90NfVg7YmPNmQW3BIK3UOoeLvsrsLtDp3raIx2aof2wpf77KXb9Pi9ND+VCo0zNE04vB12j8bbNnqD8jntuZpXFPepHbMv10TmwLY5usmhlXkHVUCafy+d9EjEE9esjq+xP+Ui+l7Q06G96ff7lI//73UY8rbrvovyKXXeDVGT6jg7v4Mdtp77EcXSpa/2rx7BtFfytoJ76vfVsY22TFV/74vaiKK4SRdVQJz94RY2gOesiqhbBNViwpfi+q4go6wIsJ8ntGjEEtkJVibJIVH/bx+1AZV9ABXkyQ3zdiDGqBrBRjk6z4hDq/D5VxBV3gRQX5vSPGoA7ISjG2yIrP3TQjrqALvKggf4aIMagDslKMLbLi2RS/B1tWV0gKxxj48JdrgBiDGiArxdggKz5PI3dUm1ZXSApiDGqBrBRjg6xkXIG/uNxMZB2bBWIMaoGsFGODrGRcgZeEaSbNlhWDGIM6ICvFmC4rGVfg1HqzL9vLOjYTxBjUAVkpxnRZybgCfx+w2cg6NhsZY2j2TNN2ICvFmCyrcFyBV1poNrrISsYYmn0Oz3YgK8WYLCsZV+C1q3RA1rHZhGMMvAghaAyQlWJMlVU4rqDLDinrqAMyxqCLyG0EslKMqbLSJa4QRtZRB3Q7RLYRyEoxpspKl7iCzuh08cFGICvFmCgrneIKOoM6NRbISjEmygozhvhgBto4ICvFmCYrnItJho7n9mwBslKMabKSrxdXueKh41VTW4CsFGOSrJAfqg3d8mi2AFkpxiRZ6Z7MlnXUDRw6NwbISjEmyUr3pXt1lRWDixL1B7JSjCmyMmE1AVlHHUGMof5AVooxRVYmrNMk66griDHUF8hKMSbIypQVMHWXFWIM9QWyUowJsjJlbXFZR11BjKG+QFaK0V1WJt21RdZRZxBjqB+QlWJ0l5VJ98OTddQZxBjqB2SlGN1lhTsN159Dhw75NW3FO1fXE8hKMTrLCjc/aAx8vorryofXqGvtQFaK0VlWuK1U4+ArglxbvkIIagOyUoyusjIlrmAqnLXiz5yzV6A2ICvF6Cor3Aq9sfDhH6fZucatfMv9RwGyUoyOsjIprmAy/D1BrjF/bxAkB7JSjI6yMimuEEbW0RQ4uiBjDHzYDZIBWSlGR1mZGlcwTVYMh0P5NSPGkBzISjG6yUrGFZ599lnjLqvLOpoEYgy1A1kpRjdZybjCp59+KnrMQdbRNBBjqA3ISjE6yUrGFZ544gkj4wqmygoxhtqArBSjk6yOHj3qv4533nlH9JiFrKNpIMZQG5CVYnSRFccVnnrqKf91zM/Pi16zkHU0EcQYkgNZKUYXWeVyOf81vPrqq6LHPGQdTQQxhuRAVorRRVYvvPCC/xrGxsZED1ANYgzJgKwUo4Osrly54v/7HFfQBVmTpM1kEGNIBmTVQD7//HN/uZVwe/LJJ/M7Gp9kLd6uYvnb1157zf/3dYoryJokbabD3xrg94EYQ3UgqwbCcYCwnKq1l19+WTyzcdy+fVvLuIKsQavB3xrg940YQ3UgqwYTPuyr1i5duiSe1Th0jSvIGrQafPjHM2p+74gxVAayajBxZ1cqZlU6xxVkHVoRXuyQ3ztiDJWBrBQQZ3alYlalc1xB1iEJtTxHR/h/aIgxVAeyUkC12ZWKWRWjc1xB1iIJtTxHV3jRQ34vvAgiiAayUkSl2ZWKWZWOcYUwshZJqOU5usKLHvJ74RgDH66DUiArRZSbXamaVekYVwgj65GEWp6jMzLGwIshglIgK4VEza5UzKpkXIFl+dtvv4levZD1SEItz9EZGWPgxRBBKZCVQopnV6pmVTKukM1mRY9+yJokoZbn6Ew4xsCLIoJCICvFhGdXKmZV4bjCzZs3Ra9+yJokoZbn6I6MMfCiiKAQyEoxcnalalYl4wp79uwRPXpSi3hqeY7uyBgDH7YjxlAIZNUEeHalYlbFyLjC+Pi46NETG8VTK4gxRIPR0QRUXZqWcQU+DGQ56tykrKK2tVrjL8BzLRBjKKTlZSV3ElNbJfr6+iKfg2ZO++KLL8SnCSCriAFiUisHn/vg82JoZjedr+CqBoeBAAAjgKwspdrMC+hPss/QpfX7K/4VxJX7695vYTZofb2wx0QwmpvJ4ll6o6ODOqq0XQeP0IncRZq9E/9kq7GyilWT7bT38BE68tkZujy7RBbsh5FU/wxduvfXc3RybxelnRQ56fagPu1pcpw0de09SedmF2n+XD/ty90SzzEXyKqZuOt0f2WRZs/0U0YMzNQ//iddnRf/h/Ta/NXzlHt3B7X52x1qf3uMlmLsnMbKKqomnf9MufNXaV7UZGX+Kp3PvUs7006wvW0bHcpdo3uWSaviZ7gxRyP728nhMbE/R9NLRbOpjTs0ndtP7Z7E+G84A5fFBnOBrLTgFuW6xY6ZnRR9hWzMnaIeMfAy3mNWRX85Kg50I6heE3Lv0bXhXiFyry77RmnBImGV/QxXp2iwi0XtUM+pOe8grzz5cVOuhgYBWWmBSxOHq+yYHssju8UA7qThOdFZhrID3Rji1YQft5Dr8WYYwWMzgzOFMwyDif4MV726pINt3TlP6dW5leum1OEJ4+sCWWnCZDbGjrlwiraLAdxzuvJtvKIHulnEqonPMo32iUPCGCI3hajP0J06Tmm/P03Hp2Lqx52i433xxKYzkJUmxNoxZwbFQE3RgbE10RlN1EA3jfiyCu/EKUp7sysbKP0M1+hCv5Cyk6XJBFOlv3z9NTXvlrr1AbLShOo75pr3GDH9d/podFl0l6F0oJtHElmRO0GHxXtOdQzRddFtMiWfoTtJWXHeMu4hoE1AVppQccfkKzv5E8lt1Ht6oer5h5KBbiCJZBU+IZ86TBMWnLgq+Qxv5ahb9MWriV1AVpqQ3zFTDqXbQ5miLW35Qfu7F/+D/vuv92KdKJXPMZnaZdVNFsSKSj9DyAroQH7H/Jfz+YwVt8XZy3Tms4P5TJGT3knHxn+ueLmaKRnoBlK7rA5QlVN6RlDyGUJWQAeq7pjuEo31Z8QAdqgnV/lQsGSgG0gyWc3QYFo8Pj3o/WY+JZ9h+Lzc9lO0ILpbBchKE2LtmGuTlJU7pNNPFyrMHkoGuoEkklVo1uH0XyALJlYRn+EajR0QNUn10ehd0d0iQFaaEG/HDAUlUxk6+RfRHUHpQDeP+LJy6fpQp3jPCfJHmhP1GYYjGt1JTsy5bqxznToDWWlCvB3zLo32iceleqhSLjRqoJtGXFm5C7n8V5GcvlGqkuowhujPcNWrizgd4PRQLs73i9wFOn3oE5ox3FaQlRYs0ume6jumu3Bq81Cnyk4ZPdBNImZNlsaoPyMel8nSZLUvTRpE2c/Qk0+uR36JewedvHSn7AWXjZ/HaWDPfhq14EuTkJUOrE7QYXkuKmrHdNfpxvgx2tEmHhNjpyw70CvAq4vyzSz4ZptNp0pN3PUbdGlYrioQrDzwg8ai4ppybbnGcan4GbpLNHFMrsaRorYtu+jgiRyd/+Yb+sZr53Mn6ODOLbTNq8s1S5ajgKyaib92U7u/FpEcmNzy6xL5bUt+QDrpLtp7cpx+jrGslfxbcZCSkjdgbeq632VqkmrbUpI94zrtOvgZnYuZPWsmXFN+zVzjuNKS770SLO2rZz6jIwd3bdZn10F/ra+rN4oX4TMbyKqZ+Gs3bWaqyrf7iReYizPQiyUlW1NlFbMmD+KvQ6gFUlayxZGWfCwIQCUspdJA552db0RQLCnZcEeV+lMsK9kqSUs+BgSgEpYSNdClpPiOv3J7VIOs6k85WckWJS25DQSgEpYSHuhxJSXbc889F3lbKLTaG9c0qtbFLSwt2QcCUAlLkQOdbxsfV1Jo+rTwIToIQCUsJTzQf/zxx0R3Z+bbzW/duhWtjo1rGlXrqMafFX9m8ncQgEpYStRAjystnLOqP9XOWXGTkpLIfhCASlhKpYFeTVqQVf2pJKtiSUnkdhCASlhKnIFeTlqQVf2JklU5SUnk40AAKmEpSQZ6sbTqLiu+v9/Iu7SL7xTs/xu8GuouenfEvhuTliMsq2qSksjHgwBUwlJqGehSWnWVFX/jv7eNUpl9lJuWt3rfoDvTOdqXSVFb72mrbkxaDq5pXElJIKtCUAlLeZSB/vDhQ/HTo7M82ufNpqLXmFobO+C9Rof2/cn+VeRqqSlkVQgqYSm6DPRgTaoyN3CQq3tWWa+qVYGsCkElLEUvWUWvaulOZr1ZV2vMrGoBsioElbAUXQb62oX+4KS600WD34WWchELyDk9uTLnrFy6d22E3t0ll8hxKN21l05OLBUue7Jxh2Yv5ujdnWly/BkaPy9Hh7qCk/n+3YDyz3FpaeIk7Y3cph+QVSGohKXoM9BDy/Cm2mjHye/o3gbfqaed2veP0FzkUi+rNDXYRU6mn86JNZk27oxT1l8RNHRnnz+foez7b1CXXPsqO0ELo/to27a9dPjIETq4Q95zsZOGvX9o7lQPpXmRupJt/Mf0I3h92EUlqISlaDXQ3Xs0MdAezLC85jhp2vvHG2WX4r11usd7bCcNXS+c81wf6gjelzNAl0Ufk+9v30OfFNxTcZlGdgf/Zrp9J/3bufC2VRo7ECwN3DGk583m/ffkNRCASliKdgPdXaI/7f+7/OtKtfXScNQ6xO4UHefljLtzVHyWy5056S9j3Nb7ZcG2W7nu4G9GnKivdZsOyFqBAFTCUrQa6Ks/0HDvNto3ukDrcyN+vip4fRnKThQtSXx5IJiBJRAIZNUaoBKWos1AFyfSMwOXN2886str85xR+HDv7qhI0kNWwWvzGghAJSxFl4E+N8w3H+3whCQ6JOHbSfWNkgwvLJ7uKemrBmTVGqASlqLHQF+gU9v5dWQpUgerY3TAv5IX2i4PA1O7aaTMjRHd66fpy9DdqCGr1gCVsBQ9BrqU1QEayx8DhrlFuW5ve3qQZkQPrV2gfhFFyHgSKTkFzzOyfYMU/vYOZNUaoBKWostADw4DU7Q7apq0NknZtCelwZnQSXaXZgZlLsuhroFxuuF/+9ml9aVpT1SZkjQ8ZNUaoBKWos1Al+emnHZ6+8ws3fGDToF4+CR7ZII9fD6rqGX2jRY+fmOO/sCzM97e/YfCkOnGHRo7nA62db5PV8Lr0YS3pQ/TuIZr1cj3DAJQCUvRaqDXsp4VPyd3iLrSgbT49uglj5/M5t9nuPkzr1q3aYR8XSAAlbAUDHTzwWdYCCoBADACyAoAYASQFQDACCArAIARQFYAACOArAAARgBZAQCMALICABgBZAUAMACi/wdpAjpF/4W1IgAAAABJRU5ErkJggg==
|
As shown in the figure, triangle ABC is the front view of a cone. What is the height of this cone in cm, and what is the radius of its base in cm?
|
A. 12, 4; B. 12, 2; C. 12, 8; D. 10, 4; E. No correct answer
|
A
|
66
|
iVBORw0KGgoAAAANSUhEUgAAASwAAADZCAYAAACaVQ1rAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABnLSURBVHhe7Z1fiBzVnscHEVrEQR8yIMQBYYQRTMRg0EAiZkCSXJBLRMmqJBrWPGRHhVnQew0OOOBKHubBG32Yh4aENZEElLgy4LCRneBmN9kQ1j/XG4ZZQwIaSXLDKIkPA+3Db/tbXb9JdU1Vd1VP1+lzTn0/cEimqrq76lSfT59z6pzz6xNCCHEECosQ4gwUFiHEGSgsQogzUFiEEGegsAghzkBhEUKcgcIihDgDhUUIcQYKixDiDBQWIcQZKCxCiDNQWIQQZ6CwCCHOQGERQpyBwiKEOAOFRQhxBgqLEOIMFBYhxBkoLEKIM1BYhBBnoLAIIc5AYRFCnIHCIoQ4A4VFCHEGCosQ4gwUFiHEGSgs4jS//vpr+D9SBiisHvDTTz/J77//Hv5FOuX69evy1FNPhX+RMkBh1enr62OyOKXxzjvvBPu/+eabcAvxHQqrTryAMNmVklhcXFzav3PnznAr8R0KyzC7d+9eKmiHDh0Kt5K8VKvVpXy8/fbb5cqVK+Ee4jMUlkF++OGHoHBpQXvggQfYl9Uha9asWcpHpPHx8XAP8RkKyyDR2pUm1rLy8+WXXy7Lx1WrVgXNROI3FJYh4rUrTaxl5efpp58O8m5ycjL4e8OGDcHfU1NTwd/EXygsQyTVrjSxlpWdubm5IM/uuOOOpTFYn3zySbANzUTiNxSWAdJqV5pYy8rOa6+9FuQZ/lWQd/fff3+wfWZmJtxKfITCMkCr2pUm1rLagxoValbIL/wIREHzENu3bdsWbiE+QmEVTLvalSbWstqzf//+IK/QhxUHMrvrrruC/Wg2Ej+hsAomS+1KE2tZ6UDm9913X5BPeEqYxNjYWLB/79694RbiGxRWgWStXWliLSudo0ePBnn0yCOPhFvqX94w3xTNbzQbMc+Q+AeFVSB4eoUaVjShwGlBe+6555bt//7778NXkyg6dAEj3JW4sMD27duDbWg+Ev+gsAyjE3aRLl26FG4lrThz5kyQX/fee2/T4FDNxygnT55cOpa1Vf+gsAxDYeUHNVHkF/IuiuZjHK3FHj58ONxCfIHCMgyFlQ+sHab9UvEJzmnCgqiwff369eEW4gsUlmEorHy88cYbQV6hfy+O5mMcNBvRJMS+U6dOhVuJD1BYhqGwsvPbb7/JPffcE+RV0iJ9mo9JvPvuu8E+dMITf6CwDENhZefDDz8M8iltGWTNxyQwrAHNSDQn46PiibtQWIahsLKDcWnIp88++yzcko89e/YEr8eAUuIHFJZhKKxsQFLII0irUzCmDe+BZiWj6/gBhWUYCisbaAYij9AsXAmYDI33ef/998MtxGUoLMNQWO1BBzvyBzUjdLyvBCw3g/fC8jMcSOo+FJZhKKz2YAgD8gdDGrrBgw8+GLxfp31hxB4oLMNQWK3B4FB9uodBo90ASycjvzdt2hRuIa5CYRmGwmqN5g+m47RD87EdGEiKIBU49ty5c+FW4iIUlmEorHSiI9Qx4bkdmo9ZeOutt4JjGXTVbSgsw1BY6WhwVCwlkwXNxyygqYlmJhKDrroLhWUYCisdXWUBi/VlIY+wAGpXOB61LeImFJZhKKxkNDgqlkHOOvxA8zEr6L/C8Qy66i4UlmEorGTiwVGzoPmYBzwpxGsYdNVNKCzDUFjLweRk5AeGM+SZQqP5mAed8oOxWcQ9KCzDUFjLSQqOmgXNxzyguamTqhl01T0oLMNQWM20Co5aFJhXiM9j0FX3oLAMQ2E1oxGbk4KjFgUkqQsDMkqRW1BYhqGwboHmWbvgqEXBoKtuQmEZhsK6BeI2Ih+iwVFNgbzX4BYMuuoOFJZhKKxbJAVHNYkGXcX678QNKCzDUFgN0oKjmgQRdXp9DiQfFJZhKKwGzz//fJAHyI9O0XxcCYhdiPdg0FU3oLAMQ2G1Do6ah24IS4Ou9qIfjeSHwjIMhdU6OGoeNB9XAp5U6pI2J0+eDLcSW6GwDFN2YaGvqFVw1DxoPq6U/fv3B+/DoKv2Q2EZpuzCahccNQ+ajytFR9ujmcqgq3ZDYRmm7MJaaXDUKN0SFsAAUrwXg67aDYVlmDILa3p6OrjulQRHjaL52A3m5uaC97rrrrsYdNViKCzDlFlY3QqOqmg+dgtdk4tBV+2FwjJMWYXVzeCoRcGgq/ZDYRmmrMLas2dPcM3dCo5aFGvWrAnOE/MciX1QWIYpo7CKCI5aFBq5h0FX7YTCMkwZhaXXnCU4aq/BODEGXbUXCsswZRMWBJAnOKoNjI+PB+eL+Y7ELigsw5RNWIcOHQquNWtwVBuINmEZdNUuKCzDlE1YeYOj5kHzsQgwzxHvzaCrdkFhGaZMwuokOGoeNB+LIDoMg2tl2YNdwlq8KCcP7JaH+sdkNtyURu3aOanufkxW9ze+tP2rH5Nn3puRi5Z/t8okLF3RM09w1DxoPhbF5s2bg/fv1kBXsnKsENbiz9/K8X1PykCl8QXs62strNp8VUaWjo2lwfprF8IDLaQswuo0OGoeNB+LgkFX7cMKYdVu3hRUjGqn35aB4EvYSljn5cDaigz908fy7c+N6lTt5v/JzL4N0h9+gSvbj8nlYI99lEVYnQZHzYPmY5HoZG3MgyS9xwphLXGhKhuDL2ELYZ2dkHVjs7K8ElWT7ybXhl/i7XLsarjZMsogLNSoMIkY11jkci2aj0WiQVe7sRwOWTnOCWu+Oilf3Aj/iHP1mGwPXr9RqhfCbZZRBmGZCo6q+VgkmPfIoKv24F4NqyWzMha8fpdMJ0ptUS7OvCfPrBuQSnBcv6ze8roc+bq5voYm5v98XD/uoX7ZGJgPr9snW1b3B1/c/od2S3XpNQvy9ZHXU/Ytx3dh4WkgJg/j+ooOjqr5WDS6pDPmQ5Le4pewbkzLrvrrKzs+lWUtwtq8HNsxKJWRSTkT9H3V5OZfp8LO+0EZC3vqf/pyUv40ukUGw8Kwsfq1nJ7YIKuffFn+/OdReXqoEmzvq7wiXyxckxNjQzKw7hkZje9LqQX6LqxeBkctCtynbgTNICvHK2HVZsfqNadBmThbC7coN+SrNwfrIqnXvJoqPzdkeldDHn0jB+WWPm5tH9jwuhw8d62ut5DaaXl7oLFvsF6bOtC07zuZXNvYtyu5iue9sHodHLUoMA8S18Wgq73FI2FdlmPbKzL45ld13cS4fET+UH/fytjsLbmEXP50h/T3VWRoX/PrZscaUmk0CZvpdB/wWViYLIzr8jEwqQ2BX4lHwlo4MSqDI1WZjxupzqWDI8GXLU0iSVBY+elGcFSb0doj5keS3uCHsBZOyOi6+mtS+rrPTgwEXzQKqzi6FRzVZjAfEveNQVd7h/vCWjwvUy++KMeSqlYhX73Z6AwfmDgbbmkPhZUPTBLGNa00OKrN4Ako5kXiOhl0tTe4LazavFT/+Ec52EJWQJuEfQNvy+mUQxemD8q/XQ//qENhZQd9Ot0KjpoHzUeT6BgzBl3tDe4Kqy6rg88+21ZWAecPyNrgfSsyUp1f1vEuC7My9o9HmqbzUFjZ6WZw1DxoPppEg67icxl01TxuCqveDKymyqomN388I9UX90XGQjWeIDa+4IOyo3pGGtMQF+WXuRl5cx3GYTU/W6SwsoPJwbiebgRHzYPmo2l0niSDrprHHmHVbsqP06Ph5Oe1Mn7y52BC9DIWTsvEOpVPehp4+3RzTQq1qMGkYyuybuJ009zE2rUZGQ3HWg2Mzsi1yBvVbv5VPtjY2Fd55l+blrOJ7uvb+IGcT7gA34TV7eCoedB8NI2uRMGgq+axQ1izY0tfvuYUmxN44yt5M1E68TQgif3rixdlZt+WcA2tSjBC/b2Zi01ivFDdGHuvRhqrV/k63RfFN2F1OzhqHjQfe4EGXS1qrS+SjD01rJLgk7AwGRjX0avgqJqPvUBXU2XQVbNQWIbxSVi9Do6q+dgrdL16Bl01B4VlGF+EZUNw1F4Ly8WIQK5DYRnGF2FhEjCuwYXgqEXhYsxF16GwDOODsFhQb6H3k0FXzUBhGcYHYbEpdAsbmsZlgsIyjA/CKjI4qov0+uFDmaCwDOO6sDDpF+deVHBUF2HQVXNQWIZxXVhFB0d1lV4OoC0TFJZhXBaWieCoedB8tIFeTlEqExSWYVwWFib74ryLDI6aB81HW2DQ1eKhsAzjqrBMBUfNg+ajLfRqmZ0yQWEZxlVhaQTkooOj5kHz0RZ6tZBhmaCwDOOisEwGR82D5qNN6FLRDLpaDBSWYVwUlq3BUTUfbaIMwTh6CYVlGBeFtWnTpuB8bQuOaqOwgO/hznoJhWUY14Rlc3BUzUfb8DmgbK+hsAzjmrBYW+gMBl0tBgrLMC4JC30w7I/pDFv7/VyHwjKMS8IqQ3DUorD1yarrUFiGcUVYHFO0cmwcu+Y6FJZhXBHW1NRUcI4ctd05Ns4OcB0KyzCuCKtXwVF9w7b5l65DYRnGBWG5svKA5qPNoGalDy4YdHXlUFiGcUFY27ZtC87P9rWdXBAW4Bpi3YPCMoztwup1cNQ8aD7aDldp7R4UlmFsF5ZL65NrProA18HvDhSWYWwW1vXr152KAOOSsA4fPhycKyMNrQwKyzA2C8u14Kiajy6AcW2M5bhyKCzD2CosFwuU5qMrMFr2yqGwDGOrsFxssmg+uoJrTW4bobAMY6uw2Clshr179wb5zKCrnUFhGcZGYZ06dSo4Hz52Lx6Xho3YCIVlGBuFxYGNZnFlYK6NUFiGsU1YnDpinpmZmeD+M+hqfigsw9gmLE7O7Q2cXN4ZFJZhbBIWalS65hWXPzELl+/pDArLMDYJy/UF5jQfXQTj3latWhWcPxdIzA6FZRhbhOXDEr6aj67CJajzQ2EZxhZhoe8E5+BykATNR1dhkI/8UFiGsUVYtgRHxVgk5MPc3Fy4pRmIFTUQTWi+bt68OUithIXr0tcgzzVhKAEi2tjyRHTnzp3BNYyPj4dbSCsoLMPYIKxeBPrEteJJJOIcQjZojup650jYngQEo8ekpSQgtqRjNWEAZxIYgY6mGjrFsY4VptMUCfqvcD4MupoNCsswNghLf9VxLt0CTRqML0qrseFa9bqjCaPr0SzF8Iok8PQSwUhR04JANOmIcaQkcC54HRLkozUsrPcFmaU1waLnpgmd45Bs2jmuFFtquy5AYRmm18LqRr8JOuyxosP+/fuDx/I6NEJT2pQTyAMiQQ2vG5N/9fO6Ba4L54gR/6gNQlL6JA8prb8PzcuV3EvtT1yzZk24haRBYRUIJhJH+1+QdJIxEpYZie9Pa6p0i248mYr2H2nCQEjUXNCkMtU/pJ9dNGgWas0uCUgO54FmLvIVf+cRGESJUe94DwZdbQ2FVSA67UULVruEL22Rk4/zjP1BLSmtFgTpQVqoLaIQF3nOLgBB6cj1aILA0ARNe6AQhUFXs0FhFQx+ceNf5LSEL36RtBtdDfHgCRomQ6PJiMJGsgPB4x7inusYNySshtGO6KyDLIIrKxRWwWStZRVduwJp89dQ0FBb0hVHkXDO6JwnnYN732oFjPhTQc7rbA+FZYAstayia1dJKwRAkDi3qFDR8YuaWNGP88sOHlrgBwJ5rT9U6PfSByK2jBOzDQrLAO1qWSZqV2lrMKH5h3PDOCgGRzCH1qb0/qMpDnRtMjyBJcuhsAzRqpZVdO2q1SqX+FWHUIl50DSPPzU+fvx48H+u/poMhWWItFqWidqVr+uIax66Doa/6NNb/Ds8PBz8n+vrL4fCMkhSLavo2pVGarntttvk888/D7f6geahD+A+6XSixx9/PPh3/fr14V6iUFgGideyTNSuNBaeqc8ziV6XT6CP8ebNm/Lwww8H18Z+xWYoLMNEa1lF164gp7vvvjv4LNSysowHcgnNRx/BWCz8uDHoajMUlmG0lmWitoMnTabk2At8FhaYmJgIviu9mHNqKxRWD0Aty4RAnnjiiaBAu7xIXyt8FxbGYqGG/Oijj4ZbCIXVAzCy3ERf0ksvvRQUaMxTSwJjfyDOtJQEhkUkHasJA1STQM0y6XhNaXMbsT3peCQVFv6f9rlYkUInLieltNoLOsGxLy2ZWLsKn4GO9x07doRbSOmFpV96V1MrdLBoWmGOzndLSkmgsCYdqwmTopOICiYpYWpQEtHleFqlbn9uq3FzSJBdEvE8xd/RlASkivOPJ50q9eqrr4ZHEgor8uVyMbUChXVkZCQ4DovExWt1qHmhwKalJNBMSTpWEz4zCdSUko7XlCaA+BLJaSltZDhknSQDTWnnizFrcdlEU9rTO+yL36NoSqLdj8BHH30UHklKLyzfQbMCo6bxxUfBJvaBH5JocxNN9TvvvDO4Zx988IGR5qcrUFglAI/Idf10SMtE/xnpDCzgp/eqqCWZXYbC8hR84ZEUjMHSgoDmIX7JXSd+ja6DpWh0YDHGX/GHZTkUlqckFWY8qcPyMdiOgaTo93G5UCRdo4ugP2zDhg3BtUBYmJ1AkqGwPCWtMGNYApoa+kuOAazoeHZRXGnX6Ap4EKHLyei9SHv4QBpQWJ7SrjAjcg3G+EQLC+axubRwXLtrtBVIKSoq1HZRq2LnensoLE/JWpjjazKh8GAxP3T+2l7rynqNNoCBqOijigarQF6jtttpuLUyQmF5St7CjF99dPRqUxEJwyFQoGydNJ33Gk0DSSE4KoJ+RPMVY7Uw9oyiyg+F5SmdFmYUIhQmNBH1PZCwWimaMRhsWnTsxKx0eo1FgeY0aqyQfLTWioQntBhSwj6qlUFheUo3CjM6hcfHx5cVPiRMG0HTEUEUehWWSs+lV7QSFBIkhchDOIb9U92BwvIULTTdIkvhRCc+JIbhEjgWNbEi+8H0s4sGTTvUjCBnXD/maEZDomlCHmAfrh9DFTiOqvtQWJ6ihago4gJDB3K08GpC3w3GfqE5iYjRaFIePnw4EADGhcWDYuRBP2OlYPUM1CbxoAFDPCAcrIOPAba61npSQjOZgjILheUpWqhMgqYh5sGhDwwd+BBVtLM5LUF26IjGZGS8DoFEdVI0EoZbQCSaIDskfb3+jRRfMif6PpjQjH4kfA7OLamWlJRwHDrOcV44F0yoZod5b6CwPEULW69B3w1qL4gAA2mg5gIpofYCSaXVzEwmnAdGmqMWiPD8OE/IDrUml8allQEKy1O0MLoApIDmIWpIaC4mLXuDmlE0RQde6lIx8WNQo4q+B5puEBGafuhfQ98UcQsKy1NcElanlOEaSTO8255CYREf4d32lE4LM5plaatpFgmaZ2iu5XnSRmGVD95tT8lbmCEq9APhNRCHaXSZ4DyrR+S9RuI+vNuekrUwR0WlqZfC0pRFXHosKQ+8257SrjBj0GdcVJpsEJYmiAsjzJOmtugxpDzwbntKWmGGqJKm1kSTTcLShMGbGO4QFZfuI+WBd9tT4oU5i6g0YYxTdPySiYQpPknnEk9Rcek2Uh54tz1FCzP6qLKKyqUUnVZDygPvtqdoYUZNBDWSrPPmXEi6Uqf+TcoD77anxAtzHnFhKV/0KZlMWNU06VyiKb6ksG4n5YF321PSCnMWcdnW6R4XlaL7SXng3faUdoW5lbhsEVaaqBQ9jpQH3m1PyVqYk8TVa2G1E5Wix5PywLvtKXkLc1RcvRJWVlEpFFb54N32lE4LM8SFJYNNg6WSs4pKobDKB++2p5ShMFNY5YN321M6Lcy1+YPy7PCwvHD0UrjFXiis8sG77SkdFebavExtbLxuY/VCuNFeKKzywbvtKfkLc03OTgwuvY7CIjbCu+0peQvzwuyYDI1UZWqUwiL2wrvtKbkK88KsjA2NSHW+JrNjFBaxF95tT8lemBdkele/7JpeCP7KJKzFi3Kyuk+eeWxYhoeHZcvLf5Hjf7tWb1Q2s/jLXP2412XLC0cl6MKvv27mLy/Llvprhre8LkfO3XpN7drf5HjKvjQorPLBu+0pWQvzhYMjMjQ2W9dWg3bCWvj6gGztH5QdB07K3JUrcunbj+WVQbymX7YenG9I5up/yeTOx2R1pfFefRurMv/jdP24flldF9LQQCU8v0GZOFsLnkxu7a/IwNDyfa1oHMevcJng3faULIW5Nl+VkaExmVVb1WklrOD4uoQ2ToViCrl6TIOabpdjV8ONdS4f+UNj+/BW2f3PVTl3LXxV7Zoc39UQU2Vkq7z4YvO+mdGBxr66SFspq/GZ/AqXCd5tT2lbmIMhDMtrMenCuiFfvALJ7JLpG+Em5fwBWYvPq+yQTyPCqr9Z4zwem5L5cJNSOzGaum/pdfWaWauetOCYeiLlgXfbU1oX5sYQhnhNCaQK6+ox2Y73TJHI4i9X5O83Y+/WSjyd7osQHFNPpDzwbntKq8KsQxjmE9pbqcL6blKG8Z5tJNIEhUW6DO+2p6QX5v+V9wb7pH914wlfPK3ub7yuMjDU2KZP+FQiw5PyXfA+GaCwSJfh3faU9MI8K2PhvkxJpXGhKhuDbWvlwPngjZZTOyv//h/Xwz/qUFiky/Bue0qnhTm90/2sTAw09g2MnlgaBnGLmsxPvdIsMwqLdBnebdJEq2EN5w+sDSVRkZHJc6IjEUQW5eLxV2Ro+zG5HG4JKFhYpHxQWKSJVsLCUIjqiA7srKf+1bf6vfq3ysGmXvyafDcZCm54v3wd6+BfOP4PjX0Df5L/jEWhX9pX2SXhAHxCAigs0kRLYQFMr9m3QfohlCBVZODJfXLix4iRLh2VF4YGpLJ0TNiJ/y//nbgvEF+7fYTUobBIExhPhaWKl42pirP4S/pxtZvy9/o+7G9Kv9SrUp3uI6QOhUUIcQYKixDiDBQWIcQZKCxCiDNQWIQQZ6CwCCGOIPL/tnELEvUpvC4AAAAASUVORK5CYII=
|
The height and the radius of the base of a cone are shown in the diagram. What is the volume of this cone in cm³?
|
A. 24π; B. 16π; C. 32π; D. 64π; E. No correct answer
|
D
|
67
|
iVBORw0KGgoAAAANSUhEUgAAAS0AAADYCAYAAAC+y7XwAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABaKSURBVHhe7d1vaFTnngfweVGYvjBsXzggaECIkIINKBQJG6EEin9YuRhWeotUFHShDRZmoSEWC5W14otc0OCLXBiwsOrqrrv6IqxWy0Zylai4NOY2ITdRFDSiVmKJvgiML373/M48v+RkMpM5M5k5z/M78/3AoebMjM15kvn6nHO+50yCAAAUQWgBgCoILQBQBaEFAKogtABAFYQWAKiC0AIAVRBaAKAKQgsAVEFoAYAqCC0AUAWhBQCqILQAQBWEFgCogtACAFUQWgCgCkILAFRBaAGAKggtAFAFoQUAqiC0QLEp+r//GaJp8xXUB4QWqJUd6aGWRAv1jpkVUBcQWqDUDF3Zn6REIkGpw0OUNWsh/hBaoNPDDLV5gcWhlUjupAtTZj3EHkILFMrS0OEUJdvb54KrBfuIdQOhBfpM99OeZIoOD03P7SImUodpCPuIdQGhBeqM9bZQoqWXeG6VHTpMKTPb2n4W+4j1AKEFuswMUDoVDKgx6m0xx7ZMkEG8IbRAlamz2ymR3E9XZswKj7/On22lKD0QeABiCaEFemRHqMebVS2qOMxcof1JM9vafpawkxhvCC1QY+bKfkoWLJPmzibmZlsom8YdQguUmKKz271Q+od/pH3d3dSdv/xziwmtBCX3XyHsJMYXQgtUyJ0lTNGeP1+ja9cKLf9B/yoH5BPbCScS4wuhBQpMU/+eJCV3XljyeNXMQHqu/tDSM4JLe2IKoQXOkwuje0ZKxZDZheTgSu6hftz+IZYQWuC27ARl2pOUaMvQQ7NqKdOX/mh2ERPUmB7AbWtiCKEFzhr99w7amDKX6SSSlNrYQZ2nBumFeXyBF4N0qrOD1jeYmZZZGlZvob0XR82TIA4QWuCsqeECB9xvTRY+MzgzSbfynyvLMI7KxwlCCwBUQWiBeq9evTJ/gnqA0AoIHgvB4t5STDqdpnv37pmvIO4QWgGF3ihY3FkKefv2LX3wwQe0a9cuswbiDqFlyYkTJ/w34nvvvUcPHjwwa6Fcp06dmhvHp0+fmrUQZwgtC2ZnZ2nVqlVzM4h9+/aZR6BcH3744dw4Hjp0yKyFOENoWSCzLFkw26rM1atX/fHj3UP+78qVK/1/ECDeEFoRy59lyYLZVvl27Njhj11PTw+1trb6f85kMuZRiCuEVsTyZ1myYLZVHh4rHrf333+ffv/9dzp//rz/9YYNG8wzIK4QWhEqNsuSBbOt8LjmwGP25Zdf+l+/e/dubmxv3rzpr4N4QmhFqNgsSxbMtsKRmgOP2a+//mrWEh09etRfh/pDvCG0IlJqliULZlulSc3h008/9b+WseNmPO8uov4QbwitiJSaZcmC2VZpUnO4fPmy/7WMHTtw4ID/Z9Qf4guhFYGwsyxZMNsqTmoOa9eu9Y9jMRk3Njw87P8Z9Yf4QmhFIOwsSxbMtooL1hyEjJvYvHmz/zXqD/GE0LLk+++/n3uzPX782KyFpeTXHISMo7h48aL/NeoP8YTQsgShVb78moOQcRS827hmzRp/3Y0bN8xaiAuEliUIrfIEaw7j4+NmbY6MY9Dx48f9dTt37jRrIC4QWpYgtMojNYdt27aZNfNkHIOC9QeMb7wgtCxBaJVHag79/f1mTWlSf/jmm2/MGogDhJYlCK3wpOawbt06syYcqT/wbiXqD/GB0LIEoRWe1By4OlIuqT/09fWZNaAdQssShFY4UnNYsWLFgppDWFJ/+Oijj8wa0A6hZQlCKxypORw8eNCsKU+w/vDzzz+btaAZQssShFZpS9UcysHtef47UH+IB4SWJQit0paqOQTJOBbDu5WoP8QHQssShFZpYWsOpUKLcYuen4P6g34ILUsQWksrp+Yg47gUvlkgPwf1B/0QWpYgtJZWTs1BxrEUvmkgPw/1B90QWpYgtIort+Yg41gK3zSQn4f6g24ILUsQWsVxvYHHhesOYcg4lsL1B755ID8X9Qe9EFqWILQK45kVz7B4XMLeCFHGMQzUH/RDaFmC0CpM7vLKx7TCknEMA/UH/RBaliC0CuOzhTwmfPawVlB/0A2hZQlCazHuY/F4cD+rllB/0A2hZQlCazFuvvN4cBO+1lB/0AuhZQlCayG+tpDHgmc/fM1hraH+oBdCyxKE1kLl1hyqQY6fof6gC0LLEoTWvEpqDtUgZypRf9AFoWUJQmteJTWHIBnHcklYov6gC0LLEoTWvOXWHCoNLSa7pag/6IHQsgShlVONmoOMYyWCJwBQf9ABoWUJQiunGjUHGcdKRVm1gOVDaFmC0KreLEfGsVJRlVqhOhBaliC0qnc8ScZxOaK4fAiqA6FlSb2HVjXP3FUjtJZ7BhOig9CypN5Dq5odKRnH5bDVFYPyIbQsqffQcrGNbqOVD+VDaFlSz6ElB75du+4v6usfoTIILUvqObSkYuDiHRZQf3AfQsuSeg0t18uc8tFlqD+4C6FlSb2GlobLZuRDYlF/cBNCy5J6DC0tFyjLx/Gj/uAmhJYl9RhatboVjIxjtfBBeN595b8T9Qf3ILQsqcfQqlXNQcaxmrj2wH8n6g/uQWhZUm+hVcvbG8s4VpN8yjXqD+5BaFlSb6ElHySRyWTMmuqRcaw2PqbFfy/qD25xNrSyL0fp0smLNGq+Li5LL0cH6dzJburu7qaT5wbp/jP374tUT6ElH9m1cuXKmtQcZByrDfUHNzkXWrOPblDm61Zq8H8R0zRg1heUnaALu5soaX5p55cGaj02RNPmaS6qp9CSD0c9dOiQWVNdMo61gPqDe5wKrac3ztN/XrtGl79rM7+IS4XWDA12NVKiYT11HDtH1/h1ma+ptUGCK0ntmQlvHuamegktrjnIx9A/ffrUrK0uGcdaQP3BPc7NtHwPM9Tm/yIuEVpTZ2l7Y5quv8yLpdkx6mtP5n6Rk97rHU2tegmtnp4efxt37dpl1lSfjGMtoP7gHrWh9eJCF/WMFE6k7C/Hqdl/fRtlHpqVjqmH0Hr37h2tXbvW38abN2+atfqg/uAWvaE1ObnEMasBSvuvb6fTxfJg9hnd/ylDP3TzAfyTdO7OJL0plIH8vEsn6dTgC/P1I7pz7mTuoP+lUQpO9LJvJos+lq8eQktqDhs2bDBrdOIZFu/eov7gBr27h0syodXcQyNmzbwsvfzLMWpNNdEO/1jYZcp8udE/mJ/ceISGTBLOTPbTsY715oRAgtq8KdvsWIa2zh0zyy3J9tPEk7npoSO0MVn4sULqIbRqWXOIGrf4eVtQf7AvnqE10uPvHm4/O2VWzJseSFNjopHSA8F52kPKtJmg2X+FZrw12dlZymZHqKclt35TZxft25eh236dwgu+e8fN95iiziPf0hZ+7Mkb7xF+rIfa/QBL0ZG7/v9gkbiHVq1rDlHjFj9vD+oP9sUwtLJeZrVQosWbZeXvnmWH6HDK+3u3n6X8OLt7JJULEW92FIyQgXQuWJqP/+L9zUEz1L/HPPZv92jh2zJL1ztzj/EMrZC4h1ataw42cJuftwn1B7viF1pTF2hnQztlJhYfUJq5st/fDdzUN2HWBPCxqmuDNJp3IEpCq1D4VPoYi3NoRVFzsIFvWsg/L9Qf7IpZaE3RhZ1Nebt+8yb6Ni0ZJIUgtMoXRc0hSMax1ng3F/UH+2IUWlmayGylrUsUSiVICs60ikBolcdGzUHGMQp880L+f6H+YE9MQssLrNN/oD+UaMDLTKvQMa05D0dohI/EGwit8kjN4eOPPzZrak/GMQr8s+LdXr6ZIe8GQ/RiEFpZetL/Fe3uG8s7GL5YdiBtrlNsKVJMnab+9DEKnvBDaJVHag5nzpwxa2pPxjEqUn/gmxpC9JSHVqnA4k7W/9KtV/KlOXvIf/eiS4BmaayvnT7uHTNf5yC0wpOaw6pVqyKtOcg4RkXqD3xTQ4iem6E10Ueb/F/EPdQf2FVbyAuZzFZqaNxKX/ut9vylkzo2piiZtyuY62nlfskTyRR9spefu5e2rG7wgqyLBhf8/6bo7PbccxcfB5uvNTT35FdY5x9LHR7yvlosjqElNYfvvvvOrImGjGOUpP7An+EI0XIrtEYvUndnB21MmQuevSWZ+oT2dp8iuYomZ5qGjuRa7PK8YsueRannzc6ufxu4G0RuaWg9NteGZy8GT1HnjsBtb5JNtKOzmy6OmscCbXn/Vjhe+JV6LChuoRWsOTx//tysjYaMY5Sk/sCfkwjRciu0pob9W8wsXm7RZDB7ZibpVsHn5S95rwuafU3jd/g5g3Tfb7IvNDN5K+/vyi3D3rSt0seC4hZaUnP4/PPPzZroyDhGKVh/4M9yhOi4FVp1JE6hFaw53L5926yNP6k/8Gc5QnQQWpbEKbRs1BxcwG1/1B+ih9CyJE6hZaPm4Apu/fO2o/4QHYSWJXEJLVs1B1dw65+3H/WH6CC0LIlLaNmqObiEb3LIY4D6QzQQWpbEIbRs1hxcwjc55J8j6g/RQGhZEofQOn78uP/926g5BMk42sK7xXyzQ/4eUH+oPYSWJdpDi2sOa9as8b//e/fumbV2yDjaxDc75O8B9YfaQ2hZoj20Ll686H/vra2tZo09Mo42of4QHYSWJdpDa/Pmzf73fv78ebPGHhdCi6H+EA2EliWaQ2t4eNj/vrnmwLuJtsk42ob6QzQQWpZoDq0DBw743/fRo0fNGrtkHF2A+kPtIbQs0Rpar1698msOvLhSc3AptFB/qD2EliVaQ0tqDl988YVZY5+Mowu4/sC7zfz9oP5QGwgtSzSGlks1B5fx1QE8Rqg/1AZCyxKNoeVSzcFlvNuM+kPtILQs0RhaLtUcXMdXCfBYof5QfQgtS7SFlms1B9fxzRB5vFB/qD6EliXaQsu1moMGfFNEHjPUH6oLoWWJptByseagAd8UkX++fJNEqB6EliWaQktqDjzbcpGMo2uC9Qe+WSJUB0LLEi2hFaw58HEtF8k4ukjqD3yzRKgOhJYlWkJLag585tBVMo4ukvoD71qj/lAdCC1LtISW1Bw4vFzlcmgxqT/wZ0PC8iG0LNEQWlJz4N1Dl2sOMo6ukvoDfzYk6iLLh9CyRENoSc2BD8S7TMbRZVJ/4M+IhOVBaFniemgFaw78Z5dpCC3UH6oHoWWJ66Hles0hSMbRZbxbiPpDdSC0LHE5tDTUHDTiqwl4TFF/WB6EliUuh5aGmoNGXH+QXW7UHyqH0LLE5dDSUHPQim+eyGOL+kPlEFqWuBpaWmoOWvHNE3l8UX+oHELLEldDa9++ff735HrNQTO+iSKPMeoPlUFoWeJiaOGYSzT4Jor8c0f9oTIILUtcDC2tZ7dkHLVA/WF5EFqWuBZamt9IMo6aoP5QOYSWJa6FluZdFhlHTbArXjmEliWuhZbmg8MaQ4uh/lAZhJYlLoWW9tPwMo7aoP5QGYSWJS6FlvZ/8WUcNZIiL+oP4SG0LHEltOJwbEVzaMklU6g/hIfQssSV0IrDWSwZR414t1AuTkf9IRyEliUuhBb6Qm6Q2wCh/hAOQisCfBM9Dqbgkk6n50Lr5s2bix5/+/ateXXtuFhzkDEpd9EseMNF1B9KQ2hF4Mcffyz4Riu28Ke3PHjwwLy6dlysOeSPRdhFO7m1NeoPpSG0IsC7YevWrVv0Riu28EXLtSan2/n7cul0u4xBvcHdNcJDaEUk7GwrqlmW1BxOnDhh1rhBxqEe4T5m4SC0IhJ2thXFLEtqDitWrHDuGIqMQz3CHWPDQWhFqNRsK6pZltQcDh48aNa4Q8aiHJW8xkX8DxvuzV8aQitCpWZbUcyy+HuQmsP4+LhZ6w4Zi3JU8hpXafoUJFsQWhErNtuKapYlNYdt27aZNW6R8ShHJa9xlabPm7QFoRWxYrOtKGZZTGoO/f39Zo1bZDzKUclrXCb1B9zyujCElgX5s62oZlnBmoOrZEzKUclrXIb6w9IQWhbkz7aimmW5WnMIkjEpRyWvcR1fpcDbhPrDYggtS2S2FdUsy+WaQ1AlAVTJa1zHVynwNqH+sBhCyxKZbUU1y3K55hBUSQBV8hrX8e8H3xyQtwv1h4UQWhadOXMmklkWvwFcrjkExTGAKsXXIfJYoP6wEH47DHmzaF2WIjUHDi6+JY7Li2xPocfqbZE7gaD+sBBCy5A3i9ZlKRs2bCj4Gix6Ft69hxyEVszxQfdC/4pj0bX09fWZnyggtABAFYQWgCKzr5/T+J1rdO0aL3do/PlrmjWPEc3Q5OSU+XN8IbQ0GJi/NXPxJUmppmbasvckXbr/LPCLrNTDDLUV3M7gktvm5i176YfMT3T/mfqtLmKWHl09Rh3rG7xtbqDV3vZ2d3d7y17a0pSiZMN66jh2ji73fkaN6QHzmvhCaKkxS8+upqnRvGE3/WmY3mTNQ5SlN7+N043e3dSUzD3e+NkFmph7XCtvu/7aR+1mmxL/dIruPw7MLGZf0+P7l+jYjiZKmhBr2p2hX6bN43Ew/Qv1buWwStLGrqv0qEAuzz66Sl0bk7kxasvQQ7M+rhBaqgxQ2n9zJqgtU/hXMzuRmXuTN3YNejsM2j2kTFtuexJFZxFZevmXI7TRbHeyqYsG4hBc0wPU1cRhlKT2zIS3lUvITlCm3XsuQgvcMv8GLhZabKSnOfcmT+ykCy/MSsUG0qVCK2fa242WmWhyTz/pzq1pb7sbc9vd0kMjIWbN2ZEeamn2nmu+jiuElirhQit4DCwOhzjChhYfiB5Ip8y2p+jwkOL947FeajE/wz39YefLM3RlvzfLNF/FFUJLlXCh9TDTZt64m6hvwqxULHxoebzZRrN5sye952uNrbtHJHzLmy3P3L1Lo+bPcYXQUiVEaGXv0pFG8yaPyfGNskKLBqlLDtynjtBds1aXEeppNtuQ7PK2CIIQWqrMh9amP/11Qa0h++Y3/0za3Fmkxs/ogv7Th77yQmt+jBKJPRR6z8op8ydc6uHAerkQWqoE35DFl6av/ov+9tq8JAYqD602WurQn7sQWktBaKlSfPdw9vVjuv9Thr5u5U6P95xkE+3O/KL8DFpO5aHVSddVTjYDobWpj2JwWLKqEFqqFA+tOdmXdF1OlXO/57T+f6crPqal9vT/YzrdbrZB7S5u7SC0VAkRWmz6Ev3R/4X3FrUHo+eVFVqBs4epw0Nqzx7OnwFOUnogHscmqwWhpUrI0Fqwi/QZ/bfy+8eFD61gT6uFesfMao1mrtB+afjvvEChL4P2Ztov43QZUwEILVVChlZ2gNLqT/vPCxtawUZ8HC5hmt+eEJfxsNkx6tv9LQ3GfHcSoaVK6WsPvcSiiUz73AXE+o9pBWaNRUNr4bWHDVtPx+Biceb9LE9vpQbzs2z66hyNviy0YbP07HaGdn/yFfU/if+uJEJLjfy7PPw/vV5Y1KLfxm9Q7+7AHQ+6BpSfPcy7y8O/XKbnwY3Ov8uDf8b0HhV8X6vlBfK9DO3zb0uT+7mmmrbQXv/WNN6ydws1pVLU+m3hO0DEEUJLg1D30+KlgVY3m3tqjb70ft0VC3U/LW9WtbqZNnV00slzd2hy/l49MeQF+JP7NHg5Qz9IYP2QocuD9+lJrLd7MYQWAKiC0AIAVRBaAKAKQgsAVEFoAYAqCC0AUAWhBQCqILQAQBWEFgCogtACAFUQWgCgCkILAFRBaAGAKggtAFAFoQUAqiC0AEAVhBYAqILQAgBVEFoAoApCCwBUQWgBgCoILQBQBaEFAKogtABAEaK/A8EyfH6ZVhoRAAAAAElFTkSuQmCC
|
As shown in the figure, triangle ABC with an area of 48 cm² is the front view of a cone. What is the volume of this cone in cm³?
|
A. 24π; B. 16π; C. 32π; D. 64π; E. No correct answer
|
D
|
68
|
iVBORw0KGgoAAAANSUhEUgAAAVQAAAC/CAYAAAChZiRAAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABmESURBVHhe7Z1taFXXmsdPX+zph6bTDx4oaKAQ4RRuLUqlBOLQCsVbGT8oiLViqkyEesXSDNSpJeVWUJFpPrSpHzJzz2AZtKPUSx0I1NGWSG9RK0Jf8GbEFxpQS6olKUk/BE4/PLP/++wn2Sc5OTlJ1t577bX/v7Ko2Tk52Tlr799e61nPWisnhBBCjEChEkKIIShUQggxBIVKCCGGoFAJIcQQFCohhBiCQiWEEENQqIQQYggKlRBCDEGhEkKIIShUQggxBIVKCCGGoFAJIcQQFCqxn4G/yD//ZSD4ghB7oVCJ5ZTlYldBcoUuuVgODhFiKRQqsZu7J2VDPie5XF7a+4aDg4TYCYVKrGagZ7knUwjVK8t7hB1/YjMUKrGX8kXpKhRkw4a2QKoF6WK/n1gMhUqs5e7xdZVWqS/WSis13/G5jAbfJ8Q2KFRiKQPSszwn647frXw10fVvk9It/xAh1kGhEispX+ySQqFT+rU5eve4rAtiqYWui8KOP7ERCpVYyF05vi4ny3vCQ1Cj8nlHvtJKzXfI5+z3EwuhUIl9DPTI8tw6CXr7E5Qv75fmoJWqoQBCbIJCJZYxKv2dhRm69ZWWq99KXd4tP7DfTyyDQiV2EcRKm5YUpVicXloKQbc/l5cO9vuJZVCoxCr80fx1/yn/NzQkQ7XKYJ/sDlKocuuOe21WQuyBQiX2MPq5dORnT96fTKFaLlXjVoQkDIVKrMFP5G8ryaxppsN90u7P789JobOfif7EGihUYgfly7K/OSftfY3osSz9nRpLZaI/sQcKlSRP+Z6c62z2BfnKp/caSNofl7/9ayEQak7ya3plYDz4FiEJQqGSZLnwnhSC7vuEIAstcvBC8P2pXDgYGukPlyZZMuMPERIPFCpJlvGRmqP5IzO1OGd4vV9m/CFC4oFCJYQQQ1CohBBiCAqVEEIMQaESQoghKFRCCDEEhUoIIYagUAkhxBAUKiGEGIJCDfj1119lcHCwqiBZnNjDl19+KdeuXfPr5pdffgmOEmIPmRHq+Pi4XLlyRT7++GN56623ZP369fLUU0/VmMJYuzz55JPy4osvyp49e+TIkSNy5swZ3tQxU6teHn74Yb8eUVavXu3X0YYNG2THjh1y4MABOXHihHz33Xfy22+/Be9CSHQ4K1QI9Pz58/Lee+/5N9mjjz5a84bU8thjj03cmFoWL15c87Xh8vTTT0tnZ6ecPn3ab+WS6NDPHA+3pUuXVtVDIwU/89JLL/kPxQ8++ED6+vrkzp07wbsTsnCcEiokCrFt2rRpmkDRkmltbfVbLocPH/Zfd/XqVfn999+Dn64PuploleJGxA0JSUPC4d+BglZSqVRi6zUC9DPG5/71118HR8X/rFE/N2/e9B+iKKdOnfLredu2bbJq1Sp54oknquopXPDwxHWB3gvDPGQhOCHUS5cuya5du6palCrQffv2+SKMossHGeN348Z9+eWXqwQLoaPrCXE3Km1SH/1sUaZKtREgS8i2t7fX71Ug7IPWbvh9UdDrwPXEXgeZK6kWKi54tBTDN8OKFSv8GGcSLUS0kNEyglwhdD2nZcuW+eeE75P5o5+nSnA+Uq0FBrog2S1bttRsyeKaevfdd/0WMCH1SJ1Q0dqDSHGR6wWPmwAtDgw+2AJic2i5ojup5wkRIGRAsc4P/RwRF0d949+mpBoG1xHqCS3YcK8DBb2epB7YxH5SJVRc6Lig9eKGoDCSa3O3DA+AY8eOVT0AMDiC0WcyN/Tzg1BBlFJVUH94b/yucEgpHNLhA5IoqRAq4p9IddJuNISUxpYeYrkYtNKbEqEBdiMbRz83FSqIQ6oK5IrMgKmDnhAtYq6Ip5NsY71Qv/jii4luM4SKQaa05xRiNFlbO7gx0coms6MCCwsVxClVBb0iZHOEH5AoiOlj4ItkE6uFiliVtkqRP4jBA1fADYlWjf59aPUw+bw+Kq2pQgVJSFVByhbOKZwxgBAPwgEkW1gpVHStdu7c6V+YEA66966C1oy2VnETMtF8ZlRWtYQKkpQqQAgK12pYrEjBQo8E1zRxH+uEilxB7UbhxkDc0XUQR8WNh78ZNyNjcbVRSc0kVJC0VIGKFelyes74dxrj/mRuWCVUjOLrlEJcgC518WcD3X0MUuFvR6scrRpSjcqpnlCBDVIFaJWiHsNixXgABraIm1gjVKQR4QbARYfAfhbz/HADqgxQkNnAruIk+rnMJlRgi1RBLbEi5YrhHfewQqiYhaIXGmKnWZcIRo91sAqtVg5WVdBrpBGhApukCnBdY7KHNhzw/+7ubj40HSJxoWLKHy4u1wef5kp4sApTIsnchQpskypAyxQtVP17nnnmGWvOjSyMRIWKHFNtiTFmOB2shqWtmblIxFVUQHP9LGyUKsCAazgMgN4Zp7Smm8SEipFtXYgCsUJSGwxg6A2X9bxG/Rzm83CxVaoY9cfEDp15hSwPNDRIOklEqIgJapoQYoSMIdUHN5zKwKYFYOIGnwHKfFvrtkoVYHJAOMsD4wq8L9JH7ELFRaIXDqTKAZfGwELJ+MyQVpbVRZDx96MsJPxhs1QBBq00DIZ8bGYCpIvYhYq5+LhY0N3nwiCNg64hVp7XGy2LrRcVTVdXV3BkftguVZyT5mNjYDILk1tcIVahYuAJFwluDMaJ5g5apjqtEVt2ZA2Nub/55pvBkflju1QxOBXOBGBOcjqITahojWoLA6lSZH5g51ZIAJ8j1lnNEiaFCmyXKkAqod436KEg1krsJTahatyUOZULR3N30VrN0p5HpoUK0iBVPER1CUvUeZamZKeNWISKdB9cDLghuKukGXTnAgghK0QhVJAGqeLBGV40yNbzzDqRCxWDKfp0ZVffHEj6R1cQBf/OAlEJFaRBqoihYt1cPU+ut2ofkQsVKS64ABD/YVDdLCoBLCaTBaIUKkiLVPfs2eOfJx6mnGFoF5EKFTmmehOwi2IedAP1883CthtRCxWkQapAGyooXAPDHiIVKioaFZ6VFlQS6I2Vhc84DqGCtEg1vEUQzpkkT2RCRexUcya5aVl0ZKmVGpdQQVqkeurUKUrVIiITaqZap+UxGUtwZwttpWIjQ5eJU6ggLVLFueEcca5YA4AkR2RCxRqPqGCnp82N/yjnS29Ia5PXOugPjiUAWqm6WpHLid9xCxWkRaq4z7SlyphqckQiVCQio2IxH9nZkf0b5+VE31n59/aC/7cmKVSACRM4D5f3+E9CqCAtUsXMOZwnCkIBJH4iEaqmdWRhndPyud3+35q0UHXyBBYsdpWkhArSIlVsqYLzRGuV62XEj3GhYjBKt+7IxNqd/ZUbbXahlmXs/pAMDY1I7XDruIzcH/NeFXw14r029HUF7zVDQ3J/rPooQE9AP3dXt6FOUqggLVJNy3m6iHGhoquBykQMNRPMKtSy3D73jrxQKMiSYlGWNHldsqZWOXRxuPLdsRt+HPaFQl5ybSW5NfytlLa2SN57z1wuLy1b/yq3vPe497dDfqwWvyuXb5G9/ZWfD6M9A9xQLpK0UEFaZKUzqjj3P16MC3XXrl1+RS5kEeBUMYtQh73vNxfa5bPbQauyfFG6CpDiZvnrz97X4yMyNPjf8or3HrniZvnzf5yTG2iBlu/Juc5m773z0v7O+/IvpUvyk9e0Ld87J53N3msL++Vy5R0nQNoUzgULd7uIDUIFaZAqeizIsMF5YiyDe1XFg3Gh6tYmmck9rSfU0X7p9OS57vjd4AAYlcvvr5Xi2vfl8mhwSLzXee+Re75XrgdHfC7vl4J3/PneqqPyQ3fR+51tUroVHAhAuEVH+11chMYWoYI0SBUzFVesWOGfJ1Z7I9FjVKi4iVF5uKlxc2eCekL9aq/XdS9K9w/B1zMSCBVd/uCIz62StHnH26aY81apzfud04UKtFVy4sSJ4Ig72CRUkAapIo1OPzdsr0KixahQcROj4jI11bSOUAePrvG+97xMaWDWwJxQNckfoRfXsE2oIA1S1QwQjPzbHPd1AaNC1fipy7mQ06gj1J9PVrawaO+b6NuHKEt5YrDenFA1jurioKCNQgVpkKqeI+Op0WJUqJj6iErL1DqN9br8QQw0v+GkhKOoPreOSqlfjWpOqJg1hfNBa8Q1bBUqsF2qGKTSTR4ZT40Oo0LVnRozlaZRT6gyID3LPVHm8rKmd2Ai/7R874p0bz0klyNooQLNR3VtV1mbhQpslyrjqdFjTKgYUURFoWXk7HTTMOUxuT90TT7rQGpTTgrtn8q1ofsyNee+fL0ka/KQqtdSLbRIsbhEmsJ5pOMjMnjpsC/OXH6j/Ne1IRnxzDs+MiiXDkOc3s+t6ZZLg5gQMC4jg5fkcFsg6e5LMogXT0G3ynBtHQXbhQpslyrjqdFiTKiYFYWKcjUHchqDJ+TVYtETZLi8KidqrE1Svv21lN5Y679m7fYP5cyPIQleODjlPYpy8AIOVx8rFg/KBe+/g1XHvIIXT0Fj2a4tkpEGoQLbparnh62JMpONExPGhKozpLCXuAsgcI+HRBpb2zqfGzOnXCItQgU2SxXXtK4Gx+X+zGJMqNjbBhW0Y8eO4Eg6wcXf0tLi/y0ojzzyiOzevdsPaaQFV+piKmkSKrBZqjgfnBtyxl2LtScJhRoCKUcPPvigX/C3aEG86bnnnktNa5VCtQebpbpt2zb/3Djqbw5jQtWE8rTO4YcsC4XK2qa1CiRbKpWCV9sNlm3DObs2wSKNQgW2ShUzG/Uz5ZbUZqBQA3RQzaVCodqDrVLt7e31z4sDVGYwJlQEt1ExaZ0lpekkLhUK1S5slCp6ZprwzwGqhcMWagAC8zj/mcoDDzwgr776avBqu9HppxSqfdgoVSxIjnECDlAtHAo1BJ7UixYt8v+OWiUtifIUqt3YKFXNXXYl7TEpjAkVAzaokDSPLGPKbFNT0zSpYkDqtddeC15lPzrKj1Fcl3BFqMA2qWINCP18M7F1UUQYE6orqTp37tzxt4/A1hHoAj377LP+35YmmDaVDmyTqo6DsJU6f4wJVddCZWUkD6acoi44U8p+bJIq0qh0xwe2UueHMaFq2lFmNuezGM7lTxc2SVXPBb00MneMCTW82hRJFgxGoS76+vqCI27gqlCBLVJFKxX3MApH/OeOMaECxB1xUXDb2mRxtR5cFiqwRaqIveM8XIvBx4FRobraMkoTXLE/3dggVbRM2UqdH0aFqrE7rgaeHEjSRh24uC6ttrxff/314Iib2CDVLVu2+OfAVurcMCpUTdfh6jXJgYeZqzcC5pvjb9u+fXtwxF2SlqoOMmPUn5v6NY5RoWLPGr0IuNBCMuhGiWnLnW2ELAkVJC1VDeEdOXIkOEJmw6hQwbJly/xKwPRHEi94iGkeIUZrXSNrQgVJSlVnP7a2tgZHyGwYF6rGUdM8pz+t6Bx+V/f1yqJQQVJSRSqkPqA5ONUYxoWqM6ZWrFgRHCFxoTceHmouklWhgqSkqoNTXNqvMYwLFd1OVDoq4erVq8FREjVY11JHwZOIt8VBloUKkpAqUiDxO/HZk9kxLlSwc+dOvxL4VIsP3fbE5Qs/60IFcUsVD+rFixf7v9PVB7VJIhGq5kIuXbo0OEKiRjdcc/khRqFWiFuq+vvQUCL1iUSoAAMjqAS0nEi0YHaUhllcHjygUCeJU6qak4qZakyHrE9kQtUl5FxbNd5GdLcE1z9rCrWaOKWKVeTwu7g7an0iEyqeZBp7QQiARAM+Z53j7nruL4U6nbikqg9tVzNITBGZUIFWAhedjo4s9QQo1NrEIVXXc5xNEalQuU9NtKB1qqlSWZiZRqHOTNRSxbWmSf7YJojUJlKhAt2nZvXq1cERYgr9bLMSp6ZQ6xO1VHVuv4vrRJgicqGilaqtKMwNJmbA4tFYrxKfa1Zi1BTq7EQpVZdXMjNF5EIFx44d8ysCg1QQLFk4uqpUlnIDKdTGiEqqml+OeiC1iUWoAF1+VAZHCReOrpeA+HSW1qqkUBsnCqli1hTeD+/LbY5qE5tQMa9fu6iMwcwffI56Uff29gZHswGFOjeikCoWj8/itdcosQkVoBJQGRgtZG7q3EFrVKWCVYCyBoU6d0xLVdP0snj9NUKsQgW6cAoGqph+0TjobukoK5ZGxFqVWYNCnR8mparTUFEXZDqxC5VimB98EFGoC8GUVHG/4n1QOK9/OrELFWS96zpXsKcPPivEoLMcKqFQF4YpqWIVObwP1zueTiJCBeHBFW6XMjNYrYuDeRUo1IVjQqo6MHXq1KngCFESEyrAauAqC1bOdJCaolN39+3bFxzNLhSqGRYq1T179vg/j0R/Uk2iQgUHDhzwKwdiZTrVJFeuXJmYYYYWAWLPWYdCNcdCpKohKM6Ymk7iQgVauShoiWVdHkjc13AIJkRw4K4ChWqW+Ur1zJkz/s9xe+npWCFUgHn+2v1fv359ZiWiSx6iYGSfLdNJKFTzzEeqyDLBz2AqOanGGqECLEGn3VysED44OBh8x33wANEte/FgQQI1qYZCjYb5SFV7UFma+twIVgkVQKLIT0VlQa7zCZqnjaGhIVm1apX/N2MQCl0qMh0KNTrmKlW9RznjsRrrhArQWtu0aZNfYa4PVoUHn7AaOhedmBkKNVrmIlXtTWElOTKJlUJVwvFEbKPiUggAs0wwAKdxY4zkc2nD+lCo0dOoVDHCj9cxM6caq4UKsMuibvaHRVWQZpX2KW/4m1QOECozGxqDQo2HRqSKZTjxGqRQkUmsFypAy03nsqMsW7bMfzKmTUKIN+ksExSknXCvrcahUONjNqlq75GzHKtJhVAVVCzijCokiBWj4ba3WDEjTBeEQcHAE7eDmTsUarzUkyqFWptUCRWgVYrWKWSqgsKgDirWphgrWtVY/1VHQ1EgUpwnY6Xzg0KNn5mkqmsbcweOalInVAVixQhjWFgoaAnieFKtVixmghFQ3XIXBcLHvGeKdGFQqMlQS6po1OAYp59Wk1qhhkGXeqrEUPmIV0JkiF1GFW9FmhOe1vj9mv6kBRvpoWvPdSPNQKEmx1Sp6r5muO7JJE4IVUH+Kp6cuiNouOBCwHFcGBiZxKwsJNQ3ClqXyBnF+2NUHmlcUwWKghYzJM7dCMxDoSZLWKofffSR/2/0CMkkTgk1DASI9CRcBFPDAlML0rJwsyIuiwsEBVNfcUwX052pQKro9kC0WZoqmwQq1Mcff9yvK5b4y6JFi/w6eOihh/z/U6jVOCvUqWDOMaZ0IisAgXSkLOlao40UhBMgZnRxkAuL9Vs5qyleVKgs9pSVK1cGtUNAZoRaD3T90bq8efOmHwpAwY4COMZWpz2cPHnSfxh2dHSwWFK6urqC2iGAQiWEEENQqCRhxmXE6yGgl1C33B+TcvATJK2E6npafZZlbCz92TAUKkmYC3KwWJQlTVPic01LpOgd90tLQfL+8bwUVm6UQ5/9Xe7RrilhXH48X5I31i6RJq8O84WWyTrNF2TlxkPy2feDMnj+XVne2R/8THqhUIkdlO/Jp6+oUDtl2q01PiLXzuyVlfnKa/JruuXb4eB7xErKt8/JO61NXn01Ses7n8n3P01pgY7/JJdKW6UlqNMchUqIOW6V2mYWakD5eq+0+a/JScG7AUeD48QuytePyh/9XkezdJ67VzdcU75ekjWQ6pqjkvYhYAqVWEMjQvVuPzm3uyLUXG6DnPw5OEzsYfQr2dtcqaPm/Zcbin0P97VLvq0kt4Kv0wqFSqyhMaGGX9cmpbTfgc5Rlsv7m4P6WSfH7waHZ2VAejZ2yw/BV2mFQiXW0JhQR6WvvdL6yeXapY99frsY/Vw6NCa64aTMpQNx69gxuRD8O61QqMQaGhHqcH+nNPuvabw7SeJj1Ou6V+owJ8/3Xg+OZgcKlVjDpFD/Sf7tm2uhPNRB+f6r01J6o9VPvUH6VMuf+uQ2bWodP3QXJ4S6+1z2KohCJdYwKdS8FFqCHNSqPFSUf5B//PP/yN+ZiGol/Z1aTzlxIAtqzlCoxBrqdvnLY3LjfI9sbckHr2mSP/Z8K0xFtQsKlRBLaGhQanxAPmrTmzYv7X1Uqk1c3l8I6ibn1U32RgwpVGINDQnVo3yxSwrBTZtzIHfRJcKDUsXutCdBzR0KlVhDo0L17lppV6HO9loSL+G0qeU9MhAcboyylFMeGqdQiTXMS6j5vfJVcJjYQDixvyBdFxs1ZFmuH31HjqW8u0GhEmtoVKj+NMVAqJzPbyHD/dIZTD3NNXt12UCYe7h/r2wtXU99XjGFSqxhModxZqGWb/dJh96s+Q1ysuGpjSROytdPyuYJqW6W0pWZFkgZl4Hjm6XVezC6MLxIoZKEqSw6fO18z+QNiMT+s9/ItYnEfu/735yVTw6tn1jqLd+yVY4PcHtuqxn+VkpbWyZ6E01/2Ci7D5bk9NmzcvbsaSkd3C4vLPmD1zJ1J/2NQiUJU1lgeiKJv15Zu13efvtD+eSbGzLGvP7UMP7T9/K/pYOye+PzE3W5dvvb8uEn38gNxyqSQiWEEENQqIQQYggKlRBCDEGhEkKIIShUQggxBIVKCCGGoFAJIcQQFCohhBiCQiWEEENQqIQQYggKlRBCDEGhEkKIIShUQggxBIVKCCGGoFAJIcQQFCohhBiCQiWEEENQqIQQYggKlRBCDEGhEkKIIShUQggxBIVKCCGGoFAJIcQQFCohhBiCQiWEEENQqIQQYggKlRBCDEGhEkKIEUT+H1Pw/0i42oNZAAAAAElFTkSuQmCC
|
As shown in the figure, the central angle of the sector is 90°, and its area is equal to the area of the circle shown below. What is the area of the sector in cm²?(Use π=3.14)
|
A. 50.24; B. 3.14; C. 12.56; D. 6.28; E. No correct answer
|
B
|
69
|
iVBORw0KGgoAAAANSUhEUgAAAVYAAAC/CAYAAAClk/R9AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACBXSURBVHhe7Z1vaBzXuYe3f7eEivRCFwqpSukGFLDNrcG44qrgCoJTEVESWtxcE1fqdSnOklDd1kI1cW9UYtMP+hCrulQfFtxCJGJQsQOiduWCjG6MI2NuZLcSRqqxwVaw3eIUOVwE2w/vnd/svKvRane1K83OnDPze8Ih1mj/jObMPHPmPe85JyWEEEIChWIlhJCAoVgJISRgKFZiNytLMre04v1AiBlQrMRqlse6JNU1Jsvez4SYAMVK7KVwQ4Z2pSSV2iXDC942QgyAYiXWsnL+sKRTEGtK0ofPCwMCxBQoVmIpyzLW5Qg1nXbFmkp1yRjjAcQQKFZiJYWrg9KaPiznb+Slw2u17mI8gBgCxUosZEXOH05L5vUrUvD+7bZaM6/LlYL3EkIihGIl9rE8Jl2+DqvCldcl47VauxgPIAZAsRLLKMjVwdayzqoFGXazA5yya9j5iZBooViJXaycl8PpjLxe9szv5rO6rdaNvyMkbChWYhWuQDvycsv7uUThiryeKbZamXpFooZiJfbgyXPvsd/L1NTUhvLf//4vXquVAwZItFCsxBrcAQGZTvnxwIAMVCq5/dLqijXlZQwQEg0UK7GEW5LvSElHfkMQwIcv9Qo5rowHkIigWIkVuClVdcjSHTjgtVqZekWigmIlFvBIJg+l6xxZVRzq6rZaOWCARATFSozn0XSf2wrtm/Y2bMLCr/+1KFandIwuMtZKQodiJeay/L7kj3VLNl2UZDrbLcfy52Su2hP+8pycy78m7S1ei9UtLdLec0rGq76JkOChWIm5zE9U7P2fmPd+X06V17ul6psICR6KlRBCAoZiJYSQgKFYCSEkYChWQggJGIqVEEIChmIlhJCAoVgJISRgKFZCCAkYipUQQgKGYi3jn//8p/zlL3+Rc+fOyW9/+1v51a9+JW+88YYcP35cent73XL06FF3Gwpe884778i1a9fk448/9j6FhM3zzz8vP/jBD+TVV18t1U0+ny/Vz6VLl9yCur1z5473LkKaQ6LFurq66l5suAi7u7vl6aef9o0x31r50pe+JN/85jfdCxwX9D/+8Q/v20gzqVQXtcqnP/1p2blzp3zve9+Tn//857w5kkBJnFjRYoFIv/Wtb8nnPve5ihfdV7/6Vfn2t7+9rnX65ptvuq0flKGhIXebtmJfeOEF9yLFxVrp877+9a9LX1+f/OlPf/L2ggSN/1j/4he/cOvnRz/6kVs/kCfqGwU3T9z8/PVTXr785S+79Y86w5MLb46kURIh1r///e8yMjIie/bs2XARPfPMM3LkyBF5++23ZW5ublstFoQRbt686V6MaAW1t7dvkC0uWgj5r3/9q/cuEgT+YwyRoi5qgXpGCxUtVdTHSy+95Er585///LrP0qI3R4qW1EOsxQpR4iLzt0xx4aAlgwvq/v373iubBy7gCxcuuKKFVP0XK0IGuFDJ9vEfV5R65FqNe/fuuXWG+DparpVk6xctwweknFiKFXHTZ599tnQRoNWIGCpkirhqlGDfIHb/xYpWM0IMWxUBWRMrWp76qL8dufrBZ7z//vtVQ0j4+eWXX3ZlzDokIFZife+999wTX0/4L3zhC+7FgFCAaUDw6LX2d5jh3xAsaRw9hqhvhGOClqsf7fTUcI9+Nwq+F3F5PC2R5BILsUKcaDHoya1CtSEWhoseMsWjpe4/LlbE/0j96LFDvYNmy9UP4uX43vKsEtQpOjoRWiDJwmqx4mIZHR11RYoTGY9k6IiwtXMBoQqNwyJ8gU41dpTUh8pMxQrClKuCpybU2xe/+MXSPqEuEatFK5ckA2vFCuH446g4cePQ046OEDxiajYBxMDW6+boeeAXK4hCrgDhgomJCTcVz58ZglAVBRt/rBQrLhZ97MJFE8eedeTbanoYWuJIByPVUXGVixVEJVcFoSrslz5ZoSBMwIyQ+GKdWCcnJ0s96hBPGClTUQEBIMFdL0aEOUhl9BhVEiuIWq4AT1lI4dL9QIFgEQKKYn9I87BKrBj9pI9V6KyKOnUqLN56663S3420MeZNbkRFVU2swAS5Apy3qFN/XjOewCBYEg+sECtE4u/1h2CTBnIktaWO4bOcSGQ9em7UEiswRa4A342MEH82AfoNsI/EbowXK1JVNNYIsSAUkFRwwWEwAY4Fep3ZCbKGimkzsQKT5ApUsJpJgKcTdGDyycRejBYr4qd6AWBiFHToJB1/NgQuQE7sUgTHA6UesQLT5ApQt0jV0rAPznl2cNmJsWLF3VpbqhhTH+dOqkaBBHAB4tigp5mPjo2LFZgoV4Dhs/4Jg+KSSpgkjBUrxnzjpMJdm1LdCCSAjiwcI4QHkv7YqBJqRKzAVLliPzAjm3/wC/oWTNk/UhsjxYoTCCcTYqocc10dyFRjrmjVJPmiwzFAaVSswFS5AjQqtJGBgjAQGxrmY5xYEVPSk4jxpc3BI6J2emAau6Si58xWxApMlitAp63WM/aTsXWzMUqs6JzSlKIkplRtFWQHaIdHUmfHwt+OslWxAtPligwZ9Ddg/1Df+FsZGjATY8SKxxvEU3HS4NGHNAYmo9ELDhOBJA29If/sZz/ztmwN0+WK/UEqFvYPhaEBMzFCrDhZ9E6M3lDm720NzRSAGJI2VZ128vzkJz/xtmwd0+UKEArQfcT/GRowCyPEqq0tnCC8+24dCEBzXJPW6g9SrMAGueJa8ec0Y5gsMYPIxYqZf/Si4Fjp7YOhrrp0SJJaMUGLFdggV+wTYq0aY09yB6ZJRC5WrP+EEwJ3XhIMmq6GVCwTZdAMmiFWYINcAeZ+VbliXo2k1LupRCpWjDDBiYATAicwCQbMnqQTe2CauiTQLLECW+SKTkvtxMME2+yriI5IxaoL/6GXkwQLZsPCsYVwkrC8SzPFCmyRK1IWdT/RIZyEujeRyMSK5UaSdOFHgd64tpPbaQvNFiuwRa4YNKIj8vB/dgiHT2RixaNKUi76qMDAARzjJNy8whArsEWukKkuzY0JtRlqC5dIxIrx/6hw9F7zbtpcdFntuN/AwhIrsEWuiLFiDgnsJ/aX11p4RCJWXQ0g/qkhq3L7Ul7+MO/9GAE69wLGmZsqgCAIU6zAFrliv/TpkGGB8AhdrLiLas9lbEcHrX4o188ek32ZtPt39k172yNCMwTiPKlN2GIFNrVcdWQj/s9sgeYTulgxSQgqGB0rsWX1sTwuiNzKd7h/a9RiRRgA+xHn0VhRiBXYIlcMxOEUk+ERuli1pzoRszBN97l/a9RixWgs7Adi2nFtrUQlVmCLXPGEqPvJiY6aS6hiTcIFvo66xLoqH17/o+RPDMjAwCkZn73tbPGD35+VUyMz8sD5qfBwXs6ecl57YkyuPXSaxS6rcnt2XE4NDMiJsWtS2uxDHwXz+by3JV5EKVZgi1yxnxqK4/DX5hGqWDFJBCoUnVeJYDOxFhbl9HMt0rr/pIxPTcn4yf3S6ry+1XnDI+fXH//5tPzH3qck7WxLdeTlg+k35Pnv52Qg1y3ZtLMtfUgmHy7KmYO7ZV/PgOS6s+5rW/tnZKX4DSUgVOwLOjLiSNRiBbbIFSO0dD6JpIzMC5tQxaq9k4mZjLmmWFdkpr9V0i+ckWVvi8iijO7FPJsdkr/lbZJp6XM+I9XynOQX1tqyj85+3/3s7MHTvpbrIzn7fbzfEW6ZWfVpAQKKIyaIFdgiV//cAhilR4IlNLHiBNNHEFzkiaCWWG/lpcP5Xe7i+uf21duzMrUuHOCJ1WmxllwLFkdlr7O9Y83ALsUOM7+Y19CJxDHqLW6YIlZgi1zRWsU+IhUvafP3NpvQxKoTruDiTgw1xFq4mHN+V1mA66kiVk/MjYi1t7fX3Z84Pv6ZJFZgi1x1AAFi8Kbuo42EJla9O+LiTgw1xFoUYEYGr3obqhKcWDXVDRdT3DBNrMAGuSINC0NesY+cDCk4QhOrLuGL1QISw6Yt1o1iLHJLFhb+z/t3cGLFhY7vxMUeN0wUK7BBrujMYrw1WEITq45ZT9RCd7VirMtj0uX8LpXJyUWkAPh4NPlL+c2C90OAYgV6AcVtUhZTxQpskCvjrcESmli14wqPHklBW6WHyrvoXYpZAfh9ene/nL1+R+7fvymXhg/KjsOTbrpVEU+se0dl0dvicmNI2pzte0fXbXU2tzmfuVfKNpfYuXOn+51x68AyWazABrky3hocoYgVEz+gwnDyJ4IHMzIy0CPtLY4Qnb871dIuPQMjMoMMfz+FRTlzoChXLS3PDcsHatX5iVJuairVIu09AzIxj8056c4W5yFIpbPSnZuQeee/Cc1vdbans92Sw4vL0JS3uK0vZrpYgelyZbw1OEIRKxa1Q2VhfshEsLIkl6emZGpduSxLlRquUpDHS7Pua2ZvfrR+1NXyXNlnTMncMjav3zY1NSfLzn9z67Y5BS8uQ9ekP378uLclHtggVmC6XDXeihLHtLywCEWs2hsdh4yAyclJOXr0qLsIIkaS2TYNm47Ailt2hi1iBabL9ciRI+6+JaYh1AQo1jrB3AaIQX3yk5+Uz3zmM/KJT3xCPvvZz7qxY5seq+N0k/Njk1iByXJFx6buW1znlmg2oYhV5wiwedKHXC5X6lEvLxAt1hmyAQxlxD7Hbc4A28QKTJbr22+/7e4XsgS4Jl3jhCJWnQ/U1uVBENTH/lcrEO6rr77qvdpsdB2suM2Ha6NYgcly1RnREPYijUGx1gHiqnj0x98Ql0KxmoOpcsVS2vqUhiHppH5CESt6oFE5b775prfFLjSrIU6FYjULU+WqWSR79uwxqjVtOmyx1gFiTOi0wt9QqeCujkwBG2AowFxMlCs6bTW3NVHD0bdJKGIdGhpyK8YW+VTi5MmT8qlPfcr9O/wFwn3yySetGVGmq7Z2d3d7W+JBHMQKTJQrsl6wP9iv1dX161uQyoQi1jik+OAE/+lPf+qKNJ1OyxNPPOGK9mtf+5pVidRMtzIfE+Wqc30gw4dsDsXaIAjoj4yMuPFitP5su4NTrHZgmlz1SYet1voIRayYigyVEre4no1oR2LcxoLHTazANLlqq5Wx1s0JRaxInkeFINmYRAsuUNQFWq5xIo5iBSbJVWOtTz/9tBHhCZMJRaxAV4XkKI5o0VZH3PIS4ypWYIpc8b2QKvYjbjfmoAlNrDoPKBONo0VvcHGbFzfOYgWmyFVj9Gy11iY0sSZu6WsDifMS2HEXKzBBrvhOXe0XHVqkMqGJVTtNMCUZiQaNkcWxE/ErX/mK+7f98Ic/9LbEExPkqpMqIaxEKhOaWHXEzzPPPONtIWGj82zaOgKuFtqK6unp8bbEl6jlinQrdETj+xnaq0xoYkVlaHzPtsmh4wJuajj+uMnFjSSJFUQtV0wBiu+2ZVa3sAlNrODZZ591KyNu6y3ZgK47hom545jgnTSxgijlitGG+F60XKMIR5hOqGLVJXY5v2P46MTFWAUhjiRRrCBKueoTEDuxNhKqWDEcFBWBHlwOiwsXXdo4rmO9kypWEJVcMaxbv5OsJ1SxAszriMrAEiEkHBAGwNSGKHHLX1WSLFYQhVzv3bvnfh/6TjjwZz2hixUTmKAy4jZtncnotI1xPuZJFyuIQq5I3cP3cdHB9YQuVrSYcIeLc+vJNHQYK+KscYViLRK2XHUkFtbHImuELlago7DimE9pGpo/HNdsAIViXSNMuWKFAU2jxMg+UiQSserFjk4sxmaaiz6q2bz0eD1QrOsJU64vv/yy+z2cBHuNSMQK9IJnZTSPubk59xijRRH3QRkU60bCkquGA9hvskZkYtWVT1HxTL1qDhpyiXtrFVCslQlDrjq5D8JNzY7p2kJkYgXaqYKBAyRYMIYbxzYJrVVAsVYnDLnq8efcAUUiFasu2YI7HXLiSDDgwtF84bgtwVINirU2zZYrRlPis9lIKhKpWIE+rr700kveFrJdsCYRjinWg0evbRKgWDenmXKN85SUWyFysSI+o+kaiLuS7YHcYJ30OUmT3VCs9dEsueokP7iW2WdigFiBjjnGcg9JaWE1C7T8cSwxk1iSoFjrp1lyjfO0lI1ihFhxh9NKwWQhQcd/koLeoBCzxsWTJCjWxmiGXDE3Kz4vKXH9WhghVoAlsnVW8iSkBwUNpm7DsUNJ4jRuFGvjBC1XPQfb29u9LcnFGLECPEJgDgFUDhcdrB9Mx4hWKo4bWq1JhGLdGkHKVWe7iuNilY1ilFiB9mhDsO+99563lVQDnQYqlSRnVlCsWydIueoNPgm507UwTqxAF71DZXNih+rgAsCsQjhWyFtNcscfxbo9gpKrDvpJeqPISLGiUnUuAVQUMwUqo0nZuCCS3kKgWLdPEHLVrBQ8eSYZI8UKkI+J9CtUEgYRUK7r0QwA5A1yGCHFGhTblSumAsV7jx496m1JJsaKFaCSNWaDR92kt8oATvTe3l73mKDEefLqRqBYg2M7ctURWEmf6cposQJMfacXDSoby+4mFdxYNKaKliqlugbFGixblatOVYm89CRjvFgBhKIx16QKBScsxv7jGCT9BlMJijV4tiJXhOzwemT1NBpGiBNWiBWgkrSzBuX48ePeb+IPEq8ZEqkNxdoctiJXbQDgvUnFGrEq6G3UQQSI48S9U0s7A1CwBAYnuKgMxdo8GpUr5qnAaycnJ70tycM6sQKM0NLhrzt37ozlYzFapTqlIkpSR1TVC8XaXBqRq3auJnn0pJViBRg4AKmiAtGCxaCCOCxMiBMWrXKd+g8hgCTf+euFYm0+9cqVYrVYrABhAMyko6EBtGLz+XxdcSATQT6qzvyPgpm+MDkN2RyKNRzqkStyWPH7JD9lWS1WBZWtaUgoGFiAu6UtgkVow//YD0kkcYaq7UCxhsdmctV+Afw/qcRCrArSsHS0ForpgsWKCZpGhoLHf5yM7KBqHIo1XGrJVUcFJnle1liJFaCCIVO/YBEiwCS8Jgz9RGwYJ55//1SocYgRRwXFGj7V5IrrD9sQa00qsROrooLVlQm0QGgQGyQbVksWJyA6pPzhChQIn0INBoo1GirJlWKNsVj9QKJosWqKlhb0uKODCEv2YpqzIASHx3iMkoJIMdOPnnRaMHIMJyBiqGGJPQlQrNFRLtd3333X/TeuraSSCLEqEBlSl3An1QuxvEC+iHsifQutyZGREfcOjPgtOplQJiYm3G3IQMBrsJQMBitU+0w86qNzCq/nLF3NQY99V1eXe5NkCbf87ne/kyeeeMKtg2984xvu/5O8FHaixFoO4p0QJESLnFhN29puwZA+iBYtYbReSfOpdlNjia7s27fPq53kkWixVgJ5o2jVvvXWW25rFC1XiBfDSXEHRsHjDrah4DUQKFqxWHuKPfrRsHv3bvfGyGJOSfIMVxQrIYQEDMVKCCEBQ7ESg5mXiYEBGdisnMjLuakZuX73sRS8dxJ7WP3opsxOjcspf33OXJe7j73aLCzKu3+YL/7bEihWYjDLMjc1JeMnuyWb1k6RXfLdU+My5Wx3y7m8nOjZL0+1FH/fsqNX8h888t5PTGb19gU5ti8j6VRaMvt65ET+nK9O90km3SI7XsxJrjsr6b5p7112QLESK7g6mPHE2icVL7HVBRk70Fp8TTorx2ZWvF8Q81iVhfxz0uLUVTr7ipy9XbnDt/DwmuS1TnMXrXoaoViJFdzKd9QWKyhclcHWYss1tWtYFrzNxCQKspjvdFqpTh21OnW52cNFYVHynWlJdeTllrfJBihWYgV1idVhrWXbIXmbrsSEULgxJLvc+knLock6Qza38tJBsRISPPWK9cZQG8VqLMsy1oW6cUrmdblS97P9ipx/5ZjMeD/ZAMVKrKC+UMANGdrlXbitJ+V/vc3EEBaGvdZqyu2MaiRmurK05GjZHihWYgWbinX1tpw97HV0pFqlb9PgHQmbO6c7vfpJSefpO97WeEKxEitYE2uLPLW/x5fHmpMX92Yl46ZjIW3nNRljupWRzPSnS2K1LHuqYShWYgVrYu2Q4+e8HFbNecy9KDu8PNZ0Zrf0Dl+SKhk8JEKm+4p1RLESYgibhgIKD+XacDE30hVstn/zVB4SKhQrIYZRV+eVFOTqoMZZU9I6eJVDXA1icXRvqW4YYyXEAOoTq8PiqOz1Lt5UZlCuepuJAVwdlIxXN41mBdgGxUqsoG6xOr/tU7Fu+loSLgsyrOlw6cNyvpFRx48+kA8sykumWIkV1C1WjNJRsbYNyQ1vMzGDR5OHisNZndIxulhfqxXDWl8ZlhsWNXEpVmIFjcdY0/LCGZtSypPCI5nuW8s3Pjx5t7ZcC3dl8pWDkl+0K3BAsRILKDgXo+ZAVhFrWVZAy3OnxbJrMTk4dfU/g7u9lmtasgeH5dJS+Vy6q/Lh9bPS394ug1fsS++gWInBFCe67nHn7CwK0x0g0LZfekoDBJzf728rzceaatkhvflr8pBSNZyCPLw2Jq/56zadkWxbm7S1YcBHi+zozcs1SyuSYiUGU5zoujQYoFaZvSn373/ktHOIbRQe/03uXJ8p1eXszfvykeUVSbESQkjAUKyEEBIwFCshhAQMxUoIIQFDsRJCSMBQrIQQEjAUKyGEBAzFSgghAUOxEkIM45bkO7zRWE7psHC5XYqVhELh8ZLMjp8qDkM9kZdzs0vy2B2t+EBmZubd1ySR1duzMn6qODT31PisLBUPypYpPJyXs2dmnKPaCAVZfPeEDIw0+r7mMN3nW7p8us9KuVKspMk4F+2Zg5JNpyXbfVLGMWzxXF6OvbhDMpl90pPbL61xX6ejIs5xOb02aUyppDu3NJPT6u1LMty7o/h5HXmnzVc/hcXR4lSLDb6vKdzKS77sdHCXdDFh3xqAYiVNZWWmX1pTaenMb5x7c3VhTA60OhdNAsVauDoo7Qfy8v6HxUHxqx++L/kD3nR6u4Zlwd1aJw/+LJev35E7k7niDP2NSGhlRvqz6eJEKIbKy50ykmIlRFmRyUPOBZvKycUqjbAV51Evkzix3pN3fjMpGybDWzkvh91lvLe48sHKpBxqSJCYGzUrnafzxVUXDJUXWqwMBRBSQjshdslQ1enfr8rgYBJDAZW4IUNtzvFqtMVawluWpk5BPrqYk125i9CrwWLFvtm3xA7FSpqIb4Lq1gMytlBpLrgVWVriTP+gcGNIdqVapX+mkcWg/DQgyFunpTPrCMttNm/+vo2dj7c3TtG4+qFcP3tKRmaKXWBuR5rbMXdKzs4/XAsFFR7K/B/zcsL5rBP5S3K7xhSBCAPY+EBDsZLmggvYfbxFaZH2YxdqXkhG8mBGRiCUBspEQ4kOBXn8Z8Sb61iqpCZ1ihVrSHXu8T1F1HpfQe5OviLZlqx0nxyXqalzkj9SnP2/tEoDjs8rXZL16rkjvygPL/bLjqey0pbViaxbHUE6Fn80Lf3ZFslkMZl18fXpztOV93e6z8pUK0CxkqaDTqqDWV1axSm2zfK/siSXdULtOstcnY3wBzP/Jfufaikdm5b2Y3Lx7lYPTD1iLciNoT1lnYnV3/fIkVurSrHEjPR7UlxrTRbkyusZd1vbd/5T3rqgLdqCPLzgdartek56X/OtCrC6IL92Q0UZGSxfpxyLQloce6dYSTis3pYLx/aVWiluaWmXYxe300Kzn5Wly6X0s1LqVcthOb+lZZ42FytEmX3hjKz3frX3ectVd42VvR7VOStTM/Prbo664OOGVmbhouTcv21jrHRxdK/7ns7Td7wtDpBq+b44+22TZylWEiqFh9ckr/mWbknL7sErG3vITaLpoYAipfQz57hkNjTh6mETsTqP4X3tGlf1U+V9i6Oy19neNlTfIuJVxaqfX0GsG97jCLR4XpQXuzqwKFYSCau3L0j/bg0PZJzWyFY7bEKgiaGAclbOH95GTmktsT6Q3x9Iy5P/1lvhRvBd2YX3ZTrlx+7PE+LeFzzJhSrWmECxkqYyP1NjmGRhUUa9MeHp/hlvY8IpOBJCuCRwsa4ff1+7eALU1uOhSanntkexrkGxkqYy3XdIJmtclSuTh4oXb1MDaM6FbU2AzrnZ7G1SKKAqVd6HWCe2p506rBireSRXrqzFPCjWNShW0lTcUTOjG4ezKstjXU2/sNyx5raIdXlMuqoMqFj9aLNloQMWq3ZeOb9r7btYlsVRcFOqjp1fu2tSrGtQrKSpuFJLtcqBCulVhbuTchidNa2DcrVC7zJkeCvftzbTkUPx87yyTpZlj7ru7/SCXiv6ltJ3lG0H7nc4ksl73xX4RV9YlHdPDMjAqbKc3tUFGe1sqTivAuYWaMW+lh2rdTw4Iy+4f0/1IcSVqS7k4lwPxePQ0v6a5M8hhjwuJzGJTme+mMfqcWOozX3dXudGuo5SVsDG/dKsgA3vsRyKlTSV6f5O+eW5cTnVs08ymadkf0+xwyT34m7JYMarg3n5wP+Y6U+1cWN8a1PIQXhrAiyKtCg9/78dvNhg8bWecH3mdKXqk4hKFi/xi9sv20B58Hs5oGln6YzswzHJvSi7s/uqpp+VOrXSh8XXSPSYl4mBnHT7coVbdrwoubqnAazV0i3IXadlutufJpdKS+Y7w2v1hqyJXHdpgEAqnZXu3IhgANb8xID0tPvzdHtkACkTeA/OiXXv8TrNYgDFSprK8tLSWsdH4bHcvT5T7DmfuS53Kj3XenG9DVLTeF95gQwg0opSAOViLUpk/eevf422WCt/XjAUHt+V6zOaRTArN//2uGq4pMiq3J6dktmKw9aWZc6XkVAql33Hvibe+2u9fvUjuel8/9TUjFy/W7avFbMmLsuS82HLc+XbnYKUiYrvmduQL2srFCsxjoqP+65YN8boQHkLdD1lYq0ibr9MwxAriTcUKzEWf6y1KETfzPJ+3Ef/ytLdIFZ97C0zqytTbxvFSrYLxUrMAgL1Sc+Vq1946wTqSNOdbr6CLJ3P6fMsXJKmsw0v98dUXcqkTbGS7UKxErOAEDu8lqpbykSK1mfpd/4WrCfXCu8rtXx9sixtc0uZVHU75Uq2CMVKCCEBQ7ESQkjAUKyEEBIwFCshhAQMxUoIIQFDsRJCSMBQrIQQEigi/w8ZLRgTXuiHwAAAAABJRU5ErkJggg==
|
As shown in the figure, the area of the sector is marked. What is the radius of this sector in cm? (Use π=3.14)
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
70
|
iVBORw0KGgoAAAANSUhEUgAAAVcAAAC/CAYAAABKUZ9DAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB62SURBVHhe7Z1/aBznmce3P7eEivagCwVXpVQBBWzTGoIqUMHVEeya6A+bK0ls4ko9l+KImKqtjSrsXnQXC0P0h63zcbpjwO0R+WzqIAd0dSoVZHxubQtTy75aJ+QaCxwFxw5ykcKxsP3jufnOziPNrlbSSpof78x8P+HF0Wi0Ozvvvp9553mf952MEEII8R3KlRBCAoByJYSQAKBcCSEkAChXQggJAMqVEEICgHIlhJAAoFwJISQAKFdCCAkAypUQQgKAciWEkACgXAkhJAAoVxIP5u7J+L059wdCzIdyJbFgZmCXZHYNyIz7MyGmQ7kS8ynckd6tGclktkrfhLuNEMOhXInxzF06INkM5JqR7IFLwuAAiQOUKzGcGRnYZUs1m3XkmsnskgHGBkgMoFyJ0RTGuqU2e0Au3bGkye29bmVsgMQAypUYzJxcOpCV3NFrUnD/3+m95o7KtYK7CyGGQrkSc5kZkF2eQazCtaOSc3uvuxgbIIZDuRJDKchYd23ZANaE9DlZA3bZ2mf/RIi5UK7ETOYuyYFsTo6W3f87+a5O73Xp7wgxCcqVGIkj0SZL7rs/L1C4Jkdzxd4r07KIyVCuxDxcgTZ0vSPDw8NLyr/s/Ru398pJBcRcKFdiHM6kgVyz/KizUzorlfYdUuvINeNmEhBiHpQrMYz7YjVlpMlaEhDw4EnLQg4sYwPEQChXYhROulUVwnQmF7i9V6ZlEROhXIlBzMrQ/myVM7CK02Kd3isnFRADoVyJMcyOdji90Y5Rd8MqTPzzN4pytUtT/xRjr8QoKFcSPTPXxepqkbpsUZTZuhbpsi7K+HJ3+zPjctE6JI01bs/VKTXS2HpKzi77R4SEC+VKoufuhYpZARfuur8vZ5n9nbLsHxESLpQrIYQEAOVKCCEBQLkSQkgAUK6EEBIAlCshhAQA5UoIIQFAuRJCSABQroQQEgCUKyGEBEBq5frXv/5V/vSnP8nFixfll7/8pZw4cULeeOMNOXbsmLS1tTnl8OHDzjYU7HPu3Dm5efOmfPzxx+6rkLB58cUX5fvf/768/vrrC3VjWdZC/Vy+fNkpqNvp6Wn3rwgJn1TINZ/POw0ODbGlpUWeffZZz5z09ZUvf/nL8u1vf9tp5GjUf/nLX9x3I0FSqS5WKp/+9Kdly5Yt8r3vfU9+/vOf8wJJQiOxckXPBTL9zne+I5/73OcqNryvfe1r8t3vfrekl/rmm286vSCU3t5eZ5v2Znfv3u00VDTYSq/3zW9+Uzo6OuR3v/udexTEb7zn+he/+IVTPz/84Q+d+oFAUd8ouIDiAuitn/Lyla98xal/1BnuYHiBJH6SKLl+9NFHcvr0aXn++eeXNKTnnntODh48KG+//baMj49vqOeCkMLk5KTTINEbamxsXCJcNFxI+c9//rP7V8QPvOcYMkVdrATqGT1V9FhRH6+88ooj5s9//vMlr6VFL5CULdkoiZArZImG5u2hovGgR4NG9ejRI3fP4EAjfu+99xzZQqzeBovwARor2Tje84pSjWCX4/3333fqDPF29GArCdcrW4YSyFqItVwRR33hhRcWGgJ6j4ipQqiIs0YJjg1y9zZY9J4RblivDMiiXNED1dv+jQjWC17j+vXry4aT8POrr77qCJl1SFYjlnK9evWq8+XXL/0Xv/hFp0EgLGAakDxGs72DaPh/SJasHT2HqG+EZvwWrBcdCNXQj743Ct4XcXrcNRFSiVjJFfJEz0G/4CrVOMTG0PAhVNxm6vGjwSIeSKpHzx3qHQQtWC+In+N9y7NNUKcY/ESYgRAlFnJFg+nv73dkii8zbs8wOBHXAQeELTQui1AGBto4eFIdKjSVKwhTsArunlBvX/rSlxaOCXWJ2C16u4QYL1dIxxtXxZc3CSPwGBzB7aZmGUAO7MWujn4PvHIFUQgWIHRw4cIFJ03PmzGCsBUlm26MlisajN6CoeEkccQd+biaOoYeOVLFyPKovMrlCqISrIKwFY5L77BQEDJgpkg6MVauQ0NDCyPtkE8Y6VRRAQkgCV4bJEIepDJ6jirJFUQtWIC7LaR36XGgQLIIB0VxPCQajJQrZknpLRYGsKJOqwqLkydPLnxupJQxr3IpKqvl5ApMECzA9xZ16s17xp0YJEuSj1FyhUy82QCQbNpADqX22DHVlouPlKLfjZXkCkwRLMB7I1PEm2WAcQQcI0kuxsgVaSwae4RcEBZIK2h0mHCAc4HRaA6MLKJyWk2uwCTBApWsZhjgLgWDmrxDSSZGyBXxVG0EWEwFgzxpx5slgUbIxWCK4HygVCNXYJpgAeoWaVwaAsJ3noNeySNyueKqrT1WzMFP8sDVWoEI0AhxbjACzdvItcsVmChYgKm23kWGkpJmSIpELlfMEccXC1dvinUpEAEGt3COECpI+y2kimgtcgWmChbHgZXcvBNkMNZgyvGR9ROpXPElwhcKMVbO0V4eCFVjsOjdpLnh4RygrFWuwFTBAnQstKOBgpAQOxvxJjK5IsakXyTGm1YHt4s6EIIl8NKKfmfWI1dgsmABBnK1nnGcjLXHl0jkigErTTdKY7rVekHWgA6CpHVVLXx2lPXKFZguWGTOYPwBx4f6xmdlmCB+hC5X3OogvoovDm6DyNrAAjba6LB4SNrQi/LPfvYzd8v6MF2wOB6kaeH4UBgmiB+hyhVfGL0iY5SU+X3rQzMIIIe0LXOnAz8//vGP3S3rx3TBAoQF9BjxL8ME8SFUuWqvC18SXoXXDySgObBp6/37KVcQB8GirXhznjGllphPaHLFikHaMDi3euNgWqw+hiRNvRm/5QriIFgcE2KvGnNP86BmXAhNrnieFL4UuAITf9BUNqRpmSiEIAhCriAOggVYO1YFi3U40lLvcSQUuWImCr4M+FLgS0z8Aasu6WIgWOIuDQQlVxAXwWIgUwf2sEg3xy7MJBS56sMEMfpJ/AWraOHcQjppeFRMkHIFcREs0hn1ODFInIa6jxuByxWPLklT448CvXhtJPczLgQtVxAXwWJiic7cw78cJDaLwOWK25a0NPyowOQCnOM0XMDCkCuIi2AhVH3sNxblZtjNHAKVK9YLQKVjVJtX1WDRR3Yn/SIWllxBXASLmCvWnMBx4njZ1swgULnqUwWSnzaSlweXLfnNXffHCNC1GjAv3VQJ+EGYcgVxESyOS+8SGSIwg8DkiqupjmgmdhZR/gO5Pdgl23NZ53N2jLrbI0IzB5K8EE7YcgVx6sHqDEj8yyyCaAlMrlhYBJWMwZbEkp+X+YLIfavJ+axRyxUhARxHkmdtRSFXEBfBYrIOl6c0g8DkqiPYqVi9abTD+axRyxWztnAciHEntdcSlVxBXASLO0U9Ti6OFB2ByDUNjbyEquSalw9u/1as453S2XlKzt54YG/xgt8PyqnTV+RD+6fC47syeMre9/iA3Hxsd48d8vLgxlk51dkpxwduysJmD3pbaFmWuyVZRClXEBfB4jg1LMepstEQiFyxsAQqFQNaqWA1uRam5MzOGqnd0SNnh4flbM8OqbX3r7X/YNb+9cf/c0b+vmGTZO1tmSZLbo2+IS++3C6d7S1Sl7W3ZffL0OMpOb9vm2xv7ZT2ljpn39ojV2Su+A4LQKo4FgxuJJGo5QriIljM5NL1J9Iyg88kApGrjlqmZkHnFeU6J1eO1Ep293mZcbeITEl/A9bpbBLrvrtJRqXDfo1MzU6xJhb7tLODLzuvXbfvjKcHOyuDL+PvbemW2VXvGiChJGKCXEFcBOtdiwCz+Uh4+C5XfMn0dgQNPRWsJNf7ljTZv2sfKb2Hzz+4IcMloQFXrnbPdcG3YKpfGuztTYsWdigOonnlvIguRo7ZcUnDFLmCuAgWvVYcI9L00rb+b5T4LlddpAUNPDWsINfCSLv9u8oSLGUZubpyXotc29ranONJ4q2gSXIFcRGsTjJATN7UY0wavstVr5Jo4KlhBbkWJZiT7jF3w7L4J1dNg0ODShqmyRXEQbBI0cL0WBwjF1AKB9/lqo8HxlMHUsOqPdelcixyXyYm/s/9f//kisaO90SDTxomyhXEQbAY4GL8NTx8l6vOcU/Vw/NWirnODMgu+3eZXLuMIDXAw+zQP8q/Trg/+ChXoI3In4VcCjL/5JE8evTEmTQRJabKFcRBsIy/hofvctXBLNyGpAXtne4vH7p3KGYL4PfZbUdk8Pa0LalJudy3TzYfGHJSsYq4cm3olyl3i8OdXqm3tzf0l2y1N9fbr9kgZZsX2LJli/OeGx3UKkydl7bNNc5rOSVbJ/usW57jDheT5QriIFjGX8PBV7lisQhUGhpAKvjwipzubJXGGlc8NY3S2nlarmAWgJfClJx/qShYLTU7++SWGuruhYXc1UymRhpbO+XCXWxul5a64roFkFpL+wW5a/93QfNf7e3ZuhZpx85laDrchp5XNmsLvy4n2w9ZctHJz9X3zUqzNWX3Z8PHdLkC0wXL+Gs4+CpXPCgPFYb1JVPB3D35vS2d4ZLye7lXqQOLW+t7N5x9bkw+LZ2dNTNe9hrDMj6DzaXbhofHZcb+b7xkm12wcxn6zPtjx465W9bORN9O6Rgt7aMWpvqdMEUme0SuuNvCJA5yBaYLVuOvKElM2TMBX+Wqo9RJyBQYGhqSw4cPOw9WxIyzuC3hpjO11l8XH8l/nRteMgMMYY6h/ei9Lh/vzT9dKT6L+O3ixaUw/8Tet+xiozHep6VbQVzkCkwX7MGDB51jS01nKGQo1zKwFgJiUp/85CflM5/5jHziE5+Qz372s04sOU6PBA+yLkY7bLnmuqU8u2z2liVtm3OSq6uXOizDiPjseTd84CzP2CN7nPhth4wWHspIV6PU2MeI46xpfEvGbJPnJwZkn4ZCMjWy80xp+CFOcgUmCxaDnXpsSV2LIkp8lauuKRDnhSLa29sXRtrLC2SL5xbFAUx7xDH7v8bAh3J+d0Zqu8dKpFeYsqQ52yQnFgLJMzKwC+etVnr+aP9YmJcnj34v/1SPbU1y6N/fkesfoGeal4n+Zife3NTxhvzkjffkHrq8+Qnpb4Zkd8t5Tww7bnIFJgv27bffdo4L2QN8xp2/+CpXXU80ro8aQaAfx79cgXRff/11d2+z0edq+b6eLlLLsJBMSSj2vlhNGckdvVYi3PvvtElDQ5u8sxA+KO6XybRLyWzgD8/Lbpzj9pGSv58b2u98Bm+KWxzlCkwWrK6khhAY8Q/K1QPirAgD4DMkpfgr11kZad+2ZJBLps9Is/1elVPRvKhcO6Q0JdhNQytPFK6QPxxXuQJTBYvHdOvdGqavE3/wVa4YmUYFvfnmm+6WeKHZDkkqfsp1dqRDXqqUgnXliHNbX744zVLSLVdgqmA1u+T55583qlcdZ9hz9YCYEway8BkqFVzdkUEQB/wOC+QnLGnrKq4/u4SxbsnZ71Xfe8fdUEqhoNKlXIGJgsVArua+pmrqeoD4Ktfe3l6ncuIioEr09PTIpz71KedzeAuk+4UvfCE2M8/0abAtLS3ulvWDwap9R5aKtTA/X0yh0phpbbeMlXde50bFOq9BV8pVMVGwyIbB8eC48vmlaXBkbfgq1ySkYuFL/tOf/tSRaTablWeeecaR7de//vVYJVv7VReFqTN2j3VEljxSBqP5fZfcPNg5uXSgmD5V2+HZN/9ABl87KOcX5jhQrl5MFKyuDYLMH7IxKNdlQJD/9OnTTvwYvcC4Xcn9qIv8RL802xcY5K3W13tLneSyZQNYmCpbC3HapWaTu48nTxWpWJO/lv057LNVjl2elifzBWcSweSv9zthhUztARmcxOQDTCKYlF/vzzmvV3tgUCafzDuvkyS5AtMEq3c87L1uHF/limXMUDG+p/+QNaODi+ueO/7Rb+Un3yiXqrf8SN4tX0Nh9n9lsGePNNi/b9jTJQM3Hy8Ofk2fk71lr7H33LS9eW/Jtvr6vXJuelrO7fVus8vec4LnWiRNrsA0wWrvlbHXjeGrXJFgj0pBQjKJFjRS1AV6sEkiiXIFJglWY6/PPvusEaGKuOKrXIE+bZKzPaJFex9Jy1tMqlyBKYLF+0KsOI6kXZzDxHe56jqiTEaOFr3IJW1d3STLFZgiWI3Zs/e6fnyXa+oeq20gSX68dtLlCkwQLN5TnyKMQS6ydnyXqw6kYDkzEg0aM0viwOJXv/pV57P94Ac/cLckExMEqwsxIcRE1o7vctWZQc8995y7hYSNrtMZ15lyK6G9qdbWVndLcolasEjFwuA03p9hvrXju1xRIRrvi9sC00kBFzacf1zokkaa5AqiFiyWD8V7x2U1OJPwXa7ghRdecCokTotLJwV9jhkW905iEnja5AqiFCxmJeJ90YONIjQRZwKRqz6+l+tDho8ufoynKSSRNMoVRClYvRPiwNbaCESumDqKysDILqfQhYs+Njmpc8PTKlcQlWAxBVzfk1RPIHIFWBcSFYLHjZBwQEgAyyKiJC2/VUmzXEEUgn3//fed98NYCicHVU9gcsWiJ6gQP5a8I9WhSz4m+ZynXa4gCsEirQ/vxwcZVk9gckXPCVe6JPeiTEOnvCLumlQo1yJhC1ZnbOF5W6Q6ApMr0NlaScy3NA3NL05qloBCuS4SpmDxpAJNscQMQLI6gcpVGzwGthirCRa9bYvzY82rgXItJUzBvvrqq877cCHt6ghUrkAbPSskOMbHx51zjJ5F0iduUK5LCUuwGhrgOEp1BC5XfaIqKp9pWcGg4Zek91oB5VqZMASrCwIh9BR0jDcJBC5XoAMtmFxA/AVzvnFu09BrBZTr8oQhWD3/XGtgdUKRqz7+BVc85MwRf0Dj0XzidT/OJWZQrisTtGAx6xKvzY7S6oQiV6C3rq+88oq7hWwUPOMI5xTPm8dobhqgXFcnSMEmeTlLvwlNrojXaCoH4rBkYyB3WBeOTtMCOZRrdQQlWF0YCG2ZYygrE5pcgc5RxqMj0tLTCgrcAeBcYgWyNEG5Vk9Qgk3ykpZ+EqpccaXTisECI37Hg9KCXqQQw0YDShOU69oIQrBY2xWvl5Y4/3oJVa4Aj9/W1c3TkDrkN1j2DecOJY1LwFGua8dvwep3sLGx0d1CKhG6XAFuJ7DmACqIDzKsHizliN4qzht6r2mEcl0ffgpWV8lK4gMw/SQSuQId6YZkr1696m4ly4GBBBVLmjMuKNf146dg9SKfhtzq9RKZXIE+SA8VzsUglgeNAKsR4VwhrzXNg4GU68bwS7A6MYgdo+WJVK6oWF17AJXFDILKaOI2GkXaewqU68bxQ7CarYI7UFKZSOUKkK+J1CxUFCYaULClaGYA8go55ZBy9YuNChbLiOJvDx8+7G4h5UQuV4CK1hgObnsZxyn26tva2pxzgpLkBbDXAuXqHxsRrM7U4gpZy2OEXAGWzdOGgwrHI33TCi4uGmNFj5ViXYRy9Zf1ClaXuUTeOqmMMXIFkIrGYNMqFXxpsVYAzkHaLzKVoFz9Zz2CRfgO+yPbZ60hhbRglFwBKkoHcFCOHTvm/ib5IDmb4ZGVoVyDYT2C1U4A/pYsxTi5KhiF1IkGiOskfaBLBwhQ8DgNLopRGco1ONYqWKxrgX2HhobcLcSLsXIFmMmlU2W3bNmSyFtk9E51OUaUtM68qhbKNVjWIlgdcOUsy8oYLVeAyQUQKyoRPVlMPEjCww7xpUXvXJcNRDiAPYDVoVyDp1rBUq4rY7xcAUICWIFHwwTozVqWVVVcyESQr6pPEEDBCmFY0IasDuUaDtUIFjmu+D3vtioTC7kqqHBNUULB5ANcNeMiWYQ5vCEAiCKNK1ttBMo1PFYTrI4T4F+ylFjJVUGKls7qQjFdsnjygqaYoSAUgC8kB63WDuUaLisJVmcPcl3XysRSrgCVDKF6JYtwARbyNWGaKGLF+PJ5j0+lmoSYcVRQruGznGDR/rANsVeylNjKVVHJ6hMOtEBqkBtEG1aPFl9CDFJ5QxcokD6l6g+UazRUEizlujKxl6sXiBQ9V03f0oKReAwa4XHAWCLND8nhlh6zqSBTrBCkXzwtmGGGLyFiqmHJPQ1QrtFRLth3333X+X+0LbKURMlVgcyQ1oQrqjbG8gIBIw6K1C70Kk+fPu1ciRHPxcATyoULF5xtyEzAPngsDSY0LPeauO3HgBX25+pewaDnfteuXc6FkiXc8qtf/UqeeeYZpw6+9a1vOf/yMduVSaRcy0H8E5KEbJEzqyldGy2Y/gfZokeMXiwJnuUubCzRle3bt7u1Q7ykQq6VQF4percnT550eqXowUK+mHqKKzEKbn2wDQX7QKLozeJZVhzpj4Zt27Y5F0cWcwpXxqpMauVKCCFBQrkSQkgAUK7EAO7Khc5O6VytHLfk4vAVuf1wXgruX5L4kH86KTeGz8opb31euS0P593aLEzJu7+5W/z/BEC5EgOYkfHhYTnb0yJ1WR0o2Sp/d+qsDNvbnXLRkuOtO2RTTfH3NZvbxLo16/59yOSfOquZPXrKuHs15B+8J13bc5LNZCW3vVWOWxc9dbpdctka2bynXdpb6iTbMer+VfyhXIlRjHXnXLl2SMVmlp+QgZdqi/tk66Trypz7izCYlWs9kIFeAGzJN3bJyEP2oyuTlwlrp9TY5ylb95oMPqh8MSo8vimW1mn7SGLuSihXYhT3rSZXXMvIFRTGpLvWFdzWPplwNwdLQaasZslt3iM9Z4u9rkONNcVjqLWPNaJOtLkUz1e22vNTmBKrOSuZJkvuu5viDuVKjKIqudos9nCbxAqjNc5dktd2WjJV0q2alZH24nE0n5l2txFQuNMrW536ycr+oSqvPPctaaJcCQmGauV6p7fe3S8kud4+J+cqdZFtidTjOJaLFRbm5clK8dn8U3miAzr2bfRTe9/Fn12cGO8TKd9sLjMysAt1Y5fcUblW9XHPyaXXuuSK+1PcoVyJUVQXFrgjvVvdxlvbI390N0cCelv2cew+/6G7waXwUEa6tksut0nq6zc5cceaxh655nTiCjJ/77JYh4rx2yb76jB7y5J9dfZtMT5Ttk72vWNfMQqP5b97Gp2/xfZs3ZF4hB8m+txeq33M9kVnLdeEuXv3bDUnA8qVGMWqcs0/kMED7uBHplY6orbNWLctyN1yvsQIszLaUSu5/YOiY12Fa0clB9m89I5Aw/mnj2T6P192Pkf9S/8g/z5yz+mZFh6PSAfiydn90vXWT8S6/oHdny3I45EOqbX3zXWPFV/QYKbPNLv1k+5wCeVKjGJRrjWyaUerJ8+1XfY01Lkj9UjpOSQDUaViLVCQa0dzsrX3TknvbG60wxbpLhnwCnduTN7aUS873hqzb35d7P3wWRv6p9wNRYrx5AYp3Wz31uvtzx6DmOSVI24P3C4JyqxaM5QrMYpFuTbJsYtujqvmRLbvkc1unms2t03a+i7LMtk9oVCY6pfm5vJBLlcu9b22DlfBlSvCAl6K56A8lnxfrKZ4yHW0o1hHlCshBrFqWKDwWG72FXMnHclGFYcsTEn/S/YxLnnvaTnTbB9bQ7+U9kcrQLkmGsqVGMWqcnUo2LfOGnfNSG332JoGTTaMLfiRrjY5U95ldfhQzu/Gce2XoUrzGwqFxWNNqFyn+hsW6oYxV0IMoTq52ti35A1uA87kuiW8YZ5ZGT2yT6wlYs3LvJsrVYyZZmV36SiXw/0zlozqnyZUrs4gn1s3a80WSBKUKzGKquVq/7bDbcCr7+sXtljtHqs1UR7oxWh+r5zRIKumImWbpX9hX3ufm72yr8fTy06qXGVC+jRVLntALq1lhvLsLbll/gesCsqVGEXVcnXzS519qxk82igIBXTUSqYGeav1pWVTTdkxeKZ+IrOhrriPNz6cfzot108UP2t2z3/I5KOndt83L0+nr8sJSNT+u+be6zKNyQf5pzJ9/UTx89rC7r0+LaavGTM7tN/9/PbFo3+qut4rpsC+1id3EtLVpVyJUVQnV2/MtfLtt9/c/be/XSpVT2k4WT6VoSAPr1pyaAd+v0NaT71Xktnwh+Plr3Fc/mD/d7xkm12O/wE7l26zCzabTTHXt1hHtXJg6OHKgi08lKHXKoVb4gvlSgyiYDdIzZFcRq5l2QI1O88sSYUihoAZZt3bFnrwdfv65PK98rV48/LB7UE50tgo3cXpa4mBciUGUFwsu9VZ87MoTWcSAXp8C5MI7N/bvUBdzzVTs1narJvymGI1HMSaB+SQt26zOalzeuCYFFIjm9ssuZnAiqRciQEUF8temDCwUrkxKY+c+CSJG4X5JzJ9+8pCXd6YfGR87HgjUK6EEBIAlCshhAQA5UoIIQFAuRJCSABQroQQEgCUKyGEBADlSgghAUC5EkJIAFCuhBASAJQrIYQEAOVKCCEBQLkSQkgAUK6EEBIAlCshhAQA5UoIIQFAuRJCSABQroQQEgCUKyGEBADlSgghAUC5EkJIAFCuhBASAJQrIYQEAOVKCCEBQLkSQkgAUK6EEBIAlCshhAQA5UoIIQFAuRJCiO+I/D8NoUN3UHu8XgAAAABJRU5ErkJggg==
|
The radius of the sector is shown in the figure, and the central angle is 90°. What is the area of triangle ABC? ( ) cm²
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
71
|
iVBORw0KGgoAAAANSUhEUgAAAVQAAAC/CAYAAAChZiRAAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABmESURBVHhe7Z1taFXXmsdPX+zph6bTDx4oaKAQ4RRuLUqlBOLQCsVbGT8oiLViqkyEesXSDNSpJeVWUJFpPrSpHzJzz2AZtKPUSx0I1NGWSG9RK0Jf8GbEFxpQS6olKUk/BE4/PLP/++wn2Sc5OTlJ1t577bX/v7Ko2Tk52Tlr799e61nPWisnhBBCjEChEkKIIShUQggxBIVKCCGGoFAJIcQQFCohhBiCQiWEEENQqIQQYggKlRBCDEGhEkKIIShUQggxBIVKCCGGoFAJIcQQFCqxn4G/yD//ZSD4ghB7oVCJ5ZTlYldBcoUuuVgODhFiKRQqsZu7J2VDPie5XF7a+4aDg4TYCYVKrGagZ7knUwjVK8t7hB1/YjMUKrGX8kXpKhRkw4a2QKoF6WK/n1gMhUqs5e7xdZVWqS/WSis13/G5jAbfJ8Q2KFRiKQPSszwn647frXw10fVvk9It/xAh1kGhEispX+ySQqFT+rU5eve4rAtiqYWui8KOP7ERCpVYyF05vi4ny3vCQ1Cj8nlHvtJKzXfI5+z3EwuhUIl9DPTI8tw6CXr7E5Qv75fmoJWqoQBCbIJCJZYxKv2dhRm69ZWWq99KXd4tP7DfTyyDQiV2EcRKm5YUpVicXloKQbc/l5cO9vuJZVCoxCr80fx1/yn/NzQkQ7XKYJ/sDlKocuuOe21WQuyBQiX2MPq5dORnT96fTKFaLlXjVoQkDIVKrMFP5G8ryaxppsN90u7P789JobOfif7EGihUYgfly7K/OSftfY3osSz9nRpLZaI/sQcKlSRP+Z6c62z2BfnKp/caSNofl7/9ayEQak7ya3plYDz4FiEJQqGSZLnwnhSC7vuEIAstcvBC8P2pXDgYGukPlyZZMuMPERIPFCpJlvGRmqP5IzO1OGd4vV9m/CFC4oFCJYQQQ1CohBBiCAqVEEIMQaESQoghKFRCCDEEhUoIIYagUAkhxBAUKiGEGIJCDfj1119lcHCwqiBZnNjDl19+KdeuXfPr5pdffgmOEmIPmRHq+Pi4XLlyRT7++GN56623ZP369fLUU0/VmMJYuzz55JPy4osvyp49e+TIkSNy5swZ3tQxU6teHn74Yb8eUVavXu3X0YYNG2THjh1y4MABOXHihHz33Xfy22+/Be9CSHQ4K1QI9Pz58/Lee+/5N9mjjz5a84bU8thjj03cmFoWL15c87Xh8vTTT0tnZ6ecPn3ab+WS6NDPHA+3pUuXVtVDIwU/89JLL/kPxQ8++ED6+vrkzp07wbsTsnCcEiokCrFt2rRpmkDRkmltbfVbLocPH/Zfd/XqVfn999+Dn64PuploleJGxA0JSUPC4d+BglZSqVRi6zUC9DPG5/71118HR8X/rFE/N2/e9B+iKKdOnfLredu2bbJq1Sp54oknquopXPDwxHWB3gvDPGQhOCHUS5cuya5du6palCrQffv2+SKMossHGeN348Z9+eWXqwQLoaPrCXE3Km1SH/1sUaZKtREgS8i2t7fX71Ug7IPWbvh9UdDrwPXEXgeZK6kWKi54tBTDN8OKFSv8GGcSLUS0kNEyglwhdD2nZcuW+eeE75P5o5+nSnA+Uq0FBrog2S1bttRsyeKaevfdd/0WMCH1SJ1Q0dqDSHGR6wWPmwAtDgw+2AJic2i5ojup5wkRIGRAsc4P/RwRF0d949+mpBoG1xHqCS3YcK8DBb2epB7YxH5SJVRc6Lig9eKGoDCSa3O3DA+AY8eOVT0AMDiC0WcyN/Tzg1BBlFJVUH94b/yucEgpHNLhA5IoqRAq4p9IddJuNISUxpYeYrkYtNKbEqEBdiMbRz83FSqIQ6oK5IrMgKmDnhAtYq6Ip5NsY71Qv/jii4luM4SKQaa05xRiNFlbO7gx0coms6MCCwsVxClVBb0iZHOEH5AoiOlj4ItkE6uFiliVtkqRP4jBA1fADYlWjf59aPUw+bw+Kq2pQgVJSFVByhbOKZwxgBAPwgEkW1gpVHStdu7c6V+YEA66966C1oy2VnETMtF8ZlRWtYQKkpQqQAgK12pYrEjBQo8E1zRxH+uEilxB7UbhxkDc0XUQR8WNh78ZNyNjcbVRSc0kVJC0VIGKFelyes74dxrj/mRuWCVUjOLrlEJcgC518WcD3X0MUuFvR6scrRpSjcqpnlCBDVIFaJWiHsNixXgABraIm1gjVKQR4QbARYfAfhbz/HADqgxQkNnAruIk+rnMJlRgi1RBLbEi5YrhHfewQqiYhaIXGmKnWZcIRo91sAqtVg5WVdBrpBGhApukCnBdY7KHNhzw/+7ubj40HSJxoWLKHy4u1wef5kp4sApTIsnchQpskypAyxQtVP17nnnmGWvOjSyMRIWKHFNtiTFmOB2shqWtmblIxFVUQHP9LGyUKsCAazgMgN4Zp7Smm8SEipFtXYgCsUJSGwxg6A2X9bxG/Rzm83CxVaoY9cfEDp15hSwPNDRIOklEqIgJapoQYoSMIdUHN5zKwKYFYOIGnwHKfFvrtkoVYHJAOMsD4wq8L9JH7ELFRaIXDqTKAZfGwELJ+MyQVpbVRZDx96MsJPxhs1QBBq00DIZ8bGYCpIvYhYq5+LhY0N3nwiCNg64hVp7XGy2LrRcVTVdXV3BkftguVZyT5mNjYDILk1tcIVahYuAJFwluDMaJ5g5apjqtEVt2ZA2Nub/55pvBkflju1QxOBXOBGBOcjqITahojWoLA6lSZH5g51ZIAJ8j1lnNEiaFCmyXKkAqod436KEg1krsJTahatyUOZULR3N30VrN0p5HpoUK0iBVPER1CUvUeZamZKeNWISKdB9cDLghuKukGXTnAgghK0QhVJAGqeLBGV40yNbzzDqRCxWDKfp0ZVffHEj6R1cQBf/OAlEJFaRBqoihYt1cPU+ut2ofkQsVKS64ABD/YVDdLCoBLCaTBaIUKkiLVPfs2eOfJx6mnGFoF5EKFTmmehOwi2IedAP1883CthtRCxWkQapAGyooXAPDHiIVKioaFZ6VFlQS6I2Vhc84DqGCtEg1vEUQzpkkT2RCRexUcya5aVl0ZKmVGpdQQVqkeurUKUrVIiITaqZap+UxGUtwZwttpWIjQ5eJU6ggLVLFueEcca5YA4AkR2RCxRqPqGCnp82N/yjnS29Ia5PXOugPjiUAWqm6WpHLid9xCxWkRaq4z7SlyphqckQiVCQio2IxH9nZkf0b5+VE31n59/aC/7cmKVSACRM4D5f3+E9CqCAtUsXMOZwnCkIBJH4iEaqmdWRhndPyud3+35q0UHXyBBYsdpWkhArSIlVsqYLzRGuV62XEj3GhYjBKt+7IxNqd/ZUbbXahlmXs/pAMDY1I7XDruIzcH/NeFXw14r029HUF7zVDQ3J/rPooQE9AP3dXt6FOUqggLVJNy3m6iHGhoquBykQMNRPMKtSy3D73jrxQKMiSYlGWNHldsqZWOXRxuPLdsRt+HPaFQl5ybSW5NfytlLa2SN57z1wuLy1b/yq3vPe497dDfqwWvyuXb5G9/ZWfD6M9A9xQLpK0UEFaZKUzqjj3P16MC3XXrl1+RS5kEeBUMYtQh73vNxfa5bPbQauyfFG6CpDiZvnrz97X4yMyNPjf8or3HrniZvnzf5yTG2iBlu/Juc5m773z0v7O+/IvpUvyk9e0Ld87J53N3msL++Vy5R0nQNoUzgULd7uIDUIFaZAqeizIsMF5YiyDe1XFg3Gh6tYmmck9rSfU0X7p9OS57vjd4AAYlcvvr5Xi2vfl8mhwSLzXee+Re75XrgdHfC7vl4J3/PneqqPyQ3fR+51tUroVHAhAuEVH+11chMYWoYI0SBUzFVesWOGfJ1Z7I9FjVKi4iVF5uKlxc2eCekL9aq/XdS9K9w/B1zMSCBVd/uCIz62StHnH26aY81apzfud04UKtFVy4sSJ4Ig72CRUkAapIo1OPzdsr0KixahQcROj4jI11bSOUAePrvG+97xMaWDWwJxQNckfoRfXsE2oIA1S1QwQjPzbHPd1AaNC1fipy7mQ06gj1J9PVrawaO+b6NuHKEt5YrDenFA1jurioKCNQgVpkKqeI+Op0WJUqJj6iErL1DqN9br8QQw0v+GkhKOoPreOSqlfjWpOqJg1hfNBa8Q1bBUqsF2qGKTSTR4ZT40Oo0LVnRozlaZRT6gyID3LPVHm8rKmd2Ai/7R874p0bz0klyNooQLNR3VtV1mbhQpslyrjqdFjTKgYUURFoWXk7HTTMOUxuT90TT7rQGpTTgrtn8q1ofsyNee+fL0ka/KQqtdSLbRIsbhEmsJ5pOMjMnjpsC/OXH6j/Ne1IRnxzDs+MiiXDkOc3s+t6ZZLg5gQMC4jg5fkcFsg6e5LMogXT0G3ynBtHQXbhQpslyrjqdFiTKiYFYWKcjUHchqDJ+TVYtETZLi8KidqrE1Svv21lN5Y679m7fYP5cyPIQleODjlPYpy8AIOVx8rFg/KBe+/g1XHvIIXT0Fj2a4tkpEGoQLbparnh62JMpONExPGhKozpLCXuAsgcI+HRBpb2zqfGzOnXCItQgU2SxXXtK4Gx+X+zGJMqNjbBhW0Y8eO4Eg6wcXf0tLi/y0ojzzyiOzevdsPaaQFV+piKmkSKrBZqjgfnBtyxl2LtScJhRoCKUcPPvigX/C3aEG86bnnnktNa5VCtQebpbpt2zb/3Djqbw5jQtWE8rTO4YcsC4XK2qa1CiRbKpWCV9sNlm3DObs2wSKNQgW2ShUzG/Uz5ZbUZqBQA3RQzaVCodqDrVLt7e31z4sDVGYwJlQEt1ExaZ0lpekkLhUK1S5slCp6ZprwzwGqhcMWagAC8zj/mcoDDzwgr776avBqu9HppxSqfdgoVSxIjnECDlAtHAo1BJ7UixYt8v+OWiUtifIUqt3YKFXNXXYl7TEpjAkVAzaokDSPLGPKbFNT0zSpYkDqtddeC15lPzrKj1Fcl3BFqMA2qWINCP18M7F1UUQYE6orqTp37tzxt4/A1hHoAj377LP+35YmmDaVDmyTqo6DsJU6f4wJVddCZWUkD6acoi44U8p+bJIq0qh0xwe2UueHMaFq2lFmNuezGM7lTxc2SVXPBb00MneMCTW82hRJFgxGoS76+vqCI27gqlCBLVJFKxX3MApH/OeOMaECxB1xUXDb2mRxtR5cFiqwRaqIveM8XIvBx4FRobraMkoTXLE/3dggVbRM2UqdH0aFqrE7rgaeHEjSRh24uC6ttrxff/314Iib2CDVLVu2+OfAVurcMCpUTdfh6jXJgYeZqzcC5pvjb9u+fXtwxF2SlqoOMmPUn5v6NY5RoWLPGr0IuNBCMuhGiWnLnW2ELAkVJC1VDeEdOXIkOEJmw6hQwbJly/xKwPRHEi94iGkeIUZrXSNrQgVJSlVnP7a2tgZHyGwYF6rGUdM8pz+t6Bx+V/f1yqJQQVJSRSqkPqA5ONUYxoWqM6ZWrFgRHCFxoTceHmouklWhgqSkqoNTXNqvMYwLFd1OVDoq4erVq8FREjVY11JHwZOIt8VBloUKkpAqUiDxO/HZk9kxLlSwc+dOvxL4VIsP3fbE5Qs/60IFcUsVD+rFixf7v9PVB7VJIhGq5kIuXbo0OEKiRjdcc/khRqFWiFuq+vvQUCL1iUSoAAMjqAS0nEi0YHaUhllcHjygUCeJU6qak4qZakyHrE9kQtUl5FxbNd5GdLcE1z9rCrWaOKWKVeTwu7g7an0iEyqeZBp7QQiARAM+Z53j7nruL4U6nbikqg9tVzNITBGZUIFWAhedjo4s9QQo1NrEIVXXc5xNEalQuU9NtKB1qqlSWZiZRqHOTNRSxbWmSf7YJojUJlKhAt2nZvXq1cERYgr9bLMSp6ZQ6xO1VHVuv4vrRJgicqGilaqtKMwNJmbA4tFYrxKfa1Zi1BTq7EQpVZdXMjNF5EIFx44d8ysCg1QQLFk4uqpUlnIDKdTGiEqqml+OeiC1iUWoAF1+VAZHCReOrpeA+HSW1qqkUBsnCqli1hTeD+/LbY5qE5tQMa9fu6iMwcwffI56Uff29gZHswGFOjeikCoWj8/itdcosQkVoBJQGRgtZG7q3EFrVKWCVYCyBoU6d0xLVdP0snj9NUKsQgW6cAoGqph+0TjobukoK5ZGxFqVWYNCnR8mparTUFEXZDqxC5VimB98EFGoC8GUVHG/4n1QOK9/OrELFWS96zpXsKcPPivEoLMcKqFQF4YpqWIVObwP1zueTiJCBeHBFW6XMjNYrYuDeRUo1IVjQqo6MHXq1KngCFESEyrAauAqC1bOdJCaolN39+3bFxzNLhSqGRYq1T179vg/j0R/Uk2iQgUHDhzwKwdiZTrVJFeuXJmYYYYWAWLPWYdCNcdCpKohKM6Ymk7iQgVauShoiWVdHkjc13AIJkRw4K4ChWqW+Ur1zJkz/s9xe+npWCFUgHn+2v1fv359ZiWiSx6iYGSfLdNJKFTzzEeqyDLBz2AqOanGGqECLEGn3VysED44OBh8x33wANEte/FgQQI1qYZCjYb5SFV7UFma+twIVgkVQKLIT0VlQa7zCZqnjaGhIVm1apX/N2MQCl0qMh0KNTrmKlW9RznjsRrrhArQWtu0aZNfYa4PVoUHn7AaOhedmBkKNVrmIlXtTWElOTKJlUJVwvFEbKPiUggAs0wwAKdxY4zkc2nD+lCo0dOoVDHCj9cxM6caq4UKsMuibvaHRVWQZpX2KW/4m1QOECozGxqDQo2HRqSKZTjxGqRQkUmsFypAy03nsqMsW7bMfzKmTUKIN+ksExSknXCvrcahUONjNqlq75GzHKtJhVAVVCzijCokiBWj4ba3WDEjTBeEQcHAE7eDmTsUarzUkyqFWptUCRWgVYrWKWSqgsKgDirWphgrWtVY/1VHQ1EgUpwnY6Xzg0KNn5mkqmsbcweOalInVAVixQhjWFgoaAnieFKtVixmghFQ3XIXBcLHvGeKdGFQqMlQS6po1OAYp59Wk1qhhkGXeqrEUPmIV0JkiF1GFW9FmhOe1vj9mv6kBRvpoWvPdSPNQKEmx1Sp6r5muO7JJE4IVUH+Kp6cuiNouOBCwHFcGBiZxKwsJNQ3ClqXyBnF+2NUHmlcUwWKghYzJM7dCMxDoSZLWKofffSR/2/0CMkkTgk1DASI9CRcBFPDAlML0rJwsyIuiwsEBVNfcUwX052pQKro9kC0WZoqmwQq1Mcff9yvK5b4y6JFi/w6eOihh/z/U6jVOCvUqWDOMaZ0IisAgXSkLOlao40UhBMgZnRxkAuL9Vs5qyleVKgs9pSVK1cGtUNAZoRaD3T90bq8efOmHwpAwY4COMZWpz2cPHnSfxh2dHSwWFK6urqC2iGAQiWEEENQqCRhxmXE6yGgl1C33B+TcvATJK2E6npafZZlbCz92TAUKkmYC3KwWJQlTVPic01LpOgd90tLQfL+8bwUVm6UQ5/9Xe7RrilhXH48X5I31i6RJq8O84WWyTrNF2TlxkPy2feDMnj+XVne2R/8THqhUIkdlO/Jp6+oUDtl2q01PiLXzuyVlfnKa/JruuXb4eB7xErKt8/JO61NXn01Ses7n8n3P01pgY7/JJdKW6UlqNMchUqIOW6V2mYWakD5eq+0+a/JScG7AUeD48QuytePyh/9XkezdJ67VzdcU75ekjWQ6pqjkvYhYAqVWEMjQvVuPzm3uyLUXG6DnPw5OEzsYfQr2dtcqaPm/Zcbin0P97VLvq0kt4Kv0wqFSqyhMaGGX9cmpbTfgc5Rlsv7m4P6WSfH7waHZ2VAejZ2yw/BV2mFQiXW0JhQR6WvvdL6yeXapY99frsY/Vw6NCa64aTMpQNx69gxuRD8O61QqMQaGhHqcH+nNPuvabw7SeJj1Ou6V+owJ8/3Xg+OZgcKlVjDpFD/Sf7tm2uhPNRB+f6r01J6o9VPvUH6VMuf+uQ2bWodP3QXJ4S6+1z2KohCJdYwKdS8FFqCHNSqPFSUf5B//PP/yN+ZiGol/Z1aTzlxIAtqzlCoxBrqdvnLY3LjfI9sbckHr2mSP/Z8K0xFtQsKlRBLaGhQanxAPmrTmzYv7X1Uqk1c3l8I6ibn1U32RgwpVGINDQnVo3yxSwrBTZtzIHfRJcKDUsXutCdBzR0KlVhDo0L17lppV6HO9loSL+G0qeU9MhAcboyylFMeGqdQiTXMS6j5vfJVcJjYQDixvyBdFxs1ZFmuH31HjqW8u0GhEmtoVKj+NMVAqJzPbyHD/dIZTD3NNXt12UCYe7h/r2wtXU99XjGFSqxhModxZqGWb/dJh96s+Q1ysuGpjSROytdPyuYJqW6W0pWZFkgZl4Hjm6XVezC6MLxIoZKEqSw6fO18z+QNiMT+s9/ItYnEfu/735yVTw6tn1jqLd+yVY4PcHtuqxn+VkpbWyZ6E01/2Ci7D5bk9NmzcvbsaSkd3C4vLPmD1zJ1J/2NQiUJU1lgeiKJv15Zu13efvtD+eSbGzLGvP7UMP7T9/K/pYOye+PzE3W5dvvb8uEn38gNxyqSQiWEEENQqIQQYggKlRBCDEGhEkKIIShUQggxBIVKCCGGoFAJIcQQFCohhBiCQiWEEENQqIQQYggKlRBCDEGhEkKIIShUQggxBIVKCCGGoFAJIcQQFCohhBiCQiWEEENQqIQQYggKlRBCDEGhEkKIIShUQggxBIVKCCGGoFAJIcQQFCohhBiCQiWEEENQqIQQYggKlRBCDEGhEkKIEUT+H1Pw/0i42oNZAAAAAElFTkSuQmCC
|
Given that the area of the sector with a central angle of 90° is equal to the area of a circle on the left, connect points A and C. What is the area of triangle ABC in cm²?(Use π=3.14)
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
72
|
iVBORw0KGgoAAAANSUhEUgAAAYgAAAClCAYAAABGBmp6AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABUESURBVHhe7d1taBTn3sfx7eOWtqFFXCvVgCVttQ8pDbRpIFJNETWtLQnHPnBaUe4otWmlQZpGq8UU9fRFWjT4IpS9b31hRKE3phBQopCQ0xs1eHNqTishVhRsilpJi/ZFYPvif/Y/OzPZXa/d7EMedme+H7hond1EM7OZ38x1Xf9rAgIAgAEBAQAwIiAAAEYEBADAiIAAABgREAAAIwICAGBEQAAAjAgIAIARAQEAMCIgAABGBAQAwIiAAAAYERAAACMCAgBgREAAAIwICACAEQEBADAiIAAARgQEAMCIgAAAGBEQAAAjAgIAYERAAACMCAj4zIh01tXJkRH7jwBSIiDgK5GBVikNBKS8/by9BUAqBAR85KYcawhKIBoQgdA2ORWxNwMwIiDgH+fbpVzDwW61nfQzAekQEPCJiJzaFpJgQ1g6au2QKG8XOpqA1AgI+MPIEakLhmTbqYjcPNYgQesuIiRNvTftNwBIRkDAF863l4/fMUROybaQfRdR2yl0NAFmBAS87+YxaQgmjjlYgWHdRZQLE5oAMwICnjfSWSuBYIMci+9NGumUWisgAhJsOCZ0NAG3IyDgbZEBaS0NSGjbKUmc1Ro35TVQK0xoAm5HQMDTYgPS5m6kyKltErLvIsrbBpMCBAABAQ+7KOHqWABM2JK7oAAQEPCu2B1CqbQOpL43uBiudkOCwjkgEQEBjxqRI3VBCa7pllF7i5E9RmGFRGmrpMkSwHcICHhSbFG+aglftDekYc1ysu4iglLHMq/+9NO30tLSMkHbK4d6eqT/3GX5fcz+Oo8jIOAxY/L70FFpsO4KXpP/Gfo9uiWdMfm1u9EdrA4Ea6Tt9BW5xZ2Ev4z8ID09h2T38lL7YiEgwdASWbsrLF3RUOiJtq7wLlm7JGRX4ZfIM/W75fglbycFAQFPiR9TGG9N0mu/nqhXmm57r92qw5LBzQe8JnJCGu3PQHWK28+xS8elucKZIl0qDd1XPDsDjoAAANegtC1MHxCWyLCEa8ZDornfm1PgCAgAcI1PjU4bEGq0W9YEY+/16gQHAgIAXFkERNT4ml5BafBgIQ0BAQCu7AJCBttkoRUQAQk29XpuLIKAAABXlgERN6jtxYkNBAQAuLIMiISZcKlmyxUvAgK+9ddff8nOnTtl5cqVsmDBApqP2vPPPy9nz561Pwnx8giIUKsM2Fu9goCAL/3yyy9SVVVlX/nR/NQWL15sHX+zLAPiZrescb53zX65bG/2CgICvtPd3S0PPvhgwknjueeek76+PtoMNr2q12Ohy1qYXs+lbdmyRe6++27r++p/9c9655halgEx0OpW4YdavXb/QEDAR8bGxuSDDz6wfpmd9thjj8ldd91l/f+BAwfsd2ImLF26dNKOg4bAJ5984h7n+fPny8mTJ+1X08kmICJyalvI/ju8+ehaAgK+MDQ0JE888YR7wrjjjjtk8+bNCSeShx9+OE3XA6baZAXEzz//LC+88IJ7rFetWiU3btywX51I5gERGe6QavvvmHDV4CJFQMDzvvnmG7n33nvdE8asWbMSrib1zmLRokXWa3qSwszQE7keg+3bt9tbsnfw4EG3+/C+++6TPXv22K9kakBaQxMHROT6CWlyl4lvkl4vpkMUAQHP+uOPP+SNN96I/RLbraamxng1efr0abevet++ffZWTCfd77r/9eo/W3/++ae899577nHWwP/hhx/sV7MwelTetr+HMSAit+TC8a1SVRJ7T0nVbvnnde8u/UtAwJP0hD9nzhz3hKEn/6+//tp+1UyvXPW9egV6+bLX5qPkaexXOdevy16fkaG0D0OIyK0r56S/p0fOXLiVorJ4TH4913/b99KuIed4Xb161d46MQ2Cxx9/3P3a9evXW4GRFet5EGtlSchZgE+X+y6TyvpG93kQjfWVMs8KhqCEKupl9/FLEywlX/wICHiKU9tw5513ur/ojz76aEZXk/q1zkwauprGRYb3ywr7ijnWSuWt/zVdXV+XE81lEiypkrUtjbKqrETKPuiWKwkpMSq9Tc9I1dZD0tMVlk1LKqQ5rn/GOdGHw2F7S3raheTc+ekY0uHDh+1XsmQ9DyL23IfUrV/OXb7qm4cFKQICnmGqbXj77bezuprUIHFOONqf7Xs3+2XHunY5/aueFaN3B//ulLe07z3YIIlr00VkuKM6un2NdDvn+9ET0hgKSGnrwPidxGCbVG87Nf7nSK801YwvUeFMGNCgSDcdVbsJtcDROc563Lnrm3wEBDwhubYhGAzmfDXpnKR0aqQOYPvZn/9/RgaT+omGOyqj+yfpca4jR6QueHstQGy101rpdJ7kOtAq1W2D9h/UgLRWt4mzRU/8eieg+z/VALNOMJg7d671nsxqG5ArAgJFzVTb8NRTT+V1NamD285JSrurkMgKiPJ2iZ/2f+1InbW/Gk8kpUl/s/WIzpr99vHQB+2sqJLm40Ny9eqQHG+ukhX7E7urdJ/r95o9e7Z1LBwaAhoGznHOvLYBuSIgULSSaxu0ObUN+XJm1GhQZDNg6nWRK93SUFYj4eHEIOht0v2/UBJuDtTFcKxWoCluGbuxS9IX3iUtLXvl6E/XbxvI1tB37hBWr15tHU8N/NxrG5ArAgJFKbm24aGHHprUq0k9KTm1ETorxu9uXjgp4U1LJBQMSOnb/y1nE6Z2XpMjdXockrqdlBMQWa5T1NXV5Y4F1dbWut2Hui372gbkioBAUTHVNrz88stTcjV5/Phx96T0448/2lv96Vr/PmlprJcKZxpoMP4uwqk+ThMQOTwr4auvvnKPsTYduM6ptgE5IyBQNL7//vuE2gadyjpRbUO+li1bZv1dOmMGUZFb8u+OGmtcIdhwTJyJTLEupjQBEd/FlAENAucOTptOO866tgF5IyBQ8LS7Z8eOHbfVNpjX859ceufgdHXoHQXUiHTWRo9D3F3BxXB1dB8Fpbnf3uCwB6kzWhnVpl1IukyG7nPtWmptbbVfwXQjIFDQtLahslKnVcaCQdubb745rVeTGzdutP5eLaJDjN4xxN9ByPl2KY/uo+QgiAVHZiudajehsx6TNh2UprZhZhEQKFg6UJlc2zATxWs6i8m5ovXbtMrI9Z/kXPKSGaO90lRaLm0JBRKj0r0mKIHytvG6icigtJVHj1sGK53qftVpq86xprahMBAQKDg6zXHDhg3uyULb008/ba3VM1PWrVtn/Tv8tgRHf3NsULqkapOEu3qk59BuWVWxRHb/8/bpqRoczWVBKX2rXbp6DsnWqhIJVrTKqTTpoCEQ/1Afnd5KbUPhICBQULTP/8knn3SDQdvHH38841eT8QvJ6UKAvuHWLOiCdXvlUP85sVbdSEUX9Tu6N/reXRLuuyC3bkuRcdp9FL80ik4EoLahsBAQKBgdHR0JtQ1apFZIA8N1dbFqYf0v8vPtt9+61erUNhQuAgIzTmsb4gcntVVXVxdcBbPOmnL+fczHz41OLnAG/bVR21DYCAjMKK1teOSRR9wThk5l3b17t/1q4XEei6kPp0F2NAieffZZ91jruA61DYWNgMCM0DGFL774IqG2QYNiOmob8hFfXT2Tg+bFRte2iq9tYCn14kBAYNppbcNLL73kBoO2+vr6ormadB4qpF0lSE8HnZ2xG21a20CwFg8CAtPKVNtw4MAB+9XioM+Z0H+7DrL6/XkR6fT19SXUNuhzNqhtKC4EBKaFnkjff/9992ShbeHChUV5Nak/izMDJ+dHXHqYhoAujRJf28AyJcWJgMCUM9U2fPjhh0V9NenMxGERv0Tafbh48WL3OOv+4XkaxYuAwJTS2gbtRnJOGCUlJZ64mtRiOf159CqZE2CMdh/G1za0tbXZr6BYERCYEqlqG/QK0yuc5aj9fiLULrfk2oZCn42GzBAQmHSpahu8NkCpwaA/n87t9yvtPoyvbdD6EGobvIOAwKRJVdvg1bWLtGvJGYj1YzWwdh9S2+BtBAQmRaraBu1q8jKnG62pqcne4n16TKlt8AcCAnnTwUkdfHZOGDooHQ6H7Ve9TRed05959uzZvpjjr92H1Db4BwGBnKWqbRgaGrLf4X26D5zCPz15epWGwM6dO90uNQ1Eahu8j4BATnRwUsMgPhw0LPSE6TdON9P27dvtLd6i3YfOIoXali1bxtRenyAgkDVTbYN2M/mV7g/dD9oX7zV6XPVuQX8+vXv48ssv7VfgBwQEMqaDk6+//robDNr0iWBeqm3IhT4ZzdkfXtkXeif40UcfuT/XggULqG3wIQICGTHVNuiUVgYoY7Q4TPeLFwbntfvQWbFW2zvvvENtg08REEgrVW2Dlwdkc+Fcba9evdreUpy0u8wZdNf/FttKu5hcBARS0u6S+IfKa9MuJq/XNuTCeZCQnlSL8a5Kj6neKTjHWe8gqG0AAQEjU22DXl3CTPvsnarikydP2luLg1a66xiDc6y16I+uQygCAglMtQ3av6790khPp3/q/tLisWKgIaCzkqhtQCoEBFwaAs5gq9MaGhp8WduQCz3Z6j4rhumu2n3oBJo2ahtgQkDAot1HzpWktvvvv9/XtQ250K4l3Xfa1VTIXTTd3d3UNiAjBITP6eDkq6++6gaDNr0C9nttQy50KqizDwtxdVe9E9TxBeffSG0DJkJA+JhOVQ2FQu4JQ6eyfv755wxQ5sF5NkKh1UPo+ljJtQ3MRsNECAgf0gDQIIivbdCgoLYhf/rAHN2fWhdRKLSWIb62wS8r7SJ/BITPaNeRdiE5waBNu5i4mpwce/bssfZpIQxUa5dXcm2Dn1baRf4ICB/RQecHHnjAPWHoAOW+ffvsVzEZtE9f9+1MD1TrvyO5toHZaMgWAeEDemLQ6arOyUKbTmf142Myp5rua2c22Ezt3+TaBp21BOSCgPC4VLUNLL42dZzB4Onu69c6huTaBmajIR8EhIdpbcM999zjnjC0tkEfkYmptX79emt/T+dAtVZAJ9c2MBsN+SIgPChVbYM+twBTz6mo1ifNTTUNgeTaBl1bCZgMBITHmGobPvvsM64mp9Hhw4etfa81EVNJV1uNn5FGbQMmGwHhEalqG/r6+ux3YLroFbzuf605mCoHDx6ktgFTjoDwAB2IfPHFF91g0LZ8+XK5ceOG/Q5MJx0sdo7DZF/R6+QCpxhPmw6Is9IupgoBUeRMtQ1arIWZ5TwbYjKnumptQ/yMNB0Ep7YBU4mAKFJ6YtiwYYN7stCmA5TUNhSGRYsWWcdkslbEbWtrS6htYKVdTAcCogiZahvWrl1LbUMBWblypXVc8r2b0+4q53tpW7p0KbUNmDYERJEx1TborBkUlo0bN1rHJ5+ny2ltw9y5c63vo3cPO3fuZDYaphUBUSR0sPO1115zg0FbRUUFtQ0FyqmFWL16tb0lcxoCW7ZscY+zdh2y0i5mAgFRBJJrG7R9+umnXE0WMF1iW4+TdgllQwM/vrZBA4baBswUAqKAmWobZs2aZT3aEoVN6xT0eFVVVdlbJqZdhfG1DdqdCMwkAqJAmWobXnnlFWobioQWKOox0+6hiejkgnXr1rnHmdoGFAoCogAl1zboHQS1DcUl04DQacnUNqBQERAGNy/8n/T09EzQzsjQ1d/kVsT+oklgqm0oLS2ltqEIZRIQGvr51zZE5NZvl+Vcv/257D8nl3+7Fd3qGJELF27a/w9kh4AwuNa/T1oa6+WZkvETdcm85bK2pUVarLZWlpeFJKivBUOyZFOn/GvU/uIcmWob3n33XWobipQ+2lOPoQZAMu0mjK9tWLx4cfa1DZHrcrZzkywJBa3PYEV9Y+yzGf3cVs4rkWBoiWwKd8mh5gqpCV+0vwjIDgGRRuRfX8pC+5e4qdfeGGfs0nFproj+gup7SpukN8eQSK5t0GUaqG0objobyTme8XSCwfz5863tGh47duzIejZa5Eq3fFCmn7tSeSt8Vq7fdhcbketnw/JWaezvD5g+vEAGCIh0rh2ROvuXPOXv2OgJaQzF3hNsOCbZ3MybahvKy8upbfCA5IBwahucLiUNiVxqGyLD+2WFdWdbGv1MTnBFMtorTRoSBARyRECkFf0Fs3/J0/2ODbQ6NQprpDvDhNCTw5w5c+yvi7XNmzdT2+ARGv7OcR0cHLSmuzp/rqury622ITIs4ZrYHWtwTbdkcsM62r3Gei+jEMgFAZFWZgEx3FFp//LXyP4JLv41APQBPvG1DTR/NO06zKe24eaxhti4V2ChtA3aGyd0XtobwsIoBHJBQKSVSUCMSGetfRIItcqAvdVEux2Saxto/mj6dLn8ahuuyZE6+/tN8DlLdnFgIPrVQPYIiLQmCoiIXDm6RkLWe4JSd2TE3m6m01W/++47awCa5o+mXYn6aNC8axtudssa+7MYqNkvjFJhOhAQaY0HRPl/haUrrg7i0N4WWbvEnupa8oys6zwvlDdhylwMS7UTEAw6Y5oQEGnFBcTfnBoIbY1SXzlPSqzXglK2aquE+y4REJg6BARmAAGR1gRdTGO/yun2FXZQBKRkxX4ZnsTKasAVHxCNJ+IqpYGpQ0CklckgdUQG28pjv7jRVt5+3t4OTKZ+aQ7aAbGwTTKexATkgYBIK5OAiIorqAtUdsiwvRmYPBHpbbKr9gPVwuoZmA4ERFoZBkTkhDQSEJhq59ul3P6clbYOZN7NNHrdsBwHMDECIp24qYXpAiJyaps91TUgoW2n6B/GFInIcLjGLpbLYKmNqMj1E9L89/0UyiEnBEQ6wx1SOUFAjF06Kg3Oomh5LNgHZGZUepvL7JAokRX/6JNLpulzkVty4fhWWfJGW94rDcO/CAgD63kQXWHZ6KzUGm3lf9sl4a7xOoieQ3ulsf6Z8RlMVVvlxBXuHTAdxuSSnvx1qW87KOZV1kujPQ27sb5S5oXK5O/GlV6BzBEQBtbzINyahzRtlxbP9cu5K/EPaAGmy5j8PnTGulhxP5N7D0nPmSH5naIcTAICAgBgREAAAIwICACAEQEBADAiIAAARgQEAMCIgAAAGBEQAAAjAgIAYERAAACMCAgAgBEBAQAwIiAAAEYEBADAiIAAABgREAAAIwICAGBEQAAAjAgIAIARAQEAMCIgAABGBAQAwIiAAAAYERAAACMCAgBgREAAAIwICACAEQEBADAiIAAARgQEAMCIgAAAGBEQAAAjAgIAYCDyHy6BZ9XDmptuAAAAAElFTkSuQmCC
|
As shown in the figure, ABCD is a parallelogram. What is the measure of ∠B? ( )°
|
A. 45; B. 60; C. 30; D. 90; E. No correct answer
|
C
|
73
|
iVBORw0KGgoAAAANSUhEUgAAAYsAAACjCAYAAAB7aDJkAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABUDSURBVHhe7d19aFTXusfx6euUthH7Mn1BQy1pia0GlNrUNm01pXi0FDFe21NKxUDk0AaF3FaxRbnm0lopEXz7wwsDSqupggctBJSopHp6jjYI0Zw22NSg0KZUT0mL7R+B6R/PnWfPWpOZySR7XpOZvb8f2Kizx7zMntm/vddaz1oBAQDABWEBAHBFWAAAXBEWAABXhAUAwBVhAQBwRVgAAFwRFgAAV4QFAMAVYQEAcEVYAABcERYAAFeEBQDAFWEBAHBFWAAAXBEWAABXhAUAwBVhAQBwRVgAAFwRFgAAV4QFAMAVYQEAcEVYAABcERbwoYj0fvGF9EfMPwG4IizgP0MdsjIYlKZjN8wDANwQFvCdvp01EggEJLDkgAyaxwCMj7CAv9zokpZQNCg0LAKV0tpNWxSQCcICvjJ4YIkEauql3gRGsOmY0BgFuCMs4B+RXmmrCciSA4MjTVGBJRL9JwAXhAV848axJgkGm8Tp1x48IEucsAhIaONZoTEKGB9hAZ8YkHBdYjDckGNNwdjdhQ0QAGMiLOALkbMbJRSokZ195oGo2GOxu4u68IB5FEA6hAV8YEg6VkbvIkYNle2TnTWxsAiENspZ2qKAMREW8L6+nVITSF+E54yOcu4uKNIDxkNYwOMicnZjKBoGj8vS/94gGzakbH+rjzdFBWp2Ru81AKRDWMDbzKinuk1HpbOzM+22rcF0dAdCspG2KCAtwgIeFpHethoJVLbKuIXaA2GpM3cXwZUdMmQeBjCCsIB3mQkDV3a4nf5tU5UGRo209XJ34VfDv/4sP//ssv06bJ7tL4QFPGpIuloqoyf/Fukyj4yrZ6s8Yu8u6sNMX+5T//qoWqqnVZgLh5EtGKqS6urovuoqCQX1saCEqhbJqh1H5OJP/ggPwgKec+3M/8iihA98xbToh3rDYfnW7E/2rRzesEoWhGy/hT05zJWGT87INfMs+ElE+vfUmfdCrWz7d2oYDMtPF4/IB/Pte6xC5m856/nmS8ICnnPj+3+m6ci+MMZ05INyYdRzzfbP75lk0K/OrJegEwR1Mna95pD0tNWb5wWksqXL04FBWABAqvigh/HCQtnmTn1uSJpPeDcuCAsASJVxWEQ5AylidxdertUhLAAgVTZhIZHo3YXt86qWtl7zsMcQFgCQKquwELl2aJkJi4DU771qHvUWwgIAUmUZFtFbi3hYhFq7zYPeQlgAUT09PbJ7927Zt28fm882LbQbJY+wCLRkVNlTdggL+F5ra6vcfPPNIx92Nl9sU6dOlYMHD5p3QYo8wsKra6MQFvCtP/74Q+bOnRv/kOs2c+ZMWbhwIZvHtjlz5iQd5+eff16uXh2nbyHLsOjfUxv/2s0nvFn+T1jAl7To7s4774x/wO3f9Wrzxx9/NM+CF3z11Vcyffp05/jeeuut8v7778uff/5p9o4hq7AYlANLYu8jLy/RS1jAd5qamuSmm26Kfbij24oVK2R4eNi5q9B/v/rqq+aZKGcaCJs3b3YCQo+rBsbJkyfNXhdZhEWku1UqzXupsrVbvDqtGGEB3xgcHJRHHnnE+VDrFgwG5fDhw2avyLlz5+InFu34RPnSu0NtarLHWi8AfvnlF7M3A/17pNb5vy5hMdQlLZWx7xGobJEuD8/3QVjAF/bu3RsPAt30LiLdyWPdunXOfpqjytfRo0ed46fH8Y477pDt27ebPVmId1iPHRbDV47IO1WmGK/ydTnk8amKCQt4mjZFLFli19kOOM1P7777rtk7WmJzlHaMonzosXv77bfjx1qP44ULF8zezDjrWVz6Uv63fqQiu/mzM3Lxql3P4qpcPNMuWxpmSYWzv0Lmf3BcrvhglnLCAp7V29sr9957b/zkMWXKFKez001ic5TWXqD0ffPNNzJ79uz4sW5sbHRGu2XLWc/CWbdinK22QZo37JD2Mxflh9/9s/AJYQFPSq2deOGFF5wrz0zZ5qi7776b5qgSt2fPHqe5yR6vMWsnkBfCAp6iV5NPPfVUPCRuueUW2bVrl9mbOQ2Wxx57zPkaepWK0vPbb7/JsmUjczLNmzdv/NoJ5IWwgGek1k48/PDDMjCQQUXVGDo6OuJfK9u2bxSXNifOmDEjfnwyqp1AXggLeEJq7cRrr71m9uTn5Zdfdr4end2lQQPhww8/jPcpPfTQQ5nXTiAvhAXKmtZOPProo/GQSK2dyJd2nNoTkw7JxOTRviMNbXusFy9enF3tBPJCWKBsffbZZ3LbbbfFTx5PPPFEUU4eq1evdr6+9mHQ1DE5NKjvv/9+5zhoeOdUO4G8EBYoO3rC1opcGxLa/PTee++ZvYWn4+ttkRcnqYmlAw3WrFkTP9Ya2OfPnzd7MZEIC5QVrZ2477774iePiooKpy6i2LZu3ep8Pw0NHYWD4tMmwMTZYt96662caidQGIQFyoZ2bCbWTrz44otZ1U7kI3EordZgoLi0dkJrJvT11j/3799v9mCyEBYoeXo1+fTTT8dDQmsnJqM5SDvO9ftrARgdq8Whd206C7A91lo7cfnyZbMXk4mwQEk7ffp0Uu2EDpXMp3YiX3beKJ36GoWVWjuhd3AMKCgdhAVKlk4KV4zaiXzo1OX6s2jfBe3nhaGBoH1CibUTx48fN3tRKggLlJxr164lXWEWunYiH3pi05OZ/lyMjMqf1k7Ywkfd9O86+gylh7BASZmo2ol8aEjoz6ahMVEd7F6k06kk1k7o3QVKF2GBkvHKK6/EQ6LYtRP50OYnW3fBinrZ04BtabGLCwWcu0hqJ0ofYYFJN1m1E/nQDm79Wanqzs6lS5eSaifeeOMN+n7KBGGBSZVaO6HrJpdD0462q9s1FJgzKjPhcDipdoK7svJCWGBSaCCUQu1EPmxTyvz5880jSEdrJ/QOwh5rvbOgdqL8EBaYcKdOnZK77rorfvKY7NqJXGmTiv0d9O8YTZsTE0e2acDSbFeeCAtMqFKsnciHNpvp76GL72BEau2EjnrS0U8oX4QFJoTWThRz3YnJou3w+vtMnz6dK2ZD+3NSaydYx7z8ERYounKonciVjuSxHd1UHYvzGqTWThCi3kBYoKgmct2JyaJTZ+vvp524fqWBkFo7UerDn5EdwgJF0dfXF7/C1E1rJ3SiOC/SNaD1d9Q7DD+udaEjm1JrJ1jzw3sICxTcxx9/nFQ78dxzz3l+Wgzts9DfVddh8BOtlUisndA+HHgTYYGCSVc7sW3bNrPX2zZt2uT8zn6pudC+mtTaCV3ZDt5FWKAg0q070d/fb/Z6nzbF2N/d6wVnOo9TYu2ErpHt9TtHEBYoAK/VTuRq9uzZzu+/e/du84j3pNZOMNWJfxAWyFlq7YR28B46dMjs9R8tzNPXYfHixeYR70itnVi4cCG1Ez5DWCAn7e3tSbUTTz75pBMefvbll186r4WGppeaZVJrJ3TyR2on/IewQNb8UDuRCz2B2pFBXpjaIl3thFeHP8MdYYGMpdZOTJkyhZNHihUrVjivjfbjlDPtpJ83b178WC9btozaCZ8jLJARP9ZO5MLOFaVX4eVq//798TskbVLzW+0I0iMsMC4/107kQjt97WtVbtOWa+2EnbpENx3dRe0ELMICY9LaidR1J/xUO5ErO4RWh5mWC62d0CVi7bHWZjTuHJGIsEBaqbUTy5cvN3vgxg6h1eGl5aCtrS1eOzF16lRqJ5AWYYEkOvw18QpT153wc+1ELnQklL522u5fyrR2QmtC7LHWhZyoncBYCAvEae3E7bffHj956LoTfq+dyIWu1WFfw1Jt89faCW1W1J9R7yo2b95M7QTGRVjAOUksXbo0foLT5icdX4/c2bszHVlUSvRYr1u3Ln6sdbZcLSYE3BAWPtfb2yuhUCh+8vDyuhMTydZblFLopqud8MqKhSg+wsLHUmsntM2aETCFoZ3G9jUtBQcPHkyqnfDyZIcoDsLCh3Q8fW1tbTwktHZi+/btZi8Kwc4TNdmd3HqsGxsb48dah/VeuHDB7AUyR1j4jJ7EEmsnHnzwQRkYGDB7USh6krav8WR1cmsopNZO6M8F5IKw8JHm5mbWnZhAtjhvMjq59U4xsXbi8OHDZg+QG8LCB3Q8feIVpg6P5eRRfHbqjIns5NYO68TaCV3m9erVq2YvkDvCwuNSayeqq6sZATNB9OpeX3NdNGginDx5Mql2QivJqZ1AoRAWHqUnCR0aaUOCdScmnk6boa+93tUVkx5rO8WIblo7ocEBFBJh4UG67kRi7YSOyDl37pzZm2yoJyyNsyqc5wVDc6XxQJ+kHzw7JD3hRpkbCkafWyGzGsPSM2R2xQ3J2S0LpKqqOrpVyX/t7Ik+4l/awayvqw5VLRZtYkqsndCFqbhzRDEQFh7zySefZFw7EekPy9IFayV8tFM627fIokr9PyFp6bphnmFFpHtLlQQrm+TIlejXilyXEy2VEqhska6ENLj299elfpcNm2Hp21UvTcdSv5Z/6GJB9jhov1GhpdZOMPwZxURYeIQOidQFiezJyb12YlC+2HdcrkfMP9XgAVmi/7+lyzwQE+ltk5ro4389kpAMN45JUzAgla3d0SiJ6Wqpk3DiKNy+XVL3wb/MP/xJRyLp8Rjrzi4XqbUTM2fOpHYCRUdYeIDWTtgrTBsUL730ktmbjS5pif7/mp195t8qEg0BbXpaJoeS5hSMyInm6PcLNom9eeDOYrQ5c+Y4x0TvAgpBQ0HDwR5rDQ1qJzARCIsyl7ruhK6hYP++b98+86zMOHcQKU1LIt3SGtJQWC9nzCNW/x6tAg9J9ObCGOmzqK6ulcawv/sslB1koNN/5EvvFLW5Sb+eXhwUKoCATBAWZSpd7YRdd2LNmjXOY9oEktH6BMM/ycUj62Vu6AX5v38ntktFRU5Is36PurCk1nkPhOuc77Oyw993D+Oxx0L/zJV2WGvHtT3W2qFN7QQmGmFRhj799NNxaye0WWLGjBnOvtWrV5tHxxJrerJfK1AxX7acTbgfGAhLnT4+TljUJXVUIJGdUFBP9rnQIbA6FNYeH2onMFkIizKiJ4lM152wY/y12UJH5bgZ/vWSHN+ySCr1ayf0Q8iNDlmpj3FnkROtlNfXSKf+yIatnbBTdmixHbUTmEyERZnQ2okHHnjAOXHo5rbuhJ5s7BVp5tNRR6R/TywARgZEmT6L6jbpNY9YvW3V0ecm9lkglZ19Vu/0MqVNTDpNhz3WOn0HtROYbIRFGdDaCR3hZE8ema47oUtl6vOzuqp1mp2Csj7em21HQ62U5BuIG9KxMvrzBFukK6WbAyN0yKweg0ynKtdOazvcVu8qqJ1AqSAsSpj2PTz77LPOiUM3DYxt27aZve60c9v+30wX4o/0bJXqylbpTgiASHerVEYDJGkYbJo6C4ymdwn2GIxHj7X2L9nn6uCF8+fPm73A5CMsStSpU6ecpiZ78tA26/7+frM3c3ZiOV2gP8m1L+TNUEgWrD0g537Su5SI/P79EWmqmiutiR3cjqHo3UWsYvuEVvENX5EjTaMruDFaJmGRWjuhs9VSO4FSQ1ikNSgXOjul02U7c/Gq/Pyre3NQtlLXnVi+fLnZkz1tstKvMarfItIvhxpnSYX5HsFQlSyKBsf5pJLuBJHr8o8dDTKrIvr8YCxkRs8NhVSJYZFuyg89Lom1E7mufRH5/T9y9eIZ8948Ixev/kd+TziUg99/LwxDQD4Ii7S+lcMbNsiqBSEJmg+6niDnNjTLhujjujU31Mo0PXFG91XMapAtJ37IuzlGTyaPP/54/OQSDAbjtRO5sk0b+YzzR+50oIE9nom1EdphnTgrsNZOXL582ezNVESunz8ga533aVBCcxuk2Xl/NktD7TSpcEI9LEfb18vc+tGj2YBsEBbjGpIjf419mNMNHdWr7fPh12PDTaMf1vpwf86BoR2bibUTGhqFGAFjO7l1WghMDntMbVjoCKnE2ol169ZlXzsR+UE63qlyLmYqXw+nvSOMXD8v4dcrzfdpkeQZv4DsEBYuulvNVN/pwsIxMtw0EKiRpGmVMqAnCW1msicObX5au3at2Zs/e2cxkau1IZk9tqdPn5ZNmzYl1U6M6kvKRKRf9v4l1p9V2dLlMqWK6W8iLJAnwsKFLTwbOyyirh2SZeaEUN2WWo0wtu+++y6pdkKbnT7//HPnCrRQm23q0IWP0u1nK/52zz33OMegpqYmfqx19bzcpi2PXpyE62PNo8GV0pFJv9FQh6zU59JpgTwQFi4yCgs7f1J0C44UKIwrdd0JNn9selexdetW8y7IgRmyrF8rmwuTvp1NydPHA1kiLFxkEhaRsxslZE4Gy5Ln8R5Fp9545pln4icPNv9s2uyUb+3EtUO2UzzLyvmBbuke/60JjIuwcOEaFkM9srXOnBBSitnS0fHz6Zoq2Ly9Zd2BnZapmnfCol72MvEsJhBh4SIeFqF6aW1PqLM4GpaPmk3dgQ5bXLBF/jFWjQJQEAMSthcmdFhjghEWLhLD4m+mxsLZVi2SqpDOmRTdVzFfVu04It8SFigqwgKTh7BwMX4zVGyKjHeqTGgEq2Q981+gaBLDollOcG2CCURYuMikgzs2NNF8iBPXggAK7Mx6c2ESqJYsBkMBeSMsXGQUFlHx4r3o1swlH4ok0tUSn4KGFQoxkQgLF5mGRf+eWsICE6BPdtbE3meZjL4bMSTX6VNDHggLF7HV4NzCYlAOLDEf4MASOTBoHgaKINIflnrT7Ok+3UdU5LqcWP+m7OVGBHkgLMYVkRPNJgTGCgudTLDNTL+Q52SCQKaGutZLlQmMir98LF9eSTdVvg7AOC4fLFgqbcwnjzwRFmnF1rNo37LIzCgb3XTo7I72kTqLzqMS/miVLLDDZ4NV8ma4x/0qDyiQ4SsaBCPT6FdMq5WGZjO0u7lBaqeFpOrN9DPSAtkiLNKKrWcRr6kYZ9uhhXpfX5IirIEEZGT410vydWe77Ii/L3dIe+fXcok3JQqIsAAAuCIsAACuCAsAgCvCAgDgirAAALgiLAAArggLAIArwgIA4IqwAAC4IiwAAK4ICwCAK8ICAOCKsAAAuCIsAACuCAsAgCvCAgDgirAAALgiLAAArggLAIArwgIA4IqwAAC4IiwAAK4ICwCAK8ICAOCKsAAAuCIsAACuCAsAgCvCAgDgirAAALgiLAAArggLAIALkf8HGdIrq75tCPgAAAAASUVORK5CYII=
|
As shown in the figure, a sector is drawn with B as the vertex and AB as the radius, just passing through point C. Given that the area of this sector is 37.68 cm², what is the length of AB=BC= ( ) cm?(Use π=3.14)
|
A. 12; B. 8; C. 6; D. 4; E. No correct answer
|
A
|
74
|
iVBORw0KGgoAAAANSUhEUgAAAYsAAACoCAYAAAARr8KnAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABhuSURBVHhe7d1/aBznnQbwbVo6hXRDC93+wBVX2KbbNhVUEIRbpXUWgh1xJkht4jbGwgaX4iw2bNvoVONw1l2tGLOBWPVxurvlFO4sxSo5pMKCfVLpOkpiu8J3jnS1cNfxWeAoyHJuXeRSBNM/npvv7Dur3dGsZle7knZnng8MsWdkKdrZnWfmfd/v+wZARETkgmFBRESuGBZEROSKYUFERK4YFkRE5IphQURErhgWRETkimFBRESuGBZEROSKYUFERK4YFkRE5IphQURErhgWRETkimFBRESuGBZEROSKYUFERK4YFkRE5IphQURErhgWRETkimFBRESuGBZEROSKYUFERK4YFkRE5IphQURErhgWRETkimFBPqJj5te/RkZXfyWisjEsyD+yKXRpGg6eX1I7iKhcDAvyjdn+ZgQCAQTahzCv9hFReRgW5A9LacRDRlBIWASa0DvFtiiiSjAsyBfmh9oRaI4iqgJDO3gebIwiKh/DgrxPn0GiOYD2ofmVpqhAO4y/ElGZGBbkeUvnD0LTDsLs154fQrsZFgGEjl0GG6OIysOwII+7hWRbYTAs4fxBLfd0YQUIEbliWJCn6ZePIRRoRv+s2mHI7cs9XbQlb6m9RLQWhgV5WBapLuMpYtVQ2Vn0N+fCIhA6hstsiyJyxbAg75rtR3PAuQjPHB1lPl2wSI+oHAwL8igdl4+FjDB4FM/8pAc9Pbbtx9F8U1Sgud941iCitTAsyJvUqKe2l8YwPj7uuL3SqTq6AyEcY1sU0ZoYFuRBOmYSzQg09WLNQu1bSbSppwutK4Ws2k1EqzEsyHvUhIFdKbfLv9VUJYHRjMQMny78avn+AhYWXLb7y+qr/YlhQR6TRTreZFz840irPWu6dhJ/ZT1dRJOcvtynLp2IILItqG4cVjYtFEYkYhyLhBHSZJ+GUHgn9p8exfQH/goPhgV5xt3Jv8XOgg98cJvxoe55A9fV8WLX8UbPfuwIWf0W1sWhBZ2nJnFXfRX5iY7MQJt6L7Tilf+xh8EyPpgexdHt1nssiO19l33TfMmwIM9YuvmOQ0f2uyWmI5/Hu6u+Vm3v3OQkg3412Q3NDII2lK7XzOJaIqq+LoCmeNoXgcGwICKy5Ac9rBUWwmrulK8NITbh/bhgWBARWcoOC4M5kCL3dOGHWh2GBRGRpZKwgG48XVh9XhEkZtRuj2JYEBFZKgoL4O5IhwqLAKKDc2qvNzEsiIgsFYaF8WiRD4tQ75Ta6U0MC/K12dlZnDlzBq+99ho3n21SaLdKFWERiJdV2dOwGBbkW6dOncJHP/rRlQ87N19sn/rUp3Du3Dn1LrCpIiy8vjYKw4J8Z3l5Gdu3b89/yGX76le/iieffJKbx7bHH3+86Dw/8cQTmJtbo2+hwrDIDLTmv3dswtvl/wwL8pW3334bDz/8cP4D/olPfML8r9xtvv/+++qryAveffddfPnLXzbP78c+9jH8/Oc/x1/+8hd1tISKwmIeQ+2595EfluhlWJBvHDlyBB/5yEdyH25je/bZZ/GnP/0JX/rSl8y/7969W30lNbpXX33VDAg5r1/84hfxm9/8Rh1xUUFY6FO9aFLvpabeKXh9WjGGBXne3bt38ZWvfMX8UMumaRreeOMNdRS4ePFi/ph0fFLj+vDDD/H000/nz6fcAMi+smUG0Gr+W5ewyKYRb8r9jEBTHGkfzPfBsCBPGxkZwcc//vH8xUP6JpwuHocPHzaPszmqccnTw+c//3nzPErzojxdVCzfYV06LJZvj+KFsCrGa9qDEZ9MVcywIM/q6FgpmJLmp5/+9KfqyGqFzVHSMUqNQ/ohpD/COtdyQyD9FZUw17O4cRF/F12pyI79+ySm56z1LOYwPTmMvs7HEDSPB7H96AXc9tEs5QwL8pxMJoNQyFrUKIBHHnnE7Nh2c+XKlXw7t9ReUP2TkU2FI54OHDhgBn+lzPUszHUr1thaOxHrOY3hyWnceeC/hU8YFuQp9tqJ73znO+ZQ2XK9+OKL5r/75Cc/yeaoOie1EnKerPNVsnaCaoJhQZ5gr52QwPjlL3+pjpZPvo813FLuUqn+yJODnBvrXMuTxZq1E1QTDAtqePbaiS984Qu4dauMiqoSUqlU/ntV2vZNG6uwdkK2smonqCYYFtTQ7LUTzz33nDpSnaeeesr8fuzsrh+FtRMy6qns2gmqCYYFNSS32olq/f73v89fmMbGxtRe2gr22gn5c0W1E1QTDAvaWMv3sXDvQU2rW+21E1/72tc25OLxox/9yPz+0uzBpo6tUVg7IeG9rtoJqgmGBW2YbLobYbXsZHBXP67VoMrVXjvxs5/9TB2pPRlfL0V68rN4kdpc9toJCeyrV6+qo7QVGBa0MZbO42BoF14eG8dY/x5zDh2tYwTz6nCl7LUTwWDQrIvYaCdPnjR/noTGH//4R7WXNpK9dmLfvn3rqp2g2mJY0MaY7EN32pqGU0cmGYUW0BBNZipukrLXTnz3u9+tqHaiGoVDaaUGgzaWvXbi7Nmz6ghtNYYF1cgyZpPPICTNTsHH8P1n/hGT6kjOPEY6ZCqFNgyUOZeOU+3EVjQHSce5/HyZb4gdqxvDqXbivffeU0epHjAsqCZkuuZwy/Po6YlhtznJWhO6J20T/GcnEAsZF4OmbtgP2UnthHWHKZt0clZTO1EtmW9I/j+OHz+u9lCtSO2E9frKJk9wHFBQfxgWVBV9ZhD/YFz5p04fw4TVgW1N3+wwdXM2HTf7L4K7XsbYr17HxTvqQIF4PL4htRPVkKnL5f9F+i7Yfl478qRoLUAlNwQXLlxQR6jeMCxo/fQZJJolFPbg0MiU2pmzNNlthkIoNoHivFhCqisAraUbE3eKm6M2unaiGtIkZg3h5Mio6klznqw1YZ1rKYKU0WdUvxgWtE46MiN96OtTI526UrZQMI4PtBkXAg3RwYLmo/nf4tV/fguLtm6L4eHhTamdqIaEhPy/SWhsVge7F0nthKxeJ6+l1E7IiDOqfwwLqoCOB/dkbv97WJmheY2RTnoGSVkfQIsicWUON9KXcFMdKrSZtRPVkKGzVt0FV9SrnFU7YVXGy/ohrJ1oHAwLKou++Bb6dkYQDuUWh9Gig8g/LxSEQtI+0kmtaSxFeVdtjxOzs7P43Oc+lw+KzaqdqIZVKMaq7spI7UThyLYf/vCH7PtpMAwLcqdPoW/vAGal5cUIhsHvR9B6NF3c7JRNoUuGzTYnMFOQCdkr/TiavGZrolpdO/HEE080RNOOtKtbHbKcM6o8UjthPZHJCDc+lTUmhoXP6YvX8Z/JE+jp6cHp0Wl84HC9Xkp1oSvlMtbVYI10aopPYHF5EbfvLK0KgHqpnaiGNWeU/B5Umjw5WK+VbN/85jdZO9HAGBY+lr3cixY1d5O1aeHuVcNdp3pD6Bi5q/5m8+FvMT5lPUosIR2XKTk0hF8YXbU+8ZtvvllXtRPrJTPSWr/DjRs31F4qZK+dkOHQbLZrbAwLv5K5m4ygaNrTj4s3FrAwN43R7hZoxgc7dOxyUUf1TCKCQPtQiXmd0ujttYbN6riW2IPuiTvFHd2GjVp3YqtYcxdJHwYVK6yd+MxnPmMuJkWNj2HhV+k4tGgSxf3Ry7h8rAkBrbtoqg798jGESs3rND+E9nha/SWLRVsndj3XTlTjzJkz5u8jQ0B5x5zjVDvBdcy9g2HhV0ZYOPZDLKXQFYhisGhJY2tepyB29V9Z6ddYnsVrHSFEEjNqR7FGqJ1YL/k9rLtnVh07104wRL2FYeFXt5IYmFj1nGCYw2C0DUl7V0I2jW5zzifjwq+FEI5EsC0of+7AiEP71Pe+9718SNRz7UQ1nn32WfP3k2GgfuVUO1Hvw59pfRgWHrc0OYgRx1leVzcZWdJxh7AQy7dx4ejOXEgENIRaDmDIHE+7QtadsNdOyKSAXiRt8fI7yhOGH9e6cKqd4Jof3sWw8LRZ9JtzN/UiP2CpDOm48bRQNPjpOq5fV39cwyuvvFJUO/Htb3/b09NiyF21NV/UwMCA2usP9tqJZDKpjpBXMSw8LJt6AeFwyBzh1BS3FdGtIR2Pw+qyNs0PYV9+xNNqTrUTEhx+INNpy+/sl5oLp9oJGUpM3sew8Kw7eOcdaUvKGhf/JuODHUIsP4f4WpaQSiRXpvLIXkNCpvKIJODUjS1NTA8//HD+4iF32tIU5ReFNRdeLziz104cPnzY00+OVIxh4Qd6BgNtxgdci6JwAlhnxteeTBmRoWPxaj92Sf9EcDv63lr0fO3EelkXUBlO61X22glOdeI/DAuf0DNJRDWZANBeW2GjT+DYsQt4q287gsaFwWkCQBk2aq1LLZtcREZGRtRR/7Gaop5++mm1xzvstRNPPvkkayd8imHhI/MjHWb/RduAQ3GdJTOAVvPC0IQ9DhMASigU1k58/etfNwvv/ExqDOS1kND0UrOMvXbiF7/4BWsnfIxh4StW/4XD+tiKTBqohfeuGhIrGmXdic0mAWHNeeWFAj2n2gmvDn+m8jEs/GaN9bHF0s3rqyYAlA7rUEgmCMwFxSOPPMKLh40VpNLp28jstRPye7F2ggTDwof0mQSajQvBylKoOvQS7VIyBPahhx7KXzy8XjuxXlJnIK+P9OU0qsLaCWlS81vtCK2NYeFLK+tjh3fH8Dd/fw4ztlYpP9dOrId0+lqvVaNNW26vnfjGN77B2glahWHhV/oEYloYe4dmYX9OkCYm+7oTfqqdWC+5yMrrlUgk1J76Z6+dOHToEJ8cyRHDwpeW8N//+ipS9s4Jg712QiYEpPJY63M3yhDawtoJaX5i7QSthWFBJhlP/+ijj+ZDQtad8HPtxHpYEwvKhbee2WsnZP1z1k6QG4YFraqdkHUn/F47sR5yEbZew3qd+sNeO3H8+HHWTlBZGBY+JhcJe+2ErJVM6yc1CfJa1ttqgPbaCQmMixcvqqNE7hgWPjU7O4vPfvaz+aDw8roTm8laEEmmAKkXTrUT8hREVAmGhQ+dOnWqaN0JabPmCJjakJFQ8prKHEr1wF474eXJDmljMSx8RMbTS1GdFRISGDIihmrHmidKhh5vJafaCRkmS7ReDAufkPbpwtoJWfr01i3X+cqpQjI1hvUab1Vhm1PthIQHUTUYFj4Qi8W47sQmsi7UZ8+eVXs2j712ot462qlxMSw8bGFhoah2QobH8uKx8fbt22e+3ps5ssxeOyEd2tKxTVQrDAuPGh4eLqqdiEQiHAGzSeTuXl7zp556Su3ZWPbaCRkiy9oJqjWGhcfIRUKm6LBCgutObD6ZNkNe+42egVbO9UsvvVRUOyHBQbQRGBYeIrUT0nFtBYV0aF+5ckUdpc0iHczy+kvfwUaRJiYZ8myda2mC4pMjbSSGhUfI9OGsnagPhSOipN+o1qTfqbB2gsOfaTMwLBqcDIlsa5O1KXIXJ9ZO1AfrYl7LJzs51zIM1jrXMuqKtRO0WRgWDUxqJ2SaDuviwdqJ+mGtbSEV1LUgoWB9T9kOHDjA2gnaVAyLBsXaifpmDWOtxUJIMkWHVTsh/VC1CiCiSjAsGoxT7QTXnag/hw8fNs+P/He9pMO6cFbgxx9/nLUTtGUYFg1kaGiItRMNwppQUJ4w1kOaGK3aCdlYO0FbjWHRAOQiwXUnGouMWJJzJf0MlbDXTsj656ydoHrAsKhzXHeiMcmTgZwvWQypXPbaCVnLm0+OVC8YFnWM6040LhkyK+es3KnKC2sn5KmCw5+p3jAs6pAMifzWt76VDwkJDCm6o8YhTwnW+VuLvXZCpgi5evWqOkpUPxgWdcZeOyFt1plMRh2lRlFOWNhrJ2S2WtZOUL1iWBSZx7vj4xh32San57Bwv/bNQTLMsrB2QiYEpMZUGBZOU37YayfWu/aF/uAe5qYn1XtzEtNz9/BAVwcN8zdvYkn9magaDIsi1/FGTw/27whBUx/0gBZCS2cMPcZ+2WKdrdgWzB0LPtaJvok7KPhsrot0YhbWTmiaxtqJBiejmqzzWVgb4VQ78d5776mj5dKxeHUIR8z3qYZQSydi5vszhs7WbQga79kdR5IYG+5GSzQJ1vRTLTAsHGUx+oPchznQ5vBh0xdxNbkHTeYHXkM0mVl3YEg1bmHthIQGR8B4g3VOrbCw1068+OKLlddO6HeQeiFs3sw07Uni6uLqd56+eBXJPU3q58SRVvuJqsGwKGGqN5T7sDmFhUlHZsCawK8Z/bNqd5nkImFfd+LIkSPqKHmBdW7ffPPNVbUTFy5cUF9VAT2DwV25/qymeNq4pVlLFum4BAbDgmqDYVHCraQKgpJhYbg7gg51QYgkZtROd3/4wx+Kaiek2en1118370C5eWf79Kc/bZ7f5ubm/LmW1fPWN225cXOSjOaaR7UupNZOipxsCl3ytey0oBpgWJRQVljoE4ipi4DWPal2rk2mgXjooYfyFw9u/tjkqeLkyZPqXbAOS+dxUMt9r0puTGb7DyLJTguqAYZFCeWEhX75GELqYtAxclftdSbNTjt27MhfPLj5Z5Nmp2prJ+6OWJ3iIfROqZ3luDWFqbXfmkRlYViU4BoW2Ws42aYuCE29mHLp4ZbV02SaDm7+26ofsLCEVJd6rwWiGOTEs7QFGBYl5MMiFEXvcEGdxVgSJ2KdeMwcPqshtKMPbzmMSCGqnVtIWjcm7LCmLcKwKKEwLH6saizMbf9OhENa7lhwO/afHsV1P4TF8ge4MnQEPzlX6rZWx523kziyM4JIpBWdR5N4+w5DtDYYFrT1GBYlrN0MpePBzVG8EFahoYXRnS5neEoj+j/8V+pf8PLu3Lj9Nsfe0txInWBoB/abhYuPIWi+LlEkMwyM6hWGRQwTfElpCzAsSiingzs3NFF9iLWDOO/lIYpqmLBjWNz9Dxw6OIrCB4lsOp4rWlzr9aOyTXarG5NABBUMhiKqGYZFCWWFhSFfvGdsMU/f8qURN35Hp7BYSg1gaF79Je8uRjrkdWGzSS3oRvhaU9A4P90RbSyGRQnlhkVmoNX3YaEvL8PpN0/HjdclkoD9Rlimoxg62onWSASRnftx+sJt5KdlXP4A06OnsX/nCVwyvqs5B5L0g7QeQPJarqnP/PdHdub6Rvomip5ovGsW/c2591k5o+9WZLHIARhUAwyLEmYSkTLCYh5D7eoDHGh3uLv2ktJh4SzXzt5smwcle7kXLcEWdI9OY25hDldOSihriA4a3/fP/4sr4/+ErpC8njEM/LoHsb5hjI/1Y0+TsU/rwNBbZ/HjHxxFcmwMyUMt5t22/Wd4lZ5JIqqaPd2n+zDoi5jo3gt5aYmqxbBwpGMipkKgVFjIZIIJNf1ClZMJNoYKw2K2H81N3Zgs7MdZMr6HEQTthak6N4iovIYdI7Bqx8wnksAPMFpwNdQnYub5+Ot/K5zldwaJSPG/9bpsuhthFRjBXS/j4m2nqfJlAMYFHN3xDBLqaYyoWgyLIrn1LIb7dqoZZY1Nhs6eNu5urTqLceOO9sR+7LCGz2ph7E1ec7/La3iVhMU8RjrC6C5KCuMSZra7t62afmL5/gIKlwfJhYWtr+NWEm3GzzduqAuoUUIuTYVes3xbgmBlGv3gtlZ0xtTQ7lgnWreFEN7rPCMt0XoxLIrk1rPI11SssZ2WQr3f3Si6yHlbuWEhw2j3Yu/I6ietXD/Q6rCwY1iUZ/n+DfxufBin8+/L0xge/x1u+OdNSZuIYUFlKicsdCxOHMWBQecmudz8RhoOOowxXjKe2i6pPzMsiOoPw4LK5BYWEhTd2LtW3430YxjfI9A2gKJaveVrSLx8Pr/8J8OCqP4wLKg880NoNy7WmnG1Xh0GOu6kDqL9xCW8v7BgrtdgbXPTozh+ZhJ/Nr8ui1RXrq9HazmE5Ng4xof7sDscxUA+PaxJ84orla06g6LOcauDu9UIH7WHiDYGw4JczOHc85H8uuPm5Inh57EyRZSOzOCu3PQejlszEjOFV/0MRvbmlgU1jwe3o++yNTzgEk6EVzputVAYRv7g0okwQlalfCCIbc+fw9ylE4hsy60aJ1twW+H/ExHVGsOCXOh4cK/4aWFh4R4e5K//TscLt/srBXcF9Af3jGOF30cs477t30tfrYyWKty3cO8B9OX7xftWfS8iqiWGBRERuWJYEBGRK4YFERG5YlgQEZErhgUREbliWBARkSuGBRERuWJYEBGRK4YFERG5YlgQEZErhgUREbliWBARkSuGBRERuWJYEBGRK4YFERG5YlgQEZErhgUREbliWBARkSuGBRERuWJYEBGRK4YFERG5YlgQEZErhgUREbliWBARkSuGBRERuWJYEBGRK4YFERG5YlgQEZErhgUREbkA/h+MiB4Tlj+CZwAAAABJRU5ErkJggg==
|
As shown in the figure, quadrilateral ABCD is a parallelogram. What is the perimeter of this parallelogram in cm?
|
A. 48; B. 40; C. 32; D. 20; E. No correct answer
|
A
|
75
|
iVBORw0KGgoAAAANSUhEUgAAAYgAAAClCAYAAABGBmp6AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABUESURBVHhe7d1taBTn3sfx7eOWtqFFXCvVgCVttQ8pDbRpIFJNETWtLQnHPnBaUe4otWmlQZpGq8UU9fRFWjT4IpS9b31hRKE3phBQopCQ0xs1eHNqTishVhRsilpJi/ZFYPvif/Y/OzPZXa/d7EMedme+H7hond1EM7OZ38x1Xf9rAgIAgAEBAQAwIiAAAEYEBADAiIAAABgREAAAIwICAGBEQAAAjAgIAIARAQEAMCIgAABGBAQAwIiAAAAYERAAACMCAgBgREAAAIwICACAEQEBADAiIAAARgQEAMCIgAAAGBEQAAAjAgIAYERAAACMCAj4zIh01tXJkRH7jwBSIiDgK5GBVikNBKS8/by9BUAqBAR85KYcawhKIBoQgdA2ORWxNwMwIiDgH+fbpVzDwW61nfQzAekQEPCJiJzaFpJgQ1g6au2QKG8XOpqA1AgI+MPIEakLhmTbqYjcPNYgQesuIiRNvTftNwBIRkDAF863l4/fMUROybaQfRdR2yl0NAFmBAS87+YxaQgmjjlYgWHdRZQLE5oAMwICnjfSWSuBYIMci+9NGumUWisgAhJsOCZ0NAG3IyDgbZEBaS0NSGjbKUmc1Ro35TVQK0xoAm5HQMDTYgPS5m6kyKltErLvIsrbBpMCBAABAQ+7KOHqWABM2JK7oAAQEPCu2B1CqbQOpL43uBiudkOCwjkgEQEBjxqRI3VBCa7pllF7i5E9RmGFRGmrpMkSwHcICHhSbFG+aglftDekYc1ysu4iglLHMq/+9NO30tLSMkHbK4d6eqT/3GX5fcz+Oo8jIOAxY/L70FFpsO4KXpP/Gfo9uiWdMfm1u9EdrA4Ea6Tt9BW5xZ2Ev4z8ID09h2T38lL7YiEgwdASWbsrLF3RUOiJtq7wLlm7JGRX4ZfIM/W75fglbycFAQFPiR9TGG9N0mu/nqhXmm57r92qw5LBzQe8JnJCGu3PQHWK28+xS8elucKZIl0qDd1XPDsDjoAAANegtC1MHxCWyLCEa8ZDornfm1PgCAgAcI1PjU4bEGq0W9YEY+/16gQHAgIAXFkERNT4ml5BafBgIQ0BAQCu7AJCBttkoRUQAQk29XpuLIKAAABXlgERN6jtxYkNBAQAuLIMiISZcKlmyxUvAgK+9ddff8nOnTtl5cqVsmDBApqP2vPPPy9nz561Pwnx8giIUKsM2Fu9goCAL/3yyy9SVVVlX/nR/NQWL15sHX+zLAPiZrescb53zX65bG/2CgICvtPd3S0PPvhgwknjueeek76+PtoMNr2q12Ohy1qYXs+lbdmyRe6++27r++p/9c9655halgEx0OpW4YdavXb/QEDAR8bGxuSDDz6wfpmd9thjj8ldd91l/f+BAwfsd2ImLF26dNKOg4bAJ5984h7n+fPny8mTJ+1X08kmICJyalvI/ju8+ehaAgK+MDQ0JE888YR7wrjjjjtk8+bNCSeShx9+OE3XA6baZAXEzz//LC+88IJ7rFetWiU3btywX51I5gERGe6QavvvmHDV4CJFQMDzvvnmG7n33nvdE8asWbMSrib1zmLRokXWa3qSwszQE7keg+3bt9tbsnfw4EG3+/C+++6TPXv22K9kakBaQxMHROT6CWlyl4lvkl4vpkMUAQHP+uOPP+SNN96I/RLbraamxng1efr0abevet++ffZWTCfd77r/9eo/W3/++ae899577nHWwP/hhx/sV7MwelTetr+HMSAit+TC8a1SVRJ7T0nVbvnnde8u/UtAwJP0hD9nzhz3hKEn/6+//tp+1UyvXPW9egV6+bLX5qPkaexXOdevy16fkaG0D0OIyK0r56S/p0fOXLiVorJ4TH4913/b99KuIed4Xb161d46MQ2Cxx9/3P3a9evXW4GRFet5EGtlSchZgE+X+y6TyvpG93kQjfWVMs8KhqCEKupl9/FLEywlX/wICHiKU9tw5513ur/ojz76aEZXk/q1zkwauprGRYb3ywr7ijnWSuWt/zVdXV+XE81lEiypkrUtjbKqrETKPuiWKwkpMSq9Tc9I1dZD0tMVlk1LKqQ5rn/GOdGHw2F7S3raheTc+ekY0uHDh+1XsmQ9DyL23IfUrV/OXb7qm4cFKQICnmGqbXj77bezuprUIHFOONqf7Xs3+2XHunY5/aueFaN3B//ulLe07z3YIIlr00VkuKM6un2NdDvn+9ET0hgKSGnrwPidxGCbVG87Nf7nSK801YwvUeFMGNCgSDcdVbsJtcDROc563Lnrm3wEBDwhubYhGAzmfDXpnKR0aqQOYPvZn/9/RgaT+omGOyqj+yfpca4jR6QueHstQGy101rpdJ7kOtAq1W2D9h/UgLRWt4mzRU/8eieg+z/VALNOMJg7d671nsxqG5ArAgJFzVTb8NRTT+V1NamD285JSrurkMgKiPJ2iZ/2f+1InbW/Gk8kpUl/s/WIzpr99vHQB+2sqJLm40Ny9eqQHG+ukhX7E7urdJ/r95o9e7Z1LBwaAhoGznHOvLYBuSIgULSSaxu0ObUN+XJm1GhQZDNg6nWRK93SUFYj4eHEIOht0v2/UBJuDtTFcKxWoCluGbuxS9IX3iUtLXvl6E/XbxvI1tB37hBWr15tHU8N/NxrG5ArAgJFKbm24aGHHprUq0k9KTm1ETorxu9uXjgp4U1LJBQMSOnb/y1nE6Z2XpMjdXockrqdlBMQWa5T1NXV5Y4F1dbWut2Hui372gbkioBAUTHVNrz88stTcjV5/Phx96T0448/2lv96Vr/PmlprJcKZxpoMP4uwqk+ThMQOTwr4auvvnKPsTYduM6ptgE5IyBQNL7//vuE2gadyjpRbUO+li1bZv1dOmMGUZFb8u+OGmtcIdhwTJyJTLEupjQBEd/FlAENAucOTptOO866tgF5IyBQ8LS7Z8eOHbfVNpjX859ceufgdHXoHQXUiHTWRo9D3F3BxXB1dB8Fpbnf3uCwB6kzWhnVpl1IukyG7nPtWmptbbVfwXQjIFDQtLahslKnVcaCQdubb745rVeTGzdutP5eLaJDjN4xxN9ByPl2KY/uo+QgiAVHZiudajehsx6TNh2UprZhZhEQKFg6UJlc2zATxWs6i8m5ovXbtMrI9Z/kXPKSGaO90lRaLm0JBRKj0r0mKIHytvG6icigtJVHj1sGK53qftVpq86xprahMBAQKDg6zXHDhg3uyULb008/ba3VM1PWrVtn/Tv8tgRHf3NsULqkapOEu3qk59BuWVWxRHb/8/bpqRoczWVBKX2rXbp6DsnWqhIJVrTKqTTpoCEQ/1Afnd5KbUPhICBQULTP/8knn3SDQdvHH38841eT8QvJ6UKAvuHWLOiCdXvlUP85sVbdSEUX9Tu6N/reXRLuuyC3bkuRcdp9FL80ik4EoLahsBAQKBgdHR0JtQ1apFZIA8N1dbFqYf0v8vPtt9+61erUNhQuAgIzTmsb4gcntVVXVxdcBbPOmnL+fczHz41OLnAG/bVR21DYCAjMKK1teOSRR9wThk5l3b17t/1q4XEei6kPp0F2NAieffZZ91jruA61DYWNgMCM0DGFL774IqG2QYNiOmob8hFfXT2Tg+bFRte2iq9tYCn14kBAYNppbcNLL73kBoO2+vr6ormadB4qpF0lSE8HnZ2xG21a20CwFg8CAtPKVNtw4MAB+9XioM+Z0H+7DrL6/XkR6fT19SXUNuhzNqhtKC4EBKaFnkjff/9992ShbeHChUV5Nak/izMDJ+dHXHqYhoAujRJf28AyJcWJgMCUM9U2fPjhh0V9NenMxGERv0Tafbh48WL3OOv+4XkaxYuAwJTS2gbtRnJOGCUlJZ64mtRiOf159CqZE2CMdh/G1za0tbXZr6BYERCYEqlqG/QK0yuc5aj9fiLULrfk2oZCn42GzBAQmHSpahu8NkCpwaA/n87t9yvtPoyvbdD6EGobvIOAwKRJVdvg1bWLtGvJGYj1YzWwdh9S2+BtBAQmRaraBu1q8jKnG62pqcne4n16TKlt8AcCAnnTwUkdfHZOGDooHQ6H7Ve9TRed05959uzZvpjjr92H1Db4BwGBnKWqbRgaGrLf4X26D5zCPz15epWGwM6dO90uNQ1Eahu8j4BATnRwUsMgPhw0LPSE6TdON9P27dvtLd6i3YfOIoXali1bxtRenyAgkDVTbYN2M/mV7g/dD9oX7zV6XPVuQX8+vXv48ssv7VfgBwQEMqaDk6+//robDNr0iWBeqm3IhT4ZzdkfXtkXeif40UcfuT/XggULqG3wIQICGTHVNuiUVgYoY7Q4TPeLFwbntfvQWbFW2zvvvENtg08REEgrVW2Dlwdkc+Fcba9evdreUpy0u8wZdNf/FttKu5hcBARS0u6S+IfKa9MuJq/XNuTCeZCQnlSL8a5Kj6neKTjHWe8gqG0AAQEjU22DXl3CTPvsnarikydP2luLg1a66xiDc6y16I+uQygCAglMtQ3av6790khPp3/q/tLisWKgIaCzkqhtQCoEBFwaAs5gq9MaGhp8WduQCz3Z6j4rhumu2n3oBJo2ahtgQkDAot1HzpWktvvvv9/XtQ250K4l3Xfa1VTIXTTd3d3UNiAjBITP6eDkq6++6gaDNr0C9nttQy50KqizDwtxdVe9E9TxBeffSG0DJkJA+JhOVQ2FQu4JQ6eyfv755wxQ5sF5NkKh1UPo+ljJtQ3MRsNECAgf0gDQIIivbdCgoLYhf/rAHN2fWhdRKLSWIb62wS8r7SJ/BITPaNeRdiE5waBNu5i4mpwce/bssfZpIQxUa5dXcm2Dn1baRf4ICB/RQecHHnjAPWHoAOW+ffvsVzEZtE9f9+1MD1TrvyO5toHZaMgWAeEDemLQ6arOyUKbTmf142Myp5rua2c22Ezt3+TaBp21BOSCgPC4VLUNLL42dZzB4Onu69c6huTaBmajIR8EhIdpbcM999zjnjC0tkEfkYmptX79emt/T+dAtVZAJ9c2MBsN+SIgPChVbYM+twBTz6mo1ifNTTUNgeTaBl1bCZgMBITHmGobPvvsM64mp9Hhw4etfa81EVNJV1uNn5FGbQMmGwHhEalqG/r6+ux3YLroFbzuf605mCoHDx6ktgFTjoDwAB2IfPHFF91g0LZ8+XK5ceOG/Q5MJx0sdo7DZF/R6+QCpxhPmw6Is9IupgoBUeRMtQ1arIWZ5TwbYjKnumptQ/yMNB0Ep7YBU4mAKFJ6YtiwYYN7stCmA5TUNhSGRYsWWcdkslbEbWtrS6htYKVdTAcCogiZahvWrl1LbUMBWblypXVc8r2b0+4q53tpW7p0KbUNmDYERJEx1TborBkUlo0bN1rHJ5+ny2ltw9y5c63vo3cPO3fuZDYaphUBUSR0sPO1115zg0FbRUUFtQ0FyqmFWL16tb0lcxoCW7ZscY+zdh2y0i5mAgFRBJJrG7R9+umnXE0WMF1iW4+TdgllQwM/vrZBA4baBswUAqKAmWobZs2aZT3aEoVN6xT0eFVVVdlbJqZdhfG1DdqdCMwkAqJAmWobXnnlFWobioQWKOox0+6hiejkgnXr1rnHmdoGFAoCogAl1zboHQS1DcUl04DQacnUNqBQERAGNy/8n/T09EzQzsjQ1d/kVsT+oklgqm0oLS2ltqEIZRIQGvr51zZE5NZvl+Vcv/257D8nl3+7Fd3qGJELF27a/w9kh4AwuNa/T1oa6+WZkvETdcm85bK2pUVarLZWlpeFJKivBUOyZFOn/GvU/uIcmWob3n33XWobipQ+2lOPoQZAMu0mjK9tWLx4cfa1DZHrcrZzkywJBa3PYEV9Y+yzGf3cVs4rkWBoiWwKd8mh5gqpCV+0vwjIDgGRRuRfX8pC+5e4qdfeGGfs0nFproj+gup7SpukN8eQSK5t0GUaqG0objobyTme8XSCwfz5863tGh47duzIejZa5Eq3fFCmn7tSeSt8Vq7fdhcbketnw/JWaezvD5g+vEAGCIh0rh2ROvuXPOXv2OgJaQzF3hNsOCbZ3MybahvKy8upbfCA5IBwahucLiUNiVxqGyLD+2WFdWdbGv1MTnBFMtorTRoSBARyRECkFf0Fs3/J0/2ODbQ6NQprpDvDhNCTw5w5c+yvi7XNmzdT2+ARGv7OcR0cHLSmuzp/rqury622ITIs4ZrYHWtwTbdkcsM62r3Gei+jEMgFAZFWZgEx3FFp//LXyP4JLv41APQBPvG1DTR/NO06zKe24eaxhti4V2ChtA3aGyd0XtobwsIoBHJBQKSVSUCMSGetfRIItcqAvdVEux2Saxto/mj6dLn8ahuuyZE6+/tN8DlLdnFgIPrVQPYIiLQmCoiIXDm6RkLWe4JSd2TE3m6m01W/++47awCa5o+mXYn6aNC8axtudssa+7MYqNkvjFJhOhAQaY0HRPl/haUrrg7i0N4WWbvEnupa8oys6zwvlDdhylwMS7UTEAw6Y5oQEGnFBcTfnBoIbY1SXzlPSqzXglK2aquE+y4REJg6BARmAAGR1gRdTGO/yun2FXZQBKRkxX4ZnsTKasAVHxCNJ+IqpYGpQ0CklckgdUQG28pjv7jRVt5+3t4OTKZ+aQ7aAbGwTTKexATkgYBIK5OAiIorqAtUdsiwvRmYPBHpbbKr9gPVwuoZmA4ERFoZBkTkhDQSEJhq59ul3P6clbYOZN7NNHrdsBwHMDECIp24qYXpAiJyaps91TUgoW2n6B/GFInIcLjGLpbLYKmNqMj1E9L89/0UyiEnBEQ6wx1SOUFAjF06Kg3Oomh5LNgHZGZUepvL7JAokRX/6JNLpulzkVty4fhWWfJGW94rDcO/CAgD63kQXWHZ6KzUGm3lf9sl4a7xOoieQ3ulsf6Z8RlMVVvlxBXuHTAdxuSSnvx1qW87KOZV1kujPQ27sb5S5oXK5O/GlV6BzBEQBtbzINyahzRtlxbP9cu5K/EPaAGmy5j8PnTGulhxP5N7D0nPmSH5naIcTAICAgBgREAAAIwICACAEQEBADAiIAAARgQEAMCIgAAAGBEQAAAjAgIAYERAAACMCAgAgBEBAQAwIiAAAEYEBADAiIAAABgREAAAIwICAGBEQAAAjAgIAIARAQEAMCIgAABGBAQAwIiAAAAYERAAACMCAgBgREAAAIwICACAEQEBADAiIAAARgQEAMCIgAAAGBEQAAAjAgIAYCDyHy6BZ9XDmptuAAAAAElFTkSuQmCC
|
As shown in the figure, ABCD is a parallelogram. Using B as the vertex and AB as the radius, a sector is drawn that just passes through point C. Given that the area of this sector is 37.68 cm², what is the perimeter of this parallelogram in cm?(Use π=3.14)
|
A. 48; B. 40; C. 32; D. 20; E. No correct answer
|
A
|
76
|
iVBORw0KGgoAAAANSUhEUgAAAsIAAAFyCAYAAAD/MLwxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAADWzSURBVHhe7d0PkFX1dcDxQAIKFQTG4MSxuIIDiWZwBQsGKpIwQipNYQAHijhQIWU1NJKUGjRElhEsRBA2AbtoyKoJUWw2BCdrCyMwoGIlFhStjRjBQEUDEa2M4kAzt3M25+rv3PfYff/fvff3/cycUfbsv/fevb/f2d8793c/FQAAAAAeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiE0abXX389uPnmm4MXXnhBP3Jmf/jDH4JHHnkkmDx5ctCvX7/gU5/61McxZsyYoLGxsfVzQvL/8vEzueOOO1q/9sorr2z9t3zvZcuWme8BAABQKArhmJLiUwq/apKiU4pQKYbbIoWpfG7Pnj1bC1cpgqWIbWlpCZ566qnWkCJYCmT5nLCYlc85UyEsj90tpEPycfn+8r0BIO7ccSzXkHFRQsZKxjqgvCiEY0iKRBkMpeCrhnClVorx9shKcbj6K0Vue8W7FNVSXLsDfjby8TN9jvzMsKAGgCSQsTFcLAhDxlhZJAgXDNxFA/fz3AUEAKVFIRxDMuCFA6AMjJUkA60UqhLtDbphQRoO1Lm0T4TcgT4bt7Ui24qIPC+Sy6VYB4A4kPEqHNck2iLjb9geFoaMi/mMswDaRyEcQ+6qwZlWTMslLFDbG2xlZdf9PfMt2GWQD4vdbMLv29aqeDhJVLuFBABy4S5ySORCxlZ3rM130QFA2yiEYybaGyvRXo9uqchbcvLzcllldVsXpHguRPhYo6RIDr93W0WufF44QTAxAIi7QgphEb4DFoYsELT3jh2A3FAIx4wMcBLuCkAl3v53V3jbKyqjxXox7RvZBvRw0G9rNTgU3VkCAOKq0EJYRL9W/g2geBTCMRIWgLIy6/aSSYFa7r/+w5+XS/HpXuwmv1sxwgtFXOHzkEvLgxTt4e+Sy+cDQLUUUwi774CFwaowUDwK4RiRdoOw6JUVWnfAk4KxXNyf1d7qc/T3KrQtoi0yWeRSkIfCyYFVYQBxVkwhLKIXz5VzXgB8QSEcE2GB6Raibh9uPoVhvtzBub2BVfLh50qU4+05+Z75rO66zxO9wgDiqthCOHy3LIxKX0wNpBGFcEyErQlSEIeivbjl2ljdbXWItilExXFFwp1c5PfL19GjR4OFCxcSBJHiqK+vD1asWKFnfXUUWwjLu4Xu1xfbmgaAQjgWwt6vbH/dy0pwOOiV46//6MDaXs+Zu/oq0V7hXAnuHwyFtEcsX77cPCaCINIZx44d07O+OoothIX79YV+DwCf4CyKgXBwzLbiGx043RXjUoi+1daeOBbC+T6GqIEDB5qvJwgifXHOOefoGV895SiE21u8ANA2CuEYkFXfM/UAR1ds27uYLV/Rnt/2RG/9GYf74EcL4Xz6hLdu3Wq+liCI9EZTU5Oe+dXBijAQP5xFVRa+rd9Wr23YPywR7ipRKvkOzNHPl39XW7QQzmeVevr06eZrozF16tSs/YYEQcQ3Ro8enfV87tGjh5751UEhDMQPZ1GVSU9re8VttNAr5QVq+Q7MsgLsfn6pV6gLUWghfPz48aBDhw7may+66CLz7/79+wenTp3SrwCQBG21O0mhXC3FFsLRdwi5WA4oHoVwFUULuFyjlFup5TswRwficm7rlqtCC+FVq1aZrxswYECwZcsW8zGJOXPm6FcAiLtt27ZlnMNuyKrwwYMH9bMrq9hCODrWlWMfd8A3FMJVFPbbyiqrDHBtRXQALdVd1PLtERZuq4aE/H7VJD/f/X1y7REeNGiQ+bolS5a0fnzevHnm4xKPP/54aw5AvM2YMcOcuxMmTAhqamrMx8aPH6+fXVnFFsLR7StLNQ8APqMQrpJsN9Boi6zEyttg4QBYqq3UokVkLqJ3lyvmd5GitZC9f12FPIYdO3aYr5E4fPiwZjPfWr3kkkuCjz76SLMA4ujdd9/NaHeShQa5SM79mMTevXv1qyqnmEI4OgfQFgGUBoVwlYR/2eezw0F0EC3FXdSirQ65bs8WXUkuZGVCfn9prZDfoRhu33Ku+wjPnDnT/P6TJk3SzJ88+eSTJi9xyy23aBZAHDU0NJhzVnr8Q7W1tSYn/660Ygrh6NeW8loRwGcUwlUQ/mWf70pqtGgt1YVq+dxZzhVtkcinGA6L4FIU8+4Ekcvq8vvvvx906tTJ/O7ZWh9uu+028zkSGzdu1CyAuBk8eLA5XxcvXqyZINi+fbvJSVR6O7VCC+Hou16lekcQAIVwVYSDYSF78EaLz1LcYMNd3c13lSH6+8gA3VZxK8W8PH75Q6AURbBwf4dcCvnVq1eb37mtC/6uuOIK87kXX3xx8MEHH2gWQFzs3LnTnKsShw4d0uyfSG+wm6/0dmqFFMIyprktEbJwUey7aAA+QSFcYVK4hoNaIaIDaSmuGnZ7fgv5flLQSzHp/l7ybylQ5feVkJVaKZLDn1HKgTz82W0VtK4hQ4aY33XRokWayZRtFWn27NmaBRAXs2bNMufpxIkTNfMJ6SF2P0eiktupRRcO2iJjZPTiuFKPnQAohCtKCka3DUEGxXxWReVz3a8PQwbHYldXwwG6mAsw5PHJ9wkL3jDCNhApiEuxgu1yi/hcWjOeeeYZ87tJtLeV0u23357xNc3NzZoFUG0nTpwIOnfubM7RTZs2adaaO3eu+bxKbacm45P7cyXCxQJZ9Q1D3pWTj0dXgQt5BxFA+yiEKyRaHLohufa09fVhyIBaKHelOpf2grgI2zpkosiFrOa6z1mu2yhFew/lxhvSawyg+tasWWPOz759+2omk6wKR7dTky3XysX9ObmGjGeywCHjW6layABkRyGMj4VFpaxGJEXYFpHLZPHhhx8GXbp0MRPOL37xC822Ldt2a/JWLIDqGzp0qDk36+vrNZNdXLZTA1B9FMIwwhaJJKwKh2815nqBX1joh9GnTx/N5GbBggXm6yUee+wxzQKohl27dmWclwcOHNDsmUVXhauxnRqA6qMQhiEXYsjbcrLSGueLMsJWjnxWr4cNG2Ymvu9973uayV30QrsLL7wweO+99zQLoNLq6urMOTlu3DjNtM29EFb6hKV3GIB/KISRQQpg6U+TgjiOxXBYrOdzR7rnnnvOTJYSr732mmZz9/TTT2d8n5tuukmzACrp5MmTQdeuXc35mM+FrHKNwMiRI2mLADxGIYwzklYCuUiv1Ds9FCPcOSPfK6i/8Y1vmMly7NixmsnfnXfeab6XxKOPPqpZAJWydu1acx7m2+4EABTCaJMUwbLyGocrl6X4ld8l31XqU6dOBd26dTMT5oYNGzRbmKuuusp8vwsuuCB45513NAugEoYPH27OQ+njB4B8UAgj9X70ox+ZyVKK1mI9++yz5ntKTJ8+XbMAym337t0Z5+D+/fs1CwC5oRBG6o0YMcJMlvPnz9dMceSOdO73lVi/fr1mAZTTnDlzzLlXTLsTAH9RCCPV9uzZYyZLiVdeeUWzxYu+NXv++ecHx44d0yyAcjh9+nTQvXt3c+4V2+4EwE8Uwki1W2+91UyWudzFLx/ZdqO48cYbNQugHNatW2fOuVK0OwHwE4UwUs29X79EOVoX7rrrLvMzJB5++GHNAii1a665xpxvpWp3AuAfCmGk1kMPPWQmy969e2um9K6++mrzs84777zg7bff1iyAUil3uxMAv1AII7VGjRplJst58+ZppvSef/5587Mkpk6dqlkApSJ3gHPPs1K3OwHwC4UwUmnfvn1mspSQj5XT3XffnfEzH3zwQc0CKIVevXqZc4ydWgAUg0IYqSSrv+5kKavDlSC3a3V/rkzaR44c0SyAYlSy3Sm0ffv2oLa2Njh48KB+BECaUAgjlWSCdCdMmUArIVv/4pQpUzQLoBiVbHeSAtj9w1b+H0D6UAgjdeStUneylFXZSlq6dKn5+RKy3ROAwlW63Wnjxo0ZP08+BiBdKISROnLxjDt5ycU1lRZduTr33HODw4cPaxZAvqrR7hRtdaqpqdEMgLSgEEaqyDZK7sQlIe0Klfbiiy9m/B7XX3+9ZgHkqxrtTtIX7P5MiaamJs0CSAMKYaSKbKzvTlqy8X613HPPPeZ3kXjggQc0CyBX1Wx3mjFjhvnZPXr0CN59913NAkg6CmGkitxq1Z20qt2be+2115rfp1u3bsEbb7yhWQC5qGa7kxS97s+WkOIYQDpQCCM1NmzYYCar7t27B6dPn9Zsdbz00kvmd5KYMGGCZgG0Jw7tTgsXLsz4HdhODUgHCmGkxtixY81ENWfOHM1U17333mt+L4nGxkbNAmhLXNqd5EI59/cYP368ZgAkGYUwUmH//v1mkpLYvXu3Zqvvq1/9qvndunbtGhw4cECzAM4kLu1ObKcGpBOFMFJhwYIFZoIaPny4ZuJB3t7t2LGj+R1ZUQLaFrd2J7nDnPv7sJ0akHwUwkiFPn36mAlq7dq1momPVatWmd9R4r777tMsgKi4tTuxnRqQPhTCSLzm5mYzMUnbwcmTJzUbL9ddd535Xc8+++zgtdde0yyAUFzbnbJtpwYguSiEkXjjxo0zE1NdXZ1m4ufVV18NOnXqZH7fr33ta5oFEIpru1O27dSqcfdKAKVBIYxEkwvOopPSrl27NBtPP/zhDzN+Z/kYgE/Eud2J7dSA9KAQRqLV19ebyWjo0KGaiTdZBXZ/b1klltViAPFvd5JV4eh2alIcA0geCmEkWt++fc1ktGbNGs3Em/QFn3XWWeZ3lwuDACSj3SncTm3kyJFsowYkGIUwEmvTpk1msuzcuXNw4sQJzcafFO3u7y8hO0sAPktSu5PsGCGrwwCSi0IYiTVx4kQzWc6aNUszySF7CbuPQfYalj2HAV8ltd0JQDJRCCORDh06ZCZLiZ07d2o2OWT1S/of3cchd6EDfJXUdicAyUQhjERavHixmSwHDx6smeRpbGw0j0Xi3nvv1Szgj2i7k1xEmqR2JwDJQyGMROrfv7+ZMBsaGjSTTBMmTDCPR+Lll1/WLOCHNLQ7AUgWCmEkTktLi5kspa826ResvPHGG8E555xjHtfo0aM1C6RfWtqdACQLhTASZ/LkyWaylFuepsH9999vHpfEPffco1kg3aLtToMGDdIMAJQPhTAS5ciRI2aylNi2bZtmk+/666/PeHwvvviiZoH0irY7sZUggEqgEEaiLF261EyWl19+uWbS4fDhw8G5555rHuOoUaM0C6RTtN2pQ4cO7M8LoCIohJEol156qZkwV6xYoZn0WLdunXmMEsuWLdMskD7Rdqfp06drBgDKi0IYibF582YzWUocO3ZMs+kSLQwk9uzZo1kgPd56662MY33r1q2aTb7t27dzC2YgxiiEkRg33HCDmSynTZummfR58803g549e5rHO3LkSM0C6RFtdxo4cKBmkk1aO+bOnRv06NGjNQ4ePKgZAHFCIYxEOHr0qJksJbZs2aLZdHrwwQczHvPdd9+tWSAdou1Oy5cv10xySRFcW1trHpfcTh1A/FAIIxFkcnQnlcsuu0wz6TZ16lTzuCWef/55zQLJJn/MRo9v+aM3DZqamjIe2969ezULIC4ohJEI8napO6H4cvHY22+/HZx33nnmsY8YMUKzQLJJe5N7bEv7U5pEV4Xl3wDihUIYsScXzriTiYRcYOOLhx9+OOPxy80HgCSTC12jx7VcEJsmcqFc9DFy4RwQLxTCiD3ZSsmdSKZMmaIZf0RXziSee+45zQLJI1sfusez9AqnkfQGu49TLpwDEB8Uwoi148ePt26u704kTzzxhGb9Iatn559/vnkehg8frlkgeeRmOO7xLLtHpJFcOOc+TomFCxdqFkC1UQgj1uQ2q+4EMmDAAM34Z/369ea5kFi0aJFmgeSQ26JHj2W5fXpazZgxwzxWtlMD4oNCGLE2aNAgM4EsWbJEM36KtolIPPvss5oFkiFaGMoNZNJMVoVramrMY5bnAED1UQgjtnbs2GEmDonDhw9r1k/vvPNO8LnPfc48J1/60pc0C8SfFIUdO3Y0x3BLS4tm04vt1IB4ohBGbM2cOdNMGpMmTdKM3x555BHzvEjceeedmgXiraGhwRy7/fv310z6RVeFuVskUH0Uwoil999/P+jUqZOZNB5//HHN4qabbjLPjcTTTz+tWSC+Bg8ebI5bn7YCZDs1IH4ohBFLq1evNpNF3759NQPx3nvvBRdeeKF5joYMGaJZIJ527txpjlmJQ4cOadYPbKcGxAuFMGJJijp3smB3hEyPPfaYeY4kFixYoFkgfmbNmmWO14kTJ2rGH7JbhPscSEj/MIDqoBBG7DzzzDMZEwVbDWUXLSwkZNUNiJsTJ04EnTt3Nsfqpk2bNOsXtlMD4oNCGLEze/ZsM0mMGzdOM4iSXuo+ffqY5+vKK6/ULBAfa9asMcepz+1OsnOGFL/yPMh/V65c2foxAJVHIYxYOXnyZNClSxczYTY3N2sW2fz85z83z5fE7bffrlkgHoYOHWqO0fr6es34SS6SkzvMUQAD1UUhjFhpbGw0k6WsdqJ90VV0CblCHYiDXbt2ZRyfBw4c0CwAVA+FMGJl2LBhZrLk4q/cfPDBB8HFF19snrsrrrhCs0B11dXVmWOTdicAcUEhjNjYvXu3mSwl9u/fr1m0R95qjT5/3/nOdzQLVIe0O3Xt2tUcl7Q7AYgLCmHExpw5c8xkOXbsWM0gVzfffLN5DiWefPJJzQKVt3btWnM80u4EIE4ohBELp0+fDrp162YmzA0bNmgWuZLVt379+pnnceDAgZoFKm/48OHmeKTdCUCcUAgjFtatW2cmywsuuEAzyJfcitp9LiXmzZunWaByaHcCEHcUwoiFa665xkyW8+fP1wwKEW0zkdiyZYtmgcqg3QlA3FEIo+r27NljJkuJV155RbMoxKlTp4L+/fub5/SLX/yiZoHyk3an7t27m2OQdicAcUMhjKqbO3eumSzHjBmjGRTjV7/6lXleJb797W9rFigv2p0AJAGFMKquV69eZsJcv369ZlCsb37zm+a5lfi3f/s3zQLlQ7tTaXDnOaC8KIRRVQ899JCZLHv37q0ZlMIf//jH4Atf+IJ5juXf8nGgXGh3Kp4UwPJuWY8ePYKmpib9KIBSoxBGVY0aNcpMluxuUHqyAuw+xxK33nqrZoHSo92pOHv37g1qamo+fv6kGAZQHhTCqJp9+/aZyVJCPobS+9a3vpXxXLe0tGgWKC3anYojq8Hu8ychf1wAKD0KYVSNrP66A72sDqN8LrvsMvN8DxgwoPXKfqCUaHcqjYULF5rnUeLgwYOaBVAqFMKoGpkg3UFeJlCUz+bNm83zLSH7vAKlRLtT6bjtERLjx4/XDIBSoRBGVchbpe4AL2+lovyiq/AScic6oBRodyqtjRs3Zjyf27dv1yyAUqAQRlXIxTPu4E7/W+UMHDjQPPeXXHJJ8NFHH2kWKBztTqVXW1trnlNZJQZQOhTCqDjZRskd2CVkuyVUxpNPPpnx/N9yyy2aBQpHu1PpyQ4S7nMqwXZqQOlQCKPiZGN9d1CXjfdRWbfddpt5DSR++ctfahbIH+1O5TNjxgzz3LKdGlA6FMKoOLnVqjuoy61YUXnRt1z79u0bfPDBB5oF8kO7U/lk205NdpUAUDwKYVTUhg0bzGDevXt3tvCqkm3btpnXQmL27NmaBXJHu1P5sZ0aUB4UwqiosWPHmoGc7buq6/bbbzevh0Rzc7NmgdzQ7lR+sirMdmpA6VEIo2L2799vBnGJ3bt3axbVMnjwYPOaXHTRRcGJEyc0C7SPdqfKyLadmlxMB6BwFMKomAULFpgBfPjw4ZpBNe3YscO8LhJf//rXNQu0jXanymI7NaC0KIRRMX369DED+Nq1azWDavvud79rXhuJxx57TLPAmdHuVFlspwaUFoUwKkL6Tt2Bu2vXrsHJkyc1izgYMmSIeY0uvPDC4L333tMskIl2p+qQ3uDw+Zat1FauXKkZAPmiEEZFjBs3zkyWdXV1mkFcPP300+Y1krjppps0C2Si3ak6wu3URo4cSY8wUCQKYZTdgQMHzGQpsWvXLs0iTu68886M1+rRRx/VLGDR7lQ9UgwDKB6FMMquvr7eTJZDhw7VDOLoqquuMq+X7Ahw/PhxzQJ/Em136tKlC+1OABKHQhhlJ3cscyfMNWvWaAZxJKv17uslIbd4BVy0OwFIAwphlNWmTZvMZNm5c2f2qE2A6Cq+xPr16zUL39HuBCAtKIRRVhMnTjST5axZszSDuJMLn9zX7vzzzw+OHTumWfgs+oeS7DgCAElEIYyyOXTokJksJXbu3KlZxN1zzz2X8frdeOONmoXPou1Oq1ev1gwAJAuFMMpm8eLFZrKUW/kiWe666y7zGkr85Cc/0Sx8FG136tSpE+1OABKLQhhl079/fzNhNjQ0aAZJcvXVV5vX8bOf/Wzw+9//XrPwTbTdaebMmZoBgOShEEZZtLS0mMmyY8eO7HuZUL/+9a/NaykxdepUzcInhw8fzjgWduzYoVkASB4KYZTF5MmTzWTJ9lvJdvfdd5vXU+LBBx/ULHyxZMkScwwMGjRIMwCQTBTCKLkjR46YyVJi27ZtmkVSye1c3de0V69era81/BFtd1q1apVmEEfbt28Pxo8fr/8CkA2FMEpu6dKlZrK8/PLLNYMk27Nnj3ldJaZMmaJZpN0TTzxhXvsOHTpwx8GYkgK4trb249dq48aNmgEQRSGMkrv00kvNhLlixQrNIOmif+RI/PjHP9Ys0kz+6HFf9+nTp2sGcSOtaO5r1aNHD80AiKIQRklt3rzZDMAS3IQhXb7yla+Y1/fcc89tvYgK6fXWW2+Z11xi69atmkXcHDx4MOP1WrlypWYBuCiEUVI33HCDGXynTZumGaTFiy++aF5jieuvv16zSKNly5aZ13vgwIGaQVxlWxWWAhmARSGMkjl69KgZeCW2bNmiWaTJPffck/FaP/DAA5pF2lx22WXmtV6+fLlmEFeyXaUUv+7rxu49QCYKYZSMTI7uoCuTJ9Lr2muvNa93t27dgt/97neaRVrIH7Pu6ywhf/Qi/pqamjJeu71792oWgKAQRsnI26XugCtvpyK9XnrpJfN6S8hdx5Au0t7kvsbS/oTkqKmpMa+fbIMI4BMUwigJuXDGHWwl5AIbpJvsCBJ93RsbGzWLpJMLXaOvr1wQi+SQrdOiryHbqQGfoBBGSchWSu5Ay/6y/vjqV79qXvuuXbsGBw4c0CySLPqHjmyNiOSRm2q4ryPbqQGfoBBG0WRTfdlc3x1oZfN9+OGVV14JOnbsaF5/7maVDnIzHPd1lX2kkTzZtlOT/mEAFMIoAbnNqjvAym1Y4ZfoMSBx3333aRZJJLdFj76m3FI7udhODciOQhhFGzRokBlglyxZohn45LrrrjPHwdlnnx389re/1SySJlo4TZ48WTNIItlOzX09JdhODaAQRpF27NiRMbhylzE//eY3vwk+85nPmGPha1/7mmaRJFI0RdtdWlpaNIukkrvLua+pBKvC8B2FMIoyc+ZMM6iyfZbffvCDH5jjQeKHP/yhZpEUDQ0N5jWk3Sk92E4NsCiEUbATJ04EnTp1MoPqpk2bNAtfySqwe0zIMfLqq69qFkkwePBg8xouXrxYM0i6bNupbd++XbOAfyiEUbDVq1ebwbRv376agc9ee+214KyzzjLHxtixYzWLuNu5c6d57SQOHTqkWaSBrALL6yr/pQiG7yiEUbAhQ4aYybK+vl4z8N2aNWvMsSEhb7cj/mbNmmVeN9qd0kf6gqVfWHrBAd9RCKMgu3btMpOlBDdRgGvcuHHm+Pj0pz/duucw4kvanTp37mxeN9qdAKQZhTAKUldXZyZLKXoA1+uvv956lzn3OJG70CG+oiv5tDsBSDsKYeTt5MmTQZcuXcyE2dzcrFngE42NjeY4kbj33ns1i7gZOnSoea1odwKQdhTCyNvatWvNZNmnTx/NAJkmTJhgjheJl19+WbOIC9qdAPiIQhh5Gz58uJksFyxYoBkg0xtvvBGcc8455pgZPXq0ZhEXtDsB8BGFMPKye/duM1lK7N+/X7NAdvfff3/GcbN8+XLNotqk3Snaz027EwAfUAgjL3PmzDGTJfvDIleTJk0yx47Eiy++qFlUE+1OAHxFIYycnT59OujevbuZMDds2KBZoG2HDx8Ozj33XHP8jBo1SrOoJtqdAPiKQhg5W7dunZksL7jgAs0AuYkeQxLLli3TLKqBdicAPqMQRs6uueYaM1nOnz9fM0DuJk+ebI4jib1792oWlUa7E85Ebr8sd6ED0oxCGDnZs2ePmSwluEsYCvHmm28GPXv2NMfSl7/8Zc2ikmh3QjZy6+W5c+cGPXr0CMaPH68fBdKJQhg5kUHRnSzHjBmjGSB/TU1N5niSuPvuuzWLSqHdCVHy7owUwO5xwTs2SDMKYeSkV69eZmBcv369ZoDCTJ061RxTEs8//7xmUQm0OyGb2tpac1zU1NRoBkgfCmG066GHHjKDYu/evTUDFO7tt98OzjvvPHNsjRgxQrMoN9qdcCayAhw9NuRdHCCNKITRLtniyh0Q582bpxmgOA8//LA5tiQWL16sWZQT7U5oi/QGu8eHtEsAaUQhjDbt27fPDIYS8jGgVKZNm5ZxjMmWXigv2p3QFrlgzj0+JBYuXKhZID0ohNEmWf11B0JugIBSO3r0aGu7jXucyQ0eUD60OyEXUvi6x4msCrOdGtKGQhhtihYoMoECpfbTn/7UHGcSixYt0ixKjXYn5EJWheVCOfdYYTs1pA2FMM5I3ip1B0B5KxUol+nTp5vjTeLZZ5/VLEqFdifkI9tWh2ynhjShEMYZycUz7uAnF9cA5fLOO+8En/vc58wx96UvfUmzKBXanZCv6HZq8m8gLSiEkZVso+QOfBKy3RJQTo888kjGcccFOqVFuxPyJbdado8ZCbZTQ1pQCCMr2VjfHfRk432gEv7u7/7OHHsSTz/9tGZRDNqdUCi2U0NaUQgjK7nVqjvoya1YgUqQC3QuvPBCc/wNGTJEsygG7U4oFNupIa0ohJFhw4YNZrDr3r17cPr0ac0C5ffYY4+ZY1BiwYIFmkUhaHdCsaI3YWE7NaQBhTAyjB071gx2c+bM0QxQObNmzTLHocTOnTs1i3zR7oRiZdtObcaMGZoFkolCGMb+/fvNICfBXb5QDe+//37Qp08fcyxeeeWVmkW+aHdCKbjbqcmK8MqVKzUDJBOFMAx5+9mdLLnDF6rp5z//uTkeJe644w7NIlfRdqdu3brR7oSCyfZpUgDLCjGQdBTCMKIrcGvXrtUMUB1///d/b45JCdnOCbmj3QkAsqMQxseam5vNZNm1a9fg5MmTmgWq44MPPgguvvhic2xeccUVmkV7aHcCgDOjEMbHxo0bZybLuro6zQDVtXHjRnNsSnznO9/RLNoSbXcaNmyYZgAAFMJodeDAATNZSuzatUuzQPXdfPPNGcfo1q1bNYszibY7NTY2agYAQCGMVvX19WayHDp0qGaAeJA2nX79+pnj9PLLL9cssom2O3Xp0oV2JwBwUAijVd++fc2EuWbNGs0A8bFp0yZznErMmzdPs4iKtjvNnj1bMwAAQSGMjOKic+fOwYkTJzQLxIvseOAerxJbtmzRLEJyx6/o8/TMM89oFgAgKIQRTJw40UyWckcvIK5OnToV9O/f3xyzX/ziFzWL0KJFi8xzNGTIEM0AAEIUwp47dOiQmSwluI0t4u5Xv/pVxnH77W9/W7MQ0Xan1atXawYAEKIQ9tzixYvNZDl48GDNAPH2zW9+0xy7Ev/+7/+uWb89/vjj5nnp1KlT6y2rAQAWhbDnom8xNzQ0aAaIt//7v/8LPv/5z5vj9wtf+ELwxz/+UT/DX5MmTTLPy8yZMzUDlJ/cennu3LlBTU1Na686EGcUwh5raWkxk2XHjh25dzwS5YknnjDHsMStt96qWT8dPnw44znZsWOHZoHyktufSwEcHnszZszQDBBPFMIemzx5spksGbCQRN/61rfMcSwhf+T5asmSJea5GDRokGaA8mtqajLHnwSrwogzCmFPHTlyJGOw2rZtm2aBZLnsssvMsTxgwIDg9OnTmvWLPHb3uVi1apVmgMpwV4QlRo4cqRkgfiiEPbV06VIzUHGHLiTZ5s2bzfEs8Q//8A+a9Ue0VaRDhw7B8ePHNQtUxsaNG81xKCEfA+KIQthTl156qRmkVqxYoRkgmf7xH//RHNMSsnuCT6ZMmWIe//Tp0zUDVJasArvHoqwSA3FEIeyhbKtnx44d0yyQXAMHDjTH9SWXXBJ89NFHmk23t956yzx2ia1bt2oWqKxsdzaU/mEgbiiEPXTDDTeYwWnatGmaAZLtySefNMe2xC233KLZdFu2bJl53PJHAVBNcgG2e0z26NGDnYkQOxTCnjl69KgZmCS2bNmiWSD5brvttoxj/Je//KVm0yt6weDy5cs1A1SHFL3uMSnB7kSIGwphz8jk6A5K0isMpE1tba05zuV2wx9++KFm00f+mHUfr4T80QtU28qVKzOOTbZTQ5xQCHsm2kMpu0cAaSNbAbrHuURdXZ1m00fam9zHKu1PQFxEt1MbP368ZoDqoxD2iFw44w5GEnKBDZBG8+fPzzjem5ubNZsecqFr9HHKBbFAXLCdGuKMQtgjspWSOxDJneWANBs8eLA55i+66KLgxIkTmk0H2frQfYy0OyGOou1KbKeGuKAQ9oRctCCb67sDkc+3oYUfduzYYY55ia9//euaTQe5GY77+Gh3QhyxnRriikLYE3KbVXcA6t+/v2aAdPvud79rjn2Jf/3Xf9VssmXrhZbbpwNxlG07NaDaKIQ9MWjQIDMALV68WDNA+v3FX/yFOf7//M//PPjf//1fzSZXtLCg3QlxFt1OTQrh7du3axaoDgphD+zcudMMPhKHDh3SLJB+Tz31VMY5cNNNN2k2maSo6Nixo3lMtDsh7hYuXNh6rMotmNlGDXFAIeyBWbNmmcly4sSJmgH8ceedd5rzQOLRRx/VbPI0NDSYx0K7E5JA/oDbu3ev/guoPgrhlJMr5Dt16mQmzE2bNmkW8MtVV11lzoULLrggOH78uGaTJbojBu1OAJA/CuGUW7NmjZks5Q5bgK927dplzgeJJN7ylXYnACgNCuGUGzp0qJks6+vrNQP4Sc4B95yQ+NnPfqbZZKDdCQBKg0I4xbKtfh04cECzgL+GDRtmzovzzz+/9Q5tSSDtTp07dza/P+1OAFAYCuEUq6urM5PluHHjNAP47T/+4z/MuSFx4403ajbeaHcCgNKhEE6pkydPBl27djUTZnNzs2YB3HXXXeb8kPjJT36i2fii3QkASodCOKXWrl1rJss+ffpoBkDo6quvNufJZz/72eD3v/+9ZuOHdicAKC0K4ZQaPny4mSwXLFigGQChX//61+Y8kbjhhhs0Gz+0OwFAaVEIp9Du3bvNZCmxf/9+zQJwLVmyJON8efDBBzUbH7Q7AUDpUQin0Jw5c8xkOXbsWM0AyEZu9+qeM7169QqOHDmi2Xig3Qk+2b59e7Bx40b9F1A+FMIpc/r06aB79+5mwtywYYNmAWSzZ88ec85ITJkyRbPxQLsTfCAFcG1tbesx3qNHD/0oUD4Uwimzbt06M1nKLWQBtG/p0qXm3JH48Y9/rNnqot0JPnj33XczjvOFCxdqFigPCuGUueaaa8wgMn/+fM0AaM9XvvIVc/7IitT//M//aLZ6aHeCL+bOnWuOdTkHDx48qFmg9CiEUyTb27uvvPKKZgG054UXXsg4h66//nrNVgftTvCJrArX1NSY4338+PGaBUqPQjhFon9JjxkzRjMAcvX973/fnEcSDzzwgGYrj3Yn+Kapqckc8xJ79+7VLFBaFMIpIle6uwPH+vXrNQMgH9dee605l7p16xb87ne/02xl0e4EH4UXzIUh/wbKgUI4JR566CEzaPTu3VszAPL10ksvmfNJYuLEiZqtHNqd4CvZPSJ67LOdGsqBQjglRo0aZQaMefPmaQZAIVasWGHOKQnZy7eSaHeCz6Q32D3+2U4N5UAhnAL79u0zg4WEfAxAcaTwdM+rP/uzP6voFey0O8FnbKeGSqAQTgFZ/XUHClkdBlC8//qv/wo6duxozq9KXcFOuxMQBDNmzDDnAdupodQohFNAJkh3oJAJFEBprFq1ypxfEvfdd59my4d2JyD7dmpSHAOlQiGccPJWqTtAyFupAErruuuuM+fZ2WefHfz2t7/VbOnR7gR8gu3UUE4UwgkX7WGUi2sAlNZvfvOb4DOf+Yw51/7mb/5Gs6VHuxNgRVeF2U4NpUIhnGCyjZI7MEjIdksASu8HP/hBxvm2evVqzZYW7U6AxXZqKBcK4QSTjfXdQUE23gdQPn/9139tzrlOnToFr776qmZLI9ru1LNnT80AfmM7NZQDhXCCya1W3UFBbsUKoHz2798fnHXWWea8Gzt2rGZLI9rudOutt2oG8JvsFhGeFyNHjqRPGCVBIZxQGzZsMJNl9+7dg9OnT2sWQLmsWbPGnHsSDQ0Nmi0O7U5A2+Q6mJUrV7buJgGUAoVwQskqlDtZzpkzRzMAym3cuHHm/Pv0pz8d/Pd//7dmCxdtdxoxYoRmAADlQCGcQPL2rDtZSuzevVuzAMrt9ddfD7p06WLOwb/6q7/SbOGi7U4/+tGPNAMAKAcK4QRasGCBmSyHDx+uGQCV8i//8i/mPJS49957NZu/aLtTt27dglOnTmkWAFAOFMIJ1KdPHzNhrl27VjMAKmnChAnmXJR4+eWXNZufaLvTN77xDc0AAMqFQjhhmpubzWTZtWvX4OTJk5oFUElvvPFGcM4555hzcvTo0ZrN3WuvvWa+h8Rzzz2nWQBAuVAIJ0z0Ip26ujrNAKiG+++/35yTEsuXL9dsbr73ve+Zrx82bJhmAADlRCGcIAcOHDCTpcSuXbs0C6BaJk2alHFu7tu3T7Pti7Y7NTY2agYAUE4UwglSX19vJsuhQ4dqBkA1HTp0qHUvb/f8HDVqlGbb9otf/MJ8nexG8eGHH2oWAFBOFMIJ0rdvXzNhysb+AOJBtjpzz0+JZcuWafbMoreNnT17tmYAAOVGIZwQmzZtMpNl586dgxMnTmgWQBxMnjzZnKcSbd0G1r1lbBjPPPOMZgEUitsvI1cUwgkxceJEM1nOmjVLMwDi4s033wx69uxpztUvf/nLms20aNEi87lDhgzRDIBCyB+XchtmOZ82btyoHwXOjEI4AaT/0J0sJXbu3KlZAHHS1NSUcb7+8z//s2atfv36mc9bvXq1ZgDka+XKlUGPHj0+Pp9qamo0A5wZhXACLF682EyWgwcP1gyAOPrbv/1bc85K/Od//qdm/+Txxx83+U6dOgXvv/++ZgHkK1urkfxhCrSFQjgB+vfvb07shoYGzQCIo7feeis477zzzHk7YsQIzf5JdMu1mTNnagZAoWbMmGHOK1khBtpCIRxzLS0t5qTu0KFD8O6772oWQFw9/PDD5tyVkHd3xOHDhzNyO3bsaM0BKJzMj9FzS4pj4EwohGMuehU6JzSQHNOmTTPnr8Tu3buDJUuWmI8NGjRIvwJAsRYuXGjOLwlpmwCyoRCOsSNHjmSczNu2bdMsgLg7evRo0Lt3b3MO/+Vf/mUwYMAA87FVq1bpVwAoBblQzj3HZL9uIBsK4RhbunSpOZEHDhyoGQBJ8dOf/tScx9GQdqfjx4/rZwMoBdk6LXqubd++XbPAJyiEY+zSSy81J/Ho0aNb3/IhCCJZcfnll5tz2Y3a2tqsX5NLFDqxZ/tehUQh5HfO9r3yDR57/rJ9r0KiENV47HJuueca26khGwrhmNq8ebM5gQmCIKIhhUEhsn2vQqIQ8jtn+175Bo89f9m+VyFRiGo8drZTQy4ohGMq20U2BEEQblAQ5S/b9yokCsFjz/798ol8H7u7nZqsEHO3OURRCMfQsWPHzIlPEASRLSiI8pftexUSheCxZ/9++US+j122UwvvNsfWo8iGQjiGVqxY0XqyEwSRzpg+fXowcuTI4J/+6Z+y5nMNekXzl+17FRKF4LFn/375RDGPHciGQhgAAABeohAGAACAl7wvhMeMGZPRg9Re9OvXr/Xrli1bFrzwwgv6nQCklZzr2caCfKNnz576HQEkkcz5d9xxR0btIHXBzTffHDz11FP6mX8inxv9GOKFFWElB+qVV15pDuzwoHZDJsTobY/lhHj99df1OwFIKznPoxNgY2NjxjjhRktLS+tYEn4+gOSRc9k996UOcM99Oc+l6A0XyuRjMl7IH7/y/4gvRmXHI4888vFBLtHWwSt/FbqFsxzsrA4D6SfjQq7jhEsmTfl8AMkiBW54vksB3N7CV3iuh0EhHG+Myo58J7g//OEPrX/9hZ8v/w8g3WQSzGeccNEaASSL+26O/H+uZGEs/Dp5JxnxRSHsyLcQFtFVZPk3gHRzz/l8CmFZTQKQDO5KsLQ75CtcGaYQjjcKYUchhbCsCrtfk89fjACSyT3n8ymEASRDtB4otPVR3immEI43CmFHIYWwcL+mkL8aASSLe85TCAPp47Y9FjOvy7vEsrKM+KIQdhRSCEf7BTnggfRzz/lcxgn+QAaSQ3aAcM9xaXEoBi1R8UYh7CikEI7uL5rL1wBItnzPeS6SA5LDvUBOgh2h0o1C2JFvIRz9q5H+YMAP7nnf3jgRjisAkkH+cHXPcaQbr7AjWghneztELo6LbpAvIf+WHID0c8/9tgphGSvC/cYBxF/0AnjezUk/RmdHtBDOJeQkaW9FCEC6ZBsL2gsA8RetA+jvTz9GZ0f0BJD+X/mYG7JKLKu/7lsn8v/ysfbuNgMgHdxxQsaE6DgRhlw8G44VAOJPzlv3/KYQTj9GZ0f0BJB/n4m8fRK9UE4mPJrqgfRzz/u2xgkR3nQHQPy5d4STkNYmpBujsyOfQjgU3jkmDCmG6RUG0s0953MZJ+TzACSDe35z7qYfr7CjkEJYhBfDhFHsnoMA4s0933MZJ3h7FUiO6JxO22O6UQg7Ci2Eo6vCTHpAurnne67jBIBkkN5+9xyX9iakF4Wwo9BCOPp1FMJAurnnO4UwkC7RO8Yyp6cbhbCj0EI4emMNbqcIpJt7vudbCMs1BIwRQLxF7xVQzB+8cr5z7VB8UQg7Ci2EoycMb6MA6eae7/lOkDJeMEYA8SaFa79+/T4+z6VvuJBiVs532WEK8UUh7CikEI5utSInDoD0ksnQPefzKYTDd49YHQLiT+Z3954B+RbDUgRLIN4ohB3hfp9htDfBSd49SdhHGEi/6B/MUtzmIhwvaIsAkiNaDMv/ywXybRXEcq5L0UwRnAwUwkoOXPdtEAlpkJe3NGSik3wY8rHo9iryb4pgIN3kHM927rvjQzTkD2yZEMPPpy0CSBYpet1zOIywRghD/siVOkKK5Vz/QEb1eV8Iy4EcPbhzCTnY5WtlmxWZ7ACkl0xy2caBQoK2CCCZZDcJWQ2WuT+6cBauAPOHbvKwIgwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADAQ0Hw/8unutk7pEI/AAAAAElFTkSuQmCC
|
As shown in the figure, quadrilateral ABCD is an isosceles trapezoid. What is the length relationship between AB and CD? ( )
|
A. AB = CD; B. AB > CD; C. AB < CD; D. No correct answer
|
A
|
77
|
iVBORw0KGgoAAAANSUhEUgAAAsIAAAFyCAYAAAD/MLwxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAADWzSURBVHhe7d0PkFX1dcDxQAIKFQTG4MSxuIIDiWZwBQsGKpIwQipNYQAHijhQIWU1NJKUGjRElhEsRBA2AbtoyKoJUWw2BCdrCyMwoGIlFhStjRjBQEUDEa2M4kAzt3M25+rv3PfYff/fvff3/cycUfbsv/fevb/f2d8793c/FQAAAAAeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiE0abXX389uPnmm4MXXnhBP3Jmf/jDH4JHHnkkmDx5ctCvX7/gU5/61McxZsyYoLGxsfVzQvL/8vEzueOOO1q/9sorr2z9t3zvZcuWme8BAABQKArhmJLiUwq/apKiU4pQKYbbIoWpfG7Pnj1bC1cpgqWIbWlpCZ566qnWkCJYCmT5nLCYlc85UyEsj90tpEPycfn+8r0BIO7ccSzXkHFRQsZKxjqgvCiEY0iKRBkMpeCrhnClVorx9shKcbj6K0Vue8W7FNVSXLsDfjby8TN9jvzMsKAGgCSQsTFcLAhDxlhZJAgXDNxFA/fz3AUEAKVFIRxDMuCFA6AMjJUkA60UqhLtDbphQRoO1Lm0T4TcgT4bt7Ui24qIPC+Sy6VYB4A4kPEqHNck2iLjb9geFoaMi/mMswDaRyEcQ+6qwZlWTMslLFDbG2xlZdf9PfMt2GWQD4vdbMLv29aqeDhJVLuFBABy4S5ySORCxlZ3rM130QFA2yiEYybaGyvRXo9uqchbcvLzcllldVsXpHguRPhYo6RIDr93W0WufF44QTAxAIi7QgphEb4DFoYsELT3jh2A3FAIx4wMcBLuCkAl3v53V3jbKyqjxXox7RvZBvRw0G9rNTgU3VkCAOKq0EJYRL9W/g2geBTCMRIWgLIy6/aSSYFa7r/+w5+XS/HpXuwmv1sxwgtFXOHzkEvLgxTt4e+Sy+cDQLUUUwi774CFwaowUDwK4RiRdoOw6JUVWnfAk4KxXNyf1d7qc/T3KrQtoi0yWeRSkIfCyYFVYQBxVkwhLKIXz5VzXgB8QSEcE2GB6Raibh9uPoVhvtzBub2BVfLh50qU4+05+Z75rO66zxO9wgDiqthCOHy3LIxKX0wNpBGFcEyErQlSEIeivbjl2ljdbXWItilExXFFwp1c5PfL19GjR4OFCxcSBJHiqK+vD1asWKFnfXUUWwjLu4Xu1xfbmgaAQjgWwt6vbH/dy0pwOOiV46//6MDaXs+Zu/oq0V7hXAnuHwyFtEcsX77cPCaCINIZx44d07O+OoothIX79YV+DwCf4CyKgXBwzLbiGx043RXjUoi+1daeOBbC+T6GqIEDB5qvJwgifXHOOefoGV895SiE21u8ANA2CuEYkFXfM/UAR1ds27uYLV/Rnt/2RG/9GYf74EcL4Xz6hLdu3Wq+liCI9EZTU5Oe+dXBijAQP5xFVRa+rd9Wr23YPywR7ipRKvkOzNHPl39XW7QQzmeVevr06eZrozF16tSs/YYEQcQ3Ro8enfV87tGjh5751UEhDMQPZ1GVSU9re8VttNAr5QVq+Q7MsgLsfn6pV6gLUWghfPz48aBDhw7may+66CLz7/79+wenTp3SrwCQBG21O0mhXC3FFsLRdwi5WA4oHoVwFUULuFyjlFup5TswRwficm7rlqtCC+FVq1aZrxswYECwZcsW8zGJOXPm6FcAiLtt27ZlnMNuyKrwwYMH9bMrq9hCODrWlWMfd8A3FMJVFPbbyiqrDHBtRXQALdVd1PLtERZuq4aE/H7VJD/f/X1y7REeNGiQ+bolS5a0fnzevHnm4xKPP/54aw5AvM2YMcOcuxMmTAhqamrMx8aPH6+fXVnFFsLR7StLNQ8APqMQrpJsN9Boi6zEyttg4QBYqq3UokVkLqJ3lyvmd5GitZC9f12FPIYdO3aYr5E4fPiwZjPfWr3kkkuCjz76SLMA4ujdd9/NaHeShQa5SM79mMTevXv1qyqnmEI4OgfQFgGUBoVwlYR/2eezw0F0EC3FXdSirQ65bs8WXUkuZGVCfn9prZDfoRhu33Ku+wjPnDnT/P6TJk3SzJ88+eSTJi9xyy23aBZAHDU0NJhzVnr8Q7W1tSYn/660Ygrh6NeW8loRwGcUwlUQ/mWf70pqtGgt1YVq+dxZzhVtkcinGA6L4FIU8+4Ekcvq8vvvvx906tTJ/O7ZWh9uu+028zkSGzdu1CyAuBk8eLA5XxcvXqyZINi+fbvJSVR6O7VCC+Hou16lekcQAIVwVYSDYSF78EaLz1LcYMNd3c13lSH6+8gA3VZxK8W8PH75Q6AURbBwf4dcCvnVq1eb37mtC/6uuOIK87kXX3xx8MEHH2gWQFzs3LnTnKsShw4d0uyfSG+wm6/0dmqFFMIyprktEbJwUey7aAA+QSFcYVK4hoNaIaIDaSmuGnZ7fgv5flLQSzHp/l7ybylQ5feVkJVaKZLDn1HKgTz82W0VtK4hQ4aY33XRokWayZRtFWn27NmaBRAXs2bNMufpxIkTNfMJ6SF2P0eiktupRRcO2iJjZPTiuFKPnQAohCtKCka3DUEGxXxWReVz3a8PQwbHYldXwwG6mAsw5PHJ9wkL3jDCNhApiEuxgu1yi/hcWjOeeeYZ87tJtLeV0u23357xNc3NzZoFUG0nTpwIOnfubM7RTZs2adaaO3eu+bxKbacm45P7cyXCxQJZ9Q1D3pWTj0dXgQt5BxFA+yiEKyRaHLohufa09fVhyIBaKHelOpf2grgI2zpkosiFrOa6z1mu2yhFew/lxhvSawyg+tasWWPOz759+2omk6wKR7dTky3XysX9ObmGjGeywCHjW6layABkRyGMj4VFpaxGJEXYFpHLZPHhhx8GXbp0MRPOL37xC822Ldt2a/JWLIDqGzp0qDk36+vrNZNdXLZTA1B9FMIwwhaJJKwKh2815nqBX1joh9GnTx/N5GbBggXm6yUee+wxzQKohl27dmWclwcOHNDsmUVXhauxnRqA6qMQhiEXYsjbcrLSGueLMsJWjnxWr4cNG2Ymvu9973uayV30QrsLL7wweO+99zQLoNLq6urMOTlu3DjNtM29EFb6hKV3GIB/KISRQQpg6U+TgjiOxXBYrOdzR7rnnnvOTJYSr732mmZz9/TTT2d8n5tuukmzACrp5MmTQdeuXc35mM+FrHKNwMiRI2mLADxGIYwzklYCuUiv1Ds9FCPcOSPfK6i/8Y1vmMly7NixmsnfnXfeab6XxKOPPqpZAJWydu1acx7m2+4EABTCaJMUwbLyGocrl6X4ld8l31XqU6dOBd26dTMT5oYNGzRbmKuuusp8vwsuuCB45513NAugEoYPH27OQ+njB4B8UAgj9X70ox+ZyVKK1mI9++yz5ntKTJ8+XbMAym337t0Z5+D+/fs1CwC5oRBG6o0YMcJMlvPnz9dMceSOdO73lVi/fr1mAZTTnDlzzLlXTLsTAH9RCCPV9uzZYyZLiVdeeUWzxYu+NXv++ecHx44d0yyAcjh9+nTQvXt3c+4V2+4EwE8Uwki1W2+91UyWudzFLx/ZdqO48cYbNQugHNatW2fOuVK0OwHwE4UwUs29X79EOVoX7rrrLvMzJB5++GHNAii1a665xpxvpWp3AuAfCmGk1kMPPWQmy969e2um9K6++mrzs84777zg7bff1iyAUil3uxMAv1AII7VGjRplJst58+ZppvSef/5587Mkpk6dqlkApSJ3gHPPs1K3OwHwC4UwUmnfvn1mspSQj5XT3XffnfEzH3zwQc0CKIVevXqZc4ydWgAUg0IYqSSrv+5kKavDlSC3a3V/rkzaR44c0SyAYlSy3Sm0ffv2oLa2Njh48KB+BECaUAgjlWSCdCdMmUArIVv/4pQpUzQLoBiVbHeSAtj9w1b+H0D6UAgjdeStUneylFXZSlq6dKn5+RKy3ROAwlW63Wnjxo0ZP08+BiBdKISROnLxjDt5ycU1lRZduTr33HODw4cPaxZAvqrR7hRtdaqpqdEMgLSgEEaqyDZK7sQlIe0Klfbiiy9m/B7XX3+9ZgHkqxrtTtIX7P5MiaamJs0CSAMKYaSKbKzvTlqy8X613HPPPeZ3kXjggQc0CyBX1Wx3mjFjhvnZPXr0CN59913NAkg6CmGkitxq1Z20qt2be+2115rfp1u3bsEbb7yhWQC5qGa7kxS97s+WkOIYQDpQCCM1NmzYYCar7t27B6dPn9Zsdbz00kvmd5KYMGGCZgG0Jw7tTgsXLsz4HdhODUgHCmGkxtixY81ENWfOHM1U17333mt+L4nGxkbNAmhLXNqd5EI59/cYP368ZgAkGYUwUmH//v1mkpLYvXu3Zqvvq1/9qvndunbtGhw4cECzAM4kLu1ObKcGpBOFMFJhwYIFZoIaPny4ZuJB3t7t2LGj+R1ZUQLaFrd2J7nDnPv7sJ0akHwUwkiFPn36mAlq7dq1momPVatWmd9R4r777tMsgKi4tTuxnRqQPhTCSLzm5mYzMUnbwcmTJzUbL9ddd535Xc8+++zgtdde0yyAUFzbnbJtpwYguSiEkXjjxo0zE1NdXZ1m4ufVV18NOnXqZH7fr33ta5oFEIpru1O27dSqcfdKAKVBIYxEkwvOopPSrl27NBtPP/zhDzN+Z/kYgE/Eud2J7dSA9KAQRqLV19ebyWjo0KGaiTdZBXZ/b1klltViAPFvd5JV4eh2alIcA0geCmEkWt++fc1ktGbNGs3Em/QFn3XWWeZ3lwuDACSj3SncTm3kyJFsowYkGIUwEmvTpk1msuzcuXNw4sQJzcafFO3u7y8hO0sAPktSu5PsGCGrwwCSi0IYiTVx4kQzWc6aNUszySF7CbuPQfYalj2HAV8ltd0JQDJRCCORDh06ZCZLiZ07d2o2OWT1S/of3cchd6EDfJXUdicAyUQhjERavHixmSwHDx6smeRpbGw0j0Xi3nvv1Szgj2i7k1xEmqR2JwDJQyGMROrfv7+ZMBsaGjSTTBMmTDCPR+Lll1/WLOCHNLQ7AUgWCmEkTktLi5kspa826ResvPHGG8E555xjHtfo0aM1C6RfWtqdACQLhTASZ/LkyWaylFuepsH9999vHpfEPffco1kg3aLtToMGDdIMAJQPhTAS5ciRI2aylNi2bZtmk+/666/PeHwvvviiZoH0irY7sZUggEqgEEaiLF261EyWl19+uWbS4fDhw8G5555rHuOoUaM0C6RTtN2pQ4cO7M8LoCIohJEol156qZkwV6xYoZn0WLdunXmMEsuWLdMskD7Rdqfp06drBgDKi0IYibF582YzWUocO3ZMs+kSLQwk9uzZo1kgPd56662MY33r1q2aTb7t27dzC2YgxiiEkRg33HCDmSynTZummfR58803g549e5rHO3LkSM0C6RFtdxo4cKBmkk1aO+bOnRv06NGjNQ4ePKgZAHFCIYxEOHr0qJksJbZs2aLZdHrwwQczHvPdd9+tWSAdou1Oy5cv10xySRFcW1trHpfcTh1A/FAIIxFkcnQnlcsuu0wz6TZ16lTzuCWef/55zQLJJn/MRo9v+aM3DZqamjIe2969ezULIC4ohJEI8napO6H4cvHY22+/HZx33nnmsY8YMUKzQLJJe5N7bEv7U5pEV4Xl3wDihUIYsScXzriTiYRcYOOLhx9+OOPxy80HgCSTC12jx7VcEJsmcqFc9DFy4RwQLxTCiD3ZSsmdSKZMmaIZf0RXziSee+45zQLJI1sfusez9AqnkfQGu49TLpwDEB8Uwoi148ePt26u704kTzzxhGb9Iatn559/vnkehg8frlkgeeRmOO7xLLtHpJFcOOc+TomFCxdqFkC1UQgj1uQ2q+4EMmDAAM34Z/369ea5kFi0aJFmgeSQ26JHj2W5fXpazZgxwzxWtlMD4oNCGLE2aNAgM4EsWbJEM36KtolIPPvss5oFkiFaGMoNZNJMVoVramrMY5bnAED1UQgjtnbs2GEmDonDhw9r1k/vvPNO8LnPfc48J1/60pc0C8SfFIUdO3Y0x3BLS4tm04vt1IB4ohBGbM2cOdNMGpMmTdKM3x555BHzvEjceeedmgXiraGhwRy7/fv310z6RVeFuVskUH0Uwoil999/P+jUqZOZNB5//HHN4qabbjLPjcTTTz+tWSC+Bg8ebI5bn7YCZDs1IH4ohBFLq1evNpNF3759NQPx3nvvBRdeeKF5joYMGaJZIJ527txpjlmJQ4cOadYPbKcGxAuFMGJJijp3smB3hEyPPfaYeY4kFixYoFkgfmbNmmWO14kTJ2rGH7JbhPscSEj/MIDqoBBG7DzzzDMZEwVbDWUXLSwkZNUNiJsTJ04EnTt3Nsfqpk2bNOsXtlMD4oNCGLEze/ZsM0mMGzdOM4iSXuo+ffqY5+vKK6/ULBAfa9asMcepz+1OsnOGFL/yPMh/V65c2foxAJVHIYxYOXnyZNClSxczYTY3N2sW2fz85z83z5fE7bffrlkgHoYOHWqO0fr6es34SS6SkzvMUQAD1UUhjFhpbGw0k6WsdqJ90VV0CblCHYiDXbt2ZRyfBw4c0CwAVA+FMGJl2LBhZrLk4q/cfPDBB8HFF19snrsrrrhCs0B11dXVmWOTdicAcUEhjNjYvXu3mSwl9u/fr1m0R95qjT5/3/nOdzQLVIe0O3Xt2tUcl7Q7AYgLCmHExpw5c8xkOXbsWM0gVzfffLN5DiWefPJJzQKVt3btWnM80u4EIE4ohBELp0+fDrp162YmzA0bNmgWuZLVt379+pnnceDAgZoFKm/48OHmeKTdCUCcUAgjFtatW2cmywsuuEAzyJfcitp9LiXmzZunWaByaHcCEHcUwoiFa665xkyW8+fP1wwKEW0zkdiyZYtmgcqg3QlA3FEIo+r27NljJkuJV155RbMoxKlTp4L+/fub5/SLX/yiZoHyk3an7t27m2OQdicAcUMhjKqbO3eumSzHjBmjGRTjV7/6lXleJb797W9rFigv2p0AJAGFMKquV69eZsJcv369ZlCsb37zm+a5lfi3f/s3zQLlQ7tTaXDnOaC8KIRRVQ899JCZLHv37q0ZlMIf//jH4Atf+IJ5juXf8nGgXGh3Kp4UwPJuWY8ePYKmpib9KIBSoxBGVY0aNcpMluxuUHqyAuw+xxK33nqrZoHSo92pOHv37g1qamo+fv6kGAZQHhTCqJp9+/aZyVJCPobS+9a3vpXxXLe0tGgWKC3anYojq8Hu8ychf1wAKD0KYVSNrP66A72sDqN8LrvsMvN8DxgwoPXKfqCUaHcqjYULF5rnUeLgwYOaBVAqFMKoGpkg3UFeJlCUz+bNm83zLSH7vAKlRLtT6bjtERLjx4/XDIBSoRBGVchbpe4AL2+lovyiq/AScic6oBRodyqtjRs3Zjyf27dv1yyAUqAQRlXIxTPu4E7/W+UMHDjQPPeXXHJJ8NFHH2kWKBztTqVXW1trnlNZJQZQOhTCqDjZRskd2CVkuyVUxpNPPpnx/N9yyy2aBQpHu1PpyQ4S7nMqwXZqQOlQCKPiZGN9d1CXjfdRWbfddpt5DSR++ctfahbIH+1O5TNjxgzz3LKdGlA6FMKoOLnVqjuoy61YUXnRt1z79u0bfPDBB5oF8kO7U/lk205NdpUAUDwKYVTUhg0bzGDevXt3tvCqkm3btpnXQmL27NmaBXJHu1P5sZ0aUB4UwqiosWPHmoGc7buq6/bbbzevh0Rzc7NmgdzQ7lR+sirMdmpA6VEIo2L2799vBnGJ3bt3axbVMnjwYPOaXHTRRcGJEyc0C7SPdqfKyLadmlxMB6BwFMKomAULFpgBfPjw4ZpBNe3YscO8LhJf//rXNQu0jXanymI7NaC0KIRRMX369DED+Nq1azWDavvud79rXhuJxx57TLPAmdHuVFlspwaUFoUwKkL6Tt2Bu2vXrsHJkyc1izgYMmSIeY0uvPDC4L333tMskIl2p+qQ3uDw+Zat1FauXKkZAPmiEEZFjBs3zkyWdXV1mkFcPP300+Y1krjppps0C2Si3ak6wu3URo4cSY8wUCQKYZTdgQMHzGQpsWvXLs0iTu68886M1+rRRx/VLGDR7lQ9UgwDKB6FMMquvr7eTJZDhw7VDOLoqquuMq+X7Ahw/PhxzQJ/Em136tKlC+1OABKHQhhlJ3cscyfMNWvWaAZxJKv17uslIbd4BVy0OwFIAwphlNWmTZvMZNm5c2f2qE2A6Cq+xPr16zUL39HuBCAtKIRRVhMnTjST5axZszSDuJMLn9zX7vzzzw+OHTumWfgs+oeS7DgCAElEIYyyOXTokJksJXbu3KlZxN1zzz2X8frdeOONmoXPou1Oq1ev1gwAJAuFMMpm8eLFZrKUW/kiWe666y7zGkr85Cc/0Sx8FG136tSpE+1OABKLQhhl079/fzNhNjQ0aAZJcvXVV5vX8bOf/Wzw+9//XrPwTbTdaebMmZoBgOShEEZZtLS0mMmyY8eO7HuZUL/+9a/NaykxdepUzcInhw8fzjgWduzYoVkASB4KYZTF5MmTzWTJ9lvJdvfdd5vXU+LBBx/ULHyxZMkScwwMGjRIMwCQTBTCKLkjR46YyVJi27ZtmkVSye1c3de0V69era81/BFtd1q1apVmEEfbt28Pxo8fr/8CkA2FMEpu6dKlZrK8/PLLNYMk27Nnj3ldJaZMmaJZpN0TTzxhXvsOHTpwx8GYkgK4trb249dq48aNmgEQRSGMkrv00kvNhLlixQrNIOmif+RI/PjHP9Ys0kz+6HFf9+nTp2sGcSOtaO5r1aNHD80AiKIQRklt3rzZDMAS3IQhXb7yla+Y1/fcc89tvYgK6fXWW2+Z11xi69atmkXcHDx4MOP1WrlypWYBuCiEUVI33HCDGXynTZumGaTFiy++aF5jieuvv16zSKNly5aZ13vgwIGaQVxlWxWWAhmARSGMkjl69KgZeCW2bNmiWaTJPffck/FaP/DAA5pF2lx22WXmtV6+fLlmEFeyXaUUv+7rxu49QCYKYZSMTI7uoCuTJ9Lr2muvNa93t27dgt/97neaRVrIH7Pu6ywhf/Qi/pqamjJeu71792oWgKAQRsnI26XugCtvpyK9XnrpJfN6S8hdx5Au0t7kvsbS/oTkqKmpMa+fbIMI4BMUwigJuXDGHWwl5AIbpJvsCBJ93RsbGzWLpJMLXaOvr1wQi+SQrdOiryHbqQGfoBBGSchWSu5Ay/6y/vjqV79qXvuuXbsGBw4c0CySLPqHjmyNiOSRm2q4ryPbqQGfoBBG0WRTfdlc3x1oZfN9+OGVV14JOnbsaF5/7maVDnIzHPd1lX2kkTzZtlOT/mEAFMIoAbnNqjvAym1Y4ZfoMSBx3333aRZJJLdFj76m3FI7udhODciOQhhFGzRokBlglyxZohn45LrrrjPHwdlnnx389re/1SySJlo4TZ48WTNIItlOzX09JdhODaAQRpF27NiRMbhylzE//eY3vwk+85nPmGPha1/7mmaRJFI0RdtdWlpaNIukkrvLua+pBKvC8B2FMIoyc+ZMM6iyfZbffvCDH5jjQeKHP/yhZpEUDQ0N5jWk3Sk92E4NsCiEUbATJ04EnTp1MoPqpk2bNAtfySqwe0zIMfLqq69qFkkwePBg8xouXrxYM0i6bNupbd++XbOAfyiEUbDVq1ebwbRv376agc9ee+214KyzzjLHxtixYzWLuNu5c6d57SQOHTqkWaSBrALL6yr/pQiG7yiEUbAhQ4aYybK+vl4z8N2aNWvMsSEhb7cj/mbNmmVeN9qd0kf6gqVfWHrBAd9RCKMgu3btMpOlBDdRgGvcuHHm+Pj0pz/duucw4kvanTp37mxeN9qdAKQZhTAKUldXZyZLKXoA1+uvv956lzn3OJG70CG+oiv5tDsBSDsKYeTt5MmTQZcuXcyE2dzcrFngE42NjeY4kbj33ns1i7gZOnSoea1odwKQdhTCyNvatWvNZNmnTx/NAJkmTJhgjheJl19+WbOIC9qdAPiIQhh5Gz58uJksFyxYoBkg0xtvvBGcc8455pgZPXq0ZhEXtDsB8BGFMPKye/duM1lK7N+/X7NAdvfff3/GcbN8+XLNotqk3Snaz027EwAfUAgjL3PmzDGTJfvDIleTJk0yx47Eiy++qFlUE+1OAHxFIYycnT59OujevbuZMDds2KBZoG2HDx8Ozj33XHP8jBo1SrOoJtqdAPiKQhg5W7dunZksL7jgAs0AuYkeQxLLli3TLKqBdicAPqMQRs6uueYaM1nOnz9fM0DuJk+ebI4jib1792oWlUa7E85Ebr8sd6ED0oxCGDnZs2ePmSwluEsYCvHmm28GPXv2NMfSl7/8Zc2ikmh3QjZy6+W5c+cGPXr0CMaPH68fBdKJQhg5kUHRnSzHjBmjGSB/TU1N5niSuPvuuzWLSqHdCVHy7owUwO5xwTs2SDMKYeSkV69eZmBcv369ZoDCTJ061RxTEs8//7xmUQm0OyGb2tpac1zU1NRoBkgfCmG066GHHjKDYu/evTUDFO7tt98OzjvvPHNsjRgxQrMoN9qdcCayAhw9NuRdHCCNKITRLtniyh0Q582bpxmgOA8//LA5tiQWL16sWZQT7U5oi/QGu8eHtEsAaUQhjDbt27fPDIYS8jGgVKZNm5ZxjMmWXigv2p3QFrlgzj0+JBYuXKhZID0ohNEmWf11B0JugIBSO3r0aGu7jXucyQ0eUD60OyEXUvi6x4msCrOdGtKGQhhtihYoMoECpfbTn/7UHGcSixYt0ixKjXYn5EJWheVCOfdYYTs1pA2FMM5I3ip1B0B5KxUol+nTp5vjTeLZZ5/VLEqFdifkI9tWh2ynhjShEMYZycUz7uAnF9cA5fLOO+8En/vc58wx96UvfUmzKBXanZCv6HZq8m8gLSiEkZVso+QOfBKy3RJQTo888kjGcccFOqVFuxPyJbdado8ZCbZTQ1pQCCMr2VjfHfRk432gEv7u7/7OHHsSTz/9tGZRDNqdUCi2U0NaUQgjK7nVqjvoya1YgUqQC3QuvPBCc/wNGTJEsygG7U4oFNupIa0ohJFhw4YNZrDr3r17cPr0ac0C5ffYY4+ZY1BiwYIFmkUhaHdCsaI3YWE7NaQBhTAyjB071gx2c+bM0QxQObNmzTLHocTOnTs1i3zR7oRiZdtObcaMGZoFkolCGMb+/fvNICfBXb5QDe+//37Qp08fcyxeeeWVmkW+aHdCKbjbqcmK8MqVKzUDJBOFMAx5+9mdLLnDF6rp5z//uTkeJe644w7NIlfRdqdu3brR7oSCyfZpUgDLCjGQdBTCMKIrcGvXrtUMUB1///d/b45JCdnOCbmj3QkAsqMQxseam5vNZNm1a9fg5MmTmgWq44MPPgguvvhic2xeccUVmkV7aHcCgDOjEMbHxo0bZybLuro6zQDVtXHjRnNsSnznO9/RLNoSbXcaNmyYZgAAFMJodeDAATNZSuzatUuzQPXdfPPNGcfo1q1bNYszibY7NTY2agYAQCGMVvX19WayHDp0qGaAeJA2nX79+pnj9PLLL9cssom2O3Xp0oV2JwBwUAijVd++fc2EuWbNGs0A8bFp0yZznErMmzdPs4iKtjvNnj1bMwAAQSGMjOKic+fOwYkTJzQLxIvseOAerxJbtmzRLEJyx6/o8/TMM89oFgAgKIQRTJw40UyWckcvIK5OnToV9O/f3xyzX/ziFzWL0KJFi8xzNGTIEM0AAEIUwp47dOiQmSwluI0t4u5Xv/pVxnH77W9/W7MQ0Xan1atXawYAEKIQ9tzixYvNZDl48GDNAPH2zW9+0xy7Ev/+7/+uWb89/vjj5nnp1KlT6y2rAQAWhbDnom8xNzQ0aAaIt//7v/8LPv/5z5vj9wtf+ELwxz/+UT/DX5MmTTLPy8yZMzUDlJ/cennu3LlBTU1Na686EGcUwh5raWkxk2XHjh25dzwS5YknnjDHsMStt96qWT8dPnw44znZsWOHZoHyktufSwEcHnszZszQDBBPFMIemzx5spksGbCQRN/61rfMcSwhf+T5asmSJea5GDRokGaA8mtqajLHnwSrwogzCmFPHTlyJGOw2rZtm2aBZLnsssvMsTxgwIDg9OnTmvWLPHb3uVi1apVmgMpwV4QlRo4cqRkgfiiEPbV06VIzUHGHLiTZ5s2bzfEs8Q//8A+a9Ue0VaRDhw7B8ePHNQtUxsaNG81xKCEfA+KIQthTl156qRmkVqxYoRkgmf7xH//RHNMSsnuCT6ZMmWIe//Tp0zUDVJasArvHoqwSA3FEIeyhbKtnx44d0yyQXAMHDjTH9SWXXBJ89NFHmk23t956yzx2ia1bt2oWqKxsdzaU/mEgbiiEPXTDDTeYwWnatGmaAZLtySefNMe2xC233KLZdFu2bJl53PJHAVBNcgG2e0z26NGDnYkQOxTCnjl69KgZmCS2bNmiWSD5brvttoxj/Je//KVm0yt6weDy5cs1A1SHFL3uMSnB7kSIGwphz8jk6A5K0isMpE1tba05zuV2wx9++KFm00f+mHUfr4T80QtU28qVKzOOTbZTQ5xQCHsm2kMpu0cAaSNbAbrHuURdXZ1m00fam9zHKu1PQFxEt1MbP368ZoDqoxD2iFw44w5GEnKBDZBG8+fPzzjem5ubNZsecqFr9HHKBbFAXLCdGuKMQtgjspWSOxDJneWANBs8eLA55i+66KLgxIkTmk0H2frQfYy0OyGOou1KbKeGuKAQ9oRctCCb67sDkc+3oYUfduzYYY55ia9//euaTQe5GY77+Gh3QhyxnRriikLYE3KbVXcA6t+/v2aAdPvud79rjn2Jf/3Xf9VssmXrhZbbpwNxlG07NaDaKIQ9MWjQIDMALV68WDNA+v3FX/yFOf7//M//PPjf//1fzSZXtLCg3QlxFt1OTQrh7du3axaoDgphD+zcudMMPhKHDh3SLJB+Tz31VMY5cNNNN2k2maSo6Nixo3lMtDsh7hYuXNh6rMotmNlGDXFAIeyBWbNmmcly4sSJmgH8ceedd5rzQOLRRx/VbPI0NDSYx0K7E5JA/oDbu3ev/guoPgrhlJMr5Dt16mQmzE2bNmkW8MtVV11lzoULLrggOH78uGaTJbojBu1OAJA/CuGUW7NmjZks5Q5bgK927dplzgeJJN7ylXYnACgNCuGUGzp0qJks6+vrNQP4Sc4B95yQ+NnPfqbZZKDdCQBKg0I4xbKtfh04cECzgL+GDRtmzovzzz+/9Q5tSSDtTp07dza/P+1OAFAYCuEUq6urM5PluHHjNAP47T/+4z/MuSFx4403ajbeaHcCgNKhEE6pkydPBl27djUTZnNzs2YB3HXXXeb8kPjJT36i2fii3QkASodCOKXWrl1rJss+ffpoBkDo6quvNufJZz/72eD3v/+9ZuOHdicAKC0K4ZQaPny4mSwXLFigGQChX//61+Y8kbjhhhs0Gz+0OwFAaVEIp9Du3bvNZCmxf/9+zQJwLVmyJON8efDBBzUbH7Q7AUDpUQin0Jw5c8xkOXbsWM0AyEZu9+qeM7169QqOHDmi2Xig3Qk+2b59e7Bx40b9F1A+FMIpc/r06aB79+5mwtywYYNmAWSzZ88ec85ITJkyRbPxQLsTfCAFcG1tbesx3qNHD/0oUD4Uwimzbt06M1nKLWQBtG/p0qXm3JH48Y9/rNnqot0JPnj33XczjvOFCxdqFigPCuGUueaaa8wgMn/+fM0AaM9XvvIVc/7IitT//M//aLZ6aHeCL+bOnWuOdTkHDx48qFmg9CiEUyTb27uvvPKKZgG054UXXsg4h66//nrNVgftTvCJrArX1NSY4338+PGaBUqPQjhFon9JjxkzRjMAcvX973/fnEcSDzzwgGYrj3Yn+Kapqckc8xJ79+7VLFBaFMIpIle6uwPH+vXrNQMgH9dee605l7p16xb87ne/02xl0e4EH4UXzIUh/wbKgUI4JR566CEzaPTu3VszAPL10ksvmfNJYuLEiZqtHNqd4CvZPSJ67LOdGsqBQjglRo0aZQaMefPmaQZAIVasWGHOKQnZy7eSaHeCz6Q32D3+2U4N5UAhnAL79u0zg4WEfAxAcaTwdM+rP/uzP6voFey0O8FnbKeGSqAQTgFZ/XUHClkdBlC8//qv/wo6duxozq9KXcFOuxMQBDNmzDDnAdupodQohFNAJkh3oJAJFEBprFq1ypxfEvfdd59my4d2JyD7dmpSHAOlQiGccPJWqTtAyFupAErruuuuM+fZ2WefHfz2t7/VbOnR7gR8gu3UUE4UwgkX7WGUi2sAlNZvfvOb4DOf+Yw51/7mb/5Gs6VHuxNgRVeF2U4NpUIhnGCyjZI7MEjIdksASu8HP/hBxvm2evVqzZYW7U6AxXZqKBcK4QSTjfXdQUE23gdQPn/9139tzrlOnToFr776qmZLI9ru1LNnT80AfmM7NZQDhXCCya1W3UFBbsUKoHz2798fnHXWWea8Gzt2rGZLI9rudOutt2oG8JvsFhGeFyNHjqRPGCVBIZxQGzZsMJNl9+7dg9OnT2sWQLmsWbPGnHsSDQ0Nmi0O7U5A2+Q6mJUrV7buJgGUAoVwQskqlDtZzpkzRzMAym3cuHHm/Pv0pz8d/Pd//7dmCxdtdxoxYoRmAADlQCGcQPL2rDtZSuzevVuzAMrt9ddfD7p06WLOwb/6q7/SbOGi7U4/+tGPNAMAKAcK4QRasGCBmSyHDx+uGQCV8i//8i/mPJS49957NZu/aLtTt27dglOnTmkWAFAOFMIJ1KdPHzNhrl27VjMAKmnChAnmXJR4+eWXNZufaLvTN77xDc0AAMqFQjhhmpubzWTZtWvX4OTJk5oFUElvvPFGcM4555hzcvTo0ZrN3WuvvWa+h8Rzzz2nWQBAuVAIJ0z0Ip26ujrNAKiG+++/35yTEsuXL9dsbr73ve+Zrx82bJhmAADlRCGcIAcOHDCTpcSuXbs0C6BaJk2alHFu7tu3T7Pti7Y7NTY2agYAUE4UwglSX19vJsuhQ4dqBkA1HTp0qHUvb/f8HDVqlGbb9otf/MJ8nexG8eGHH2oWAFBOFMIJ0rdvXzNhysb+AOJBtjpzz0+JZcuWafbMoreNnT17tmYAAOVGIZwQmzZtMpNl586dgxMnTmgWQBxMnjzZnKcSbd0G1r1lbBjPPPOMZgEUitsvI1cUwgkxceJEM1nOmjVLMwDi4s033wx69uxpztUvf/nLms20aNEi87lDhgzRDIBCyB+XchtmOZ82btyoHwXOjEI4AaT/0J0sJXbu3KlZAHHS1NSUcb7+8z//s2atfv36mc9bvXq1ZgDka+XKlUGPHj0+Pp9qamo0A5wZhXACLF682EyWgwcP1gyAOPrbv/1bc85K/Od//qdm/+Txxx83+U6dOgXvv/++ZgHkK1urkfxhCrSFQjgB+vfvb07shoYGzQCIo7feeis477zzzHk7YsQIzf5JdMu1mTNnagZAoWbMmGHOK1khBtpCIRxzLS0t5qTu0KFD8O6772oWQFw9/PDD5tyVkHd3xOHDhzNyO3bsaM0BKJzMj9FzS4pj4EwohGMuehU6JzSQHNOmTTPnr8Tu3buDJUuWmI8NGjRIvwJAsRYuXGjOLwlpmwCyoRCOsSNHjmSczNu2bdMsgLg7evRo0Lt3b3MO/+Vf/mUwYMAA87FVq1bpVwAoBblQzj3HZL9uIBsK4RhbunSpOZEHDhyoGQBJ8dOf/tScx9GQdqfjx4/rZwMoBdk6LXqubd++XbPAJyiEY+zSSy81J/Ho0aNb3/IhCCJZcfnll5tz2Y3a2tqsX5NLFDqxZ/tehUQh5HfO9r3yDR57/rJ9r0KiENV47HJuueca26khGwrhmNq8ebM5gQmCIKIhhUEhsn2vQqIQ8jtn+175Bo89f9m+VyFRiGo8drZTQy4ohGMq20U2BEEQblAQ5S/b9yokCsFjz/798ol8H7u7nZqsEHO3OURRCMfQsWPHzIlPEASRLSiI8pftexUSheCxZ/9++US+j122UwvvNsfWo8iGQjiGVqxY0XqyEwSRzpg+fXowcuTI4J/+6Z+y5nMNekXzl+17FRKF4LFn/375RDGPHciGQhgAAABeohAGAACAl7wvhMeMGZPRg9Re9OvXr/Xrli1bFrzwwgv6nQCklZzr2caCfKNnz576HQEkkcz5d9xxR0btIHXBzTffHDz11FP6mX8inxv9GOKFFWElB+qVV15pDuzwoHZDJsTobY/lhHj99df1OwFIKznPoxNgY2NjxjjhRktLS+tYEn4+gOSRc9k996UOcM99Oc+l6A0XyuRjMl7IH7/y/4gvRmXHI4888vFBLtHWwSt/FbqFsxzsrA4D6SfjQq7jhEsmTfl8AMkiBW54vksB3N7CV3iuh0EhHG+Myo58J7g//OEPrX/9hZ8v/w8g3WQSzGeccNEaASSL+26O/H+uZGEs/Dp5JxnxRSHsyLcQFtFVZPk3gHRzz/l8CmFZTQKQDO5KsLQ75CtcGaYQjjcKYUchhbCsCrtfk89fjACSyT3n8ymEASRDtB4otPVR3immEI43CmFHIYWwcL+mkL8aASSLe85TCAPp47Y9FjOvy7vEsrKM+KIQdhRSCEf7BTnggfRzz/lcxgn+QAaSQ3aAcM9xaXEoBi1R8UYh7CikEI7uL5rL1wBItnzPeS6SA5LDvUBOgh2h0o1C2JFvIRz9q5H+YMAP7nnf3jgRjisAkkH+cHXPcaQbr7AjWghneztELo6LbpAvIf+WHID0c8/9tgphGSvC/cYBxF/0AnjezUk/RmdHtBDOJeQkaW9FCEC6ZBsL2gsA8RetA+jvTz9GZ0f0BJD+X/mYG7JKLKu/7lsn8v/ysfbuNgMgHdxxQsaE6DgRhlw8G44VAOJPzlv3/KYQTj9GZ0f0BJB/n4m8fRK9UE4mPJrqgfRzz/u2xgkR3nQHQPy5d4STkNYmpBujsyOfQjgU3jkmDCmG6RUG0s0953MZJ+TzACSDe35z7qYfr7CjkEJYhBfDhFHsnoMA4s0933MZJ3h7FUiO6JxO22O6UQg7Ci2Eo6vCTHpAurnne67jBIBkkN5+9xyX9iakF4Wwo9BCOPp1FMJAurnnO4UwkC7RO8Yyp6cbhbCj0EI4emMNbqcIpJt7vudbCMs1BIwRQLxF7xVQzB+8cr5z7VB8UQg7Ci2EoycMb6MA6eae7/lOkDJeMEYA8SaFa79+/T4+z6VvuJBiVs532WEK8UUh7CikEI5utSInDoD0ksnQPefzKYTDd49YHQLiT+Z3954B+RbDUgRLIN4ohB3hfp9htDfBSd49SdhHGEi/6B/MUtzmIhwvaIsAkiNaDMv/ywXybRXEcq5L0UwRnAwUwkoOXPdtEAlpkJe3NGSik3wY8rHo9iryb4pgIN3kHM927rvjQzTkD2yZEMPPpy0CSBYpet1zOIywRghD/siVOkKK5Vz/QEb1eV8Iy4EcPbhzCTnY5WtlmxWZ7ACkl0xy2caBQoK2CCCZZDcJWQ2WuT+6cBauAPOHbvKwIgwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADAQ0Hw/8unutk7pEI/AAAAAElFTkSuQmCC
|
As shown in the figure, point E is taken on BC, and quadrilateral ABCD is folded along DE so that the folded point C coincides exactly with point A. What is the relationship between the lengths of CD and AD?
|
A. AD = CD; B. AD > CD; C. AD < CD; D. No correct answer
|
A
|
78
|
iVBORw0KGgoAAAANSUhEUgAAAsIAAAFyCAYAAAD/MLwxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAADWzSURBVHhe7d0PkFX1dcDxQAIKFQTG4MSxuIIDiWZwBQsGKpIwQipNYQAHijhQIWU1NJKUGjRElhEsRBA2AbtoyKoJUWw2BCdrCyMwoGIlFhStjRjBQEUDEa2M4kAzt3M25+rv3PfYff/fvff3/cycUfbsv/fevb/f2d8793c/FQAAAAAeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiE0abXX389uPnmm4MXXnhBP3Jmf/jDH4JHHnkkmDx5ctCvX7/gU5/61McxZsyYoLGxsfVzQvL/8vEzueOOO1q/9sorr2z9t3zvZcuWme8BAABQKArhmJLiUwq/apKiU4pQKYbbIoWpfG7Pnj1bC1cpgqWIbWlpCZ566qnWkCJYCmT5nLCYlc85UyEsj90tpEPycfn+8r0BIO7ccSzXkHFRQsZKxjqgvCiEY0iKRBkMpeCrhnClVorx9shKcbj6K0Vue8W7FNVSXLsDfjby8TN9jvzMsKAGgCSQsTFcLAhDxlhZJAgXDNxFA/fz3AUEAKVFIRxDMuCFA6AMjJUkA60UqhLtDbphQRoO1Lm0T4TcgT4bt7Ui24qIPC+Sy6VYB4A4kPEqHNck2iLjb9geFoaMi/mMswDaRyEcQ+6qwZlWTMslLFDbG2xlZdf9PfMt2GWQD4vdbMLv29aqeDhJVLuFBABy4S5ySORCxlZ3rM130QFA2yiEYybaGyvRXo9uqchbcvLzcllldVsXpHguRPhYo6RIDr93W0WufF44QTAxAIi7QgphEb4DFoYsELT3jh2A3FAIx4wMcBLuCkAl3v53V3jbKyqjxXox7RvZBvRw0G9rNTgU3VkCAOKq0EJYRL9W/g2geBTCMRIWgLIy6/aSSYFa7r/+w5+XS/HpXuwmv1sxwgtFXOHzkEvLgxTt4e+Sy+cDQLUUUwi774CFwaowUDwK4RiRdoOw6JUVWnfAk4KxXNyf1d7qc/T3KrQtoi0yWeRSkIfCyYFVYQBxVkwhLKIXz5VzXgB8QSEcE2GB6Raibh9uPoVhvtzBub2BVfLh50qU4+05+Z75rO66zxO9wgDiqthCOHy3LIxKX0wNpBGFcEyErQlSEIeivbjl2ljdbXWItilExXFFwp1c5PfL19GjR4OFCxcSBJHiqK+vD1asWKFnfXUUWwjLu4Xu1xfbmgaAQjgWwt6vbH/dy0pwOOiV46//6MDaXs+Zu/oq0V7hXAnuHwyFtEcsX77cPCaCINIZx44d07O+OoothIX79YV+DwCf4CyKgXBwzLbiGx043RXjUoi+1daeOBbC+T6GqIEDB5qvJwgifXHOOefoGV895SiE21u8ANA2CuEYkFXfM/UAR1ds27uYLV/Rnt/2RG/9GYf74EcL4Xz6hLdu3Wq+liCI9EZTU5Oe+dXBijAQP5xFVRa+rd9Wr23YPywR7ipRKvkOzNHPl39XW7QQzmeVevr06eZrozF16tSs/YYEQcQ3Ro8enfV87tGjh5751UEhDMQPZ1GVSU9re8VttNAr5QVq+Q7MsgLsfn6pV6gLUWghfPz48aBDhw7may+66CLz7/79+wenTp3SrwCQBG21O0mhXC3FFsLRdwi5WA4oHoVwFUULuFyjlFup5TswRwficm7rlqtCC+FVq1aZrxswYECwZcsW8zGJOXPm6FcAiLtt27ZlnMNuyKrwwYMH9bMrq9hCODrWlWMfd8A3FMJVFPbbyiqrDHBtRXQALdVd1PLtERZuq4aE/H7VJD/f/X1y7REeNGiQ+bolS5a0fnzevHnm4xKPP/54aw5AvM2YMcOcuxMmTAhqamrMx8aPH6+fXVnFFsLR7StLNQ8APqMQrpJsN9Boi6zEyttg4QBYqq3UokVkLqJ3lyvmd5GitZC9f12FPIYdO3aYr5E4fPiwZjPfWr3kkkuCjz76SLMA4ujdd9/NaHeShQa5SM79mMTevXv1qyqnmEI4OgfQFgGUBoVwlYR/2eezw0F0EC3FXdSirQ65bs8WXUkuZGVCfn9prZDfoRhu33Ku+wjPnDnT/P6TJk3SzJ88+eSTJi9xyy23aBZAHDU0NJhzVnr8Q7W1tSYn/660Ygrh6NeW8loRwGcUwlUQ/mWf70pqtGgt1YVq+dxZzhVtkcinGA6L4FIU8+4Ekcvq8vvvvx906tTJ/O7ZWh9uu+028zkSGzdu1CyAuBk8eLA5XxcvXqyZINi+fbvJSVR6O7VCC+Hou16lekcQAIVwVYSDYSF78EaLz1LcYMNd3c13lSH6+8gA3VZxK8W8PH75Q6AURbBwf4dcCvnVq1eb37mtC/6uuOIK87kXX3xx8MEHH2gWQFzs3LnTnKsShw4d0uyfSG+wm6/0dmqFFMIyprktEbJwUey7aAA+QSFcYVK4hoNaIaIDaSmuGnZ7fgv5flLQSzHp/l7ybylQ5feVkJVaKZLDn1HKgTz82W0VtK4hQ4aY33XRokWayZRtFWn27NmaBRAXs2bNMufpxIkTNfMJ6SF2P0eiktupRRcO2iJjZPTiuFKPnQAohCtKCka3DUEGxXxWReVz3a8PQwbHYldXwwG6mAsw5PHJ9wkL3jDCNhApiEuxgu1yi/hcWjOeeeYZ87tJtLeV0u23357xNc3NzZoFUG0nTpwIOnfubM7RTZs2adaaO3eu+bxKbacm45P7cyXCxQJZ9Q1D3pWTj0dXgQt5BxFA+yiEKyRaHLohufa09fVhyIBaKHelOpf2grgI2zpkosiFrOa6z1mu2yhFew/lxhvSawyg+tasWWPOz759+2omk6wKR7dTky3XysX9ObmGjGeywCHjW6layABkRyGMj4VFpaxGJEXYFpHLZPHhhx8GXbp0MRPOL37xC822Ldt2a/JWLIDqGzp0qDk36+vrNZNdXLZTA1B9FMIwwhaJJKwKh2815nqBX1joh9GnTx/N5GbBggXm6yUee+wxzQKohl27dmWclwcOHNDsmUVXhauxnRqA6qMQhiEXYsjbcrLSGueLMsJWjnxWr4cNG2Ymvu9973uayV30QrsLL7wweO+99zQLoNLq6urMOTlu3DjNtM29EFb6hKV3GIB/KISRQQpg6U+TgjiOxXBYrOdzR7rnnnvOTJYSr732mmZz9/TTT2d8n5tuukmzACrp5MmTQdeuXc35mM+FrHKNwMiRI2mLADxGIYwzklYCuUiv1Ds9FCPcOSPfK6i/8Y1vmMly7NixmsnfnXfeab6XxKOPPqpZAJWydu1acx7m2+4EABTCaJMUwbLyGocrl6X4ld8l31XqU6dOBd26dTMT5oYNGzRbmKuuusp8vwsuuCB45513NAugEoYPH27OQ+njB4B8UAgj9X70ox+ZyVKK1mI9++yz5ntKTJ8+XbMAym337t0Z5+D+/fs1CwC5oRBG6o0YMcJMlvPnz9dMceSOdO73lVi/fr1mAZTTnDlzzLlXTLsTAH9RCCPV9uzZYyZLiVdeeUWzxYu+NXv++ecHx44d0yyAcjh9+nTQvXt3c+4V2+4EwE8Uwki1W2+91UyWudzFLx/ZdqO48cYbNQugHNatW2fOuVK0OwHwE4UwUs29X79EOVoX7rrrLvMzJB5++GHNAii1a665xpxvpWp3AuAfCmGk1kMPPWQmy969e2um9K6++mrzs84777zg7bff1iyAUil3uxMAv1AII7VGjRplJst58+ZppvSef/5587Mkpk6dqlkApSJ3gHPPs1K3OwHwC4UwUmnfvn1mspSQj5XT3XffnfEzH3zwQc0CKIVevXqZc4ydWgAUg0IYqSSrv+5kKavDlSC3a3V/rkzaR44c0SyAYlSy3Sm0ffv2oLa2Njh48KB+BECaUAgjlWSCdCdMmUArIVv/4pQpUzQLoBiVbHeSAtj9w1b+H0D6UAgjdeStUneylFXZSlq6dKn5+RKy3ROAwlW63Wnjxo0ZP08+BiBdKISROnLxjDt5ycU1lRZduTr33HODw4cPaxZAvqrR7hRtdaqpqdEMgLSgEEaqyDZK7sQlIe0Klfbiiy9m/B7XX3+9ZgHkqxrtTtIX7P5MiaamJs0CSAMKYaSKbKzvTlqy8X613HPPPeZ3kXjggQc0CyBX1Wx3mjFjhvnZPXr0CN59913NAkg6CmGkitxq1Z20qt2be+2115rfp1u3bsEbb7yhWQC5qGa7kxS97s+WkOIYQDpQCCM1NmzYYCar7t27B6dPn9Zsdbz00kvmd5KYMGGCZgG0Jw7tTgsXLsz4HdhODUgHCmGkxtixY81ENWfOHM1U17333mt+L4nGxkbNAmhLXNqd5EI59/cYP368ZgAkGYUwUmH//v1mkpLYvXu3Zqvvq1/9qvndunbtGhw4cECzAM4kLu1ObKcGpBOFMFJhwYIFZoIaPny4ZuJB3t7t2LGj+R1ZUQLaFrd2J7nDnPv7sJ0akHwUwkiFPn36mAlq7dq1momPVatWmd9R4r777tMsgKi4tTuxnRqQPhTCSLzm5mYzMUnbwcmTJzUbL9ddd535Xc8+++zgtdde0yyAUFzbnbJtpwYguSiEkXjjxo0zE1NdXZ1m4ufVV18NOnXqZH7fr33ta5oFEIpru1O27dSqcfdKAKVBIYxEkwvOopPSrl27NBtPP/zhDzN+Z/kYgE/Eud2J7dSA9KAQRqLV19ebyWjo0KGaiTdZBXZ/b1klltViAPFvd5JV4eh2alIcA0geCmEkWt++fc1ktGbNGs3Em/QFn3XWWeZ3lwuDACSj3SncTm3kyJFsowYkGIUwEmvTpk1msuzcuXNw4sQJzcafFO3u7y8hO0sAPktSu5PsGCGrwwCSi0IYiTVx4kQzWc6aNUszySF7CbuPQfYalj2HAV8ltd0JQDJRCCORDh06ZCZLiZ07d2o2OWT1S/of3cchd6EDfJXUdicAyUQhjERavHixmSwHDx6smeRpbGw0j0Xi3nvv1Szgj2i7k1xEmqR2JwDJQyGMROrfv7+ZMBsaGjSTTBMmTDCPR+Lll1/WLOCHNLQ7AUgWCmEkTktLi5kspa826ResvPHGG8E555xjHtfo0aM1C6RfWtqdACQLhTASZ/LkyWaylFuepsH9999vHpfEPffco1kg3aLtToMGDdIMAJQPhTAS5ciRI2aylNi2bZtmk+/666/PeHwvvviiZoH0irY7sZUggEqgEEaiLF261EyWl19+uWbS4fDhw8G5555rHuOoUaM0C6RTtN2pQ4cO7M8LoCIohJEol156qZkwV6xYoZn0WLdunXmMEsuWLdMskD7Rdqfp06drBgDKi0IYibF582YzWUocO3ZMs+kSLQwk9uzZo1kgPd56662MY33r1q2aTb7t27dzC2YgxiiEkRg33HCDmSynTZummfR58803g549e5rHO3LkSM0C6RFtdxo4cKBmkk1aO+bOnRv06NGjNQ4ePKgZAHFCIYxEOHr0qJksJbZs2aLZdHrwwQczHvPdd9+tWSAdou1Oy5cv10xySRFcW1trHpfcTh1A/FAIIxFkcnQnlcsuu0wz6TZ16lTzuCWef/55zQLJJn/MRo9v+aM3DZqamjIe2969ezULIC4ohJEI8napO6H4cvHY22+/HZx33nnmsY8YMUKzQLJJe5N7bEv7U5pEV4Xl3wDihUIYsScXzriTiYRcYOOLhx9+OOPxy80HgCSTC12jx7VcEJsmcqFc9DFy4RwQLxTCiD3ZSsmdSKZMmaIZf0RXziSee+45zQLJI1sfusez9AqnkfQGu49TLpwDEB8Uwoi148ePt26u704kTzzxhGb9Iatn559/vnkehg8frlkgeeRmOO7xLLtHpJFcOOc+TomFCxdqFkC1UQgj1uQ2q+4EMmDAAM34Z/369ea5kFi0aJFmgeSQ26JHj2W5fXpazZgxwzxWtlMD4oNCGLE2aNAgM4EsWbJEM36KtolIPPvss5oFkiFaGMoNZNJMVoVramrMY5bnAED1UQgjtnbs2GEmDonDhw9r1k/vvPNO8LnPfc48J1/60pc0C8SfFIUdO3Y0x3BLS4tm04vt1IB4ohBGbM2cOdNMGpMmTdKM3x555BHzvEjceeedmgXiraGhwRy7/fv310z6RVeFuVskUH0Uwoil999/P+jUqZOZNB5//HHN4qabbjLPjcTTTz+tWSC+Bg8ebI5bn7YCZDs1IH4ohBFLq1evNpNF3759NQPx3nvvBRdeeKF5joYMGaJZIJ527txpjlmJQ4cOadYPbKcGxAuFMGJJijp3smB3hEyPPfaYeY4kFixYoFkgfmbNmmWO14kTJ2rGH7JbhPscSEj/MIDqoBBG7DzzzDMZEwVbDWUXLSwkZNUNiJsTJ04EnTt3Nsfqpk2bNOsXtlMD4oNCGLEze/ZsM0mMGzdOM4iSXuo+ffqY5+vKK6/ULBAfa9asMcepz+1OsnOGFL/yPMh/V65c2foxAJVHIYxYOXnyZNClSxczYTY3N2sW2fz85z83z5fE7bffrlkgHoYOHWqO0fr6es34SS6SkzvMUQAD1UUhjFhpbGw0k6WsdqJ90VV0CblCHYiDXbt2ZRyfBw4c0CwAVA+FMGJl2LBhZrLk4q/cfPDBB8HFF19snrsrrrhCs0B11dXVmWOTdicAcUEhjNjYvXu3mSwl9u/fr1m0R95qjT5/3/nOdzQLVIe0O3Xt2tUcl7Q7AYgLCmHExpw5c8xkOXbsWM0gVzfffLN5DiWefPJJzQKVt3btWnM80u4EIE4ohBELp0+fDrp162YmzA0bNmgWuZLVt379+pnnceDAgZoFKm/48OHmeKTdCUCcUAgjFtatW2cmywsuuEAzyJfcitp9LiXmzZunWaByaHcCEHcUwoiFa665xkyW8+fP1wwKEW0zkdiyZYtmgcqg3QlA3FEIo+r27NljJkuJV155RbMoxKlTp4L+/fub5/SLX/yiZoHyk3an7t27m2OQdicAcUMhjKqbO3eumSzHjBmjGRTjV7/6lXleJb797W9rFigv2p0AJAGFMKquV69eZsJcv369ZlCsb37zm+a5lfi3f/s3zQLlQ7tTaXDnOaC8KIRRVQ899JCZLHv37q0ZlMIf//jH4Atf+IJ5juXf8nGgXGh3Kp4UwPJuWY8ePYKmpib9KIBSoxBGVY0aNcpMluxuUHqyAuw+xxK33nqrZoHSo92pOHv37g1qamo+fv6kGAZQHhTCqJp9+/aZyVJCPobS+9a3vpXxXLe0tGgWKC3anYojq8Hu8ychf1wAKD0KYVSNrP66A72sDqN8LrvsMvN8DxgwoPXKfqCUaHcqjYULF5rnUeLgwYOaBVAqFMKoGpkg3UFeJlCUz+bNm83zLSH7vAKlRLtT6bjtERLjx4/XDIBSoRBGVchbpe4AL2+lovyiq/AScic6oBRodyqtjRs3Zjyf27dv1yyAUqAQRlXIxTPu4E7/W+UMHDjQPPeXXHJJ8NFHH2kWKBztTqVXW1trnlNZJQZQOhTCqDjZRskd2CVkuyVUxpNPPpnx/N9yyy2aBQpHu1PpyQ4S7nMqwXZqQOlQCKPiZGN9d1CXjfdRWbfddpt5DSR++ctfahbIH+1O5TNjxgzz3LKdGlA6FMKoOLnVqjuoy61YUXnRt1z79u0bfPDBB5oF8kO7U/lk205NdpUAUDwKYVTUhg0bzGDevXt3tvCqkm3btpnXQmL27NmaBXJHu1P5sZ0aUB4UwqiosWPHmoGc7buq6/bbbzevh0Rzc7NmgdzQ7lR+sirMdmpA6VEIo2L2799vBnGJ3bt3axbVMnjwYPOaXHTRRcGJEyc0C7SPdqfKyLadmlxMB6BwFMKomAULFpgBfPjw4ZpBNe3YscO8LhJf//rXNQu0jXanymI7NaC0KIRRMX369DED+Nq1azWDavvud79rXhuJxx57TLPAmdHuVFlspwaUFoUwKkL6Tt2Bu2vXrsHJkyc1izgYMmSIeY0uvPDC4L333tMskIl2p+qQ3uDw+Zat1FauXKkZAPmiEEZFjBs3zkyWdXV1mkFcPP300+Y1krjppps0C2Si3ak6wu3URo4cSY8wUCQKYZTdgQMHzGQpsWvXLs0iTu68886M1+rRRx/VLGDR7lQ9UgwDKB6FMMquvr7eTJZDhw7VDOLoqquuMq+X7Ahw/PhxzQJ/Em136tKlC+1OABKHQhhlJ3cscyfMNWvWaAZxJKv17uslIbd4BVy0OwFIAwphlNWmTZvMZNm5c2f2qE2A6Cq+xPr16zUL39HuBCAtKIRRVhMnTjST5axZszSDuJMLn9zX7vzzzw+OHTumWfgs+oeS7DgCAElEIYyyOXTokJksJXbu3KlZxN1zzz2X8frdeOONmoXPou1Oq1ev1gwAJAuFMMpm8eLFZrKUW/kiWe666y7zGkr85Cc/0Sx8FG136tSpE+1OABKLQhhl079/fzNhNjQ0aAZJcvXVV5vX8bOf/Wzw+9//XrPwTbTdaebMmZoBgOShEEZZtLS0mMmyY8eO7HuZUL/+9a/NaykxdepUzcInhw8fzjgWduzYoVkASB4KYZTF5MmTzWTJ9lvJdvfdd5vXU+LBBx/ULHyxZMkScwwMGjRIMwCQTBTCKLkjR46YyVJi27ZtmkVSye1c3de0V69era81/BFtd1q1apVmEEfbt28Pxo8fr/8CkA2FMEpu6dKlZrK8/PLLNYMk27Nnj3ldJaZMmaJZpN0TTzxhXvsOHTpwx8GYkgK4trb249dq48aNmgEQRSGMkrv00kvNhLlixQrNIOmif+RI/PjHP9Ys0kz+6HFf9+nTp2sGcSOtaO5r1aNHD80AiKIQRklt3rzZDMAS3IQhXb7yla+Y1/fcc89tvYgK6fXWW2+Z11xi69atmkXcHDx4MOP1WrlypWYBuCiEUVI33HCDGXynTZumGaTFiy++aF5jieuvv16zSKNly5aZ13vgwIGaQVxlWxWWAhmARSGMkjl69KgZeCW2bNmiWaTJPffck/FaP/DAA5pF2lx22WXmtV6+fLlmEFeyXaUUv+7rxu49QCYKYZSMTI7uoCuTJ9Lr2muvNa93t27dgt/97neaRVrIH7Pu6ywhf/Qi/pqamjJeu71792oWgKAQRsnI26XugCtvpyK9XnrpJfN6S8hdx5Au0t7kvsbS/oTkqKmpMa+fbIMI4BMUwigJuXDGHWwl5AIbpJvsCBJ93RsbGzWLpJMLXaOvr1wQi+SQrdOiryHbqQGfoBBGSchWSu5Ay/6y/vjqV79qXvuuXbsGBw4c0CySLPqHjmyNiOSRm2q4ryPbqQGfoBBG0WRTfdlc3x1oZfN9+OGVV14JOnbsaF5/7maVDnIzHPd1lX2kkTzZtlOT/mEAFMIoAbnNqjvAym1Y4ZfoMSBx3333aRZJJLdFj76m3FI7udhODciOQhhFGzRokBlglyxZohn45LrrrjPHwdlnnx389re/1SySJlo4TZ48WTNIItlOzX09JdhODaAQRpF27NiRMbhylzE//eY3vwk+85nPmGPha1/7mmaRJFI0RdtdWlpaNIukkrvLua+pBKvC8B2FMIoyc+ZMM6iyfZbffvCDH5jjQeKHP/yhZpEUDQ0N5jWk3Sk92E4NsCiEUbATJ04EnTp1MoPqpk2bNAtfySqwe0zIMfLqq69qFkkwePBg8xouXrxYM0i6bNupbd++XbOAfyiEUbDVq1ebwbRv376agc9ee+214KyzzjLHxtixYzWLuNu5c6d57SQOHTqkWaSBrALL6yr/pQiG7yiEUbAhQ4aYybK+vl4z8N2aNWvMsSEhb7cj/mbNmmVeN9qd0kf6gqVfWHrBAd9RCKMgu3btMpOlBDdRgGvcuHHm+Pj0pz/duucw4kvanTp37mxeN9qdAKQZhTAKUldXZyZLKXoA1+uvv956lzn3OJG70CG+oiv5tDsBSDsKYeTt5MmTQZcuXcyE2dzcrFngE42NjeY4kbj33ns1i7gZOnSoea1odwKQdhTCyNvatWvNZNmnTx/NAJkmTJhgjheJl19+WbOIC9qdAPiIQhh5Gz58uJksFyxYoBkg0xtvvBGcc8455pgZPXq0ZhEXtDsB8BGFMPKye/duM1lK7N+/X7NAdvfff3/GcbN8+XLNotqk3Snaz027EwAfUAgjL3PmzDGTJfvDIleTJk0yx47Eiy++qFlUE+1OAHxFIYycnT59OujevbuZMDds2KBZoG2HDx8Ozj33XHP8jBo1SrOoJtqdAPiKQhg5W7dunZksL7jgAs0AuYkeQxLLli3TLKqBdicAPqMQRs6uueYaM1nOnz9fM0DuJk+ebI4jib1792oWlUa7E85Ebr8sd6ED0oxCGDnZs2ePmSwluEsYCvHmm28GPXv2NMfSl7/8Zc2ikmh3QjZy6+W5c+cGPXr0CMaPH68fBdKJQhg5kUHRnSzHjBmjGSB/TU1N5niSuPvuuzWLSqHdCVHy7owUwO5xwTs2SDMKYeSkV69eZmBcv369ZoDCTJ061RxTEs8//7xmUQm0OyGb2tpac1zU1NRoBkgfCmG066GHHjKDYu/evTUDFO7tt98OzjvvPHNsjRgxQrMoN9qdcCayAhw9NuRdHCCNKITRLtniyh0Q582bpxmgOA8//LA5tiQWL16sWZQT7U5oi/QGu8eHtEsAaUQhjDbt27fPDIYS8jGgVKZNm5ZxjMmWXigv2p3QFrlgzj0+JBYuXKhZID0ohNEmWf11B0JugIBSO3r0aGu7jXucyQ0eUD60OyEXUvi6x4msCrOdGtKGQhhtihYoMoECpfbTn/7UHGcSixYt0ixKjXYn5EJWheVCOfdYYTs1pA2FMM5I3ip1B0B5KxUol+nTp5vjTeLZZ5/VLEqFdifkI9tWh2ynhjShEMYZycUz7uAnF9cA5fLOO+8En/vc58wx96UvfUmzKBXanZCv6HZq8m8gLSiEkZVso+QOfBKy3RJQTo888kjGcccFOqVFuxPyJbdado8ZCbZTQ1pQCCMr2VjfHfRk432gEv7u7/7OHHsSTz/9tGZRDNqdUCi2U0NaUQgjK7nVqjvoya1YgUqQC3QuvPBCc/wNGTJEsygG7U4oFNupIa0ohJFhw4YNZrDr3r17cPr0ac0C5ffYY4+ZY1BiwYIFmkUhaHdCsaI3YWE7NaQBhTAyjB071gx2c+bM0QxQObNmzTLHocTOnTs1i3zR7oRiZdtObcaMGZoFkolCGMb+/fvNICfBXb5QDe+//37Qp08fcyxeeeWVmkW+aHdCKbjbqcmK8MqVKzUDJBOFMAx5+9mdLLnDF6rp5z//uTkeJe644w7NIlfRdqdu3brR7oSCyfZpUgDLCjGQdBTCMKIrcGvXrtUMUB1///d/b45JCdnOCbmj3QkAsqMQxseam5vNZNm1a9fg5MmTmgWq44MPPgguvvhic2xeccUVmkV7aHcCgDOjEMbHxo0bZybLuro6zQDVtXHjRnNsSnznO9/RLNoSbXcaNmyYZgAAFMJodeDAATNZSuzatUuzQPXdfPPNGcfo1q1bNYszibY7NTY2agYAQCGMVvX19WayHDp0qGaAeJA2nX79+pnj9PLLL9cssom2O3Xp0oV2JwBwUAijVd++fc2EuWbNGs0A8bFp0yZznErMmzdPs4iKtjvNnj1bMwAAQSGMjOKic+fOwYkTJzQLxIvseOAerxJbtmzRLEJyx6/o8/TMM89oFgAgKIQRTJw40UyWckcvIK5OnToV9O/f3xyzX/ziFzWL0KJFi8xzNGTIEM0AAEIUwp47dOiQmSwluI0t4u5Xv/pVxnH77W9/W7MQ0Xan1atXawYAEKIQ9tzixYvNZDl48GDNAPH2zW9+0xy7Ev/+7/+uWb89/vjj5nnp1KlT6y2rAQAWhbDnom8xNzQ0aAaIt//7v/8LPv/5z5vj9wtf+ELwxz/+UT/DX5MmTTLPy8yZMzUDlJ/cennu3LlBTU1Na686EGcUwh5raWkxk2XHjh25dzwS5YknnjDHsMStt96qWT8dPnw44znZsWOHZoHyktufSwEcHnszZszQDBBPFMIemzx5spksGbCQRN/61rfMcSwhf+T5asmSJea5GDRokGaA8mtqajLHnwSrwogzCmFPHTlyJGOw2rZtm2aBZLnsssvMsTxgwIDg9OnTmvWLPHb3uVi1apVmgMpwV4QlRo4cqRkgfiiEPbV06VIzUHGHLiTZ5s2bzfEs8Q//8A+a9Ue0VaRDhw7B8ePHNQtUxsaNG81xKCEfA+KIQthTl156qRmkVqxYoRkgmf7xH//RHNMSsnuCT6ZMmWIe//Tp0zUDVJasArvHoqwSA3FEIeyhbKtnx44d0yyQXAMHDjTH9SWXXBJ89NFHmk23t956yzx2ia1bt2oWqKxsdzaU/mEgbiiEPXTDDTeYwWnatGmaAZLtySefNMe2xC233KLZdFu2bJl53PJHAVBNcgG2e0z26NGDnYkQOxTCnjl69KgZmCS2bNmiWSD5brvttoxj/Je//KVm0yt6weDy5cs1A1SHFL3uMSnB7kSIGwphz8jk6A5K0isMpE1tba05zuV2wx9++KFm00f+mHUfr4T80QtU28qVKzOOTbZTQ5xQCHsm2kMpu0cAaSNbAbrHuURdXZ1m00fam9zHKu1PQFxEt1MbP368ZoDqoxD2iFw44w5GEnKBDZBG8+fPzzjem5ubNZsecqFr9HHKBbFAXLCdGuKMQtgjspWSOxDJneWANBs8eLA55i+66KLgxIkTmk0H2frQfYy0OyGOou1KbKeGuKAQ9oRctCCb67sDkc+3oYUfduzYYY55ia9//euaTQe5GY77+Gh3QhyxnRriikLYE3KbVXcA6t+/v2aAdPvud79rjn2Jf/3Xf9VssmXrhZbbpwNxlG07NaDaKIQ9MWjQIDMALV68WDNA+v3FX/yFOf7//M//PPjf//1fzSZXtLCg3QlxFt1OTQrh7du3axaoDgphD+zcudMMPhKHDh3SLJB+Tz31VMY5cNNNN2k2maSo6Nixo3lMtDsh7hYuXNh6rMotmNlGDXFAIeyBWbNmmcly4sSJmgH8ceedd5rzQOLRRx/VbPI0NDSYx0K7E5JA/oDbu3ev/guoPgrhlJMr5Dt16mQmzE2bNmkW8MtVV11lzoULLrggOH78uGaTJbojBu1OAJA/CuGUW7NmjZks5Q5bgK927dplzgeJJN7ylXYnACgNCuGUGzp0qJks6+vrNQP4Sc4B95yQ+NnPfqbZZKDdCQBKg0I4xbKtfh04cECzgL+GDRtmzovzzz+/9Q5tSSDtTp07dza/P+1OAFAYCuEUq6urM5PluHHjNAP47T/+4z/MuSFx4403ajbeaHcCgNKhEE6pkydPBl27djUTZnNzs2YB3HXXXeb8kPjJT36i2fii3QkASodCOKXWrl1rJss+ffpoBkDo6quvNufJZz/72eD3v/+9ZuOHdicAKC0K4ZQaPny4mSwXLFigGQChX//61+Y8kbjhhhs0Gz+0OwFAaVEIp9Du3bvNZCmxf/9+zQJwLVmyJON8efDBBzUbH7Q7AUDpUQin0Jw5c8xkOXbsWM0AyEZu9+qeM7169QqOHDmi2Xig3Qk+2b59e7Bx40b9F1A+FMIpc/r06aB79+5mwtywYYNmAWSzZ88ec85ITJkyRbPxQLsTfCAFcG1tbesx3qNHD/0oUD4Uwimzbt06M1nKLWQBtG/p0qXm3JH48Y9/rNnqot0JPnj33XczjvOFCxdqFigPCuGUueaaa8wgMn/+fM0AaM9XvvIVc/7IitT//M//aLZ6aHeCL+bOnWuOdTkHDx48qFmg9CiEUyTb27uvvPKKZgG054UXXsg4h66//nrNVgftTvCJrArX1NSY4338+PGaBUqPQjhFon9JjxkzRjMAcvX973/fnEcSDzzwgGYrj3Yn+Kapqckc8xJ79+7VLFBaFMIpIle6uwPH+vXrNQMgH9dee605l7p16xb87ne/02xl0e4EH4UXzIUh/wbKgUI4JR566CEzaPTu3VszAPL10ksvmfNJYuLEiZqtHNqd4CvZPSJ67LOdGsqBQjglRo0aZQaMefPmaQZAIVasWGHOKQnZy7eSaHeCz6Q32D3+2U4N5UAhnAL79u0zg4WEfAxAcaTwdM+rP/uzP6voFey0O8FnbKeGSqAQTgFZ/XUHClkdBlC8//qv/wo6duxozq9KXcFOuxMQBDNmzDDnAdupodQohFNAJkh3oJAJFEBprFq1ypxfEvfdd59my4d2JyD7dmpSHAOlQiGccPJWqTtAyFupAErruuuuM+fZ2WefHfz2t7/VbOnR7gR8gu3UUE4UwgkX7WGUi2sAlNZvfvOb4DOf+Yw51/7mb/5Gs6VHuxNgRVeF2U4NpUIhnGCyjZI7MEjIdksASu8HP/hBxvm2evVqzZYW7U6AxXZqKBcK4QSTjfXdQUE23gdQPn/9139tzrlOnToFr776qmZLI9ru1LNnT80AfmM7NZQDhXCCya1W3UFBbsUKoHz2798fnHXWWea8Gzt2rGZLI9rudOutt2oG8JvsFhGeFyNHjqRPGCVBIZxQGzZsMJNl9+7dg9OnT2sWQLmsWbPGnHsSDQ0Nmi0O7U5A2+Q6mJUrV7buJgGUAoVwQskqlDtZzpkzRzMAym3cuHHm/Pv0pz8d/Pd//7dmCxdtdxoxYoRmAADlQCGcQPL2rDtZSuzevVuzAMrt9ddfD7p06WLOwb/6q7/SbOGi7U4/+tGPNAMAKAcK4QRasGCBmSyHDx+uGQCV8i//8i/mPJS49957NZu/aLtTt27dglOnTmkWAFAOFMIJ1KdPHzNhrl27VjMAKmnChAnmXJR4+eWXNZufaLvTN77xDc0AAMqFQjhhmpubzWTZtWvX4OTJk5oFUElvvPFGcM4555hzcvTo0ZrN3WuvvWa+h8Rzzz2nWQBAuVAIJ0z0Ip26ujrNAKiG+++/35yTEsuXL9dsbr73ve+Zrx82bJhmAADlRCGcIAcOHDCTpcSuXbs0C6BaJk2alHFu7tu3T7Pti7Y7NTY2agYAUE4UwglSX19vJsuhQ4dqBkA1HTp0qHUvb/f8HDVqlGbb9otf/MJ8nexG8eGHH2oWAFBOFMIJ0rdvXzNhysb+AOJBtjpzz0+JZcuWafbMoreNnT17tmYAAOVGIZwQmzZtMpNl586dgxMnTmgWQBxMnjzZnKcSbd0G1r1lbBjPPPOMZgEUitsvI1cUwgkxceJEM1nOmjVLMwDi4s033wx69uxpztUvf/nLms20aNEi87lDhgzRDIBCyB+XchtmOZ82btyoHwXOjEI4AaT/0J0sJXbu3KlZAHHS1NSUcb7+8z//s2atfv36mc9bvXq1ZgDka+XKlUGPHj0+Pp9qamo0A5wZhXACLF682EyWgwcP1gyAOPrbv/1bc85K/Od//qdm/+Txxx83+U6dOgXvv/++ZgHkK1urkfxhCrSFQjgB+vfvb07shoYGzQCIo7feeis477zzzHk7YsQIzf5JdMu1mTNnagZAoWbMmGHOK1khBtpCIRxzLS0t5qTu0KFD8O6772oWQFw9/PDD5tyVkHd3xOHDhzNyO3bsaM0BKJzMj9FzS4pj4EwohGMuehU6JzSQHNOmTTPnr8Tu3buDJUuWmI8NGjRIvwJAsRYuXGjOLwlpmwCyoRCOsSNHjmSczNu2bdMsgLg7evRo0Lt3b3MO/+Vf/mUwYMAA87FVq1bpVwAoBblQzj3HZL9uIBsK4RhbunSpOZEHDhyoGQBJ8dOf/tScx9GQdqfjx4/rZwMoBdk6LXqubd++XbPAJyiEY+zSSy81J/Ho0aNb3/IhCCJZcfnll5tz2Y3a2tqsX5NLFDqxZ/tehUQh5HfO9r3yDR57/rJ9r0KiENV47HJuueca26khGwrhmNq8ebM5gQmCIKIhhUEhsn2vQqIQ8jtn+175Bo89f9m+VyFRiGo8drZTQy4ohGMq20U2BEEQblAQ5S/b9yokCsFjz/798ol8H7u7nZqsEHO3OURRCMfQsWPHzIlPEASRLSiI8pftexUSheCxZ/9++US+j122UwvvNsfWo8iGQjiGVqxY0XqyEwSRzpg+fXowcuTI4J/+6Z+y5nMNekXzl+17FRKF4LFn/375RDGPHciGQhgAAABeohAGAACAl7wvhMeMGZPRg9Re9OvXr/Xrli1bFrzwwgv6nQCklZzr2caCfKNnz576HQEkkcz5d9xxR0btIHXBzTffHDz11FP6mX8inxv9GOKFFWElB+qVV15pDuzwoHZDJsTobY/lhHj99df1OwFIKznPoxNgY2NjxjjhRktLS+tYEn4+gOSRc9k996UOcM99Oc+l6A0XyuRjMl7IH7/y/4gvRmXHI4888vFBLtHWwSt/FbqFsxzsrA4D6SfjQq7jhEsmTfl8AMkiBW54vksB3N7CV3iuh0EhHG+Myo58J7g//OEPrX/9hZ8v/w8g3WQSzGeccNEaASSL+26O/H+uZGEs/Dp5JxnxRSHsyLcQFtFVZPk3gHRzz/l8CmFZTQKQDO5KsLQ75CtcGaYQjjcKYUchhbCsCrtfk89fjACSyT3n8ymEASRDtB4otPVR3immEI43CmFHIYWwcL+mkL8aASSLe85TCAPp47Y9FjOvy7vEsrKM+KIQdhRSCEf7BTnggfRzz/lcxgn+QAaSQ3aAcM9xaXEoBi1R8UYh7CikEI7uL5rL1wBItnzPeS6SA5LDvUBOgh2h0o1C2JFvIRz9q5H+YMAP7nnf3jgRjisAkkH+cHXPcaQbr7AjWghneztELo6LbpAvIf+WHID0c8/9tgphGSvC/cYBxF/0AnjezUk/RmdHtBDOJeQkaW9FCEC6ZBsL2gsA8RetA+jvTz9GZ0f0BJD+X/mYG7JKLKu/7lsn8v/ysfbuNgMgHdxxQsaE6DgRhlw8G44VAOJPzlv3/KYQTj9GZ0f0BJB/n4m8fRK9UE4mPJrqgfRzz/u2xgkR3nQHQPy5d4STkNYmpBujsyOfQjgU3jkmDCmG6RUG0s0953MZJ+TzACSDe35z7qYfr7CjkEJYhBfDhFHsnoMA4s0933MZJ3h7FUiO6JxO22O6UQg7Ci2Eo6vCTHpAurnne67jBIBkkN5+9xyX9iakF4Wwo9BCOPp1FMJAurnnO4UwkC7RO8Yyp6cbhbCj0EI4emMNbqcIpJt7vudbCMs1BIwRQLxF7xVQzB+8cr5z7VB8UQg7Ci2EoycMb6MA6eae7/lOkDJeMEYA8SaFa79+/T4+z6VvuJBiVs532WEK8UUh7CikEI5utSInDoD0ksnQPefzKYTDd49YHQLiT+Z3954B+RbDUgRLIN4ohB3hfp9htDfBSd49SdhHGEi/6B/MUtzmIhwvaIsAkiNaDMv/ywXybRXEcq5L0UwRnAwUwkoOXPdtEAlpkJe3NGSik3wY8rHo9iryb4pgIN3kHM927rvjQzTkD2yZEMPPpy0CSBYpet1zOIywRghD/siVOkKK5Vz/QEb1eV8Iy4EcPbhzCTnY5WtlmxWZ7ACkl0xy2caBQoK2CCCZZDcJWQ2WuT+6cBauAPOHbvKwIgwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADAQ0Hw/8unutk7pEI/AAAAAElFTkSuQmCC
|
As shown in the figure, DC = AD = AB, and quadrilateral ABED is a parallelogram. What is the relationship between the lengths of DE and AD?
|
A. DE=AD; B. DE>AD; C. DE<AD; D. No correct answer
|
A
|
79
|
iVBORw0KGgoAAAANSUhEUgAAAsIAAAFyCAYAAAD/MLwxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAADWzSURBVHhe7d0PkFX1dcDxQAIKFQTG4MSxuIIDiWZwBQsGKpIwQipNYQAHijhQIWU1NJKUGjRElhEsRBA2AbtoyKoJUWw2BCdrCyMwoGIlFhStjRjBQEUDEa2M4kAzt3M25+rv3PfYff/fvff3/cycUfbsv/fevb/f2d8793c/FQAAAAAeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiEAQAA4CUKYQAAAHiJQhgAAABeohAGAACAlyiE0abXX389uPnmm4MXXnhBP3Jmf/jDH4JHHnkkmDx5ctCvX7/gU5/61McxZsyYoLGxsfVzQvL/8vEzueOOO1q/9sorr2z9t3zvZcuWme8BAABQKArhmJLiUwq/apKiU4pQKYbbIoWpfG7Pnj1bC1cpgqWIbWlpCZ566qnWkCJYCmT5nLCYlc85UyEsj90tpEPycfn+8r0BIO7ccSzXkHFRQsZKxjqgvCiEY0iKRBkMpeCrhnClVorx9shKcbj6K0Vue8W7FNVSXLsDfjby8TN9jvzMsKAGgCSQsTFcLAhDxlhZJAgXDNxFA/fz3AUEAKVFIRxDMuCFA6AMjJUkA60UqhLtDbphQRoO1Lm0T4TcgT4bt7Ui24qIPC+Sy6VYB4A4kPEqHNck2iLjb9geFoaMi/mMswDaRyEcQ+6qwZlWTMslLFDbG2xlZdf9PfMt2GWQD4vdbMLv29aqeDhJVLuFBABy4S5ySORCxlZ3rM130QFA2yiEYybaGyvRXo9uqchbcvLzcllldVsXpHguRPhYo6RIDr93W0WufF44QTAxAIi7QgphEb4DFoYsELT3jh2A3FAIx4wMcBLuCkAl3v53V3jbKyqjxXox7RvZBvRw0G9rNTgU3VkCAOKq0EJYRL9W/g2geBTCMRIWgLIy6/aSSYFa7r/+w5+XS/HpXuwmv1sxwgtFXOHzkEvLgxTt4e+Sy+cDQLUUUwi774CFwaowUDwK4RiRdoOw6JUVWnfAk4KxXNyf1d7qc/T3KrQtoi0yWeRSkIfCyYFVYQBxVkwhLKIXz5VzXgB8QSEcE2GB6Raibh9uPoVhvtzBub2BVfLh50qU4+05+Z75rO66zxO9wgDiqthCOHy3LIxKX0wNpBGFcEyErQlSEIeivbjl2ljdbXWItilExXFFwp1c5PfL19GjR4OFCxcSBJHiqK+vD1asWKFnfXUUWwjLu4Xu1xfbmgaAQjgWwt6vbH/dy0pwOOiV46//6MDaXs+Zu/oq0V7hXAnuHwyFtEcsX77cPCaCINIZx44d07O+OoothIX79YV+DwCf4CyKgXBwzLbiGx043RXjUoi+1daeOBbC+T6GqIEDB5qvJwgifXHOOefoGV895SiE21u8ANA2CuEYkFXfM/UAR1ds27uYLV/Rnt/2RG/9GYf74EcL4Xz6hLdu3Wq+liCI9EZTU5Oe+dXBijAQP5xFVRa+rd9Wr23YPywR7ipRKvkOzNHPl39XW7QQzmeVevr06eZrozF16tSs/YYEQcQ3Ro8enfV87tGjh5751UEhDMQPZ1GVSU9re8VttNAr5QVq+Q7MsgLsfn6pV6gLUWghfPz48aBDhw7may+66CLz7/79+wenTp3SrwCQBG21O0mhXC3FFsLRdwi5WA4oHoVwFUULuFyjlFup5TswRwficm7rlqtCC+FVq1aZrxswYECwZcsW8zGJOXPm6FcAiLtt27ZlnMNuyKrwwYMH9bMrq9hCODrWlWMfd8A3FMJVFPbbyiqrDHBtRXQALdVd1PLtERZuq4aE/H7VJD/f/X1y7REeNGiQ+bolS5a0fnzevHnm4xKPP/54aw5AvM2YMcOcuxMmTAhqamrMx8aPH6+fXVnFFsLR7StLNQ8APqMQrpJsN9Boi6zEyttg4QBYqq3UokVkLqJ3lyvmd5GitZC9f12FPIYdO3aYr5E4fPiwZjPfWr3kkkuCjz76SLMA4ujdd9/NaHeShQa5SM79mMTevXv1qyqnmEI4OgfQFgGUBoVwlYR/2eezw0F0EC3FXdSirQ65bs8WXUkuZGVCfn9prZDfoRhu33Ku+wjPnDnT/P6TJk3SzJ88+eSTJi9xyy23aBZAHDU0NJhzVnr8Q7W1tSYn/660Ygrh6NeW8loRwGcUwlUQ/mWf70pqtGgt1YVq+dxZzhVtkcinGA6L4FIU8+4Ekcvq8vvvvx906tTJ/O7ZWh9uu+028zkSGzdu1CyAuBk8eLA5XxcvXqyZINi+fbvJSVR6O7VCC+Hou16lekcQAIVwVYSDYSF78EaLz1LcYMNd3c13lSH6+8gA3VZxK8W8PH75Q6AURbBwf4dcCvnVq1eb37mtC/6uuOIK87kXX3xx8MEHH2gWQFzs3LnTnKsShw4d0uyfSG+wm6/0dmqFFMIyprktEbJwUey7aAA+QSFcYVK4hoNaIaIDaSmuGnZ7fgv5flLQSzHp/l7ybylQ5feVkJVaKZLDn1HKgTz82W0VtK4hQ4aY33XRokWayZRtFWn27NmaBRAXs2bNMufpxIkTNfMJ6SF2P0eiktupRRcO2iJjZPTiuFKPnQAohCtKCka3DUEGxXxWReVz3a8PQwbHYldXwwG6mAsw5PHJ9wkL3jDCNhApiEuxgu1yi/hcWjOeeeYZ87tJtLeV0u23357xNc3NzZoFUG0nTpwIOnfubM7RTZs2adaaO3eu+bxKbacm45P7cyXCxQJZ9Q1D3pWTj0dXgQt5BxFA+yiEKyRaHLohufa09fVhyIBaKHelOpf2grgI2zpkosiFrOa6z1mu2yhFew/lxhvSawyg+tasWWPOz759+2omk6wKR7dTky3XysX9ObmGjGeywCHjW6layABkRyGMj4VFpaxGJEXYFpHLZPHhhx8GXbp0MRPOL37xC822Ldt2a/JWLIDqGzp0qDk36+vrNZNdXLZTA1B9FMIwwhaJJKwKh2815nqBX1joh9GnTx/N5GbBggXm6yUee+wxzQKohl27dmWclwcOHNDsmUVXhauxnRqA6qMQhiEXYsjbcrLSGueLMsJWjnxWr4cNG2Ymvu9973uayV30QrsLL7wweO+99zQLoNLq6urMOTlu3DjNtM29EFb6hKV3GIB/KISRQQpg6U+TgjiOxXBYrOdzR7rnnnvOTJYSr732mmZz9/TTT2d8n5tuukmzACrp5MmTQdeuXc35mM+FrHKNwMiRI2mLADxGIYwzklYCuUiv1Ds9FCPcOSPfK6i/8Y1vmMly7NixmsnfnXfeab6XxKOPPqpZAJWydu1acx7m2+4EABTCaJMUwbLyGocrl6X4ld8l31XqU6dOBd26dTMT5oYNGzRbmKuuusp8vwsuuCB45513NAugEoYPH27OQ+njB4B8UAgj9X70ox+ZyVKK1mI9++yz5ntKTJ8+XbMAym337t0Z5+D+/fs1CwC5oRBG6o0YMcJMlvPnz9dMceSOdO73lVi/fr1mAZTTnDlzzLlXTLsTAH9RCCPV9uzZYyZLiVdeeUWzxYu+NXv++ecHx44d0yyAcjh9+nTQvXt3c+4V2+4EwE8Uwki1W2+91UyWudzFLx/ZdqO48cYbNQugHNatW2fOuVK0OwHwE4UwUs29X79EOVoX7rrrLvMzJB5++GHNAii1a665xpxvpWp3AuAfCmGk1kMPPWQmy969e2um9K6++mrzs84777zg7bff1iyAUil3uxMAv1AII7VGjRplJst58+ZppvSef/5587Mkpk6dqlkApSJ3gHPPs1K3OwHwC4UwUmnfvn1mspSQj5XT3XffnfEzH3zwQc0CKIVevXqZc4ydWgAUg0IYqSSrv+5kKavDlSC3a3V/rkzaR44c0SyAYlSy3Sm0ffv2oLa2Njh48KB+BECaUAgjlWSCdCdMmUArIVv/4pQpUzQLoBiVbHeSAtj9w1b+H0D6UAgjdeStUneylFXZSlq6dKn5+RKy3ROAwlW63Wnjxo0ZP08+BiBdKISROnLxjDt5ycU1lRZduTr33HODw4cPaxZAvqrR7hRtdaqpqdEMgLSgEEaqyDZK7sQlIe0Klfbiiy9m/B7XX3+9ZgHkqxrtTtIX7P5MiaamJs0CSAMKYaSKbKzvTlqy8X613HPPPeZ3kXjggQc0CyBX1Wx3mjFjhvnZPXr0CN59913NAkg6CmGkitxq1Z20qt2be+2115rfp1u3bsEbb7yhWQC5qGa7kxS97s+WkOIYQDpQCCM1NmzYYCar7t27B6dPn9Zsdbz00kvmd5KYMGGCZgG0Jw7tTgsXLsz4HdhODUgHCmGkxtixY81ENWfOHM1U17333mt+L4nGxkbNAmhLXNqd5EI59/cYP368ZgAkGYUwUmH//v1mkpLYvXu3Zqvvq1/9qvndunbtGhw4cECzAM4kLu1ObKcGpBOFMFJhwYIFZoIaPny4ZuJB3t7t2LGj+R1ZUQLaFrd2J7nDnPv7sJ0akHwUwkiFPn36mAlq7dq1momPVatWmd9R4r777tMsgKi4tTuxnRqQPhTCSLzm5mYzMUnbwcmTJzUbL9ddd535Xc8+++zgtdde0yyAUFzbnbJtpwYguSiEkXjjxo0zE1NdXZ1m4ufVV18NOnXqZH7fr33ta5oFEIpru1O27dSqcfdKAKVBIYxEkwvOopPSrl27NBtPP/zhDzN+Z/kYgE/Eud2J7dSA9KAQRqLV19ebyWjo0KGaiTdZBXZ/b1klltViAPFvd5JV4eh2alIcA0geCmEkWt++fc1ktGbNGs3Em/QFn3XWWeZ3lwuDACSj3SncTm3kyJFsowYkGIUwEmvTpk1msuzcuXNw4sQJzcafFO3u7y8hO0sAPktSu5PsGCGrwwCSi0IYiTVx4kQzWc6aNUszySF7CbuPQfYalj2HAV8ltd0JQDJRCCORDh06ZCZLiZ07d2o2OWT1S/of3cchd6EDfJXUdicAyUQhjERavHixmSwHDx6smeRpbGw0j0Xi3nvv1Szgj2i7k1xEmqR2JwDJQyGMROrfv7+ZMBsaGjSTTBMmTDCPR+Lll1/WLOCHNLQ7AUgWCmEkTktLi5kspa826ResvPHGG8E555xjHtfo0aM1C6RfWtqdACQLhTASZ/LkyWaylFuepsH9999vHpfEPffco1kg3aLtToMGDdIMAJQPhTAS5ciRI2aylNi2bZtmk+/666/PeHwvvviiZoH0irY7sZUggEqgEEaiLF261EyWl19+uWbS4fDhw8G5555rHuOoUaM0C6RTtN2pQ4cO7M8LoCIohJEol156qZkwV6xYoZn0WLdunXmMEsuWLdMskD7Rdqfp06drBgDKi0IYibF582YzWUocO3ZMs+kSLQwk9uzZo1kgPd56662MY33r1q2aTb7t27dzC2YgxiiEkRg33HCDmSynTZummfR58803g549e5rHO3LkSM0C6RFtdxo4cKBmkk1aO+bOnRv06NGjNQ4ePKgZAHFCIYxEOHr0qJksJbZs2aLZdHrwwQczHvPdd9+tWSAdou1Oy5cv10xySRFcW1trHpfcTh1A/FAIIxFkcnQnlcsuu0wz6TZ16lTzuCWef/55zQLJJn/MRo9v+aM3DZqamjIe2969ezULIC4ohJEI8napO6H4cvHY22+/HZx33nnmsY8YMUKzQLJJe5N7bEv7U5pEV4Xl3wDihUIYsScXzriTiYRcYOOLhx9+OOPxy80HgCSTC12jx7VcEJsmcqFc9DFy4RwQLxTCiD3ZSsmdSKZMmaIZf0RXziSee+45zQLJI1sfusez9AqnkfQGu49TLpwDEB8Uwoi148ePt26u704kTzzxhGb9Iatn559/vnkehg8frlkgeeRmOO7xLLtHpJFcOOc+TomFCxdqFkC1UQgj1uQ2q+4EMmDAAM34Z/369ea5kFi0aJFmgeSQ26JHj2W5fXpazZgxwzxWtlMD4oNCGLE2aNAgM4EsWbJEM36KtolIPPvss5oFkiFaGMoNZNJMVoVramrMY5bnAED1UQgjtnbs2GEmDonDhw9r1k/vvPNO8LnPfc48J1/60pc0C8SfFIUdO3Y0x3BLS4tm04vt1IB4ohBGbM2cOdNMGpMmTdKM3x555BHzvEjceeedmgXiraGhwRy7/fv310z6RVeFuVskUH0Uwoil999/P+jUqZOZNB5//HHN4qabbjLPjcTTTz+tWSC+Bg8ebI5bn7YCZDs1IH4ohBFLq1evNpNF3759NQPx3nvvBRdeeKF5joYMGaJZIJ527txpjlmJQ4cOadYPbKcGxAuFMGJJijp3smB3hEyPPfaYeY4kFixYoFkgfmbNmmWO14kTJ2rGH7JbhPscSEj/MIDqoBBG7DzzzDMZEwVbDWUXLSwkZNUNiJsTJ04EnTt3Nsfqpk2bNOsXtlMD4oNCGLEze/ZsM0mMGzdOM4iSXuo+ffqY5+vKK6/ULBAfa9asMcepz+1OsnOGFL/yPMh/V65c2foxAJVHIYxYOXnyZNClSxczYTY3N2sW2fz85z83z5fE7bffrlkgHoYOHWqO0fr6es34SS6SkzvMUQAD1UUhjFhpbGw0k6WsdqJ90VV0CblCHYiDXbt2ZRyfBw4c0CwAVA+FMGJl2LBhZrLk4q/cfPDBB8HFF19snrsrrrhCs0B11dXVmWOTdicAcUEhjNjYvXu3mSwl9u/fr1m0R95qjT5/3/nOdzQLVIe0O3Xt2tUcl7Q7AYgLCmHExpw5c8xkOXbsWM0gVzfffLN5DiWefPJJzQKVt3btWnM80u4EIE4ohBELp0+fDrp162YmzA0bNmgWuZLVt379+pnnceDAgZoFKm/48OHmeKTdCUCcUAgjFtatW2cmywsuuEAzyJfcitp9LiXmzZunWaByaHcCEHcUwoiFa665xkyW8+fP1wwKEW0zkdiyZYtmgcqg3QlA3FEIo+r27NljJkuJV155RbMoxKlTp4L+/fub5/SLX/yiZoHyk3an7t27m2OQdicAcUMhjKqbO3eumSzHjBmjGRTjV7/6lXleJb797W9rFigv2p0AJAGFMKquV69eZsJcv369ZlCsb37zm+a5lfi3f/s3zQLlQ7tTaXDnOaC8KIRRVQ899JCZLHv37q0ZlMIf//jH4Atf+IJ5juXf8nGgXGh3Kp4UwPJuWY8ePYKmpib9KIBSoxBGVY0aNcpMluxuUHqyAuw+xxK33nqrZoHSo92pOHv37g1qamo+fv6kGAZQHhTCqJp9+/aZyVJCPobS+9a3vpXxXLe0tGgWKC3anYojq8Hu8ychf1wAKD0KYVSNrP66A72sDqN8LrvsMvN8DxgwoPXKfqCUaHcqjYULF5rnUeLgwYOaBVAqFMKoGpkg3UFeJlCUz+bNm83zLSH7vAKlRLtT6bjtERLjx4/XDIBSoRBGVchbpe4AL2+lovyiq/AScic6oBRodyqtjRs3Zjyf27dv1yyAUqAQRlXIxTPu4E7/W+UMHDjQPPeXXHJJ8NFHH2kWKBztTqVXW1trnlNZJQZQOhTCqDjZRskd2CVkuyVUxpNPPpnx/N9yyy2aBQpHu1PpyQ4S7nMqwXZqQOlQCKPiZGN9d1CXjfdRWbfddpt5DSR++ctfahbIH+1O5TNjxgzz3LKdGlA6FMKoOLnVqjuoy61YUXnRt1z79u0bfPDBB5oF8kO7U/lk205NdpUAUDwKYVTUhg0bzGDevXt3tvCqkm3btpnXQmL27NmaBXJHu1P5sZ0aUB4UwqiosWPHmoGc7buq6/bbbzevh0Rzc7NmgdzQ7lR+sirMdmpA6VEIo2L2799vBnGJ3bt3axbVMnjwYPOaXHTRRcGJEyc0C7SPdqfKyLadmlxMB6BwFMKomAULFpgBfPjw4ZpBNe3YscO8LhJf//rXNQu0jXanymI7NaC0KIRRMX369DED+Nq1azWDavvud79rXhuJxx57TLPAmdHuVFlspwaUFoUwKkL6Tt2Bu2vXrsHJkyc1izgYMmSIeY0uvPDC4L333tMskIl2p+qQ3uDw+Zat1FauXKkZAPmiEEZFjBs3zkyWdXV1mkFcPP300+Y1krjppps0C2Si3ak6wu3URo4cSY8wUCQKYZTdgQMHzGQpsWvXLs0iTu68886M1+rRRx/VLGDR7lQ9UgwDKB6FMMquvr7eTJZDhw7VDOLoqquuMq+X7Ahw/PhxzQJ/Em136tKlC+1OABKHQhhlJ3cscyfMNWvWaAZxJKv17uslIbd4BVy0OwFIAwphlNWmTZvMZNm5c2f2qE2A6Cq+xPr16zUL39HuBCAtKIRRVhMnTjST5axZszSDuJMLn9zX7vzzzw+OHTumWfgs+oeS7DgCAElEIYyyOXTokJksJXbu3KlZxN1zzz2X8frdeOONmoXPou1Oq1ev1gwAJAuFMMpm8eLFZrKUW/kiWe666y7zGkr85Cc/0Sx8FG136tSpE+1OABKLQhhl079/fzNhNjQ0aAZJcvXVV5vX8bOf/Wzw+9//XrPwTbTdaebMmZoBgOShEEZZtLS0mMmyY8eO7HuZUL/+9a/NaykxdepUzcInhw8fzjgWduzYoVkASB4KYZTF5MmTzWTJ9lvJdvfdd5vXU+LBBx/ULHyxZMkScwwMGjRIMwCQTBTCKLkjR46YyVJi27ZtmkVSye1c3de0V69era81/BFtd1q1apVmEEfbt28Pxo8fr/8CkA2FMEpu6dKlZrK8/PLLNYMk27Nnj3ldJaZMmaJZpN0TTzxhXvsOHTpwx8GYkgK4trb249dq48aNmgEQRSGMkrv00kvNhLlixQrNIOmif+RI/PjHP9Ys0kz+6HFf9+nTp2sGcSOtaO5r1aNHD80AiKIQRklt3rzZDMAS3IQhXb7yla+Y1/fcc89tvYgK6fXWW2+Z11xi69atmkXcHDx4MOP1WrlypWYBuCiEUVI33HCDGXynTZumGaTFiy++aF5jieuvv16zSKNly5aZ13vgwIGaQVxlWxWWAhmARSGMkjl69KgZeCW2bNmiWaTJPffck/FaP/DAA5pF2lx22WXmtV6+fLlmEFeyXaUUv+7rxu49QCYKYZSMTI7uoCuTJ9Lr2muvNa93t27dgt/97neaRVrIH7Pu6ywhf/Qi/pqamjJeu71792oWgKAQRsnI26XugCtvpyK9XnrpJfN6S8hdx5Au0t7kvsbS/oTkqKmpMa+fbIMI4BMUwigJuXDGHWwl5AIbpJvsCBJ93RsbGzWLpJMLXaOvr1wQi+SQrdOiryHbqQGfoBBGSchWSu5Ay/6y/vjqV79qXvuuXbsGBw4c0CySLPqHjmyNiOSRm2q4ryPbqQGfoBBG0WRTfdlc3x1oZfN9+OGVV14JOnbsaF5/7maVDnIzHPd1lX2kkTzZtlOT/mEAFMIoAbnNqjvAym1Y4ZfoMSBx3333aRZJJLdFj76m3FI7udhODciOQhhFGzRokBlglyxZohn45LrrrjPHwdlnnx389re/1SySJlo4TZ48WTNIItlOzX09JdhODaAQRpF27NiRMbhylzE//eY3vwk+85nPmGPha1/7mmaRJFI0RdtdWlpaNIukkrvLua+pBKvC8B2FMIoyc+ZMM6iyfZbffvCDH5jjQeKHP/yhZpEUDQ0N5jWk3Sk92E4NsCiEUbATJ04EnTp1MoPqpk2bNAtfySqwe0zIMfLqq69qFkkwePBg8xouXrxYM0i6bNupbd++XbOAfyiEUbDVq1ebwbRv376agc9ee+214KyzzjLHxtixYzWLuNu5c6d57SQOHTqkWaSBrALL6yr/pQiG7yiEUbAhQ4aYybK+vl4z8N2aNWvMsSEhb7cj/mbNmmVeN9qd0kf6gqVfWHrBAd9RCKMgu3btMpOlBDdRgGvcuHHm+Pj0pz/duucw4kvanTp37mxeN9qdAKQZhTAKUldXZyZLKXoA1+uvv956lzn3OJG70CG+oiv5tDsBSDsKYeTt5MmTQZcuXcyE2dzcrFngE42NjeY4kbj33ns1i7gZOnSoea1odwKQdhTCyNvatWvNZNmnTx/NAJkmTJhgjheJl19+WbOIC9qdAPiIQhh5Gz58uJksFyxYoBkg0xtvvBGcc8455pgZPXq0ZhEXtDsB8BGFMPKye/duM1lK7N+/X7NAdvfff3/GcbN8+XLNotqk3Snaz027EwAfUAgjL3PmzDGTJfvDIleTJk0yx47Eiy++qFlUE+1OAHxFIYycnT59OujevbuZMDds2KBZoG2HDx8Ozj33XHP8jBo1SrOoJtqdAPiKQhg5W7dunZksL7jgAs0AuYkeQxLLli3TLKqBdicAPqMQRs6uueYaM1nOnz9fM0DuJk+ebI4jib1792oWlUa7E85Ebr8sd6ED0oxCGDnZs2ePmSwluEsYCvHmm28GPXv2NMfSl7/8Zc2ikmh3QjZy6+W5c+cGPXr0CMaPH68fBdKJQhg5kUHRnSzHjBmjGSB/TU1N5niSuPvuuzWLSqHdCVHy7owUwO5xwTs2SDMKYeSkV69eZmBcv369ZoDCTJ061RxTEs8//7xmUQm0OyGb2tpac1zU1NRoBkgfCmG066GHHjKDYu/evTUDFO7tt98OzjvvPHNsjRgxQrMoN9qdcCayAhw9NuRdHCCNKITRLtniyh0Q582bpxmgOA8//LA5tiQWL16sWZQT7U5oi/QGu8eHtEsAaUQhjDbt27fPDIYS8jGgVKZNm5ZxjMmWXigv2p3QFrlgzj0+JBYuXKhZID0ohNEmWf11B0JugIBSO3r0aGu7jXucyQ0eUD60OyEXUvi6x4msCrOdGtKGQhhtihYoMoECpfbTn/7UHGcSixYt0ixKjXYn5EJWheVCOfdYYTs1pA2FMM5I3ip1B0B5KxUol+nTp5vjTeLZZ5/VLEqFdifkI9tWh2ynhjShEMYZycUz7uAnF9cA5fLOO+8En/vc58wx96UvfUmzKBXanZCv6HZq8m8gLSiEkZVso+QOfBKy3RJQTo888kjGcccFOqVFuxPyJbdado8ZCbZTQ1pQCCMr2VjfHfRk432gEv7u7/7OHHsSTz/9tGZRDNqdUCi2U0NaUQgjK7nVqjvoya1YgUqQC3QuvPBCc/wNGTJEsygG7U4oFNupIa0ohJFhw4YNZrDr3r17cPr0ac0C5ffYY4+ZY1BiwYIFmkUhaHdCsaI3YWE7NaQBhTAyjB071gx2c+bM0QxQObNmzTLHocTOnTs1i3zR7oRiZdtObcaMGZoFkolCGMb+/fvNICfBXb5QDe+//37Qp08fcyxeeeWVmkW+aHdCKbjbqcmK8MqVKzUDJBOFMAx5+9mdLLnDF6rp5z//uTkeJe644w7NIlfRdqdu3brR7oSCyfZpUgDLCjGQdBTCMKIrcGvXrtUMUB1///d/b45JCdnOCbmj3QkAsqMQxseam5vNZNm1a9fg5MmTmgWq44MPPgguvvhic2xeccUVmkV7aHcCgDOjEMbHxo0bZybLuro6zQDVtXHjRnNsSnznO9/RLNoSbXcaNmyYZgAAFMJodeDAATNZSuzatUuzQPXdfPPNGcfo1q1bNYszibY7NTY2agYAQCGMVvX19WayHDp0qGaAeJA2nX79+pnj9PLLL9cssom2O3Xp0oV2JwBwUAijVd++fc2EuWbNGs0A8bFp0yZznErMmzdPs4iKtjvNnj1bMwAAQSGMjOKic+fOwYkTJzQLxIvseOAerxJbtmzRLEJyx6/o8/TMM89oFgAgKIQRTJw40UyWckcvIK5OnToV9O/f3xyzX/ziFzWL0KJFi8xzNGTIEM0AAEIUwp47dOiQmSwluI0t4u5Xv/pVxnH77W9/W7MQ0Xan1atXawYAEKIQ9tzixYvNZDl48GDNAPH2zW9+0xy7Ev/+7/+uWb89/vjj5nnp1KlT6y2rAQAWhbDnom8xNzQ0aAaIt//7v/8LPv/5z5vj9wtf+ELwxz/+UT/DX5MmTTLPy8yZMzUDlJ/cennu3LlBTU1Na686EGcUwh5raWkxk2XHjh25dzwS5YknnjDHsMStt96qWT8dPnw44znZsWOHZoHyktufSwEcHnszZszQDBBPFMIemzx5spksGbCQRN/61rfMcSwhf+T5asmSJea5GDRokGaA8mtqajLHnwSrwogzCmFPHTlyJGOw2rZtm2aBZLnsssvMsTxgwIDg9OnTmvWLPHb3uVi1apVmgMpwV4QlRo4cqRkgfiiEPbV06VIzUHGHLiTZ5s2bzfEs8Q//8A+a9Ue0VaRDhw7B8ePHNQtUxsaNG81xKCEfA+KIQthTl156qRmkVqxYoRkgmf7xH//RHNMSsnuCT6ZMmWIe//Tp0zUDVJasArvHoqwSA3FEIeyhbKtnx44d0yyQXAMHDjTH9SWXXBJ89NFHmk23t956yzx2ia1bt2oWqKxsdzaU/mEgbiiEPXTDDTeYwWnatGmaAZLtySefNMe2xC233KLZdFu2bJl53PJHAVBNcgG2e0z26NGDnYkQOxTCnjl69KgZmCS2bNmiWSD5brvttoxj/Je//KVm0yt6weDy5cs1A1SHFL3uMSnB7kSIGwphz8jk6A5K0isMpE1tba05zuV2wx9++KFm00f+mHUfr4T80QtU28qVKzOOTbZTQ5xQCHsm2kMpu0cAaSNbAbrHuURdXZ1m00fam9zHKu1PQFxEt1MbP368ZoDqoxD2iFw44w5GEnKBDZBG8+fPzzjem5ubNZsecqFr9HHKBbFAXLCdGuKMQtgjspWSOxDJneWANBs8eLA55i+66KLgxIkTmk0H2frQfYy0OyGOou1KbKeGuKAQ9oRctCCb67sDkc+3oYUfduzYYY55ia9//euaTQe5GY77+Gh3QhyxnRriikLYE3KbVXcA6t+/v2aAdPvud79rjn2Jf/3Xf9VssmXrhZbbpwNxlG07NaDaKIQ9MWjQIDMALV68WDNA+v3FX/yFOf7//M//PPjf//1fzSZXtLCg3QlxFt1OTQrh7du3axaoDgphD+zcudMMPhKHDh3SLJB+Tz31VMY5cNNNN2k2maSo6Nixo3lMtDsh7hYuXNh6rMotmNlGDXFAIeyBWbNmmcly4sSJmgH8ceedd5rzQOLRRx/VbPI0NDSYx0K7E5JA/oDbu3ev/guoPgrhlJMr5Dt16mQmzE2bNmkW8MtVV11lzoULLrggOH78uGaTJbojBu1OAJA/CuGUW7NmjZks5Q5bgK927dplzgeJJN7ylXYnACgNCuGUGzp0qJks6+vrNQP4Sc4B95yQ+NnPfqbZZKDdCQBKg0I4xbKtfh04cECzgL+GDRtmzovzzz+/9Q5tSSDtTp07dza/P+1OAFAYCuEUq6urM5PluHHjNAP47T/+4z/MuSFx4403ajbeaHcCgNKhEE6pkydPBl27djUTZnNzs2YB3HXXXeb8kPjJT36i2fii3QkASodCOKXWrl1rJss+ffpoBkDo6quvNufJZz/72eD3v/+9ZuOHdicAKC0K4ZQaPny4mSwXLFigGQChX//61+Y8kbjhhhs0Gz+0OwFAaVEIp9Du3bvNZCmxf/9+zQJwLVmyJON8efDBBzUbH7Q7AUDpUQin0Jw5c8xkOXbsWM0AyEZu9+qeM7169QqOHDmi2Xig3Qk+2b59e7Bx40b9F1A+FMIpc/r06aB79+5mwtywYYNmAWSzZ88ec85ITJkyRbPxQLsTfCAFcG1tbesx3qNHD/0oUD4Uwimzbt06M1nKLWQBtG/p0qXm3JH48Y9/rNnqot0JPnj33XczjvOFCxdqFigPCuGUueaaa8wgMn/+fM0AaM9XvvIVc/7IitT//M//aLZ6aHeCL+bOnWuOdTkHDx48qFmg9CiEUyTb27uvvPKKZgG054UXXsg4h66//nrNVgftTvCJrArX1NSY4338+PGaBUqPQjhFon9JjxkzRjMAcvX973/fnEcSDzzwgGYrj3Yn+Kapqckc8xJ79+7VLFBaFMIpIle6uwPH+vXrNQMgH9dee605l7p16xb87ne/02xl0e4EH4UXzIUh/wbKgUI4JR566CEzaPTu3VszAPL10ksvmfNJYuLEiZqtHNqd4CvZPSJ67LOdGsqBQjglRo0aZQaMefPmaQZAIVasWGHOKQnZy7eSaHeCz6Q32D3+2U4N5UAhnAL79u0zg4WEfAxAcaTwdM+rP/uzP6voFey0O8FnbKeGSqAQTgFZ/XUHClkdBlC8//qv/wo6duxozq9KXcFOuxMQBDNmzDDnAdupodQohFNAJkh3oJAJFEBprFq1ypxfEvfdd59my4d2JyD7dmpSHAOlQiGccPJWqTtAyFupAErruuuuM+fZ2WefHfz2t7/VbOnR7gR8gu3UUE4UwgkX7WGUi2sAlNZvfvOb4DOf+Yw51/7mb/5Gs6VHuxNgRVeF2U4NpUIhnGCyjZI7MEjIdksASu8HP/hBxvm2evVqzZYW7U6AxXZqKBcK4QSTjfXdQUE23gdQPn/9139tzrlOnToFr776qmZLI9ru1LNnT80AfmM7NZQDhXCCya1W3UFBbsUKoHz2798fnHXWWea8Gzt2rGZLI9rudOutt2oG8JvsFhGeFyNHjqRPGCVBIZxQGzZsMJNl9+7dg9OnT2sWQLmsWbPGnHsSDQ0Nmi0O7U5A2+Q6mJUrV7buJgGUAoVwQskqlDtZzpkzRzMAym3cuHHm/Pv0pz8d/Pd//7dmCxdtdxoxYoRmAADlQCGcQPL2rDtZSuzevVuzAMrt9ddfD7p06WLOwb/6q7/SbOGi7U4/+tGPNAMAKAcK4QRasGCBmSyHDx+uGQCV8i//8i/mPJS49957NZu/aLtTt27dglOnTmkWAFAOFMIJ1KdPHzNhrl27VjMAKmnChAnmXJR4+eWXNZufaLvTN77xDc0AAMqFQjhhmpubzWTZtWvX4OTJk5oFUElvvPFGcM4555hzcvTo0ZrN3WuvvWa+h8Rzzz2nWQBAuVAIJ0z0Ip26ujrNAKiG+++/35yTEsuXL9dsbr73ve+Zrx82bJhmAADlRCGcIAcOHDCTpcSuXbs0C6BaJk2alHFu7tu3T7Pti7Y7NTY2agYAUE4UwglSX19vJsuhQ4dqBkA1HTp0qHUvb/f8HDVqlGbb9otf/MJ8nexG8eGHH2oWAFBOFMIJ0rdvXzNhysb+AOJBtjpzz0+JZcuWafbMoreNnT17tmYAAOVGIZwQmzZtMpNl586dgxMnTmgWQBxMnjzZnKcSbd0G1r1lbBjPPPOMZgEUitsvI1cUwgkxceJEM1nOmjVLMwDi4s033wx69uxpztUvf/nLms20aNEi87lDhgzRDIBCyB+XchtmOZ82btyoHwXOjEI4AaT/0J0sJXbu3KlZAHHS1NSUcb7+8z//s2atfv36mc9bvXq1ZgDka+XKlUGPHj0+Pp9qamo0A5wZhXACLF682EyWgwcP1gyAOPrbv/1bc85K/Od//qdm/+Txxx83+U6dOgXvv/++ZgHkK1urkfxhCrSFQjgB+vfvb07shoYGzQCIo7feeis477zzzHk7YsQIzf5JdMu1mTNnagZAoWbMmGHOK1khBtpCIRxzLS0t5qTu0KFD8O6772oWQFw9/PDD5tyVkHd3xOHDhzNyO3bsaM0BKJzMj9FzS4pj4EwohGMuehU6JzSQHNOmTTPnr8Tu3buDJUuWmI8NGjRIvwJAsRYuXGjOLwlpmwCyoRCOsSNHjmSczNu2bdMsgLg7evRo0Lt3b3MO/+Vf/mUwYMAA87FVq1bpVwAoBblQzj3HZL9uIBsK4RhbunSpOZEHDhyoGQBJ8dOf/tScx9GQdqfjx4/rZwMoBdk6LXqubd++XbPAJyiEY+zSSy81J/Ho0aNb3/IhCCJZcfnll5tz2Y3a2tqsX5NLFDqxZ/tehUQh5HfO9r3yDR57/rJ9r0KiENV47HJuueca26khGwrhmNq8ebM5gQmCIKIhhUEhsn2vQqIQ8jtn+175Bo89f9m+VyFRiGo8drZTQy4ohGMq20U2BEEQblAQ5S/b9yokCsFjz/798ol8H7u7nZqsEHO3OURRCMfQsWPHzIlPEASRLSiI8pftexUSheCxZ/9++US+j122UwvvNsfWo8iGQjiGVqxY0XqyEwSRzpg+fXowcuTI4J/+6Z+y5nMNekXzl+17FRKF4LFn/375RDGPHciGQhgAAABeohAGAACAl7wvhMeMGZPRg9Re9OvXr/Xrli1bFrzwwgv6nQCklZzr2caCfKNnz576HQEkkcz5d9xxR0btIHXBzTffHDz11FP6mX8inxv9GOKFFWElB+qVV15pDuzwoHZDJsTobY/lhHj99df1OwFIKznPoxNgY2NjxjjhRktLS+tYEn4+gOSRc9k996UOcM99Oc+l6A0XyuRjMl7IH7/y/4gvRmXHI4888vFBLtHWwSt/FbqFsxzsrA4D6SfjQq7jhEsmTfl8AMkiBW54vksB3N7CV3iuh0EhHG+Myo58J7g//OEPrX/9hZ8v/w8g3WQSzGeccNEaASSL+26O/H+uZGEs/Dp5JxnxRSHsyLcQFtFVZPk3gHRzz/l8CmFZTQKQDO5KsLQ75CtcGaYQjjcKYUchhbCsCrtfk89fjACSyT3n8ymEASRDtB4otPVR3immEI43CmFHIYWwcL+mkL8aASSLe85TCAPp47Y9FjOvy7vEsrKM+KIQdhRSCEf7BTnggfRzz/lcxgn+QAaSQ3aAcM9xaXEoBi1R8UYh7CikEI7uL5rL1wBItnzPeS6SA5LDvUBOgh2h0o1C2JFvIRz9q5H+YMAP7nnf3jgRjisAkkH+cHXPcaQbr7AjWghneztELo6LbpAvIf+WHID0c8/9tgphGSvC/cYBxF/0AnjezUk/RmdHtBDOJeQkaW9FCEC6ZBsL2gsA8RetA+jvTz9GZ0f0BJD+X/mYG7JKLKu/7lsn8v/ysfbuNgMgHdxxQsaE6DgRhlw8G44VAOJPzlv3/KYQTj9GZ0f0BJB/n4m8fRK9UE4mPJrqgfRzz/u2xgkR3nQHQPy5d4STkNYmpBujsyOfQjgU3jkmDCmG6RUG0s0953MZJ+TzACSDe35z7qYfr7CjkEJYhBfDhFHsnoMA4s0933MZJ3h7FUiO6JxO22O6UQg7Ci2Eo6vCTHpAurnne67jBIBkkN5+9xyX9iakF4Wwo9BCOPp1FMJAurnnO4UwkC7RO8Yyp6cbhbCj0EI4emMNbqcIpJt7vudbCMs1BIwRQLxF7xVQzB+8cr5z7VB8UQg7Ci2EoycMb6MA6eae7/lOkDJeMEYA8SaFa79+/T4+z6VvuJBiVs532WEK8UUh7CikEI5utSInDoD0ksnQPefzKYTDd49YHQLiT+Z3954B+RbDUgRLIN4ohB3hfp9htDfBSd49SdhHGEi/6B/MUtzmIhwvaIsAkiNaDMv/ywXybRXEcq5L0UwRnAwUwkoOXPdtEAlpkJe3NGSik3wY8rHo9iryb4pgIN3kHM927rvjQzTkD2yZEMPPpy0CSBYpet1zOIywRghD/siVOkKK5Vz/QEb1eV8Iy4EcPbhzCTnY5WtlmxWZ7ACkl0xy2caBQoK2CCCZZDcJWQ2WuT+6cBauAPOHbvKwIgwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADASxTCAAAA8BKFMAAAALxEIQwAAAAvUQgDAADAQ0Hw/8unutk7pEI/AAAAAElFTkSuQmCC
|
As shown in the figure, quadrilateral ABCD is an isosceles trapezoid. Point E is taken on BC, and the figure is folded along DE such that point C coincides exactly with point A after folding. At this time, a parallelogram ABED is formed. The relationship between the lengths of DE and AD is ( )
|
A. DE=AD; B. DE>AD; C. DE<AD; D. No correct answer
|
A
|
80
|
iVBORw0KGgoAAAANSUhEUgAAAVIAAADYCAYAAAC5iWvlAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABoVSURBVHhe7Z1/iFVVu8cHikaiAaEmpBwQRpqo5CaJiBYliq+FgS+JN6ThlWtESuEQ/kiSq2Q/iAnMhLxxIiEtDCWh4VpjvQ5aTIrdLMo7qNGAGeYrJpNcBo5/PPd899nPnn32rHPm7LOOOWc/3w980Tl77R/rOWt/z9rr124SQgghXtBICSHEExopIYR4QiMlhBBPaKSEEOIJjZQQQjyhkRJCiCc0UkII8YRGSgghntBICSHEExopIYR4QiMlhBBPaKSEEOIJjZQQQjyhkRJCiCc0UkII8YRGSgghntBICSHEExopIYR4QiMlhBBPaKSEEOIJjZQQQjyhkRJCiCc0UkII8YRGSgghntBICSHEExopIYR4QiMlhBBPaKSEEOIJjZQQQjyhkRJCiCc0UkII8YRGSgghntBICSHEExopIYR4QiMlhBBPaKSEEOJJ5o20qamJoqjrKAvQSCmKuqaygBkjrSfnz5+XTZs2yYwZM0oKDNTS0iIzZ86Uxx9/XJYvXy6rV68O0r777rvy8ccfB8L/8Rm2IQ3SYp+bb7551PFwDqTFOeuJHv/bb7+lPKWxrCf4vrds2SKzZs2Kjq9CObn//vuDctPZ2TmqjO3bty/4/8svvywvvPCCrFixIkg7e/ZsmThx4qjj3XfffbJx40Y5c+ZMePb6oMe3AI00BSjcXV1dMmHChOi4UFtbW1CgUXiPHTvmvNmqUX9/v7zzzjuybNmy4Jjxc+CcOPfFixfDq/FDj+u6DiqdNJb14PLly4EpJsvYHXfcIUuXLpW33347KCeu66hGKJ/vvfdeYK7t7e0l57jxxhvl2WefrduPth7XAjTSKnAV7rvuuiv4td+/f7+zwNZDODZqGziXnhc1ClwLrskHPZ7rvFQ6aSx9GB4eltdff72kxogf0+eeey6oYbrOWw99+umnsm7dupIypj/avoaqx7MAjbQCV65cCUwrWbhfe+01Z6G8lsJjWryWetttt8nWrVvl6tWr4dWmQ4/jOheVThrLWsD3h+9x0qRJ0XFQ+0S583m6qUVvvvmm80cb90Et6HEsQCMtw+DgYNAOpftfr8IdF869YcMGufXWW6PrQhtaLTUH3d91HiqdNJZpQTPN/Pnzo/3xveIpx+fRvR5COY//aN99990yMDAQXnX16P4WoJE6+OKLL4IaH/ZDw/54KNxx4VrwyH/TTTcF14jazFdffRVefXVoXFzHp9JJY5mG48ePy5QpU4L9brjhBnnmmWekr6/PefzrIfxow1DReYprvOWWW6Snpye8+uqoJS6NCo00QXd3d9Dojn3wq4xeUFdBGw/64IMPgpoyrhXXvH379jAXY6NxcR2XSieNZbXs3Lkzam9HLRSdP67jjgehnT7eKQVzrZa0cWlkaKQhaAd66qmnovQYKjKeagjl9OWXXwZDp/S6kYdq2rQ0veuYVDppLMcC7aHoFdf006ZNk97eXucxx5OOHDki8+bNi6570aJFqcqYBWikBVDAFy5cGKXF0JDr2RaaVrhWXLNeP/IyVieUpnUdj0onjeVYLFmyJEqLoUyNVMaglStXBs0QuP4HH3wwGGlQiWrjkgVopAW0loBC8sYbbzgLUSMIowm0oCNPldC4uI5DpZPGshIvvvhikAbfDx6PXcdpBGEcq04cefLJJ8PcuakmLlnBvJGiTVTTNHIBVyEPmh/krRyaxnUMKp00luXI5XJRGnRcuo7RSEJlQ3+wK7WZjhWXLGHaSNGQrh1L6DV1FZpGFPKCPCFvyKMLjYtrfyqdNJYu0M6uZQwz1lz7N6IwakTzvWvXrjC3pVSKS9Ywa6QYfoIhHdj22GOPOQtLIwt5Qt6QR+Q1icbFtS+VThrLJBh7qZM5HnnkkYZrEx1LaOdF3vBD4Rp+Vy4uWcSkkaKRfOrUqcHnDzzwQOYKOIQ8IW/II/Ka7BjQuLj2pdJJYxkHnX1YDASfo3cePd+ufRtZKGP4gUAeMZY5OW3ZFZesYtJIMacZn2EMXxYLuAqPlToLCnmOo3Fx7Uelk8Yyzo4dO4LPMKC9EYY41SrcPzoLCh1qcVxxySrmjBTTKfVxC0uHuQpHloQ8Iq/Ic3wqqcbFtQ+VThpLBTUznRmHRUdc+2RJ6HxCXjHJIL4UXzIuWcackT799NPB31icIYuP9EkhjzozBXlXNC6ufah00lgqa9asCf7GrLPxNLX4WkqbkTBWVknGJcuYMtITJ05EPahYO9RVILIojP1DnpF3xABoXFzpqXTSWALUyLSMYcUuV/osCtOVNQ5oUgLxuGQdU0aqDeOY7uYqDFmWTiNFDIDGxZWWSieNJcD0Sfz/nnvucabNsrAKP/KOVdNAPC5Zx4yRoiaGf7Fi0rVcjHm86qOPPhoVC8iVlkonjeWvv/4a/X88L0RyrYRONV2RDMOhNBYWMGOk2umCmpmrEFiQrq+KdwFpXFzpqHTSWGKBZvyLXmxXOgvS8ctYYV/jYgEzRqrjRi301JcTpiciBvEFq13pqHTSWGrTERaQcaWzIKz3gBhMnjw5iosFzBipCsvOuQqABR04cGBUPFzpqHTSWGonE5pRXOksCONK9fFeZQFTRoqamOvLt6R4bRRypaHSKR5Py4/1Kq2ZqyxgykizsPKOr/TxXuVKQ6VTPJ6WH+tV8RXIIAuYMlI82rq+eEtKPt670lDpFI+n5cd6FZrPdJk9yAJmjBRznl1fukXpC80g13YqnTSWjOeI9F1ikAXMGCmmSbq+cIuKv2rXtZ1KJ43l7bff7txuUTplFLKAGSO1PH40qXghd22n0kljifUbXNstasGCBVFcLGDGSDF9zfWFW5QOmoZc26l00ljizbOu7RbV2dkZxcUCZow0S68S8VW8kLu2U+mkseSP9YjiryKxgBkj3bBhg/MLtyiskalxcW2n0kljyaFPI9IZTpAFzBhpFt4QWi/Fx/m5tlPppLHkU8+IsEylxsUCZoyUg/FHpG8ZhVzbqXTSWKLJxLXdouI/1hYwY6TLly93fuEW9cQTT0RxcW2n0kljyTbSEa1cuTKKiwXMGGkWX7lcq7CwtcbFtZ1KJ40lhpW5tltU/MfaAmaMlIV8RFxGr77SWE6ZMsW53aLiC5dYwIyRYsqa6wu3qPj0Pdd2Kp00lpyGPCK8akXjYgEzRoo1El1fuEXFF5RwbafSSWMJWXgzbTW69dZbo5hYwIyRQhbfo5MUYhCPiSsNlU7xeL7zzjvONJaEd6LFY2IBU0bKnvtvZdmyZSUxcaWh0ikez8WLFzvTWFK8xx6ygCkj5erl3wYrFMVj4kpDpVM8nhMnTjT/eB9vH4UsYMZI+T6dkcd6jQXkSkelk8bylltuCf61/Hjvei+YBcwY6fz584N/LU/j08d6jQXkSkelk8byqaeeCv61/HjvelOtBcwYaS6XC/61vGakPtZrLCBXOiqdNJa7du0K/rX8eK8GumXLliguFjBjpBcvXowead9++21nIciyXn755SDviAFioXFxpaXSSWN55coVmTBhQvB/i6uNxUeEnDlzJvq/BcwYKdDl4zADxVKNob+/PxqEjxgAjYsrPZVOGkuwcePG4P8YR9nX1+dMn1VpJxOaOEA8LlnHlJFevnw5eOzC3+vWrXMWhixKf0CQd8QAaFxc6al00lgC1EonTZoU/G1pfVJd7Qk18l9//TWIRTwuWceUkYLt27cHf2M6n4UaA16Nq28NRd4VjYtrHyqdNJbKzp07g78xm87CK8DxxKPt7zBUJRmXLGPOSK9evSp333138NnSpUudBSNLQh6RV+QZeVc0Lq59qHTSWMaZMWNG8JmFpfV0fdvJkyfL8PBwGAEaaaZwfZmfffZZ8BnmnKP24CocWRDypvPqkec4GhfXflQ6aSzjfPXVV9HnWC3etV8WtG/fvqDmjXxi1EIcV1yyikkjBQsXLgw+R6fAp59+6iwkjSzkSReOWLRoUZjrETQurn2pdNJYJsGUZHx+8803B4bj2reR1dvbGz3SY9m8JOXikkXMGik6BfQRH734WWovRV6QJ+QNeURek2hcXPtT6aSxTIK4z5o1K9iGURMwHtf+jagjR45EvfRTp06V8+fPh7keoVxcsohZIwWDg4NRDysGEmdhSBTyoIOikTfk0YXGxXUMKp00li5gMPqjBuOBAbmO0UhCGXvooYeCPGEkyMDAQJjbUirFJWuYNlLwzTffRHOks/A6EuQBeUGekLdyaFxcx6DSSWNZjh9//DEqY3gEbvQfbO3AxOSOL774IszlaMaKS5Ywb6Rg7969UTr0smI4h6sAjWfhmnHtmg/kqRKaznUsKp00lpVAZ5/OrIOZNmLNFD8A8XcxYapxJaqJS1agkYZ0d3dHafEI1kjj/9CxhDUE9Pq3bt0a5qo8mtZ1PCqdNJZjsWPHjshM8bjfSB1QaN/Fe880r5jBNRbVxiUL0EhjoBanj2Do8W6EYStYN0Bna+Hax6qJKhoX1zGpdNJYVgNqpvp9oTf/zTffdB5zPOmDDz6IeucxcwnD6qohTVwaHRppArRnoRcS+2AM5nieSoqVyHWcKHrnce3VonFxHZdKJ41ltWBBj/gyc5hKOl7bTTFTSceJYsD98ePHw1yMTdq4NDI0UgeYj67jTCE80oyngfuoKcdvRIwTdQ1xqoTu6zo+lU4ayzTg+9L1SyE0zYynBaGxALr2zENo13UNcaqE7msBGmkZMJ1SV/JRoTBdzxX2ce7Zs2dH14P2Nqz7WAt6DNd5qHTSWNYC1j/QdlMIP9rX8yWNeHEdyrleD4RFb+LTi6tF97cAjXQMTpw4Eax4rseBMMQIBc5VEK+FcK558+aVXMOSJUuCR8Ra0eO4zkelk8ayVvA9YhZU3FD/6h9tlDGM+oi/qhtvUkD5rxU9jgVopFWCAhX/pUaBQ+1h9erV16T3FcdETQDniBduNDn4FG5Fj+c6N5VOGktf0MYd/9HG944mHLSFf/zxx85z+wjmiVeDzJw5s6SMoZxjdpwvejwL0EhTggKWfPSB8IZSvBMJ7Vy1dBxgHCh64DHYWRdhjqtehVvR47quhUonjWW9QIeOq4yh5xzjODG8rZaxziiXaF/v7OyMZlvFBdNOLm7jgx7XAjTSGkFhR/ukzqVOCmuAwlxRo1ywYEFgkFhuDML/8Rm2wTQxDMZ1DBwb56hHDTSJnsN1w1HppLGsN6ih4vt/8MEHSx77VSg3KD8oR2j6gcm6yhjKoa5JmxTME30BlWbB1YqewwJmjJSiqOsjC9BIKYq6prKAjVwSQsg1hEZKCCGe0EgJIcQTGikhhHhCIyWEEE9opIQQ4gmNlBBCPKGREkKIJzRSQgjxhEZKCCGe0EgJIcSTzBqptbm+hIwnrN1/NFJCSN2xdv/RSAkhdcfa/UcjJYTUHWv3H42UEFJ3rN1/NFJCSN2xdv/RSAkhdcfa/UcjJYTUHWv3H42UEFJ3rN1/NFJCSN2xdv/RSAkhdcfa/UcjJYTUHWv3H42UEFJ3rN1/NFJCSN2xdv/RSAkhdcfa/UcjJYTUHWv3H42UEFJ3rN1/NFJCSN2xdv/RSAkhdcfa/UcjJYSUZfny5dLX1xf+VT3W7j8aaRn2798f/o8Qu0yZMiW4hx555JFUhup7/zUaNNIEMND777/fTAEgpBJqpCoYajWVjPg+FqCRhsQNNM1+hGSZpJGqcK9UMtR4WguYN1I8rsyYMaMkfTX7EWKBckaqKmeo8TQWMGukMFA8psTTJUVIlrh69aoMDg6m0uTJk533RlJJQ41vs4A5I63GQFXjGVehT6uBgYEgHr7au3ev7Ny501tbtmyRTZs2eWnjxo1BT7OvlixZEpQTX913331Brc5XN954o7OMjjepocY/s4AZIz1x4oQsXLiw5POxFL8hUEBcBTytJkyY4DwXRWVFuF/if1vAhJEuXry45G+KajThEdv1w5xGU6dOLakcVKOJEyc6r8clpMcTSvL+s4AJI0VtdLyY6aRJk5yFPK2SBb4WoYbueqxNqzVr1jgfs9Mql8s5H/nTaNeuXaOaHmrR8ePHnc0haXXlypWwRDYmKCeuchwX0iBmceLbLWDCSBW0CeLGr7a9KX5DXL58OTwKIXaoZKQuA1Xi6SxgykiVM2fOVGWohFjHZaSVDFSJp7eASSNVxjJUQqwTN9KxBuHHsXYfmTZS5fz589LV1TWqR50Q68BI0xioYu0+opHGSBoqIdZBR20t1HL/NTI0UgdqqISQ2vC5/xoRGikhpO5Yu/9opISQumPt/qOREkLqjrX7j0ZKCKk71u4/GikhpO5Yu/9opISQumPt/qOREkLqjrX7j0ZKCKk71u4/GikhpO5Yu/9opISQumPt/qOREkLqjrX7j0ZKCKk71u4/GikhpO5Yu/9opISQumPt/qPLEEKIJzRSQgjxhEZqnfyf8q+Bo9Lb2yu9RwfkX3/mww1jMPyHDBwt7NN7WL7/bTj8sFbOyQmcf5S+ltNDYZKxiOfjxLnwQ0L+Gmikhrn0XU6WtTeXtGc1NbXIrA0H5WxZP83LhSOvyqyWZmlftErWr/q73Iv/r+ypsE9lhg6skOaSawg1bZucDNOUY/iXPtm2/F5pQfqWO6VjwT9k/d6fwq2E/DXQSI2SP5WTuc1N0tz6sPxj/frQEEdMrK3rkFwK08a5dKhL2pqaZW7uVMFSQy4dlFWtTdKydF+hbpmS/A/SPa1F7uzokI6Elu+rdLRhObl7aeFaCnloXya5b34rfELI9YFGapIhObCiReZ2f1dqlsO/yCcr2kIzbZXNx8LPlUs90lkw36bWl6Q/Ufs8uW1aYZ9mWbwnnZWe27NY2lYddJp2eS7JobXthVpsoSa89qBcqLEmTEi9oJFaZKhHusqZ19Ah6SrULmGmc3I/hx8WKZplk7SOctgCp3bITBiww2TLku+Xl1qny6bDg9W3zRbqwadyc4OmgHK1ZkL+amikFhk8LIdLPTJGXg6uchlp4RG8o/h5Z4+rB+iwrEVt1VWTLcPPuTnB8YoqPN4v2CCf/HRhpMnAQf7Y5uBxvqltsxxLWxONOsh65fD3Z6Wcd+f/PC1Hvz5dqLcXGf5jQI6iE+vo6VH7VNpG7EAjJaM41OUwxMH3ZW5geOWM8mfJzSma4swdp8LPKvB/h+U//61dWgPzjatZpm8+UuZx/aRsm1ZM9+juc3C8qKe+kjGiKeC73DJpb71X/r5qvaz/x8PF87b8TbZ9F9ZpC8c63ZeT5xfcWey4mpMr5OiS9L86q/h3qOb2tXIIu+TPSs9KNC84thFz0EhJgtAQp3XLD3FjOtQVGsYcSTzxh4wYaVPhkTsNw38MyvefvCqLYiMIXI/t+f6XpDXYvkDWdy+Xe++8Uzo6YmbctlR2n0x2OV0qXHpbYVtXicld+uTfi/s0L5agWXforJweHJSeVa3Fz+e8Lrm1D8uybX0ycP68DH6Tk6VtxfNM6+6RPcuw7XP5fjCxbdtY4wxIFqGRklLO7ZZHC7XOVQcTNnYNjTQif0GObJ4e1vJapetQaRPCsc2hyTVPl7WfxR6l451kaowhxaFVzbLiQKI5IqphNxXOE34GNJ+tq+SzRLX43O5Hw22d8klirNdQT2dx29z3ZTD8jNiBRkpiDBV8pNXdifNXGGlAWIPEcRbvkd/DTwvOJ+/PrXD8WCdZ60v9YTvrOdn9KD7rlNHNuoXH/d2vyPq3EmNmNZ/Bo32CWreRzEMjJRFDh9dK+9ycnCqtbBX5y4y0gA6zal4rh8OP4sfv6P4h/KyUqMba0S3FFAVzDa658Fgf/F0FNFJSAzRSUuRSwXRmlbYjlqDDm8oa6SnZMRPbq+xsqsiQ9HTiWHEDHDHS5LAsJX9wVdHMdL+fczIn/nc10EhJDdBIScFE+2XzorVysNLI9nzBaMNOHXeFU2t/zYXtFY5TJcHIgRJTUnNtkua1I/XUEtTMWjdLMLBgqFCzDa6pQ8pUYgvk5cKF2K8HjZTUAI3UOsMnZceyldIz5kT5vPS/VHx0dtY4tcbaXKj9eftosW0z2QMedfaUM6vQzJpXHAjHgI6MfR1pN01wbo9sfj92NBopqQEaqWXGMtH8Wfnf+PJLJ7fJtDJmoSbnGv4z/Mf5FDOX0MrQJW1ta+VwsoNo6ICsCGrF08Q1yqg4wL9NNsdG6utsLHzelWy3yJ+S3NzFgiGpETRSUgM0UqvgcX56h/xH7r/DJetKtT+3QRa1z0gYVl5+6IYxJUwJ7asYR5kce1ogmomUGJb0P6+iZx4rTX0mv0RDP4flt77NMr31b/K+s8crNNnC8ZqTnWLhwimjRhzoteEacL7nc7I/yl+ztG0+VlJTjYYxVTLLmTtkVJ1ct0UdXcQSNFKD5M/2yIrIXCro0d2O1ZzCBUOap8uzuf3S+2FxIH3LrFel39FR9fuexeHxSmdE/fx+cb58sK25Vdo7OqS9tUVaH35VjlRchSQvp/YUV31qmfW85PbDFJ8vLutXZim//Kk9juUCEwueDJ2Wr/dviwbW48di6bZC/rC2abAtJ89O12PgB+DDMtuaZfracBsxA43UHBfl6/9aL+uxdN4Y2vrPcmaQlws/fS65V5DuLfnk+wpL2OXPysG31ssruxMrTRX2+OXoh/JWeK63Pky3QPTwb9/L57lXitf61ody9PSf7jZQJX9Bfvo8J6+US//7YdkeXkuJsLZprduIGWikhBDiCY2UEEI8oZESQognNFJCCPGERkoIIZ7QSAkhxBMaKSGEeEIjJYQQT2ikhBDiCY2UEEI8oZESQognNFJCCPGERkoIIZ7QSAkhxBMaKSGEeEIjJYQQT2ikhBDiCY2UEEI8oZESQognNFJCCPGERkoIIZ7QSAkhxBMaKSGEeEIjJYQQT2ikhBDiCY2UEEI8oZESQognNFJCCPGERkoIIZ7QSAkhxAuR/wcXOszT4Ijt2AAAAABJRU5ErkJggg==
|
A rectangular steel plate with a length of 20.56 cm is shown in the diagram. The shaded part obtained by cutting the plate can be used to make a cylinder. What is the radius of the circular shaded part in cm?(Use π = 3.14)
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
81
|
iVBORw0KGgoAAAANSUhEUgAAAVUAAADaCAYAAAAWndGXAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB5tSURBVHhe7Z1/iBT33ccPErpSchBoN4jxQFip0vYgEhGJDSoWY4qBE4NJD48ISngi9ek29KJiQZ9WI+UCxgiRsEUhMdXUoA+5B9PT4KH2OT3ME5VExB/1wFhOI6doKAvrH59n3rPz2Z2d++6PuZtd9+b7fsEbz5nvzM73s99573e+v6ZFCCGERAZNlRBCIoSmSgghEUJTJYSQCKGpEkJIhNBUCSEkQuJvqtnrcuZwRrauXy/rt2bk8Jkr8iDn7SOEkIiJtamODGyTua0t0tJSqkSqUw5cprMSQqInvqZ6bY8sTCQkOX+dZA73SV/fx7JtaUoSaq5taTk+4qUlhJCIiKmp5mRgU5ss3H1Rst6WPDm5fTQtbZ6xzstc87YTQkg0xNRUB2VbulfMFdEROfSKV1tNH/e2EUJINMTTVP/9T7lyo3yb6bXMvHzbavcJb0uA3AO5cuZjeRedW+u3Subv5+VfpVXePEjXn5GtB7/x/n9bvvl7vlNsa6ZfrvuPyf5LzpfbRwiJDbHuqCqHmmpX731vS5HsxX3SmUrK3HUZOdzXJx9vW5xvLmhbUezcunlaMuvmSzJRrPHmbh+V7lQi/39VW7eccD4id/mArGjzbfftI4TECwtN9b70djmmltwkA4HKbO5yxu3cWpi5LMVdOTme9syyfadcxKZsVrIy4pzH2/5KWjYu2yifX3ngHpe9/jfpSubN88VN22T5Ymffpbtu+272+iFZ7Rlsx4FbOBshJEbYZ6ojvdLlGGdXb7DF9abse9FstrcOdOTNM+HULr1tQGu8La8cGtV+e6Fnhrfvb3I7cL7Lu+fk97FNl5DYYZmp5mRwS5u0OWY2qhPr4k5ph9GtPeqrpXqgrfREn5wJNIQWTNVgjmPdRwiZ2FhlqrnBLZJamBHTuP/c0bWhjY6mSggJYo+pjhyX9NzyA/4LRmeqqZaBpkoICWKHqTqG2j2/u+IMqkJN1dCmWuD+Bbngmy9AUyWEBIm/qY58JT2d3XI02FsU5FpG5sHoWkydWCAnF3q6xd9hT1MlhASJt6lWM9TsRfnvvkvef7zef5hdYqHsvujvlMpPb02tPiL+oaU0VUJIkNiaan4wflJmd/5O1rszowJ6bbE83ZqUTb5n/fw4Vc9YW1rlZ8vWOmnXyrJZSUk4RrunZKkArC+QzKc1tMMWhk119ZYYMSjse3GfY+WEkDgRS1M1zmAyaUaPXPCOUUa+ykhnYGbUqKUCvznomPJcaS2kaZW5r62XXSdueft8s61aEpJaurb6PkJILIilqd48h6X+atC5MvXE3AO5cf6Em+aMNxOqhJvnRp/L0T+uOHXSse4jhMSC+HdUEUJIA6GpEkJIhNBUCSEkQmiqhBASIdaYqvbkQ4+SZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKnWQDY7au1/l3LbKzGe6yCEND801QoMDw9LOp2WJUuWeFtK2bt3ryxYsED6+/u9LdUZy3UQQiYONFUDaqaTJk1y08M4TcBU9Zy1mqumhwgh8YOm6iNopqpaTNWftpK5+tMSQuIHTdWhnJmqwpiqqpy5+tMQQuKH1aZazUxVYzFVVdBc/fsIIfHDSlOt1UxV06ZNk82bN49SR0eHMb1Jaq7+bYSQ+GGlqdZqpvUWISR+0FQfoQgh8cNKUw37+D9z5ky3/TSoNWvWGNObxMd/QuzASlNV2FFFCIkaq01V4ZAqQkhU0FR9lDPXMKZazkwVf1pCSPygqRoImmstplrNTBVNDxFC4gdNtQJqrlxQhRBSKzTVGuDSf4SQWqGpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh94J1NCCERQlMlhJAIsfLxn6KoxssWaKoURTVEtmCdqUYNFqj+/e9/L9OnTy8pQNBjjz0mU6ZMkfb2dnn++eflpZdektdff13eeustV/gb27APaZAWxwTPg3PjM8Ishl0r+hlffvklNU5pLKPm1KlTsmHDBvn5z39e+Ay/UG5++tOfjipjGzdudP/u6OhwF1N/5pln3LQ/+MEPRp1j2rRp8pvf/EaOHTsmDx8+9D45GvQzbIGmOkYOHz7sFlI9rwqFGwX5ww8/NN54tegvf/mLrF69Wn7yk5+MOj8+E58dFXpe03VQ4aSxjAr8iJrKWCqVklWrVrnlZHBw0Hgt1fTXv/5V3njjDeP58SO+f/9+7yrGj57XFmiqIQkWdPzqoxbwhz/8QY4cOWIswOMRzolzoxbir2H84he/iKTmquczfTYVThrL8XL69Gm3TOn58PTy3HPPuTXPzz77zPjZ49EXX3whmzdvlkWLFpWUsah+wPV8tkBTrREYWLCgL1++XPr6+owFtR7CZ+FRzt9E8Mtf/lLOnTvnXWV49Dymz6PCSWM5VvA94vvV8+B7xuM8jM30efUQylhnZ2eJuc6dO3dcP+B6HlugqVYB7Utr1qwpHP8oCnpQ+OzFixcXrglCm+tY2sL0eNPnUOGksRwLqCnq8RB+wD/55BPj5zRCMFeUc/8P+MqVK+X777/3rrh29HhboKlWAG9Txa+0HvuoC3pQaBdDs4BeH2qtd+7c8a6+NvRY0/mpcNJYhuHevXuydOnSwrHPPvus+5Ze0/kfhfADDnPV60OTwNDQkHf1taHH2gJNtQxo15o8ebJ7DB6FUJMwFbpmEHp6tUYxdepUOXv2rJeL6mhcTOelwkljWStff/11YdQIvj/0vpvO2wz685//LD/84Q/da/3xj3/sjhKolbBxmejQVA1kMhl5/PHH3fRPPfXUuHryGyXUbn70ox+51zxp0iQ3D7WgcTGdkwonjWUtoHf9iSeecNM/+eST8v777xvP2UzCU1pbW5t7zbg/enp6vNxUJkxc4gBNNQDGA2paPIo1siNqvMK14pr1+pGXamha0/mocNJYVmPHjh2FtBiCV48e/XoJHVYYiaDXn06nvVyVR9PaAk3VB2p3mm7FihVjHgP4KIVrxqgEzUe1GqumM52LCieNZSUOHjxYSIe2yoGBAeO5mlkoYxhHrfmoVmPVdLZAU/VAG5E+8sOUTIVpIkmNFXmq1P6lcTGdgwonjWU5MDMKTTNIg9EbpnNMJGECguYZPxblqBaXuEFTdUCHgbZvoTd9ItZQg0IedGQA8oY8mtC4mM5BhZPG0sTVq1cLHZ/oQY9DGYN0aB/KGDp3TVSKSxyx3lQxbAo95tiHaaEnT540Fp6JKORFp7oij8hrEI2L6XgqnDSWQTDMbebMme4+zLFHu6Tp+IkoNF/oDEP8aODHI0i5uMQV60119uzZ7nb08k+kTqlahTwhb8gjxtwG0biYjqXCSWMZZMmSJe52jM54lJNG6iVMc8WPBfKIRV+Ck1DKxSWuWG2qH330kbsN41A//fRTY4GJgzAURqcdIs9+NC6m46hw0lj66e3tdbdhHGozDeqPWvixaG1tdfO6a9cuL/d5THGJM9aaajabLTz2o8HdVFDiJO1UQJ6Rd0XjYjqGCieNpYIamz72Y06/6Zg4CZMXkFdMDsBMMSUYl7hjran+6U9/cv+PR7I4tXGVE/KIQebIM/KuaFxMx1DhpLFUUGPD/zETKY5NS0GhfVUnB2AtCiUYl7hjpamiw0Z7+7GsnqmAxFGYzoo8I+/aaaVxMaWnwkljCVBTQ40N/8f6uqb0cdTbb7/t5hlDx7TTyh8XG7DSVHXVKfSMx2VoSy1CXrUmgRgAjYspPRVOGkuAmhr+xpPQRBzgPx7paICXX37ZjYU/LjZgnal+++23hUH+H3zwgbFQxFnvvPOOm3fEALHQuJjSUuGkscTyeFrGmnkhnnoJa2VoLFBb1b9twTpT1XnXmHNtKhA2SGur2uYHmdJR4aSx1FElGMpmSmeD5syZ48ZA+y4gW7DOVPEaEvyL9/OYCoMN0nnbWH9V42JKR4WTxlJX78cK+qZ0Ngh9FYiBNgVAtmCdqariOAi7VmFxa8RAH1EhUzoqnDSWOr8fL+YzpbNBeLeaxkNlC1aaKjqoTAXBJmkTgMqUhgonfzxtfvRX+WupkC1Yaap4/DUVApvkX7oNMqWhwskfT5sf/VVvvvlmSUxswUpTxeOvqRDYJG0CUJnSUOHkj6fNj/6qYBOALVhnqpjdYioANsr/GmLTfiqcNJaMZ1G6mA9kC9aZKtoSTV++jZoyZUohLqb9VDhpLDEd2LTfRrW3txfiYgvWmSre4WT68m2U/31Wpv1UOGksU6mUcb+NWrRoUSEutmCdqeK9QKYv30b5C7xpPxVOGkv+cBeFd71pXGzBOlO1YZm/WuUv8Kb9VDhpLPnDXZQuBwjZgnWmipWaTF++jcKsMo2LaT8VThpL/nAXhbUPNC62YJ2pNotMBbDR8hd4034qnDSWNk+BDgqLFmlcbIGm+ohkKoCNlv/RzLSfCieNJSeXFPXHP/6xEBdbsM5UWeCLwqwfjYtpPxVOGku2qRb129/+thAXW7DOVFngi9J3tkOm/VQ4aSyx7J1pv43y/3DbgnWmygJfFMepRiuNJRfsKcr/w20L1pkq3k9u+vJtlH+lKtN+Kpw0lniFimm/jeJ6qjFGv1i8m9z05dsorIOgcTHtp8JJY8l4FuWfCm0L1pkqZPMC1SrEwB8TUxoqnPzx5EpoX8oXX3xREhNbsNJUMZTIVAhskn/gP2RKQ4WTP54cZVJ8pYrKFqw0VbTzmAqBTUJnij8mpjRUOPnjydXQii//U9mClaYKYQFdU0GwQcFHf8iUjgonjaW++8vmJoCTJ0+WrNcL2YJ1pqq9kTavAaCP/rNnzy7ExZSOCieNpb6l1uYmAJ1JNXXq1EJcbME6U9X3kNs8XlUf/f3vZDelo8JJY7l79273X5ubABYsWODGIJ1OF+JiC9aZ6tWrV91/H3vsMfnkk0+MBSLO2rt376hYQKa0VDhpLL/99tvC3++//74xbZz12WefFR79T506VYiFLVhnqmDJkiXu3zbWVrX5AzEAGhdTWiqcNJbg1Vdfdf/GWwAGBweN6eMqnUU1d+5cNxb+uNiAlaZ66dKlQmfCjh07jAUjjnr77bfdPCPviAHQuJjSU+GksQRDQ0MyadIk9/8YWmRKH0fhLbIah9OnT7ux8MfFBqw0VaDL3qHdy4aaxMDAQGFaKvKuaFxMx1DhpLFUdJwmpq329/cbj4mTcB9pe/3KlSu9KNBUY0vwi71375771ktsw/JkpkISJ+mPCPKMvCsaF9MxVDhpLJXvv/9eJk+e7G6zYSSA/oigho52ZSUYl7hjramCXbt2uduwHkBfX5+xoMRBGJOLPCKvyLMfjYvpOCqcNJZ+tGMQHTeffvqp8bg4CPcPauTIK94o4ccUlzhjtak+fPhQpk+f7m7HYwsGLJsKzEQW8oTOEuRx5syZbp79aFxMx1LhpLEMouOBsUIa5sObjp3IQtOSdoBiXGo2m/VynqdcXOKK1aYK0GHzxBNPuPuef/75WLWvIi/PPfecmzfkUTun/GhcTMdT4aSxDIJOK20GgPnErQ1fe/tRxs6ePevluki5uMQV600VHDt2rDAaAK9tNhWciajly5e7eULekEcTGhfT8VQ4aSxNoCdcf7x/9atfGY+fiEJbMfKEMobpzyYqxSWO0FQ9MplMIU0cprD63w2EvJVD05jOQYWTxrIc+/fvL6R5/fXXjeeYSPK/jXf79u1eLkejaWyBpupjw4YNbhrMtkKBMRWkiSBcO/KAvCBPldC4mM5DhZPGshL+qcETedQJxjxrGVuzZo2XOzO1xCVO0FQDdHR0FNKiKWAitX/hWvWRH3r55Ze9XJVH05rOR4WTxrIaq1atKqRFU8BE6iBFGdNHfgiLxwQ7P4NoWlugqQZAAfG/Dx8vx5sIw60wbKq9vb1w3chDtcIONL3pnFQ4aSyrge/Fv4AzRp5gvrzpnM0kTGDQjk8IPw7Bnn4Tmt4WaKplwPhCnWb41FNPyYcffmgsaM2gDz74oDBGEJ0huPZa0biYzkuFk8ayVg4ePFjovMI44vfee8943mYQFh/SGXnolAqOd65E2LhMdGiqFcDwEF0PEoO30bnQTNMNcS14FNO2LYyDPHfunHf1taFxMZ2fCieNZRgwzA3jh3Ecvkc0OTXTkxHGoKLtV18SiaFhKHdhGEtcJjI01SoMDw8X1oaEUKOAuaKwmQphI4RCjWvQWVIQVp26c+eOd9W1o8ebPocKJ41lWDCdFe3fenwz/ICjfL/55puFJyAIkxj8009rRY+3BZpqDaANDKtZ6QBuCIUNha6R5qoF3W+mmBGGx/1a2k9N6HlMn0eFk8ZyrOB71Bl+kP6AN9JcTWaKco/yX0v7qQk9jy3QVEOAQmUy187OTncx4noYLM6Jc+Ox0FTQx2qmip7P9NlUOGksxwO+T5O5YlQH2lzrUcbQo492+a6urpIyhsV3xmOmip7PFmiqY8BkrhDanRYtWuSOEx3PHG/05KN3GM0O2palGm+tIYie13QdVDhpLKMA5orOoGAZQ9MAplNv3LhxXC+vRPnEe6QwpMv/5APBTFGG/auZjQc9ry3QVMcBjA21CrSHaS+uX+g4wpCsl156yR1+gscqDJpGrQDC39iGGgIKN9JqD6tfODc+A58VlZkq+hmmG48KJ41llOD7/uijj9w3CehSlX5NmTLFLTcoPyhH6FSCWQbLGMofyiHSolxq56YKI12WLl3qzr6LykwV/QxbsM5UKYp6NLIFmipFUQ2RLdiTU0IIaQA0VUIIiRCaKiGERAhNlRBCIoSmSgghERJ7U7Wx95GQZsHG+4+mSgipGzbefzRVQkjdsPH+o6kSQuqGjfcfTZUQUjdsvP9oqoSQumHj/UdTJYTUDRvvP5oqIaRu2Hj/0VQJIXXDxvuPpkoIqRs23n80VUJI3bDx/qOpEkLqho33H02VEFI3bLz/aKqEkLph4/1HUyWE1A0b7z+aKiGkbth4/9FUCSF1w8b7j6ZKCKkbNt5/NFVCSN2w8f6jqRJCqrJ9+3YZHh72/lc7Nt5/NNUqXL161fuLEHuZNm2aTJo0SdLpdChzHe/9NxGhqZYBZrpq1Sp5/PHHvS2E2AtMVe8jNddaKhxjvf8mMjTVAH4zta0wEFIOv6mqcI/gXqlkrv70tkBT9cAjzZo1a0rMtJbjCLEBk6mqKpmrP50tWG+qMFM8yuCRxp/WL0Jsp5Kpqkzm6t9vC9aaai1mqiIi9+7dk6GhoXHr9OnT0t/fP27t3bt33Nq9e7ds3rx53EI5gpmMV0uWLJEFCxaMWzDA8Wry5MnGe6EW+c3Vv90WrDNVmMOGDRtqMlNVsPBX09KlS42FPaymT59uLPBhNHXqVGOeKKreCpY9W7DKVFGrePLJJ0u2URQ1Wqh0+H+cw1RCUMvdsWOHZLPZku22YJWp4pEPtT//trgLj2L+m2OseuaZZ4y16bB69dVXjbX7sAo+go9FGNAebBIYiw4fPmxsogirS5cuGZtMwqoe4LszlS+//Gaq+PfbglWmCh4+fCj79+93TcK/r5JMN0Alff3118bCHla4VkKagUqmajJTxZ/OFqwzVT+oYdRiroTYjslUK5mp4k9vC1abqlLNXAmxHb+pol8CzSeVzFSx8T6iqfo4duyY8ReZENvBfaFmihE0tWLjfURTNYB2Ub+5EmI7Bw8eDGWmyljuv4kOTbUCaq6EkLExnvtvokJTJQ45uX12n2x9bbHMmDFDZix+TbZm+uV61SazrFz//F15bbFzzIw5smzbIfnmds7bNwZGjsh/4vNHaa38zx0vTQVyD67ImcOZYj62/q+3hzwqbLz/aKrWMyLHu1OS8MWpoNYXZM/lMiaZuywHVrRJS9sKyZwekuGh83Koe5YknGMyF6t3YIwmJxd62kdfg6PE6iNy30tlJHdDjm6cL8mEkzY5X15792PpO3NJhu+O5TpIlPi/R1ugqVrOzQMdkkjMkv9waqaXhofz5rhxrrRq3Nq65cQoR3OMOO0Yaku79Fzwm+5N2feic0xyrRwd8TbVys0D0tG6TN7p65O+gL68Ub72m7t9UrbMSkhLIiWdmbMynooyiR4b7z+aqtVclJ2zF0rGUBsdObpWkl7cunpLXTU3uEXasO/FfY6NlnL/yGq31ptMH69cuyzhvmvSHQeCZ6vCyHFJtznXkVgoPV+FdXHSCGy8/2iqNjO0R7bsK2dk1yQzLx+3eZlr3jZwX46sdmqGzvY5uy9723zccmqcbrw75MAtb1s1rmVkXkur/GzZWrct91Itj+25y5JZiOtok/RxGmqzYuP9R1O1mewDeVDhcfl4Oh+3Dr875pzaYSK/3amMGrggPTPy+4M1XDMj0tuVN+miHINdlZHylc+cXN49z02b6Op1zhCC3G355pB2rs2QOcs2Sqb/ugRtPHv3kvRn1sniX+8XdzZ99rp8/u5rshgdYIvXyb6zt52ryJO7/Y0cKrPPdvzfqy3QVEkZcnJ0LeI2T0oqqhd6ZIYbzzliqqj6a7jJLYPetgr8+59yuu+wZLaud4wu5XY2Fb6zthVywNRRdv+IrHbTJWXTybtypb/Y4++a5KkbRlPL3eiVN1KtMqv7kJwfGpbhS/3yX25tNyGp7uN5c771D+lZOUee1uuYl5HLznGr21rlaef8qaT+ALTJlsGcU2HeIy+0JiSZGr2P0FRjiY1fajQMypakoef9eNqLZ8BsCxRNtcVcla1M9l9yOtMpKTU1Q0fZrQMd3jW0SWrWLFm27WPpgzGv0w62hMzaMlBag/XaX5Nrj5ZuH9zitR0nHSP0tjnc3Pdi/jNmvCCrfpeRs9oD5tR0D3k168TCF6Szs3Tf52uT+X1O3mmrNNVYYuOXGgX3HfNMJjpkVN9RvU3VI3txtyz0jLV950VvK9AatKN570lw9Faxgy0p6eNFN764E8O1ZkjPBW+DUqj1tsm2//O2Ac3nnN0SrJDnnM8ot69wnFPDNYbHMtxYeLIFmioZTe6C9LSX6QBqkKmCkd6u/PjZEvOqdn5vWBf2dxyQfGtwvtbd0pIW0xG5B9+NHtNayRzHus9C3Fh4sgWaKgmAQfizZWHmsvnx9US3N1Gguqkmuk9428aKdnr5zbB4/tJRCUWuZfKdWC2JbnGv4H6vdLnXbDZVIzTVSHBj4ckWaKqkhJHj3TJfO21MDO2RhW48DY/SLlorbJGFe8a/Cr07AkHN0aVoqsYhXUCNTU3UHbKF/3dJTQMSAE01EvLfQ162QFMlBUYcQ5jrPFKXNVSXi7KzPR9P45CpQq2wXUqaQseIa6pdvSWdZSe6vV72tUfNtWk1tkKzwXFJu9eUkNVHyrnqTenrO+/97UBTjQQ3Fp5sgaZKXEYGtsjSSjVUH9ozntw0MNrUtDc9ClPJDcimZGmHE8gNbMp/RnKTDBhcVTuSih1ct+RAh1cO5jlGazhm5Ghauv2GS1ONBDcWnmyBTkOqGCpWsNopO/zLRN0/Id2YHjrK1HIysAlDitqkOzgOCouevLtetu77quRzcje+dGqIZwwrYuXXF2gz1pyvyR5vfGlXb3Avprw615BwHvV9u3T6LG7uttWHfJ+H/PXIwtQWKRlaSlMlY4SmajU5udG7Wtpa8gPbi0vtFeUOaE+sluBT8/3BbTIr4RhUwfQcc3Jqe20YI7ptsHRsq0NxbGnpeFCdtdXSOlc2HjovQ8PDMnT+kGxbnJLUG71Sdi0V37z/3YVxVVm5fgj5MY1c0EVgvM9LJCVVyF9KukvS+1bMmrFdvgpcw8ihV/L7km/JyeCQLt0XMHViDzRVa8nJ5T0vFFejqqByA9lHvspIZyohiWRKZjzd6i67t/Hz0VM+QWERlsDY1/yMJP/nJSQ5f51x6mgQrFC1bX7SqYEWZzS1/myVZMrNb83dlrP+iQWORqUf2i+/TuGcxTRu/rA2q2FfS+vT1fcRq6CpWktOHnw3LMNY7q+Kvqu0QEDhPHermmD2brlzZeWu91ljWQLVHWeK42s9OPdAviuXXvcFhbRj3UesgqZKCCERQlMlhJAIoakSQkiE0FQJISRCaKqEEBIhNFVCCIkQmiohhEQITZUQQiKEpkoIIRFCUyWEkAihqRJCSITQVAkhJEJoqoQQEiE0VUIIiRCaKiGERAhNlRBCIoSmSgghEUJTJYSQCKGpEkJIhNBUCSEkQmiqhBASGSL/D/njQ41N/IgzAAAAAElFTkSuQmCC
|
As shown in the figure, the area of the shaded part of the circle is () cm² .(Use π=3.14)
|
A. 50.24; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
C
|
82
|
iVBORw0KGgoAAAANSUhEUgAAAVUAAADaCAYAAAAWndGXAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB5tSURBVHhe7Z1/iBT33ccPErpSchBoN4jxQFip0vYgEhGJDSoWY4qBE4NJD48ISngi9ek29KJiQZ9WI+UCxgiRsEUhMdXUoA+5B9PT4KH2OT3ME5VExB/1wFhOI6doKAvrH59n3rPz2Z2d++6PuZtd9+b7fsEbz5nvzM73s99573e+v6ZFCCGERAZNlRBCIoSmSgghEUJTJYSQCKGpEkJIhNBUCSEkQuJvqtnrcuZwRrauXy/rt2bk8Jkr8iDn7SOEkIiJtamODGyTua0t0tJSqkSqUw5cprMSQqInvqZ6bY8sTCQkOX+dZA73SV/fx7JtaUoSaq5taTk+4qUlhJCIiKmp5mRgU5ss3H1Rst6WPDm5fTQtbZ6xzstc87YTQkg0xNRUB2VbulfMFdEROfSKV1tNH/e2EUJINMTTVP/9T7lyo3yb6bXMvHzbavcJb0uA3AO5cuZjeRedW+u3Subv5+VfpVXePEjXn5GtB7/x/n9bvvl7vlNsa6ZfrvuPyf5LzpfbRwiJDbHuqCqHmmpX731vS5HsxX3SmUrK3HUZOdzXJx9vW5xvLmhbUezcunlaMuvmSzJRrPHmbh+V7lQi/39VW7eccD4id/mArGjzbfftI4TECwtN9b70djmmltwkA4HKbO5yxu3cWpi5LMVdOTme9syyfadcxKZsVrIy4pzH2/5KWjYu2yifX3ngHpe9/jfpSubN88VN22T5Ymffpbtu+272+iFZ7Rlsx4FbOBshJEbYZ6ojvdLlGGdXb7DF9abse9FstrcOdOTNM+HULr1tQGu8La8cGtV+e6Fnhrfvb3I7cL7Lu+fk97FNl5DYYZmp5mRwS5u0OWY2qhPr4k5ph9GtPeqrpXqgrfREn5wJNIQWTNVgjmPdRwiZ2FhlqrnBLZJamBHTuP/c0bWhjY6mSggJYo+pjhyX9NzyA/4LRmeqqZaBpkoICWKHqTqG2j2/u+IMqkJN1dCmWuD+Bbngmy9AUyWEBIm/qY58JT2d3XI02FsU5FpG5sHoWkydWCAnF3q6xd9hT1MlhASJt6lWM9TsRfnvvkvef7zef5hdYqHsvujvlMpPb02tPiL+oaU0VUJIkNiaan4wflJmd/5O1rszowJ6bbE83ZqUTb5n/fw4Vc9YW1rlZ8vWOmnXyrJZSUk4RrunZKkArC+QzKc1tMMWhk119ZYYMSjse3GfY+WEkDgRS1M1zmAyaUaPXPCOUUa+ykhnYGbUqKUCvznomPJcaS2kaZW5r62XXSdueft8s61aEpJaurb6PkJILIilqd48h6X+atC5MvXE3AO5cf6Em+aMNxOqhJvnRp/L0T+uOHXSse4jhMSC+HdUEUJIA6GpEkJIhNBUCSEkQmiqhBASIdaYqvbkQ4+SZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKnWQDY7au1/l3LbKzGe6yCEND801QoMDw9LOp2WJUuWeFtK2bt3ryxYsED6+/u9LdUZy3UQQiYONFUDaqaTJk1y08M4TcBU9Zy1mqumhwgh8YOm6iNopqpaTNWftpK5+tMSQuIHTdWhnJmqwpiqqpy5+tMQQuKH1aZazUxVYzFVVdBc/fsIIfHDSlOt1UxV06ZNk82bN49SR0eHMb1Jaq7+bYSQ+GGlqdZqpvUWISR+0FQfoQgh8cNKUw37+D9z5ky3/TSoNWvWGNObxMd/QuzASlNV2FFFCIkaq01V4ZAqQkhU0FR9lDPXMKZazkwVf1pCSPygqRoImmstplrNTBVNDxFC4gdNtQJqrlxQhRBSKzTVGuDSf4SQWqGpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh9oKk2mGa5DkJIfaCpNphmuQ5CSH2gqTaYZrkOQkh94J1NCCERQlMlhJAIsfLxn6KoxssWaKoURTVEtmCdqUYNFqj+/e9/L9OnTy8pQNBjjz0mU6ZMkfb2dnn++eflpZdektdff13eeustV/gb27APaZAWxwTPg3PjM8Ishl0r+hlffvklNU5pLKPm1KlTsmHDBvn5z39e+Ay/UG5++tOfjipjGzdudP/u6OhwF1N/5pln3LQ/+MEPRp1j2rRp8pvf/EaOHTsmDx8+9D45GvQzbIGmOkYOHz7sFlI9rwqFGwX5ww8/NN54tegvf/mLrF69Wn7yk5+MOj8+E58dFXpe03VQ4aSxjAr8iJrKWCqVklWrVrnlZHBw0Hgt1fTXv/5V3njjDeP58SO+f/9+7yrGj57XFmiqIQkWdPzqoxbwhz/8QY4cOWIswOMRzolzoxbir2H84he/iKTmquczfTYVThrL8XL69Gm3TOn58PTy3HPPuTXPzz77zPjZ49EXX3whmzdvlkWLFpWUsah+wPV8tkBTrREYWLCgL1++XPr6+owFtR7CZ+FRzt9E8Mtf/lLOnTvnXWV49Dymz6PCSWM5VvA94vvV8+B7xuM8jM30efUQylhnZ2eJuc6dO3dcP+B6HlugqVYB7Utr1qwpHP8oCnpQ+OzFixcXrglCm+tY2sL0eNPnUOGksRwLqCnq8RB+wD/55BPj5zRCMFeUc/8P+MqVK+X777/3rrh29HhboKlWAG9Txa+0HvuoC3pQaBdDs4BeH2qtd+7c8a6+NvRY0/mpcNJYhuHevXuydOnSwrHPPvus+5Ze0/kfhfADDnPV60OTwNDQkHf1taHH2gJNtQxo15o8ebJ7DB6FUJMwFbpmEHp6tUYxdepUOXv2rJeL6mhcTOelwkljWStff/11YdQIvj/0vpvO2wz685//LD/84Q/da/3xj3/sjhKolbBxmejQVA1kMhl5/PHH3fRPPfXUuHryGyXUbn70ox+51zxp0iQ3D7WgcTGdkwonjWUtoHf9iSeecNM/+eST8v777xvP2UzCU1pbW5t7zbg/enp6vNxUJkxc4gBNNQDGA2paPIo1siNqvMK14pr1+pGXamha0/mocNJYVmPHjh2FtBiCV48e/XoJHVYYiaDXn06nvVyVR9PaAk3VB2p3mm7FihVjHgP4KIVrxqgEzUe1GqumM52LCieNZSUOHjxYSIe2yoGBAeO5mlkoYxhHrfmoVmPVdLZAU/VAG5E+8sOUTIVpIkmNFXmq1P6lcTGdgwonjWU5MDMKTTNIg9EbpnNMJGECguYZPxblqBaXuEFTdUCHgbZvoTd9ItZQg0IedGQA8oY8mtC4mM5BhZPG0sTVq1cLHZ/oQY9DGYN0aB/KGDp3TVSKSxyx3lQxbAo95tiHaaEnT540Fp6JKORFp7oij8hrEI2L6XgqnDSWQTDMbebMme4+zLFHu6Tp+IkoNF/oDEP8aODHI0i5uMQV60119uzZ7nb08k+kTqlahTwhb8gjxtwG0biYjqXCSWMZZMmSJe52jM54lJNG6iVMc8WPBfKIRV+Ck1DKxSWuWG2qH330kbsN41A//fRTY4GJgzAURqcdIs9+NC6m46hw0lj66e3tdbdhHGozDeqPWvixaG1tdfO6a9cuL/d5THGJM9aaajabLTz2o8HdVFDiJO1UQJ6Rd0XjYjqGCieNpYIamz72Y06/6Zg4CZMXkFdMDsBMMSUYl7hjran+6U9/cv+PR7I4tXGVE/KIQebIM/KuaFxMx1DhpLFUUGPD/zETKY5NS0GhfVUnB2AtCiUYl7hjpamiw0Z7+7GsnqmAxFGYzoo8I+/aaaVxMaWnwkljCVBTQ40N/8f6uqb0cdTbb7/t5hlDx7TTyh8XG7DSVHXVKfSMx2VoSy1CXrUmgRgAjYspPRVOGkuAmhr+xpPQRBzgPx7paICXX37ZjYU/LjZgnal+++23hUH+H3zwgbFQxFnvvPOOm3fEALHQuJjSUuGkscTyeFrGmnkhnnoJa2VoLFBb1b9twTpT1XnXmHNtKhA2SGur2uYHmdJR4aSx1FElGMpmSmeD5syZ48ZA+y4gW7DOVPEaEvyL9/OYCoMN0nnbWH9V42JKR4WTxlJX78cK+qZ0Ngh9FYiBNgVAtmCdqariOAi7VmFxa8RAH1EhUzoqnDSWOr8fL+YzpbNBeLeaxkNlC1aaKjqoTAXBJmkTgMqUhgonfzxtfvRX+WupkC1Yaap4/DUVApvkX7oNMqWhwskfT5sf/VVvvvlmSUxswUpTxeOvqRDYJG0CUJnSUOHkj6fNj/6qYBOALVhnqpjdYioANsr/GmLTfiqcNJaMZ1G6mA9kC9aZKtoSTV++jZoyZUohLqb9VDhpLDEd2LTfRrW3txfiYgvWmSre4WT68m2U/31Wpv1UOGksU6mUcb+NWrRoUSEutmCdqeK9QKYv30b5C7xpPxVOGkv+cBeFd71pXGzBOlO1YZm/WuUv8Kb9VDhpLPnDXZQuBwjZgnWmipWaTF++jcKsMo2LaT8VThpL/nAXhbUPNC62YJ2pNotMBbDR8hd4034qnDSWNk+BDgqLFmlcbIGm+ohkKoCNlv/RzLSfCieNJSeXFPXHP/6xEBdbsM5UWeCLwqwfjYtpPxVOGku2qRb129/+thAXW7DOVFngi9J3tkOm/VQ4aSyx7J1pv43y/3DbgnWmygJfFMepRiuNJRfsKcr/w20L1pkq3k9u+vJtlH+lKtN+Kpw0lniFimm/jeJ6qjFGv1i8m9z05dsorIOgcTHtp8JJY8l4FuWfCm0L1pkqZPMC1SrEwB8TUxoqnPzx5EpoX8oXX3xREhNbsNJUMZTIVAhskn/gP2RKQ4WTP54cZVJ8pYrKFqw0VbTzmAqBTUJnij8mpjRUOPnjydXQii//U9mClaYKYQFdU0GwQcFHf8iUjgonjaW++8vmJoCTJ0+WrNcL2YJ1pqq9kTavAaCP/rNnzy7ExZSOCieNpb6l1uYmAJ1JNXXq1EJcbME6U9X3kNs8XlUf/f3vZDelo8JJY7l79273X5ubABYsWODGIJ1OF+JiC9aZ6tWrV91/H3vsMfnkk0+MBSLO2rt376hYQKa0VDhpLL/99tvC3++//74xbZz12WefFR79T506VYiFLVhnqmDJkiXu3zbWVrX5AzEAGhdTWiqcNJbg1Vdfdf/GWwAGBweN6eMqnUU1d+5cNxb+uNiAlaZ66dKlQmfCjh07jAUjjnr77bfdPCPviAHQuJjSU+GksQRDQ0MyadIk9/8YWmRKH0fhLbIah9OnT7ux8MfFBqw0VaDL3qHdy4aaxMDAQGFaKvKuaFxMx1DhpLFUdJwmpq329/cbj4mTcB9pe/3KlSu9KNBUY0vwi71375771ktsw/JkpkISJ+mPCPKMvCsaF9MxVDhpLJXvv/9eJk+e7G6zYSSA/oigho52ZSUYl7hjramCXbt2uduwHkBfX5+xoMRBGJOLPCKvyLMfjYvpOCqcNJZ+tGMQHTeffvqp8bg4CPcPauTIK94o4ccUlzhjtak+fPhQpk+f7m7HYwsGLJsKzEQW8oTOEuRx5syZbp79aFxMx1LhpLEMouOBsUIa5sObjp3IQtOSdoBiXGo2m/VynqdcXOKK1aYK0GHzxBNPuPuef/75WLWvIi/PPfecmzfkUTun/GhcTMdT4aSxDIJOK20GgPnErQ1fe/tRxs6ePevluki5uMQV600VHDt2rDAaAK9tNhWciajly5e7eULekEcTGhfT8VQ4aSxNoCdcf7x/9atfGY+fiEJbMfKEMobpzyYqxSWO0FQ9MplMIU0cprD63w2EvJVD05jOQYWTxrIc+/fvL6R5/fXXjeeYSPK/jXf79u1eLkejaWyBpupjw4YNbhrMtkKBMRWkiSBcO/KAvCBPldC4mM5DhZPGshL+qcETedQJxjxrGVuzZo2XOzO1xCVO0FQDdHR0FNKiKWAitX/hWvWRH3r55Ze9XJVH05rOR4WTxrIaq1atKqRFU8BE6iBFGdNHfgiLxwQ7P4NoWlugqQZAAfG/Dx8vx5sIw60wbKq9vb1w3chDtcIONL3pnFQ4aSyrge/Fv4AzRp5gvrzpnM0kTGDQjk8IPw7Bnn4Tmt4WaKplwPhCnWb41FNPyYcffmgsaM2gDz74oDBGEJ0huPZa0biYzkuFk8ayVg4ePFjovMI44vfee8943mYQFh/SGXnolAqOd65E2LhMdGiqFcDwEF0PEoO30bnQTNMNcS14FNO2LYyDPHfunHf1taFxMZ2fCieNZRgwzA3jh3Ecvkc0OTXTkxHGoKLtV18SiaFhKHdhGEtcJjI01SoMDw8X1oaEUKOAuaKwmQphI4RCjWvQWVIQVp26c+eOd9W1o8ebPocKJ41lWDCdFe3fenwz/ICjfL/55puFJyAIkxj8009rRY+3BZpqDaANDKtZ6QBuCIUNha6R5qoF3W+mmBGGx/1a2k9N6HlMn0eFk8ZyrOB71Bl+kP6AN9JcTWaKco/yX0v7qQk9jy3QVEOAQmUy187OTncx4noYLM6Jc+Ox0FTQx2qmip7P9NlUOGksxwO+T5O5YlQH2lzrUcbQo492+a6urpIyhsV3xmOmip7PFmiqY8BkrhDanRYtWuSOEx3PHG/05KN3GM0O2palGm+tIYie13QdVDhpLKMA5orOoGAZQ9MAplNv3LhxXC+vRPnEe6QwpMv/5APBTFGG/auZjQc9ry3QVMcBjA21CrSHaS+uX+g4wpCsl156yR1+gscqDJpGrQDC39iGGgIKN9JqD6tfODc+A58VlZkq+hmmG48KJ41llOD7/uijj9w3CehSlX5NmTLFLTcoPyhH6FSCWQbLGMofyiHSolxq56YKI12WLl3qzr6LykwV/QxbsM5UKYp6NLIFmipFUQ2RLdiTU0IIaQA0VUIIiRCaKiGERAhNlRBCIoSmSgghERJ7U7Wx95GQZsHG+4+mSgipGzbefzRVQkjdsPH+o6kSQuqGjfcfTZUQUjdsvP9oqoSQumHj/UdTJYTUDRvvP5oqIaRu2Hj/0VQJIXXDxvuPpkoIqRs23n80VUJI3bDx/qOpEkLqho33H02VEFI3bLz/aKqEkLph4/1HUyWE1A0b7z+aKiGkbth4/9FUCSF1w8b7j6ZKCKkbNt5/NFVCSN2w8f6jqRJCqrJ9+3YZHh72/lc7Nt5/NNUqXL161fuLEHuZNm2aTJo0SdLpdChzHe/9NxGhqZYBZrpq1Sp5/PHHvS2E2AtMVe8jNddaKhxjvf8mMjTVAH4zta0wEFIOv6mqcI/gXqlkrv70tkBT9cAjzZo1a0rMtJbjCLEBk6mqKpmrP50tWG+qMFM8yuCRxp/WL0Jsp5Kpqkzm6t9vC9aaai1mqiIi9+7dk6GhoXHr9OnT0t/fP27t3bt33Nq9e7ds3rx53EI5gpmMV0uWLJEFCxaMWzDA8Wry5MnGe6EW+c3Vv90WrDNVmMOGDRtqMlNVsPBX09KlS42FPaymT59uLPBhNHXqVGOeKKreCpY9W7DKVFGrePLJJ0u2URQ1Wqh0+H+cw1RCUMvdsWOHZLPZku22YJWp4pEPtT//trgLj2L+m2OseuaZZ4y16bB69dVXjbX7sAo+go9FGNAebBIYiw4fPmxsogirS5cuGZtMwqoe4LszlS+//Gaq+PfbglWmCh4+fCj79+93TcK/r5JMN0Alff3118bCHla4VkKagUqmajJTxZ/OFqwzVT+oYdRiroTYjslUK5mp4k9vC1abqlLNXAmxHb+pol8CzSeVzFSx8T6iqfo4duyY8ReZENvBfaFmihE0tWLjfURTNYB2Ub+5EmI7Bw8eDGWmyljuv4kOTbUCaq6EkLExnvtvokJTJQ45uX12n2x9bbHMmDFDZix+TbZm+uV61SazrFz//F15bbFzzIw5smzbIfnmds7bNwZGjsh/4vNHaa38zx0vTQVyD67ImcOZYj62/q+3hzwqbLz/aKrWMyLHu1OS8MWpoNYXZM/lMiaZuywHVrRJS9sKyZwekuGh83Koe5YknGMyF6t3YIwmJxd62kdfg6PE6iNy30tlJHdDjm6cL8mEkzY5X15792PpO3NJhu+O5TpIlPi/R1ugqVrOzQMdkkjMkv9waqaXhofz5rhxrrRq3Nq65cQoR3OMOO0Yaku79Fzwm+5N2feic0xyrRwd8TbVys0D0tG6TN7p65O+gL68Ub72m7t9UrbMSkhLIiWdmbMynooyiR4b7z+aqtVclJ2zF0rGUBsdObpWkl7cunpLXTU3uEXasO/FfY6NlnL/yGq31ptMH69cuyzhvmvSHQeCZ6vCyHFJtznXkVgoPV+FdXHSCGy8/2iqNjO0R7bsK2dk1yQzLx+3eZlr3jZwX46sdmqGzvY5uy9723zccmqcbrw75MAtb1s1rmVkXkur/GzZWrct91Itj+25y5JZiOtok/RxGmqzYuP9R1O1mewDeVDhcfl4Oh+3Dr875pzaYSK/3amMGrggPTPy+4M1XDMj0tuVN+miHINdlZHylc+cXN49z02b6Op1zhCC3G355pB2rs2QOcs2Sqb/ugRtPHv3kvRn1sniX+8XdzZ99rp8/u5rshgdYIvXyb6zt52ryJO7/Y0cKrPPdvzfqy3QVEkZcnJ0LeI2T0oqqhd6ZIYbzzliqqj6a7jJLYPetgr8+59yuu+wZLaud4wu5XY2Fb6zthVywNRRdv+IrHbTJWXTybtypb/Y4++a5KkbRlPL3eiVN1KtMqv7kJwfGpbhS/3yX25tNyGp7uN5c771D+lZOUee1uuYl5HLznGr21rlaef8qaT+ALTJlsGcU2HeIy+0JiSZGr2P0FRjiY1fajQMypakoef9eNqLZ8BsCxRNtcVcla1M9l9yOtMpKTU1Q0fZrQMd3jW0SWrWLFm27WPpgzGv0w62hMzaMlBag/XaX5Nrj5ZuH9zitR0nHSP0tjnc3Pdi/jNmvCCrfpeRs9oD5tR0D3k168TCF6Szs3Tf52uT+X1O3mmrNNVYYuOXGgX3HfNMJjpkVN9RvU3VI3txtyz0jLV950VvK9AatKN570lw9Faxgy0p6eNFN764E8O1ZkjPBW+DUqj1tsm2//O2Ac3nnN0SrJDnnM8ot69wnFPDNYbHMtxYeLIFmioZTe6C9LSX6QBqkKmCkd6u/PjZEvOqdn5vWBf2dxyQfGtwvtbd0pIW0xG5B9+NHtNayRzHus9C3Fh4sgWaKgmAQfizZWHmsvnx9US3N1Gguqkmuk9428aKdnr5zbB4/tJRCUWuZfKdWC2JbnGv4H6vdLnXbDZVIzTVSHBj4ckWaKqkhJHj3TJfO21MDO2RhW48DY/SLlorbJGFe8a/Cr07AkHN0aVoqsYhXUCNTU3UHbKF/3dJTQMSAE01EvLfQ162QFMlBUYcQ5jrPFKXNVSXi7KzPR9P45CpQq2wXUqaQseIa6pdvSWdZSe6vV72tUfNtWk1tkKzwXFJu9eUkNVHyrnqTenrO+/97UBTjQQ3Fp5sgaZKXEYGtsjSSjVUH9ozntw0MNrUtDc9ClPJDcimZGmHE8gNbMp/RnKTDBhcVTuSih1ct+RAh1cO5jlGazhm5Ghauv2GS1ONBDcWnmyBTkOqGCpWsNopO/zLRN0/Id2YHjrK1HIysAlDitqkOzgOCouevLtetu77quRzcje+dGqIZwwrYuXXF2gz1pyvyR5vfGlXb3Avprw615BwHvV9u3T6LG7uttWHfJ+H/PXIwtQWKRlaSlMlY4SmajU5udG7Wtpa8gPbi0vtFeUOaE+sluBT8/3BbTIr4RhUwfQcc3Jqe20YI7ptsHRsq0NxbGnpeFCdtdXSOlc2HjovQ8PDMnT+kGxbnJLUG71Sdi0V37z/3YVxVVm5fgj5MY1c0EVgvM9LJCVVyF9KukvS+1bMmrFdvgpcw8ihV/L7km/JyeCQLt0XMHViDzRVa8nJ5T0vFFejqqByA9lHvspIZyohiWRKZjzd6i67t/Hz0VM+QWERlsDY1/yMJP/nJSQ5f51x6mgQrFC1bX7SqYEWZzS1/myVZMrNb83dlrP+iQWORqUf2i+/TuGcxTRu/rA2q2FfS+vT1fcRq6CpWktOHnw3LMNY7q+Kvqu0QEDhPHermmD2brlzZeWu91ljWQLVHWeK42s9OPdAviuXXvcFhbRj3UesgqZKCCERQlMlhJAIoakSQkiE0FQJISRCaKqEEBIhNFVCCIkQmiohhEQITZUQQiKEpkoIIRFCUyWEkAihqRJCSITQVAkhJEJoqoQQEiE0VUIIiRCaKiGERAhNlRBCIoSmSgghEUJTJYSQCKGpEkJIhNBUCSEkQmiqhBASGSL/D/njQ41N/IgzAAAAAElFTkSuQmCC
|
A rectangular steel plate is shown in the figure. The shaded part obtained by cutting can be used to make a cylinder. The area of the circular shaded part is 12.56 cm². What is the volume of this cylinder in cm³?(Use π = 3.14)
|
A. 50.24; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
A
|
83
|
iVBORw0KGgoAAAANSUhEUgAAAVIAAADYCAYAAAC5iWvlAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABoVSURBVHhe7Z1/iFVVu8cHikaiAaEmpBwQRpqo5CaJiBYliq+FgS+JN6ThlWtESuEQ/kiSq2Q/iAnMhLxxIiEtDCWh4VpjvQ5aTIrdLMo7qNGAGeYrJpNcBo5/PPd899nPnn32rHPm7LOOOWc/3w980Tl77R/rOWt/z9rr124SQgghXtBICSHEExopIYR4QiMlhBBPaKSEEOIJjZQQQjyhkRJCiCc0UkII8YRGSgghntBICSHEExopIYR4QiMlhBBPaKSEEOIJjZQQQjyhkRJCiCc0UkII8YRGSgghntBICSHEExopIYR4QiMlhBBPaKSEEOIJjZQQQjyhkRJCiCc0UkII8YRGSgghntBICSHEExopIYR4QiMlhBBPaKSEEOIJjZQQQjyhkRJCiCc0UkII8YRGSgghntBICSHEExopIYR4QiMlhBBPaKSEEOJJ5o20qamJoqjrKAvQSCmKuqaygBkjrSfnz5+XTZs2yYwZM0oKDNTS0iIzZ86Uxx9/XJYvXy6rV68O0r777rvy8ccfB8L/8Rm2IQ3SYp+bb7551PFwDqTFOeuJHv/bb7+lPKWxrCf4vrds2SKzZs2Kjq9CObn//vuDctPZ2TmqjO3bty/4/8svvywvvPCCrFixIkg7e/ZsmThx4qjj3XfffbJx40Y5c+ZMePb6oMe3AI00BSjcXV1dMmHChOi4UFtbW1CgUXiPHTvmvNmqUX9/v7zzzjuybNmy4Jjxc+CcOPfFixfDq/FDj+u6DiqdNJb14PLly4EpJsvYHXfcIUuXLpW33347KCeu66hGKJ/vvfdeYK7t7e0l57jxxhvl2WefrduPth7XAjTSKnAV7rvuuiv4td+/f7+zwNZDODZqGziXnhc1ClwLrskHPZ7rvFQ6aSx9GB4eltdff72kxogf0+eeey6oYbrOWw99+umnsm7dupIypj/avoaqx7MAjbQCV65cCUwrWbhfe+01Z6G8lsJjWryWetttt8nWrVvl6tWr4dWmQ4/jOheVThrLWsD3h+9x0qRJ0XFQ+0S583m6qUVvvvmm80cb90Et6HEsQCMtw+DgYNAOpftfr8IdF869YcMGufXWW6PrQhtaLTUH3d91HiqdNJZpQTPN/Pnzo/3xveIpx+fRvR5COY//aN99990yMDAQXnX16P4WoJE6+OKLL4IaH/ZDw/54KNxx4VrwyH/TTTcF14jazFdffRVefXVoXFzHp9JJY5mG48ePy5QpU4L9brjhBnnmmWekr6/PefzrIfxow1DReYprvOWWW6Snpye8+uqoJS6NCo00QXd3d9Dojn3wq4xeUFdBGw/64IMPgpoyrhXXvH379jAXY6NxcR2XSieNZbXs3Lkzam9HLRSdP67jjgehnT7eKQVzrZa0cWlkaKQhaAd66qmnovQYKjKeagjl9OWXXwZDp/S6kYdq2rQ0veuYVDppLMcC7aHoFdf006ZNk97eXucxx5OOHDki8+bNi6570aJFqcqYBWikBVDAFy5cGKXF0JDr2RaaVrhWXLNeP/IyVieUpnUdj0onjeVYLFmyJEqLoUyNVMaglStXBs0QuP4HH3wwGGlQiWrjkgVopAW0loBC8sYbbzgLUSMIowm0oCNPldC4uI5DpZPGshIvvvhikAbfDx6PXcdpBGEcq04cefLJJ8PcuakmLlnBvJGiTVTTNHIBVyEPmh/krRyaxnUMKp00luXI5XJRGnRcuo7RSEJlQ3+wK7WZjhWXLGHaSNGQrh1L6DV1FZpGFPKCPCFvyKMLjYtrfyqdNJYu0M6uZQwz1lz7N6IwakTzvWvXrjC3pVSKS9Ywa6QYfoIhHdj22GOPOQtLIwt5Qt6QR+Q1icbFtS+VThrLJBh7qZM5HnnkkYZrEx1LaOdF3vBD4Rp+Vy4uWcSkkaKRfOrUqcHnDzzwQOYKOIQ8IW/II/Ka7BjQuLj2pdJJYxkHnX1YDASfo3cePd+ufRtZKGP4gUAeMZY5OW3ZFZesYtJIMacZn2EMXxYLuAqPlToLCnmOo3Fx7Uelk8Yyzo4dO4LPMKC9EYY41SrcPzoLCh1qcVxxySrmjBTTKfVxC0uHuQpHloQ8Iq/Ic3wqqcbFtQ+VThpLBTUznRmHRUdc+2RJ6HxCXjHJIL4UXzIuWcackT799NPB31icIYuP9EkhjzozBXlXNC6ufah00lgqa9asCf7GrLPxNLX4WkqbkTBWVknGJcuYMtITJ05EPahYO9RVILIojP1DnpF3xABoXFzpqXTSWALUyLSMYcUuV/osCtOVNQ5oUgLxuGQdU0aqDeOY7uYqDFmWTiNFDIDGxZWWSieNJcD0Sfz/nnvucabNsrAKP/KOVdNAPC5Zx4yRoiaGf7Fi0rVcjHm86qOPPhoVC8iVlkonjeWvv/4a/X88L0RyrYRONV2RDMOhNBYWMGOk2umCmpmrEFiQrq+KdwFpXFzpqHTSWGKBZvyLXmxXOgvS8ctYYV/jYgEzRqrjRi301JcTpiciBvEFq13pqHTSWGrTERaQcaWzIKz3gBhMnjw5iosFzBipCsvOuQqABR04cGBUPFzpqHTSWGonE5pRXOksCONK9fFeZQFTRoqamOvLt6R4bRRypaHSKR5Py4/1Kq2ZqyxgykizsPKOr/TxXuVKQ6VTPJ6WH+tV8RXIIAuYMlI82rq+eEtKPt670lDpFI+n5cd6FZrPdJk9yAJmjBRznl1fukXpC80g13YqnTSWjOeI9F1ikAXMGCmmSbq+cIuKv2rXtZ1KJ43l7bff7txuUTplFLKAGSO1PH40qXghd22n0kljifUbXNstasGCBVFcLGDGSDF9zfWFW5QOmoZc26l00ljizbOu7RbV2dkZxcUCZow0S68S8VW8kLu2U+mkseSP9YjiryKxgBkj3bBhg/MLtyiskalxcW2n0kljyaFPI9IZTpAFzBhpFt4QWi/Fx/m5tlPppLHkU8+IsEylxsUCZoyUg/FHpG8ZhVzbqXTSWKLJxLXdouI/1hYwY6TLly93fuEW9cQTT0RxcW2n0kljyTbSEa1cuTKKiwXMGGkWX7lcq7CwtcbFtZ1KJ40lhpW5tltU/MfaAmaMlIV8RFxGr77SWE6ZMsW53aLiC5dYwIyRYsqa6wu3qPj0Pdd2Kp00lpyGPCK8akXjYgEzRoo1El1fuEXFF5RwbafSSWMJWXgzbTW69dZbo5hYwIyRQhbfo5MUYhCPiSsNlU7xeL7zzjvONJaEd6LFY2IBU0bKnvtvZdmyZSUxcaWh0ikez8WLFzvTWFK8xx6ygCkj5erl3wYrFMVj4kpDpVM8nhMnTjT/eB9vH4UsYMZI+T6dkcd6jQXkSkelk8bylltuCf61/Hjvei+YBcwY6fz584N/LU/j08d6jQXkSkelk8byqaeeCv61/HjvelOtBcwYaS6XC/61vGakPtZrLCBXOiqdNJa7du0K/rX8eK8GumXLliguFjBjpBcvXowead9++21nIciyXn755SDviAFioXFxpaXSSWN55coVmTBhQvB/i6uNxUeEnDlzJvq/BcwYKdDl4zADxVKNob+/PxqEjxgAjYsrPZVOGkuwcePG4P8YR9nX1+dMn1VpJxOaOEA8LlnHlJFevnw5eOzC3+vWrXMWhixKf0CQd8QAaFxc6al00lgC1EonTZoU/G1pfVJd7Qk18l9//TWIRTwuWceUkYLt27cHf2M6n4UaA16Nq28NRd4VjYtrHyqdNJbKzp07g78xm87CK8DxxKPt7zBUJRmXLGPOSK9evSp333138NnSpUudBSNLQh6RV+QZeVc0Lq59qHTSWMaZMWNG8JmFpfV0fdvJkyfL8PBwGAEaaaZwfZmfffZZ8BnmnKP24CocWRDypvPqkec4GhfXflQ6aSzjfPXVV9HnWC3etV8WtG/fvqDmjXxi1EIcV1yyikkjBQsXLgw+R6fAp59+6iwkjSzkSReOWLRoUZjrETQurn2pdNJYJsGUZHx+8803B4bj2reR1dvbGz3SY9m8JOXikkXMGik6BfQRH734WWovRV6QJ+QNeURek2hcXPtT6aSxTIK4z5o1K9iGURMwHtf+jagjR45EvfRTp06V8+fPh7keoVxcsohZIwWDg4NRDysGEmdhSBTyoIOikTfk0YXGxXUMKp00li5gMPqjBuOBAbmO0UhCGXvooYeCPGEkyMDAQJjbUirFJWuYNlLwzTffRHOks/A6EuQBeUGekLdyaFxcx6DSSWNZjh9//DEqY3gEbvQfbO3AxOSOL774IszlaMaKS5Ywb6Rg7969UTr0smI4h6sAjWfhmnHtmg/kqRKaznUsKp00lpVAZ5/OrIOZNmLNFD8A8XcxYapxJaqJS1agkYZ0d3dHafEI1kjj/9CxhDUE9Pq3bt0a5qo8mtZ1PCqdNJZjsWPHjshM8bjfSB1QaN/Fe880r5jBNRbVxiUL0EhjoBanj2Do8W6EYStYN0Bna+Hax6qJKhoX1zGpdNJYVgNqpvp9oTf/zTffdB5zPOmDDz6IeucxcwnD6qohTVwaHRppArRnoRcS+2AM5nieSoqVyHWcKHrnce3VonFxHZdKJ41ltWBBj/gyc5hKOl7bTTFTSceJYsD98ePHw1yMTdq4NDI0UgeYj67jTCE80oyngfuoKcdvRIwTdQ1xqoTu6zo+lU4ayzTg+9L1SyE0zYynBaGxALr2zENo13UNcaqE7msBGmkZMJ1SV/JRoTBdzxX2ce7Zs2dH14P2Nqz7WAt6DNd5qHTSWNYC1j/QdlMIP9rX8yWNeHEdyrleD4RFb+LTi6tF97cAjXQMTpw4Eax4rseBMMQIBc5VEK+FcK558+aVXMOSJUuCR8Ra0eO4zkelk8ayVvA9YhZU3FD/6h9tlDGM+oi/qhtvUkD5rxU9jgVopFWCAhX/pUaBQ+1h9erV16T3FcdETQDniBduNDn4FG5Fj+c6N5VOGktf0MYd/9HG944mHLSFf/zxx85z+wjmiVeDzJw5s6SMoZxjdpwvejwL0EhTggKWfPSB8IZSvBMJ7Vy1dBxgHCh64DHYWRdhjqtehVvR47quhUonjWW9QIeOq4yh5xzjODG8rZaxziiXaF/v7OyMZlvFBdNOLm7jgx7XAjTSGkFhR/ukzqVOCmuAwlxRo1ywYEFgkFhuDML/8Rm2wTQxDMZ1DBwb56hHDTSJnsN1w1HppLGsN6ih4vt/8MEHSx77VSg3KD8oR2j6gcm6yhjKoa5JmxTME30BlWbB1YqewwJmjJSiqOsjC9BIKYq6prKAjVwSQsg1hEZKCCGe0EgJIcQTGikhhHhCIyWEEE9opIQQ4gmNlBBCPKGREkKIJzRSQgjxhEZKCCGe0EgJIcSTzBqptbm+hIwnrN1/NFJCSN2xdv/RSAkhdcfa/UcjJYTUHWv3H42UEFJ3rN1/NFJCSN2xdv/RSAkhdcfa/UcjJYTUHWv3H42UEFJ3rN1/NFJCSN2xdv/RSAkhdcfa/UcjJYTUHWv3H42UEFJ3rN1/NFJCSN2xdv/RSAkhdcfa/UcjJYTUHWv3H42UEFJ3rN1/NFJCSN2xdv/RSAkhdcfa/UcjJYSUZfny5dLX1xf+VT3W7j8aaRn2798f/o8Qu0yZMiW4hx555JFUhup7/zUaNNIEMND777/fTAEgpBJqpCoYajWVjPg+FqCRhsQNNM1+hGSZpJGqcK9UMtR4WguYN1I8rsyYMaMkfTX7EWKBckaqKmeo8TQWMGukMFA8psTTJUVIlrh69aoMDg6m0uTJk533RlJJQ41vs4A5I63GQFXjGVehT6uBgYEgHr7au3ev7Ny501tbtmyRTZs2eWnjxo1BT7OvlixZEpQTX913331Brc5XN954o7OMjjepocY/s4AZIz1x4oQsXLiw5POxFL8hUEBcBTytJkyY4DwXRWVFuF/if1vAhJEuXry45G+KajThEdv1w5xGU6dOLakcVKOJEyc6r8clpMcTSvL+s4AJI0VtdLyY6aRJk5yFPK2SBb4WoYbueqxNqzVr1jgfs9Mql8s5H/nTaNeuXaOaHmrR8ePHnc0haXXlypWwRDYmKCeuchwX0iBmceLbLWDCSBW0CeLGr7a9KX5DXL58OTwKIXaoZKQuA1Xi6SxgykiVM2fOVGWohFjHZaSVDFSJp7eASSNVxjJUQqwTN9KxBuHHsXYfmTZS5fz589LV1TWqR50Q68BI0xioYu0+opHGSBoqIdZBR20t1HL/NTI0UgdqqISQ2vC5/xoRGikhpO5Yu/9opISQumPt/qOREkLqjrX7j0ZKCKk71u4/GikhpO5Yu/9opISQumPt/qOREkLqjrX7j0ZKCKk71u4/GikhpO5Yu/9opISQumPt/qOREkLqjrX7j0ZKCKk71u4/GikhpO5Yu/9opISQumPt/qPLEEKIJzRSQgjxhEZqnfyf8q+Bo9Lb2yu9RwfkX3/mww1jMPyHDBwt7NN7WL7/bTj8sFbOyQmcf5S+ltNDYZKxiOfjxLnwQ0L+Gmikhrn0XU6WtTeXtGc1NbXIrA0H5WxZP83LhSOvyqyWZmlftErWr/q73Iv/r+ypsE9lhg6skOaSawg1bZucDNOUY/iXPtm2/F5pQfqWO6VjwT9k/d6fwq2E/DXQSI2SP5WTuc1N0tz6sPxj/frQEEdMrK3rkFwK08a5dKhL2pqaZW7uVMFSQy4dlFWtTdKydF+hbpmS/A/SPa1F7uzokI6Elu+rdLRhObl7aeFaCnloXya5b34rfELI9YFGapIhObCiReZ2f1dqlsO/yCcr2kIzbZXNx8LPlUs90lkw36bWl6Q/Ufs8uW1aYZ9mWbwnnZWe27NY2lYddJp2eS7JobXthVpsoSa89qBcqLEmTEi9oJFaZKhHusqZ19Ah6SrULmGmc3I/hx8WKZplk7SOctgCp3bITBiww2TLku+Xl1qny6bDg9W3zRbqwadyc4OmgHK1ZkL+amikFhk8LIdLPTJGXg6uchlp4RG8o/h5Z4+rB+iwrEVt1VWTLcPPuTnB8YoqPN4v2CCf/HRhpMnAQf7Y5uBxvqltsxxLWxONOsh65fD3Z6Wcd+f/PC1Hvz5dqLcXGf5jQI6iE+vo6VH7VNpG7EAjJaM41OUwxMH3ZW5geOWM8mfJzSma4swdp8LPKvB/h+U//61dWgPzjatZpm8+UuZx/aRsm1ZM9+juc3C8qKe+kjGiKeC73DJpb71X/r5qvaz/x8PF87b8TbZ9F9ZpC8c63ZeT5xfcWey4mpMr5OiS9L86q/h3qOb2tXIIu+TPSs9KNC84thFz0EhJgtAQp3XLD3FjOtQVGsYcSTzxh4wYaVPhkTsNw38MyvefvCqLYiMIXI/t+f6XpDXYvkDWdy+Xe++8Uzo6YmbctlR2n0x2OV0qXHpbYVtXicld+uTfi/s0L5agWXforJweHJSeVa3Fz+e8Lrm1D8uybX0ycP68DH6Tk6VtxfNM6+6RPcuw7XP5fjCxbdtY4wxIFqGRklLO7ZZHC7XOVQcTNnYNjTQif0GObJ4e1vJapetQaRPCsc2hyTVPl7WfxR6l451kaowhxaFVzbLiQKI5IqphNxXOE34GNJ+tq+SzRLX43O5Hw22d8klirNdQT2dx29z3ZTD8jNiBRkpiDBV8pNXdifNXGGlAWIPEcRbvkd/DTwvOJ+/PrXD8WCdZ60v9YTvrOdn9KD7rlNHNuoXH/d2vyPq3EmNmNZ/Bo32CWreRzEMjJRFDh9dK+9ycnCqtbBX5y4y0gA6zal4rh8OP4sfv6P4h/KyUqMba0S3FFAVzDa658Fgf/F0FNFJSAzRSUuRSwXRmlbYjlqDDm8oa6SnZMRPbq+xsqsiQ9HTiWHEDHDHS5LAsJX9wVdHMdL+fczIn/nc10EhJDdBIScFE+2XzorVysNLI9nzBaMNOHXeFU2t/zYXtFY5TJcHIgRJTUnNtkua1I/XUEtTMWjdLMLBgqFCzDa6pQ8pUYgvk5cKF2K8HjZTUAI3UOsMnZceyldIz5kT5vPS/VHx0dtY4tcbaXKj9eftosW0z2QMedfaUM6vQzJpXHAjHgI6MfR1pN01wbo9sfj92NBopqQEaqWXGMtH8Wfnf+PJLJ7fJtDJmoSbnGv4z/Mf5FDOX0MrQJW1ta+VwsoNo6ICsCGrF08Q1yqg4wL9NNsdG6utsLHzelWy3yJ+S3NzFgiGpETRSUgM0UqvgcX56h/xH7r/DJetKtT+3QRa1z0gYVl5+6IYxJUwJ7asYR5kce1ogmomUGJb0P6+iZx4rTX0mv0RDP4flt77NMr31b/K+s8crNNnC8ZqTnWLhwimjRhzoteEacL7nc7I/yl+ztG0+VlJTjYYxVTLLmTtkVJ1ct0UdXcQSNFKD5M/2yIrIXCro0d2O1ZzCBUOap8uzuf3S+2FxIH3LrFel39FR9fuexeHxSmdE/fx+cb58sK25Vdo7OqS9tUVaH35VjlRchSQvp/YUV31qmfW85PbDFJ8vLutXZim//Kk9juUCEwueDJ2Wr/dviwbW48di6bZC/rC2abAtJ89O12PgB+DDMtuaZfracBsxA43UHBfl6/9aL+uxdN4Y2vrPcmaQlws/fS65V5DuLfnk+wpL2OXPysG31ssruxMrTRX2+OXoh/JWeK63Pky3QPTwb9/L57lXitf61ody9PSf7jZQJX9Bfvo8J6+US//7YdkeXkuJsLZprduIGWikhBDiCY2UEEI8oZESQognNFJCCPGERkoIIZ7QSAkhxBMaKSGEeEIjJYQQT2ikhBDiCY2UEEI8oZESQognNFJCCPGERkoIIZ7QSAkhxBMaKSGEeEIjJYQQT2ikhBDiCY2UEEI8oZESQognNFJCCPGERkoIIZ7QSAkhxBMaKSGEeEIjJYQQT2ikhBDiCY2UEEI8oZESQognNFJCCPGERkoIIZ7QSAkhxAuR/wcXOszT4Ijt2AAAAABJRU5ErkJggg==
|
A rectangular steel plate with a length of 20.56 cm is shown in the diagram. The shaded portion obtained after cutting can be used to make a cylinder. What is the volume of this cylinder in cm³? (Use π = 3.14)
|
A. 50.24; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
A
|
84
|
iVBORw0KGgoAAAANSUhEUgAAAU0AAADgCAYAAACHBTRAAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABX1SURBVHhe7d1vaFTXn8fxPCiMDxpwwYFCDStESKEKCiKBFH4GxFpWlsiKtItSQSkl6JIfKKkYsIu6smTBulnIg1n0gZbKujQPAroaiOTXra24ayoqYisGNGCtRIllCUwffHc+d+4dR51objJz77n3vl/l0uTkn5k588m953zvOU0GAJgzQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhOOmrJ796b8twF3EJpw063jtjJ/wC4X/fcBRxCacNC0nduZs6amnO08N+23AW4gNOGeydP2US5nuaYma+oo2F2/GXABoQnHFO3Kly320elRO76yFJpNeTvANTocQmjCLdPnbGfzTtNV+eTpj0qh2WS5nedKF+yAGwhNOOVuocPyBy6XzjdLfj1jXbpEb+qwAtfocAShCXcUL9uB/Eo7fst/vzIh1PQ8SIGYEZpwxuSZLsutPG6VzCwpXj5geZ1t5sqX7EDcCE044pY38fPXn52wCxcuVB3/Zp/8lS7Rm2zl81NQIDaEJpwwPdpj+dxq+6S313pfOro3tHih2USxOxxAaMIBk3b6oybrmG22Z+qided1tpmz7cPcWol4EZqI3fTYPmt5w1lkUH7UtLLfrnO2iRgRmojRpP1Q2GPtzZroWW2fF4ZsfNL/UJXJ8SE7vtW/RC8dze17rDDyM7WbiAWhiRjdtLMvjV+evel/qMrNsy9+jncMjNmv/seBKBGaABACoQkAIRCaABACoQknfffdd/5bgFsITThnYGDA3nrrLRsaGvJbAHcQmnCKgjIoLXr77bfthx9+8D8CuIHQhDOuXr3qBWUQmjreeecdm5iY8D8DiB+hCScoGBWQ1YG5ceNG7//vvfeePX361P9MIF6EJmKnQFQwVgeljt9//91WrVrlvf3BBx/YH3/84X8FEB9CE7FSECoQFYwKSAVlEJry8OFDW7p0qff+xx9/7LUBcSI0Eatt27Z5gahLcwWkVIem3LhxozLW2dfX57cC8SA0ERsFoIJQgahgDLwcmjIyMuKVIam9UCj4rUD0CE3EQsGnAFQQKhCr1QpNOXnyZOVrzp8/77cC0SI0ETkFXnDWqCAM4+DBg97XvXx2CkSF0ESkqscnFYDzUWscFIgKoYnIKOCCWkwF33xpxn3dunXe91mxYoU34w5EhdBEJBRsCjgFnQJvoTWX+n5Bbef69eup4URkCE00nAJNwaaAU9DV68zwwYMHlTPXXbt2+a1AYxGaaLgdO3Z4waaAU9DVU/X96ocOHfJbgcYhNNFQCjIFmoJNATcX+nwdczU8PFyZjT916pTfCjQGoYmGUYApyBRoCra5ChuaMjg4WPlZly5d8luB+iM00RAKruDsT4EWxnxCU7744gvv6xYvXmy3b9/2W4H6IjRRdwqsYJxRQRbWfENTtmzZ4n3tsmXLqOFEQxCaqCsFlQJLwTXfVYkWEpozMzOVVZPWrFlDDSfqjtBE3SigFFQKLAWXAmw+FhKa8vjx40oN56ZNm6jhRF0RmqgLBZMCSkGlwFJwzddCQ1N++eWXSg3n7t27/VZg4QhN1MXnn3/uBZSCSoG1EPUITdE2wMHYan9/v98KLAyhiQVTICmYFFCu7R559uzZyiy+3gYWitDEgiiIFEgKJlf3KT927Fgl1HX2CSwEoYl5UwAtWrTICyQFk8s0rql/p4YPqOHEQhCamBcFz5IlS7wg6unp8VvdpYmqrq4u79+riSpqODFfhCZCU+AEJT0qJk9KSY9Kotrb271/90JKopBthCZCUfAExeMKoKQVjyvwly9fXgl8ICxCE3OmM8rgNkUFT6MucfX9dTSKhhZ0f7p+xt69e/1WYG4ITcyZAkZBo7HMRk6mNDo0RZNYQSnSwMCA3wq8GaGJOVGwKGA0W97osp0oQlO++eYb7+coPMMsXYdsIzTxRqq/jLJAPKrQlKNHj3o/K8wiycg2QhOvpTt8glsRFTBRiDI0RfsL6eephnNiYsJvBWojNDGr6kUvdG95VKIOTU1wbdy40fuZKqV6+vSp/xHgVYQmalJwxLW8WtShKSqdWrVqlfdz67HFMNKL0MQrFBhxLuQbR2iKSqiWLl3q/ext27b5rcCLCE28QiuuKziyuGVE9VYdfX19fivwHKGJFwSbkyk4srqwxcjISKVa4OTJk34rUEZooqJQKHhBocDI+ja4CsvgsVCIAgFCE57z589Xzq60XznMDh48WDnrvnHjht+KrCM0YePj45VxvEOHDvmtkB07dniPi0qvsja+i9oIzYx78OBBpRZTAYEXqZJAJUh6fFSSlLRVnVB/hGaGKQBWrFjhBcL69eudqU3Uv0eHK/Q4BTWrKoKnhjPbCM2M0gtfQakgUHC6dAblWmhK9Rm5brtEdhGaGeXyWJ2LoSmM/UIIzQxyfVbY1dAULSEXVBloaTlkD6GZMSon0gteL3yVGbnI5dCUwcHBymPIlsDZQ2hmiArWg7MkFbK7yvXQlODOKW2bkdU7p7KK0MyIJN1TnYTQlCzfo59lhGYGJG31nqSEprYATvLOnJgfQjPl9ELW8m56YbNOZP09fvy4UsPZ1dXF45sBhGaK6QWsBYT1gmZF8sapXuF+9+7dfivSitBMMW1RoReyXtDsfdNY1XspHTt2zG9FGhGaKcUui9HTTp2qTtARxa6diAehmUJ6wSow9eJlP+9o6Swz+GNFDWc6EZopoxfqokWLvBfuwMCA34oo9fT0eI+/hkU03ol0ITRTRLWYS5Ys8V6we/fu9VuTR/9+HUmlCTjNpOt30AScZtiRHoRmSqgWc/ny5d4LdcuWLX5rMiU9NEWlXqrd1O+hWk7VdCIdCM0USNsLNA2hKWn6Q4bnCM2E06WgXpB6YablUjAtoSnVQya6Xx3JR2gmXPWkQ1oWjkhTaIom54KFUrRCEpKN0EywtJa3pC00RWtv6neiDCz5CM2EGhoaSm0hdRpDU7jhIB0IzQRK+y17aQ1Nqb61VfsOIXkIzYRhcYhk08SddrTU86eJO5aTSx5CM0FYhiwdFJTaQ13PI8v1JQ+hmRB6YbHgbXpULwytnUGRHIRmQgRbK6hYmq0V0qF6CxLtEIpkIDQTgE280qt6s7uTJ0/6rXAZoek4totNP4Vl8ByPjIz4rXAVoekw7UsenIWoODor9PvqyBJdnut31uU6VxNuIzQdNT4+XhnvUlF0lmQxNEUTQvq9NUHEuLW7CE0Hqeg5qMVUMXTWZDU0VSGxfv1673dXSRIVEm4iNB2jF0pQi6ki6CzW8GU1NIXn332EpkM40yjLcmhK1q80XEdoOoQxrbKsh6ZkeUzbdYSmI5g9fY7QLMtq9YTr6JkOqK7TU7GzEyb/03a0fWLfTPjvR4jQfC6o09UOo9TpuoGeGTMVMwdnE87cEVK8Y4XOXOnf1GGFu34bYhPcEaZtM6jhjB+hGSM37z0u2p3Ch9bakic0HcLaA+4gNGPi6io3xTuD1tV90a4VOghNh7DKlTsIzRiowwfrKarEyJlavOIV+7K9x0anzO6+LjRn7tmlwn7bvLbN2to22Kdfnbd7lV2Di/bs50tW2LPBPtGAaPGRXT29xza0tdnaHQW7+qjofdbMvfP21acbSl+/1nYUrlnpR+INqtdT1Q6k1HDGg9CMmDq6myt3T9vYvnbrUWKWzBqaU6PW09JsH/7TJbtdOlu+fanPOkq/S66zYHeK/2c3/+MfrXtDi/f7dfzreTvx5z9bYeiCDR3fai2ltqaOgl0b3W8bNh+xry8M2fGt+tycdZ2Z9H8AXqd65X7tRIroEZoRc3WPmKnRHmv/8krpPLGsdmhO2pmunOV7RksRG5iwE52a7e60E8FMe+l76XfMly7zn59BFu1itz6vxXouPqr8HCuWQjhXau86Y7/6TXi9tO8R5TpCM0LVuxGqeNkZUxetu2uwdKbov19SMzSv91tb6axw35j/fmDmiT18Urk+r4Rmx0unqbWD+K4VOspnoEGzvlYHZle9G6neRnTomRGp3vdaRcvumLLhnR9aoToxS2oF3PTw9hqhVwOhGYnqfe919olo0DMjoKLkoBazUCj4rY4Y22e55netrU2TOs+P1rzqNEuX4q16v1zkXg69GmeaLyM0I6NxTT1WGu7ReCcaj57ZYKrFVFGyOraKlJ1z86z19va+cnzWqTrNvHV+pvcHbEwDjn4Yth299nxMMlC8YmP/7U9qEZqR0cSiZtL1eGliUTPsaCx6ZgOpFlPFyOrQKk5OkpoBN33OdmrSJtf50uV80e4MHrDTwQQ4oRkpVWCodlOPmWo5KUVqLHpmgyS9I9cOON0t1Gk5hVpzu+0pDNmFC1/bkU2t1lo181682O393m391/0WKdrlAzp7bbOj16oCt3jZDuRL36/tqAXNhGZ4Sf4DnTT0zAZQQHZ1dXkdWJdMT58+9T+SHLVDU6bs2vG/tbzOOL1wa7b2I38xv2bdvj/c+sLH3m07bN+X/jvcmi+HrY5c3loPf69P9sdOy+25fKupOXgf4Tg/FJQS9MwGqB6cn5iIYZmgOig++6109vKbPau+Cq+mMqPS2U11pZHMPHnotT8/nthM6b8nL7SVDn2h/z2qDzUTmvOnSUetiKTHz7lJx5SgZ9YZZSCIm7vlbelAaNbR2bNnKTiGE5y9kSIFCM06qb61bWBgwG8F4uPqLbtJR2jWQfUiCnv37vVbgXhpQnLTpk1ev1yxYgXLydUJoblALNcFlzm7DGGCEZoLMDMzU1kYVv/nLzlcpKoEFxe8TipCcwGCLQh0pqmOifrQY6oD9ePm1irJRM+cp2CzK41lstlVfRGajaGdToOFY06dOuW3Iix65jywrWpjEZqN4+R20QlDzwxpeHi48tdadZmoP0KzsXR5rsdXl+tcJYVHzwzh6tWrlXGh/v5+vxX1Rmg2niaE9Bhrgojx+HDomXOk4uCgFnP37t1+KxqB0Gw8lR6pBEmP85o1a6j8CIGeOQfqUEEtplYvotatsQjNaKhfq+hdj7WK4OnXc0PPfAN1pHXr1vEXOUKEZnSqr6B02yXejJ75Btu2bfM61LJlyxj7QSppQQ/G6ueO0HyNYJZx8eLFzDIi1bSEHFUhc0NozqK6no1aTGSBFi1Wn6f++PUIzRpGRka4cwKZFNzppm0zuLqqjdB8yY0bNyrjO4cOHfJbgexgTYXXIzSrVK8Gs2vXLr8VyBZVjLB61+wITZ86RrDu4MaNG6lZi5GeAx2Ij3ZQZZ3Y2uiZJeoQCkp1EAUnf1njRWi6gR0JaqNnluhSXB1DHYQxnPgRmu5g76tXZb5nVu/ap0kgxI/QdIt2VlU1iQ52Wc14aFbvD60yI7iB0HSPzjL1nOjkIuv7+We2Z6p4N6jFVCE73EFouqmnp8d7XjSMNTEx4bdmTyZ7pop2dWukOgD7pbiH0HSTJkw1k67nRjPrmmHPosz1TE30LF++3HvitRgH3ENoukuVJdU1nFksRcpUz9QT3t7e7j3hWu6N2jMgvKyfeGQmNBWQWkBYT7QuLajFBOZPQ1y6P12vp76+Pr81GzITmtqiQk+wBrG18CqAhdFkqlZE0utKKyRlRSZCUwur6olVuYQ2RwNQH1p7U68tVaJoTc4sSH1o6kkNCnO1/S6A+sraDSKpDk1dPgS3gA0ODvqtAOpN+wvpdZaFW5FTG5oaqA4WG9DCqkgOPWc6kByaaNWOlnretMNlmidaU9kzHz9+XFnWSguqIlkIzWRSUGrHVj132lM9rSV9qeuZMzMzLxTf6n0kC6GZXFlYyDt1PbP6Ni+dcSJ5CM1k09BYMJeQxi1jUtUztVCqniiNZWoBVSQToZl8ly5dqiyIk7bNCVPTMzU7rieIpauSj9BMB4WlnkeFp0I0LaLpmZPjduHChdmPH2/bwyfzH3tU/WXwV+3YsWPeslUcyT2C0Kz1MY5kHcGuCFpVbP5bAhft2W8T9tNYOS9+vP2bPSv6H5q6b/en/bcjEk1o3jxrvd2b7f3m8ouhaeXfWW9vb/kota/O50rtOcv/ab9dvB88GnMzPj5eGT/h4OBw91i2bFnIGs6iPbpasB3vN1tT87u2dnO3lxndm1dbPv++7Tg+ZP++c6sV7vqfHpFIr4Gmh7eXH8CeUb8lMGO3Tm+1Fn2spcdGp/zmNwhWLdKTwcHB4f6hRXPmVoo0Zdf6Oy1XOplave+83Xv5QnTmnn27s6WUJznbN+a3RSTagaPR8srPr4amTNvw9vJfpM4T2V0VGoDZ5JmuUmA2Wb77Yik+Z1G8Y4XOnNWMkwZyKDT14XJodkR9vg3AHdOj1pNXFqy047f8tlkULx+wAxfDDektlDuhOXXRuuf4QAFIr8ow3tpBu+O3ze6uXbnyq/92NOIJzY4+G6rMng9ZYb8/SdT8vv3D8H2L9u8G4jNh33zSZm1tsx0b7NPeXvvq6x/t58p0KdJubJ8mhmc5uXJAPKH50uz52nebvfaWDUfs25uPCM3MUCnJQ7t9qc861C+a1tq//M9Db4ZVx8RP/2WFPX+yfE4fa7b2I3+xR3SO1AuG6QhNmfXyXKUF/dbpvzg+PMWYZrbctUKHnvuOmuUjxfvDtrOl/EJqKfWdORZXIKEIzWpvmAiaPP1R+eO5HhvljCJDXh+aUrxT8P+o5q1nNOJqZkTqen9bOQe2D5uLz7RToWl3Bm2tPv6aFw/S6M2hqauRywfy5f7TdcaiHfpHpP73SLlmO7fTzs0hNScnJ/23ouFUaKp8IO+F5nYb5mQiQ+YSmiVj+7zavaambou4ygSRmrQzXeXJoI7BO6+d4yjeOWHHz0U7YBNpaBYvds8emjO3bLCz/EC17Btz8rQcjTLH0Lxb8CeMuBJJvalR6/HGsVts6+lbVmtliplbBduxP/ox7mhCUwt2DBXs89V+KcHf/PPzxTpUcnT4U2v370tv2XrG7nAWkTGEJmqYumaFv2/1ri6a399s3V99Xc6MUpbs37zWNhy5HMukYDShqQU7ghKjmsdhKwxdsB9/fka5USbNMTSv91ubF5pddoZBzYwo2rP7P9nY119VZUW8dbvRjmkCNc0tNCvVFR2F0lcA8SA04YA5hGbxuvWv1OfkrOtMtLOlQDVCEw54U2hO2WiPlgFrslxngTFvxIrQRPyKl+2At1jLy6FZtGc/X7LjW/3AXP2lXeZ2IMSM0ESMygt2vBus6K/V+1ufL9jRGqzov3qzHfn2JvedwwmEJmJUXrAjWKDj1eNJzfo8IE6EJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCwJyZ/T9zkJNqQpU86gAAAABJRU5ErkJggg==
|
The area of triangle ABC is 12 cm². What is the length of BC in cm?
|
A. 4; B. 5; C. 6; D. 3; E. No correct answer
|
C
|
85
|
iVBORw0KGgoAAAANSUhEUgAAAUwAAADgCAYAAABox19+AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABhESURBVHhe7d1vaBR5nsfxPFjofbABH0zDggYGMkcW3HAODBLIwkxgiMoNR2SXudlBMaALbnCOLOg5ohCX0Qt3eaDZWS4P+lBuzTDeDJiFgJ4KCZlddYOHf3A8yY5MQDM4jsQhsyyB3gffq091VafUTlJJuquqq96vodD8upOM3b/6dFX9vvX7NRgAIBQCEwBCIjABICQCEwBCIjABICQCEwBCIjABICQCE8lTnLTf/vuEzXlfAklBYCJxZkd3Wq5hmw3PeA1AQhCYSJi7NtjaYA0NDdY6eNdrA5KBwESiFK8etqaODmt3ArMht9vOc16OBCEwkSAzNrwtb4evztr53Tn3KHMb5+VIEAITyXF30FpbB52T8tKRZl5Hmd7XQBIQmEiIOfeosnxEWbxqh/O6lpmz3ZyXIyEITCTDzLBta9hpo4FsvDvY6p6WN2wbdk7WgfgRmEiAol09nLfc7vPP1l66IaqjzFYbuF30GoH4EJiI39x5251rsFy+2VpaWgJbs+Wddh1lvhCmQAwITMTOPfVu/43dfPTIHj23TX+iInaFJoXsiB+BiXi5gztNdnRysVPuGTvbVSoxajo66Zy8A/EhMBGjebvR7xxd/v1vliwdmr/wi9LgT67Dhu7Oe61A9AhMxOSK9eVLR47uNcp8sx274j0UcOXYwnXM0paz/E8/tmnvcSBKBCZiMm9Pn7te+bTCweP802ef427ffMepOWJBYAJASAQmAIREYAJASAQmEuVvf/ub9ff3e18ByUJgIlF27NjhjoYfOXLEawGSg8BEYigkF8qHGqxQKHiPAMlAYCIRTp8+/UxYavve975nly9f9p4BxI/AROwUigrHYFjqOqb+/MEPfmB37tzxngnEi8BErBSGCsVgSGqTvXv3un//4Q9/6BasA3EjMBEbhaDCUKGocJRgYGrE/K233nK//vGPf2x/+ctf3HYgLgQmYqHwUwgqDBWKCkcJBqboea+99prbtnXr1vLzgDgQmIicQk/hpxDctGnTM0eOzwem6Eh0w4YNbvuePXu8ViB6BCYip9BT+CkEn782WSkw5d69e+VrnR988IHXCkSLwESkFHYKPYWfQnAlxsfHy6PpZ86c8VqB6BCYiIxCTmGn0FP4rYZfr6mf8Yc//MFrBaJBYCISwaNDhd5a9PX1uT9n3bp1Kz5KBdaCwETNKdQUbgo5hV01dHd3uz/v5ZdfpkYTkSEwUVMKM4Wawk0hVy0aaX/zzTfdn6uyI2o0EQUCEzUTrKFUuFW7hlI//0c/+pH787u6uqjRRM0RmKgJhddq7tLR87WF9fDhw/LdQvv27fNagdogMFETCi+FmMJMoRbWSgNTbt68Wa7RHBgY8FqB6iMwUXUKLYWXQkxhthKrCUy5cOFCeRT+008/9VqB6iIwUVUKK4WWwkshtlKrDUwZGhpyv/f73/8+NZqoCQITVaOQUlgptFY7W/paAlPef/999/t1KYAaTVQbgYmqUDi99NJLblgptFZrrYEp77zzjvszNIJOjSaqicDEmimU/PIehdVaVCMwNUL/k5/8xP05+pMaTVQLgYk1URgFw2mttZDVCEx58uRJOcR/9rOfea3A2hCYWDWFo8JIoaRw+vbbb71HkuGLL74o12ju37/fawVWj8DEqvX29rphpFBSOCXRtWvXyjWaH374odcKrA6BiVVR+CiEFEYKpSRTqZPKnLSNjIx4rcDKEZhYMYVOvQXQiRMnygF//fp1rxVYGQITK1LPp7jBSwjT09NeKxAegYnQgoMoCp96o0EqzWqk//8kDlIh+QhMhKJwCZbprLV8aDH6+dpqRWVQbW1t7u+oRhkUsoXAxLIUKlEVgtc6MEWF9q+88or7e3bs2OG1AssjMLEs/1ZDhUytbzWMIjAleCvnkSNHvFZgaQQmluRPZqFwiWIyi6gCUzRZiEb69ftWO1kIsoXAxKLimC4tysCUjz/+2P19Cs7VTEeHbCEwUVFcE/JGHZjS39/v/k6VS925c8drBV5EYOIFcS75EEdgyt69e93fq7IppoTDYghMPCO4qJhCJGpxBaYqAbZu3er+7pUs2oZsITBRppDway214mPWahT179+0aZP776/FssCofwQmXAqHN954ww0LrSWe1SMsnY5v2LDBfR327NnjtQIlBCZc3d3dbki8/PLLmb+Gp4Ef/xruBx984LUCBCYcfX19bjgoJFg4rOTy5cvlKoEzZ854rcg6AjPjTp8+7YaCwmF8fNxrhfDa4HkEZoZxFLU8/+h73bp1HH2DwMwq7fxJvE6n/x9tSaIJOvT/xPVdEJgZFBwJ1mBPkiQxMKkggI/AzJik1xomMTAl6zWqKCEwM0Q7edLvZklqYErwLqh9+/Z5rcgSAjNDVIitnT3J90snOTBFC6jFdZ894kdgZkRwRh5NrpFUSQ9MGR0djWUmJ8SPwMyAeprzsR4CU+KYKxTxIzBTrt5mFa+XwBR/Nnpd4qBGMxsIzBTTTqyCa+3UrFtTG1pBU6+vRtCp0Uw/AjOltPOq0Fo7sxYxQ23Mz89HtqIm4kdgppB2Wtbejs6TJ08iWbMd8SMwU0Y7a1dXV/k08dtvv/UeQS3p8odfo7l//36vFWlDYKaMCqq102rnnZ6e9loRBQ2w+TWaH374odeKNCEwU0SF1NpZtdNeu3bNa0WUVJepqgRtIyMjXivSgsBMibTsqAp8bfWMD670IjBTIE2ngmkITOHSSDoRmHUubYMNaQlMBt/SicCsY6q1DJazpEFaAlMo70ofArNOpbVgOk2BKdxAkC4EZp1K6y15aQtM4RbV9CAw65CuVWrnS+OkD2kMTKm3SVBQGYFZZzQKrp0urdOKpTUwpZ6m2UNlBGYdUX2lf5TCxLX1SSt06v1L+kTOqIzArBMsjZAe9bBUCCojMOuACp/9WksW36p/Ki9K+mJ0qIzATDgVPPu1lizvmh4KSYWl3tckLneMygjMBNNO5NdavvbaaxyJpIxOx/0zh+7ubq8VSUZgJtiOHTvcnUmFz1zrSqc7d+6Ur01rQAjJRmAmlAqctROp4DlttZZL0b9ZW5Zcvny5XP1w5swZrxVJRGAmkAqbtfNoJxofH/dasyGLgSlZfs/rCYGZMCpozvLRRlYDU/yzCp2iZ+msop4QmAmiQuasX8/KcmAK162TjcBMiOCIqQqbsyrrganKiDfeeMN9DaiMSB4CMwGoyVuQ9cAUam+Ti8CMmXYGhaR2Du76IDB9wbu79u7d67UibvTMmKlgWTtFku4rLt4esNaGdivc9xoiRGAuYP6A5KFnxqivr8/dGbRTqIA5EeYm7ECTQiuewMSzmKEqWQjMmKhkSDuBdgYVLifDrI31tllHRwuBmSBpnwO1nhCYMVBhsn/UkKTZt2fHem3LwG2bKrQTmAnjz7L/0ksvUaMZIwIzYurs/nWpRK3vMjtqOzuGbKpodn+JwJz/8oId3/6q5XM6bW+09Z2H7NID55vcB7+yW+eO2/aNjdbufHPx8XUrdG+0Ruffmmt+1wo3Zp0nFe3BpUPWub7R+f6cNb971v2dWF5a13GqJwRmhNTJN2zY4HZ6FSgnx4ydfXuLFbzkWiwwi1MF62h81Y6Of2XzztfzX31iOxWcTQdsYs4Jwv+9aCNH9L0Ntvngf9iJE+fs1vQjm742YB3u847a2VPd1j04bvceTdu1gQ7LOc9tHbxb+gVYkioo0rhSaD0hMCOizq1CZHV2FSYnp7au6JyCb7EtpxbSsWJgFm/bQKsTbs4p+8IB4df2+3edI8XGd+33X3tNzmm9/o0t/TcCzzObOJBz2lus/0awddKO5p0g7Thl014LlqYP3eBa9NRoRovAjIA6tQqQ1cnV2VWYnBQ6atyye9R0suyrGJiTRy3fkLejk97Xi/ECU6fkQZWPWu9bod0JzPaC87cSfa82LE6Xdfwazd7eXq8VUaBnRkCFx+rc6uQqSE6M4pQNvd1rY8G0dFQKt6/Pdr3QVhGBGQmNlmvUXK+VRtERDXpmjfX397udWgM9KkROFC/clt5KITd9qsP9uufSMiM0BGZkVJep10oVF6rXRO3RM2souA716Oio15ogMzft4sWLL2y/61EdZov1/E5f/9H+POc8d+KAO0CT7x0zffmM2VH774t/Lf2dwIyU7gDS66UP5GvXrnmtqBV6Zo3U8ylTxXArXrXDGqBpaLLe4Dl88bFdOnDIzvspSmBGTiuJ6jXTJZ8vvvjCa0Ut0DNrQBflVWCsTqyC43pTOdxKhe1NbqA12sbtPXbw4C57Pd9oHeUR9qI9/uSf3H93/l8+c0uPXE6ontupUfK89Vx4XB49Lz4+VypLyvfYhcelVgJz5ZI8qJg29MwqU9nHK6+84nZelX3Uo8UC0w3Ez066hen69zWu77RDlx6UA3CstxR2C1uvjTn/9T7T5mzOaX2l66dq9v+OlQmWralGk3Kj2qBnVpE6bVtbW7nTzs+Xj7EQEoG5evqw1kztev3eeecdrxXVRM+sEn2id3Wp9IZb1xCf4K2377//vteKaiEwq0QFxOqkuvDO5AiIU1Ind0kDArMKTpw44XZOfbIz/RaSIDh9oFYiRXUQmGuk4mH/05wJXpEkWnnU/yDXiqRYOwJzDVQo7F8vYgkBJFFwCZSHDx96rVgtAnOVVCDsT4CgwmEgiTQYySJ71UNgrsKTJ0/KU2xpZJyat+rRa6oN1aOQZBnn6qBnrpBqK/1JXFlov/oIzNpQmZt/RqTTdKwOPXOF/GUCVCBMrWX1EZi1o4Ef/5q7VizFytEzV0CFwOps69ato9ayRgjM2lKJkV/VodIjrAw9M6ShoSG3k6mzUWtZOwRm7amY3e/LKnJHePTMEDSXpf+prDkuUTsEZjS0YqleZ52ic7YUHj1zGZol3b/uo0Jg1BaBGR1N0KHXWiuZcj0+HHrmErT+jj+yuGfPHq8VtURgRkflRVR8rAw9cxHqPH6t5datW6ldQyppsmG/n2sSYvr50gjMCtRptHa4OtGmTZv45EWqBe9a0wqnWByBWcGOHTvczqNOxLUdZEFwXgStdIrKCMznBEcP79y547UC6aelepl5a2kEZsDp06fdzqJOc/nyZa8VyA6tcKp9QCueUm/8IgLTo4D0P10VnEBW+asHaOVTajSfRWA6dOrtX7/RKTnio/dAG+KjQU9/zgStgMp1/AWZ75nBWVw02IN4EZjJoMoQv0ZTf1IpUpLpnqlO4M8TqDIiatDiR2Amhw4mgmvss39kODD15qsgXZ1Bhbt8giYDgZksuoapa5l6T3RtM+sy2zN1q6M6gU7HdQskkmGxwJy5edEuXlxsm7Bb04/sm++K3rNRTRot16i53hetkJplmQzM4Gp6mlwDybFYYH7+6UHr2b7RGr3HW3960A4e9LZdnba+Ue05y7/+ng1ff2xEZ3WpLlOvuypJVK+ZVZkLzOB6zZq2DcmyWGCWzNnoztLjvWNek6/4nf353C+tOafHG23LqSlCs8p0B5Beex1o6M6gLMpUYGqyVL/WUhMCI3mWDkyzsd5FAtMzO9ZrTe7PaLKjk0Rmtelec73+upSle9CzJjOBqYvXWlpCb/b+/fu9VtSb5QLTOdS0q4fz7nMatg3bjNeK6tBgqWY10uurwVKtoJolmQhMlUdo0TK9ySqPQP1aPjAdtwesRYHZ0GVnv/baUDWqKNEsXnofVKOZpXKj1Aem3lxNjuq/uVomF/UrVGAWL1mPG5g5OzDhtaGqdBCimdr1Xmjm9qxIdWBm/fQhjUIFpo1ZrxuYyz0Pa6HLXP4txVpRNQtSHZj79u1z38ysXqBOIwIzWbI2kJrawBwYGHDfRH0CMk1VeoQKzKkh2+wGJtcwoxCcFlHrnqdZKgMzWGTLRKj1Re+btsWECcy7g62ln8MoeWT6+vrc11wHKDdv3vRa0yd1gcltXPXNDTpnW8xygVmcKliHW7xOHWbUuru73fdGl8AePnzotaZLqgIzOFGArl+i/iwdmEW71LN4YM7fHba3m/R4zjoK3OkTNQ2yvvnmm+77k9YJbVITmCpz8JcL7erqylRtWJosFpiafGOksNdedY8eG+wf/i0w+cZHJ23X63nLOe25/Ot26NIDwjImCkl/P1R4pm0/TEVg6k3yJztta2tL5SdbViwWmJp8ozzZxgvbMSuMXLQ/3XtqVNnGT6fj/qTcOk1Pk7oPTH2CMZ1+eiwWmKgvGvjxazQ1IJQWte+ZV45ZS0vL4lvnLjt48pzd+mp1xwb+gk3aVDyrEge2+t3897LSY2z1tfnr+/vv56rMf2W3JkascKx0NnHyo4mFrLg/aZMRl43VPjDnn9qj6Vv2Xzu9CRF+MeIeBbqb0/4/hfeszZ3LcOVTcqlQ1n9D2NjYkrupxG9FS1cXH9v1wrvudH2NbbvsWGHEvV49Ujhk2zfmrfmtHvv5qx1WuO89PyLRnfuMeUeCFYY3i48vWE9eL2z4UhBdp9REwDrcZ2NjS/6mm0lCDQIVp+zs201uHuw+92WF69Lzdneowx3kW/IGhhpIRGCKX1/XHvVHBoAEKdrtgdKNB60Dt5c445y1Sz35rAbmwkzaXdzLBmTXzFnrckvHttnwcrdp3R20X4/OeV9EI/7AdJcW2F2aJbvpgE1E++9HTRXtuz+PW+HYLuvUAN+xK147UNnXZ7tKOdFxypZfmnDWHjxIe2Dm8tZcHiVvtrxXiPx3PZ/Y/816z0X9m71hhXebLdfQaG27TtpHE7ds+ilVkliaf2lusUt3cYs+MJ8bJZ/46Li91ZxzHmu0jd3Ddpd9qu4VH4za7qYGy716wC494J4bhEdg+pa6hlmcskKHQtPZyXaOOgfaqFtzE3ZAYdkxxIcfVozA9C056ONkpvO4ygSYw7CeFW3yqMpBWm3gdogjy/kvbVx1dZt1eabTdp28YF+WQ9a7/vlep/3842nny8d2ffg991ro5u6CXX9c+vnzX16wk7s6ne/fbN2FG3zY1rn7hfZSTnSdtSTGQGIC03mlrN0NzPbIi1FRJTPDtk3v4bb/tJvXhu3Q9s3uterO94bLAVc2O2a9TY225V/H7d6jR3Zv/Ij7/uc6CjZV/Kt9/smvradT4dtg7b+5YKd+9Sv3fvGRwbdLA4TtBbsxdsg6tx+3jy6O2KBbt5ezrrPMgFnXyjkQYpRcJUi3P/f+Ho3EBObM8LbS4/mjNum1ob74I5yN6zvt0LlbNv1o2m6dO1CaYahxi50pfxDO2NmunOWdvrAwxjltpzq0o3TYKX941Osz+Z5LgSNHf4q3Juu99Nj5ylN0Ali/J6FHJghrziYOlD4om5z+sdQZw+zYcfttxHOeRhaY5UB8ITDn7csL3k6lnWCMk6p6tdjkvjNOkLpTr+0+XwpIdxncCis66jba4Ei6F5jP38xQOm17/kzkvhXand/vHHlyglLnilN2akuj8x7nrPmX5wKXaXxOZpz7Z+te4a3U1VD7wNTkG82luQrdwGxc75UUPVtW1Lhxu538LHDEgDrjHyFWuKQyN2o79d7nDpgycm50Z+XnPY/AzK7AveRuKaIm6dFUfj3bbXOLcwYT05yntQ9MHTX4ZUQVt2/sO1IyFUpHmJWC0Auzhl7TwWcp8EKsGU5govidfXPvT95k0RN2azreOU+ju4aJ1PNHOHe+cLuaF2YtA3ZbX3pB2NJ/48WjhOKkTfzRmwCawETCEJioHm+E84VaWm9ApnXwbunrufO22z3V6rDCVDAyizY1dHhhdJTARMIQmKgiJ/AKmnYrOII9a1cPtz43T4D/PCfgGtvsPXeuw4/s+FvN1nx0snzUWbzUUzoSHXCPSz1F5+dpbtUW678RCNviVTusKQJb+i3YDFQTgYkqm7Ubg/9o+VzO8s0t1pxvtPzrx+3qC8UP/vOckFNw6p7z45+ZX6555djCgKAeW99yzK44/x0LDiBqMEATelw55vye0p1i2nL5ZmOeD9QCgYna8Ab7vlluRM973vPzcsw/fX5wUBf75+3pM23Opm+sMLDIPB+oBQITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIx+39s2NeV74IKpQAAAABJRU5ErkJggg==
|
As shown in the figure, what is the area of the circle with diameter BC in cm²? (Use π = 3.14) ( )
|
A. 28.26; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
A
|
86
|
iVBORw0KGgoAAAANSUhEUgAAAUwAAADgCAYAAABox19+AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABhESURBVHhe7d1vaBR5nsfxPFjofbABH0zDggYGMkcW3HAODBLIwkxgiMoNR2SXudlBMaALbnCOLOg5ohCX0Qt3eaDZWS4P+lBuzTDeDJiFgJ4KCZlddYOHf3A8yY5MQDM4jsQhsyyB3gffq091VafUTlJJuquqq96vodD8upOM3b/6dFX9vvX7NRgAIBQCEwBCIjABICQCEwBCIjABICQCEwBCIjABICQCE8lTnLTf/vuEzXlfAklBYCJxZkd3Wq5hmw3PeA1AQhCYSJi7NtjaYA0NDdY6eNdrA5KBwESiFK8etqaODmt3ArMht9vOc16OBCEwkSAzNrwtb4evztr53Tn3KHMb5+VIEAITyXF30FpbB52T8tKRZl5Hmd7XQBIQmEiIOfeosnxEWbxqh/O6lpmz3ZyXIyEITCTDzLBta9hpo4FsvDvY6p6WN2wbdk7WgfgRmEiAol09nLfc7vPP1l66IaqjzFYbuF30GoH4EJiI39x5251rsFy+2VpaWgJbs+Wddh1lvhCmQAwITMTOPfVu/43dfPTIHj23TX+iInaFJoXsiB+BiXi5gztNdnRysVPuGTvbVSoxajo66Zy8A/EhMBGjebvR7xxd/v1vliwdmr/wi9LgT67Dhu7Oe61A9AhMxOSK9eVLR47uNcp8sx274j0UcOXYwnXM0paz/E8/tmnvcSBKBCZiMm9Pn7te+bTCweP802ef427ffMepOWJBYAJASAQmAIREYAJASAQmEuVvf/ub9ff3e18ByUJgIlF27NjhjoYfOXLEawGSg8BEYigkF8qHGqxQKHiPAMlAYCIRTp8+/UxYavve975nly9f9p4BxI/AROwUigrHYFjqOqb+/MEPfmB37tzxngnEi8BErBSGCsVgSGqTvXv3un//4Q9/6BasA3EjMBEbhaDCUKGocJRgYGrE/K233nK//vGPf2x/+ctf3HYgLgQmYqHwUwgqDBWKCkcJBqboea+99prbtnXr1vLzgDgQmIicQk/hpxDctGnTM0eOzwem6Eh0w4YNbvuePXu8ViB6BCYip9BT+CkEn782WSkw5d69e+VrnR988IHXCkSLwESkFHYKPYWfQnAlxsfHy6PpZ86c8VqB6BCYiIxCTmGn0FP4rYZfr6mf8Yc//MFrBaJBYCISwaNDhd5a9PX1uT9n3bp1Kz5KBdaCwETNKdQUbgo5hV01dHd3uz/v5ZdfpkYTkSEwUVMKM4Wawk0hVy0aaX/zzTfdn6uyI2o0EQUCEzUTrKFUuFW7hlI//0c/+pH787u6uqjRRM0RmKgJhddq7tLR87WF9fDhw/LdQvv27fNagdogMFETCi+FmMJMoRbWSgNTbt68Wa7RHBgY8FqB6iMwUXUKLYWXQkxhthKrCUy5cOFCeRT+008/9VqB6iIwUVUKK4WWwkshtlKrDUwZGhpyv/f73/8+NZqoCQITVaOQUlgptFY7W/paAlPef/999/t1KYAaTVQbgYmqUDi99NJLblgptFZrrYEp77zzjvszNIJOjSaqicDEmimU/PIehdVaVCMwNUL/k5/8xP05+pMaTVQLgYk1URgFw2mttZDVCEx58uRJOcR/9rOfea3A2hCYWDWFo8JIoaRw+vbbb71HkuGLL74o12ju37/fawVWj8DEqvX29rphpFBSOCXRtWvXyjWaH374odcKrA6BiVVR+CiEFEYKpSRTqZPKnLSNjIx4rcDKEZhYMYVOvQXQiRMnygF//fp1rxVYGQITK1LPp7jBSwjT09NeKxAegYnQgoMoCp96o0EqzWqk//8kDlIh+QhMhKJwCZbprLV8aDH6+dpqRWVQbW1t7u+oRhkUsoXAxLIUKlEVgtc6MEWF9q+88or7e3bs2OG1AssjMLEs/1ZDhUytbzWMIjAleCvnkSNHvFZgaQQmluRPZqFwiWIyi6gCUzRZiEb69ftWO1kIsoXAxKLimC4tysCUjz/+2P19Cs7VTEeHbCEwUVFcE/JGHZjS39/v/k6VS925c8drBV5EYOIFcS75EEdgyt69e93fq7IppoTDYghMPCO4qJhCJGpxBaYqAbZu3er+7pUs2oZsITBRppDway214mPWahT179+0aZP776/FssCofwQmXAqHN954ww0LrSWe1SMsnY5v2LDBfR327NnjtQIlBCZc3d3dbki8/PLLmb+Gp4Ef/xruBx984LUCBCYcfX19bjgoJFg4rOTy5cvlKoEzZ854rcg6AjPjTp8+7YaCwmF8fNxrhfDa4HkEZoZxFLU8/+h73bp1HH2DwMwq7fxJvE6n/x9tSaIJOvT/xPVdEJgZFBwJ1mBPkiQxMKkggI/AzJik1xomMTAl6zWqKCEwM0Q7edLvZklqYErwLqh9+/Z5rcgSAjNDVIitnT3J90snOTBFC6jFdZ894kdgZkRwRh5NrpFUSQ9MGR0djWUmJ8SPwMyAeprzsR4CU+KYKxTxIzBTrt5mFa+XwBR/Nnpd4qBGMxsIzBTTTqyCa+3UrFtTG1pBU6+vRtCp0Uw/AjOltPOq0Fo7sxYxQ23Mz89HtqIm4kdgppB2Wtbejs6TJ08iWbMd8SMwU0Y7a1dXV/k08dtvv/UeQS3p8odfo7l//36vFWlDYKaMCqq102rnnZ6e9loRBQ2w+TWaH374odeKNCEwU0SF1NpZtdNeu3bNa0WUVJepqgRtIyMjXivSgsBMibTsqAp8bfWMD670IjBTIE2ngmkITOHSSDoRmHUubYMNaQlMBt/SicCsY6q1DJazpEFaAlMo70ofArNOpbVgOk2BKdxAkC4EZp1K6y15aQtM4RbV9CAw65CuVWrnS+OkD2kMTKm3SVBQGYFZZzQKrp0urdOKpTUwpZ6m2UNlBGYdUX2lf5TCxLX1SSt06v1L+kTOqIzArBMsjZAe9bBUCCojMOuACp/9WksW36p/Ki9K+mJ0qIzATDgVPPu1lizvmh4KSYWl3tckLneMygjMBNNO5NdavvbaaxyJpIxOx/0zh+7ubq8VSUZgJtiOHTvcnUmFz1zrSqc7d+6Ur01rQAjJRmAmlAqctROp4DlttZZL0b9ZW5Zcvny5XP1w5swZrxVJRGAmkAqbtfNoJxofH/dasyGLgSlZfs/rCYGZMCpozvLRRlYDU/yzCp2iZ+msop4QmAmiQuasX8/KcmAK162TjcBMiOCIqQqbsyrrganKiDfeeMN9DaiMSB4CMwGoyVuQ9cAUam+Ti8CMmXYGhaR2Du76IDB9wbu79u7d67UibvTMmKlgWTtFku4rLt4esNaGdivc9xoiRGAuYP6A5KFnxqivr8/dGbRTqIA5EeYm7ECTQiuewMSzmKEqWQjMmKhkSDuBdgYVLifDrI31tllHRwuBmSBpnwO1nhCYMVBhsn/UkKTZt2fHem3LwG2bKrQTmAnjz7L/0ksvUaMZIwIzYurs/nWpRK3vMjtqOzuGbKpodn+JwJz/8oId3/6q5XM6bW+09Z2H7NID55vcB7+yW+eO2/aNjdbufHPx8XUrdG+0Ruffmmt+1wo3Zp0nFe3BpUPWub7R+f6cNb971v2dWF5a13GqJwRmhNTJN2zY4HZ6FSgnx4ydfXuLFbzkWiwwi1MF62h81Y6Of2XzztfzX31iOxWcTQdsYs4Jwv+9aCNH9L0Ntvngf9iJE+fs1vQjm742YB3u847a2VPd1j04bvceTdu1gQ7LOc9tHbxb+gVYkioo0rhSaD0hMCOizq1CZHV2FSYnp7au6JyCb7EtpxbSsWJgFm/bQKsTbs4p+8IB4df2+3edI8XGd+33X3tNzmm9/o0t/TcCzzObOJBz2lus/0awddKO5p0g7Thl014LlqYP3eBa9NRoRovAjIA6tQqQ1cnV2VWYnBQ6atyye9R0suyrGJiTRy3fkLejk97Xi/ECU6fkQZWPWu9bod0JzPaC87cSfa82LE6Xdfwazd7eXq8VUaBnRkCFx+rc6uQqSE6M4pQNvd1rY8G0dFQKt6/Pdr3QVhGBGQmNlmvUXK+VRtERDXpmjfX397udWgM9KkROFC/clt5KITd9qsP9uufSMiM0BGZkVJep10oVF6rXRO3RM2souA716Oio15ogMzft4sWLL2y/61EdZov1/E5f/9H+POc8d+KAO0CT7x0zffmM2VH774t/Lf2dwIyU7gDS66UP5GvXrnmtqBV6Zo3U8ylTxXArXrXDGqBpaLLe4Dl88bFdOnDIzvspSmBGTiuJ6jXTJZ8vvvjCa0Ut0DNrQBflVWCsTqyC43pTOdxKhe1NbqA12sbtPXbw4C57Pd9oHeUR9qI9/uSf3H93/l8+c0uPXE6ontupUfK89Vx4XB49Lz4+VypLyvfYhcelVgJz5ZI8qJg29MwqU9nHK6+84nZelX3Uo8UC0w3Ez066hen69zWu77RDlx6UA3CstxR2C1uvjTn/9T7T5mzOaX2l66dq9v+OlQmWralGk3Kj2qBnVpE6bVtbW7nTzs+Xj7EQEoG5evqw1kztev3eeecdrxXVRM+sEn2id3Wp9IZb1xCf4K2377//vteKaiEwq0QFxOqkuvDO5AiIU1Ind0kDArMKTpw44XZOfbIz/RaSIDh9oFYiRXUQmGuk4mH/05wJXpEkWnnU/yDXiqRYOwJzDVQo7F8vYgkBJFFwCZSHDx96rVgtAnOVVCDsT4CgwmEgiTQYySJ71UNgrsKTJ0/KU2xpZJyat+rRa6oN1aOQZBnn6qBnrpBqK/1JXFlov/oIzNpQmZt/RqTTdKwOPXOF/GUCVCBMrWX1EZi1o4Ef/5q7VizFytEzV0CFwOps69ato9ayRgjM2lKJkV/VodIjrAw9M6ShoSG3k6mzUWtZOwRm7amY3e/LKnJHePTMEDSXpf+prDkuUTsEZjS0YqleZ52ic7YUHj1zGZol3b/uo0Jg1BaBGR1N0KHXWiuZcj0+HHrmErT+jj+yuGfPHq8VtURgRkflRVR8rAw9cxHqPH6t5datW6ldQyppsmG/n2sSYvr50gjMCtRptHa4OtGmTZv45EWqBe9a0wqnWByBWcGOHTvczqNOxLUdZEFwXgStdIrKCMznBEcP79y547UC6aelepl5a2kEZsDp06fdzqJOc/nyZa8VyA6tcKp9QCueUm/8IgLTo4D0P10VnEBW+asHaOVTajSfRWA6dOrtX7/RKTnio/dAG+KjQU9/zgStgMp1/AWZ75nBWVw02IN4EZjJoMoQv0ZTf1IpUpLpnqlO4M8TqDIiatDiR2Amhw4mgmvss39kODD15qsgXZ1Bhbt8giYDgZksuoapa5l6T3RtM+sy2zN1q6M6gU7HdQskkmGxwJy5edEuXlxsm7Bb04/sm++K3rNRTRot16i53hetkJplmQzM4Gp6mlwDybFYYH7+6UHr2b7RGr3HW3960A4e9LZdnba+Ue05y7/+ng1ff2xEZ3WpLlOvuypJVK+ZVZkLzOB6zZq2DcmyWGCWzNnoztLjvWNek6/4nf353C+tOafHG23LqSlCs8p0B5Beex1o6M6gLMpUYGqyVL/WUhMCI3mWDkyzsd5FAtMzO9ZrTe7PaLKjk0Rmtelec73+upSle9CzJjOBqYvXWlpCb/b+/fu9VtSb5QLTOdS0q4fz7nMatg3bjNeK6tBgqWY10uurwVKtoJolmQhMlUdo0TK9ySqPQP1aPjAdtwesRYHZ0GVnv/baUDWqKNEsXnofVKOZpXKj1Aem3lxNjuq/uVomF/UrVGAWL1mPG5g5OzDhtaGqdBCimdr1Xmjm9qxIdWBm/fQhjUIFpo1ZrxuYyz0Pa6HLXP4txVpRNQtSHZj79u1z38ysXqBOIwIzWbI2kJrawBwYGHDfRH0CMk1VeoQKzKkh2+wGJtcwoxCcFlHrnqdZKgMzWGTLRKj1Re+btsWECcy7g62ln8MoeWT6+vrc11wHKDdv3vRa0yd1gcltXPXNDTpnW8xygVmcKliHW7xOHWbUuru73fdGl8AePnzotaZLqgIzOFGArl+i/iwdmEW71LN4YM7fHba3m/R4zjoK3OkTNQ2yvvnmm+77k9YJbVITmCpz8JcL7erqylRtWJosFpiafGOksNdedY8eG+wf/i0w+cZHJ23X63nLOe25/Ot26NIDwjImCkl/P1R4pm0/TEVg6k3yJztta2tL5SdbViwWmJp8ozzZxgvbMSuMXLQ/3XtqVNnGT6fj/qTcOk1Pk7oPTH2CMZ1+eiwWmKgvGvjxazQ1IJQWte+ZV45ZS0vL4lvnLjt48pzd+mp1xwb+gk3aVDyrEge2+t3897LSY2z1tfnr+/vv56rMf2W3JkascKx0NnHyo4mFrLg/aZMRl43VPjDnn9qj6Vv2Xzu9CRF+MeIeBbqb0/4/hfeszZ3LcOVTcqlQ1n9D2NjYkrupxG9FS1cXH9v1wrvudH2NbbvsWGHEvV49Ujhk2zfmrfmtHvv5qx1WuO89PyLRnfuMeUeCFYY3i48vWE9eL2z4UhBdp9REwDrcZ2NjS/6mm0lCDQIVp+zs201uHuw+92WF69Lzdneowx3kW/IGhhpIRGCKX1/XHvVHBoAEKdrtgdKNB60Dt5c445y1Sz35rAbmwkzaXdzLBmTXzFnrckvHttnwcrdp3R20X4/OeV9EI/7AdJcW2F2aJbvpgE1E++9HTRXtuz+PW+HYLuvUAN+xK147UNnXZ7tKOdFxypZfmnDWHjxIe2Dm8tZcHiVvtrxXiPx3PZ/Y/816z0X9m71hhXebLdfQaG27TtpHE7ds+ilVkliaf2lusUt3cYs+MJ8bJZ/46Li91ZxzHmu0jd3Ddpd9qu4VH4za7qYGy716wC494J4bhEdg+pa6hlmcskKHQtPZyXaOOgfaqFtzE3ZAYdkxxIcfVozA9C056ONkpvO4ygSYw7CeFW3yqMpBWm3gdogjy/kvbVx1dZt1eabTdp28YF+WQ9a7/vlep/3842nny8d2ffg991ro5u6CXX9c+vnzX16wk7s6ne/fbN2FG3zY1rn7hfZSTnSdtSTGQGIC03mlrN0NzPbIi1FRJTPDtk3v4bb/tJvXhu3Q9s3uterO94bLAVc2O2a9TY225V/H7d6jR3Zv/Ij7/uc6CjZV/Kt9/smvradT4dtg7b+5YKd+9Sv3fvGRwbdLA4TtBbsxdsg6tx+3jy6O2KBbt5ezrrPMgFnXyjkQYpRcJUi3P/f+Ho3EBObM8LbS4/mjNum1ob74I5yN6zvt0LlbNv1o2m6dO1CaYahxi50pfxDO2NmunOWdvrAwxjltpzq0o3TYKX941Osz+Z5LgSNHf4q3Juu99Nj5ylN0Ali/J6FHJghrziYOlD4om5z+sdQZw+zYcfttxHOeRhaY5UB8ITDn7csL3k6lnWCMk6p6tdjkvjNOkLpTr+0+XwpIdxncCis66jba4Ei6F5jP38xQOm17/kzkvhXand/vHHlyglLnilN2akuj8x7nrPmX5wKXaXxOZpz7Z+te4a3U1VD7wNTkG82luQrdwGxc75UUPVtW1Lhxu538LHDEgDrjHyFWuKQyN2o79d7nDpgycm50Z+XnPY/AzK7AveRuKaIm6dFUfj3bbXOLcwYT05yntQ9MHTX4ZUQVt2/sO1IyFUpHmJWC0Auzhl7TwWcp8EKsGU5govidfXPvT95k0RN2azreOU+ju4aJ1PNHOHe+cLuaF2YtA3ZbX3pB2NJ/48WjhOKkTfzRmwCawETCEJioHm+E84VaWm9ApnXwbunrufO22z3V6rDCVDAyizY1dHhhdJTARMIQmKgiJ/AKmnYrOII9a1cPtz43T4D/PCfgGtvsPXeuw4/s+FvN1nx0snzUWbzUUzoSHXCPSz1F5+dpbtUW678RCNviVTusKQJb+i3YDFQTgYkqm7Ubg/9o+VzO8s0t1pxvtPzrx+3qC8UP/vOckFNw6p7z45+ZX6555djCgKAeW99yzK44/x0LDiBqMEATelw55vye0p1i2nL5ZmOeD9QCgYna8Ab7vlluRM973vPzcsw/fX5wUBf75+3pM23Opm+sMLDIPB+oBQITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIiMAEgJAITAEIx+39s2NeV74IKpQAAAABJRU5ErkJggg==
|
As shown in the figure, triangle ABC is the front view of a cone. The base area of the cone is 28.26 cm². What is the volume of the cone ( ) cm³?
|
A. 50.24; B. 37.68; C. 125.6; D. 62.8; E. No correct answer
|
B
|
87
|
iVBORw0KGgoAAAANSUhEUgAAAU0AAADgCAYAAACHBTRAAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABX1SURBVHhe7d1vaFTXn8fxPCiMDxpwwYFCDStESKEKCiKBFH4GxFpWlsiKtItSQSkl6JIfKKkYsIu6smTBulnIg1n0gZbKujQPAroaiOTXra24ayoqYisGNGCtRIllCUwffHc+d+4dR51objJz77n3vl/l0uTkn5k588m953zvOU0GAJgzQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhMAQiA0ASAEQhOOmrJ796b8twF3EJpw063jtjJ/wC4X/fcBRxCacNC0nduZs6amnO08N+23AW4gNOGeydP2US5nuaYma+oo2F2/GXABoQnHFO3Kly320elRO76yFJpNeTvANTocQmjCLdPnbGfzTtNV+eTpj0qh2WS5nedKF+yAGwhNOOVuocPyBy6XzjdLfj1jXbpEb+qwAtfocAShCXcUL9uB/Eo7fst/vzIh1PQ8SIGYEZpwxuSZLsutPG6VzCwpXj5geZ1t5sqX7EDcCE044pY38fPXn52wCxcuVB3/Zp/8lS7Rm2zl81NQIDaEJpwwPdpj+dxq+6S313pfOro3tHih2USxOxxAaMIBk3b6oybrmG22Z+qided1tpmz7cPcWol4EZqI3fTYPmt5w1lkUH7UtLLfrnO2iRgRmojRpP1Q2GPtzZroWW2fF4ZsfNL/UJXJ8SE7vtW/RC8dze17rDDyM7WbiAWhiRjdtLMvjV+evel/qMrNsy9+jncMjNmv/seBKBGaABACoQkAIRCaABACoQknfffdd/5bgFsITThnYGDA3nrrLRsaGvJbAHcQmnCKgjIoLXr77bfthx9+8D8CuIHQhDOuXr3qBWUQmjreeecdm5iY8D8DiB+hCScoGBWQ1YG5ceNG7//vvfeePX361P9MIF6EJmKnQFQwVgeljt9//91WrVrlvf3BBx/YH3/84X8FEB9CE7FSECoQFYwKSAVlEJry8OFDW7p0qff+xx9/7LUBcSI0Eatt27Z5gahLcwWkVIem3LhxozLW2dfX57cC8SA0ERsFoIJQgahgDLwcmjIyMuKVIam9UCj4rUD0CE3EQsGnAFQQKhCr1QpNOXnyZOVrzp8/77cC0SI0ETkFXnDWqCAM4+DBg97XvXx2CkSF0ESkqscnFYDzUWscFIgKoYnIKOCCWkwF33xpxn3dunXe91mxYoU34w5EhdBEJBRsCjgFnQJvoTWX+n5Bbef69eup4URkCE00nAJNwaaAU9DV68zwwYMHlTPXXbt2+a1AYxGaaLgdO3Z4waaAU9DVU/X96ocOHfJbgcYhNNFQCjIFmoJNATcX+nwdczU8PFyZjT916pTfCjQGoYmGUYApyBRoCra5ChuaMjg4WPlZly5d8luB+iM00RAKruDsT4EWxnxCU7744gvv6xYvXmy3b9/2W4H6IjRRdwqsYJxRQRbWfENTtmzZ4n3tsmXLqOFEQxCaqCsFlQJLwTXfVYkWEpozMzOVVZPWrFlDDSfqjtBE3SigFFQKLAWXAmw+FhKa8vjx40oN56ZNm6jhRF0RmqgLBZMCSkGlwFJwzddCQ1N++eWXSg3n7t27/VZg4QhN1MXnn3/uBZSCSoG1EPUITdE2wMHYan9/v98KLAyhiQVTICmYFFCu7R559uzZyiy+3gYWitDEgiiIFEgKJlf3KT927Fgl1HX2CSwEoYl5UwAtWrTICyQFk8s0rql/p4YPqOHEQhCamBcFz5IlS7wg6unp8VvdpYmqrq4u79+riSpqODFfhCZCU+AEJT0qJk9KSY9Kotrb271/90JKopBthCZCUfAExeMKoKQVjyvwly9fXgl8ICxCE3OmM8rgNkUFT6MucfX9dTSKhhZ0f7p+xt69e/1WYG4ITcyZAkZBo7HMRk6mNDo0RZNYQSnSwMCA3wq8GaGJOVGwKGA0W97osp0oQlO++eYb7+coPMMsXYdsIzTxRqq/jLJAPKrQlKNHj3o/K8wiycg2QhOvpTt8glsRFTBRiDI0RfsL6eephnNiYsJvBWojNDGr6kUvdG95VKIOTU1wbdy40fuZKqV6+vSp/xHgVYQmalJwxLW8WtShKSqdWrVqlfdz67HFMNKL0MQrFBhxLuQbR2iKSqiWLl3q/ext27b5rcCLCE28QiuuKziyuGVE9VYdfX19fivwHKGJFwSbkyk4srqwxcjISKVa4OTJk34rUEZooqJQKHhBocDI+ja4CsvgsVCIAgFCE57z589Xzq60XznMDh48WDnrvnHjht+KrCM0YePj45VxvEOHDvmtkB07dniPi0qvsja+i9oIzYx78OBBpRZTAYEXqZJAJUh6fFSSlLRVnVB/hGaGKQBWrFjhBcL69eudqU3Uv0eHK/Q4BTWrKoKnhjPbCM2M0gtfQakgUHC6dAblWmhK9Rm5brtEdhGaGeXyWJ2LoSmM/UIIzQxyfVbY1dAULSEXVBloaTlkD6GZMSon0gteL3yVGbnI5dCUwcHBymPIlsDZQ2hmiArWg7MkFbK7yvXQlODOKW2bkdU7p7KK0MyIJN1TnYTQlCzfo59lhGYGJG31nqSEprYATvLOnJgfQjPl9ELW8m56YbNOZP09fvy4UsPZ1dXF45sBhGaK6QWsBYT1gmZF8sapXuF+9+7dfivSitBMMW1RoReyXtDsfdNY1XspHTt2zG9FGhGaKcUui9HTTp2qTtARxa6diAehmUJ6wSow9eJlP+9o6Swz+GNFDWc6EZopoxfqokWLvBfuwMCA34oo9fT0eI+/hkU03ol0ITRTRLWYS5Ys8V6we/fu9VuTR/9+HUmlCTjNpOt30AScZtiRHoRmSqgWc/ny5d4LdcuWLX5rMiU9NEWlXqrd1O+hWk7VdCIdCM0USNsLNA2hKWn6Q4bnCM2E06WgXpB6YablUjAtoSnVQya6Xx3JR2gmXPWkQ1oWjkhTaIom54KFUrRCEpKN0EywtJa3pC00RWtv6neiDCz5CM2EGhoaSm0hdRpDU7jhIB0IzQRK+y17aQ1Nqb61VfsOIXkIzYRhcYhk08SddrTU86eJO5aTSx5CM0FYhiwdFJTaQ13PI8v1JQ+hmRB6YbHgbXpULwytnUGRHIRmQgRbK6hYmq0V0qF6CxLtEIpkIDQTgE280qt6s7uTJ0/6rXAZoek4totNP4Vl8ByPjIz4rXAVoekw7UsenIWoODor9PvqyBJdnut31uU6VxNuIzQdNT4+XhnvUlF0lmQxNEUTQvq9NUHEuLW7CE0Hqeg5qMVUMXTWZDU0VSGxfv1673dXSRIVEm4iNB2jF0pQi6ki6CzW8GU1NIXn332EpkM40yjLcmhK1q80XEdoOoQxrbKsh6ZkeUzbdYSmI5g9fY7QLMtq9YTr6JkOqK7TU7GzEyb/03a0fWLfTPjvR4jQfC6o09UOo9TpuoGeGTMVMwdnE87cEVK8Y4XOXOnf1GGFu34bYhPcEaZtM6jhjB+hGSM37z0u2p3Ch9bakic0HcLaA+4gNGPi6io3xTuD1tV90a4VOghNh7DKlTsIzRiowwfrKarEyJlavOIV+7K9x0anzO6+LjRn7tmlwn7bvLbN2to22Kdfnbd7lV2Di/bs50tW2LPBPtGAaPGRXT29xza0tdnaHQW7+qjofdbMvfP21acbSl+/1nYUrlnpR+INqtdT1Q6k1HDGg9CMmDq6myt3T9vYvnbrUWKWzBqaU6PW09JsH/7TJbtdOlu+fanPOkq/S66zYHeK/2c3/+MfrXtDi/f7dfzreTvx5z9bYeiCDR3fai2ltqaOgl0b3W8bNh+xry8M2fGt+tycdZ2Z9H8AXqd65X7tRIroEZoRc3WPmKnRHmv/8krpPLGsdmhO2pmunOV7RksRG5iwE52a7e60E8FMe+l76XfMly7zn59BFu1itz6vxXouPqr8HCuWQjhXau86Y7/6TXi9tO8R5TpCM0LVuxGqeNkZUxetu2uwdKbov19SMzSv91tb6axw35j/fmDmiT18Urk+r4Rmx0unqbWD+K4VOspnoEGzvlYHZle9G6neRnTomRGp3vdaRcvumLLhnR9aoToxS2oF3PTw9hqhVwOhGYnqfe919olo0DMjoKLkoBazUCj4rY4Y22e55netrU2TOs+P1rzqNEuX4q16v1zkXg69GmeaLyM0I6NxTT1WGu7ReCcaj57ZYKrFVFGyOraKlJ1z86z19va+cnzWqTrNvHV+pvcHbEwDjn4Yth299nxMMlC8YmP/7U9qEZqR0cSiZtL1eGliUTPsaCx6ZgOpFlPFyOrQKk5OkpoBN33OdmrSJtf50uV80e4MHrDTwQQ4oRkpVWCodlOPmWo5KUVqLHpmgyS9I9cOON0t1Gk5hVpzu+0pDNmFC1/bkU2t1lo181682O393m391/0WKdrlAzp7bbOj16oCt3jZDuRL36/tqAXNhGZ4Sf4DnTT0zAZQQHZ1dXkdWJdMT58+9T+SHLVDU6bs2vG/tbzOOL1wa7b2I38xv2bdvj/c+sLH3m07bN+X/jvcmi+HrY5c3loPf69P9sdOy+25fKupOXgf4Tg/FJQS9MwGqB6cn5iIYZmgOig++6109vKbPau+Cq+mMqPS2U11pZHMPHnotT8/nthM6b8nL7SVDn2h/z2qDzUTmvOnSUetiKTHz7lJx5SgZ9YZZSCIm7vlbelAaNbR2bNnKTiGE5y9kSIFCM06qb61bWBgwG8F4uPqLbtJR2jWQfUiCnv37vVbgXhpQnLTpk1ev1yxYgXLydUJoblALNcFlzm7DGGCEZoLMDMzU1kYVv/nLzlcpKoEFxe8TipCcwGCLQh0pqmOifrQY6oD9ePm1irJRM+cp2CzK41lstlVfRGajaGdToOFY06dOuW3Iix65jywrWpjEZqN4+R20QlDzwxpeHi48tdadZmoP0KzsXR5rsdXl+tcJYVHzwzh6tWrlXGh/v5+vxX1Rmg2niaE9Bhrgojx+HDomXOk4uCgFnP37t1+KxqB0Gw8lR6pBEmP85o1a6j8CIGeOQfqUEEtplYvotatsQjNaKhfq+hdj7WK4OnXc0PPfAN1pHXr1vEXOUKEZnSqr6B02yXejJ75Btu2bfM61LJlyxj7QSppQQ/G6ueO0HyNYJZx8eLFzDIi1bSEHFUhc0NozqK6no1aTGSBFi1Wn6f++PUIzRpGRka4cwKZFNzppm0zuLqqjdB8yY0bNyrjO4cOHfJbgexgTYXXIzSrVK8Gs2vXLr8VyBZVjLB61+wITZ86RrDu4MaNG6lZi5GeAx2Ij3ZQZZ3Y2uiZJeoQCkp1EAUnf1njRWi6gR0JaqNnluhSXB1DHYQxnPgRmu5g76tXZb5nVu/ap0kgxI/QdIt2VlU1iQ52Wc14aFbvD60yI7iB0HSPzjL1nOjkIuv7+We2Z6p4N6jFVCE73EFouqmnp8d7XjSMNTEx4bdmTyZ7pop2dWukOgD7pbiH0HSTJkw1k67nRjPrmmHPosz1TE30LF++3HvitRgH3ENoukuVJdU1nFksRcpUz9QT3t7e7j3hWu6N2jMgvKyfeGQmNBWQWkBYT7QuLajFBOZPQ1y6P12vp76+Pr81GzITmtqiQk+wBrG18CqAhdFkqlZE0utKKyRlRSZCUwur6olVuYQ2RwNQH1p7U68tVaJoTc4sSH1o6kkNCnO1/S6A+sraDSKpDk1dPgS3gA0ODvqtAOpN+wvpdZaFW5FTG5oaqA4WG9DCqkgOPWc6kByaaNWOlnretMNlmidaU9kzHz9+XFnWSguqIlkIzWRSUGrHVj132lM9rSV9qeuZMzMzLxTf6n0kC6GZXFlYyDt1PbP6Ni+dcSJ5CM1k09BYMJeQxi1jUtUztVCqniiNZWoBVSQToZl8ly5dqiyIk7bNCVPTMzU7rieIpauSj9BMB4WlnkeFp0I0LaLpmZPjduHChdmPH2/bwyfzH3tU/WXwV+3YsWPeslUcyT2C0Kz1MY5kHcGuCFpVbP5bAhft2W8T9tNYOS9+vP2bPSv6H5q6b/en/bcjEk1o3jxrvd2b7f3m8ouhaeXfWW9vb/kota/O50rtOcv/ab9dvB88GnMzPj5eGT/h4OBw91i2bFnIGs6iPbpasB3vN1tT87u2dnO3lxndm1dbPv++7Tg+ZP++c6sV7vqfHpFIr4Gmh7eXH8CeUb8lMGO3Tm+1Fn2spcdGp/zmNwhWLdKTwcHB4f6hRXPmVoo0Zdf6Oy1XOplave+83Xv5QnTmnn27s6WUJznbN+a3RSTagaPR8srPr4amTNvw9vJfpM4T2V0VGoDZ5JmuUmA2Wb77Yik+Z1G8Y4XOnNWMkwZyKDT14XJodkR9vg3AHdOj1pNXFqy047f8tlkULx+wAxfDDektlDuhOXXRuuf4QAFIr8ow3tpBu+O3ze6uXbnyq/92NOIJzY4+G6rMng9ZYb8/SdT8vv3D8H2L9u8G4jNh33zSZm1tsx0b7NPeXvvq6x/t58p0KdJubJ8mhmc5uXJAPKH50uz52nebvfaWDUfs25uPCM3MUCnJQ7t9qc861C+a1tq//M9Db4ZVx8RP/2WFPX+yfE4fa7b2I3+xR3SO1AuG6QhNmfXyXKUF/dbpvzg+PMWYZrbctUKHnvuOmuUjxfvDtrOl/EJqKfWdORZXIKEIzWpvmAiaPP1R+eO5HhvljCJDXh+aUrxT8P+o5q1nNOJqZkTqen9bOQe2D5uLz7RToWl3Bm2tPv6aFw/S6M2hqauRywfy5f7TdcaiHfpHpP73SLlmO7fTzs0hNScnJ/23ouFUaKp8IO+F5nYb5mQiQ+YSmiVj+7zavaambou4ygSRmrQzXeXJoI7BO6+d4yjeOWHHz0U7YBNpaBYvds8emjO3bLCz/EC17Btz8rQcjTLH0Lxb8CeMuBJJvalR6/HGsVts6+lbVmtliplbBduxP/ox7mhCUwt2DBXs89V+KcHf/PPzxTpUcnT4U2v370tv2XrG7nAWkTGEJmqYumaFv2/1ri6a399s3V99Xc6MUpbs37zWNhy5HMukYDShqQU7ghKjmsdhKwxdsB9/fka5USbNMTSv91ubF5pddoZBzYwo2rP7P9nY119VZUW8dbvRjmkCNc0tNCvVFR2F0lcA8SA04YA5hGbxuvWv1OfkrOtMtLOlQDVCEw54U2hO2WiPlgFrslxngTFvxIrQRPyKl+2At1jLy6FZtGc/X7LjW/3AXP2lXeZ2IMSM0ESMygt2vBus6K/V+1ufL9jRGqzov3qzHfn2JvedwwmEJmJUXrAjWKDj1eNJzfo8IE6EJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCQAiEJgCEQGgCwJyZ/T9zkJNqQpU86gAAAABJRU5ErkJggg==
|
As shown in the figure, triangle ABC is the front view of a cone. The area of triangle ABC is 12 cm². What is the volume of the cone with triangle ABC as its front view? ( ) cm³?(π = 3.14)
|
A. 50.24; B. 37.68; C. 125.6; D. 62.8; E. No correct answer
|
B
|
88
|
iVBORw0KGgoAAAANSUhEUgAAAp4AAAEbCAYAAABz44RlAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAABuiSURBVHhe7d29jhvX3Qdgly7tbssAblS6cKFSndQpnZBK7hQXgdTJcJMAqVypNZDCpdOpUq3CF2DnAgzfgAFfAt/3x+w4w6Mz5PDrcHj4PMCBlrtcikv+MfPj+ZqPVgAA0IDgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4Ine/nll19Wn3322f0tAE7t22+/XX300Ud7tRyXHz9+vPrqq69W33333fpYDUskeLKXb775Zn2Q++GHH+6/A8A5JDw+e/bsg4CZYPru3bvVjz/+uG75Osfm/Gx83wTR/ByWRPBktt9++2316aef/nFAA+C8Ej7HYTKhc5sEzTKAJpTCUgiezJbhm/HBzCdpgPMbH3d3Bc9IJ0GG3Me/l9uwBIIns5Wfoh3IAM5vfNydEzwHGZka/246D+DSBE9myZzOHLi++OKLjQOZCewA5zU+5u4TPMfTo9Lydb4HlyR4Mks+Oeegte98IwCOc8wxN/cf/775nlya4MlOmcs5PuCN5w4ljAJwPsPxdnwcnis9nOPfd8zm0gRPdhqC5jCsPgTRoS1la6X379+v/v73v2v/316/fr16+fLl6sWLF+uWLVnSnj59uu69TsvXac+fP1+33C+/U3s87faaGjqu5Xh0KuPj7SGjTHmvxo9hYSiXJHiy1TC0Xi4kGi80yrzPJcjBfnhOmqZpl2w5Hp3K+HEPCZ7D/stDs8iISxI82WqYH1R+Qh4WGw1tCZ+gBU9N05bSlhQ8h+P4MY8BpyJ4MmlYEVnr0SxXSy5hayXBU9O0pbQlB08LjLgkwZNJQ6/m1BzOcvjm0lsrlcHz0aNHq3/84x9X177++uvVn//859Xd3d3G37NP+/jjj1effPLJ+jHSHjx4sG6ff/756uHDh+uWr9P+9Kc/rVvul9+pPd7clsfJc6/9XVq7pobatxxvxn+HHk+oEzyZlHmc21ZALm1rpTJ45mRwTbIY4dWrV3uduHPfnPDye2/evFk/xk8//bT6/fff7x/1ML/++uvq7du368fMY+f/2DdQJDyccoEFu6mhy8nxZvzcBU+oEzypevfu3awD1Hi15KW36bjG4JmTe55neo3Gz32q5cQ99AYlHLSW55sgkedQe361lh6sBA/OQw0tQ17P8XNeUvC0uIglETypKrffmNsuubXSNQXPISzM6QFKT9EQEvJ7S5LeqISIPMfacy+bAHo6amhZ8vqOn+eSgmd5PP/555/vfwLtCZ58IAelHJyyZ19Wq+9q462V8vWlXEPwnBsW0sMzBIVrkaHVBIg899rfNG4C6OHU0H/b0moor/X4+S0leJYbyF/yGA0hePKBcsP4XXIgHB/YEkYvYcnBM2EhJ8ptYSE/y/DjEnul9pW5fV9++WX17xw3AXQ+NVRvS6mhpQbP8vhsmJ1LEzzZMHw6Tm/nXOXWSvv87iktNXhmKHHb/LuEhfTyXHtQmJK/rfZ3Dy2vTUIG09TQ8mtoicGzPDantzPfg0sSPNkwfDret9dyCVsrLS14Dj1U4+c0br2HhdKu8JDerQy18j9qaNOSa2iJwdOlMlkiwZM/DJ+OD7kEZrm10iU2lF9S8Pz+++/XoWD8fIZ2a2GhlL992xy+vHaooW2WWENLCp45lg9TpoZ2yYWfMCZ48oeh13KfT9Rj44NcWuuVk0sIngkCU9vEJCykR+ZWw0JpW09ehk5vtfdTDc23pBo6V/Dcd7/kcsFnOhOyPR4sheDJ+sA2DLGPD1Rz5wLlfpmwPvz++HHyKbvVnKJLB8/Mw5vqhclWMde0uriVvCZTcxcTsvKa3hI1tL+l1NA5gmeOzeVweUJljtc5tiZkpuV4ne9ltGq4X46/6fVsdfyFuQTPG5eD1vigVrZdc4J2/f7QWrhk8MzQX05y4/8/Ld+75SHRufIala/d0C7Rc30Jaug4l66hUwbPcUfA3JagmZCakat9Og6gNcGTblwieCYMTG35kh4qi2Xm2zbEnNeyV2rodC5ZQ6cMntAzwZNutA6eGeKbGhbN/62H6jDlCXxo6fnrbahZDZ3HJWqo/D8FT6gTPOlGy+CZk9fUsKg9KY+37fXtJXyqofNqXUOCJ8wjeNKNVsEzixVqJzTDoqeV3r6pRSPXvuhIDbXRsoYET5hH8KQbLYLnVGDIti6GRc9jasuca+0VVEPttaghwRPmETzpxrmD59Sq45zUOK/ypD60a9tsXg1dzrlrSPCEeQRPunHO4DkVGE4dbpk2tV3OtYRPNXR556whwRPmETzpxrmCZ05KZWDI7WvrbetBhqnH78PQlj7sroaW41w1JHjCPIIn3ThH8KytjBUYLmsqOCx1tbsaWp5z1JDgCfMInnTj1MEzq4vLPRYTGGx1c3m14JD3ZmnhUw0t16lrSPCEeQRPunHK4Dm1DUvmiLEMCW/l+5OQt5SV4Wpo+U5ZQ4InzCN40o1TBc+cdGqX3bPyeHlqi0US9i5NDV2PU9WQ4AnzCJ5041TBszyBpAkMy1W7znlC3yWpoetyihoSPGEewZNunCJ41obe0vuxlOFb6nLFn/J9u9Q8SjV0nY6tIcET5hE86caxwTPBIIsLxo+xpDmDTMt7VM6nzHvZ+vKTauh6HVtDgifMI3jSjWODZzknLyedrHzlOiQgjN+/tPRitaSGrtsxNSR4wjyCJ904JnjWFhjsG1y5vOyNWb6PrVaRq6E+HFpDgifMI3jSjUODZ22D7/RyGB69TrXV5Ofe31MN9eWQGhI8YR7Bk24cGjzLRQX7zOtieRL2yk3bc/uc1FBfDqkhwRPmETzpxiHBs7YC+VKroTmd2lVpznWJSjXUp31rSPCEeQRPurFv8Kz1auy7dx/LVVvoc+qhbzXUt31qSPCEeQRPurFv8CxPFDmpnHsuIO0kIIzf37RsFH5Kaqhv+9SQ4AnzCJ50Y5/gmfl3CQlz7891KsNA2qmCoRq6DXNrqLyf4Al1gifd2Cd4lpfIy3DpqYdhWYZyKHzuvoy7qKHbMaeGBE+YR/CkG3ODZ3orxvdLO9fCEy6vtkjk2F5PNXRb5tSQ4AnzCJ50Y27wLHuqLAbpX7lI5Nj3XA3dnl01JHjCPIIn3ZgTPGvz8mx9079aD+Wh+2yqodu0q4YET5hH8KQbc4JneXL4/PPP739C7/Jej9/7qdXJu6ih27WthgRPmEfwpBu7gmcWfpQ9Vebl3Y7aRu/79nqqodu2rYYET5hH8KQbu4JneWKwCvn2lKuT9+31VENM1ZDgCfMInnRjW/BMOChPGGUwpX/pnRzXQHov51JDxFQNCZ4wj+BJN7YFz3KILCcLPVW3qQyPc4fK1RCDWg0JnjCP4Ek3tgXPciuUV69e3f+EW5P3flwLc7dCUkMMajUkeMI8gifdmAqe6ZUqF4RkQ2huU+phXAtpuxYZqSHGajVUhlHBE+oET7oxFTzLIVLb31AOlb558+b+J3VqiFJZQ0+ePNm4LXhCneBJN6aCZzlEOnyf25WgOa6JXUFSDVEqa+ju7m7jtuAJdYIn3agFz9qQ2LHX6eb67TPcroaoqdXFuAmeUCd40o1a8Cy3PjFEyqC8Cs3UcLsaYkpZQ+MmeEKd4Ek3asEzmzuX34NILYxrY2p1uxpiSllD4yZ4Qp3gSTdqwbNcAJBFIhDlUOmwEXhJDTFl23C74Al1gifdKIPnX//6143bNvymVG6RVM7zzFzO8c/VEKWyhoYmeEKd4Ek3yuBZrkR+9OjR/T3hv8ph9HKeZzm/Uw1RKmtoaIIn1AmedKMMnuXEf3PzKO2a52l+J7tMzfMUPKFO8KQbZfAsh8DMzaO0a56n+Z3sMjXPU/CEOsGTbpTBc9zMzWNK+QFlmOeZf8ffV0NMKWsoTfCEOsGTbmwLnvZeZErmbY5rZbgGe7mwSA0xpayhNMET6gRPurEteGauHtS8evVqo1aGBUblwiI1xJSyhtIET6gTPOnGtuCZEwPUlItDhgVE5bW41RBTaguMBE+oEzzpxrbgmd4rqMmCoXGtDCvby+241BBTyhpKEzyhTvCkG9uC5zBvD0q1RURRrmhXQ0wpayhN8IQ6wZNubAue5RVpYFDbDifK4KmGmFKrIcET6gRPujEVPBMgYJsyZL57927jthpil3JLpRcvXtz/BBgTPOnGVPC0DQ67lFe5+ve//71xWw2xy93d3UbNCJ5QJ3jSDcGTQ5X7MP7rX//auK2G2KXsNX/+/Pn9T4AxwZNuTAXPhArYplzB/s9//nPjthpilwcPHmzUzLNnz+5/AowJnnRD8ORQ2Rx+XDOvX7/euK2G2KWcrvH06dP7nwBjgifdmAqerjjDLuWVZ/7yl79s3FZD7PLw4cONmnn8+PH9T4AxwZNuCJ4cSvDkWIInzCN40o2p4OlSh+xSXvLwyZMnG7fVELuUC9RMz4A6wZNuCJ4cSvDkWIInzCN40g1D7RzKUDvHMtQO8wiedGMqeGarHNgmwXJcM3/72982bqshdrGqHeYRPOmG4MmhBE+OJXjCPIIn3ZgKnuZasYsN5DmWDeRhHsGTbkwFT5c7ZJdyYYhLZrIvl8yEeQRPujEVPHNCgG3KYdJ3795t3FZD7HJ3d7dRMy9evLj/CTAmeNKNqeD5ySef3N8D6sreqv/85z8bt9UQu6RGxjXz8uXL+58AY4In3ZgKnmm///77/b3gQ7V6KYOEGmKbca2k5Xr/wIcET7qxLXj+9NNP9/eCTamNca0Mw+rl8LsaYkpZQ2k5HgEfEjzpxrbg+ebNm/t7waa3b99u1Mqwgr1c6a6GmFLWUJrgCXWCJ93YFjxzSUSoSaAc18pweczyakZqiCllDaUJnlAneNKNbcHTBuBMKTeP//7779ffL3ux1BBTyhpKEzyhTvCkG9uCp+1wmFIOqSdwxvv37ze+r4aYUtZQmuAJdYIn3dgWPG2Hw5RyK6Vff/11/f2sYh9/Xw0xpayhNMET6gRPulEGz3I7HKuSKZWrkctwWQYKNUSptqI9TfCEOsGTbpTB8+HDhxu3rUqmVC4KKedxlguM1BCl2sKiNMET6gRPulEGz3LelcUhlMoaKVeuZ6HR+OdqiFJZQ0MTPKFO8KQbZfD8+uuvN26bo0dpan7nwDxPdqnN70wTPKFO8KQbZfBM75U5ekzZNb9zoIaYMjW/M03whDrBk27Ugqc5ekzZNb9zoIaYMjW/M03whDrBk27Ugmc5Ry/X34bYNb9zoIaYMjW/M03whDrBk27Ugmc5Ry+tnMfH7UkNzK0LNURNrYbGTfCEOsGTbtSCZ6SHavx9Q6WUQ6S7ejHVEKWyhu7u7jZuC55QJ3jSjangWQ6VWpnMo0ePNmpiaph9oIYolTVU3hY8oU7wpBtTwdNQKWO1lci76kENMVaroXIRmuAJdYIn3ZgKnvHll19u/Cy3uU2pi3EtzN0UXg0xqNVQ+T3BE+oET7qxLXi+fft242eGSm9XuS9namMONcSgVkOCJ8wjeNKNbcEzQ6UJCuOfZ94et6UWHlMbc6ghYqqGBE+YR/CkG9uCZ5RzsPRY3Z5yAci+w+VqiKkaEjxhHsGTbuwKnrUFInqsbkfZU5W27+Uv1dBt21ZDgifMI3jSjV3BM8oFIpmrxW0oe6rmLioqqaHbta2GBE+YR/CkG3OCZ63H6v379/c/pVd5j0/1vquh27SrhgRPmEfwpBtzgmeUPVauvd2/8prah/Z2DtTQ7dlVQ4InzCN40o25wbO2+XPmbtGn2ry8Y3so1dBtmVNDgifMI3jSjbnBM8q5WlYn9ynD4uV7ndunoIZuw9waEjxhHsGTbuwTPHO5w/F9d92f6/TmzZsP3udTzcdUQ7dhbg0JnjCP4Ek39gmeUc7TS4+V62/3Iz1VeU/H73H24TwlNdS3fWpI8IR5BE+6sW/wzEmlvPTdsYtOWI7aZu95z09JDfVtnxoSPGEewZNu7Bs8I5t/j38n7VRDsVxO3sPyfZ1TD4dQQ33at4YET5hH8KQbhwTPyFY44987R88Y7eS9K9/T3D7ne6qG+nJIDQmeMI/gSTcODZ61RSKnWvlMe+V+i2nn7oFUQ305pIYET5hH8KQbhwbPKOdypWU1K9eltgL51AuKpqihPhxaQ4InzCN40o1jgmeUe/WlZaNwrkPeq3IF8rmH2Etq6LodU0OCJ8wjeNKNY4NnTi7lSScrllm+vHdl6Mt72Tr0qaHrdWwNCZ4wj+BJN44NnlFbyWqu3vKV+2mmXWqYWw1dp2NrSPCEeQRPunGK4Bm1E5C9GZerNrey1bzOKWroupyihgRPmEfwpBunCp5RbqWSlv0aWZbaQpDW8zqnqKHrcKoaEjxhHsGTbpwyeOakU16RJk1wWI68F7X5lEu5ZKUaWr5T1pDgCfMInnTjlMEzcvIpT0pp594Tkt1qq4/3WQjSihparlPXkOAJ8wiedOPUwTNyEho/5tAEh8vJa18LDG/fvr2/x7KooeU5Rw0JnjCP4Ek3zhE8Iyep8eMOzZBpewkGZWC4hvdCDS3HuWpI8IR5BE+6ca7gGbUFCGmCQzt5D2qB4dIr2OdSQ5d3zhoSPGEewZNunDN4RgLC+PGHlpMZ5zUVGK7ttVdDl3PuGhI8YR7Bk26cO3jG1JDpOf4v/qu2x2ICxLX2FKqh9lrUkOAJ8wiedKNF8Iyp4LCU/SN7kdcym66Xr/M1h86BGmqjZQ0JnjCP4Ek3WgXPmFqpnBNaQgXHyWtY2wMzr+9SV6/vSw2dV+saEjxhHsGTbrQMnpHgUDuxpZmzd7ipuXg9hc6BGjqPS9SQ4AnzCJ50o3XwjAzlPXr0aOP/HVq+b9h0vrxWtWucD6/lUq5IdGpq6HQuWUOCJ8wjeNKNSwTPQXnSGbdrn4/YQl6jWg9VWhaG3EL4UkPHuXQNCZ4wj+BJNy4ZPCNzyqZOfFk00muP3TEy1Fxb/JGW1/LWApca2t9SakjwhHkET7px6eAZ6VVJQBg/j3E7xUbVPcjrlNdCyPqQGppnaTUkeMI8gifdWELwHGRxw/i5jFsWk9zq0GnCQv72qWCVEJHXLve7dWqobqk1JHjCPIIn3VhS8Iyc+KYWOqS1HAa8tLwWCQNTK7jTel5AdCg19D9LryHBE+YRPOnG0oLnIMFg28my5/AwJyzcUng6lBpafg0JnjCP4Ek3lho8B5mPNn5+tZb7ZLHEtcsimW3z79Lys9wnwYJ51NBmW1INCZ4wj+BJN5YePAfpvRk/z1rL/LU8/2sKZXmuec7bFsakJSzkfobVD6eGlldDeT7j5yh4Qp3gSTeuJXgO5oSHtGwVk/susRcrzynPLc9xW89UmsB5empoOQRPmEfwpBvXFjwHOenuOuEOLffLYpPMZ7tET1b+z1xyMM9hV6/U0ATO81NDl9cyeP7222+rH374YfXs2bPVZ599tvH/Pn78ePXdd9+t7zPI1/k+LIHgSTeuNXgOhpPx+G/Y1bLgIj1F+VsTJDIv7hQSDtITlcfMY2e1cELCPuEmv3OpcHOr1NDl5G8cP/9zBM8EyG+//Xb16aefrv+PhM5vvvlm9e7du9WPP/64bgmdCaS5T+6b38l9BE+WQvC8UTlAjQ+Sc1sOXl999dX60/b4E/USlMEzJ62cDK6xPXnyZHV3d7fx9+zb8vsJFQ8ePFif8NMePny4fl3S8nVavp/7peV3Pv744+rjzWl5jDx2FnzU/i6tXVNDbVue8/jvOHXw/Pnnn//o3UyozDF4m19++WX1xRdf/PF8BE+WQvC8ccMn6OHglJaDWw5qwyfotNzOp+bxsE4Ofvl0vRRl8NQ0TbtUO2XwTOgcejnzb27Pld7P4TnBEqhE1saBctcn4zKopgd0CQRPTdOW0k4VPNNzOYTOtHQE7COdC8PxHZZAJbKWsDkc2OYMyaSnc7h/2q5hnxYET03TltJOFTzHx+b0Xh4ix+f8PiyBSmRt3+AZ417SfH1pWRSRg73299XLly9XL168WD1//nx9snr69Om65b0d5ufl67R8P/dLy+/kd1+/fl19XO12mho6rp1ikdYQGIe2b2/nWI7RS5uXz20SPFnLyWM4uOXrOTLnc3xQzJAQAKcxXhyU4fZjZJTqmOAKpyJ4snZI8CznejqoAZxGPsiPj6+HDrPD0gierB0SPLOoaHxgNIwDcBrlPPp80IceCJ6s7Rs8EzLHKy3nhlUAdiunMi1p6zo4huDJ2j7BM6FzfP9995UDYLvxMTbNVCZ6IXiyNj7IZUJ7baFQwmU+dY9Xsyd0OiACnJbgSa8ET9bKg9ycljme5nUCnN74ikNpuR479EDwZG0cPNOjmU/X45aDXia3j7f3SMvtJWweD9CTctcQi4voheDJ2jh45uttEkTLALqUy2YC9CAf9h1j6ZHgydo+wTMyxD6e65nmEznAaeQYOz6+LuHqcHAKgidr+wbPKD+RH3tlDQD+p9wrOaNNcO0ET9YOCZ4x3svTgRHgdMqrF+1zbC5lV5LsDQqXJniydmjwHP9emuAJcDrlFYwOWcyZ0JmheruQsASCJ2uHBs9ykZGN5AFOqxxy3yd8DqHTsZmlEDxZOyR4lsNAJr8DnEcZPnOc3hYm07uZBZ+uLMfSCJ6sHRI8yw2O7ecJcD5Z0FnuJpLbCaUJmWmZxzkcz3OMNrzO0gierI0PZruCZw5k5afv3Abg/BJAc8wddxikpXcz30sArV32GJZA8LxxCZH5hFwevPK9TGrPYqGhpUczB7tyJbv9OwGAOQTPG5UgOQ6P+7R8os4QToKpYRwAYC7BEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoIHV6v8AFUQSb5GOWIMAAAAASUVORK5CYII=
|
As shown in the figure, two identical largest circles are cut out from a rectangular piece of paper. The circumference of each circle is 12.56 cm. What is the radius of each circle in cm? (Use π = 3.14)
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
89
|
iVBORw0KGgoAAAANSUhEUgAAAeQAAADxCAYAAAAawsRlAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAB7OSURBVHhe7Z2/rtRWF0ejSJ+EaBK6W1AkoghVlIKCMh3pSBVK0iGKiChFQDRJS5q0dCkpU6GUKXiA8AIoL4CUR5hPv8vdcGbfczz2jO2zj89a0hbMXM+Mx96zl88f2x/tAAAAoDoIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIAAIGQAAIACbFPKbN292N27cuHgEAABz8+zZs91HH300KVSX79y5s3v48OHu+fPn57UaPrBJIT99+vR857948eLiGQAAWAJJ9d69e5fEK2G/fPly9+rVq/PQ/1Wb9bd0WQlaf4cNCvnt27e7a9euvd/RAACwLJJyKlnJeAgJ2ItZsu6dzQlZ3SDpTubICwBgedK6e0jIQo0ndV2nr9PjntmckP1RV+87GABgDdK6O0bIhnoy09eqUdUrmxKyxoy1Q2/durW3g5k4AACwLGnNnSLkdJhRof/ruR7ZlJB1pKWdOXU8AwAATuOUmqvl09f3Op68GSFrrDhNhHRsQpIGAIDlsHqb1uGxqEWcvr7Xmr0ZIZuArXvaBG0R7RSov//+e/fLL790H48fP949evRo9+DBg/PQ6ROKu3fvnvd4KPR/xf37989Dy+k1ufcj+gzy6LRQPTqVtN4e0yupfZS+R48TcjchZOui9hO40gleGleOhH4Etm4EQRA1Q/XoVNL3O0bIdv0Iix4nd21CyDb+4I+obJKXRaQjLoRMEESUiCBkq+OnvEfrNC9km6GXawH72XuRToFCyARBRImIQu5xYlfzQrZWcGmM2HeDRDkFygv566+/3v36669NxZMnT3bffvvt7uzsbO+7TIkrV67sPv300/P3UNy8eXN3/fr1vWU++eST3VdffbX77LPPzkPL6TXpMlND76N1z30vYt1YKo8Uypsvvvhib9mrV692n0eqN+n3oIUcg+aFrHHioRl5UU+B8kLWj6QVNAHkxx9/nFTMtKyKgF73+++/n7/HP//8s/vvv/8u3vUDf/75595rVfBK/Pvvv+fL6z313vqMqUVW7z/HpBaYxtJ5ZIzJp97ySPUmXXeEHIOmhayLlY/ZcensvSjT6VsTsgqe1lEtjnS9S6FiZi0HFcwpTBFyCa2viqtem77XUKi1o2IMy7FmHhmn5NNW80jbM13nCEJmUlfjQvbT5MdGhFOgWhGyFdAxrQW1Kqxw6nXHMoeQPWq5qLBqHdP3LgVinpcaeWTMmU9bySNt33Q9IwjZ1/PXr19f/KUfmhWydpZ2ms411OzpQ5GeAqX/1ya6kMcWULUGrHjOxRJCTlH3pIqq1j39nFwg5tOomUfGUvnUch5pW6frV1vI/sIgEWp0DZoVsr8QyCGUIOkOl6RrElXIKqAqHkMFVH9TUZurBeP5448/9j7v+++/v/jL/KhY6/3Tz8sFYp5GhDwy1sin1vIompB9fe71BhNNCtmOptQ6Hos/BWrKa5cgopDVHTc0tqcCqhbBksVTrCnkFH239HN9aNuo8MIwUfLIWDufWsijSEL2tVmtYz3XI00K2Y6mprZyI50CFUnI1ppJ1yeNrRdQz6GCqvVRdyXsEy2PjKgHeDXzKJKQuWTmB5oTsh1NHXMpTH8KVM0LhUQRsoqVCmW6Lha9FVCPvvvQ+KDWE94RMY+M2vkUMY8iCFm13IYeLaLdc2BtmhOytXKnHIGlpDtfUWsmX20hqzhq/C5dBwsVUBWtXguoZ6jVp+7HnlvLkfPIiJJPkfJobiFPvd6Dn2irRpZOY+2dZoSsHW5d1ekOHDvWoOU0UcBen76PjsrWHrOoKWSN8ZWO2HU6xxIzXaegwqQxNgutb220TUrjohJPhHVcm+h5ZETKpyh5NKeQVZt9t7Nkq3qt2ir5KlSv9Zx6N2051V+1kteuv1FpQsjamenO9nFozOHQ6y3WpJaQ1X2mH3762Qo9V7NbsRW0jfy2s1i7l6Mm5NFp1M6jOYScNpDGhgQseaunc0qDqhea67LeCmsLWQVSXXXpZ1qoNdNzt+tUhrpptS23DHk0HzXzaA4hw/wg5EqsKWR1k5W6FvW5tGaOwxc1C7USo3TXzgl5tAw18sh/JkKOAUKuxFpC1g+61LWo8bSIWHeohR5HZWj7bknKLeaR0UI+rZ1HCDkmCLkSawhZE0RyP/LoXYt+fC3K1Y1KqGVYmqizhclereaR0Uo+rZlHCDkmCLkSSwu5VERVjKJ3LbYmZKN0Wkv0FuQQLeeR0Vo+rZFHCDkmCLkSSwpZBahURFugVSELX+gsalz84VRazyOjxXxaOo8QckwQciWWEnKpiM4p/KXxxaJ1AVi0JOUt5JHRaj4tmUd+myDkGCDkSiwhZP1QfRHV49ZaZ75YtCgBdfWm38Gihe7rreSR0XI+LZVHfpsg5Bgg5ErMLeTcLM1Wi2jLBTSlVEwjz77eUh4ZrefTEnnktwlCjgFCrsScQtZMV39+qIpoq5OJWi+gKbliqn0TUcpbyyNjC/k0dx75bYKQY4CQKzGXkEunSmj8qVW2UEBTJLT0+ygkvkizlLeYR8ZW8mnOPPLbBCHHACFXYg4h64eYu/Rea5OgPFspoCm5CToSYAS2mkfGlvJprjzy2wQhxwAhV2IOIfsflWILRXRLBTQldw1oibA2W80jY2v5NEce+W2CkGOAkCtxqpBz3Vc6Uo7UDXosGhfT97PY0g0LdHUrv9/0HWux5TwytphPp+YRQo4JQq7EKUJWsdSEjvT10cYkIY/2kR+r1b6sIQnyqF1OzSOEHBOEXIlThOzH+/RD1CxMaAMVzXT/KZa+3V4O8qhtTskjhBwThFyJY4Wcm9QxReYQA53X6/fjmjOayaNtcGweIeSYIORKHCNkjYX5LkYdEW+ti1ETivQ9LVq+KMUQuZnNa5yf3EseGVvPp2PyCCHHBCFX4hgh+4kcKi5bmKDiUQFNv+eaLcc1kQD9hTj0eGl6ySNj6/l0TB4h5Jgg5EpMFXJuNuyUWZUt4U/r2GoLWeSuwLTk9+0pj4we8mlqHiHkmCDkSkwRcu4IeOp5hy3Rk5BFbnLVEt3HveWR0Us+TckjhBwThFyJKUL2Px790NYYa6xFb0JW0Uy/r0LbYG56yyOjl3yakkcIOSYIuRJjhayxPRXOMctuhd6ELHyBVMwpyx7zyOgpn8bmkV8OIccAIVdirJB9MVGX4xLdmZGYUkBfvHixu3Pnzvtlr127tnv48OHu1atXF0u0g+9OHntO6Rh6zCPjGCG/efPmPI9u3Ljx/nW3bt3aPX/+fPf27duLpWIyJo8QckwQciXGCFlHtukyih5ai2MK6OvXr88LZLqcj6dPn14s3Qa5iTlztJJ7zSNjqpCfPXu2t7wPSVr5F5UxeYSQY4KQKzFGyL6Q9DABR/jJKX4WsFovagmny5SiNSn77z7HPu81jwz//YdmlStf0mVLofxTHkblUB4h5Jgg5EocEnJuzG/rp6cYvpj47512UY+JyIXTk2vNnnKOcM95ZBzKJ0PDHOlyh0Jd2lE5lEcIOSYIuRKHhOx/MMfc87RVhgqoFc179+697zbUmJ7Gkkut5tZayf6mAWrhHUvPeWSMFbIO9JRDyiUbJ1aOKdfS16cReTx5KI8QckwQciWGhKzJNr5V09OYn47uVTQt0iN7tUo0xpdDxTPdZhYqtC2h7+y/wzGt5N7zyBjKJ8OGQUqCLUk58uTBoTxCyDFByJUYErL/sfQ0I/YQar0MIWGn207RmpCFnyl7TCuZPBqPDuaGJmpJ2Om2tIg+m7+URwg5Jgi5EiUhq2D6H1EqaxhGwk63naLUoo6MWrLpd1BLdwrk0fykp0BZRKeURwg5Jgi5EiUh+24m/YBo1YwnNzFnTCtGy6hbMh2HVgEundOcvn8a1hpX16cOBPx5rL6Fr5aXP99V66HP9EKd0t1MHs2Pn0w4pufF8sCfoqfX5s5pzuWvhR1YWs6kuWo5k2I5/fHHH++9z2+//YaQg4KQK1ESsp+AojvV9IYuZCCBKCQlfw7lECpy6faT6IZQQbTxQRU4FbH0OQs/MUzL5E6RUaHVe6TF0oe9l19XH999993eY+XGWMijD5ySTyl+nx4aPnn58uX710igyhkvXOWn7yqXcL38FRLyoZzRZ+pzckM3Fv/73/92P//8895zCDkGCLkSOSGrBaOikT6vk/x7w98ecMo28JJUgRoibbmo2Bl6Xfo+ilwLxC9jBdjeS8U2J2cVXD1v65f7vM8///zSc2Mmd5FH+5yST4Ykl76H8maIdH9qP6fkWsseyTddRqH3UVge5oZn9He9v8JE/9NPP11a7ssvv9x7jJBjgJArkROy72bs8RQVcUoB9V2/Q/iip5aJkZvEkwpb5ISs8C2nXGtFhdO3jNJ1t7h+/fre4zH38iWP9plDyF5+QxPAJG/tX1tW+z/F54OW9ZSEPCZnJGOtg5HL5atXr+49RsgxQMiVyAnZdzNaN3ZvHFtAU0GqUKVFyZMrUh4VYSusasX498sJeWxrR895ct2UP/zww97jMXIlj/aZQ8jpvvEHZh4vXL+vlUf2fsqvXNf3KTljLegUv4wPhBwDhFwJL+QnT57sPVYcO9bVOscW0LTIDbVgRG4sbiprCPmvv/669NxQt7W6q/3yveaRcaqQ0/3sW7s57CDOIrevD4GQ+wQhV8IL2bdqeu5mPKaApl2KuYLkyRWyqawhZH2Gv+LSULe1P82l9+5qcaqQrVs4t289uZxAyDAWhFwJL2RfdHvuZpxaQNX9bK2SXPdfjpaErFxInxuabe1vpNB7d7U4Rcg2SdCPy5ZAyHAKCLkSXsh+Vqwm5vSKPzg51OVqRWmsjEWukKWTusawlpB9N7RypYQ/d7nnPDKm5pNh+3esjEUuJ8Z0c3sQcp8g5Ep4IaehgtvzRRymFFArXEMyVjFVUU3JFbIpQhdrCVn4A7bcOLK2U7pM73lkHCNk5Yx6XQ7JWPsxzZtcTqjLeypz5EyKX8YHQo4BQq7EkJDVxdYzYwuoFb8hkWpyl4qqPwXKz4RVHDpNyrOmkH1XdG4c2Y8f955HxjFC1r4YkrGet4mB6QTC3Ox9v8wYEHKfIORKDAm593G/MQU0HTceE76Y5WSqmFI41xTymHFkxo/zTBVy7gpsQ+HJ7cepB3sIuU8QciWGhNz7uJ8m3WgbKNTq892u1gWd23alyBWpXDErtYokarvkpbGmkMeMIzN+nOdQPqWotyXdhocit79zeaEo9eSot8bPX0DIfYKQK1ESMuN+h8l1Nx+KkmRzrWxJ2YqadU1qHNAXzVzh1Ws9cxXXoXFk/T/9G3k0nVI+DIU/SDNKOar9brmoz9M+z71HLmdyyyHkbYGQK1ESsrrXoEyuUB2KnCSNMUVYr/cyVlEtdW2mBVGv0+v9Ml7wek1uPdTVaQV86PQddcOmfyOPpqFtPFXGiqFrpY85cMxd9Ut5kRPtMTkjchfB8YGQY4CQK1ES8jE3ou+F3A0YxoQK4xAqXipaqThV6FTYSt2M6fvnQgVVBTP3tzR0gDHmIEPojk3pc+nELj+hizyaRu6gaUz4AzWPckD5l4pTn6WDudxr58wZvVdO7LlAyDFAyJUoCbnn2+QZGgtVl6tC/6fr9R1+Ylc6aUtyTv9GHn2AfNrH55ECIccAIVeiJGS1dHrHT04ac8vBHtCkpHS7pDOt/aVXyaMPkE/7+DxSIOQYIORKlIQ85bJ+W4UCmic3ccvw24w8+gD5tI/PIwVCjgFCrkRJyMiHAlpCXa3pdlEYbLMybJt9cnmEkGOAkCuRE7IKB1BAh/DbRrOrtX3S58ijfciny6h3Jd0mDx48uPgL1AQhVyInZE5VeYcvFkzq+kDuqlOc8jQM+XSZs7OzvW2CkGOAkCuBkMtQQMvkzkVGyMOQT5fxvQb379+/+AvUBCFXIidkbgbwDgpoGT+bWjNmJeX0OfJoH/LpMjdv3tzbJlOvtQ3LgJArgZDLUEDL+BtI6PQmhDwM+XQZP/Rx9+7di79ATRByJXJC5upK76CAlsldrYurdA1DPl3m9u3be9tEV/SC+iDkSiDkMhTQMgh5OuTTZRByTBByJXJC5nKH77Bb5Sm44tQ+uctnctnMYciny/jJgQxzxAAhVwIhwzEgZJgDhBwThFwJuqzhGOiyhjmgyzomCLkSOSGnNwsAyCHZpjkjGasrNn2OPIJDMMs6Jgi5EggZjgEhwxwg5Jgg5ErkhMw4DhyCC4PAHHBhkJgg5ErkhMwlD+EQfjIOl86EY+DSmTFByJXICZm79MAhfFcjd3uCY+DmEjFByJXICVkXMAAYIncrQV3oIn2OPIJD+IulPHr06OIvUBOEXImckBVcRQiGKOULV6OCKaS5onj8+PHFX6AmCLkSJSGrCxIghx8rTrumc13ZADl8HilUj6A+CLkSJSHrQg8AOfzpTelsaj/7mjyCEj6PFAg5Bgi5EiUh61KIADmGLpHpr+BFHkEJn0cKhBwDhFyJkpC5qAOUyF0UxODiIDAWn0cKhBwDhFyJkpA5ZQVK5C4KYviLg5BHUMLnkQIhxwAhV6IkZE5ZgRK5U54MTn2Csfg8UiDkGCDkSpSErGCGLHj8zNiccH2hJY/Ak5thrUDIMUDIlRgSMjNkweMn4uTGiHO3ZgRIyU3oUiDkGCDkSgwJmQk54PHjfrlZ1P6+yOQReHLjxwqEHAOEXIkhITP+B56h8WODcWQ4RG78WIGQY4CQK+GFrOKZPmb8D4wx48cG48hQojR+rEDIMUDIlfBCvn379t5jxv/AGDN+bDCODCVK48cKhBwDhFwJL2Q/tsM9bcEYM35s+HFk8giM0vixAiHHACFXwgv5yZMne48VuXFC6At/r+NDeeHHkQ8tD32Qy6M0EHIMEHIlvJDV6vF37KG7EXw345gWL3kEHp9HZ2dne48RcgwQciVyQvbdjcySBd3RKc2JMTeNII/A4/PIP0bIMUDIlcgJme5GSMnNih2TD+QRpOTyyE/+Q8gxQMiVyAlZ+Dux6DH0iXIizYWh2dUe8giMXB755xByDBByJUpC9rfRo7uxX/w5xendnQ5BHoGRyyOEHBOEXImSkNXdqOKZ/i297y30QU6oyo2xkEcgSnmEkGOCkCtRErLw4zu0bvrDT7o5psuZPIJSHiHkmCDkSgwJOTcph9ZNP/hWjeKYS2CSR30zlEcIOSYIuRJDQhZ+Uo7GgaAPfKtmymQuD3nUL0N5hJBjgpArcUjIudbN33//ffFX2Crax3Pud/KoTw7lEUKOCUKuxCEhC9+64brE28dfb/iU1rFBHvXHoTxCyDFByJUYI+TcCf0aF4Jtkhvzm6M1Sx71xZg8QsgxQciVGCNk4ceBmCm7TdS17Pe1Hs8FedQHY/MIIccEIVdirJBzd2kpLQvtkrtX7ZxjveRRH4zNI4QcE4RcibFCFn4MUK0brk28HdSq0T5N97HOIZ4b8mjbTMkjhBwThFyJKULWD81f/m6OyT4Qg9wFPLTP54Y82jZT8gghxwQhV2KKkIW/pZ5izi5NqIP2od+vh3LhFMijbTI1jxByTBByJaYKWfgbzy/VkoJ10L7z+1SPl96n5NG2OCaPEHJMEHIljhFybmLOnDNxYV38uaKKNVqr5NG2OCaPEHJMEHIljhGy8ONECs2shLbIzYZdYiJXCfJoGxybRwg5Jgi5EscKWfjzDBXH3HwA6qB95WfDrtFV7SGP2uaUPELIMUHIlThFyPrB+R8iNw1oA+07L0LtyxoiJI/a5dQ8QsgxQciVOEXIIjerknHA+PhzgRU1u4rJozY5NY8QckwQciVOFbLI/Sg5rzQuuXHbNceNS5BHbTFHHiHkmCDkSswhZOFPd1BwE/p45Cbf1Bg3LkEetcFceYSQY4KQKzGXkPVD9FdfUlBM46B9kRurjXTZSvIoPnPmEUKOCUKuxFxCFvpB+h+qYo1zWmGY3EzYKZNv1oQ8isvceYSQY4KQKzGnkIV+mOn7WVBM66Ftnyuike9FTB7FY4k8QsgxQciVmFvIQj/c9D0t6HZcHxVLX0Rb2RfkURyWyiOEHBOEXIklhCxykz4UFNP10D7IFdEIM6rHQh7VZ8k8QsgxQciVWErIQkUzfW8L/cBhWUpFtMVtTx7VY+k8QsgxQciVWFLIotTtOPfnwAdy54eqqLbcqiSP1meNPELIMUHIlVhayKJUTCOd/7oFtC1zd9xpXcYGebQOa+YRQo4JQq7EGkIWpVmz+pGr0MJpaBvmzt/V9o08m3oq5NGyrJ1HCDkmCLkSawlZqJjmfuwKxgOPpzTOtzUZG+TRMtTII4QcE4RciTWFLNQdlrvdnkLP0/U4Hm2r3PWfbVtGugLX3JBH81EzjxByTBByJdYWsuF/iGlsYbxzabSNcq0ZhSbj9CIk8ug0aucRQo4JQq5ELSELjVeVioEm6my5hXcs6q7NTbhRaFv2KCHyaDpR8gghxwQhV6KmkIWOwFU003VIY46LD2wBbSdtC8SThzwaR7Q8QsgxQciVqC1kQxNK0vVIQxN4eu1+VAHVdy/JRoVV207LAXlUImoeIeSYIORKRBGyUDEoTS5RrNmVVhttCxXI0mxixdYnbh0LefSB6HmEkGOCkCsRSciGiuVQAdlyQR1TQHsSyimQR/HzCCHHBCFXIqKQDY11peuWCy2jCSqto4lJQ2N7Cv1Ny6jYwnjIo/2IlEcIOSYIuRKRhWzoSD9dx1xobEzr3pKstK5a56HJSAoVUC1H9/RpkEfx8kjrk64jQo4BQq5EC0I2xhRUhU7n0LIRWzxaJ62b1nGoFaNAxMtAHsUBIccEIVeiJSEbKkSHipCFltMEH42V1Wj16DN12UGtw6EWjAUiXgfyqD5rCPnt27e7Fy9e7O7du7e7cePG3ufduXNn9/z58/NlDP1fz/cMQq5Ei0I2rECl638oNMlFrQp9TxVXjbnNgQqmWi16T723Zq6qcE4p+HpNrYLfM+RRPfQd0/WfU8gS67Nnz3bXrl07f2/J+OnTp7uXL1/uXr16dR6SsUStZbSsXqNlEHJgtOPSpBkb2qkPHz48PzpLj8Ai4YWsH7N+JK3FN998szs7O9v7LlNDr1ehvXnz5nkRVNy+fft8myj0f4We13IKvebKlSvZ9xsTeg+9tybZ5L4XsW6QR+uG1jn9HnMJ+fXr1+9bw5KtavAQb9682d26dev9eiDkBrAjLttpCu107Ww74lLosY6y0u4RJYWOxqLhhUwQBFEr5hCyZGytYv2rx2NRa9nWpWea+vapaA8dSXmBq8UcCYRMEESUOFXIaumajBVqIE1BjS6r7z3T1LeXhG2Hj+naUMvYllcc6j5ZE4RMEESUOFXIaW1Wa/cYVJ/1+p7ZtJBF2qrW/6OgySj6EfQejx492j148GB3//798x/y3bt3z0P718b+9H+FntdyCr1Gr338+HH2fYm+gjw6LU6ZHGcitZjaOk5RjY4672cNNi9kjSmnyaKuFQAAmId0Upa6rU9BvZqnCL11Ni9kP5bc884GAJgTNXDS+npsdzW8Y/NC1mSuNGF67g4BAJgTP09HDSA4nk0LWfJNZ/6NlTgAABzGDwlGPMW0JTYrZMk4XX7qeXEAADBMWmMVDAmeRrNC1kSC3AQtSVdHaensasmYRAEAmBeEPC/NCnlsaAyZcWMAgPlJr7Cl0PWq4XiaFbJawDoaS0PJoEkF6TR8hR5HuigIAMAW8GexMKnrNDY7hixBezFHu3wmAEDLqBFEjZ2PzQpZqKs6HUtWcAQHADAPqrFpfY10NcQW2bSQhT+CO/VKMgAA8AF/rQf1TsJxbF7IIj0XmYQBAJgPf7WuKbXZo7NkdG5zr3Qh5PR1CoQMADAfc9xZTzLm5hINcayQ/eQuLhACADAvvut6ipRNxr3X5s0L2XenMOkAAGAZvJRVp4ckq9awJtpyJcV3bF7I/sR1zkcGAFgOTaT1Z7fosWQt+So0Tmz1XDWaize9oykhpzv5kJC1g/3Rmh4DAMDySMyquWlDSqHWsJ6TmLk//T5NCFly9XcV0U7Vc3ZDawu1gJUEfmY15x8DAEBkQgtZgk2lOiV0BKauEAmb7hAAAIhOU13WAAAAWwUhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAABAAhAwAAVGe3+z8WoutpEvOlwAAAAABJRU5ErkJggg==
|
As shown in the figure, two identical largest circles can be cut out from a rectangular piece of paper. What are the side lengths of the rectangle, AB = ( ) cm, AD = ( ) cm?
|
A. 2, 4; B. 8, 4; C. 4, 4; D. 4, 8; E. No correct answer
|
D
|
90
|
iVBORw0KGgoAAAANSUhEUgAAAl4AAAESCAYAAAAsU9sMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAACWYSURBVHhe7d2xrhTJFcbxlSVLq01sMoINbBGYaOWAgHAznOHIhGyGCCyQA4NI7BQnm5I5JCRCDjfgAcwLoH0BJD/CWN/de+DMoaqne6b7VHX3/yeV4N7bM3fuzJmub6qrq786AAAAIAXBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBCwAAIAnBC8DiPnz4cHjx4sXh3r17h6+++upTu3Xr1uHBgweH169fX28JANtG8AKwqJcvX34KWjdu3Di8e/fu6vsKY48fP/70M4Wyjx8/Xv0MALaK4AVgMRrlsmClZqHL06iX/fzOnTvX3wWAbSJ4AViEQpYPXWolr169OtqGw44AtozgBWAR/jCitZIY0DTnCwC2iuAFYBFxIr1a6VBjDF66HQBsFcELwCJKwUtzuOIE+rdv3x5to5EyANgqgheARZQONarF8DVmAj4AbAXBC8AiSpPrrSl8aTkJBTB/VqNC2CmafB9H03R/uq3u0xt6DFrmQmxZCy11YT/TPLMYAPW1vm/b6V/dLv5OABhC8AKwmNqol5qCiwUo/V9nNw55//79VcDS9hbc1Hxw0/3EsyK1Temwp4JXPKMyNh0GVTg89Xew/hiAsQheABY1FFqsKVQNUXhSwCltHw9VloKQX8TVb6dmI1sKbKVtFPLU7HfG36emvxEAxiB4AVhcKaz4poAzFL78iJVGuLxSYIr3VQtecTs/emZNocsHOYXAuE18TABQQ/ACsDiFFTtMWGu18BWDlUJY5IOd/h+VgpfN8fJKhyTjXC+J26gBwBjsLQAsSgFHoUrhRIfkNEE9hhZr2i4eJozbl4LXKQQvAL1gbwFgMX5+l0KVGZrUHudLxZ8TvACsGXsLAIuIYScGqtLcLDUf0CT+nOAFYM3YWwBYhB1etBaXeZDaYUc/1yv+7JyJ7AQvAL1gbwFgdgorMZiUAozmc8Xt4raln2uy/hQELwC9YG8BYHZjg5eUwo6fYF9a4uHUYqsRwQtAL9hbAJhdaa0rrQJfEkORlp3wSqFJYSye/TiE4AWgF+wtACwihpjS+lriz3xUiwFNASvOF1OLk/WN5pLF+WQELwC9YG8BYBGaIO8DU2mUKoaqoTBl2/imyfk230v/KtzFETMpBa9SECR4AVgaewsAi1H48nO0FIosKOlnfjX70giUVwtfvim4xXCn31cKVHpc9lhEAas0sqZw5++ztgbZqccPAELwArA4hSYFmBhsFIgUZHwAGmKjWj7M6f8KXKWRKX3P/75SU2AqjYjFpvsqBTjf9HMAGELwAgAASELwAgAASELwAgAASELwAgAASELwAgAASELwAgAASELwAgAASELwAgAASELwAgAASELwAgAASELwAgAASELw2hhdy07XrgMALGPMtT1j035Z1/LUdUWnXJ8U20Pw2hhdQFhvcl2UGACwHIUnXfw9BiwFs7dv315dWF1N/48Xd1dTECtd3B3bRvDakI8fPx5u3Ljx6Q0NAFiWwpcPUwpdQxS0YgBTKMN+ELw2RMPX/s3MJykAWJ7f754KXqIPyTrk6G+nr7EPBK8NiZ+ieCMDwPL8fndM8DI6MuFvqw/P2D6C10ZoTpfeuHfu3Dl6IzOBEwCW5fe5U4KXnx6ipv/re9g2gtdG6JOT3rRT5xsAAC5zyT5X2/vbM99r+wheG6C5XP4N7+cOKIwBAJZj+1u/Hx5LI1z+9uyzt4/gtQEWtOywogUxa70tLfHTTz8d/vGPf+y+PXv27PDkyZPDo0ePrppOS1e7f//+1Qimmv6v9vDhw6um7XSb0v3R9tmoo8ua9keX8vvbc44y6DXy98GJUdtG8Fo5O7QYJ9L7ifaa99UT7ezssdFoNFrLpv3Rpfz9nRO8bP1Fa0yy3zaC18rZ/ID4Cckm21vr6RMUwYtGo/XSegheth+/5D6wHgSvFbMzYkojWvFsmZ6WliB40Wi0XlqPwYsJ9ttG8FoxG9WqzeGKw9e9LC0Rg9f3339/+Oc//7mq9vz588Of//znw82bN4/+lint66+/Pvz2t7+9ug+127dvH7799tujbX7zm98c/vjHPx5+97vfXTVtp9v4baY23Y8ee+nvouW2pepITXXzhz/84Wjbb775Zvd1pP2N/zsY8UI2gteKaR7X0BkwvS4tEYOXdoZroYm4T58+ndRpaVvt7HW7H3/88eo+/vvf/x7+97//Xd/rZ2/evDm6rTq2mp9//vlqe92n7lu/Y2pnqvufY3Ixplm6jsyYetpbHWl/4x87wQvZCF4rpYuujnmD+rNlejlNeW3BSx2bHqNGEPzjrjV1WjYSoI5xiinBq0aPV52obuvva6hp9EKdLpaTWUfmknraah3p+fSPuYfgxeT6fSF4rVQ8/Xhs62FpibUEL+sox3z61yiBdZC63bnmCF6RRiLUgeox+vuuNQLYvFrUkZmznrZSR3p+/ePsIXjF/fn79++vf4ItInitkN6UenNqrR6drXiq+aUl9P/Weg9eYztKfbq3TnIuSwQvT4eV1HnqsfvfU2oEsMu0rCOzVD2tuY70XPvH1zp4xQVUe9hHY1kErxWKC6aeoh2Bf2MrjLXUa/BSR6lOYqij1M/Uec01IhH9+9//Pvp9P/zww/VP5qdOWffvf1+pEcCm6aGOTEY9ra2Oegtecf/MYcbtI3itjH060mjXWHFpiSm3XUKPwUuHUYbm3qij1Cf8JTtJyQxenv42/3tj03OjDhbDeqkjk11Pa6ijnoJX3DdrtEvfw7YRvFbGPh1NHbXqaWmJnoKXjU74x+Pb1jvK6FTHqcejw0w41lsdmV6DfMs66il4camgfSJ4rYh9OjrnEkBxaYmWC6r2ErzUKalD9I/F2t46ykh/+9D8HT1O/KLHOjKt66nHOuoheGlfblNGrPV2TV0sh+C1IjZqNeUTleff5GqtzpxpHbzUCWp+jX8M1tRRqnPaa0cZDY3i6LDRnke/eq4j00s99VRHcwevqeslxhOe9GFaywNhPwheK6A3th1i9G/UsXMBtJ0mbNrt/f3oU1b2nIKWwUtzcGqfwHWa/BJnlk2hDkhzYKzp8bam56Q2b0kBo4fHmK33OjI91VMvdTRn8NK+OR4uVKjS/lr7VoUsNe2v9T0drbDttP/VqFf2/hftEbw6pzetf1PHdmpOwKnbW8vUKnjpsId28P53q+l7LQ8HrYWeo/jcWcsetWyJOrpM6zqaI3j5D8Jjm4KWQpqOXEz54IztIXghXXbwUkeoQyz+d1rT6MSeD5dNNXR4Tc/lllFH82lZR3MEL+ASBC+kywxeOrxROySk38voxHli52VNoz69HGabE3W0jBZ1FH8nwQvZCF5IlxW8tOOuHRLSfJce2WEsa/q6V0PP75bC1xrryKyhnrLriOCF1gheSJcRvDRRt7Qz7/2QUJz/0stq3zUa6alNmN7CpPu11pFZSz1l1hHBC60RvJBu6eBV6yzV6fR+SGhtwcvUlgvofURoyJrryKytnjLqiOCF1gheSLdk8FJHU+ss12CtwUtih2atxSKZl1p7HZk11tPSdUTwQmsEL6RbKnjVOss5g93SYqew9o7e2prC1xbqyKy1npaso/icELyQjeCFdEsEL+2QY2epr9c22hI7hTV29jpE5/8Ga2s47LiVOjJrrqel6ig+JwQvZCN4Id3cwat0VtRaO8s1d5RerdPs+WzHLdWRWXs9LVFH8TkheCEbwQvp5gxeOrMsrq+kznKtk7rX3lF6pU5Tr02P4WtrdWS2UE9z11F8TgheyEbwQrq5glftFHTND1mrLXSUnoKL/3vUFHB6Oitwi3VktlJPc9ZRfE4IXshG8EK6OYKXdrilS46sbTJ6tJWO0itNlFbQ6cFW68hsqZ7mqqP4nBC8kI3ghXRzBK+481TbQme5pY7SK13jUIGnta3WkdlaPc1RR/E5IXghG8EL6S4NXqXDDvrk29Phq3Np3or+PmtbuvCyVnuPr5v+xla2XEdmi/V0aR0RvNAawQvpLgle6hQ1sdbfvrc5QyjTaxTnUum1bBEGqKP1urSOCF5ojeCFdJcErzgfRztcnfWEdVDn6F8/NY1gZKOO1u2SOiJ4oTWCF9KdG7xKk2unhDb0Qetixdcx8wxC6mgbzq0jghdaI3gh3TnBS3NV4qEhfcLd2qEhTezW32ltzYt3DimdSZixvtde6shsvZ7OqSOCF1ojeCHdOcErTqhVJ7KFicKROkr/d2aOBGVS0IkLlurrpe2ljszW6+mcOiJ4oTWCF9JNDV6ls8+mnMW0JvF0+a2OeElpRfIl/9491ZHZQz1NrSOCF1ojeCHdlOBV+kQ7dd2eNdlT8JLSJPclDvvtrY7MXuppSh0RvNAawQvppgSvuJPUDjVjLlArewte6hz936um52Bue6sjs5d6mlJHBC+0RvBCurHBS3Nv1EGO2XYr9ha8JHaEanOGoj3WkdlTPY2to7gdwQvZCF5INzZ4xU5Dh4qWOAzVkykd5evXrw/37t37tO2NGzcOjx8/Prx79+56i/WIhwHHrsk0xh7ryJwTvD58+HBVR7du3fp0uzt37hxevXp1+Pjx4/VWfRpTRwQvtEbwQroxwUufVP02ansY/RnTUb5///6qI/TbxfbixYvrrdehNEF6jlGvvdaRmRq8Xr58ebR9bApjqr9ejakjghdaI3gh3ZjgFTuMPUyEljhJOJ51p9EIjWz5bWptbeEr/u1zvOZ7rSMT//6hszhVL37bWlP9qQ57daqOCF5ojeCFdKeCV2lOztZP+zex04h/tz+0OKb13EFGpdGpS9bY2nMdmVP1ZHR42m93qulQZK9O1RHBC60RvJDuVPCKO0ZdEHcvhjpK6xwfPHjw6XCP5txorldtFGxto17x4scasTnXnuvIjA1eCvSqIdWSzeNSjanW/O1963m+11AdEbzQGsEL6YaClyY9x1GKPc3J0ad1dY7W/Cd1jTJoDk6JOkn/nFlTh7om+pvj33DOqNfe68gM1ZOxw9e1IFULXz2fxDFURwQvtEbwQrqh4BV3ins6A+0UjUYMUTDzz53a2oKXxDPTzhn1oo7GU2gfmjCvYOafS2u9nz1bqyOCF1ojeCFdLXipY4w7Sx/KMEzBzD93arURsp5pZMr/DRq5moI6mp9fWsJa72p1RPBCawQvpKsFr3h4QDtKRinGK02QHjMqoW10OMnPE1NHW1sTzN+/bza6pkNWCnxxHag4YqeRlLhelB6HfmcMTlMOE1JH84sndYwZSbU6iEuf6LalNcFK9WvNPkBYzfhatZrxrKZ/9atfHd3Pv/71L4IXmiN4IV0teMWJwE+fPr36/p5owUcFBTWFj7gG0RB1Zv75U6AZoo7P5u+oI1Nn5b9nLU7Q1zalpQfUoeo+fKcYm91XfKyx/eUvfzn6WrUxFnX02SX15MXX9NRh77dv3366jYKSaiYGK9VnPMSpYBVDnpqC16ma0e/U7ykdcrf261//+vD3v//96HsEL2QjeCFdKXhpREKdg/++FkPcG3WU5z4HMQypIxriRyLUqRndzt+PWmlEIW5jHa3dlzrVUghTx6rv2+Mr/b7f//73X3xvzCR76ujYJfVkFGb8fahuhvjXU6+zVxr9ihSy/DZquh81q8PSYXX9XPevZoHub3/72xfbfffdd0dfE7yQjeCFdKXgFQ8P7fHUf7mko4yH7IbEzk0jDaY0mdoHMykFL7U4ElIafVAHGUc6/GO39u233x59/eOPP15vXUcdHZsjeMWQMzQRXyFNr69tq9ffi/WgbaNa8BpTMwpdegymVMvffPPN0dcEL2QjeCFdKXjFw0N2+HFvzu0ofRBSh+Q7n6jUGUXqbK0D1ahEvL9S8Bo7eqHvRaXDS3/961+Pvh4ToqijY3MEL//axAAexWAVX2vVkd2f6qt0yPKSmrERMS9uExvBC9kIXkgXg9fz58+PvlY7dy7K2p3bUfrObGhEQkpzZabKCF7/+c9/vvje0OFGHWaM2++1jsylwcu/znH0qsTCurXSa30KwQtbR/BCuhi84ijFng8PndNR+kNBpY4nKnVYU2UEL/2OuAL50OHGuHzA3g8zyqXByw7nlV7bqFQTBC/gSwQvpIvBK3auez48NLWj1GFDG2UoHbYpWVPwUi347w2d3RgvCL33w4xySfCykzXivKkaghcwDsEL6WLwimehaYL0XsUQeupQmXU+Y0OXlDosP7l+jKzgFQ8fqlZq4tpfe64jM7WejL2+Y0OXlGpizOHJiOCFrSN4IV0MXr6pY93zYpdTOkrroIZClzpNdZ5eqcOaEtwkK3hJDOaleV56nvw2e68jc07wUs1oFPVU6NLr6OumVBM6VDnVHDXjxW1iI3ghG8EL6YaClw6N7NnYjtI6uaHApEn26jzj0hLxzDO1U8tPRJnBKx5CLM3zivO79l5H5pzgpddiKHTp+3aChj+Ro3S2bNxmDIIXto7ghXRDwWvv83LGdJR+XteYFjutUmhSm9JBZgavMfO8mN9VNjV4la5IMNSi0us4NdQTvLB1BC+kGwpee5+Xo8nPeg7UNIoTD5fZocPSc1drpc6o1GnVRjkUyOxSPyYzeI2Z58X8rrJT9eRp9NQ/h6da6fUu1YVabWRWo69xfiHBC1tH8FqIP5yDY7Xgxbyc00qHCU+1WpgqjZopfFnnZYeUNE8ndo6lDla3jebqRIfmeen//mfU0XS1ehhqMYybWo3qdbda1O/Ta166j1LNlLYjeGGtSAULiJ8ccawWvHRYBHWlDulUK4UhM6az1e1j6FLnWTsk5Ts+3U63j9vEIKfblB6HDlFZRz20LIIOn/mfUUfT6DmeGrrUhq4FOuYDQmkVfNVFKVCdUzNSWiw4NoIXspEKZlbqzHCsFrw0TwdlpQtJj2nqAIeok1Ln5AOS6lcdWO3wkL//UlPHqY6x9DPfFCTHhEl5+vTp0ff8BPs4sZ46mqYUjse0GMgj1YDqz+8P9bsU2ku3nbNmdF+lAFdqBC9kIxXMSJ1YaSeGY7Xgpc517zRXSYfK1PR/Dpn9Ik6w95PnFcL8z6ijz6inY7GO1AheyEYqmJFGCeKbWg3HasFLIxd7FyeJD12bcE80Odw/L/7MxnjJKeroM+rpWKwjNYIXspEKZjI0lwDHasFryuVMtoqOsqw0gd7E54w6+ox6OhbrSI3ghWykghloXpfewLUJxzhWC16EDDrKGh0i88+LmuE5q+O5OVaqI4IXspEKLqR5XTrjRnO7JL6p1XCsFLzUQYCOckh8bnQ2o54f/z3q6Bj19CWNlvrn5NGjR9c/AXKQCi6keV06a8fO0vFvaGtj6AyyeBZO7QygobN/dMaP6DbxjCI9Vt3W09f2N2gb/avbnTpj6RKl4MUSAL+InQKT6z8rrcLOUhLDqKcv3bx58+g5IXghG8HrAjavy69n49/Q1oboMKWdCal/FXjUNIpmt1cYiqf2a5vS6dIKXqfWrtHj1Ujd0Fo7+p1+PZw5Ebzq6CjrSmt5EbyGUU9fiqOADx8+vP4JkIPgdSab12UjTMa/oa3VKDz5ESndp4nzxUpBqLSejbZTs5GtuJirbaOQp2a/szQ/7dQaUOcqBS8uavwLOsq6ePaizlBT+PLfo46OUU9fun379tFzohF/IBPB6wwKQAovGnGK/BvaWo0fsdIIl1cKTD6YSS14xe386Jk1hS4f5BQC4zbxMc2F4FVHR1kXL4StZSMIXsOopy/FQ9b379+//gmQg+B1BgUmBZzSoTj/hrZWEoNVKcT5USj9PyoFrzgCJ6VDknGul8Rt1JZQCl6sNv4LOsq60ur1rFo/jHr60t27d4+ek9K+F1gSwWsiCzul4CL+DW2tJC62es6bn+C1PXSUdQSv6ainLxG80BrBawKFFb1RS+HG+De0tZK4zd6DF5d5+YXmLVljBfZjpcsGcbmgYdTTl+JJGhyeRjaC1wSlADOl+bATf0bwosPEMIIX5kDwQmsErwmWDF7nTGTfUvDiEBFO4VAj5sChRrRG8JpgyeClpjMLp9hS8PIXPQZKFKp8zSh06RCa/x51hFM4qxGtEbwmmDN4lZZ40MKnUxC8sCcEL8yB4IXWCF4z829oayWl0KQwNmW1+C0FL+ZZ4BQWUMUcWEAVrRG8Zubf0NZKbBHWuG1ttXit+xUvG7Sl4MWlXnBKnBTNJYNwDi4ZhNYIXjPzb2hrNaXV6dX0Cczme+lfLZ6qleajUvAqLbS6huClnSEwJB4iUuj6+eefj75HHeEULpKN1gheM/NvaGtDauHLN42CxUOQCmSlQKXDlX6SvgJWaWRN4c7fZ+3C2qURtEuVgpcWegSGxJEKhS4tCOq/Rx3hlLio7JMnT65/AuQgeM3Mv6GtnWKjWn7Cvf6vwFUamdL3/P2XmgJTaUQsNt1XKcD5pp/PqRS81FhVG0Nq9cLq7JjC14ras2fPrn8C5CB4IV0teOnQEVAS53L5Q4qlQ5BASawjNe2PgEwEL6SrBS8tiAmUxGUj/NmL8WxH6gg1sY7UCF7IRvBCulrw0iVggJKhSwPFFe2pI9TEOlIjeCEbwQvpasGLxS9RU1o81bCIKsaKdaRG8EI2ghfS1YIXSwGgprR4qomLqFJHqIl1pEbwQjaCF9LVghdLAaCmtJSEYUkJjBXrSI3ghWwEL6SrBS81zkhDFM9EKwWr2KFSR4hKZzSqEbyQjeCFdEPBizPSEMUJ0aU5XHGCPXWEqDSxXo3ghWwEL6QbCl5MjEYU5+WUzlrUZHu/DXWEqDS/S43ghWwEL6QbCl7Mz0E0NL/LMM8Lp5Tmd6kRvJCN4IV0MXipk/RfMz8HZsz8LsM8L9TU5nepEbyQjeCFdDF43b179+hr5ufAjJnfZZjnhZra/C41gheyEbyQLgavOPdC194DZMz8LhPneVFHMLX5XWoEL2QjeCFdDF7Pnz8/+lqtNI8H+6IamFIXcZ7Xqe2xD6U68o3ghWwEL6SLwUujGBqd8N/jMBHi4aExI1jUEaJYRzdv3jz6muCFbAQvpCsFr3iYiLPS8P333x/VxJiLX1NHiGIdxa8JXshG8EK6UvDiMBG80lloY+qBOoJXqqN4EgbBC9kIXkhXCl7yww8/HH1fX2OfVBO+FobOZoyoI5hSHcXvEbyQjeCFdLXg9ebNm6Pvc5hov+KaXKqNsagjmFIdEbzQGsEL6WrBS4eJ1En6n2nODvalFJxUG2NRR5BaHRG80BrBC+lqwUvi/AtGK/YnTn4+51AhdYRaHRG80BrBC+mGgldpcjSjFfsRRynUzrn0D3W0b0N1RPBCawQvpBsKXhInR2ueBvYhjlJMmVQfUUf7NVRHBC+0RvBCulPBqzRa8dNPP13/FFul13jO15062qdTdUTwQmsEL6Q7FbwkjlZw3b3ti9fTu2S0y1BH+3OqjgheaI3ghXRjgldp4UPN28A2lebkzDE6RR3ty5g6InihNYIX0o0JXhLnaXBm2jbpkGB8rfX1XKijfRhbRwQvtEbwQrqxwUuXevHbDW2L9YoXMVabcy4WdbQPY+uI4IXWCF5INzZ4SZyjo9EKrr23HRql0GvqX2OtwTU36mjbptQRwQutEbyQbkrw0g41XvZjjknX6ENpoVO95nOjjrZtSh0RvNAawQvppgQv0cKXfnu1OQ9FoQ29hvF1PVULl6COtmlqHRG80BrBC+mmBi/RMgD+NkuNjCCHXrv4murrpV9T6mhbzqkjghdaI3gh3TnBqzRBes4z35ArrrWkljH6RB1tyzl1RPBCawQvpDsneEmcx6GmM5mwLqWzz5aYUF9DHW3DuXVE8EJrBC+kOzd4SVynR+2ciyijDb1W8eyzjEOMEXW0bpfUEcELrRG8kO6S4KUda9zhcvHjddBrFwOPXssWgYc6Wq9L64jghdYIXkh3SfCS0llMzNPpX1xLS63lIT7qaJ0urSOCF1ojeCHdpcFLSjtf1mXqV2leVea8rhrqaF3mqCOCF1ojeCHdHMFL4mnkalqrCX0pTYJuMa+rhjpah7nqiOCF1gheSDdX8NION65Grkan2Q+9FqW5VD1droc66t+cdUTwQmsEL6SbK3iJdrxxh6yWsSYUhpXOPJsyCToTddSvueuI4IXWCF5IN2fwEu2A/f1Zo9NsR899qbN88+bN9Rb9oY76s0QdEbzQGsEL6eYOXqIdtL9PaxwuyqdOMXaWa3ktqKN+LFVHBC+0RvBCuiWCl5Qm36rRaebRa1DqLHs4g3Es6qi9JeuI4IXWCF5It1TwEnWO/r6taUeOZdU6yzU+99RRO0vXEcELrRG8kG7J4CW1w0Vz/x58VlpfSZ3nmkeJqKN8GXVE8EJrBC+kWzp4Sa3T7Gn9qC3Qc6kFR+PzvPbQZaijHJl1RPBCawQvpMsIXlI7S007c3WouIyew9L6V3p+ez57cSrqaFnZdUTwQmsEL6TLCl6iTrO0U1djvs75avNwtha6DHW0jBZ1RPBCawQvpMsMXqLDGLr4sf+d1vR9DhmNp+eqdH1Dey57WpF+btTRfFrWEcELrRG8kC47eJm4w/VtC/ORlqbnqDQ6oaZJ0XsJHtTRZVrXEcELrRG8kK5V8BLNJ6nt9DVhessjNufSYbbSxGc1PZd7DBvU0XS91BHBC60RvJCuZfASfaJW5+gfg29zLNK4BXqe9FwQMMqoo3F6qyOCF1ojeCFd6+BlNLHXPw7fNJF6r4eN1FHqb6+FCnWgeu60Haijml7riOCF1gheSNdL8BLt9GuTfNUyD4G0pudCHWHt7D21rU+gPxd19FnvdUTwQmsEL6TrKXgZdYpDHcWWO84xHeWegsMlqKP+64jghdYIXkjXY/AymoviH1upaRtNFF47TRAfmnujpp9pG3WqGI86Om491RHBC60RvJCu5+Bl9MndP8ZS09wVPfY1hRI9Vj3moUnhauootR2HFS9DHfVXR3o8/jESvJCN4IV0awheZkzHqabT5LVtjyMYekx6bHqMQ6MSagSuZVBH/SB4oTWCF9KtKXgZdTinOhtr2k4TrTWXpcUohn6nLreix3BqRMIagSsHddReRvD6+PHj4fXr14cHDx4cbt26dfT77t27d3j16tXVNkb/1/exDwQvpFtj8DLWEfnHf6ppsrFGCfR3qhPVnJg5qGPUKITuU/etM8XUQU7p2HWbVh37nlFH7ehv9I9/zuClAPXy5cvDjRs3ru5boevFixeHt2/fHt69e3fVFLoUyLSNttVttA3Baz8IXp3SG9TvHMY2vXkfP3589WnLf6LqSQxe2mlrZ7i29qc//elw8+bNo79latPt1aHevn37qrNTu3v37tVzoqb/q+n72k5Nt/n666+L9zem6T5035rsXPq7aLmNOsptesz+75greL1///7T6JZClfbBQz58+HC4c+fOp8dB8NoPglfn7BOUvTnV9ObWm9o+Qanpa31q8sPaevPr01VvYvCi0Wi0Vm2O4KXQZaNc+ldfj6XRL3ss2Ade6ZXwgerUJ6MY1DQC1hOCF41G66VdGrw0cmWhS00fhKfQh2vbv2MfeKVXQmHL3thjhqQ10mXbq50a9s5E8KLRaL20S4OX3zdr9Ooc2j/r9tgHXumVmBq8xI+S6f+90KRg7ez23p48eXJ49OjR4eHDh1c77Pv37181vb42N0f/V9P3tZ2abqPbPnv2rHi/tH016uiydslJChaYrE0d7fK0j+51Xi7mRfBaCe007c2t/4+hOV9+p6AhcQDAPPzkeB1uvISOUlwS3LAeBK+VOCd4xblevKkBYB76IOv3r+ceZsT+ELxW4pzgpUn1fsfAMDYAzCPOo9UHXWAMgtdKTA1eCln+TJuxYQ0AcFqcytHj0j3oE8FrJaYEL4Uuv/3UdWUAAMP8PlaNqRwYi+C1Ev5NrgmdpYnyClf61OXPZlToYocAAPMieOFcBK+ViG/yMU1zvJjXBQDz8yvOq+l6jMAYBK+V8MFLI1r6dOWb3vSa3OlPb1bT1z0tngoAWxDPGmdyPcYieK2ED176/xAFsRjAertsEACsmT7sso/FOQheKzEleIkOMfq5Xmp8IgOAeWgf6/evPV0dBH0jeK3E1OAl8RPZpSsrAwA+i2sl6mgDcArBayXOCV7i1/JixwAA84mr10/ZN0c6K11rg2H7CF4rcW7w8rdTI3gBwHziCvbnnMyk0MVFsveD4LUS5wavOMmehVQBYF7xkOOU8GWhi33zfhC8VuKc4BWHwZn8CQDLiOFL++mhMKXRLZ3wxJVF9ofgtRLnBK+4wB/reQHAcnRCUzybXF8rlClkqWkel+3PtY/m8OL+ELxWwr+ZTwUvvZHjpy99DQBYngKY9rn+A7OaRrf0PQWw0mXfsA8Er84pRMWr4OvNq+9pUqcmy1vTiJbe7PFMRtbvAgCgDwSvTilI+fA0pekTlYawFcwYxgYAoB8ELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgCQELwAAgBSHw/8Bij/3Hq4M6RsAAAAASUVORK5CYII=
|
As shown in the figure, two identical largest circles can be cut out from the rectangular paper. What is the perimeter of the rectangle ABCD? (Use π = 3.14) ( ) cm
|
A. 48; B. 40; C. 32; D. 24; E. No correct answer
|
D
|
91
|
iVBORw0KGgoAAAANSUhEUgAAAp4AAAEbCAYAAABz44RlAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAABuiSURBVHhe7d29jhvX3Qdgly7tbssAblS6cKFSndQpnZBK7hQXgdTJcJMAqVypNZDCpdOpUq3CF2DnAgzfgAFfAt/3x+w4w6Mz5PDrcHj4PMCBlrtcikv+MfPj+ZqPVgAA0IDgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4InAABNCJ4AADQheAIA0ITgCQBAE4Ine/nll19Wn3322f0tAE7t22+/XX300Ud7tRyXHz9+vPrqq69W33333fpYDUskeLKXb775Zn2Q++GHH+6/A8A5JDw+e/bsg4CZYPru3bvVjz/+uG75Osfm/Gx83wTR/ByWRPBktt9++2316aef/nFAA+C8Ej7HYTKhc5sEzTKAJpTCUgiezJbhm/HBzCdpgPMbH3d3Bc9IJ0GG3Me/l9uwBIIns5Wfoh3IAM5vfNydEzwHGZka/246D+DSBE9myZzOHLi++OKLjQOZCewA5zU+5u4TPMfTo9Lydb4HlyR4Mks+Oeegte98IwCOc8wxN/cf/775nlya4MlOmcs5PuCN5w4ljAJwPsPxdnwcnis9nOPfd8zm0gRPdhqC5jCsPgTRoS1la6X379+v/v73v2v/316/fr16+fLl6sWLF+uWLVnSnj59uu69TsvXac+fP1+33C+/U3s87faaGjqu5Xh0KuPj7SGjTHmvxo9hYSiXJHiy1TC0Xi4kGi80yrzPJcjBfnhOmqZpl2w5Hp3K+HEPCZ7D/stDs8iISxI82WqYH1R+Qh4WGw1tCZ+gBU9N05bSlhQ8h+P4MY8BpyJ4MmlYEVnr0SxXSy5hayXBU9O0pbQlB08LjLgkwZNJQ6/m1BzOcvjm0lsrlcHz0aNHq3/84x9X177++uvVn//859Xd3d3G37NP+/jjj1effPLJ+jHSHjx4sG6ff/756uHDh+uWr9P+9Kc/rVvul9+pPd7clsfJc6/9XVq7pobatxxvxn+HHk+oEzyZlHmc21ZALm1rpTJ45mRwTbIY4dWrV3uduHPfnPDye2/evFk/xk8//bT6/fff7x/1ML/++uvq7du368fMY+f/2DdQJDyccoEFu6mhy8nxZvzcBU+oEzypevfu3awD1Hi15KW36bjG4JmTe55neo3Gz32q5cQ99AYlHLSW55sgkedQe361lh6sBA/OQw0tQ17P8XNeUvC0uIglETypKrffmNsuubXSNQXPISzM6QFKT9EQEvJ7S5LeqISIPMfacy+bAHo6amhZ8vqOn+eSgmd5PP/555/vfwLtCZ58IAelHJyyZ19Wq+9q462V8vWlXEPwnBsW0sMzBIVrkaHVBIg899rfNG4C6OHU0H/b0moor/X4+S0leJYbyF/yGA0hePKBcsP4XXIgHB/YEkYvYcnBM2EhJ8ptYSE/y/DjEnul9pW5fV9++WX17xw3AXQ+NVRvS6mhpQbP8vhsmJ1LEzzZMHw6Tm/nXOXWSvv87iktNXhmKHHb/LuEhfTyXHtQmJK/rfZ3Dy2vTUIG09TQ8mtoicGzPDantzPfg0sSPNkwfDret9dyCVsrLS14Dj1U4+c0br2HhdKu8JDerQy18j9qaNOSa2iJwdOlMlkiwZM/DJ+OD7kEZrm10iU2lF9S8Pz+++/XoWD8fIZ2a2GhlL992xy+vHaooW2WWENLCp45lg9TpoZ2yYWfMCZ48oeh13KfT9Rj44NcWuuVk0sIngkCU9vEJCykR+ZWw0JpW09ehk5vtfdTDc23pBo6V/Dcd7/kcsFnOhOyPR4sheDJ+sA2DLGPD1Rz5wLlfpmwPvz++HHyKbvVnKJLB8/Mw5vqhclWMde0uriVvCZTcxcTsvKa3hI1tL+l1NA5gmeOzeVweUJljtc5tiZkpuV4ne9ltGq4X46/6fVsdfyFuQTPG5eD1vigVrZdc4J2/f7QWrhk8MzQX05y4/8/Ld+75SHRufIala/d0C7Rc30Jaug4l66hUwbPcUfA3JagmZCakat9Og6gNcGTblwieCYMTG35kh4qi2Xm2zbEnNeyV2rodC5ZQ6cMntAzwZNutA6eGeKbGhbN/62H6jDlCXxo6fnrbahZDZ3HJWqo/D8FT6gTPOlGy+CZk9fUsKg9KY+37fXtJXyqofNqXUOCJ8wjeNKNVsEzixVqJzTDoqeV3r6pRSPXvuhIDbXRsoYET5hH8KQbLYLnVGDIti6GRc9jasuca+0VVEPttaghwRPmETzpxrmD59Sq45zUOK/ypD60a9tsXg1dzrlrSPCEeQRPunHO4DkVGE4dbpk2tV3OtYRPNXR556whwRPmETzpxrmCZ05KZWDI7WvrbetBhqnH78PQlj7sroaW41w1JHjCPIIn3ThH8KytjBUYLmsqOCx1tbsaWp5z1JDgCfMInnTj1MEzq4vLPRYTGGx1c3m14JD3ZmnhUw0t16lrSPCEeQRPunHK4Dm1DUvmiLEMCW/l+5OQt5SV4Wpo+U5ZQ4InzCN40o1TBc+cdGqX3bPyeHlqi0US9i5NDV2PU9WQ4AnzCJ5041TBszyBpAkMy1W7znlC3yWpoetyihoSPGEewZNunCJ41obe0vuxlOFb6nLFn/J9u9Q8SjV0nY6tIcET5hE86caxwTPBIIsLxo+xpDmDTMt7VM6nzHvZ+vKTauh6HVtDgifMI3jSjWODZzknLyedrHzlOiQgjN+/tPRitaSGrtsxNSR4wjyCJ904JnjWFhjsG1y5vOyNWb6PrVaRq6E+HFpDgifMI3jSjUODZ22D7/RyGB69TrXV5Ofe31MN9eWQGhI8YR7Bk24cGjzLRQX7zOtieRL2yk3bc/uc1FBfDqkhwRPmETzpxiHBs7YC+VKroTmd2lVpznWJSjXUp31rSPCEeQRPurFv8Kz1auy7dx/LVVvoc+qhbzXUt31qSPCEeQRPurFv8CxPFDmpnHsuIO0kIIzf37RsFH5Kaqhv+9SQ4AnzCJ50Y5/gmfl3CQlz7891KsNA2qmCoRq6DXNrqLyf4Al1gifd2Cd4lpfIy3DpqYdhWYZyKHzuvoy7qKHbMaeGBE+YR/CkG3ODZ3orxvdLO9fCEy6vtkjk2F5PNXRb5tSQ4AnzCJ50Y27wLHuqLAbpX7lI5Nj3XA3dnl01JHjCPIIn3ZgTPGvz8mx9079aD+Wh+2yqodu0q4YET5hH8KQbc4JneXL4/PPP739C7/Jej9/7qdXJu6ih27WthgRPmEfwpBu7gmcWfpQ9Vebl3Y7aRu/79nqqodu2rYYET5hH8KQbu4JneWKwCvn2lKuT9+31VENM1ZDgCfMInnRjW/BMOChPGGUwpX/pnRzXQHov51JDxFQNCZ4wj+BJN7YFz3KILCcLPVW3qQyPc4fK1RCDWg0JnjCP4Ek3tgXPciuUV69e3f+EW5P3flwLc7dCUkMMajUkeMI8gifdmAqe6ZUqF4RkQ2huU+phXAtpuxYZqSHGajVUhlHBE+oET7oxFTzLIVLb31AOlb558+b+J3VqiFJZQ0+ePNm4LXhCneBJN6aCZzlEOnyf25WgOa6JXUFSDVEqa+ju7m7jtuAJdYIn3agFz9qQ2LHX6eb67TPcroaoqdXFuAmeUCd40o1a8Cy3PjFEyqC8Cs3UcLsaYkpZQ+MmeEKd4Ek3asEzmzuX34NILYxrY2p1uxpiSllD4yZ4Qp3gSTdqwbNcAJBFIhDlUOmwEXhJDTFl23C74Al1gifdKIPnX//6143bNvymVG6RVM7zzFzO8c/VEKWyhoYmeEKd4Ek3yuBZrkR+9OjR/T3hv8ph9HKeZzm/Uw1RKmtoaIIn1AmedKMMnuXEf3PzKO2a52l+J7tMzfMUPKFO8KQbZfAsh8DMzaO0a56n+Z3sMjXPU/CEOsGTbpTBc9zMzWNK+QFlmOeZf8ffV0NMKWsoTfCEOsGTbmwLnvZeZErmbY5rZbgGe7mwSA0xpayhNMET6gRPurEteGauHtS8evVqo1aGBUblwiI1xJSyhtIET6gTPOnGtuCZEwPUlItDhgVE5bW41RBTaguMBE+oEzzpxrbgmd4rqMmCoXGtDCvby+241BBTyhpKEzyhTvCkG9uC5zBvD0q1RURRrmhXQ0wpayhN8IQ6wZNubAue5RVpYFDbDifK4KmGmFKrIcET6gRPujEVPBMgYJsyZL57927jthpil3JLpRcvXtz/BBgTPOnGVPC0DQ67lFe5+ve//71xWw2xy93d3UbNCJ5QJ3jSDcGTQ5X7MP7rX//auK2G2KXsNX/+/Pn9T4AxwZNuTAXPhArYplzB/s9//nPjthpilwcPHmzUzLNnz+5/AowJnnRD8ORQ2Rx+XDOvX7/euK2G2KWcrvH06dP7nwBjgifdmAqerjjDLuWVZ/7yl79s3FZD7PLw4cONmnn8+PH9T4AxwZNuCJ4cSvDkWIInzCN40o2p4OlSh+xSXvLwyZMnG7fVELuUC9RMz4A6wZNuCJ4cSvDkWIInzCN40g1D7RzKUDvHMtQO8wiedGMqeGarHNgmwXJcM3/72982bqshdrGqHeYRPOmG4MmhBE+OJXjCPIIn3ZgKnuZasYsN5DmWDeRhHsGTbkwFT5c7ZJdyYYhLZrIvl8yEeQRPujEVPHNCgG3KYdJ3795t3FZD7HJ3d7dRMy9evLj/CTAmeNKNqeD5ySef3N8D6sreqv/85z8bt9UQu6RGxjXz8uXL+58AY4In3ZgKnmm///77/b3gQ7V6KYOEGmKbca2k5Xr/wIcET7qxLXj+9NNP9/eCTamNca0Mw+rl8LsaYkpZQ2k5HgEfEjzpxrbg+ebNm/t7waa3b99u1Mqwgr1c6a6GmFLWUJrgCXWCJ93YFjxzSUSoSaAc18pweczyakZqiCllDaUJnlAneNKNbcHTBuBMKTeP//7779ffL3ux1BBTyhpKEzyhTvCkG9uCp+1wmFIOqSdwxvv37ze+r4aYUtZQmuAJdYIn3dgWPG2Hw5RyK6Vff/11/f2sYh9/Xw0xpayhNMET6gRPulEGz3I7HKuSKZWrkctwWQYKNUSptqI9TfCEOsGTbpTB8+HDhxu3rUqmVC4KKedxlguM1BCl2sKiNMET6gRPulEGz3LelcUhlMoaKVeuZ6HR+OdqiFJZQ0MTPKFO8KQbZfD8+uuvN26bo0dpan7nwDxPdqnN70wTPKFO8KQbZfBM75U5ekzZNb9zoIaYMjW/M03whDrBk27Ugqc5ekzZNb9zoIaYMjW/M03whDrBk27Ugmc5Ry/X34bYNb9zoIaYMjW/M03whDrBk27Ugmc5Ry+tnMfH7UkNzK0LNURNrYbGTfCEOsGTbtSCZ6SHavx9Q6WUQ6S7ejHVEKWyhu7u7jZuC55QJ3jSjangWQ6VWpnMo0ePNmpiaph9oIYolTVU3hY8oU7wpBtTwdNQKWO1lci76kENMVaroXIRmuAJdYIn3ZgKnvHll19u/Cy3uU2pi3EtzN0UXg0xqNVQ+T3BE+oET7qxLXi+fft242eGSm9XuS9namMONcSgVkOCJ8wjeNKNbcEzQ6UJCuOfZ94et6UWHlMbc6ghYqqGBE+YR/CkG9uCZ5RzsPRY3Z5yAci+w+VqiKkaEjxhHsGTbuwKnrUFInqsbkfZU5W27+Uv1dBt21ZDgifMI3jSjV3BM8oFIpmrxW0oe6rmLioqqaHbta2GBE+YR/CkG3OCZ63H6v379/c/pVd5j0/1vquh27SrhgRPmEfwpBtzgmeUPVauvd2/8prah/Z2DtTQ7dlVQ4InzCN40o25wbO2+XPmbtGn2ry8Y3so1dBtmVNDgifMI3jSjbnBM8q5WlYn9ynD4uV7ndunoIZuw9waEjxhHsGTbuwTPHO5w/F9d92f6/TmzZsP3udTzcdUQ7dhbg0JnjCP4Ek39gmeUc7TS4+V62/3Iz1VeU/H73H24TwlNdS3fWpI8IR5BE+6sW/wzEmlvPTdsYtOWI7aZu95z09JDfVtnxoSPGEewZNu7Bs8I5t/j38n7VRDsVxO3sPyfZ1TD4dQQ33at4YET5hH8KQbhwTPyFY44987R88Y7eS9K9/T3D7ne6qG+nJIDQmeMI/gSTcODZ61RSKnWvlMe+V+i2nn7oFUQ305pIYET5hH8KQbhwbPKOdypWU1K9eltgL51AuKpqihPhxaQ4InzCN40o1jgmeUe/WlZaNwrkPeq3IF8rmH2Etq6LodU0OCJ8wjeNKNY4NnTi7lSScrllm+vHdl6Mt72Tr0qaHrdWwNCZ4wj+BJN44NnlFbyWqu3vKV+2mmXWqYWw1dp2NrSPCEeQRPunGK4Bm1E5C9GZerNrey1bzOKWroupyihgRPmEfwpBunCp5RbqWSlv0aWZbaQpDW8zqnqKHrcKoaEjxhHsGTbpwyeOakU16RJk1wWI68F7X5lEu5ZKUaWr5T1pDgCfMInnTjlMEzcvIpT0pp594Tkt1qq4/3WQjSihparlPXkOAJ8wiedOPUwTNyEho/5tAEh8vJa18LDG/fvr2/x7KooeU5Rw0JnjCP4Ek3zhE8Iyep8eMOzZBpewkGZWC4hvdCDS3HuWpI8IR5BE+6ca7gGbUFCGmCQzt5D2qB4dIr2OdSQ5d3zhoSPGEewZNunDN4RgLC+PGHlpMZ5zUVGK7ttVdDl3PuGhI8YR7Bk26cO3jG1JDpOf4v/qu2x2ICxLX2FKqh9lrUkOAJ8wiedKNF8Iyp4LCU/SN7kdcym66Xr/M1h86BGmqjZQ0JnjCP4Ek3WgXPmFqpnBNaQgXHyWtY2wMzr+9SV6/vSw2dV+saEjxhHsGTbrQMnpHgUDuxpZmzd7ipuXg9hc6BGjqPS9SQ4AnzCJ50o3XwjAzlPXr0aOP/HVq+b9h0vrxWtWucD6/lUq5IdGpq6HQuWUOCJ8wjeNKNSwTPQXnSGbdrn4/YQl6jWg9VWhaG3EL4UkPHuXQNCZ4wj+BJNy4ZPCNzyqZOfFk00muP3TEy1Fxb/JGW1/LWApca2t9SakjwhHkET7px6eAZ6VVJQBg/j3E7xUbVPcjrlNdCyPqQGppnaTUkeMI8gifdWELwHGRxw/i5jFsWk9zq0GnCQv72qWCVEJHXLve7dWqobqk1JHjCPIIn3VhS8Iyc+KYWOqS1HAa8tLwWCQNTK7jTel5AdCg19D9LryHBE+YRPOnG0oLnIMFg28my5/AwJyzcUng6lBpafg0JnjCP4Ek3lho8B5mPNn5+tZb7ZLHEtcsimW3z79Lys9wnwYJ51NBmW1INCZ4wj+BJN5YePAfpvRk/z1rL/LU8/2sKZXmuec7bFsakJSzkfobVD6eGlldDeT7j5yh4Qp3gSTeuJXgO5oSHtGwVk/susRcrzynPLc9xW89UmsB5empoOQRPmEfwpBvXFjwHOenuOuEOLffLYpPMZ7tET1b+z1xyMM9hV6/U0ATO81NDl9cyeP7222+rH374YfXs2bPVZ599tvH/Pn78ePXdd9+t7zPI1/k+LIHgSTeuNXgOhpPx+G/Y1bLgIj1F+VsTJDIv7hQSDtITlcfMY2e1cELCPuEmv3OpcHOr1NDl5G8cP/9zBM8EyG+//Xb16aefrv+PhM5vvvlm9e7du9WPP/64bgmdCaS5T+6b38l9BE+WQvC8UTlAjQ+Sc1sOXl999dX60/b4E/USlMEzJ62cDK6xPXnyZHV3d7fx9+zb8vsJFQ8ePFif8NMePny4fl3S8nVavp/7peV3Pv744+rjzWl5jDx2FnzU/i6tXVNDbVue8/jvOHXw/Pnnn//o3UyozDF4m19++WX1xRdf/PF8BE+WQvC8ccMn6OHglJaDWw5qwyfotNzOp+bxsE4Ofvl0vRRl8NQ0TbtUO2XwTOgcejnzb27Pld7P4TnBEqhE1saBctcn4zKopgd0CQRPTdOW0k4VPNNzOYTOtHQE7COdC8PxHZZAJbKWsDkc2OYMyaSnc7h/2q5hnxYET03TltJOFTzHx+b0Xh4ix+f8PiyBSmRt3+AZ417SfH1pWRSRg73299XLly9XL168WD1//nx9snr69Om65b0d5ufl67R8P/dLy+/kd1+/fl19XO12mho6rp1ikdYQGIe2b2/nWI7RS5uXz20SPFnLyWM4uOXrOTLnc3xQzJAQAKcxXhyU4fZjZJTqmOAKpyJ4snZI8CznejqoAZxGPsiPj6+HDrPD0gierB0SPLOoaHxgNIwDcBrlPPp80IceCJ6s7Rs8EzLHKy3nhlUAdiunMi1p6zo4huDJ2j7BM6FzfP9995UDYLvxMTbNVCZ6IXiyNj7IZUJ7baFQwmU+dY9Xsyd0OiACnJbgSa8ET9bKg9ycljme5nUCnN74ikNpuR479EDwZG0cPNOjmU/X45aDXia3j7f3SMvtJWweD9CTctcQi4voheDJ2jh45uttEkTLALqUy2YC9CAf9h1j6ZHgydo+wTMyxD6e65nmEznAaeQYOz6+LuHqcHAKgidr+wbPKD+RH3tlDQD+p9wrOaNNcO0ET9YOCZ4x3svTgRHgdMqrF+1zbC5lV5LsDQqXJniydmjwHP9emuAJcDrlFYwOWcyZ0JmheruQsASCJ2uHBs9ykZGN5AFOqxxy3yd8DqHTsZmlEDxZOyR4lsNAJr8DnEcZPnOc3hYm07uZBZ+uLMfSCJ6sHRI8yw2O7ecJcD5Z0FnuJpLbCaUJmWmZxzkcz3OMNrzO0gierI0PZruCZw5k5afv3Abg/BJAc8wddxikpXcz30sArV32GJZA8LxxCZH5hFwevPK9TGrPYqGhpUczB7tyJbv9OwGAOQTPG5UgOQ6P+7R8os4QToKpYRwAYC7BEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoAnBEwCAJgRPAACaEDwBAGhC8AQAoIHV6v8AFUQSb5GOWIMAAAAASUVORK5CYII=
|
As shown in the figure, two identical largest circles are cut out from a rectangular piece of paper. The circumference of one of the circles is 12.56 cm. What is the perimeter of the rectangle? (Use π = 3.14) ( ) cm²
|
A. 48; B. 40; C. 32; D. 24; E. No correct answer
|
D
|
92
|
iVBORw0KGgoAAAANSUhEUgAAA0AAAAIICAYAAABHH473AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAGx9SURBVHhe7d0H2BxVof9xQygBJEAgFCNgwAjeAKGEagQhIMRQpCNEUVqkExAwIZeLFCFggQgkIE2RBKUIFwIX/aNopClo8AIiTcqlSFMEREOZ//Ob95zknLOzuzOz5d3d8/08z3nyZqfs7O7M7PntmXPmQwkAAAAARIIABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAet60adOSD33oQ4XKWmutleywww7JYYcdlsycOTN58sknzdoAdDMCENAi+qLUlycAoHPo3LzPPvtUBB0FpDlz5iRz585Ni/6eMmVKOs2dV4FI0wF0LwIQ0CL64tSX5ezZs80jAIBOoBDkhhqFn1oUeMIgpHM8gO5EAAJa4NVXX02WX3759EtSvxYCADqLG2bqBSDReV2XwrnL6f8Aug8BCGgBXSvufklyuQQAdBb3HJ0nAFn6UctdVud7AN2FAAS0QHipBL8SAkBncc/RRQKQ28Kvor/1GIDuQQACmkx9fvSlOHr06AVfkCqMHgQAncM9PxcJQKL53eXpDwR0FwIQ0GS6PEK/CBbtZAsAaJ9Gzs9q8XGX1zkfQPcgAAFNpL4+7pep22GWL0gA6Bz23Oyes4sI+wLR1xPoHgQgoIls4LGXu9lAZAtDYgNAZ3DPzWUCkL3VgS0MhgB0DwIQ0CT2krdwwAN3QAT1C+oUv/zlL5P/+q//olCqlqlTpybHH398uk9/+ctfTm8eueeeeya77bZbsssuuyTjx49PfwXfbrvtkm222SYt+luPaZrm0bxaRstqHVqX1ql1Zz0nhWKLzlGtZM/LKmUCkJZpdB0A+gcBCGgS+2UYXgZhB0WwpVMuk1AFw90uCoVC6aSic1Qruc/VjADEQAhA9yAAAU1gh0XNauEJh0wNW4j6CwGIQqF0cum2AFRmHQD6BwEIaALbylOtj094rXgnDIlNAKJQKJ1cCEAAWoUABDSB+vnUGuWtE4fEDgPQZz7zmfQxSveUSZMmJbvvvnuy8cYbJyussIL3eTajDBgwIFl66aWTFVdcMVl99dWTtddeOxk5cmSy/vrrJxtuuGHa4rnZZpsln/rUp5KtttoqLfpbj2ma5tG8WkbLah1al9apdWc9ZyNF74HeC70nem+y3jNK55TwhtHrrbee93/N00ruc5U5JzMIAtC9CEBAg+bMmZPrC9QdMrUThsRW5cJuj0qrKxto3EsvvZT8+Mc/Tg4//PA0VLifX5myzDLLpIFhv/32S0499dRk1qxZyT333JM89thjyeuvv26etXX0HHouPaeeW/vgF77whXSbtG1Z21yk6D3Se6X3TO8dOku4D0+cONH7f6cHoHAY7Hnz5pkpADodAQhoUPglmLf095DYBKDO99prryU33HBDcswxxyQbbLCB93kVKSNGjEhHZVOryIwZM5I77rgjee6558yzdC5to7ZV26xt12vQa8l6jXmK3kO9l3pP9d6ify233HLe5/O1r33N+38nB6DwRqhqzQLQPQhAQAP0i5++/DTEr0Z3q1fcSz76+wuTANSZVDG/6KKLkq233tr7fPKURRZZZMGljD/96U+Thx9+OHn33XfNmnuHXpNem16jXquG39Zrz3pPahW9x3qvCUPt98Ybb3ifxRJLLNH2c5L7XEUDkOZ3l+fyN6C7EICABoQ3Pq0n/NJUKOov7a5soLZrr702vV+O+5nkKWPGjElOPvnk5Pbbb0/+9a9/mbXFR69d74HeC70nWe9VraL3Xp8B2uORRx7x3n/9INQtASgc2VPbrscAdA8CEFCSvQRCrT95hV+cRZZtNgJQ/7vzzjvTED1kyBDvs6hVNMDAiSeemPY9e+utt8yaENJ7o/dI75Xes6z3Mqvos9Bnos8GrfPzn//ce981gEa3BKDwsuf+/CELQDkEIKAk25pT9MuvU4bEJgD1j4ceeig55ZRT0lHR3Pe/WtGAAMcdd1xy0003JX/729/MWlCU3ju9h3ov9Z5mvddh0Wekz0qfGZrryiuv9N5rDX7R6QFIP2DZVn9b+rsvJ4ByCEBACbYlJ+vGp/WEQ2L3141RCUDt89e//jWZPn167kuzNBzw6aefno6QhtbQe6v3OBx6uVrRZ6fPUJ8lGnfmmWd6768GQGjnOanorQnCPpw6/6uFEUB3IgABJdhWnCKXTbjsl6gt/TF8KgGo9f73f/83OeSQQ7z3uVpZZZVV0hHK7rrrLrM02kXvud57fQZZn01Y9Jnqs0V5YUvKeeed17ZzksJPeBmbwo3O52rRUdhRUcDRY/qhy86n4KNtp88P0N0IQEAB+uLUF6L7ZagvybxfhppPowXZ5d316Iu3nV+qBKDWuffee9N767jvb1YZOHBgOp8uzUJn0Gehz0SfTdZn5hbNp88axe2yyy7ee6kBKFp9TnLP3XmLzs0KS/rRq8i5HkBnIwABOekXwawvSFvq9QWqt7wt7UIAaj7ds+bzn/+8975mle233z659NJLkzfffNMsiU6jz0afkT6rrM/QLfrM9dkjv7Af1t133805CUDbEICASFHZaJ6bb765bkVZfU3OOuus5KmnnjJLoVvoM9NnV6+/kPYB7QuoL7zc8JlnnuGcBKBtCEBApKhsNO6aa65JttxyS+99DMvmm2+ezJo1yyyBbqfPUp9p1mdti/YJ7RvINn/+/Ir37P333+ecBKBtCEBApKhslHfZZZclG2ywgff+hWXs2LH07elh+mz1GWd99rZoH9G+Ap9a1Nz3adiwYenjnJMAtAsBCIgUlY3i9Ov/iBEjvPctLDvvvHN6k0fEQZ+1PvOsfcEW7TO0Ai4U9ofcdNNN08c5JwFoFwIQECkqG/n98Y9/rBi1Kiz77rtv2pEbcdJnr30ga9+wRfuQ9qXY6fJA933Zbbfd0sc5JwFoFwIQECkqG/V98MEHycknn+y9T2E56KCDkgcffNAsgdhpX9A+kbWv2KJ9SvtWrL797W9778eRRx6ZPs45CUC7EICASFHZqE33ZXLv/B6Wo48+Onn88cfN3IBP+4b2kax9R0X7lvaxGB133HHee3H22Wenj3NOAtAuBCAgUlQ2sukO/7Xu5bPTTjsl8+bNM3MDtWlf0T6TtS+paF/TPheTvffe23sPrrrqqvRxzkkA2oUABESKykalqVOneu+JWz72sY8tqKgBRWnf0T6UtW+paN+Lxac+9Snvtf/iF79IH+ecBKBdCEBApKhsLKRO2bVGdzvppJPSe5cAjdA+pH0pax9T0T4Yw/2DwiD45z//OX2ccxKAdiEAAZGispEkTz75ZDoClfs+uGX8+PHJ73//ezM30Bzap7RvZe1zKtontW/2qsUWW8x7vW+//Xb6OOckAO1CAAIiFXtlQx3Ql1tuOe89sGX11VdPfvjDH5o5gdbQPqZ9LWsf1L7Zi61BL774ovc6V1hhBTOFcxKA9iEAAZGKubIRjkLllhNOOCH597//beYEWkv7mva5rH1RRftqL/nd737nvb7111/fTCEAAWgfAhAQqRgrGw8//HDy6U9/2nvdtowbNy554IEHzJxAe2nf0z6YtW9qn9W+2wtuvPFG77XpNVsEIADtQgACIhVbZeOKK65IBg0a5L1mW8455xwzF9C/tC9m7aPad7UPd7sLL7zQe10HH3ywmUIAAtA+BCAgUjFVNg4//HDvtdqyzjrrJHfeeaeZC+gM2ie1b2bts9qXu9mJJ57ovZ7TTjvNTCEAAWgfAhAQqRgqG/fff3+yySabeK/Tli9+8YsLRp8COo32Te2jWfuu9uluvVwzvAmqO9gIAQhAuxCAgEj1emVjxowZ3utzy/e+9z0zF9DZpk+fnrkPq2gf7zbhDxK//vWvzRQCEID2IQABkerVyoZuNnnggQd6r82WDTbYILn33nvNnEB30D6rfTdrn9a+3k036R06dKi3/c8++6yZQgAC0D4EICBSvVjZ+Mtf/pKMHj3ae122HHLIIcn7779v5gS6i/Zd7cNZ+7b2ee37ne4f//iHt92LL764mdKHAASgXQhAQKR6rbKh/j7Dhw/3XpPKwIEDk+9///tmLqC7XXLJJek+He7n2vd1DHSyBx980NvmT3ziE2ZKHwIQgHYhAAGR6qXKxu23354MHjzYez0qm2++eTJv3jwzF9AbtE9r3w73dx0DOhY61U033eRt72c/+1kzpQ8BCEC7EICASPVKZWPWrFne67BFI2gBvazaKHE6JjrR+eef723nxIkTzZQ+BCAA7UIAAiLVC5UNjebmvgZbjj32WDMH0Nu0r2cdA5040uGkSZO8bTzrrLPMlD4EIADtQgACItXtlY1TTz3V235bTj/9dDMHEAft81nHgo6RTvL5z3/e277Zs2ebKX0IQADahQAERKqbKxtHHXWUt+22dON9UYBmqHbfKx0rnSIcyvuee+4xU/oQgAC0CwEIiFS3Vjb2228/b7tt+clPfmLmAOKkYyDr2NAx0wmWW245b7teeuklM6UPAQhAuxCAgEh1W2XjjTfeSHbYYQdvm1WGDBmS3HHHHWYuIG46FnRMhMeJjh0dQ/3ltdde87Zn6aWXNlMWIgABaBcCEBCpbqpsvPDCC5k3OB0xYgTDXAMBHRM6NsLjRceQjqX+8Nvf/tbblpEjR5opCxGAALQLAQiIVLdUNt5+++1kyy239LZVRfdBee6558xcAFw6NrLuFaRjScdUu1111VXedmhAhBABCEC7EICASHVLZWPcuHHedqqMHz8++ec//2nmAJBFx4iOlfD40THVbv/5n//pbcNJJ51kpixEAALQLgQgIFLdUNnYd999vW1U2WeffcxUAHnomAmPIx1b7RRuw2WXXWamLEQAAtAuBCAgUp1e2fjqV7/qbZ/KjjvuaKYCKELHTng8TZw40UxtvQ033NB77rlz55opCxGAALQLAQiIVCdXNnR5jLttKurP8NZbb5k5ABShYyerT1DWpWitsNRSS3nP+/LLL5spCxGAALQLAQiIVKdWNr75zW9626XyyU9+Mnn++efNHADK0DGkYyk8vnTMtdJf/vIX7/lWXHFFM8VHAALQLgQgIFKdWNm46KKLvG1S+chHPpI88sgjZg4AjXj44YeTVVddteI4u/DCC80czXf77bd7z6WR6EJ/+9vfCEAA2oYABESq0yobV199tbc9Krps5u677zZzAGgGHVPhJWkqOgZb4Xvf+573PF/5ylfMlD62hWiVVVbx5iMAAWgVAhAQqU4KQLfccou3LbbcdtttZg4AzaRjK+uY07HYbEceeaT3HGeddZaZ0uenP/1p+vg666zjzUcAAtAqBCAgUp0SgH7zm98kgwYN8rZFZfbs2WYOAK2gYyw87pZYYon0mGymz372s95zXH/99WZKny9/+cvp45/5zGe8+QhAAFqFAAREqhMC0CuvvJKsscYa3naozJw508wBoJV0rIXHn45JHZvN8rGPfcxb/0MPPWSm9LHTDzjgAG8+AhCAViEAAZHqhAC02267edugMm3aNDMVQDucffbZFcehjs1mePvttyvWPX/+fDN1Yf+f5ZZbriPOSQDiQAACItXflY3TTz/de36VyZMnm6kA2knHXng86hht1DXXXOOt8+Mf/7iZ0sf2//n85z9PAALQNgQgIFL9WdmYM2eO99wq48aNM1MB9Acdg+FxqWO1EVdeeaW3vl122cVM6WP7/+j8QwAC0C4EICBS/VXZePHFF5Nhw4Z5z73yyisnzz33nJkDQH/QMahj0T02dazqmC1r0qRJ3vqmTp1qpvSx/X9++ctfEoAAtA0BCIhUf1U2dt55Z+95VW666SYzFUB/0rEYHp86ZssaO3ast65rr73WTPH7/wgBCEC7EICASPVHZeOUU07xnrNdzwsgv/DcoKJjt4wVV1zRW89jjz1mpvj9f6Q/zkkA4kQAAiLV7srGjTfe6D2fSiO/LANonayWWh3DRTz99NPe8oMHDzZT+rj9f4QABKBdCEBApNpZ2Xj22WeTlVZayXu+j370ow31LQDQOll99XQM61jOK7ycbsyYMWZKH7f/jxCAALQLAQiIVDsrGzvuuKP3XCqNji4FoLWyRmvUsZxXONT9EUccYaZU9v8RAhCAdiEAAZFqV2VjypQp3vOonHHGGWYqgE6Wdb8uHdN57Lnnnt5yl1xyiZlS2f9HCEAA2oUABESqHZWNrF+Qd999dzMVQDfQMRsex3lacEeMGOEtc++995oplf1/hAAEoF0IQECk2lHZGDVqlPccuub/lVdeMVMBdAMds7a/ji06tmt54403vPlV3nnnHTO1sv+PEIAAtAsBCIhUqysbWZfO/OxnPzNTAXQTHbvh8axjvJq5c+d6844cOdJMye7/IwQgAO1CAAIi1crKxp/+9Cdv3SpHHnmkmQqgG+kYDo9rHetZLrjgAm++/fbbz0zJ7v8jBCAA7UIAAiLVyspG2GdglVVWSS+JAdC9dAzrWHaP7Wp9+g499FBvvrPPPttMye7/IwQgAO1CAAIi1arKxqxZs7z1qlx22WVmKoBupmM5PL51zIfWX399b57bbrvNTMnu/yMEIADtQgACItWKysb8+fOT4cOHe+sdN26cmQqgF+iYdo9xHfM69q3XX3/dm67y97//PZ1Wrf+PEIAAtAsBCIhUKyobJ5xwgrdOlT/84Q9mKoBeoGM6PM517Fu33HKLN23DDTc0U6r3/xECEIB2IQABkWp2ZeO+++7z1qdy8sknm6kAeomO7fB41zkga9rhhx+ePi7V+v8IAQhAuxCAgEg1u7IxduxYb31rr722mQKgF+kYd495nQNk22239R6/6qqr0selWv8fIQABaBcCEBCpZlY2ZsyY4a1L5brrrjNTAfQiHePhca9zwaBBg7zHnnzyyXT+Wv1/hAAEoF0IQECkmlXZ0F3ihwwZ4q1r3333NVMB9DId6+6xP3jwYO//q6++upmzdv8fIQABaBcCEBCpZlU2Jk6c6K1n0UUXXfCLL4DepmNdx7x7DnDLPvvsY+as3f9HCEAA2oUABESqGZWNJ554wluHyrRp08xUADHQMR+eB2w577zzzFy1+/8IAQhAuxCAgEg1o7Jx1FFHeetYb731zBQAMdGx754LbLEjw9Xr/yMEIADtQgACItVoZePZZ5/1llfRXeIBxEfHfng+WHLJJc3U+v1/hAAEoF0IQECkGq1sHH/88d7yDHsNxG3VVVf1zgnuAAj1+v8IAQhAuxCAgEg1Utl46aWXkoEDB3rLa/hbAPH69Kc/7Z0TBgwYkJ4rpF7/HyEAAWgXAhAQqUYqG5MnT/aWHT58uJkCIFZrrrmmd15Q0bkiT/8fIQABaBcCEBCpspWN119/Pb22313WHekJQHwefPBB75xgi84VP/rRj9K/a/X/EQIQgHYhAAGRKlvZCJcbNmyYmQIgVueee653XnDLBhtskP5b7xxT9pwEAEURgIBIlalsvPXWW8myyy7rLXfOOeeYqQBitf3223vnBbcsssgi6b+1+v8IAQhAuxCAgEiVqWyceeaZ3jJDhw5N5s+fb6YCiJF+GHHPCypDhgzx/j9o0CAzd3UEIADtQgACIlW0sqGgo8DjLnPGGWeYqQBidf3113vnhZEjR6bnBvexJZZYou6PJQQgAO1CAAIiVbSyEV7jr0vh3nzzTTMVQKwmTpzonRsmTZqUnhvCy2V1DqmFAASgXQhAQKSKVjZWW201b/5TTjnFTAEQMw2D754bbrvttvRxnSPcx3UOqYUABKBdCEBApIpUNm655RZvXg1t+9prr5mpAGI1b94879ygvj7vv/9+Ou0Pf/iDN01F55JqCEAA2oUABESqSGVj//339+Y95JBDzBQAMdMokO65YZdddjFTkuSnP/2pN01lwoQJZmolAhCAdiEAAZHKW9n4xz/+kQwcONCb9xe/+IWZCiBm2223nXduuOCCC8yUJPnyl7/sTVPRuUTnlCwEIADtQgACIpW3snHJJZd486299tpmCoCYaaAD99yg8thjj5mpSfKxj30sfSzsP6hzShYCEIB2IQABkcpb2dhmm228+U499VQzBUDMrrzySu/coOGvrb/85S/pY8stt1zFuUbnlCwEIADtQgACIpWnsvHoo49686joMQAYP368d26YPHmymbKw/8/nP//53OcRAhCAdiEAAZHKU9lQa487T7VfbgHE5YUXXvDODSq///3vzdSF/X/seSVPSzIBCEC7EICASOWpbKi/jztPtWv3AcTl/PPP984No0ePNlP62P4/v/zlL9P/X3zxxd78WX0JCUAA2oUABESqXmVDI72502uN3gQgLmPGjPHOD9OmTTNT/P4/Vp7RJAlAANqFAAREql5l49BDD/Wm615AAPCnP/3JOzeoPPXUU2aq3//HFd5PTOcYFwEIQLsQgIBI1aps6E7uyyyzjDe91h3cAcTjG9/4hnduGDt2rJnSJ+z/Y918883ecjrH6FxjEYAAtAsBCIhUrcrGj370I2+a7uMBALLuuut654eZM2eaKX3C/j+u8J5AOtdYBCAA7UIAAiJVq7Kx0047edNOOOEEMwVAzO655x7v3KDy+uuvm6nZ/X9cOpe4y+pcI1qOAASgXQhAQKSqVTb+/e9/J4sssog37YEHHkinAYjbcccd550b9thjDzOlT7X+P5bOJe7yOtfonKNWo0GDBnnTCEAAWoUABESqWgC6/fbbvcezhqsFEKfwErZrrrnGTOlTrf+PKxxe/6KLLkr/VauR+zgBCECrEICASFULQLqbu/v4xIkT08cBxO3666/3zg0axOCDDz4wU/vU6v9j6Zzirme77bZL/91ggw28xwlAAFqFAAREqloA2mKLLbzHZ8+enT4OIG4bbrihd2446KCDzJQ+9fr/WDqnuOsZMmRI+u8+++zjPU4AAtAqBCAgUlkB6G9/+5v3mMqLL75olgAQqyeeeKLi3PCzn/3MTO1Tr/+PpXNKuC6VY445xvs/AQhAqxCAgEhlBSBbgbFFl6QAwKRJk7xzwyabbGKmLJSn/48VXu42fPjwzHMSALQCAQiIVFZlI/wFVpUeAHFTP5/Bgwd754aLL77YTF0oT/8fKwxUuryOAASgXQhAQKSyKhujRo3yHrvpppvM3ABi9f3vf987L6ywwgrJe++9Z6b2ydv/x9K5xV2nwhMBCEC7EICASIWVjfD+HipvvPGGmRtArDbddFPvvHDSSSeZKQvl7f9j6dzirlMlPAcRgAC0CgEIiFQYgHbffXfv/1tuuaWZE0Cs7rjjDu+8oPL444+bqQsV6f9jrbPOOt56w3MQAQhAqxCAgEiFAWijjTby/j9lyhQzJ4BY7bvvvt55Ya+99jJTfEX6/1if/vSnvXWH5yACEIBWIQABkQoDkL0Xhy3hELcA4mL79bjl9ttvN1MXKtr/x1p55ZW9dYfnIAIQgFYhAAGRCgOQWwYOHJjMnz/fzAkgRmoFds8L6623npniK9r/R7LuORYWAhCAViEAAZGqFYC22247MxeAWK200kreeWHGjBlmiq9M/x8bmoYOHeo9h1sIQABahQAERKpWADrjjDPMXABidOmll3rnhEGDBiXvvvuumeor0/9HrUVaZtttt/Wexy0EIACtQgACIlUrAOnXWQDxGjlypHdOOOCAA8wUX9n+PzY06Yaq7vO4hQAEoFUIQECkagWgRx55xMwFIDZXXHFFxTnhiSeeMFN9Zfr//OEPf0iXUWjSucZ9HrcQgAC0CgEIiFS1ADRgwIDk/fffN3MBiM2oUaO8c8L6669vplQq0//nu9/9brqMQpPONTrnuM9nCwEIQKsQgIBIVQtAujkhgDhdddVVFeeECy+80Eyt1Ej/H7U0SXhDVFsIQABahQAERKpaANp1113NHABiE96MdPHFF0+HrM7SaP8fLS8657jPaQsBCECrEIDQdebNm5csv/zy6RfktGnTzKMoqloAOvHEE80cAGIye/bsivOBRmmrppH+PxtssIF5JEnPOe5z2kIAAtAqBCB0lVdffTUZPXr0gi9IAlB51QKQhr8FEJ9NN9204nxQK4Q00v/n2GOPNY9UDrltCwEIQKsQgNBVDjvsMO8LkgBUXrUANHfuXDMHgFj85Cc/yTwf2MvUsjTS/8cdal/nHPc5bSEAAWgVAhC6RtblGQSg8qoFoJdfftnMASAWW265ZcW5wL1MLVSm/4/6Eml+LecGK51z3Oe1hQAEoFUIQOgK6veT9QVJACovKwANHTrUTAUQixtuuKHiXKDiXqYWKtP/xy6TFax07nGfW4UABKBVCEDoeOr3s9Zaa1V8OaoQgMrLCkBjxowxUwHEYquttvLOAyuttFL6r3uZWqhM/x97zskKVjr32Oe3hQAEoFUIQOh4++yzTzrqW9j/R4UAVF5WADrooIPMVAAxqNb3R5eqVRv+Wsr0//nMZz6TLpMVrHTucZ9fpRsDkC7tq9Vvqhn0o+DMmTOTHXbYwXu/NECQvifnzJmTzqMrJzRPPZrffs/adWk5XXYO9CoCEDqaTvI6GesErbBjT862EIDKywpAvJ9AXNZff33vHLDJJpuk/9a6tK1s/x+7TFawyjq/d2MAspf5qZWrFUHIvQ2EroyYMmVK+t7pX3eEVFvqBaCsHxbdonXqOYFeQwBCx7L9fnRil7IB6Mknn0xP8u5ldPoC0S9eWb9whb+qucXScu6XjdatbdGvbpb+1mPufPq7U35VywpAN954o5kKoNdNnz694hxgW2lqhY9G+v9UW0bnHrsNtnRzALKlmUHI7Qur77QsGlHP/c6pFYDc8KPvMM3rLmuLvi/d7zagFxCA0JF0stUJWSdjq0wAcpdRa1L4mIpO+uHJPWvEORWFqawvCFvs9upLyL2cICz1trsdsgLQ/fffb6YC6GVvv/32gr4+thx++OELLm2rVWkv0/+n3jI699jtsKUXApAtzQhC9ke8eq06oh/4as1rhx7X9LCFJ+t7rlrgAroVAQgdyV6P7AaTogFILUd2Pq3P0jrddahkrSecR0XbpC8CrUMlKwzpC0X/KnBpHn2ZZIUhPd6fsgLQ008/baYC6GWTJ0/2jv3FF188ue6669K/aw1/LWX6/9Rbxl5W55ZeCkC2lA1CugzcrkN/16PvHn3vVAtA+k50vxdDWd9vegzoFQQgdBwbdMIbchYJQOGN9cLLztzL4VSyvgjc6baEv4JVaykKn8+91KDaPO2WFYDefPNNMxVAr3riiScqjv3TTjttwTkha5Q2ywaVIv1//vCHP9RdRuceuy229GIAsqVoEHK///IEINEy1QJQ+ANjlvB7NPxOBroZAQgdxZ5ws4JNkQAUBpzwxK0mfzuP/s3q5Okub0so/IJQyfrCKbLt7RL+ArzooouaKQB6mb0czZY11lgj+eCDD2qO0mbZCn6R/j/f/e53cy2jc5DdJhWdo7pN3gBkS94g5H6HVAs1IX2vZc2r7y3bt7YetxWIAIReQgBCx6jXZJ83RLgdRW0pc+IO16ES6uYApC9ed3sGDx5spgDoVVnnrO9///teK02t4a/dvjxZrciUcqVeEHIvgVOxl2LXkzcsVaPl7XNm/VAIdCsCEDqGTrS1muXzhois+QhAlQ499FBve1ZZZRUzBUCvciu0Kptvvnn6eN5WGrcvDwGo+aVWEAqvbND/y3y3FWH3F303A72EAISOkBUkihQ3dBCA8pkwYYK3PWuuuaaZAqAXXXvttd4xr3LzzTen0xR89P8rrrgi/X+WsP8PAag1Re9v1mAR1b4n1Ye1VYPq2NDV399XQLMRgNARWh2Aygw4EK5DJdTNAWjvvff2tueTn/ykmQKgF40aNco75m1rjy55U6Vbj9W6DCvs/0MAam7RZ6D3VpcjVqPvMrXGZC2vy+KaGYTs5eR5BkwAug0BCB2h1QEoHL0tj3AdKqFuDkB77LGHtz3rrruumQKg19hL3Nxi7/tlg0294a/De/kQgJpT8gQfl0KOvmey1qWi75ZmBBY7eml/f1cBrUAAQkdoZgDKGpq6zPXL4TpUQt0cgOwlL7bo12EAveeZZ55JllxySe94d38UskFG/U9qKXr/n7wtS1a1FqpuUmQUuKLBJ1SrNUiP5x0uO4tCltZjb+4N9BoCELpG3hBhR5ML59WNSYsIl1cJdXMA2mmnnbzt2Xjjjc0UAL1k//339471pZdeOnn++efN1IXBRpX3asL+P3nkbVmydA6y26iic1S3yROAGg0+Ln3f6bukWhAq+z2jfkVaZ3/fsBtoFQIQukaREJE1r07mWcN46gsk741QQ90cgMaNG+dtz6abbmqmAOgV119/vXecq0yfPt1M9W9SWmv4a1uxL9Iqk7dlydI5yG6jis5R3aZWAGpm8Anpe8xeshaWoi1B9ioKhr1GLyMAoWsUCRH6MnBv4GaLQpA7IIK+GDTKTdYXRLisitbr6uYA9NnPftbbni222MJMAdAr1l57be8433rrrc2UPnmHvw77/+SR58aqLp2D7Haq6BzVbbICUCuDT0ihJfzu03dcXlo+/J4EehEBCF2jaIioFoLcohO9Qkwoqx+Rivt8tX5xc9epSwiytkNfSv15ecHYsWO97RkzZoyZAqAXTJ482TvGVe6++24ztY8q5nq8Xkgp0/9H89drWXLpHGS3U0XnqG7jBqBmBh99p+T90Szruy9Pa46+jwg/iAUBCF2jaACydDLXJW7ucmqlUZ+gsEVHNM2dN6tI1uNu0XqyWojCkhXA2sH+OmtL+MswgO6lEd7c41vl+OOPN1P75B2koJH+P/VallxrrLHGgm1V0Tmq2+h1t6LFR98TWZdqV2MHMbCl3veMDU2EH8SCAAREihYgoHdtv/323vE9fPjwZP78+WZqHxtS6g1SUCbMlLlkbvPNN1+wvSrd2AKk0NOKS93sj2lZP9pV47YC1QpANvzkbWECegEBCIgUfYCA3qTWbffYVsn6Zd8OUlAvpJQJM0UvmZOwv1I39gFqFRuAioQUNwBVC042/OS5V54uo8szH9ANCEBApBgFDug9L7/8ctqPwz2299prLzPVlzekFA0zagHR/EUumZNhw4Yt2GaVbhwFrlVsANJnm6c/j+ax7+OUKVPMo74i4UfPr+du5N5CQCchAAGR4j5AQO85+OCDveN6kUUWSR5//HEzdaG8IaVM/5+8I8uFFl988QXbrdKN9wFqFRuAVOoNVOAOvKN/s1p/bPjRPOqvWqtowB77vECvIAABkVLlxH6hqugu7AC610033eQd0yrVLpnKG1LK9P+x55YrrrjCPFKfHTXOLUUDVC9zA5AtCib6fDVNRa0zau2xLYAaNCEr/Kh1yIaaIoXL39BLCEBApPbYYw/vy23dddc1UwB0mzfffDMd6MA9pmtd1mpDigJOLY30/6k1slzIBi236ByFPgo49lI2BRi1ACmQ2FYcWxRs9Ljmr8YGpKKFy9/QSwhAQKT23ntv78vtk5/8pJkCoNscdNBB3vGscscdd5ipvrzDX0vZ/j/1RpYL2QEZ3KJzFAC0AgEIiNSECRO8yoZ+PQbQfa6++mrvWFbRTVCryTv8dSP9f9RyVER4XzIVnaMAoBUIQECkDj30UK+yscoqq5gpALrFiy++mAwdOtQ7ljfbbDMzNduxxx6bzlfvsrZG+v/Uu7TOZfv/aMAG/WuLzlEA0AoEICBSthJky+DBg80UAN1CHd3d41jlnnvuMVOz5b2srWj/nyKX1rls0Fp00UXTf23ROQoAWoEABERKl8i4lQ1VPgB0j4svvtg7hlXOPPNMMzVbkXv0FO3/o/k0f9n+P2ELUK3L+ACgEQQgIFJZnY41khSAzqd7+wwaNMg7fseOHWumVpe3j06Z/j/2nFK05Sar/49K3pYnACiKAAREKisAFblsBUD/+dznPucdu2o9eeihh8zU6vL20SnT/8cGmTL9f3QJrv51CwEIQKsQgIBIZQWg+++/30wF0Km+9a1vVRy706dPN1OrK9JHp0z/H82v9evvvGzQ2njjjdN/3UIAAtAqBCAgUlkB6MYbbzRTAXSi3//+9xXHbd5WGhs21FJTT9H+P0XW7bLnoZ133jn91y0EIACtQgACIpUVgKZNm2amAuhEGuLaPWZ16djTTz9tptaWt1WnTP+fvENrh+xlc1/60pfSf91CAALQKgQgIFJZAUh3kwfQmb761a9WHLOXX365mVpf3ladMv1/irYYib1sTuWLX/zigr9tIQABaBUCEBCprAA0ZswYMxVAJ8ka8lol74ADdvjrPENUF+3/U2RobZcNWtomnXv0t1sIQABahQAERCorAOmO8gA6y+9+97uKY3XgwIHpv3lHbrTDX+cZorpoa84VV1yRzl+kxUjsOUjbpHOP/nYLAQhAqxCAgEhlBSCVl19+2cwBoL+99957yYYbbph5rBa54Wje4a/L9P+x6y4aWGz/nx/84Afpv2EhAAFoFQIQEKlqAWju3LlmDgD97cADD6w4RhV89G/egFBkiOpG+v8UuY+Y2//ntttuW/C3WwhAAFqFAAREqloAuvTSS80cAPrTBRdcUHF8aiCEooGjSKgp2/+nSGuUuP1/dM7R32EhAAFoFQIQEKlqAejEE080cwDoL3fddVfFsakhsN3gkFeRS9SK9v+xfYsUnIqw5x/1/9E5R3+HhQAEoFUIQECkqgWgXXfd1cwBoD/885//TEaOHOkdl4sttljy4IMPLjhui4SDvC1GjfT/qde3KOQup3OO/g4LAQhAqxCAgEhVC0DrrLOOmQNAf5gwYULFcamR1qRoC02RS9SKXCpnKSxpmaL9f9zldM7R32EhAAFoFQIQEKlqAWjAgAHJ+++/b+YC0E5nnHFGxTF59NFHp9PK9Lexx3me4a+L9v9RCCu6PeJexqdzjc45+n9YCEAAWoUABESqWgBSeeSRR8xcANrlRz/6UcWx6N6cuEiYsexQ03kuUSvaulRme8RdTuca/Z1VCEAAWoUABESqVgAqej0/gMb85je/qTgOl19+ee/HCBtQ8h6fRYa/7q/+Pyr6O6sQgAC0CgEIiFStAKTLcAC0x/PPP58MHz684jicM2eOmWPh5W9FAooNF3n69BSZV9x+PPXClSvs/5N1yZ8tBCAArUIAAiJVKwBtt912Zi4ArbbNNttUHIO6B5DLHq9FLjezLS15gkTR/j82MOkSuyLCfkM61+j/WYUABKBVCEBApGoFoIEDBybz5883cwJolQMPPLDi+Pva175mpi5UpC+PlXf4aynb/6doSLHLKcjpHKNzjf6fVQhAAFqFAAREKgxAQ4YM8f7/s5/9zMwJoBVOO+0075hT2WOPPczUhdzL3/JeblZkxLgy/X+K9key3P4/Osfob1vCcxABCECrEICASIUBaKONNvL+P2XKFDMngGa76qqrvONNZeONN07eeecdM8dC3/3ud9PpefvniNvSUk/R/j9uYGqk/4/OMfrblvAcRAAC0CoEICBSYQDafffdvf9vueWWZk4AzTR37lzvWFNR60e14efdVpO8ilwyV7T/j27KqvmLBDIJ+//oHKP/2xKegwhAAFqFAAREKgxAxx13nPd/lTfeeMPMDaAZnnzyyQWXj7nl1ltvNXP41Gqi6UVaW4ouU7T/jw1kRQOKPeeoVUrnFv3tlvAcRAAC0CoEICBSYQDS/0eNGuU9dtNNN5m5ATTq1VdfTVs/3GNM5cILLzRzVCpz+VuRFppG+v/kGVzB5bZk6dyiv23RuSfrnAQArUAAAiKVVdk45phjvMcmTZpk5gbQCI14ttVWW3nHl8oJJ5xg5sjmhoa87DIKT/UU7f9T5n5EEvb/0blFf9uicw8BCEC7EICASGVVNmxlyJY8I0gBqG/nnXf2ji2VAw44wEzNFoaGvIq00BTt/1OmRUrC/j9hS5jOPQQgAO1CAAIilVXZsH0H3PLiiy+aJQCUMWHChIrjKk+AKNo6I2HQqKds/58iLVJig5P6/+icor/donMPAQhAuxCAgEhVq2xsscUW3uOzZ89OHwdQ3BFHHOEdTyrbbrtt8v7775s5qrNho0gQsMd1nuGv+6v/j84p+tsWnXOk2jkJAJqNAAREqlplY/Lkyd7jEydOTB8HUEx4LKnoXj95RmZr9PK3PC00RVuYitxc1RW+Fp1T9Lctep+EAASgXQhAQKSqVTZuv/127/G11147fRxAfmeffbZ3HKl8/OMfT55++mkzR202nBQJG+4ABXlCVtn+P3lal1zhZXk6p+j/tuicIwQgAO1CAAIiVa2y8e9//ztZZJFFvGkPPPBAOg1AfTNmzPCOH5WVVlopefDBB80c9ZW5/K3oAAX90f9H5xL9bYvONTrnCAEIQLsQgIBI1aps7LTTTt60ekP1Auhz2WWXeceOyhJLLJHMnTvXzJFPmb42NqDoPkD1FO3/U/aSPHGDk84l+tsWnWssAhCAdiEAAZGqVdn40Y9+5E1bbbXVzBQA1VxyySXecWPLLbfcYubIp8zlb0UDStH+P2W2yXK3S+cS/W2LzjUWAQhAuxCAgEjVqmxohKplllnGm37zzTebqQBCWZe9qVx99dVmjvzssVkkABQNKEX7/9htKtr/xx04QUFQf9uic4w7Gp59DluKvH4AKIIABESqXmXj0EMP9abvv//+ZgoA1wUXXOAdK7ZceeWVZo5iivbNkaIBpehzFBldzuX2/9E5RH/bonOMiwAEoF0IQECk6lU2fvGLX3jTBw4cmPzjH/8wUwHIeeed5x0ntlx11VVmjmLKDjVdJKCU6f9j588zupzL9v+ZNWtWeg7R37boHOMiAAFoFwIQEKk8lY1wuNqLL77YTAHw7W9/2zs+bFFlvyx7XBa51Mwd/jqPsv1/8s7vsv1/zjrrrPRfW7KG1ycAAWgXAhAQqTyVjVNPPdWbZ5tttjFTgLidc8453rFhy1577WXmKKfMpWZFh78u2v+n6PyW25qlc4f+tkXnllCecxIANAMBCIhUnsrGo48+6s2joseAmIWtGbboXj9Fh4h2FW3JsexlZnlDU9n+P9q+ImwwO+CAA9J/3ZJ1HiEAAWgXAhAQqbyVjfCXWyoliNnUqVO948GWyZMnlxoi2mWPySKXvxUd/rpo/5+yoUxsMNt3333Tf22p1pKc95wEAI0iAAGRylvZCO9tknXtPhCDcGREWzREvCr7jVbYP/OZz6TrK3L5m+2fkzd8Fe3PU/TyOpdtOVpzzTXTf23ROSULAQhAuxCAgEjlrWxo5Ld6ozcBvexf//pXsuuuu3rHgIqOi1tvvXVBK0yzLn8rMtKaPY7zhoWi/XlsK84VV1xhHsnHvp6Pf/zj6b+21BpNMu85CQAaRQACIlWksjFhwgRv3kMOOcRMAXrbs88+m2yxxRbe/q+y8sorJ3feeWc6j1pVyrSQuMq2tJTtz1N0/qLhzr6eddddN/3Xllr3EyMAAWgXAhAQqSKVjfAO7oMGDUpee+01MxXoTffff3+y1lprefu+ynrrrZc88sgjZq6+VpIil61lKXP5W9H+OWX7/5Tp22RbjhZffPH0X1vGjRuXTJ8+3cy1kFq9CEAA2oUABESqaGVjtdVW8+Y/5ZRTzBSg9+jStmWWWcbb51XGjh2bvPrqq2auvoq7WkmKXLYW0rJad9HL34q2GpXt/1NkUAbLthy5ZfDgwQv+njJlipmzj902txCAALQKAQiIVNEAdO6553rzL7vsssmbb75ppgK9Q/1d3H3dli984QtmjoUUEopethYqe/mbbWXJ22pUtv9P0dYt23IU9h0My4EHHmiWqDwfqRCAALQKAQiIVNEANH/+/GTo0KHeMmeccYaZCvSG0047zdvHbTnmmGPMHD5dulY0IITKBA21FKnFSMvl7Z9TpP9PmfVbNtC5Ra0/AwYMqHh8/Pjx6Q8p9j1wCwEIQKsQgIBIFQ1AcuaZZ3rLKBApGAHd7q233kr22Wcfb/+2Rft9FrV0FL1sLVQ2aNhLxvL2zyna/6fo+l277LJLuqxb9B5q0IhVV121YtrGG2/sXR5nCwEIQKsQgIBIlQlAqiTq0jd3uXPOOcdMBbrTfffdVzFamS2XXnqpmauSjpky/WNcNmgUvfyt6OVsRZ/Hnh/KvL7ll18+XdYWnTN07pBHH300DVXudFuGDBni/T/vawOAoghAQKRsBadoZSNcbtiwYWYK0H0uv/zyzEuzVlpppXT0w1p0SVne4aSrsZd+Fa3sF7mcTYoGpjKj0ont/+OW8Dn//ve/JzvuuGPFfOHnUPQ9AYC8CEBApMIgk7ey8frrrydLLrmkt+x5551npgLdQRX1JZZYwtuPbdlmm23qXo6m5ctcHuYqe/mbDRl5L2eTov1/7PqLXt632267pcvaonOFzhlZDjjgAG/e8KapBCAArUIAAiJVNgDJ5MmTvWWHDx9upgCd7/nnn6+obNty1FFHmblq0/HSaAW9bD8bO8iAWnXyKNv/p+hlebLUUkuly9qic0UtJ5100oJ5NdCEuywBCECrEICASDUSgF566aWKIW4vuugiMxXoXGeffXZ62aa779oyc+ZMM1d9alEp0mqTpezlb3a5vJenFQ00RS+Xs2bMmJEuZ4vOETpX1GJbs9ZYY42GzkkAUAQBCIhUo5WN448/3lt+7bXXNlOAzqSbb7r7rC0jRoxI5s6da+aqT4Gi0cvfxF6WViRIlblsrmigKdq/yLLL2aJzRD3uPZAIQADahQAERKrRysazzz7rLa9y2WWXmalA5/jd736XbLnllhX7q4r6rFTro1KNraw3ouzlb3Y5DVKQV5FAU6Z/kejY13Ju0TmiHtuapZvPEoAAtAsBCIhUMyob6i/hrmO99dYzU4DOcO6553r7qFumTp1q5spPLTDNuPzNHn9FjzsbGPIuV7T/j9siU4SOfS1nS96+VG4rWDPOSQCQBwEIiFQzKhtPPPGEtw6VadOmmalA/9G+OX78+Ir9U0Vh4L//+7/NnMWoBaZoOMjS6GVmeQNY0f4/botMXjrmtYxb9P7XE4YzAhCAdiEAAZFqVmVj4sSJ3noWXXTR5MknnzRTgfbTzUuXXnppb7+05cMf/nBy1113mTmLU0BQqGiEvcys6OVvZZYr2/8nb8DSsa5jXsvYonNCHmE4IwABaBcCEBCpZlU2XnnllYo7uO+7775mKtA+f/3rX5MJEyZ4+6Ityy67bDrMciOtN/byt6L3xgnZY+/YY481j+RTZrkiLU1lApaOdS1ji+6tpHPC1VdfXfdGsnodWsaee5p1TgKAeghAQKSaWdkIh79Vue6668xUoPU0DLsdHS0su+66a/LMM8803Hqj/jGNBCjLhpKi26KBD4osV7b/T96ApWNc87vlS1/60oJzy+DBg5OHH37YzF1JQUvz2ddDAALQLgQgIFLNrmyMHTvWWx/DYqMd7r333op9zy2q1IvCgIJAI603CiCNBCgpO8qattsul/c1aFu1TN7Qpvk0f97XqGNc87tFYdP9/yabbJK8++67ZomF7OtRsa+HAASgXQhAQKSaXdm47777vPWpnHzyyWYq0FyqVJ9wwgkV+5wtW221VTJv3jwzd9/+XvSSM5eCi1puGmWPu6LbUjTMSJH+PwohtgUtT/8fHdua1y2f+MQn0hvNho/vv//+ZqmF7OtxL7dr9jkJAKohAAGRakVlI6tCqooj0EyzZ89O1lxzzYp9TUUd8rNGIlR4aWRf1PHRSICyil7GZtnWmSLHaZH+P1mBpBrbihUWBS458MADK6Z94xvfSKdZ9vzjvqetOCcBQBYCEBCpVlQ25s+fnwwfPtxb77hx48xUoDGPPfZYsueee3r7l1v22WefzBEIVbkvcuPQLAoTRYesDrmXv+W9jM2yYSbv6GxF+/9kBZJqdExrXluWWmqp9F936OwxY8Z486hcc801Zmr25XYEIADtQgACItWqysasWbO89aroLvFAI84888xkwIABFfuWyogRI5Jrr73WzFlJle0i97UJKbgUGRmtmrI3GbXBqcg22BadvM+Vt2VKx7Lmc8vQoUPTf91wpvsArbTSSt58GiHu97//fTo963I7AhCAdiEAAZFqZWVj991399a9yiqrJG+88YaZCuSne/qErYpumTx5cvLBBx+YuSupgl2mxcWlY6MZx0fZy9/ssVrkEryi/X80b733ScewjmXNa4sdgCKrf9Stt97qzauy3nrrJXfffXf6dxjo7Ou0pRnvOQBkIQABkWplZeNPf/qTt26VI4880kwF6rv55puTzTffvGI/suWzn/1scv/995u5q9N+3UjfHQUCVe7zXnpWTd6QkaVMcCrT/6feZYI6hjWfWxRA9W+1libb6uWWUaNGpf+GnwsBCEC7EICASLW6snH66ad761f52c9+ZqYC2X73u98t6B+SVVZcccXkkksuMXPX12jfHYWDRvsPSdnL38oEp6L9f/K0FunY1Txu0TFuP6talxgedthhFcuqhIGOAASgXQhAQKTaUdmwv/Taosqo7hIPhJ599tlk4sSJ3v4SlpNOOil58803zRL1NSO8qILfjGPDBoUirTiiYKHligQn26KTd5l6rUU6Zu08tujYFvt4vRayrHs1fetb3zJT+xCAALQLAQiIVDsqG3PmzPGeQ0X9gwBLIweecsopycCBAyv2FVvUQvH444+bJfJTAGhk8INmXv6m1hi9lqLrssGpyPFZpP+POzJdNWGfPhUd23ZZvUf1PPfcc8lqq61WsR71B7LacU5Cfa+++moyc+bMZIcddvA+j9GjR6etefrsNY/us6V5itAojVpH0eWAZiMAAZFqV2VjypQp3vOo6NIZQC0Aq666asX+YcuOO+6YzJ0718xdjIKGKuZF+9u41JJSpOWlmqItMq68LSwuu0yeS//qtTCdccYZ6XS36JjWaG7f+c53ai4buuOOOyrWpZunvvbaa+l0AlD/U6hZfvnl0/d/rbXWSj9r3VdL/yoAuZ+PSt4go+NYw9QXXQ5oFQIQEKl2VjZUkXWfS0W/IiJO6g8zbNiwin3CFo0Odt1115m5y9H+3MjgB6KKfdFL1rJoPXpdRY8xBRj7fuSloKRl8vb/sduW1VKW1YKrY9meO5Zddtn03yKtbFtssYW3PpWddtopndbOcxIqKfzY916tNFkUZNwgVC/IaJ0KPprPLpNnOaDVCEBApNpZ2VD/jvCeIKoAv/jii2YOxOD8889PVl99dW8/cMuSSy6ZXHDBBWbuxqgVpJHBD+xla420IEkjl7/ZY7RIkCvb/yfcNh2bH/3oR9NptugYXnfddb3HVMq0ToXl+OOPjzoA6T0sun80m1p89L7nCSe2NafevLpUznIDNQEI/Y0ABESq3ZWNG2+80Xs+lZ133tlMRS9TqKlW8VUZNGhQGhJ++9vfmiUaoxDQ6I1L1UqVN0TUYgNJme3RMlq2SCtUmf4/WdumY1PT3KJj+Igjjqh4XCP35aEKvubXZz1+/PiK9aglyP1/TAHI7icKu/0RhNxwkqd1XsFGl8oVCTLq/2OfgwCE/kYAAiLV7gAk6uzuPme7nhf946KLLlrwq3JWWWyxxZKvf/3ryYknnphW3JtFwaWRwQ9Eo8cVCR7VlL38zR2coEgrVJH+P3Zo7vC9D88NKjp25a233qoYzGDbbbdNp9VjK/l6T15++eVkxIgR3nrCEtO5wb43trQ7CKmfj33uvJcna5miQcY+BwEI/Y0ABEQqrOS0q7KR9cvyTTfdZKaiF1x88cU1K7ca8U2h569//WtauVelXRX+ZlClUetr5NI1bYvW0Sj72vSai1Zmy9w3yG1hycOGMzfo6VjUY24JW2pnzZpVMc95551nplZnzzn2XPOb3/zGW4cCsfv/mAOQLe0KQm4AyhtOyowCV/Q5gFYhAAGR6q8ApL4FYQf4lVdeOR0mF93rvffeS0cFGz58uPfZhkV9PV544QWzVN9+2MzWH62v0cEPmrEOsZXaMpe/2XBSpCXLbWGpJ6tvko5BHYt6zJZqffWWXnppb74lllgieeqpp8zUbGpV07xu4Lr88svTx/QeffWrX/XW2a5zUieoFoBsaXUQCge80CAIbv+daghA6FYEICBSqly4X3jtrGyEX7Yq48aNM1PRTVSRPu2005KhQ4dWfKZumTRpUvJ///d/Zqk+zW79Ea2vkcEPpBnrEFVa9dqLHltZ4SSPIv1/skaY0zGox9ySdTmUvTxvwIAB3rx77bWXmaOSXpOdT3+7NKT2O++806/npP5WLwDZ0sogFF6uqv+XHYa+GrtuAhD6GwEIiFR/VzZ0LyD3+VUmT55spqLTaWS/E044IR3AIPwc3XL00UcnzzzzjFnKp32uma0/qkSWaW1xqXLf6Dose/lb0TBlK8NFt6PI89nj37Z06djT/91S7X5d9t5B66+/fsUyV111lZnLlxW4Qv19TupPeQOQLa0IQgo7Wc+lEd80gEEz2HUSgNDfCEBApDqhsrHbbrt526By9tlnm6noRA8//HDFpUphWWSRRZJjjjmmZgXNtnI0s/VHl341OviBjoNmHAu2laRMmLLHpg0neei91jJ5+/+4l6O5/T9s0bFZjb08T9u5/fbbe8t95CMfSd544w0z50K2T5Nek319lMZLs4PQ7NmzF9wINSy6LK7RIGTXRQBCfyMAAZEKKyHNqPQV9corryRrrLGGtx0qM2fONHOgU9x7773J/vvvX/FZuUU3xpw6dWo6uEE92t/y9FXJy15OF15eVYRdRzMqlPb4KhJiLNuSo3CSl21ByNv/R/MqLNlg4hYdkzo2q7Hbp/dJl6+Fyysgh2xo0nYSgJpfmhmEFHIUULKeR0WBOU//oCx2HQQg9DcCEBCpTghAopGg1IHa3RYV/RKJ/vfzn/882XXXXSs+H7fohpmqFP3zn/80S9XWitYf7b+NXk6nynmzQlmRy9FctuVI70+RMFek/48NS//xH/+R/usWXdKoY7Iad/usU089tWI9t956q5naR/PrcVXSCUCtKXqPi+5vtdRqDdLjeYfLdtnlCUDobwQgIFKdEoDklltu8bbFlttuu83MgXa79NJLk8022yzzc7FlnXXWSS688EKzRH7a15rZ+iMKHI1W/rRNahFpVFZIyKvM8NdSJHDVCiA6Fmux/X/C7dtoo4289ay33npmSuXlgASg5hbtZ/o8mvmDgqWWHv24US0IaVoRdjkCEPobAQiIVCcFILn66qu97VFZaqmlkrvvvtvMgVbTKG264eWqq65a8Vm4ZZNNNkl++MMfmqWKaUXrj1o0Gh24oFMuf1NFVsvqNeWlbdYyeQNXtc/3nHPOMXNUV62lSS2F4fpOPvnkdJoNdbaFjgDUnNLK4BNSEFIfoKztKNISZJchAKG/EYCASHVaABK1JrjbpKLKmjreo3UUMm3FtlbRHf+LVMyzaD8r2rpRj9bX6P7bzMvfFMb0fhV9r2w41LJFgpieR8vk2f4bbrhhwefplvHjx6f/KtzW4vb/CR111FHeOlXuu+++dLv0d70BKjrxnNQu9jPMU9oZfEK6+eno0aO97dFw2XnZZQhA6G8EICBSnVrZ+OY3v+ltl8onP/nJ5PnnnzdzoFl0jb9CTfh+h0X3d/l//+//maXKa0Xrj2250b+NUIWy0XAnem16z/Q6i26TrQQXbc3K2/9Hx5BGabOfqy0rrbSS9/9zzz3XLOFzX1sW9QELBzXRaHO1QpOLALTwtWeVVgYfDYGd93I2tQaFIUjBKA87PwEI/Y0ABESqkysbJ510krdtKptvvnny1ltvmTlQlirlquiENz0MiwamGDlyZPLnP//ZLNk47WN5WimK0DrtpVVlqWJeJrBkKduHR+wxWfRYzNP/R8eOjiH7+dqiY+3ggw/2HtNnn3Xvpmr9f1zXXHONty5btI312NdvS9H3oZvVCkCtDD6WApDu95OXRopztzHvDVPt/AQg9DcCEBCpTq9sTJw40ds+lR133NFMRVGqPB1xxBHJYostVvG+umXddddNA5J+yW9mhUvhQhW5Zlfi1FrS6OAHCi2NhijLvb9OUXmCTChv/x8dO/YztsUOV/3SSy8lgwcP9qZ98YtfTKe58rY07bffft66VHS/oHoIQP571o7gY9mboBYZ3tptBSIAodsQgIBIdUNlY9999/W2UaXIr5Sxe/fdd5PLL798QaW8VlEfkBtvvDFdTvtCswKBpXU2u/VHlcZGBz8QvT9lAkvIDSNFW5NUybXLFmErzrXeWx0z9nO2RceWa/r06RXz3HzzzWZqn7wB7bnnnks+/OEPe+vSZaz1dMM5qVXcANTO4GPZAFRkVDc3AOUNTnZ+AhD6GwEIiFS3VDbGjRvnbaeKKut57zkTI3U8P/LIIyt+1Q/LwIED05Gd3IqWKu6q6Daz8tWq1h9VEhvdb7VNeS7PyqORy9/KLlurVUbHiB3cwC3Dhg0zc/jGjBnjzTdq1CgzpXhAyxrQ5Ac/+IGZmq1bzkmtoADUH8HHsgFIw13n6c+jeeznNGXKFPNofXYZAhD6GwEIiFS3VDbefvvtZMstt/S2VUX9GfRLM/rofZo5c2bmexWWNddcMznrrLOS1157zSy9kPaDMhX4WlqxThvUira0hLRtzdr39Rr1/pZpTSq7bLVWGR0bWX1+VNRPJ8uvfvWrinnPPPPMdFqe/j+hsWPHeutaZZVVan5e+hzc+Zv1uXQDhZ7+CD6WDUAqCkG1bkSt/j+29Uf/5m39CfsNAf2JPRCIVDdVNl544YWKUYdURowYkXv0oV6lisuhhx6a3sE/fH/Col9dZ82aZZas1IqWmla1/mh/bcZlegoQjfYhEvs69T7XG+0sVHbZav1/dEzo2LCfuy1q8dO/tZ5D/cTC5R5//PHc/X9ctlXLLdpXq+mmc1KvcQOQLRooRZfEaZqK7vej1h57U1RdWlkk/IT3EdIPNkX6HAHNRAACItVtlY033ngjrcC726wyZMiQ5I477jBzxUEV5vPPPz8zFIZFlztNnjw5eeSRR8zS1Wkf6IbWH2nG4Adavhl9iCRPX5xq7LJFtyXrOXUs6Jiwn78tur+P/q33HNq3hg4d6i279957V21pqiU8x9hyyy23mDl83XZO6iUKOPZSNgVotQApsITnGIUiPa7583KXzypcDof+QAACItWtlY2sEaZUfvKTn5g5epfuxaNf4hdZZJHM98AtO++8c3LttdeaJetTxVeV3Ga3/jR7naKKfzOCi/b5Zu33CiF638us79hjjy21bNgqo2PAfv5u0f5iA4yeq56LL764Yh0qYUtTPXbwjY9//OPeejS8eha9Dne+Zn02ABAiAAGR6ubKRtYd51VmzJhh5ugdDz30UDJ16tTMS5rCMnz48PRzfOKJJ8zS+Wm5bmn90Tob3V9tOCt6uVoWravs5W9SpnVF3OW079v9oFbJ28co7L+jUuSz1Htil7vpppu89aioVTKkz9Sdp9HPGACqIQABker2ysapp57qbb8tp59+upmje73yyivJ9773vYpRuaqVPfbYY8EQ1mXYMNDoJWWuVqxT7Hr1byMUBJoVzspewiZqHdOyRVtX3P4/2uftvuAW3dMpfCxvQLvnnnsqlt16663N1Pr0uWsZ+54cc8wxFevTc7gIQADahQAERKoXKhsKCe5rsCXPZT6dSJcwKcxkvaawrL322skZZ5yRPPvss2bp8vTZd0vrT7PWq3Wok34zaF36TMocQ3aggKIDOtjQpT4Zdp9wi46NP/7xjxWPF3nNkyZNqlheLZJ52Ndlj8V//etfaQulu66tttoqnWbp/XOnl3k/ASAPAhAQqV6pbGhUM/d12JJ1J/tOpKGHDz/88MyO62FZdNFFkwkTJiS33nprwy0gVje1/ohaFBpdr92+Zl3+pnXp8ymzPhue8l6aZtn+P1nFHekvvFx0hRVWSN58800ztTbdR0hDV7vL5w2fWa8rq4/St771LTOVAASgfQhAQKR6qbJx++23Z970U/dB6cRhsh999NHkG9/4Rnp3/HCbs8r222+fXHrppV7FVZ9XM1owtI68ldq8tG3NXqeoMt2MwQ90T5tmbV8jl78pPJXpO6R9eokllvD2ERUdAzoWXC+99FIyYMAAb76vf/3rZmp9Rx99tLesSq2h1K1qoVAB3l2XhuZ+7LHH0mm9dE4C0NkIQECkeq2ycf/991dcYqOiCtYll1xi5uo/6tej+17YkbHqlfXXXz+9CWXWgAaqVDajBaPbWn8UWpqxn2o9RVtcqik7gpvY8KR9Iq/vf//7C+7n4xbt+zoGQvo8wnlV8g6UkdXSpOd69913zRyVbL+mrFD4/PPPJ8suu6y3vt122y2d1mvnJACdiwAERKoXKxsKBNXujXPIIYck77//vpmzPf7xj38kV155ZTokddY2hWWllVZKf3G/6667zBqy6bNqxufVTa0/Nlg1Gvq0vFpdtL5msC0dZQJfOIx1Ldp3tQ+7+4st2uervS82ZC211FLeMl/5ylfMHLXZ1xeWk046ycxRyfb/qdavKWvEOrXK6X1wH2vGPg4AWQhAQKR6tbIxf/785MADD/Remy36Rfree+81c7aGnl83Edxzzz0rLj2qVnRH9RtuuMGsoTZVdJsRBLqt9adZYU3radYgGbVaOvKw4aLefZK0z+o53H3GFl0Kt8suu5g5K+k903xZIfzuu+82c2WzrUcKjFkDIjzwwANmTp99ToWaaj73uc9561L4P/HEE73HCEAAWoUABESq139trXVflOnTp5u5mkcBRv0bllxyycznDIsue9I2Fm2J0OfUjM+qmf1gLG1XK1p/RAGgGcFK73uzApo9hsoEqrzhqdpIh2H57W9/a5bw2ZClwLzpppt6y4wfP97Mlc22Hukzfe+995I111zTW37cuHFmTp/7nNVkjVC30UYbef/vtXMSgM5BAAIiZStvvVzZ0C/Um2yyifc6bdEocW+//baZsxyNxnbQQQct6Mher4waNSo57bTT0kEQymhm60+zAoXVytYfrbNsK4tLoUPb2Cy2ol/mNdvLxKqFJ+2b2kfd/cctYT+gL33pS2bJhWzI0v4pWTckrdUXKrxEL2vExbCVJ3zOWtTHLVyfWwhAAFqFAAREKoYAZGmYafe12rLOOuskd955p5krnzvuuCNdXzg8cLWi5zj55JOrXi5UhD6jZnxO3db6o4p4M153s94/KVLRz6L3SstnBRDtk9pv3P3IFrW66N+wNUflz3/+s1lDHxuy3M8lvBRO/YeqsQHP3Ua73bYMGzbM+yFB+5Yez7svbLbZZt763NKszwoAQgQgIFKqXMRU2VDFbNCgQd5rtuWcc84xc2X79a9/nRx33HHJGmuskbl8WFRxPP74470+FkUvdQs1q/VHuqn1x667Ga9b61FwaQZ7/JS5/E2vScsqPIX7hfZFd1+yRfuu9mG3VWbDDTf05tE9f1xZIeuee+7xllG5+OKLzdSFqm3jww8/XLG8+gdZRQZ2EIW9cH229Po5CUD/IQABkbIVuJgqG6q8ffrTn/Zety36Zd1tpVFLj0Zkyxt6Vl111eTII4/MDAGqQKoi2UglXp9PMz4jVYbz/jqfl7ar2eu0mjX4gV53My6js7Qufe5ZLTj1aBkt674u7Xu2dScs2me174pCnB7Tfnb55Zd782nQDd33x7LzhvudLtt0l1t99dUrRkjM2kYrPHeo2LDvbl9e+nFBy4RDxMdwTgLQPwhAQKTCSkxMlQ1b4coq+lX9Ix/5SOa0sAwZMiQdmvh//ud/zJqz6b1tZOSxWFt/pFmDFuj9b9Y+7l7+Frbg5KFQoeW1Pf/+97+TE044wduv3KJ91dLnr8fcy+7CgQmmTp2aPm63MSv0PfXUU94yKuqb5rLnh2rvWXgT32233dZrNSpKQ8bb57SlWZ8XAIQIQECkYq9sXHPNNWlFzX0P8pSll1467Zx+4403mjXVZsNLmYqypc+mGZ+PftUvctPNPJrVQpNFwacZrTY2pDUjQEpW35oibCvJd77znbT1xd2/bNElbwriBxxwgFkqu1XGbost2qffeeedBY9XC95TpkzxltNw2i+88IKZunAbq7VwXX/99d7yKocddlj6b9l9LPZzEoD2IQABkYq5sqHRsHQjyPCO9NXKYostlv7S/pOf/CQdDriIRjvwx9z606zBD1SJb2ZIs5dqVQsHtdiWmcGDB3v7WLWiYPLPf/4zXTarf827776brLjiit4y55577oJWpmrbqIELhg4d6i2nSzjFbcmpFdx1/yp3eXuz1bKtnTGfkwC0FwEIiFRMlQ2FFv1irZabvBVPtygoPf7442Zt+SkYKCDQ+lNcM1tttI3hcM1laXu0T9QLB1l0k9wxY8ZU7F+2jBgxIm2ZDC9ru+yyy9LlbatMGDhPPfVUb/7VVlttQetmrffvvPPO85ZTmTdvXrqv6O96+4uOiayb/ZYJhhLTOQlA/yIAAZHq9cqG+hRcffXVyb777pv75qT2F+ysosrnVVddZdaejyqQjVS8m9n6o20pWzHNYgNKq1p/mhWu7HY2EkJd9tKyotumfccGmKxi++5IeHna9ttv7wWv0Kuvvpq2UrrLqOS5fHDdddf1ltlrr70WnBvynBO++c1vesurKMSV0evnJACdgwAERKoXKxvPP/98MnPmzGSnnXbyXlutovv5TJw4MbntttvSdfzv//7vgsuHsoruo6JfyetR8Gm0xUWfSTM+l25r/ZFmBTZ9Ds3cTrtv5N027Su19ketT/ucS/8P55sxY8aC+bNoKOpwmTyXos2ePbtiuZVXXjn9N+9rVNByl1crVxm9eE4C0JkIQECkeqWyoZs/futb30q23npr7/XUKh/96EfT/g4///nPzVoqqWK4zDLLZC6voiGyq10W14zWkZhbf9RPphmDH4gCQ7Neu163WmBU6n0u2je0j2TtOyprrbVWuo9VE14qZ+/5U+04ffLJJ735Vb72ta+ZqbVpBLdw2SKX+N1yyy0Vy59//vlman4EIADtQgACItXNlY37778/3d6NN97Yew21iirs+kU8b6Vd82kZ3dA0a3226J4qDz74oFmqj7at0VYHraMZn4kq/93W+tOswQ8UUopU5OvRe6nPvNZr174Q3mcnLLqvzwcffGCWyHbhhRd6y9hL3GrtvwceeKC3zBZbbGGm1KZ7XrnLqWiY6yLU78hdXj8evPjii2ZqPvrM3XU0Yx8AgCwEICBS3VbZ0B3jFUY+8YlPeNtdq4wcOTL5+te/nvzmN78xa8lPocH23/njH/+Y7LLLLpnPYYv6GulmkLblRq0YZcXc+mPX34zXrn267IhkWRR89FkrAIb02WsfCPcLt9g+Znle2+uvv16x/Ic//GEzNZsdYc4t9e5RZX3hC1/wltM9ropQq6q7vIqCYBEEIADtQgACItUNlY2bb7457Z+T98akKptttllyxhlneK0yCgCqVOdVrdVk1qxZ6UhdWc9ri34J/9KXvmSWKEefRTM+D72OZl1KZrW69aeZ69dn2KygZi9/02fsBhhdRql+YeF+4BbtM2eddVb6t/qcqWXGDjldSzjM9PDhw82U6tZYYw1vGfU/yuOhhx7yllPRpaV52OCVdZzefvvtZq76uuGcBKA3EICASHViZUO/emu0LP2SXqv/TVjGjh2bDumrfhAhVVzd1px6NH+9++VoWOKw43dYtE2631BRzW79aWQUulCrW3+kWS1WqpQXCb31aJv0udpAqc9Wn3H4ubtF89ohrA855BBvmloy69HNdt1ldE+gehSw3GVU7rnnHjO1tq9+9avecssvv3zy97//3UytTqFV8+vSxU033dRbxyabbGLmqo8ABKBdCEBApDqlsqHO4govGurX3Z5aZeDAgWkrgSqXf/3rX82ashVtUSgyv4b73XLLLTO30ZbNN988bTnKS59DMz6Lbmz9aebgB816Hy29bn2ee+yxR/qZhp+zW7RPhENBb7XVVhXzPfzww2Zqdauuuqq3TK19ybbELLroot4y+++/v5mjth/84AfecionnniimVqdfW8UttUiFq5DN2bNQ5+Xu1wzPz8AcBGAgEj1Z2Xj3nvvTf7zP/8z2WijjbxtqFV0M9K99947+fGPf7zgzvj12MuW8rZYFJ3f0qV6o0aNytxuW9Zbb730MqinnnrKLFXJtv5oOxrVja0/6q/TrP1Q26pA0AwaylqtIVmfq1sU4rUvhPTeaXp4r57vfOc7Zo7qDj74YG8ZXW5XjW2J0WWg7jIqjzzyiJmruvCcYMtjjz1m5sim91rz2VbLsLVr8cUXT55++ul0Wi39eU4CEBcCEBCpdlc25syZkxx++OEVfRRqlWHDhqWX5WhZWwEvEg70mop0gtf8uoynKG2TWi5UobW/htcqqihfeumlyZtvvmnW0EfP34zPoRWtPwpTrWz9sZ9vMy79a8br12ejzyhPy6TeF42kVo0NJgrB7nI77rijmaM69cNxl1H5v//7PzPV57bEhJei6dirR6FZ89r7ANlywAEHmDkq2VYn/XBgqVVWP1i465gwYYKZWp32fXeZZhwLAJCFAAREqtWVjddeey354Q9/mHbk1uhV7nPVKuuvv34yefLkipHbtH1FtrFoa4qdv0yrgbbLDQdq4dpvv/0yX59bdCmf5lN/kk5v/VGgaGXrTzMDViPDaOuz0GeizybrM3OL5tNnXY8NJt/85je95QcMGJC88847Zq5sei3uMirVLinT/qPp2pd07IXLVQtOos9Y8yjIfO9736tYdu7cuWZOnz43TQ8/u6x1/Pd//7eZmk2fmTt/2c8QAOohAAEFuF/Oecvo0aPTEDBz5szMTvr9pRWVDV0qo1+7t9tuO2/d9co222yT/tL9pz/9yazJVyYcFK0El738SttULTjpjv7h5UDVikKi+pbcddddZuly1PrRrCBltbr1R5o1+IFetyrx2mfy0nt+zDHHZA4gkFX0meqzVfjRPqNLzmq1sLjBZJ111vHWpYEOarHLukX3vwrZlhi35Wvttdf2ltMPC9Xovdc8+hwk7OdUrbXKBrSsY0f3O3LXoR83atE63PnLHI8AkAcBCChBd3AP+wQo4OhXUlt02da0adPSAOTON2XKlOTVV181a+o/zapsaISpqVOnFurPs+SSSyZ77rlnWrF++eWXzZqqKxpmioaARlpfFJzqXWanS4KmT59ecXf/akWXSp1++ul1+15k6cbWH1Xe9f43gz77PGFN763e4/CytGpl6aWXTj9DO+iGDRy2VBui2gYLG0yOPvpob7lawUn7peYZPHiwt4zKfffdZ+bqYy+zc/fFsBVGIyuGl11a9nxgl1dfJndZleuuuy6d5rIBLSu8/upXv6pYh4aor6ZZ5yT12dJ5docddvDWt9ZaayWHHXZYRWuW5q3WwgWgNxGAgJL0Rep+udaiMOQGJoWi/g5BjVQ2brnllvT1F+nPoxsl6p4+ugzm/fffN2uqz1aOi4SToiGg7CVTZYKT7rdyyimnVPw6X63o1/7jjjsuvTSr3vMopJQNctW0o/VH733Zym5I25r12es90Xuo91LvadZ7HRZ9RltvvXX6dxhy33vvvWTQoEHe/A888ICZupA9zuzyOnbcZVQpr8aGJ72mXXfd1Vtu0qRJZq4+mkePh0EkbNXSQBxZdMyEy4fPqR85XHpP9bha3Krtc0cccYS3DpVqwd6+V7YU3ScUYtzQY1ve3R+lFHb0nms+PaZWeZ2bCUBAXAhAQElq3XG/rOvRr5Lu/AoQ/alIZUNhTUPkFu3Po5HRVOFo5LKuouFEv4Tby3jyaCQ06HmKVtJcd955Z9o5fJFFFsl8/7KKLrfS0MSqzL311ltmTX20PXr9zaL3pNWtP3qOopesVaN12c9S743eI71XWaOiVStDhgxJj019NqL16fGs92C33Xbzls1q3bDL22Dx7rvvpqOiucv98Y9/TKeF3MvLNKy2u4yCjWXfQz0evo/aJnc5DSwS0vJ2uv62fvvb33rLqlx00UVmauVlc1l0H6GhQ4d669BojlmKnJNCOs/Y5XSeqne5sYKR+1wEICAuBCCgpKIBSMJWo/7sE1SvsvHnP/+5VH+ebbfdNvn2t7+dPProo2ZN5RUNJ5pP8xepsKvyVuaSMVX+imxbNXrfVa699tr0ssCs97RW0WV1J598ctoxXi1yjW6Pqx2tP816jn/961/piIG6wWjeSw3dovden4HLXuamzznLxRdf7K3jU5/6lJnSxy4ftpDstNNO3nLq/5bFhie7P4eX3d5www3p4zaIuP1/LAUQXXLqLueGGKm1fNiHTQFq/vz56TR7Dql3Cegll1zirUMlfK+l3jmpGve8WuSHJfdHKZ3PAcSDAASUVCYA6Rdpdxn1JeovWZWNu+++O+3Ps+GGG3rTapWllloq2WuvvZIrr7wyeeWVV8zam6Noi4Zeg341z0sVv1q/XlejymzZ4OTKuoROo+epgmovvSpSNKqYBpTQ+6DXphttqsWhDG1Tq1t/RO+jtrUIvSa9Ni2n16p1FGlFs0Xvsd5rvedZ7DFSrYL/7LPPVqzzxRdfNFMX9ssJA576ErnLaKjtkO3/o/Bkqb+Qu5xtSam3nSeccIK33H/8x3+YKX1qLa/792i/cpfX/FLtsrss4Q8purwwZLfDFvs8tbgtP7qsrSjbEkQAAuJCAAJKKhOAdJmFu0x/fumGlY3wvh21ymqrrZb+2q6O0h988IFZY3OpUlWkhcWGibyXUjVSwVfFthmtFvoMalXyVDHXr/waoUzbmvVZ5CkjRoxIxo8fn/YbmTFjRnrPmueee848S7Z2tP7UG/xA26ht1TZr2/Ua9FqyXmOeovdQ76Xe02qhx2Xf81oV/PDyussvv9xM8e/L41LrqruMSng5o55Tj7ufwa9//euK5XR5qgKg/q62nc8880zFcldffbWZWj/I6EcRd1nd0FUBtNpld1k0Yp67DhXdDNlVNACF51O16JShPkEEICAuBCCgpDIBSC0+7jJqEeovYWWjXlFlUJdaqZWoHYq2sJTpK1Smgq/gpIpfoy0jWa0/9bz00kvJj3/847QlYOTIkZmfU5GiUcE0IMAXvvCF9L2bNWtWOqrf/fffn46O1urWn5NOOik56qij0ufUc5966qnpvXW0Tdq2rG0uUvQe6b3Se6b3rohql6+FwuNIraGW9l/tx1kBQa0w7nL2cjbL7f/jWnfddb3ldOmj/q23nYceeqi3nC5VtfQ563mqLa97Fbk3R7U/HNi/89IAFHYdtmg4cSt8L8PXHlJwsfOWaf2xdF5WSxKAeBCAgJLKBCB3hCJdz9+fI8GFlY2soqF9tc1HHnlkOn+7ijoxKxxkTcsqulO9KoCqUGdND4vm0/xaLmt6raIWBFVqs6YVKVqPXmfWtLxFrSJbbbVV2qlenfezPsNGii590vDPK664YrL66qunly0pVOh+LrpMUqMZqgVEfV+0HSr6W49pmubRvFpGy2odWpfWGV5W1YyywgorpOFp9913T9+brPcsb7HHqu7bkzXdloMPPtjbBn0WWfOFxd5nR0FPISKcrv1T08N9VMHFfT69n/q33nbafjIaxETr+PrXv545X7Uybty4dFs/97nPpf+3749eRzhvtaIfUMIhvbVf2Om2JcsWPVZNeDmxLmVrhI5FAPEgAAElFQ1A7rXqKv3Z/0dUuXC3h0KhUDqp1ApA4YAyZS9/AxAnAhBQUhiAsr6ANcqbgo7b8qPS6K+VzUAAolAonVxqBaBwRDwAKIKzBlBSGIDyFF0W1J9DX7sIQBQKpZNLtQCkS4fd+RSGAKAIAhBQUhiAdE26RiVyi+bRteXufHbEof7s/yO24zOFUq1olK7jjz8+HUhAnfK1L+t+OboB6C677JKOyqbWTQ1xrOG3VfS3HtM0zaN5tYyW1Tq0Lq1T6856TgrFlmqDcISjv2l/A4AiCEBASWEAqkWtPmEQUmtQf4cgAOg2BCAAjSIAASUVCUBWGIL44gaAYtTf0j2P6sckACiCAASUVCYAhdeuqzB6EQAUE55HAaAIzhpASWUCkIStQFoPACA/tfq459FOGVwGQHcgAAEllQ1A4XIEIAAoptPuqwaguxCAgJLKBqDwi7sT7gkEAN1ELT7ueZT+lACKIAABJZUNQBoG212OSzcAoLjDDjvMO5dqdLiydGkyo3IC8SAAASWVCUBq7XGX0Rc4AKA4BRb3B6WytxbQeZhLkYG4EICAksJfH+sJww/3AQKAxmgUzeWXX770eVXncX6IAuJDAAJKUIdbN8yo2F8RdRmGLXPmzEn7/ISXvXG5BQA0RxiC9Ld+cKp1jtX5WWGJ8APEiQAEFOCGmCJFX7TqpKuARJ8fAGguhZ2wVV7Fnndt0Y9P+kFKIUk/UAGIEwEIAAD0BP3ApNYfBZ+w5d22+DBkNgACEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAQsdmzZycf+tCH0jJ37lzzKAAAvYsABACRmjdvXrL88ssTgAAAUSEAAUCEXn311WT06NELwg8BCAAQCwIQAETosMMO88IPAQgAEAsCEABEZubMmRXhhwAEAIgFAQgAIqJ+P1nhR4UABACIAQEIACKhfj9rrbVW2vdnhx12IAABAKJEAAKASOyzzz7pqG9PPvkkAQgAEC0CEABEwPb7mTNnTvr/sgFI89ggZZdTq5IGVchaPut5bLF0LyJ3RDqtb9q0aWmLlaW/9Zg7n/7WsgAAFEEAAoAeZ/v9TJkyxTxSPAApgCj4aD6FH83rPmaL+xyWe7NVt6glKhyK2y2aJnouN3CFRcEIAIC8CEAA0MNsvx8FHlfRAOQGFbUmWWpRctehkrWecB4VhRq1HGkbVbLCkN1OPafmUWjKCkN6HACAPAhAANDDFCAUGBQeXEUCkFpY3PncsKG/3WkqbkCywnlUFH5c1VqKwsvcsu5hxKVwAIC8CEAA0KNscMkKNnkDUFbACSl82FYZrTcMWxKuQyWk5w/n0fpCYSBT4TI4AEBeBCAA6EE2TFQLBnkDUNZNU8sI15G1HgIQAKAdCEAA0GPUAqMWmazwYOUNQFnzlRGuI2s9BCAAQDsQgACgx2QFhCLFDRMEIABAryEAAUCPaXUAKjPiWrgOlRABCADQDgQgAOgxrQ5AZUZcC9ehEiIAAQDagQAEAD2mmQEoa8hp3fy0qHAdKiECEACgHQhAABChrJYdBZBQVihRmTdvnpkjn6x1hAhAAIB2IAABQITyBiDJmnf06NGZ9/tRMJoyZYr530Lh8iohAhAAoB0IQAAQoSIBSKHG3ujULQpBdhmFId0zaK211socJCFcViUMUAQgAEA7EIAAIEJFApBUC0FuUSDKCj8aNCFrfje0KAxl9TdScbdL69fzhPNUC14AAIQIQAAQoaIBSGwrjxtAFIo0KEK1keGynicskvW4W7SerBaisNR7DQAAEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiESS/H/cM/2ozFCwIwAAAABJRU5ErkJggg==
|
As shown in the figure, the area of square ABCD is () cm².
|
A. 16; B. 8; C. 6; D. 4; E. No correct answer
|
A
|
93
|
iVBORw0KGgoAAAANSUhEUgAAArkAAAHhCAYAAABqa6azAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEeUSURBVHhe7d1viFTXnu7xHiZnymHsOb6wGSHKCAoK0aEzI9JzFaIgOR1oLi0jdzzBEMHm4hFz6RkSNESuXkzwRb8w4ouGWxBhNLSMXL3Ql/QxguLJmXSCQ1SMNGpIQ/RgjBhRXzR0Xqxbz3av6l3bqur6s3fV2qu+H1iJvau6qru6+6lfrfrttboMAAAA4BmKXAAAAHiHIhcAAADeocgFAACAdyhyAQAA4B2KXAAAAHiHIhcAAADeocgFAACAdyhyAQAA4B2KXAAAAHiHIhcAAADeocgFAACAdyhyAQAA4B2KXAAAAHiHIhcAAADeocgFAACAdyhyAQAA4B2KXAAAAHiHIhcAAADeocgFAACAdyhyAQAA4B2KXAAAAHiHIhcAAADeocgFAACAdyhyAQAA4B2KXAAAAHiHIhcAAADeocgFAACAdyhyAQAA4B2KXAAAAHiHIhcAAADeocgNzJqnPz8t/BcA4JPZpz+Z+/fv1z1+nglvAEBmUeTKvVPmja43zKl74ccAAC9Mj/3WrFq1yqzoyZmurq46R870rFhl1m/dYz7+9CszReULZApFrpk1Xx9aFgTa2mM3w2MAAL/MmO/P7jLLYkXsigEVsOfN+a+mirO409cum/Offmz2bH3FdMeu3/Pa+2bie4pdIAsocp98ZnblwgDr+cB8Sc8CAHjqlhldHy1aN5j8d+FFFcw+vW0m3u+LFbvd5jfHvjGPwusAcFPHF7n3Tr0RCa6c2fXZk/ASAIBfZs3ne6LF6vxFrvXomxGz2U6IhM8XK967SKELOKzDi9yb5tjaaGgVxoa8qTHzAAAZc3E4mvm1F7kyeyv/QqG7OX+Lk5YBR3V0kTv75QempxBUuVz0hIQe8wE9CwDgpWaKXHk0/pbJFT+/MHKbzSfMjABO6uAi9545Paji9g1z4v88L3ZtaOV2fWZoWgAA/zRb5M49d/CcAbiuc4vcm8fM2mI4xdsWWE4MAHzUfJE79y7g3O2sNSzOA7inQ4vcWfPlBz2FYJprTSg9AY3lxADAR0kUucZ8bQ71RG+H5wzARZ1Z5Nplw9YeM8VYii4lpsFyYgDgnWSK3NnC7cQ2l9j8iZkOLwXgho4scu2s7RslPQl2dteGFsuJAYBvkilyjZn+ZHPkdjSGzcXwMgBu6Lwid/Zrc2hZIZByu0y8hn2hz+qNU4bWXADwR1JFbuGGIrejsdl8wlQu4JSOK3KffLYrWP6l54Mvy6xtGD8BjZMJAMAn6RW5TdwWgFR0WJF7z5x6Q2FUuXiNn4BWvhgGAGQRRS7QOTqryA2XDavahhA/Aa1MWwMAIJsocoHO0UFFrj2xbL4TyuInoLE0DAD4Iqkid/bzPZHb0dhjPudtP8ApnVPkPho3b2mG9td7zP+7e9/cv19lXP6f5m+j4dWi5cRKA5PBYDA6Z7RKUkXurdH1kdspjPWj5lZ4GQA3dEyRe/PY2tJAqmu0Zjmx8vfNYDAY/o9WSabI/dGcHozeTpfpOfR1eBkAV3RGkTv7pflAu9Pk3jL/Pl1m5rbMmP73t4JVGIoh1oLlxOx9AdazZ8/MlStXzOjoqBkeHjaDg4Omt7fXLFq0aO53s8GxZMkSs3z58opj4cKFZT+vnqHb2bRpk9m5c6c5fPiwOXPmjJmamgq/O6D1uZdIkftk3LxVvA2Nud0zAbijIyqq6suGVWAL42KIpb+cmL0vdKa7d++a8fFxc+TIEbNt2zazZs2ayO9f+bFgwQKzevVq09/fHxSSBw4cCIrJEydOmLGxMXPp0iVz9epVMz09bWZmZsJ7aszDhw+D2/niiy/MhQsXgvtQ8X3w4MGgAN+xY4fZuHGjWbp0admvNTpUQPf19Zm9e/ea48ePm8nJyaCgR+exvxOtkkSR+11+Q+Q2CiO6eyYAZ3RARWWXDXvDlGxwVoN4kKW9nJi9H3QGFbUqFFWcasYz+rsWHSoI161bV5wNPXnyZFBo6vNd9csvvwQzthMTE0EhvH///qBwV0Fe7nvUeOmll4LCV9fV5zVblCMb7M+/VZouch99bvaUTID0mOGLLMEDuMj7imr2+kiwbFhu12em7hhq8XJi9n7gJ7XBaHZ19+7dFYs9HVdLgmZHz5075+Vb+ype1YKRz+eDGeAtW7aYxYsXv/BYaJZarQ56LDQjTdHrJ/vzbpXmitxHhc9fFvn8LrNs+GLhKAAXeV5RPTGf7coVgqjRVoMXlxPb0NhZCjWx9wE/6O39+Ypa9deq0FNB+/jx4/AzO5MKes36bt++PegXjj9W8aJXs8XIPvvzbZXGi9xH5stDr5acq5HbnDe3aMUFnOV1RWVncbtWjZjr4bG6fX3I9ERCratn2KT1zpS9D2STekpVrKpoVfFa/J2JDBW7KnpV/KoIRmU3btwwR48eDWa2y51opzYO9SKrh1k9vcgm+/NsjfiqCDUWuTPfm7O/WxErcEfMN0zhAk7zt6KavWVGN4SB1Mz6hbdGzfpIsGmk9faUvX1ki07C0klX5VYjUK+temnVe6t2BTROLQ4qaFXYlnusV65cGczy6uQ4ZIf9+bXEk4tmuKSftnqRO/v0BzN56h3T1x39nG7T99EfzANmcAHneVdRzT69bb46lze7X1Wbgg2lnHl1d96cu3zNTP/0tIaTx2bN05+mzbXLn5r3Sm5nbnT3vW8+1e39nFyfoL1tuE+zjDpBKr6SgHpL9Xa7+k0pttKjVgXN3qqoVQuDTlqL/hy0yoN+Bp3eApIF9meWltmnPz1fFvLaWfN+X3fJ70kwul82q1atMq+/vc/s2xeOPVvN+hU9pctIdr9itn501nxLdQtkhncV1fTYb4PAqjh+O2bmLz2mzdhvy3xuufHhf4Sf0zwbpnCT2gv09rlWOig+8RWGekVV2Gr5L/pE20M/Gy1Fxs8me+zPKi3zPidUGq+/XSh4PzT5c5fNtemfDac9AtlDReWQtMMe9dMZ/drAQH2hzBZmg05gKzfLrpPZ1C+tdYPhDvvzAYCkkSwOIezdoXVodYJY/IQn9dhqw4U7d+6E14TLKvVLa6ONkZERp9ca7hT2ZwIASSNZHELYt5feztYJYvHlvlQgDQ0NBctWIZu08oV+tlqTN/qz1ey8Zul1Uhvaw/4sACBpJItDCPv2UEuCem2ja7Oq+FFBpN3F2ITAL5q91c5x8RczOoGNFzKtZx9/AEgayeIQwr611EsbL251opL6NnkbuzNohQbN5Nqfv4Z6rbXeMVrDPu4AkDSSxSGEfWuouNXSU9F+W/1bxziJrDPpZLR4sasNPVTssipDuuzjDQBJI1kcQtinS2tlvvvuuyXFrWZx9dY1xS1EKzNo847oShraZEL9vBS76bCPMwAkjWRxCGGfDhW3akFQK4J9jFXcqlWBfluUo9UzyhW7/M4kzz6+AJA0ksUhhH2yKhUqo6OjFCqoCS+Q0mcfVwBIGsniEMI+GSo+tJZttDDhLWc0wxa70fV2tdmENgpBc+zjCQBJI1kcQtg3T9u3asMG+1jak4eAJJQ7abG/v5/NQZpgH0cASBrJ4hDCvnHT09MlZ8erCFFbAjO3SINmdrWTmv1907sGOoGRFob62ccQAJJGsjiEsK+fitgjR46UvI2sPtyHDx+G1wDSo+2fo5tKqC1mYmIivBS1sI8dACSNZHEIYV8f7U4VLTDWrFkTFB1AK5V7obV9+3Y2FKmRfcwAIGkki0MI+9rE3ypWa4LOdqc1Ae2kolbFrf29VNE7MjLC7+U87OMFAEkjWRxC2FenYkF9ttGTflTsqugFXHHhwgXeYaiDfZwAIGkki0MI+8omJyfNunXrio+RiggKB7jKtjBEl7EbGhqiV7wM+/gAQNJIFocQ9uWpWLAbOugtYH3MW8DIgviqH9pIQjO9mEPuAUgLyeIQwr6UZr20Bql9XFQscDIPskgrLtj1m/WCTWvt8kLtOXIPQFpIFocQ9nM026UdpWxRoBPLgCzTRhLRWd0tW7bQT15A7gFIC8niEML+eS+jZrlse4Jmv65cuRJeCmSfXrDZ32/aF8g9AOkhWRzS6WGvWS3NbtnHQbNemv0CfKMXbtH2hQMHDnRs+0Kn5x6A9JAsDunksNdslma17JM+7QnwXbx9YePGjR3Zc97JuQcgXSSLQzox7DV7pVks2hPQqaLtC4sXL+64bYE7MfcAtAbJ4pBOC3vNWmn2yn7ftCegU0XbFzT279/fMe0L9nsGgKSRLA7ppLDXbJVmrfT90p4AdG77QiflHoDWIlkc0ilhr4LWfq+0JwCl4qsv+P730Sm5B6D1SBaHdELY621Y+30ODAzQngCUEW1f0C5/ly5dCi/xTyfkHoD2IFkc4nPYq79w9+7dxe9x7969HbtkElALLam3evXq4O9FM7tnzpwJL/GLz7kHoL1IFof4GvYzMzNm27Ztxe9Pmz0AmN+zZ8+KJ2eq0D1+/Hh4iT98zT0A7UeyOMTHsI8/SY+OjoaXAKiF/oZ8fpHoY+4BcAPJ4hDfwl5vt65Zsyb4nhYsWODt261A2tTaMzQ0VMwIn9p9fMs9AO4gWRziU9hPTU0V+wl14swXX3wRXgKgUdETNzW760Oh61PuAXALyeIQX8L+6tWrxS169X8VvACSEV2Cb9OmTUE7Q5b5knsA3EOyOMSHsNeMrWZu9X1oJnd6ejq8BEBS1Ppj19Jdt25d0BqUVT7kHgA3kSwOyXrYR594dbJZlp94AddduHCh5AXlnTt3wkuyJeu5B8BdJItDshz2Y2NjxQK3v78/82+hAlkwOTmZ+dagLOceALeRLA7JatifO3euWOBu376dTR6AFlJhawtdzehm7R2UrOYeAPeRLA7JYthHe3B9OdsbyJpoodvb25upd1KymHsAsoFkcUjWwl5PrLbAVQ8uBS7QPleuXCn5e9ROg1mQtdwDkB0ki0OyFPY6ySWrM0eAry5dulRsHcrKOytZyj0A2UKyOCQrYa+eP7vRQxZ7AAGfRVc52b17d3jUXVnJPQDZQ7I4JAthrxlbzdzq68zq2dyA76IbRhw4cCA86qYs5B6AbCJZHOJ62KvHT71++hrV+6edzQC4ScWtzRQVva5yPfcAZBfJ4hCXw169ferx09ent0K1qgIAt6ldwf7Nqo3BRS7nHoBsI1kc4nLYDw0NOf9kCaBU/MWpdklzjcu5ByDbSBaHuBr27777bvFrO378eHgUQBbE24y0S5pLXM09ANlHsjjExbAfHR0tfl0HDx4MjwLIEp0wumbNmuDvWCeMTk9Ph5e0n4u5B8APJItDXAt7LS5vlyIaHh4OjwLIIi31t3LlyuDved26dc6soeta7gHwB8niEJfC/vHjx2b58uXB18NuZoAftCLKggULgr9rV164upR7APxCsjjEpbAfHBwMvpbFixebu3fvhkcBZF20BencuXPh0fZxKfcA+IVkcYgrYR9dSH5iYiI8CsAX27dvD/6+Fy1a1Pb+XFdyD4B/SBaHuBD20T7c/fv3h0cB+EQnornSn+tC7gHwE8nikHaHfbQP16UTUwAkL9qfq2UC26XduQfAXySLQ9od9i69hQkgfdH+3Ha1JrU79wD4i2RxSDvD3rWTUQC0hn1x266TTNuZewD8RrI4pF1h7+KyQgBaI9qf247lAtuVewD8R7I4pB1hH32C6+3tDbYABdBZoi90W33CaTtyD0BnIFkc0o6wt29Vak/7O3fuhEcBdJp29ee2I/cAdAaSxSGtDvvok9rY2Fh4FECnakd/bqtzD0DnIFkc0sqw1z72WkVB97d79+7wKIBOFm1fUsHbCq3MPQCdhWRxSCvD3s7YaF1c+nABWF988UUxi1rRttDK3APQWUgWh7Qq7C9cuFC8L5YLAxC3c+fOIB80q5v2i+BW5R6AzkOyOKQVYa8nrNWrVwf3MzAwEB4FgDkPHz4stjMdPHgwPJqOVuQegM5EsjikFWF/+PDh4D60XBC7mgGoxJ6YqqxIc+WVVuQegM5Esjgk7bBXUWvXwlSxCwCVaFOIvr6+IC/6+/vDo8lLO/cAdC6SxSFph73aE3T7alfgZDMA87ly5Yp56aWXgtw4c+ZMeDRZaecegM5FsjgkzbDXCWb29nXiGQDUQksMKjeWLl0aLDGWtDRzD0BnI1kcklbYa9ZWS4Xptlu19iUAPzx+/NgsWbIkyI80tvxNK/cAgGRxSFphrycm3a7Olm7VLkYA/HHy5MkgQ9S6cOPGjfBoMtLKPQAgWRySRthPTU0Ve+qOHj0aHgWA+mzcuDHIEf0/SWnkHgAIyeKQNMJ+06ZNwW2uWbMmOFsaABoRfcF84sSJ8Gjz0sg9ABCSxSFJh719i1FjcnIyPAoAjbGtT4sXLw56dZOQdO4BgEWyOCTJsNesrbbk1O0NDQ2FRwGgcVpdQassKFeS2gktydwDgCiSxSFJhr3eTtRtafOH+/fvh0cBoDk2W3QiaxKzuUnmHgBEkSwOSSrso7O4w8PD4VEAaJ7yJcnZ3KRyDwDiSBaHJBX2duMHnSSS5p7zADqTVmpRxmj93GZ3T0wq9wAgjmRxSFJh39vbG9zOzp07wyMAkBwVtnaDiGaXJkwq9wAgjmRxSBJhzywugFY4cuRIkDXNzuYmkXsAUA7J4pAkwt4u2L5jx47wCAAkTyed6eQz5U0+nw+P1i+J3AOAckgWhzQb9pcuXSrextWrV8OjAJAOnXimvNGJro1uNtNs7gFAJSSLQ5oNe7u72eDgYHgEANKj2VwtU6jcaXQXtGZzDwAqIVkc0kzYX7lypfj5zOICaBUtU6jc0dbhjWgm9wCgGpLFIc2EvWZv9bkDAwPhEQBInzabsbO5OvG1Xs3kHgBUQ7I4pNGw18yt/Vz15QJAK+3duzfIHy1fWK9Gcw8A5kOyOKTRsN++fXvweerJBYBW03KFWrZQOTQxMREerU2juQcA8yFZHNJI2EefXJjFBdAu2nxGOVTvi+1Gcg8AakGyOKSRsN+/f3/wOVofFwDaZWpqqphhN27cCI/Or5HcA4BakCwOaSTsly5dGnxOM4uxA0AS7GY0evFdq0ZyDwBqQbI4pN6wv3DhQnB9ndn87Nmz8CgAtIdebCuT9OK71s0h6s09AKgVyeKQesPe9sDpxDMAaLfo5hB6EV6LenMPAGpFsjiknrCfmZkxCxcuDK4/Pj4eHgWA9rKrvezYsSM8Ul09uQcA9SBZHFJP2J88eTK47uLFixveMx4AkqYX3comvQivpY2qntwDgHqQLA6pJ+z7+/uD62pLTQBwhV50L1myJMinEydOhEcrqyf3AKAeJItDag17baNp18a9cuVKeBQA3KAX38qnLVu2hEcqqzX3AKBeJItDag37o0ePBtdbvXp1eAQA3BHdavzu3bvh0fJqzT0AqBfJ4pBaw177w+t6hw8fDo8AgFtqzalacw8A6kWyOKSWsNdOQvZ6882QAEC7jIyMBDk13ztOteQeADSCZHFILWFvt/Gtd394AGilWs8dqCX3AKARJItDagl7tvEFkBV2FZi9e/eGR15US+4BQCNIFofMF/Zs4wsgS8bGxoLMqrae93y5BwCNIlkcMl/YDw0NBZezjS+ALKhlZ8b5cg8AGkWyOGS+sF++fHlwuWZHACAL7Da/lTaumS/3AKBRJItDqoX9nTt3ipfrhA4AyILR0dEgtyqtslAt9wCgGSSLQ6qFvX2iWLNmTXgEANw3PT1dzLZyL9Cr5R4ANINkcUi1sJ/vLT8AcFW1VqtquQcAzSBZHFIt7JcsWRJcdu7cufAIAGTDzp07g/zavXt3eGROtdwDgGaQLA6pFPbRXc4eP34cHgWAbDhx4kSQX5rRjauUewDQLJLFIZXC/ujRo8HxdevWhUcAIDu0BbnNN/XoRlXKPQBoFsnikEphPzg4GBzXlr4AkEVaXUE5plndqEq5BwDNIlkcUinsFy1aFByfmJgIjwBAtqgfVzmm/tyoSrkHAM0iWRxSLuwnJyeDYy+99BJb+QLILLvFr06ijSqXewCQBJLFIeXC/siRI8Gxvr6+8AgAZI/WyLUZNzU1FR6lyAWQHpLFIeXCvr+/Pzh28ODB8AgAZFNvb2+QZ9rcxiqXewCQBJLFIfGw/+WXX8zChQuDY5cuXQqPAkA2aTMb5Zk2t7HiuQcASSFZHBIPexW2+njBggVmZmYmPAoA2aTNbJRpOpnWiuceACSFZHFIPOzVoqCPN23aFB4BgOzSZjY2565evRoci+ceACSFZHFIPOwHBgaCj+nHBeAL25dr18uN5x4AJIVkcUg87JcuXRp8fObMmfAIAGTbjh07glxTf67Ecw8AkkKyOCQa9tG39aLL7QBAlo2MjAS5ppVjJJp7AJAkksUh0bC3J51pdQUA8MX4+HiQbYsXLw4+juYeACSJZHFINOyPHj0a/HvdunXBxwDgg+imEA8fPizJPQBIEsnikGjYa393/XtoaCj4GAB8oVlc5duFCxdKcg8AkkSyOCQa9vYMZM3oAoBPtCyizbdo7gFAkkgWh0TDXhtA6N/sdAbAN3bns927d5fkHgAkiWRxiA376enp4r/v3r0bXgoAfjh+/HiQb1u2bClmHQAkjWRxiA17u7LCSy+9FF4CAP6wKyysXLmymHsAkDSSxSE27LUTkH0CAADf3LhxI8g4vZC3uQcASSNZHGLDXtv46v92sXQA8MmzZ8+KeWcHACSNZHGIDXu7fJhOygAAHy1ZsqSYeRoAkDSSxSE27O3yOkeOHAkvAQC/9PX1FTNPAwCSRrI4xIb98uXLg/+PjY2FlwCAX7Zv317MPA0ASBrJ4pBo4GtMTk6GlwCAX/bv31+SdwCQNJLFIdHA19B6uQDgo5GRkZK8A4CkkSwOiQa+hs5ABgAf2aUS7QCApJEsDokGPqEPwGd2QwjyDkBaSBaHRANfJ58BgK/szo52AEDSSBaHRAO/t7c3PAoA/pmamirJPABIGsnikGjga61cAPCVTqyNZh4AJI1kcUg08Hfs2BEeBQA/RTMPAJJGsjgkGvhs6QvAdwsWLKDIBZAaksUh0SL34MGD4VEA8JPd3ZEiF0AaHEiWWXN9bJ/Zt2+fOfNteKhDUeQC6CQUuQDS1PZkeXRx2CwLQ274YniwQ9mw16DIBeA7ilwAaWpvsjy6aIaXzRV2FLkUuQA6x+rVq4uZBwBJa2OyPDKf7+kpKewocilyAXQOLZVoMw8Akta2ZLl3etDkujaYPXvWF0OOIneuyM3n8+FRAPATRS6ANLUlWWZv5c3mXM5szt8yt/IbiiFHkTtX5J44cSI8CgB+osgFkKbWJ8vsLZPfnDO5wdPmXuHD7yhyi+zjoEGRC8B3FLkA0tTiZJk1t0YLRW3PHvP5o+dHKHLn2MdBgyIXgO8ocgGkqaXJMvv1IbOsa1mhmA0r3IJGitzZp7fNV+fy5sN9z9fX/TB/znx1+2mhhK5Mn3Mp/6HZV7IY74z5/qtzJv+hbudj8+lX3xeOxM2ap7e/Muf0uYX7+vjTr8ztp9XuqXH2cdCgyAXgO4pcAGlqXbI8uWzeW9Zllr132TwJD0ldRe7M92bi/T7T3dVtXn797aDo3LP1lcLH+vycWfFm3nwzVz8XzJg/XTtrPipepzDCO5n9Ydz8bkWueN92dP/mE3PL1rAzN82pN1eYXOw6XbnNJl+8UnKi93H06NHwKAD4iSIXQJpalCyPzMXhZaZr7Yi5HqsNay5yH10076koLRSYozdL51sfjb9VLERzm/NhkfrQ/P7AP5s9+942fd1zxaOK3Jmbo2Zzzytm6/t5c+78efPpRwNmRW7uOmuP3Szc6DdmZHPOdPe9HcwUn//0Y/N2X/fc7Sw7ZL5OuM4t3nZhsIQYAN9t3LixmHkAkLSWJMujz/eYngqznzUVueHJal1dPWaPbeaNmv3c7AlvQ+Ot8ehcsTFPCkWwvaxrw2/Mzv9x1nwf60uI7rzWteots+s3febQHx7EWiDumdODdvY3Z967HB5OSPFrLAyKXAC+Y8czAGlKP1kejZu3wuXCyk181lLkPl9Tt3CdtcfMzfBYqdLic9dnpUWuKRSw9j66/vmsKVMmF1w3I6vC63RtMKMV2hGiBfOG/Hfh0WQUv8bCoMgF4DuKXABpSjlZvjOfaLmwt8YrFJa1FLk3zbG1zy/vOfR1eKyMmT+Za5fPm8vX/vTiyWPRIrfidPF04WsNr9M1aE7/GB6Oi9wWRS4ANI4iF0CaUkyWWXMrv9nklg2byGIKL5i3yP3xtBkML2+4qPwubzaEt1G5yFX9Gl6na4OpeFctKnIPHDgQHgUAPy1durSYeQCQtPSS5btPzOZcl/n1f9kZrIJQafz3zT3FkFv7T3PHj18Op1K/PmR6wss7qcjduXNneBQA/BTNPABIWnrJEm0RaGAUC8jI7awauf78WL0yWOQODg6GRwHAP8+ePSvJPABIWnrJ8h8fmlWrVs07VvTMrVXb/fLc8d+OTT+/nchMbtcbp4KtgOuWwSJX60cCgK+mp6dLMg8Aktb2ZKmnJ7er6w1zat4q94n5+uLXJRtOZLHIXblyZXgUAPxz5cqVkswDgKS5X+RGVlfQ6NnzecWVGmT2+ojZ/MGXpcuVZbDIXbx4cXgUAPxz6dKlkswDgKRloMg15t6pNyJhWHnNXW3Vu2vZMnMovhVZBotcDQDw1djYGHkHIFWZKHLN7HUzEpnNVaG74s1j5vfXps39+/fN/amvilvzLivcyAszvZHCtHKRG10nt7Yit+ET4Soofo3h0PcGAD46ceJESd4BQNKyUeQWPJ+lnQvEcqP7N5+YFzcqmzW3Rufuo+LJa7Nfmg967G31mA++LDtXXNttNah4u+G4c+dOeAkA+EUb3kTzDgCSlpkiN/DoG5N/c8XzLX6jI7fCvJm/Yh7E6tJvz+wze7a+Yrpj1+9+ZavZs++4CZbi/faM2bfvbfNaZJWHYOR6zGtv7zP7znxbuNKP5vLxKrd1/HLhGs2zt7lw4cLg/xcuXAgvAQC/7N27t5h5GgCQtLYny5PbfzTnz58PxtUap0Vnn/4QbOGrz7l87QfztNyka8G9q8+vU3780dzWEgz3rpa5LDKCL+qJuf3HMpfZ8cfbpas5NMiG/Zo1a4L/5/P58BIA8MvAwEAx8zQAIGkki0Ns2Nvw379/f3gJAPjFvpi3AwCSRrI4xIa9fRtv+/bt4SUA4JcFCxYUM08DAJJGsjjEhv3IyEjw/76+vvASAPCHVo6xeWcHACSNZHGIDfszZ84E/1+yZEl4CQD4Y3JyMsi4RYsWFXMPAJJGsjjEhn10u8uZmZnwUgDwg90Iore3t5h1AJA0ksUhNuwfPnxY/PfU1FR4KQD44ciRI0G+DQ4OFrMOAJJGsjgkGvaLFy8O/q3WBQDwiU6qVb69++67JbkHAEkiWRwSDfstW7YE/z5w4EDwMQD4wrYpRLf2BYCkkSwOiYb98PBw8G+9nQcAvvjll1/MSy+9FOTb1atXS3IPAJJEsjgkGvYnT54M/r1y5crgYwDwQbSw1Ym10dwDgCSRLA6Jhn30ieDZs2fBMQDIOruygnY8k2juAUCSSBaHRMM++paelhQDAB/Yk822bdsWfBzNPQBIEsnikHjY25MzRkdHwyMAkG0DAwNBrh0+fDj4OJ57AJAUksUh8bDfsWNH8PHevXvDIwCQbdrJUbl27ty54ON47gFAUkgWh8TDXjO4+nj16tXhEQDILm1uY3Pu/v37wbF47gFAUkgWh8TD/s6dO8Vj9gkBALKq3Av3eO4BQFJIFoeUC/vly5cHx3RGMgBkmd3pTOuAW+VyDwCSQLI4pFzY79y5Mzg2NDQUHgGAbIr340q53AOAJJAsDikX9nbbS83oAkBWRdf+fvz4cXiUIhdAekgWh5QL+7t37xaPT09Ph0cBIFuOHj0a5Ni6devCI8+Vyz0ASALJ4pBKYa+TNHRcs7oAkEWDg4NBju3fvz888lyl3AOAZpEsDqkU9rt37w6Oqz8XALJo0aJFQY5NTEyER56rlHsA0CySxSGVwt7u9a6TNgAgayYnJ4MM01blz549C48+Vyn3AKBZJItDKoX9w4cPi5dpMXUAyJIjR44E+bVx48bwyJxKuQcAzSJZHFIt7Ht7e4PLtJg6AGRJf39/kF8HDx4Mj8yplnsA0AySxSHVwl6Lp+syLaYOAFnxyy+/mIULFwb5denSpfDonGq5BwDNIFkcUi3stXi6Llu8eHF4BADc98UXXwTZtWDBAjMzMxMenVMt9wCgGSSLQ6qFvU7W0EkbulyLqgNAFqhFQbm1ZcuW8EiparkHAM0gWRwyX9j39fUFl4+MjIRHAMBtOtlMuaWTz8qZL/cAoFEki0PmC/vDhw8Hl8d3DAIAF0V3bLxx40Z4tNR8uQcAjSJZHDJf2GtbX3sdlhID4Dr7wlyrw1QyX+4BQKNIFofUEvb2rb8DBw6ERwDATStXrgzy6ujRo+GRF9WSewDQCJLFIbWEfT6fD66zdOnS8AgAuCe6y5k2tKmkltwDgEaQLA6pJewfP34cLMWj65VbcxIAXLB79+4gpwYGBsIj5dWSewDQCJLFIbWG/bZt24LrDQ0NhUcAwB1aD1dreiunxsbGwqPl1Zp7AFAvksUhtYa93RhCuwiVW1wdANrpzJkzQUYtWrRo3oyqNfcAoF4ki0NqDXttk1nrLAkAtNrg4GCQT7W821Rr7gFAvUgWh9QT9nv37g2uO1+/GwC0kk4ys7szakvf+dSTewBQD5LFIfWEfa1nLgNAK9ltfLV8WC3qyT0AqAfJ4pB6w76WNSgBoJX+6q/+KsglremtDWzmU2/uAUCtSBaH1Bv2bPMLwCVa1tDmmB39/f1mfHw8OJegHHs9AEgayeKQesOebX4BuGT//v1BHuldJr34tvmkoQ1s1Mpw9+7d8NrP2csBIGkki0MaCXu2+QXgAs3UqpBVHmlnRrly5UqwwoLdwEZD5xFo9YWJiYngOvY4ACSNZHFII2Fvt/ldsmQJa+YCaBu7frcKWu3MGKWPjx8/btasWVPMOY3ly5cX/w0ASSNZHNJI2KuwVYGrz+MENADt0tvbG+TQ8PBweKQ8rQyzffv2ktldjVqWGwOAelDkOsSGfb3sCWjM5gJoBzuLq1aEWlZUEC19ODIyUsw9sgtA0ihyHWLDvl56K1DbZ+pzmc0F0GqbNm0K8mfnzp3hkdo1mnsAMB+SxSHNhH10AfZKS/UAQNLssmGaxb1z5054tHbN5B4AVEOyOKSZsNdbf7bH7cSJE+FRAEiXncXdtm1beKQ+zeQeAFRDsjik2bDXCR/6fGZzAbTC1atXi7mlfzei2dwDgEpIFoc0G/b3798vzuaePHkyPAoA6dB6t8ob/b9RzeYeAFRCsjgkibDfvXt3cBtazgcA0hKdxdWyYI1KIvcAoBySxSFJhL1O/NAJILodLesDAGnYsWNHkDPqyW1GErkHAOWQLA5JKuy1jI9uh9lcAGmIvpjW6grNSCr3ACCOZHFIUmE/NTVVvK3x8fHwKAAkw76Q/ou/+Itg+cJaN4AoJ6ncA4A4ksUhSYa9PSGk2bcSASAqeoJrdPT395uxsbG6dy6znw8ASSNZHJJk2EdPCmn27UQAsPbu3Rvkyt/93d+Z0dFRs27dumLWaCxevDi4zo0bN8LPqM5+HgAkjWRxSNJhb2dz16xZw7q5AJqmwrXcia16Ua3C1m4vbocKYBXC2nq8EntdAEgayeKQpMNevbn2CWlkZCQ8CgCN2bhxY5An+n85alXQGt12FzQ71N6gPt5y7yrZ6wBA0kgWh6QR9gcOHAhuc+HChebu3bvhUQCoj7YLV5bohbNeQM9H13n33XfNkiVLitmmsXr1anPkyJGgt1fscQBIGsnikDTCXjMry5cvD253+/bt4VEAqJ3aDdRrqxzZv39/eLQ2apU6c+ZMcGKafWdJQ/8eGBgofgwASSNZHJJW2GsZMXvbExMT4VEAqI3dSVEvmJ89exYerZ/eTdKSY0uXLi1mkh0AkDSSxSFphr09CW3lypV1L/EDoHNpy95yJ5s1Q7O7esG9bdu2VHMPQGcjWRySZthrsXa7tuXhw4fDowBQmYpRu0SY2g3SkGbuAehsJItD0g57neyh21exq205AaCaf/mXfwkyI5fLNbWrWTVp5x6AzkWyOCTtsNesjM5s1n2kNSsDwA9a/eBXv/pVkBdqV1Brgfr7k15zO+3cA9C5SBaHtCLsL1y4ULyfpPrrAPhnx44dQU7YQtcOLQmmpcG0AUQS7O0CQNJIFoe0Kuztk5fOcG7mTGkAfvriiy+KeaQXxtrEQZs5aL1te1yjt7fXHD161Dx8+DD8zPrZ2wKApJEsDmlV2OttSLv9Zr1rXgLwW7StKb62tl4Ua1OI+I5mamfQCi5aD7fe1VvsbQBA0kgWh7Qy7I8fP158ctJ+9AAg9gRVvRCutkuiTkTTSi1altBml4Y2jdi7d6+5cuVKeM3q7OcBQNJIFoe0MuyjSwOtWbOGtgUAQWFq18RVG0Kt1N4wNDT0QjuDskVFc7Vi2V4XAJJGsjik1WGvGVz7pKR+OwCdS1v32i3At2zZ0tAqCmpVOHnyZPD5Ns80VDhrRZexsbEX2hnsdQAgaSSLQ9oR9uqvs/erfwPoTHZXRK2eoL79Zmn2tlw7g15Ya9ZXs79ijwNA0kgWh7Qr7DWLa598pqamwqMAOoVaE5QBmnHVagpJq9TOEC2AASBpJItD2hX26sdV75zuW0sC1Xt2NIDsivbhHjx4MDyajkrtDBoAkDSSxSHtDPtof+7u3bvDowB8Fu3D1fiHf/gHMzo62pITUW07QztzD4DfSBaHtDvs8/l88WvQCSIA/Gb7cH/9618XZ3M19IJXbUyTk5PhNdNj7xMAkkayOMSFsNfi7/ZJTutgAvCT7cPVmJiYCGZW1a6gnRDtcQ21Mmld7WZ2NavG3g8AJI1kcYgLYa+3Ke3JIFpHt5FlhAC4LdqHG9/1UH/z4+PjZtu2bSWzuwsWLAheBGuL3yTZ2weApJEsDnEl7K9evRo8oelrGR4eDo8C8EG0D3fjxo1VX8hqKTFt5hDt29XQtr86nsRSY/Y2ASBpJItDXAp7nXxiv55z586FRwFkne3D1fa71XYii9PSYprJtS+ANTTTqxlftTs0yt4WACSNZHGIa2Fv+3Pn28MeQDbE+3Abod7ckZGRYDbX3paGennV01tvVtjPB4CkkSwOcS3so/25ekJL4q1JAO1x5syZin24jdLqC1qFIT67OzAwENxfLT399vMAIGkki0NcDHvtgKaZXH1dfX19LVk/E0CytOOYLURVgCZ9Qqn6fLUCgzaTsTmmoS2CVVBXW6nFXhcAkkayOMTVsNcTpN0oQjsVseICkB3RjV5yuVzQQ5v0CglRWrlBG8rY+7Rj06ZNwfrb8R0V7eUAkDSSxSEuh72WFLJvdepJEoD77ty5E8ym6u/25ZdfLmaMhlqQ1Fub1vq3etdHJ7DqHaDo/eqEt3fffTcovsUeB4CkkSwOcT3sNQtjv0aWFgPcph56e3KYTgrTxzrZrFXr30apoN27d2+x9cmOaAEMAEkjWRyShbCPnp2tdTIBuEezqNrMRX+nmslVb31UtfVv05zdVavCyZMng9aF6P1qAEDSSBaHZCXsdSKJ/Vrz+Xx4FIAL1DNvi0j1xaqnvpp2ze6q8Fbbgr1PpGPm5/vBi5r7Pz01s+GxwOxT8/PTkiNVzJiffy7tpQaygGRxSJbCXieW6GvVE6OWCgLQfipwVbDav8161sJt1+yuvR8k6ZH55tQ75rWeXMnPsqv7ZfP6O3nz+2vTZurf3zKD+e/C61dQKIRvT3xktr7SbbqGL4YHgewgWRySpbCPPpnWMlsEIH3qlbc5oh76RrVydtfePhIy+4MZ37Ws8JjmzKvvTZgpOwM787OZvnbWvN9XKFjDx3xDpSJ35k9mMl4kU+Qig0gWh9gwyQoVutr7Xl+zCt143x+A1jl8+HAxQ9Q7n4T5Znd1ebPsbSIZ332y2eQKj+eyQlH6KDxWasbcHH1+nYpF7r3vzW21MsxeNyNrw587RS4yiGRxSBbDPn6Ci5YsAtBa0RNCk9rNLK7c7K7+rWP1tEXE2dtCEgpF6So9nqvMyPXwUFn3zOnBXOUiN+Li8POfD0UusohkcUhWw16zOXaponJncgNIT7TA/fM//3MzNDQUbMiQFju7a//m7dBsr47XO7trPx9JuGiGw8fzrfEn4bHynny2y2ymyIXnSBaHZDns7969W3zSo0cXaI3o6gR/+Zd/Wfy3htag1XJd8R3GkqT+XPXp2i2DNeqd3bWfhyR8bQ71hL8Dy3aZ8R+qrJ7w4/81R8cqb7dsUeQiy0gWh2Q97DWDY1sXVOiy6gKQDvXD79y5s5gZOuFMx86dO2f6+/uLxzW0w5haGKan5y9oGqWVF9Sj28jsrr0uknHz2Nq5n0FuhXnz1E3TzMscilxkGcniEB/CXj26do1OzehoW08AydHf2ODgYDEvVETGqWVIhW90hzH9PQ4MDDTVP1uLemd37XWQkNlbJr+5dOmw3Io3TX7yTw0VuxS5yDKSxSE2kLIuuryYhs76BtC8x48fF1c0UeE432YsalXQC83e3t7i36PGypUrg15e3V5aap3dtceRoJnvzdnfrQhWUIg+9t1975hTVx6UbgoxD4pcZBnJ4hAbRD5QoRtds1P71usYgMaoKLQFo2ZJ620HmpycDGZYVRzbv0vdjjZ2uXr1anitdFSb3bUfd4IbN24ELzrS7JOeM2seXMmbN1fENoToypkVAx+bPzyordSlyEWWUeQ6xIaQTw4ePFj8vvSERqEL1E/tB0uXLg3+jpo9sVPFst5dsbdnh05U0wYSaRZglWZ3NTqBHmN9r5pJT7ttpCjYtex909dd+nh35V41h74sv5JuFEUusowi1yE2fHxz/Pjx4uyR3mpVTyGA2qig1dJ8+vvR/zUbmAS94NRs8JYtW4rZY+9DJ6ppxZQ02dlde7+dQCcG6kRA+z2rtzrNEwJLzD4wV/JvmhW5uZ91V27QnL4XXl4BRS6yjCLXITZ4fKQnU1vorlmzpurZ1gCe02yfZm71d6Ne1rQ2W9FMsVqK4ieqqQhLe8bR3l+nUB+0WkTs960WDs2sJzODPmuePq1+O7MPPjfvRVoY1h67GV5SHkUusowi1yE2dHylGSn7hK2369g0AqhMrQP2haHtZdWs6/j4eHiN5OldFvWM6oWozSMNtRckdaKa+n9PnDhRHPY+NLNbaSgrNONZaWTxRbN6pO2SixrJtDB8Z/LD+cJ/5/Fd3mwI73e+4pUiF1lGkesQG3Y+005M9q1XzRrp7TsAc+Inba5fv9784z/+Y/FjDRWdaZ/ApBel6qO3hbZGEieqRfv0WzmUO5oNrzRUZGr5w2pDj4fWJ640tNucvr9qQ+1btsDX6hi2T9eO5loYCkXuhjfMqXlaEJ5fL7xPilx4jCLXITbkfKdZGT2h2O/XLmQPdDoVN9HZvR07dhT/NvQCMb46gvo7Dxw4kOpMpm5bxZl9cWpHoyeqaUY4Wlza2yt3rFOHXkzoBL36PS9elx36ep5lwq6bkVW6r5zZ9Vn17X8pcpFlFLkOsQHXCfS2aPSkEz2xNz57AWSf3tWwPbEqciptpKITwrSdb7R/VtfXTGKaS4HZE9U0o2nvV6PZE9Xs7dRDbRO2VaHSKNf2EB16vKNtE+VGfBY2PvQCPT6bGx/x2eD4iL7gt0PZqO+hfnaGttv85tg3pvzaCbPmwcQe01O4n9zmvLk1z0pixSL3rXFTvRwG3EOR6xAbcJ1ET+S235D2BXSieHuCip5ailW9UNSsaLxISrtvV7TCg05Usz32Go2eqGY/v9Po567Z2uiLFa0+o17dxqnIzZmeFStMT047nQ2Yjz69bK5N3w9m5Kev/d7k3+kz3YX7WvbfTpmblSbhZ5+an+5Pm2u//19ms12NIfeqee/sNTN9/yfztJ7dJIA2osh1SKeGvZ4woye60L6ATqHZumh7gmbw6l1iT38renFod0KzoxV9u/pa1WMaX/dWH+t4LSeq2c/pJJoRj7440b/V+tG8aTP2v8+HM64z5uepr8ynH+8xW9evMqtWabxu3v4wb37/7Ty7nk2Pmd8G1y83fmvGeNMNGUGR65BODHtLT5Z6a88+BrQvwHe1tifUo119u3LhwoUXTlTTTK9OVKu2tq+9bifQ46AWBfs96+ev2dw0X4gAnYwi1yGdFPaVqA/OvgVK+wJ8FG9P0LsYSW3wYLWrb1d03yqq4yeqaaZZs5Xxd2ns5Z3APiZ6IaB2D+0AByA9FLkO6aSwr4b2Bfgq3p6wYsUKc/ny5fDS5FXq29VsYtovIPU3q6I23kahQk9FsD1RzR7vBNr0QStmpLWpB4BSVFQO6aSwn4+enKO7AtG+gKyLtif86le/Kv5ua6gQVJ9mWi/mdLvl+nZV/Kp3Nu23y/XCVX/P9iRTDc1mqr3BfgwASSNZHELYv0gzQdH2Bc1KMauLLNGMZXS5PL1Lce3ataDo1EoI9rjG0qVLzZEjR1J9G1vtCppNjPbO6m9Ly4Cl3berE9H0Nxw/UU0DAJJGsjiEsC9Pb+319vYWHx8VCdqNCXCZXoypYI0us6UdseKrJ2iWU8ejs5z6t46l2T+rglaFbbRvV4WvCuC0+3ZFS41pyTF73wCQNJLFIYR9ZSoYNAMUfUJWEcCJG3CRXoRF+8o1cznfCzP9Lqso1myu/TwNzfZq1jetdzDUqqCWhXb07Yq9PwBIGsniEMJ+fpp9ir71q6JXSy/RwgAX6PdTM6H291OzuCpc6/n91HXVnxvvn9V2t1puqpa1Zxuloja6xJVG2n279n4AIGkki0MI+9ppTc5oX59OTGtupyCgceXeadBb8c2eLKm2AS37FW9lmG/t2Wa1sm/X3j4AJI1kcQhhXx/NLGlJnmgBQAsDWi3emqAZ13q3tp2PCkv9rsfXnu3v7091C99W9O3a2wWApJEsDiHsG6PZsoGBgeLjpx2e8vl8eCmQDr2Y0osq+3unZcH+9V//NdXluDRjrBVH+vr6iveroZYCzSSn1cpQqW9XLRXN9gvb2wKApJEsDiHsm6MnW82i2cdRhYC2OQWSpIJOfeDR2c2///u/D/6vdxXUppDmiWKWfrc1oxp9J0M9wNpJK83NBir17arIjq8cUQt7GwCQNJLFIYR98/Qkq7dXo72EKjpYcgzN0mym3iGIzmZqJQTNrGrEWwn0joJ260t7OS61FJTbRlfvbiTdNhFVrl9Yhb+2E7a7mdXCfi4AJI1kcQhhn5ypqakXFtrX7NOlS5fCawC1UXGrWcpoEanCTsVctD1AM7fqj9XqH9HCT0PrPGtlhKRP2orS13ny5MmSbYM1dIKmWg0amWWthS2yVdTb+9SLTD0OtbyTYj8HAJJGsjiEsE+eitpov66G2hj0litQjQpYFabx4lazs/MVq/pctTTEe2dV/On3UUuEpdm7q5VGVGTGV0fQ157W9tj6fvQ9x3czm69v114PAJJGsjiEsE+P3lqN7q6kodk1il3EqUA9ePBgSc/tX//1XwfHGpmJVX+sZjrjmzzo9rUUWJpL31WaZdXfgpbhS4tmtOPvpFTq27WXA0DSSBaHEPbp09qi6iOMznDpyffEiROpnygEt6kgjC+X9Td/8zfB7K0tDJttd1FhGT9ZTEOzn9o0op5e1nrYfuLo9tgaWvpMs69pzSrX0rdrjwNA0kgWhxD2raPZtfiTr4rdNJ/w4SYVt3obP/q7oBYFzTr+53/+5wuFoT5W72szvyeazdQLq/gqBRqaAW329qvRSZjbtm17oZVBBX5aRXalGeXo7oUAkDSSxSGEfetVKnDSnFWDG9QmoHaB+AsdzXjGC0zNwMbbXfR7og0a9DvUDPXIqhUiumqDhpYD0zq8aZ0sqd/vchs9qABOazUSPa7l+nY1ACBpJItDCPv2UaGit1CjT/gaac+qobVU2KkwjReUetu+lpYVvQOgF0XR3xMVySpGk1gqTMWlbksFbvTr0/rPKoTTOGnMFp7RXds0NGNdruBPSrxvFwCSRrI4hLBvP510pFnccrNqam9gCbLsqdQa8Gd/9mdm/fr1DZ18qN8TtTPEf09UtCVxMqMKS7240u1F2wo09H2o+ExjSTA7Yx29T7UYqNWg2RnrSuz9AEDSSBaHEPZusW9nR/sINXSWvJ7009xVCs3RjGylk7w0Q/naa6+VfNzojKXuR0VtuR3AklqbVrPPeuEVf4tf35e+vzRWSdCMcfydDdtDm/RqEPb2ASBpJItDCHs3qfhRIROf4dLQGqB6q1cze2g/rZ6hPtP4cl3qn1XRZlsK1BYQ77Ftdsay2koCSbUZqMDUtr3lXnjp+9YmKEnS776K9XiBrQ0nkmrjsbcJAEkjWRxC2Lvv4cOHwZN+fFcpFTY6YUfFcBpvI6MyFZBqHSj3M9HMo7a2rdRrW67HttkZSxXJ6vuNbiKh20zyhC4Vl9pQQhtLxF94aQOKNF546XGMb6ySxMl39rYAIGkki0MI+2zRrJlm/uKzhio6VGhoZk2FAUVvslTUqsdWs6Z/+7d/W/LYazTSs6rrluux1c9xbGysoTWUVYhqtjO+BJmdBW3kNstRgamvPX4/9oWXTvBK6r6k0sl3ap2oZRvfOHsbAJA0ksUhhH12qS9SRVf0id8OFQAqvHR2vE5cS+It3k6iIk6Fpvqjyy09FR0qejWz2MzybyoK+/v7S27XzlhqJr8Rtj0iOuuq21SvbaO3WY5aJlSAxtsZ4u0aSUjqhYH9PABIGsniEMLeDyok9OSvt3bjS0FpUPRWV0tRqyW1dPmpU6fMv/3bvwUzlnpco9dpdvk39ffG19HVv5tZLkyz0OVmQXU/ur+kqMBUsV7ucdGMr34/kyyuy70w0DsctRTx9voAkDT/kuXHy+b4vn1mX93jY/Pp+fPm/FdT5qens+GNtRZh7x8VG+rt1JO9ioBqRa9mClUsNNPfmDV6fFTcqRidr6jVTLnaFCqdxFWpX9puqtBoP6x6W0dGRl5oS9HPTD3YjbQCaBZUX2t8FlS/I/odSFKlx0Wzyppd1veQ1AsttfDoxLjo7/l8Lwzs9dpvxvw8fc1cPv+p+bj4vPChyZ87b76a+rlwadyP5vLxM+bb8CMA7vGvonpy2/xRxeq5vHmnr7sYoNHR/fIq8/rbkQL37dfNqpdLr9v9ylbz0dlvzYMW1rv2vuGvaNGrmcb4LJsdertZBY/eYlYBqEKwkWLKJSrsVGiq4FLRo6Kr0vevt9fnK2qr0eOlx063E71dFZWNtjPo8dfJXlpRI3qbKsBVBDd6opeK2uimCBoq9vU4JT3LryK03OoT+n1TcdpIT205ldYR1mMXf2FgL2uX2QffmrMfbTWvdM99nV3dL5tVq1YFY0VPLjz2itl57JL53v5IvsubDV3D5mL4IQD3eF5RPTJn/zkSXIWxfvRWeNmLZp/eNhPv95nuyPVzr75nPv+hNZWuvU90DhUxallQ64IKnXgvZXRo5k1Fg66nIlHFmt7WV9HswuyvChedlKT+ZJ34pWJKqxSoRzNebMaHijpdV6sCJLkMlr6mSm/bN9POoFnJ+Bq8mr1Uodjo16/CXD/X6G2qrUGPYzM9xuXocdFJkeXWEdbOZ3oRlsR96n5U1MaL+OgLA3us5WYfmCvH/qvpyYVfV3efeSd/yUz9/OLvw+zTH8y1sx+ZgRWFgrdQ7G7d87bpC4piilzAZd5XVNOfbC6GqMaG/HfhJZU9+vKQedUGn8ayQpA9Ci9Mkb0/dDYVrCrMVASoOItvt1ptaIZOhbDeStdMsGZD1QOqIloFpGZG7VCRowK70tCsZfT6+np0OyrEVBzpPlTAqmApd8JduaFCUJ+jYlBfj2YO61kFoRlptDPoZ6UXG/EiXo+9Ht9G6OuM36Ze4KSxEYPo8deLkvgMte5TP++kqIiP9zhH21Na6tGX5tCr4QxtV86s+N3ZuRnaagqF8R8OvWpy4dfc1bXB1PCUAqBN/K+oLg6HYfR81FLkyr3Tg5Eg6zK5XZ+ZJ+FlabH3BcRptlGzh5oV09vAKlzVT6mTiGotMFs1VPSqAFaBrSJJBbKK5qRnI5sxXztD9O30Wujno1nheAGtIq7R71tfg2bqo7epFwhp0ky8lsXTz1D3p/tPmu1x1n1oxth+by3z6KIZXjb3M1o2fNHUN4fxyHwzsjl8fqDIBVxGkVvJ7Jfmg565z+vqesOcuhdelpLo18lgMBidNFpi9pbJb7YzuIWxdsRcb6QbrXg7PebQ1+ExAM6hyK1o1ny+Z+7zNAov+FMVvS8Gg8HopJG+WXNrdEPkPnvMB182fr7F7PURs7ZwO2k/LwBoHEVuFReH5z5PY/Mnyew/DwBosXunzWD0XIu1x8zN8KLG3DOn3ugyez5vz5KTAOZHkVvRdya/IRKIXTnz3uXwIgBAptw8tjaS5/VNeFTy5LNdZnMCtwMgHRS5ldw8FrwVVfzc3C7zWdpnngEAkvfCORarzMj18LJmPLltrt7miQFwFUVuOfGTE7pyhVfrtwxvSgFABn19yPREnge6uvYYugwA/1Hklpg1T29PmPeK6ydq5MyK9+pdYgYA4Ir4euld60dN5W2BAPii44rcXM8Ks+r1t+e29A3GHrN1/SrzcnRbx+C6r5n3J74vs2c5ACArLr8XnbgojA15Qyct4L+OK3K7urrNy+Ge5MXxcnfsOhprzT99/Kn56vZT2hQAIMPiK+V0DZ42P4aXAfAX7QrW7FPzw7Xfm/w7faY7cn21K/S89pH5wwNKXQDIoheKXBa3BToCRW4ZM9+fNbsi2z4GY9mwuUhjLgBkzgtFLu0KQEegyK3k0bh5K7pweGHkBk+blHf2BQAk7PrIqpIs58QzoDNQ5FZx79QbJZ/LPuUAkD1Pxt+KZTlLiAGdgCK3mh9Pm8HI52qsSmQFcQBAy7yQ5QltBgHAaRS5VV03I6uiwVgYnLAAABlzz5x6ozTLmbAA/EeRW9V3Jr+hNBhz710OLwMAZMWTwnNBya5nPR+YL5tuWZg1t76Y5FwNwFEUudXMfm72RD5XY/A0qysCQPbcM6cHSzeF2DDa3HbtjwrPL6/u+ZwdMQFHUeRW8eSzXSYX+dyu3KA5zUt2AMim7z4xm0tWzVlmhhtcG/LRl4fMqytYWhJwGUVuJY8umuHYWrlrR66z+xkAZJhmX5dFcr0r96o59IcHdWT7rHnwh0KB273Z5G/xjAC4zPsi99bo+pJCtZYid/bBH8yhV0vf1sptzhvyDACyL5iFLZnRzZkVb+bN5J9mwmuUN/vgW3P2/T7TndtsRr5hChdwnd9F7sw35sjaaJB1mVV7/p+Zun/f3P+5NMxmn/5kpoNtfV8zPS+E3ylzs3r2AQAyZPaHz837fd2RrH8+ul9+3by972Pz6fnz5nwwzpn8h3vM1vUvB1u+d/exzTuQFf4VuT9eNsf37TP79mw1r3SXhlddI9djXt36kTn7bT1vYwEAsmPWPPj2rPlo66uxyY346DavbH3fnJr8k2G+A8gO/4rcJ7fNH4uvwOsdl8216fvm/k9PKWwBoKPMmJ/v3zdTX0WfE74yU/d/Mk95QgAyyf8TzwAAANBxKHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAN6hyAUAAIB3KHIBAADgHYpcAAAAeIciFwAAAJ4x5v8Dy98BYIMI/eUAAAAASUVORK5CYII=
|
As shown in the figure, the area of square ABCD is 16 cm². A circle with a radius of 2 cm is drawn inside the square. What is the area of the shaded portion in the lower right corner? (Use π = 3.14)
|
A. 0.86; B. 5.44; C. 12.56; D. Cannot be determined; E. No correct answer
|
A
|
94
|
iVBORw0KGgoAAAANSUhEUgAAA0AAAAIICAYAAABHH473AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAGx9SURBVHhe7d0H2BxVof9xQygBJEAgFCNgwAjeAKGEagQhIMRQpCNEUVqkExAwIZeLFCFggQgkIE2RBKUIFwIX/aNopClo8AIiTcqlSFMEREOZ//Ob95zknLOzuzOz5d3d8/08z3nyZqfs7O7M7PntmXPmQwkAAAAARIIABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAet60adOSD33oQ4XKWmutleywww7JYYcdlsycOTN58sknzdoAdDMCENAi+qLUlycAoHPo3LzPPvtUBB0FpDlz5iRz585Ni/6eMmVKOs2dV4FI0wF0LwIQ0CL64tSX5ezZs80jAIBOoBDkhhqFn1oUeMIgpHM8gO5EAAJa4NVXX02WX3759EtSvxYCADqLG2bqBSDReV2XwrnL6f8Aug8BCGgBXSvufklyuQQAdBb3HJ0nAFn6UctdVud7AN2FAAS0QHipBL8SAkBncc/RRQKQ28Kvor/1GIDuQQACmkx9fvSlOHr06AVfkCqMHgQAncM9PxcJQKL53eXpDwR0FwIQ0GS6PEK/CBbtZAsAaJ9Gzs9q8XGX1zkfQPcgAAFNpL4+7pep22GWL0gA6Bz23Oyes4sI+wLR1xPoHgQgoIls4LGXu9lAZAtDYgNAZ3DPzWUCkL3VgS0MhgB0DwIQ0CT2krdwwAN3QAT1C+oUv/zlL5P/+q//olCqlqlTpybHH398uk9/+ctfTm8eueeeeya77bZbsssuuyTjx49PfwXfbrvtkm222SYt+luPaZrm0bxaRstqHVqX1ql1Zz0nhWKLzlGtZM/LKmUCkJZpdB0A+gcBCGgS+2UYXgZhB0WwpVMuk1AFw90uCoVC6aSic1Qruc/VjADEQAhA9yAAAU1gh0XNauEJh0wNW4j6CwGIQqF0cum2AFRmHQD6BwEIaALbylOtj094rXgnDIlNAKJQKJ1cCEAAWoUABDSB+vnUGuWtE4fEDgPQZz7zmfQxSveUSZMmJbvvvnuy8cYbJyussIL3eTajDBgwIFl66aWTFVdcMVl99dWTtddeOxk5cmSy/vrrJxtuuGHa4rnZZpsln/rUp5KtttoqLfpbj2ma5tG8WkbLah1al9apdWc9ZyNF74HeC70nem+y3jNK55TwhtHrrbee93/N00ruc5U5JzMIAtC9CEBAg+bMmZPrC9QdMrUThsRW5cJuj0qrKxto3EsvvZT8+Mc/Tg4//PA0VLifX5myzDLLpIFhv/32S0499dRk1qxZyT333JM89thjyeuvv26etXX0HHouPaeeW/vgF77whXSbtG1Z21yk6D3Se6X3TO8dOku4D0+cONH7f6cHoHAY7Hnz5pkpADodAQhoUPglmLf095DYBKDO99prryU33HBDcswxxyQbbLCB93kVKSNGjEhHZVOryIwZM5I77rgjee6558yzdC5to7ZV26xt12vQa8l6jXmK3kO9l3pP9d6ify233HLe5/O1r33N+38nB6DwRqhqzQLQPQhAQAP0i5++/DTEr0Z3q1fcSz76+wuTANSZVDG/6KKLkq233tr7fPKURRZZZMGljD/96U+Thx9+OHn33XfNmnuHXpNem16jXquG39Zrz3pPahW9x3qvCUPt98Ybb3ifxRJLLNH2c5L7XEUDkOZ3l+fyN6C7EICABoQ3Pq0n/NJUKOov7a5soLZrr702vV+O+5nkKWPGjElOPvnk5Pbbb0/+9a9/mbXFR69d74HeC70nWe9VraL3Xp8B2uORRx7x3n/9INQtASgc2VPbrscAdA8CEFCSvQRCrT95hV+cRZZtNgJQ/7vzzjvTED1kyBDvs6hVNMDAiSeemPY9e+utt8yaENJ7o/dI75Xes6z3Mqvos9Bnos8GrfPzn//ce981gEa3BKDwsuf+/CELQDkEIKAk25pT9MuvU4bEJgD1j4ceeig55ZRT0lHR3Pe/WtGAAMcdd1xy0003JX/729/MWlCU3ju9h3ov9Z5mvddh0Wekz0qfGZrryiuv9N5rDX7R6QFIP2DZVn9b+rsvJ4ByCEBACbYlJ+vGp/WEQ2L3141RCUDt89e//jWZPn167kuzNBzw6aefno6QhtbQe6v3OBx6uVrRZ6fPUJ8lGnfmmWd6768GQGjnOanorQnCPpw6/6uFEUB3IgABJdhWnCKXTbjsl6gt/TF8KgGo9f73f/83OeSQQ7z3uVpZZZVV0hHK7rrrLrM02kXvud57fQZZn01Y9Jnqs0V5YUvKeeed17ZzksJPeBmbwo3O52rRUdhRUcDRY/qhy86n4KNtp88P0N0IQEAB+uLUF6L7ZagvybxfhppPowXZ5d316Iu3nV+qBKDWuffee9N767jvb1YZOHBgOp8uzUJn0Gehz0SfTdZn5hbNp88axe2yyy7ee6kBKFp9TnLP3XmLzs0KS/rRq8i5HkBnIwABOekXwawvSFvq9QWqt7wt7UIAaj7ds+bzn/+8975mle233z659NJLkzfffNMsiU6jz0afkT6rrM/QLfrM9dkjv7Af1t133805CUDbEICASFHZaJ6bb765bkVZfU3OOuus5KmnnjJLoVvoM9NnV6+/kPYB7QuoL7zc8JlnnuGcBKBtCEBApKhsNO6aa65JttxyS+99DMvmm2+ezJo1yyyBbqfPUp9p1mdti/YJ7RvINn/+/Ir37P333+ecBKBtCEBApKhslHfZZZclG2ywgff+hWXs2LH07elh+mz1GWd99rZoH9G+Ap9a1Nz3adiwYenjnJMAtAsBCIgUlY3i9Ov/iBEjvPctLDvvvHN6k0fEQZ+1PvOsfcEW7TO0Ai4U9ofcdNNN08c5JwFoFwIQECkqG/n98Y9/rBi1Kiz77rtv2pEbcdJnr30ga9+wRfuQ9qXY6fJA933Zbbfd0sc5JwFoFwIQECkqG/V98MEHycknn+y9T2E56KCDkgcffNAsgdhpX9A+kbWv2KJ9SvtWrL797W9778eRRx6ZPs45CUC7EICASFHZqE33ZXLv/B6Wo48+Onn88cfN3IBP+4b2kax9R0X7lvaxGB133HHee3H22Wenj3NOAtAuBCAgUlQ2sukO/7Xu5bPTTjsl8+bNM3MDtWlf0T6TtS+paF/TPheTvffe23sPrrrqqvRxzkkA2oUABESKykalqVOneu+JWz72sY8tqKgBRWnf0T6UtW+paN+Lxac+9Snvtf/iF79IH+ecBKBdCEBApKhsLKRO2bVGdzvppJPSe5cAjdA+pH0pax9T0T4Yw/2DwiD45z//OX2ccxKAdiEAAZGispEkTz75ZDoClfs+uGX8+PHJ73//ezM30Bzap7RvZe1zKtontW/2qsUWW8x7vW+//Xb6OOckAO1CAAIiFXtlQx3Ql1tuOe89sGX11VdPfvjDH5o5gdbQPqZ9LWsf1L7Zi61BL774ovc6V1hhBTOFcxKA9iEAAZGKubIRjkLllhNOOCH597//beYEWkv7mva5rH1RRftqL/nd737nvb7111/fTCEAAWgfAhAQqRgrGw8//HDy6U9/2nvdtowbNy554IEHzJxAe2nf0z6YtW9qn9W+2wtuvPFG77XpNVsEIADtQgACIhVbZeOKK65IBg0a5L1mW8455xwzF9C/tC9m7aPad7UPd7sLL7zQe10HH3ywmUIAAtA+BCAgUjFVNg4//HDvtdqyzjrrJHfeeaeZC+gM2ie1b2bts9qXu9mJJ57ovZ7TTjvNTCEAAWgfAhAQqRgqG/fff3+yySabeK/Tli9+8YsLRp8COo32Te2jWfuu9uluvVwzvAmqO9gIAQhAuxCAgEj1emVjxowZ3utzy/e+9z0zF9DZpk+fnrkPq2gf7zbhDxK//vWvzRQCEID2IQABkerVyoZuNnnggQd6r82WDTbYILn33nvNnEB30D6rfTdrn9a+3k036R06dKi3/c8++6yZQgAC0D4EICBSvVjZ+Mtf/pKMHj3ae122HHLIIcn7779v5gS6i/Zd7cNZ+7b2ee37ne4f//iHt92LL764mdKHAASgXQhAQKR6rbKh/j7Dhw/3XpPKwIEDk+9///tmLqC7XXLJJek+He7n2vd1DHSyBx980NvmT3ziE2ZKHwIQgHYhAAGR6qXKxu23354MHjzYez0qm2++eTJv3jwzF9AbtE9r3w73dx0DOhY61U033eRt72c/+1kzpQ8BCEC7EICASPVKZWPWrFne67BFI2gBvazaKHE6JjrR+eef723nxIkTzZQ+BCAA7UIAAiLVC5UNjebmvgZbjj32WDMH0Nu0r2cdA5040uGkSZO8bTzrrLPMlD4EIADtQgACItXtlY1TTz3V235bTj/9dDMHEAft81nHgo6RTvL5z3/e277Zs2ebKX0IQADahQAERKqbKxtHHXWUt+22dON9UYBmqHbfKx0rnSIcyvuee+4xU/oQgAC0CwEIiFS3Vjb2228/b7tt+clPfmLmAOKkYyDr2NAx0wmWW245b7teeuklM6UPAQhAuxCAgEh1W2XjjTfeSHbYYQdvm1WGDBmS3HHHHWYuIG46FnRMhMeJjh0dQ/3ltdde87Zn6aWXNlMWIgABaBcCEBCpbqpsvPDCC5k3OB0xYgTDXAMBHRM6NsLjRceQjqX+8Nvf/tbblpEjR5opCxGAALQLAQiIVLdUNt5+++1kyy239LZVRfdBee6558xcAFw6NrLuFaRjScdUu1111VXedmhAhBABCEC7EICASHVLZWPcuHHedqqMHz8++ec//2nmAJBFx4iOlfD40THVbv/5n//pbcNJJ51kpixEAALQLgQgIFLdUNnYd999vW1U2WeffcxUAHnomAmPIx1b7RRuw2WXXWamLEQAAtAuBCAgUp1e2fjqV7/qbZ/KjjvuaKYCKELHTng8TZw40UxtvQ033NB77rlz55opCxGAALQLAQiIVCdXNnR5jLttKurP8NZbb5k5ABShYyerT1DWpWitsNRSS3nP+/LLL5spCxGAALQLAQiIVKdWNr75zW9626XyyU9+Mnn++efNHADK0DGkYyk8vnTMtdJf/vIX7/lWXHFFM8VHAALQLgQgIFKdWNm46KKLvG1S+chHPpI88sgjZg4AjXj44YeTVVddteI4u/DCC80czXf77bd7z6WR6EJ/+9vfCEAA2oYABESq0yobV199tbc9Krps5u677zZzAGgGHVPhJWkqOgZb4Xvf+573PF/5ylfMlD62hWiVVVbx5iMAAWgVAhAQqU4KQLfccou3LbbcdtttZg4AzaRjK+uY07HYbEceeaT3HGeddZaZ0uenP/1p+vg666zjzUcAAtAqBCAgUp0SgH7zm98kgwYN8rZFZfbs2WYOAK2gYyw87pZYYon0mGymz372s95zXH/99WZKny9/+cvp45/5zGe8+QhAAFqFAAREqhMC0CuvvJKsscYa3naozJw508wBoJV0rIXHn45JHZvN8rGPfcxb/0MPPWSm9LHTDzjgAG8+AhCAViEAAZHqhAC02267edugMm3aNDMVQDucffbZFcehjs1mePvttyvWPX/+fDN1Yf+f5ZZbriPOSQDiQAACItXflY3TTz/de36VyZMnm6kA2knHXng86hht1DXXXOOt8+Mf/7iZ0sf2//n85z9PAALQNgQgIFL9WdmYM2eO99wq48aNM1MB9Acdg+FxqWO1EVdeeaW3vl122cVM6WP7/+j8QwAC0C4EICBS/VXZePHFF5Nhw4Z5z73yyisnzz33nJkDQH/QMahj0T02dazqmC1r0qRJ3vqmTp1qpvSx/X9++ctfEoAAtA0BCIhUf1U2dt55Z+95VW666SYzFUB/0rEYHp86ZssaO3ast65rr73WTPH7/wgBCEC7EICASPVHZeOUU07xnrNdzwsgv/DcoKJjt4wVV1zRW89jjz1mpvj9f6Q/zkkA4kQAAiLV7srGjTfe6D2fSiO/LANonayWWh3DRTz99NPe8oMHDzZT+rj9f4QABKBdCEBApNpZ2Xj22WeTlVZayXu+j370ow31LQDQOll99XQM61jOK7ycbsyYMWZKH7f/jxCAALQLAQiIVDsrGzvuuKP3XCqNji4FoLWyRmvUsZxXONT9EUccYaZU9v8RAhCAdiEAAZFqV2VjypQp3vOonHHGGWYqgE6Wdb8uHdN57Lnnnt5yl1xyiZlS2f9HCEAA2oUABESqHZWNrF+Qd999dzMVQDfQMRsex3lacEeMGOEtc++995oplf1/hAAEoF0IQECk2lHZGDVqlPccuub/lVdeMVMBdAMds7a/ji06tmt54403vPlV3nnnHTO1sv+PEIAAtAsBCIhUqysbWZfO/OxnPzNTAXQTHbvh8axjvJq5c+d6844cOdJMye7/IwQgAO1CAAIi1crKxp/+9Cdv3SpHHnmkmQqgG+kYDo9rHetZLrjgAm++/fbbz0zJ7v8jBCAA7UIAAiLVyspG2GdglVVWSS+JAdC9dAzrWHaP7Wp9+g499FBvvrPPPttMye7/IwQgAO1CAAIi1arKxqxZs7z1qlx22WVmKoBupmM5PL51zIfWX399b57bbrvNTMnu/yMEIADtQgACItWKysb8+fOT4cOHe+sdN26cmQqgF+iYdo9xHfM69q3XX3/dm67y97//PZ1Wrf+PEIAAtAsBCIhUKyobJ5xwgrdOlT/84Q9mKoBeoGM6PM517Fu33HKLN23DDTc0U6r3/xECEIB2IQABkWp2ZeO+++7z1qdy8sknm6kAeomO7fB41zkga9rhhx+ePi7V+v8IAQhAuxCAgEg1u7IxduxYb31rr722mQKgF+kYd495nQNk22239R6/6qqr0selWv8fIQABaBcCEBCpZlY2ZsyY4a1L5brrrjNTAfQiHePhca9zwaBBg7zHnnzyyXT+Wv1/hAAEoF0IQECkmlXZ0F3ihwwZ4q1r3333NVMB9DId6+6xP3jwYO//q6++upmzdv8fIQABaBcCEBCpZlU2Jk6c6K1n0UUXXfCLL4DepmNdx7x7DnDLPvvsY+as3f9HCEAA2oUABESqGZWNJ554wluHyrRp08xUADHQMR+eB2w577zzzFy1+/8IAQhAuxCAgEg1o7Jx1FFHeetYb731zBQAMdGx754LbLEjw9Xr/yMEIADtQgACItVoZePZZ5/1llfRXeIBxEfHfng+WHLJJc3U+v1/hAAEoF0IQECkGq1sHH/88d7yDHsNxG3VVVf1zgnuAAj1+v8IAQhAuxCAgEg1Utl46aWXkoEDB3rLa/hbAPH69Kc/7Z0TBgwYkJ4rpF7/HyEAAWgXAhAQqUYqG5MnT/aWHT58uJkCIFZrrrmmd15Q0bkiT/8fIQABaBcCEBCpspWN119/Pb22313WHekJQHwefPBB75xgi84VP/rRj9K/a/X/EQIQgHYhAAGRKlvZCJcbNmyYmQIgVueee653XnDLBhtskP5b7xxT9pwEAEURgIBIlalsvPXWW8myyy7rLXfOOeeYqQBitf3223vnBbcsssgi6b+1+v8IAQhAuxCAgEiVqWyceeaZ3jJDhw5N5s+fb6YCiJF+GHHPCypDhgzx/j9o0CAzd3UEIADtQgACIlW0sqGgo8DjLnPGGWeYqQBidf3113vnhZEjR6bnBvexJZZYou6PJQQgAO1CAAIiVbSyEV7jr0vh3nzzTTMVQKwmTpzonRsmTZqUnhvCy2V1DqmFAASgXQhAQKSKVjZWW201b/5TTjnFTAEQMw2D754bbrvttvRxnSPcx3UOqYUABKBdCEBApIpUNm655RZvXg1t+9prr5mpAGI1b94879ygvj7vv/9+Ou0Pf/iDN01F55JqCEAA2oUABESqSGVj//339+Y95JBDzBQAMdMokO65YZdddjFTkuSnP/2pN01lwoQJZmolAhCAdiEAAZHKW9n4xz/+kQwcONCb9xe/+IWZCiBm2223nXduuOCCC8yUJPnyl7/sTVPRuUTnlCwEIADtQgACIpW3snHJJZd486299tpmCoCYaaAD99yg8thjj5mpSfKxj30sfSzsP6hzShYCEIB2IQABkcpb2dhmm228+U499VQzBUDMrrzySu/coOGvrb/85S/pY8stt1zFuUbnlCwEIADtQgACIpWnsvHoo49686joMQAYP368d26YPHmymbKw/8/nP//53OcRAhCAdiEAAZHKU9lQa487T7VfbgHE5YUXXvDODSq///3vzdSF/X/seSVPSzIBCEC7EICASOWpbKi/jztPtWv3AcTl/PPP984No0ePNlP62P4/v/zlL9P/X3zxxd78WX0JCUAA2oUABESqXmVDI72502uN3gQgLmPGjPHOD9OmTTNT/P4/Vp7RJAlAANqFAAREql5l49BDD/Wm615AAPCnP/3JOzeoPPXUU2aq3//HFd5PTOcYFwEIQLsQgIBI1aps6E7uyyyzjDe91h3cAcTjG9/4hnduGDt2rJnSJ+z/Y918883ecjrH6FxjEYAAtAsBCIhUrcrGj370I2+a7uMBALLuuut654eZM2eaKX3C/j+u8J5AOtdYBCAA7UIAAiJVq7Kx0047edNOOOEEMwVAzO655x7v3KDy+uuvm6nZ/X9cOpe4y+pcI1qOAASgXQhAQKSqVTb+/e9/J4sssog37YEHHkinAYjbcccd550b9thjDzOlT7X+P5bOJe7yOtfonKNWo0GDBnnTCEAAWoUABESqWgC6/fbbvcezhqsFEKfwErZrrrnGTOlTrf+PKxxe/6KLLkr/VauR+zgBCECrEICASFULQLqbu/v4xIkT08cBxO3666/3zg0axOCDDz4wU/vU6v9j6Zzirme77bZL/91ggw28xwlAAFqFAAREqloA2mKLLbzHZ8+enT4OIG4bbrihd2446KCDzJQ+9fr/WDqnuOsZMmRI+u8+++zjPU4AAtAqBCAgUlkB6G9/+5v3mMqLL75olgAQqyeeeKLi3PCzn/3MTO1Tr/+PpXNKuC6VY445xvs/AQhAqxCAgEhlBSBbgbFFl6QAwKRJk7xzwyabbGKmLJSn/48VXu42fPjwzHMSALQCAQiIVFZlI/wFVpUeAHFTP5/Bgwd754aLL77YTF0oT/8fKwxUuryOAASgXQhAQKSyKhujRo3yHrvpppvM3ABi9f3vf987L6ywwgrJe++9Z6b2ydv/x9K5xV2nwhMBCEC7EICASIWVjfD+HipvvPGGmRtArDbddFPvvHDSSSeZKQvl7f9j6dzirlMlPAcRgAC0CgEIiFQYgHbffXfv/1tuuaWZE0Cs7rjjDu+8oPL444+bqQsV6f9jrbPOOt56w3MQAQhAqxCAgEiFAWijjTby/j9lyhQzJ4BY7bvvvt55Ya+99jJTfEX6/1if/vSnvXWH5yACEIBWIQABkQoDkL0Xhy3hELcA4mL79bjl9ttvN1MXKtr/x1p55ZW9dYfnIAIQgFYhAAGRCgOQWwYOHJjMnz/fzAkgRmoFds8L6623npniK9r/R7LuORYWAhCAViEAAZGqFYC22247MxeAWK200kreeWHGjBlmiq9M/x8bmoYOHeo9h1sIQABahQAERKpWADrjjDPMXABidOmll3rnhEGDBiXvvvuumeor0/9HrUVaZtttt/Wexy0EIACtQgACIlUrAOnXWQDxGjlypHdOOOCAA8wUX9n+PzY06Yaq7vO4hQAEoFUIQECkagWgRx55xMwFIDZXXHFFxTnhiSeeMFN9Zfr//OEPf0iXUWjSucZ9HrcQgAC0CgEIiFS1ADRgwIDk/fffN3MBiM2oUaO8c8L6669vplQq0//nu9/9brqMQpPONTrnuM9nCwEIQKsQgIBIVQtAujkhgDhdddVVFeeECy+80Eyt1Ej/H7U0SXhDVFsIQABahQAERKpaANp1113NHABiE96MdPHFF0+HrM7SaP8fLS8657jPaQsBCECrEIDQdebNm5csv/zy6RfktGnTzKMoqloAOvHEE80cAGIye/bsivOBRmmrppH+PxtssIF5JEnPOe5z2kIAAtAqBCB0lVdffTUZPXr0gi9IAlB51QKQhr8FEJ9NN9204nxQK4Q00v/n2GOPNY9UDrltCwEIQKsQgNBVDjvsMO8LkgBUXrUANHfuXDMHgFj85Cc/yTwf2MvUsjTS/8cdal/nHPc5bSEAAWgVAhC6RtblGQSg8qoFoJdfftnMASAWW265ZcW5wL1MLVSm/4/6Eml+LecGK51z3Oe1hQAEoFUIQOgK6veT9QVJACovKwANHTrUTAUQixtuuKHiXKDiXqYWKtP/xy6TFax07nGfW4UABKBVCEDoeOr3s9Zaa1V8OaoQgMrLCkBjxowxUwHEYquttvLOAyuttFL6r3uZWqhM/x97zskKVjr32Oe3hQAEoFUIQOh4++yzTzrqW9j/R4UAVF5WADrooIPMVAAxqNb3R5eqVRv+Wsr0//nMZz6TLpMVrHTucZ9fpRsDkC7tq9Vvqhn0o+DMmTOTHXbYwXu/NECQvifnzJmTzqMrJzRPPZrffs/adWk5XXYO9CoCEDqaTvI6GesErbBjT862EIDKywpAvJ9AXNZff33vHLDJJpuk/9a6tK1s/x+7TFawyjq/d2MAspf5qZWrFUHIvQ2EroyYMmVK+t7pX3eEVFvqBaCsHxbdonXqOYFeQwBCx7L9fnRil7IB6Mknn0xP8u5ldPoC0S9eWb9whb+qucXScu6XjdatbdGvbpb+1mPufPq7U35VywpAN954o5kKoNdNnz694hxgW2lqhY9G+v9UW0bnHrsNtnRzALKlmUHI7Qur77QsGlHP/c6pFYDc8KPvMM3rLmuLvi/d7zagFxCA0JF0stUJWSdjq0wAcpdRa1L4mIpO+uHJPWvEORWFqawvCFvs9upLyL2cICz1trsdsgLQ/fffb6YC6GVvv/32gr4+thx++OELLm2rVWkv0/+n3jI699jtsKUXApAtzQhC9ke8eq06oh/4as1rhx7X9LCFJ+t7rlrgAroVAQgdyV6P7AaTogFILUd2Pq3P0jrddahkrSecR0XbpC8CrUMlKwzpC0X/KnBpHn2ZZIUhPd6fsgLQ008/baYC6GWTJ0/2jv3FF188ue6669K/aw1/LWX6/9Rbxl5W55ZeCkC2lA1CugzcrkN/16PvHn3vVAtA+k50vxdDWd9vegzoFQQgdBwbdMIbchYJQOGN9cLLztzL4VSyvgjc6baEv4JVaykKn8+91KDaPO2WFYDefPNNMxVAr3riiScqjv3TTjttwTkha5Q2ywaVIv1//vCHP9RdRuceuy229GIAsqVoEHK///IEINEy1QJQ+ANjlvB7NPxOBroZAQgdxZ5ws4JNkQAUBpzwxK0mfzuP/s3q5Okub0so/IJQyfrCKbLt7RL+ArzooouaKQB6mb0czZY11lgj+eCDD2qO0mbZCn6R/j/f/e53cy2jc5DdJhWdo7pN3gBkS94g5H6HVAs1IX2vZc2r7y3bt7YetxWIAIReQgBCx6jXZJ83RLgdRW0pc+IO16ES6uYApC9ed3sGDx5spgDoVVnnrO9///teK02t4a/dvjxZrciUcqVeEHIvgVOxl2LXkzcsVaPl7XNm/VAIdCsCEDqGTrS1muXzhois+QhAlQ499FBve1ZZZRUzBUCvciu0Kptvvnn6eN5WGrcvDwGo+aVWEAqvbND/y3y3FWH3F303A72EAISOkBUkihQ3dBCA8pkwYYK3PWuuuaaZAqAXXXvttd4xr3LzzTen0xR89P8rrrgi/X+WsP8PAag1Re9v1mAR1b4n1Ye1VYPq2NDV399XQLMRgNARWh2Aygw4EK5DJdTNAWjvvff2tueTn/ykmQKgF40aNco75m1rjy55U6Vbj9W6DCvs/0MAam7RZ6D3VpcjVqPvMrXGZC2vy+KaGYTs5eR5BkwAug0BCB2h1QEoHL0tj3AdKqFuDkB77LGHtz3rrruumQKg19hL3Nxi7/tlg0294a/De/kQgJpT8gQfl0KOvmey1qWi75ZmBBY7eml/f1cBrUAAQkdoZgDKGpq6zPXL4TpUQt0cgOwlL7bo12EAveeZZ55JllxySe94d38UskFG/U9qKXr/n7wtS1a1FqpuUmQUuKLBJ1SrNUiP5x0uO4tCltZjb+4N9BoCELpG3hBhR5ML59WNSYsIl1cJdXMA2mmnnbzt2Xjjjc0UAL1k//339471pZdeOnn++efN1IXBRpX3asL+P3nkbVmydA6y26iic1S3yROAGg0+Ln3f6bukWhAq+z2jfkVaZ3/fsBtoFQIQukaREJE1r07mWcN46gsk741QQ90cgMaNG+dtz6abbmqmAOgV119/vXecq0yfPt1M9W9SWmv4a1uxL9Iqk7dlydI5yG6jis5R3aZWAGpm8Anpe8xeshaWoi1B9ioKhr1GLyMAoWsUCRH6MnBv4GaLQpA7IIK+GDTKTdYXRLisitbr6uYA9NnPftbbni222MJMAdAr1l57be8433rrrc2UPnmHvw77/+SR58aqLp2D7Haq6BzVbbICUCuDT0ihJfzu03dcXlo+/J4EehEBCF2jaIioFoLcohO9Qkwoqx+Rivt8tX5xc9epSwiytkNfSv15ecHYsWO97RkzZoyZAqAXTJ482TvGVe6++24ztY8q5nq8Xkgp0/9H89drWXLpHGS3U0XnqG7jBqBmBh99p+T90Szruy9Pa46+jwg/iAUBCF2jaACydDLXJW7ucmqlUZ+gsEVHNM2dN6tI1uNu0XqyWojCkhXA2sH+OmtL+MswgO6lEd7c41vl+OOPN1P75B2koJH+P/VallxrrLHGgm1V0Tmq2+h1t6LFR98TWZdqV2MHMbCl3veMDU2EH8SCAAREihYgoHdtv/323vE9fPjwZP78+WZqHxtS6g1SUCbMlLlkbvPNN1+wvSrd2AKk0NOKS93sj2lZP9pV47YC1QpANvzkbWECegEBCIgUfYCA3qTWbffYVsn6Zd8OUlAvpJQJM0UvmZOwv1I39gFqFRuAioQUNwBVC042/OS5V54uo8szH9ANCEBApBgFDug9L7/8ctqPwz2299prLzPVlzekFA0zagHR/EUumZNhw4Yt2GaVbhwFrlVsANJnm6c/j+ax7+OUKVPMo74i4UfPr+du5N5CQCchAAGR4j5AQO85+OCDveN6kUUWSR5//HEzdaG8IaVM/5+8I8uFFl988QXbrdKN9wFqFRuAVOoNVOAOvKN/s1p/bPjRPOqvWqtowB77vECvIAABkVLlxH6hqugu7AC610033eQd0yrVLpnKG1LK9P+x55YrrrjCPFKfHTXOLUUDVC9zA5AtCib6fDVNRa0zau2xLYAaNCEr/Kh1yIaaIoXL39BLCEBApPbYYw/vy23dddc1UwB0mzfffDMd6MA9pmtd1mpDigJOLY30/6k1slzIBi236ByFPgo49lI2BRi1ACmQ2FYcWxRs9Ljmr8YGpKKFy9/QSwhAQKT23ntv78vtk5/8pJkCoNscdNBB3vGscscdd5ipvrzDX0vZ/j/1RpYL2QEZ3KJzFAC0AgEIiNSECRO8yoZ+PQbQfa6++mrvWFbRTVCryTv8dSP9f9RyVER4XzIVnaMAoBUIQECkDj30UK+yscoqq5gpALrFiy++mAwdOtQ7ljfbbDMzNduxxx6bzlfvsrZG+v/Uu7TOZfv/aMAG/WuLzlEA0AoEICBSthJky+DBg80UAN1CHd3d41jlnnvuMVOz5b2srWj/nyKX1rls0Fp00UXTf23ROQoAWoEABERKl8i4lQ1VPgB0j4svvtg7hlXOPPNMMzVbkXv0FO3/o/k0f9n+P2ELUK3L+ACgEQQgIFJZnY41khSAzqd7+wwaNMg7fseOHWumVpe3j06Z/j/2nFK05Sar/49K3pYnACiKAAREKisAFblsBUD/+dznPucdu2o9eeihh8zU6vL20SnT/8cGmTL9f3QJrv51CwEIQKsQgIBIZQWg+++/30wF0Km+9a1vVRy706dPN1OrK9JHp0z/H82v9evvvGzQ2njjjdN/3UIAAtAqBCAgUlkB6MYbbzRTAXSi3//+9xXHbd5WGhs21FJTT9H+P0XW7bLnoZ133jn91y0EIACtQgACIpUVgKZNm2amAuhEGuLaPWZ16djTTz9tptaWt1WnTP+fvENrh+xlc1/60pfSf91CAALQKgQgIFJZAUh3kwfQmb761a9WHLOXX365mVpf3ladMv1/irYYib1sTuWLX/zigr9tIQABaBUCEBCprAA0ZswYMxVAJ8ka8lol74ADdvjrPENUF+3/U2RobZcNWtomnXv0t1sIQABahQAERCorAOmO8gA6y+9+97uKY3XgwIHpv3lHbrTDX+cZorpoa84VV1yRzl+kxUjsOUjbpHOP/nYLAQhAqxCAgEhlBSCVl19+2cwBoL+99957yYYbbph5rBa54Wje4a/L9P+x6y4aWGz/nx/84Afpv2EhAAFoFQIQEKlqAWju3LlmDgD97cADD6w4RhV89G/egFBkiOpG+v8UuY+Y2//ntttuW/C3WwhAAFqFAAREqloAuvTSS80cAPrTBRdcUHF8aiCEooGjSKgp2/+nSGuUuP1/dM7R32EhAAFoFQIQEKlqAejEE080cwDoL3fddVfFsakhsN3gkFeRS9SK9v+xfYsUnIqw5x/1/9E5R3+HhQAEoFUIQECkqgWgXXfd1cwBoD/885//TEaOHOkdl4sttljy4IMPLjhui4SDvC1GjfT/qde3KOQup3OO/g4LAQhAqxCAgEhVC0DrrLOOmQNAf5gwYULFcamR1qRoC02RS9SKXCpnKSxpmaL9f9zldM7R32EhAAFoFQIQEKlqAWjAgAHJ+++/b+YC0E5nnHFGxTF59NFHp9PK9Lexx3me4a+L9v9RCCu6PeJexqdzjc45+n9YCEAAWoUABESqWgBSeeSRR8xcANrlRz/6UcWx6N6cuEiYsexQ03kuUSvaulRme8RdTuca/Z1VCEAAWoUABESqVgAqej0/gMb85je/qTgOl19+ee/HCBtQ8h6fRYa/7q/+Pyr6O6sQgAC0CgEIiFStAKTLcAC0x/PPP58MHz684jicM2eOmWPh5W9FAooNF3n69BSZV9x+PPXClSvs/5N1yZ8tBCAArUIAAiJVKwBtt912Zi4ArbbNNttUHIO6B5DLHq9FLjezLS15gkTR/j82MOkSuyLCfkM61+j/WYUABKBVCEBApGoFoIEDBybz5883cwJolQMPPLDi+Pva175mpi5UpC+PlXf4aynb/6doSLHLKcjpHKNzjf6fVQhAAFqFAAREKgxAQ4YM8f7/s5/9zMwJoBVOO+0075hT2WOPPczUhdzL3/JeblZkxLgy/X+K9key3P4/Osfob1vCcxABCECrEICASIUBaKONNvL+P2XKFDMngGa76qqrvONNZeONN07eeecdM8dC3/3ud9PpefvniNvSUk/R/j9uYGqk/4/OMfrblvAcRAAC0CoEICBSYQDafffdvf9vueWWZk4AzTR37lzvWFNR60e14efdVpO8ilwyV7T/j27KqvmLBDIJ+//oHKP/2xKegwhAAFqFAAREKgxAxx13nPd/lTfeeMPMDaAZnnzyyQWXj7nl1ltvNXP41Gqi6UVaW4ouU7T/jw1kRQOKPeeoVUrnFv3tlvAcRAAC0CoEICBSYQDS/0eNGuU9dtNNN5m5ATTq1VdfTVs/3GNM5cILLzRzVCpz+VuRFppG+v/kGVzB5bZk6dyiv23RuSfrnAQArUAAAiKVVdk45phjvMcmTZpk5gbQCI14ttVWW3nHl8oJJ5xg5sjmhoa87DIKT/UU7f9T5n5EEvb/0blFf9uicw8BCEC7EICASGVVNmxlyJY8I0gBqG/nnXf2ji2VAw44wEzNFoaGvIq00BTt/1OmRUrC/j9hS5jOPQQgAO1CAAIilVXZsH0H3PLiiy+aJQCUMWHChIrjKk+AKNo6I2HQqKds/58iLVJig5P6/+icor/donMPAQhAuxCAgEhVq2xsscUW3uOzZ89OHwdQ3BFHHOEdTyrbbrtt8v7775s5qrNho0gQsMd1nuGv+6v/j84p+tsWnXOk2jkJAJqNAAREqlplY/Lkyd7jEydOTB8HUEx4LKnoXj95RmZr9PK3PC00RVuYitxc1RW+Fp1T9Lctep+EAASgXQhAQKSqVTZuv/127/G11147fRxAfmeffbZ3HKl8/OMfT55++mkzR202nBQJG+4ABXlCVtn+P3lal1zhZXk6p+j/tuicIwQgAO1CAAIiVa2y8e9//ztZZJFFvGkPPPBAOg1AfTNmzPCOH5WVVlopefDBB80c9ZW5/K3oAAX90f9H5xL9bYvONTrnCAEIQLsQgIBI1aps7LTTTt60ekP1Auhz2WWXeceOyhJLLJHMnTvXzJFPmb42NqDoPkD1FO3/U/aSPHGDk84l+tsWnWssAhCAdiEAAZGqVdn40Y9+5E1bbbXVzBQA1VxyySXecWPLLbfcYubIp8zlb0UDStH+P2W2yXK3S+cS/W2LzjUWAQhAuxCAgEjVqmxohKplllnGm37zzTebqQBCWZe9qVx99dVmjvzssVkkABQNKEX7/9htKtr/xx04QUFQf9uic4w7Gp59DluKvH4AKIIABESqXmXj0EMP9abvv//+ZgoA1wUXXOAdK7ZceeWVZo5iivbNkaIBpehzFBldzuX2/9E5RH/bonOMiwAEoF0IQECk6lU2fvGLX3jTBw4cmPzjH/8wUwHIeeed5x0ntlx11VVmjmLKDjVdJKCU6f9j588zupzL9v+ZNWtWeg7R37boHOMiAAFoFwIQEKk8lY1wuNqLL77YTAHw7W9/2zs+bFFlvyx7XBa51Mwd/jqPsv1/8s7vsv1/zjrrrPRfW7KG1ycAAWgXAhAQqTyVjVNPPdWbZ5tttjFTgLidc8453rFhy1577WXmKKfMpWZFh78u2v+n6PyW25qlc4f+tkXnllCecxIANAMBCIhUnsrGo48+6s2joseAmIWtGbboXj9Fh4h2FW3JsexlZnlDU9n+P9q+ImwwO+CAA9J/3ZJ1HiEAAWgXAhAQqbyVjfCXWyoliNnUqVO948GWyZMnlxoi2mWPySKXvxUd/rpo/5+yoUxsMNt3333Tf22p1pKc95wEAI0iAAGRylvZCO9tknXtPhCDcGREWzREvCr7jVbYP/OZz6TrK3L5m+2fkzd8Fe3PU/TyOpdtOVpzzTXTf23ROSULAQhAuxCAgEjlrWxo5Ld6ozcBvexf//pXsuuuu3rHgIqOi1tvvXVBK0yzLn8rMtKaPY7zhoWi/XlsK84VV1xhHsnHvp6Pf/zj6b+21BpNMu85CQAaRQACIlWksjFhwgRv3kMOOcRMAXrbs88+m2yxxRbe/q+y8sorJ3feeWc6j1pVyrSQuMq2tJTtz1N0/qLhzr6eddddN/3Xllr3EyMAAWgXAhAQqSKVjfAO7oMGDUpee+01MxXoTffff3+y1lprefu+ynrrrZc88sgjZq6+VpIil61lKXP5W9H+OWX7/5Tp22RbjhZffPH0X1vGjRuXTJ8+3cy1kFq9CEAA2oUABESqaGVjtdVW8+Y/5ZRTzBSg9+jStmWWWcbb51XGjh2bvPrqq2auvoq7WkmKXLYW0rJad9HL34q2GpXt/1NkUAbLthy5ZfDgwQv+njJlipmzj902txCAALQKAQiIVNEAdO6553rzL7vsssmbb75ppgK9Q/1d3H3dli984QtmjoUUEopethYqe/mbbWXJ22pUtv9P0dYt23IU9h0My4EHHmiWqDwfqRCAALQKAQiIVNEANH/+/GTo0KHeMmeccYaZCvSG0047zdvHbTnmmGPMHD5dulY0IITKBA21FKnFSMvl7Z9TpP9PmfVbNtC5Ra0/AwYMqHh8/Pjx6Q8p9j1wCwEIQKsQgIBIFQ1AcuaZZ3rLKBApGAHd7q233kr22Wcfb/+2Rft9FrV0FL1sLVQ2aNhLxvL2zyna/6fo+l277LJLuqxb9B5q0IhVV121YtrGG2/sXR5nCwEIQKsQgIBIlQlAqiTq0jd3uXPOOcdMBbrTfffdVzFamS2XXnqpmauSjpky/WNcNmgUvfyt6OVsRZ/Hnh/KvL7ll18+XdYWnTN07pBHH300DVXudFuGDBni/T/vawOAoghAQKRsBadoZSNcbtiwYWYK0H0uv/zyzEuzVlpppXT0w1p0SVne4aSrsZd+Fa3sF7mcTYoGpjKj0ont/+OW8Dn//ve/JzvuuGPFfOHnUPQ9AYC8CEBApMIgk7ey8frrrydLLrmkt+x5551npgLdQRX1JZZYwtuPbdlmm23qXo6m5ctcHuYqe/mbDRl5L2eTov1/7PqLXt632267pcvaonOFzhlZDjjgAG/e8KapBCAArUIAAiJVNgDJ5MmTvWWHDx9upgCd7/nnn6+obNty1FFHmblq0/HSaAW9bD8bO8iAWnXyKNv/p+hlebLUUkuly9qic0UtJ5100oJ5NdCEuywBCECrEICASDUSgF566aWKIW4vuugiMxXoXGeffXZ62aa779oyc+ZMM1d9alEp0mqTpezlb3a5vJenFQ00RS+Xs2bMmJEuZ4vOETpX1GJbs9ZYY42GzkkAUAQBCIhUo5WN448/3lt+7bXXNlOAzqSbb7r7rC0jRoxI5s6da+aqT4Gi0cvfxF6WViRIlblsrmigKdq/yLLL2aJzRD3uPZAIQADahQAERKrRysazzz7rLa9y2WWXmalA5/jd736XbLnllhX7q4r6rFTro1KNraw3ouzlb3Y5DVKQV5FAU6Z/kejY13Ju0TmiHtuapZvPEoAAtAsBCIhUMyob6i/hrmO99dYzU4DOcO6553r7qFumTp1q5spPLTDNuPzNHn9FjzsbGPIuV7T/j9siU4SOfS1nS96+VG4rWDPOSQCQBwEIiFQzKhtPPPGEtw6VadOmmalA/9G+OX78+Ir9U0Vh4L//+7/NnMWoBaZoOMjS6GVmeQNY0f4/botMXjrmtYxb9P7XE4YzAhCAdiEAAZFqVmVj4sSJ3noWXXTR5MknnzRTgfbTzUuXXnppb7+05cMf/nBy1113mTmLU0BQqGiEvcys6OVvZZYr2/8nb8DSsa5jXsvYonNCHmE4IwABaBcCEBCpZlU2XnnllYo7uO+7775mKtA+f/3rX5MJEyZ4+6Ityy67bDrMciOtN/byt6L3xgnZY+/YY481j+RTZrkiLU1lApaOdS1ji+6tpHPC1VdfXfdGsnodWsaee5p1TgKAeghAQKSaWdkIh79Vue6668xUoPU0DLsdHS0su+66a/LMM8803Hqj/jGNBCjLhpKi26KBD4osV7b/T96ApWNc87vlS1/60oJzy+DBg5OHH37YzF1JQUvz2ddDAALQLgQgIFLNrmyMHTvWWx/DYqMd7r333op9zy2q1IvCgIJAI603CiCNBCgpO8qattsul/c1aFu1TN7Qpvk0f97XqGNc87tFYdP9/yabbJK8++67ZomF7OtRsa+HAASgXQhAQKSaXdm47777vPWpnHzyyWYq0FyqVJ9wwgkV+5wtW221VTJv3jwzd9/+XvSSM5eCi1puGmWPu6LbUjTMSJH+PwohtgUtT/8fHdua1y2f+MQn0hvNho/vv//+ZqmF7OtxL7dr9jkJAKohAAGRakVlI6tCqooj0EyzZ89O1lxzzYp9TUUd8rNGIlR4aWRf1PHRSICyil7GZtnWmSLHaZH+P1mBpBrbihUWBS458MADK6Z94xvfSKdZ9vzjvqetOCcBQBYCEBCpVlQ25s+fnwwfPtxb77hx48xUoDGPPfZYsueee3r7l1v22WefzBEIVbkvcuPQLAoTRYesDrmXv+W9jM2yYSbv6GxF+/9kBZJqdExrXluWWmqp9F936OwxY8Z486hcc801Zmr25XYEIADtQgACItWqysasWbO89aroLvFAI84888xkwIABFfuWyogRI5Jrr73WzFlJle0i97UJKbgUGRmtmrI3GbXBqcg22BadvM+Vt2VKx7Lmc8vQoUPTf91wpvsArbTSSt58GiHu97//fTo963I7AhCAdiEAAZFqZWVj991399a9yiqrJG+88YaZCuSne/qErYpumTx5cvLBBx+YuSupgl2mxcWlY6MZx0fZy9/ssVrkEryi/X80b733ScewjmXNa4sdgCKrf9Stt97qzauy3nrrJXfffXf6dxjo7Ou0pRnvOQBkIQABkWplZeNPf/qTt26VI4880kwF6rv55puTzTffvGI/suWzn/1scv/995u5q9N+3UjfHQUCVe7zXnpWTd6QkaVMcCrT/6feZYI6hjWfWxRA9W+1libb6uWWUaNGpf+GnwsBCEC7EICASLW6snH66ad761f52c9+ZqYC2X73u98t6B+SVVZcccXkkksuMXPX12jfHYWDRvsPSdnL38oEp6L9f/K0FunY1Txu0TFuP6talxgedthhFcuqhIGOAASgXQhAQKTaUdmwv/Taosqo7hIPhJ599tlk4sSJ3v4SlpNOOil58803zRL1NSO8qILfjGPDBoUirTiiYKHligQn26KTd5l6rUU6Zu08tujYFvt4vRayrHs1fetb3zJT+xCAALQLAQiIVDsqG3PmzPGeQ0X9gwBLIweecsopycCBAyv2FVvUQvH444+bJfJTAGhk8INmXv6m1hi9lqLrssGpyPFZpP+POzJdNWGfPhUd23ZZvUf1PPfcc8lqq61WsR71B7LacU5Cfa+++moyc+bMZIcddvA+j9GjR6etefrsNY/us6V5itAojVpH0eWAZiMAAZFqV2VjypQp3vOo6NIZQC0Aq666asX+YcuOO+6YzJ0718xdjIKGKuZF+9u41JJSpOWlmqItMq68LSwuu0yeS//qtTCdccYZ6XS36JjWaG7f+c53ai4buuOOOyrWpZunvvbaa+l0AlD/U6hZfvnl0/d/rbXWSj9r3VdL/yoAuZ+PSt4go+NYw9QXXQ5oFQIQEKl2VjZUkXWfS0W/IiJO6g8zbNiwin3CFo0Odt1115m5y9H+3MjgB6KKfdFL1rJoPXpdRY8xBRj7fuSloKRl8vb/sduW1VKW1YKrY9meO5Zddtn03yKtbFtssYW3PpWddtopndbOcxIqKfzY916tNFkUZNwgVC/IaJ0KPprPLpNnOaDVCEBApNpZ2VD/jvCeIKoAv/jii2YOxOD8889PVl99dW8/cMuSSy6ZXHDBBWbuxqgVpJHBD+xla420IEkjl7/ZY7RIkCvb/yfcNh2bH/3oR9NptugYXnfddb3HVMq0ToXl+OOPjzoA6T0sun80m1p89L7nCSe2NafevLpUznIDNQEI/Y0ABESq3ZWNG2+80Xs+lZ133tlMRS9TqKlW8VUZNGhQGhJ++9vfmiUaoxDQ6I1L1UqVN0TUYgNJme3RMlq2SCtUmf4/WdumY1PT3KJj+Igjjqh4XCP35aEKvubXZz1+/PiK9aglyP1/TAHI7icKu/0RhNxwkqd1XsFGl8oVCTLq/2OfgwCE/kYAAiLV7gAk6uzuPme7nhf946KLLlrwq3JWWWyxxZKvf/3ryYknnphW3JtFwaWRwQ9Eo8cVCR7VlL38zR2coEgrVJH+P3Zo7vC9D88NKjp25a233qoYzGDbbbdNp9VjK/l6T15++eVkxIgR3nrCEtO5wb43trQ7CKmfj33uvJcna5miQcY+BwEI/Y0ABEQqrOS0q7KR9cvyTTfdZKaiF1x88cU1K7ca8U2h569//WtauVelXRX+ZlClUetr5NI1bYvW0Sj72vSai1Zmy9w3yG1hycOGMzfo6VjUY24JW2pnzZpVMc95551nplZnzzn2XPOb3/zGW4cCsfv/mAOQLe0KQm4AyhtOyowCV/Q5gFYhAAGR6q8ApL4FYQf4lVdeOR0mF93rvffeS0cFGz58uPfZhkV9PV544QWzVN9+2MzWH62v0cEPmrEOsZXaMpe/2XBSpCXLbWGpJ6tvko5BHYt6zJZqffWWXnppb74lllgieeqpp8zUbGpV07xu4Lr88svTx/QeffWrX/XW2a5zUieoFoBsaXUQCge80CAIbv+daghA6FYEICBSqly4X3jtrGyEX7Yq48aNM1PRTVSRPu2005KhQ4dWfKZumTRpUvJ///d/Zqk+zW79Ea2vkcEPpBnrEFVa9dqLHltZ4SSPIv1/skaY0zGox9ySdTmUvTxvwIAB3rx77bWXmaOSXpOdT3+7NKT2O++806/npP5WLwDZ0sogFF6uqv+XHYa+GrtuAhD6GwEIiFR/VzZ0LyD3+VUmT55spqLTaWS/E044IR3AIPwc3XL00UcnzzzzjFnKp32uma0/qkSWaW1xqXLf6Dose/lb0TBlK8NFt6PI89nj37Z06djT/91S7X5d9t5B66+/fsUyV111lZnLlxW4Qv19TupPeQOQLa0IQgo7Wc+lEd80gEEz2HUSgNDfCEBApDqhsrHbbrt526By9tlnm6noRA8//HDFpUphWWSRRZJjjjmmZgXNtnI0s/VHl341OviBjoNmHAu2laRMmLLHpg0neei91jJ5+/+4l6O5/T9s0bFZjb08T9u5/fbbe8t95CMfSd544w0z50K2T5Nek319lMZLs4PQ7NmzF9wINSy6LK7RIGTXRQBCfyMAAZEKKyHNqPQV9corryRrrLGGtx0qM2fONHOgU9x7773J/vvvX/FZuUU3xpw6dWo6uEE92t/y9FXJy15OF15eVYRdRzMqlPb4KhJiLNuSo3CSl21ByNv/R/MqLNlg4hYdkzo2q7Hbp/dJl6+Fyysgh2xo0nYSgJpfmhmEFHIUULKeR0WBOU//oCx2HQQg9DcCEBCpTghAopGg1IHa3RYV/RKJ/vfzn/882XXXXSs+H7fohpmqFP3zn/80S9XWitYf7b+NXk6nynmzQlmRy9FctuVI70+RMFek/48NS//xH/+R/usWXdKoY7Iad/usU089tWI9t956q5naR/PrcVXSCUCtKXqPi+5vtdRqDdLjeYfLdtnlCUDobwQgIFKdEoDklltu8bbFlttuu83MgXa79NJLk8022yzzc7FlnXXWSS688EKzRH7a15rZ+iMKHI1W/rRNahFpVFZIyKvM8NdSJHDVCiA6Fmux/X/C7dtoo4289ay33npmSuXlgASg5hbtZ/o8mvmDgqWWHv24US0IaVoRdjkCEPobAQiIVCcFILn66qu97VFZaqmlkrvvvtvMgVbTKG264eWqq65a8Vm4ZZNNNkl++MMfmqWKaUXrj1o0Gh24oFMuf1NFVsvqNeWlbdYyeQNXtc/3nHPOMXNUV62lSS2F4fpOPvnkdJoNdbaFjgDUnNLK4BNSEFIfoKztKNISZJchAKG/EYCASHVaABK1JrjbpKLKmjreo3UUMm3FtlbRHf+LVMyzaD8r2rpRj9bX6P7bzMvfFMb0fhV9r2w41LJFgpieR8vk2f4bbrhhwefplvHjx6f/KtzW4vb/CR111FHeOlXuu+++dLv0d70BKjrxnNQu9jPMU9oZfEK6+eno0aO97dFw2XnZZQhA6G8EICBSnVrZ+OY3v+ltl8onP/nJ5PnnnzdzoFl0jb9CTfh+h0X3d/l//+//maXKa0Xrj2250b+NUIWy0XAnem16z/Q6i26TrQQXbc3K2/9Hx5BGabOfqy0rrbSS9/9zzz3XLOFzX1sW9QELBzXRaHO1QpOLALTwtWeVVgYfDYGd93I2tQaFIUjBKA87PwEI/Y0ABESqkysbJ510krdtKptvvnny1ltvmTlQlirlquiENz0MiwamGDlyZPLnP//ZLNk47WN5WimK0DrtpVVlqWJeJrBkKduHR+wxWfRYzNP/R8eOjiH7+dqiY+3ggw/2HtNnn3Xvpmr9f1zXXHONty5btI312NdvS9H3oZvVCkCtDD6WApDu95OXRopztzHvDVPt/AQg9DcCEBCpTq9sTJw40ds+lR133NFMRVGqPB1xxBHJYostVvG+umXddddNA5J+yW9mhUvhQhW5Zlfi1FrS6OAHCi2NhijLvb9OUXmCTChv/x8dO/YztsUOV/3SSy8lgwcP9qZ98YtfTKe58rY07bffft66VHS/oHoIQP571o7gY9mboBYZ3tptBSIAodsQgIBIdUNlY9999/W2UaXIr5Sxe/fdd5PLL798QaW8VlEfkBtvvDFdTvtCswKBpXU2u/VHlcZGBz8QvT9lAkvIDSNFW5NUybXLFmErzrXeWx0z9nO2RceWa/r06RXz3HzzzWZqn7wB7bnnnks+/OEPe+vSZaz1dMM5qVXcANTO4GPZAFRkVDc3AOUNTnZ+AhD6GwEIiFS3VDbGjRvnbaeKKut57zkTI3U8P/LIIyt+1Q/LwIED05Gd3IqWKu6q6Daz8tWq1h9VEhvdb7VNeS7PyqORy9/KLlurVUbHiB3cwC3Dhg0zc/jGjBnjzTdq1CgzpXhAyxrQ5Ac/+IGZmq1bzkmtoADUH8HHsgFIw13n6c+jeeznNGXKFPNofXYZAhD6GwEIiFS3VDbefvvtZMstt/S2VUX9GfRLM/rofZo5c2bmexWWNddcMznrrLOS1157zSy9kPaDMhX4WlqxThvUira0hLRtzdr39Rr1/pZpTSq7bLVWGR0bWX1+VNRPJ8uvfvWrinnPPPPMdFqe/j+hsWPHeutaZZVVan5e+hzc+Zv1uXQDhZ7+CD6WDUAqCkG1bkSt/j+29Uf/5m39CfsNAf2JPRCIVDdVNl544YWKUYdURowYkXv0oV6lisuhhx6a3sE/fH/Col9dZ82aZZas1IqWmla1/mh/bcZlegoQjfYhEvs69T7XG+0sVHbZav1/dEzo2LCfuy1q8dO/tZ5D/cTC5R5//PHc/X9ctlXLLdpXq+mmc1KvcQOQLRooRZfEaZqK7vej1h57U1RdWlkk/IT3EdIPNkX6HAHNRAACItVtlY033ngjrcC726wyZMiQ5I477jBzxUEV5vPPPz8zFIZFlztNnjw5eeSRR8zS1Wkf6IbWH2nG4Adavhl9iCRPX5xq7LJFtyXrOXUs6Jiwn78tur+P/q33HNq3hg4d6i279957V21pqiU8x9hyyy23mDl83XZO6iUKOPZSNgVotQApsITnGIUiPa7583KXzypcDof+QAACItWtlY2sEaZUfvKTn5g5epfuxaNf4hdZZJHM98AtO++8c3LttdeaJetTxVeV3Ga3/jR7naKKfzOCi/b5Zu33CiF638us79hjjy21bNgqo2PAfv5u0f5iA4yeq56LL764Yh0qYUtTPXbwjY9//OPeejS8eha9Dne+Zn02ABAiAAGR6ubKRtYd51VmzJhh5ugdDz30UDJ16tTMS5rCMnz48PRzfOKJJ8zS+Wm5bmn90Tob3V9tOCt6uVoWravs5W9SpnVF3OW079v9oFbJ28co7L+jUuSz1Htil7vpppu89aioVTKkz9Sdp9HPGACqIQABker2ysapp57qbb8tp59+upmje73yyivJ9773vYpRuaqVPfbYY8EQ1mXYMNDoJWWuVqxT7Hr1byMUBJoVzspewiZqHdOyRVtX3P4/2uftvuAW3dMpfCxvQLvnnnsqlt16663N1Pr0uWsZ+54cc8wxFevTc7gIQADahQAERKoXKhsKCe5rsCXPZT6dSJcwKcxkvaawrL322skZZ5yRPPvss2bp8vTZd0vrT7PWq3Wok34zaF36TMocQ3aggKIDOtjQpT4Zdp9wi46NP/7xjxWPF3nNkyZNqlheLZJ52Ndlj8V//etfaQulu66tttoqnWbp/XOnl3k/ASAPAhAQqV6pbGhUM/d12JJ1J/tOpKGHDz/88MyO62FZdNFFkwkTJiS33nprwy0gVje1/ohaFBpdr92+Zl3+pnXp8ymzPhue8l6aZtn+P1nFHekvvFx0hRVWSN58800ztTbdR0hDV7vL5w2fWa8rq4/St771LTOVAASgfQhAQKR6qbJx++23Z970U/dB6cRhsh999NHkG9/4Rnp3/HCbs8r222+fXHrppV7FVZ9XM1owtI68ldq8tG3NXqeoMt2MwQ90T5tmbV8jl78pPJXpO6R9eokllvD2ERUdAzoWXC+99FIyYMAAb76vf/3rZmp9Rx99tLesSq2h1K1qoVAB3l2XhuZ+7LHH0mm9dE4C0NkIQECkeq2ycf/991dcYqOiCtYll1xi5uo/6tej+17YkbHqlfXXXz+9CWXWgAaqVDajBaPbWn8UWpqxn2o9RVtcqik7gpvY8KR9Iq/vf//7C+7n4xbt+zoGQvo8wnlV8g6UkdXSpOd69913zRyVbL+mrFD4/PPPJ8suu6y3vt122y2d1mvnJACdiwAERKoXKxsKBNXujXPIIYck77//vpmzPf7xj38kV155ZTokddY2hWWllVZKf3G/6667zBqy6bNqxufVTa0/Nlg1Gvq0vFpdtL5msC0dZQJfOIx1Ldp3tQ+7+4st2uervS82ZC211FLeMl/5ylfMHLXZ1xeWk046ycxRyfb/qdavKWvEOrXK6X1wH2vGPg4AWQhAQKR6tbIxf/785MADD/Remy36Rfree+81c7aGnl83Edxzzz0rLj2qVnRH9RtuuMGsoTZVdJsRBLqt9adZYU3radYgGbVaOvKw4aLefZK0z+o53H3GFl0Kt8suu5g5K+k903xZIfzuu+82c2WzrUcKjFkDIjzwwANmTp99ToWaaj73uc9561L4P/HEE73HCEAAWoUABESq139trXVflOnTp5u5mkcBRv0bllxyycznDIsue9I2Fm2J0OfUjM+qmf1gLG1XK1p/RAGgGcFK73uzApo9hsoEqrzhqdpIh2H57W9/a5bw2ZClwLzpppt6y4wfP97Mlc22Hukzfe+995I111zTW37cuHFmTp/7nNVkjVC30UYbef/vtXMSgM5BAAIiZStvvVzZ0C/Um2yyifc6bdEocW+//baZsxyNxnbQQQct6Mher4waNSo57bTT0kEQymhm60+zAoXVytYfrbNsK4tLoUPb2Cy2ol/mNdvLxKqFJ+2b2kfd/cctYT+gL33pS2bJhWzI0v4pWTckrdUXKrxEL2vExbCVJ3zOWtTHLVyfWwhAAFqFAAREKoYAZGmYafe12rLOOuskd955p5krnzvuuCNdXzg8cLWi5zj55JOrXi5UhD6jZnxO3db6o4p4M153s94/KVLRz6L3SstnBRDtk9pv3P3IFrW66N+wNUflz3/+s1lDHxuy3M8lvBRO/YeqsQHP3Ua73bYMGzbM+yFB+5Yez7svbLbZZt763NKszwoAQgQgIFKqXMRU2VDFbNCgQd5rtuWcc84xc2X79a9/nRx33HHJGmuskbl8WFRxPP74470+FkUvdQs1q/VHuqn1x667Ga9b61FwaQZ7/JS5/E2vScsqPIX7hfZFd1+yRfuu9mG3VWbDDTf05tE9f1xZIeuee+7xllG5+OKLzdSFqm3jww8/XLG8+gdZRQZ2EIW9cH229Po5CUD/IQABkbIVuJgqG6q8ffrTn/Zety36Zd1tpVFLj0Zkyxt6Vl111eTII4/MDAGqQKoi2UglXp9PMz4jVYbz/jqfl7ar2eu0mjX4gV53My6js7Qufe5ZLTj1aBkt674u7Xu2dScs2me174pCnB7Tfnb55Zd782nQDd33x7LzhvudLtt0l1t99dUrRkjM2kYrPHeo2LDvbl9e+nFBy4RDxMdwTgLQPwhAQKTCSkxMlQ1b4coq+lX9Ix/5SOa0sAwZMiQdmvh//ud/zJqz6b1tZOSxWFt/pFmDFuj9b9Y+7l7+Frbg5KFQoeW1Pf/+97+TE044wduv3KJ91dLnr8fcy+7CgQmmTp2aPm63MSv0PfXUU94yKuqb5rLnh2rvWXgT32233dZrNSpKQ8bb57SlWZ8XAIQIQECkYq9sXHPNNWlFzX0P8pSll1467Zx+4403mjXVZsNLmYqypc+mGZ+PftUvctPNPJrVQpNFwacZrTY2pDUjQEpW35oibCvJd77znbT1xd2/bNElbwriBxxwgFkqu1XGbost2qffeeedBY9XC95TpkzxltNw2i+88IKZunAbq7VwXX/99d7yKocddlj6b9l9LPZzEoD2IQABkYq5sqHRsHQjyPCO9NXKYostlv7S/pOf/CQdDriIRjvwx9z606zBD1SJb2ZIs5dqVQsHtdiWmcGDB3v7WLWiYPLPf/4zXTarf827776brLjiit4y55577oJWpmrbqIELhg4d6i2nSzjFbcmpFdx1/yp3eXuz1bKtnTGfkwC0FwEIiFRMlQ2FFv1irZabvBVPtygoPf7442Zt+SkYKCDQ+lNcM1tttI3hcM1laXu0T9QLB1l0k9wxY8ZU7F+2jBgxIm2ZDC9ru+yyy9LlbatMGDhPPfVUb/7VVlttQetmrffvvPPO85ZTmTdvXrqv6O96+4uOiayb/ZYJhhLTOQlA/yIAAZHq9cqG+hRcffXVyb777pv75qT2F+ysosrnVVddZdaejyqQjVS8m9n6o20pWzHNYgNKq1p/mhWu7HY2EkJd9tKyotumfccGmKxi++5IeHna9ttv7wWv0Kuvvpq2UrrLqOS5fHDdddf1ltlrr70WnBvynBO++c1vesurKMSV0evnJACdgwAERKoXKxvPP/98MnPmzGSnnXbyXlutovv5TJw4MbntttvSdfzv//7vgsuHsoruo6JfyetR8Gm0xUWfSTM+l25r/ZFmBTZ9Ds3cTrtv5N027Su19ketT/ucS/8P55sxY8aC+bNoKOpwmTyXos2ePbtiuZVXXjn9N+9rVNByl1crVxm9eE4C0JkIQECkeqWyoZs/futb30q23npr7/XUKh/96EfT/g4///nPzVoqqWK4zDLLZC6voiGyq10W14zWkZhbf9RPphmDH4gCQ7Neu163WmBU6n0u2je0j2TtOyprrbVWuo9VE14qZ+/5U+04ffLJJ735Vb72ta+ZqbVpBLdw2SKX+N1yyy0Vy59//vlman4EIADtQgACItXNlY37778/3d6NN97Yew21iirs+kU8b6Vd82kZ3dA0a3226J4qDz74oFmqj7at0VYHraMZn4kq/93W+tOswQ8UUopU5OvRe6nPvNZr174Q3mcnLLqvzwcffGCWyHbhhRd6y9hL3GrtvwceeKC3zBZbbGGm1KZ7XrnLqWiY6yLU78hdXj8evPjii2ZqPvrM3XU0Yx8AgCwEICBS3VbZ0B3jFUY+8YlPeNtdq4wcOTL5+te/nvzmN78xa8lPocH23/njH/+Y7LLLLpnPYYv6GulmkLblRq0YZcXc+mPX34zXrn267IhkWRR89FkrAIb02WsfCPcLt9g+Znle2+uvv16x/Ic//GEzNZsdYc4t9e5RZX3hC1/wltM9ropQq6q7vIqCYBEEIADtQgACItUNlY2bb7457Z+T98akKptttllyxhlneK0yCgCqVOdVrdVk1qxZ6UhdWc9ri34J/9KXvmSWKEefRTM+D72OZl1KZrW69aeZ69dn2KygZi9/02fsBhhdRql+YeF+4BbtM2eddVb6t/qcqWXGDjldSzjM9PDhw82U6tZYYw1vGfU/yuOhhx7yllPRpaV52OCVdZzefvvtZq76uuGcBKA3EICASHViZUO/emu0LP2SXqv/TVjGjh2bDumrfhAhVVzd1px6NH+9++VoWOKw43dYtE2631BRzW79aWQUulCrW3+kWS1WqpQXCb31aJv0udpAqc9Wn3H4ubtF89ohrA855BBvmloy69HNdt1ldE+gehSw3GVU7rnnHjO1tq9+9avecssvv3zy97//3UytTqFV8+vSxU033dRbxyabbGLmqo8ABKBdCEBApDqlsqHO4govGurX3Z5aZeDAgWkrgSqXf/3rX82ashVtUSgyv4b73XLLLTO30ZbNN988bTnKS59DMz6Lbmz9aebgB816Hy29bn2ee+yxR/qZhp+zW7RPhENBb7XVVhXzPfzww2Zqdauuuqq3TK19ybbELLroot4y+++/v5mjth/84AfecionnniimVqdfW8UttUiFq5DN2bNQ5+Xu1wzPz8AcBGAgEj1Z2Xj3nvvTf7zP/8z2WijjbxtqFV0M9K99947+fGPf7zgzvj12MuW8rZYFJ3f0qV6o0aNytxuW9Zbb730MqinnnrKLFXJtv5oOxrVja0/6q/TrP1Q26pA0AwaylqtIVmfq1sU4rUvhPTeaXp4r57vfOc7Zo7qDj74YG8ZXW5XjW2J0WWg7jIqjzzyiJmruvCcYMtjjz1m5sim91rz2VbLsLVr8cUXT55++ul0Wi39eU4CEBcCEBCpdlc25syZkxx++OEVfRRqlWHDhqWX5WhZWwEvEg70mop0gtf8uoynKG2TWi5UobW/htcqqihfeumlyZtvvmnW0EfP34zPoRWtPwpTrWz9sZ9vMy79a8br12ejzyhPy6TeF42kVo0NJgrB7nI77rijmaM69cNxl1H5v//7PzPV57bEhJei6dirR6FZ89r7ANlywAEHmDkq2VYn/XBgqVVWP1i465gwYYKZWp32fXeZZhwLAJCFAAREqtWVjddeey354Q9/mHbk1uhV7nPVKuuvv34yefLkipHbtH1FtrFoa4qdv0yrgbbLDQdq4dpvv/0yX59bdCmf5lN/kk5v/VGgaGXrTzMDViPDaOuz0GeizybrM3OL5tNnXY8NJt/85je95QcMGJC88847Zq5sei3uMirVLinT/qPp2pd07IXLVQtOos9Y8yjIfO9736tYdu7cuWZOnz43TQ8/u6x1/Pd//7eZmk2fmTt/2c8QAOohAAEFuF/Oecvo0aPTEDBz5szMTvr9pRWVDV0qo1+7t9tuO2/d9co222yT/tL9pz/9yazJVyYcFK0El738SttULTjpjv7h5UDVikKi+pbcddddZuly1PrRrCBltbr1R5o1+IFetyrx2mfy0nt+zDHHZA4gkFX0meqzVfjRPqNLzmq1sLjBZJ111vHWpYEOarHLukX3vwrZlhi35Wvttdf2ltMPC9Xovdc8+hwk7OdUrbXKBrSsY0f3O3LXoR83atE63PnLHI8AkAcBCChBd3AP+wQo4OhXUlt02da0adPSAOTON2XKlOTVV181a+o/zapsaISpqVOnFurPs+SSSyZ77rlnWrF++eWXzZqqKxpmioaARlpfFJzqXWanS4KmT59ecXf/akWXSp1++ul1+15k6cbWH1Xe9f43gz77PGFN763e4/CytGpl6aWXTj9DO+iGDRy2VBui2gYLG0yOPvpob7lawUn7peYZPHiwt4zKfffdZ+bqYy+zc/fFsBVGIyuGl11a9nxgl1dfJndZleuuuy6d5rIBLSu8/upXv6pYh4aor6ZZ5yT12dJ5docddvDWt9ZaayWHHXZYRWuW5q3WwgWgNxGAgJL0Rep+udaiMOQGJoWi/g5BjVQ2brnllvT1F+nPoxsl6p4+ugzm/fffN2uqz1aOi4SToiGg7CVTZYKT7rdyyimnVPw6X63o1/7jjjsuvTSr3vMopJQNctW0o/VH733Zym5I25r12es90Xuo91LvadZ7HRZ9RltvvXX6dxhy33vvvWTQoEHe/A888ICZupA9zuzyOnbcZVQpr8aGJ72mXXfd1Vtu0qRJZq4+mkePh0EkbNXSQBxZdMyEy4fPqR85XHpP9bha3Krtc0cccYS3DpVqwd6+V7YU3ScUYtzQY1ve3R+lFHb0nms+PaZWeZ2bCUBAXAhAQElq3XG/rOvRr5Lu/AoQ/alIZUNhTUPkFu3Po5HRVOFo5LKuouFEv4Tby3jyaCQ06HmKVtJcd955Z9o5fJFFFsl8/7KKLrfS0MSqzL311ltmTX20PXr9zaL3pNWtP3qOopesVaN12c9S743eI71XWaOiVStDhgxJj019NqL16fGs92C33Xbzls1q3bDL22Dx7rvvpqOiucv98Y9/TKeF3MvLNKy2u4yCjWXfQz0evo/aJnc5DSwS0vJ2uv62fvvb33rLqlx00UVmauVlc1l0H6GhQ4d669BojlmKnJNCOs/Y5XSeqne5sYKR+1wEICAuBCCgpKIBSMJWo/7sE1SvsvHnP/+5VH+ebbfdNvn2t7+dPProo2ZN5RUNJ5pP8xepsKvyVuaSMVX+imxbNXrfVa699tr0ssCs97RW0WV1J598ctoxXi1yjW6Pqx2tP816jn/961/piIG6wWjeSw3dovden4HLXuamzznLxRdf7K3jU5/6lJnSxy4ftpDstNNO3nLq/5bFhie7P4eX3d5www3p4zaIuP1/LAUQXXLqLueGGKm1fNiHTQFq/vz56TR7Dql3Cegll1zirUMlfK+l3jmpGve8WuSHJfdHKZ3PAcSDAASUVCYA6Rdpdxn1JeovWZWNu+++O+3Ps+GGG3rTapWllloq2WuvvZIrr7wyeeWVV8zam6Noi4Zeg341z0sVv1q/XlejymzZ4OTKuoROo+epgmovvSpSNKqYBpTQ+6DXphttqsWhDG1Tq1t/RO+jtrUIvSa9Ni2n16p1FGlFs0Xvsd5rvedZ7DFSrYL/7LPPVqzzxRdfNFMX9ssJA576ErnLaKjtkO3/o/Bkqb+Qu5xtSam3nSeccIK33H/8x3+YKX1qLa/792i/cpfX/FLtsrss4Q8purwwZLfDFvs8tbgtP7qsrSjbEkQAAuJCAAJKKhOAdJmFu0x/fumGlY3wvh21ymqrrZb+2q6O0h988IFZY3OpUlWkhcWGibyXUjVSwVfFthmtFvoMalXyVDHXr/waoUzbmvVZ5CkjRoxIxo8fn/YbmTFjRnrPmueee848S7Z2tP7UG/xA26ht1TZr2/Ua9FqyXmOeovdQ76Xe02qhx2Xf81oV/PDyussvv9xM8e/L41LrqruMSng5o55Tj7ufwa9//euK5XR5qgKg/q62nc8880zFcldffbWZWj/I6EcRd1nd0FUBtNpld1k0Yp67DhXdDNlVNACF51O16JShPkEEICAuBCCgpDIBSC0+7jJqEeovYWWjXlFlUJdaqZWoHYq2sJTpK1Smgq/gpIpfoy0jWa0/9bz00kvJj3/847QlYOTIkZmfU5GiUcE0IMAXvvCF9L2bNWtWOqrf/fffn46O1urWn5NOOik56qij0ufUc5966qnpvXW0Tdq2rG0uUvQe6b3Se6b3rohql6+FwuNIraGW9l/tx1kBQa0w7nL2cjbL7f/jWnfddb3ldOmj/q23nYceeqi3nC5VtfQ563mqLa97Fbk3R7U/HNi/89IAFHYdtmg4cSt8L8PXHlJwsfOWaf2xdF5WSxKAeBCAgJLKBCB3hCJdz9+fI8GFlY2soqF9tc1HHnlkOn+7ijoxKxxkTcsqulO9KoCqUGdND4vm0/xaLmt6raIWBFVqs6YVKVqPXmfWtLxFrSJbbbVV2qlenfezPsNGii590vDPK664YrL66qunly0pVOh+LrpMUqMZqgVEfV+0HSr6W49pmubRvFpGy2odWpfWGV5W1YyywgorpOFp9913T9+brPcsb7HHqu7bkzXdloMPPtjbBn0WWfOFxd5nR0FPISKcrv1T08N9VMHFfT69n/q33nbafjIaxETr+PrXv545X7Uybty4dFs/97nPpf+3749eRzhvtaIfUMIhvbVf2Om2JcsWPVZNeDmxLmVrhI5FAPEgAAElFQ1A7rXqKv3Z/0dUuXC3h0KhUDqp1ApA4YAyZS9/AxAnAhBQUhiAsr6ANcqbgo7b8qPS6K+VzUAAolAonVxqBaBwRDwAKIKzBlBSGIDyFF0W1J9DX7sIQBQKpZNLtQCkS4fd+RSGAKAIAhBQUhiAdE26RiVyi+bRteXufHbEof7s/yO24zOFUq1olK7jjz8+HUhAnfK1L+t+OboB6C677JKOyqbWTQ1xrOG3VfS3HtM0zaN5tYyW1Tq0Lq1T6856TgrFlmqDcISjv2l/A4AiCEBASWEAqkWtPmEQUmtQf4cgAOg2BCAAjSIAASUVCUBWGIL44gaAYtTf0j2P6sckACiCAASUVCYAhdeuqzB6EQAUE55HAaAIzhpASWUCkIStQFoPACA/tfq459FOGVwGQHcgAAEllQ1A4XIEIAAoptPuqwaguxCAgJLKBqDwi7sT7gkEAN1ELT7ueZT+lACKIAABJZUNQBoG212OSzcAoLjDDjvMO5dqdLiydGkyo3IC8SAAASWVCUBq7XGX0Rc4AKA4BRb3B6WytxbQeZhLkYG4EICAksJfH+sJww/3AQKAxmgUzeWXX770eVXncX6IAuJDAAJKUIdbN8yo2F8RdRmGLXPmzEn7/ISXvXG5BQA0RxiC9Ld+cKp1jtX5WWGJ8APEiQAEFOCGmCJFX7TqpKuARJ8fAGguhZ2wVV7Fnndt0Y9P+kFKIUk/UAGIEwEIAAD0BP3ApNYfBZ+w5d22+DBkNgACEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAQsdmzZycf+tCH0jJ37lzzKAAAvYsABACRmjdvXrL88ssTgAAAUSEAAUCEXn311WT06NELwg8BCAAQCwIQAETosMMO88IPAQgAEAsCEABEZubMmRXhhwAEAIgFAQgAIqJ+P1nhR4UABACIAQEIACKhfj9rrbVW2vdnhx12IAABAKJEAAKASOyzzz7pqG9PPvkkAQgAEC0CEABEwPb7mTNnTvr/sgFI89ggZZdTq5IGVchaPut5bLF0LyJ3RDqtb9q0aWmLlaW/9Zg7n/7WsgAAFEEAAoAeZ/v9TJkyxTxSPAApgCj4aD6FH83rPmaL+xyWe7NVt6glKhyK2y2aJnouN3CFRcEIAIC8CEAA0MNsvx8FHlfRAOQGFbUmWWpRctehkrWecB4VhRq1HGkbVbLCkN1OPafmUWjKCkN6HACAPAhAANDDFCAUGBQeXEUCkFpY3PncsKG/3WkqbkCywnlUFH5c1VqKwsvcsu5hxKVwAIC8CEAA0KNscMkKNnkDUFbACSl82FYZrTcMWxKuQyWk5w/n0fpCYSBT4TI4AEBeBCAA6EE2TFQLBnkDUNZNU8sI15G1HgIQAKAdCEAA0GPUAqMWmazwYOUNQFnzlRGuI2s9BCAAQDsQgACgx2QFhCLFDRMEIABAryEAAUCPaXUAKjPiWrgOlRABCADQDgQgAOgxrQ5AZUZcC9ehEiIAAQDagQAEAD2mmQEoa8hp3fy0qHAdKiECEACgHQhAABChrJYdBZBQVihRmTdvnpkjn6x1hAhAAIB2IAABQITyBiDJmnf06NGZ9/tRMJoyZYr530Lh8iohAhAAoB0IQAAQoSIBSKHG3ujULQpBdhmFId0zaK211socJCFcViUMUAQgAEA7EIAAIEJFApBUC0FuUSDKCj8aNCFrfje0KAxl9TdScbdL69fzhPNUC14AAIQIQAAQoaIBSGwrjxtAFIo0KEK1keGynicskvW4W7SerBaisNR7DQAAEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiESS/H/cM/2ozFCwIwAAAABJRU5ErkJggg==
|
As shown in the figure, the area of square ABCD is 16 cm². A circle with a radius of 2 cm is drawn inside the square. The area of the shaded region S1 in the figure is 0.86 cm². Then, using point A as the center and AB as the radius, a sector ABD is drawn, forming another irregular shaded region S2. What is the area of the shaded region S2? (Use π = 3.14)
|
A. 50.24; B. 3.44; C. 12.56; D. 2.58; E. No correct answer
|
D
|
95
|
iVBORw0KGgoAAAANSUhEUgAAA0AAAAIICAYAAABHH473AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAGx9SURBVHhe7d0H2BxVof9xQygBJEAgFCNgwAjeAKGEagQhIMRQpCNEUVqkExAwIZeLFCFggQgkIE2RBKUIFwIX/aNopClo8AIiTcqlSFMEREOZ//Ob95zknLOzuzOz5d3d8/08z3nyZqfs7O7M7PntmXPmQwkAAAAARIIABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAet60adOSD33oQ4XKWmutleywww7JYYcdlsycOTN58sknzdoAdDMCENAi+qLUlycAoHPo3LzPPvtUBB0FpDlz5iRz585Ni/6eMmVKOs2dV4FI0wF0LwIQ0CL64tSX5ezZs80jAIBOoBDkhhqFn1oUeMIgpHM8gO5EAAJa4NVXX02WX3759EtSvxYCADqLG2bqBSDReV2XwrnL6f8Aug8BCGgBXSvufklyuQQAdBb3HJ0nAFn6UctdVud7AN2FAAS0QHipBL8SAkBncc/RRQKQ28Kvor/1GIDuQQACmkx9fvSlOHr06AVfkCqMHgQAncM9PxcJQKL53eXpDwR0FwIQ0GS6PEK/CBbtZAsAaJ9Gzs9q8XGX1zkfQPcgAAFNpL4+7pep22GWL0gA6Bz23Oyes4sI+wLR1xPoHgQgoIls4LGXu9lAZAtDYgNAZ3DPzWUCkL3VgS0MhgB0DwIQ0CT2krdwwAN3QAT1C+oUv/zlL5P/+q//olCqlqlTpybHH398uk9/+ctfTm8eueeeeya77bZbsssuuyTjx49PfwXfbrvtkm222SYt+luPaZrm0bxaRstqHVqX1ql1Zz0nhWKLzlGtZM/LKmUCkJZpdB0A+gcBCGgS+2UYXgZhB0WwpVMuk1AFw90uCoVC6aSic1Qruc/VjADEQAhA9yAAAU1gh0XNauEJh0wNW4j6CwGIQqF0cum2AFRmHQD6BwEIaALbylOtj094rXgnDIlNAKJQKJ1cCEAAWoUABDSB+vnUGuWtE4fEDgPQZz7zmfQxSveUSZMmJbvvvnuy8cYbJyussIL3eTajDBgwIFl66aWTFVdcMVl99dWTtddeOxk5cmSy/vrrJxtuuGHa4rnZZpsln/rUp5KtttoqLfpbj2ma5tG8WkbLah1al9apdWc9ZyNF74HeC70nem+y3jNK55TwhtHrrbee93/N00ruc5U5JzMIAtC9CEBAg+bMmZPrC9QdMrUThsRW5cJuj0qrKxto3EsvvZT8+Mc/Tg4//PA0VLifX5myzDLLpIFhv/32S0499dRk1qxZyT333JM89thjyeuvv26etXX0HHouPaeeW/vgF77whXSbtG1Z21yk6D3Se6X3TO8dOku4D0+cONH7f6cHoHAY7Hnz5pkpADodAQhoUPglmLf095DYBKDO99prryU33HBDcswxxyQbbLCB93kVKSNGjEhHZVOryIwZM5I77rgjee6558yzdC5to7ZV26xt12vQa8l6jXmK3kO9l3pP9d6ify233HLe5/O1r33N+38nB6DwRqhqzQLQPQhAQAP0i5++/DTEr0Z3q1fcSz76+wuTANSZVDG/6KKLkq233tr7fPKURRZZZMGljD/96U+Thx9+OHn33XfNmnuHXpNem16jXquG39Zrz3pPahW9x3qvCUPt98Ybb3ifxRJLLNH2c5L7XEUDkOZ3l+fyN6C7EICABoQ3Pq0n/NJUKOov7a5soLZrr702vV+O+5nkKWPGjElOPvnk5Pbbb0/+9a9/mbXFR69d74HeC70nWe9VraL3Xp8B2uORRx7x3n/9INQtASgc2VPbrscAdA8CEFCSvQRCrT95hV+cRZZtNgJQ/7vzzjvTED1kyBDvs6hVNMDAiSeemPY9e+utt8yaENJ7o/dI75Xes6z3Mqvos9Bnos8GrfPzn//ce981gEa3BKDwsuf+/CELQDkEIKAk25pT9MuvU4bEJgD1j4ceeig55ZRT0lHR3Pe/WtGAAMcdd1xy0003JX/729/MWlCU3ju9h3ov9Z5mvddh0Wekz0qfGZrryiuv9N5rDX7R6QFIP2DZVn9b+rsvJ4ByCEBACbYlJ+vGp/WEQ2L3141RCUDt89e//jWZPn167kuzNBzw6aefno6QhtbQe6v3OBx6uVrRZ6fPUJ8lGnfmmWd6768GQGjnOanorQnCPpw6/6uFEUB3IgABJdhWnCKXTbjsl6gt/TF8KgGo9f73f/83OeSQQ7z3uVpZZZVV0hHK7rrrLrM02kXvud57fQZZn01Y9Jnqs0V5YUvKeeed17ZzksJPeBmbwo3O52rRUdhRUcDRY/qhy86n4KNtp88P0N0IQEAB+uLUF6L7ZagvybxfhppPowXZ5d316Iu3nV+qBKDWuffee9N767jvb1YZOHBgOp8uzUJn0Gehz0SfTdZn5hbNp88axe2yyy7ee6kBKFp9TnLP3XmLzs0KS/rRq8i5HkBnIwABOekXwawvSFvq9QWqt7wt7UIAaj7ds+bzn/+8975mle233z659NJLkzfffNMsiU6jz0afkT6rrM/QLfrM9dkjv7Af1t133805CUDbEICASFHZaJ6bb765bkVZfU3OOuus5KmnnjJLoVvoM9NnV6+/kPYB7QuoL7zc8JlnnuGcBKBtCEBApKhsNO6aa65JttxyS+99DMvmm2+ezJo1yyyBbqfPUp9p1mdti/YJ7RvINn/+/Ir37P333+ecBKBtCEBApKhslHfZZZclG2ywgff+hWXs2LH07elh+mz1GWd99rZoH9G+Ap9a1Nz3adiwYenjnJMAtAsBCIgUlY3i9Ov/iBEjvPctLDvvvHN6k0fEQZ+1PvOsfcEW7TO0Ai4U9ofcdNNN08c5JwFoFwIQECkqG/n98Y9/rBi1Kiz77rtv2pEbcdJnr30ga9+wRfuQ9qXY6fJA933Zbbfd0sc5JwFoFwIQECkqG/V98MEHycknn+y9T2E56KCDkgcffNAsgdhpX9A+kbWv2KJ9SvtWrL797W9778eRRx6ZPs45CUC7EICASFHZqE33ZXLv/B6Wo48+Onn88cfN3IBP+4b2kax9R0X7lvaxGB133HHee3H22Wenj3NOAtAuBCAgUlQ2sukO/7Xu5bPTTjsl8+bNM3MDtWlf0T6TtS+paF/TPheTvffe23sPrrrqqvRxzkkA2oUABESKykalqVOneu+JWz72sY8tqKgBRWnf0T6UtW+paN+Lxac+9Snvtf/iF79IH+ecBKBdCEBApKhsLKRO2bVGdzvppJPSe5cAjdA+pH0pax9T0T4Yw/2DwiD45z//OX2ccxKAdiEAAZGispEkTz75ZDoClfs+uGX8+PHJ73//ezM30Bzap7RvZe1zKtontW/2qsUWW8x7vW+//Xb6OOckAO1CAAIiFXtlQx3Ql1tuOe89sGX11VdPfvjDH5o5gdbQPqZ9LWsf1L7Zi61BL774ovc6V1hhBTOFcxKA9iEAAZGKubIRjkLllhNOOCH597//beYEWkv7mva5rH1RRftqL/nd737nvb7111/fTCEAAWgfAhAQqRgrGw8//HDy6U9/2nvdtowbNy554IEHzJxAe2nf0z6YtW9qn9W+2wtuvPFG77XpNVsEIADtQgACIhVbZeOKK65IBg0a5L1mW8455xwzF9C/tC9m7aPad7UPd7sLL7zQe10HH3ywmUIAAtA+BCAgUjFVNg4//HDvtdqyzjrrJHfeeaeZC+gM2ie1b2bts9qXu9mJJ57ovZ7TTjvNTCEAAWgfAhAQqRgqG/fff3+yySabeK/Tli9+8YsLRp8COo32Te2jWfuu9uluvVwzvAmqO9gIAQhAuxCAgEj1emVjxowZ3utzy/e+9z0zF9DZpk+fnrkPq2gf7zbhDxK//vWvzRQCEID2IQABkerVyoZuNnnggQd6r82WDTbYILn33nvNnEB30D6rfTdrn9a+3k036R06dKi3/c8++6yZQgAC0D4EICBSvVjZ+Mtf/pKMHj3ae122HHLIIcn7779v5gS6i/Zd7cNZ+7b2ee37ne4f//iHt92LL764mdKHAASgXQhAQKR6rbKh/j7Dhw/3XpPKwIEDk+9///tmLqC7XXLJJek+He7n2vd1DHSyBx980NvmT3ziE2ZKHwIQgHYhAAGR6qXKxu23354MHjzYez0qm2++eTJv3jwzF9AbtE9r3w73dx0DOhY61U033eRt72c/+1kzpQ8BCEC7EICASPVKZWPWrFne67BFI2gBvazaKHE6JjrR+eef723nxIkTzZQ+BCAA7UIAAiLVC5UNjebmvgZbjj32WDMH0Nu0r2cdA5040uGkSZO8bTzrrLPMlD4EIADtQgACItXtlY1TTz3V235bTj/9dDMHEAft81nHgo6RTvL5z3/e277Zs2ebKX0IQADahQAERKqbKxtHHXWUt+22dON9UYBmqHbfKx0rnSIcyvuee+4xU/oQgAC0CwEIiFS3Vjb2228/b7tt+clPfmLmAOKkYyDr2NAx0wmWW245b7teeuklM6UPAQhAuxCAgEh1W2XjjTfeSHbYYQdvm1WGDBmS3HHHHWYuIG46FnRMhMeJjh0dQ/3ltdde87Zn6aWXNlMWIgABaBcCEBCpbqpsvPDCC5k3OB0xYgTDXAMBHRM6NsLjRceQjqX+8Nvf/tbblpEjR5opCxGAALQLAQiIVLdUNt5+++1kyy239LZVRfdBee6558xcAFw6NrLuFaRjScdUu1111VXedmhAhBABCEC7EICASHVLZWPcuHHedqqMHz8++ec//2nmAJBFx4iOlfD40THVbv/5n//pbcNJJ51kpixEAALQLgQgIFLdUNnYd999vW1U2WeffcxUAHnomAmPIx1b7RRuw2WXXWamLEQAAtAuBCAgUp1e2fjqV7/qbZ/KjjvuaKYCKELHTng8TZw40UxtvQ033NB77rlz55opCxGAALQLAQiIVCdXNnR5jLttKurP8NZbb5k5ABShYyerT1DWpWitsNRSS3nP+/LLL5spCxGAALQLAQiIVKdWNr75zW9626XyyU9+Mnn++efNHADK0DGkYyk8vnTMtdJf/vIX7/lWXHFFM8VHAALQLgQgIFKdWNm46KKLvG1S+chHPpI88sgjZg4AjXj44YeTVVddteI4u/DCC80czXf77bd7z6WR6EJ/+9vfCEAA2oYABESq0yobV199tbc9Krps5u677zZzAGgGHVPhJWkqOgZb4Xvf+573PF/5ylfMlD62hWiVVVbx5iMAAWgVAhAQqU4KQLfccou3LbbcdtttZg4AzaRjK+uY07HYbEceeaT3HGeddZaZ0uenP/1p+vg666zjzUcAAtAqBCAgUp0SgH7zm98kgwYN8rZFZfbs2WYOAK2gYyw87pZYYon0mGymz372s95zXH/99WZKny9/+cvp45/5zGe8+QhAAFqFAAREqhMC0CuvvJKsscYa3naozJw508wBoJV0rIXHn45JHZvN8rGPfcxb/0MPPWSm9LHTDzjgAG8+AhCAViEAAZHqhAC02267edugMm3aNDMVQDucffbZFcehjs1mePvttyvWPX/+fDN1Yf+f5ZZbriPOSQDiQAACItXflY3TTz/de36VyZMnm6kA2knHXng86hht1DXXXOOt8+Mf/7iZ0sf2//n85z9PAALQNgQgIFL9WdmYM2eO99wq48aNM1MB9Acdg+FxqWO1EVdeeaW3vl122cVM6WP7/+j8QwAC0C4EICBS/VXZePHFF5Nhw4Z5z73yyisnzz33nJkDQH/QMahj0T02dazqmC1r0qRJ3vqmTp1qpvSx/X9++ctfEoAAtA0BCIhUf1U2dt55Z+95VW666SYzFUB/0rEYHp86ZssaO3ast65rr73WTPH7/wgBCEC7EICASPVHZeOUU07xnrNdzwsgv/DcoKJjt4wVV1zRW89jjz1mpvj9f6Q/zkkA4kQAAiLV7srGjTfe6D2fSiO/LANonayWWh3DRTz99NPe8oMHDzZT+rj9f4QABKBdCEBApNpZ2Xj22WeTlVZayXu+j370ow31LQDQOll99XQM61jOK7ycbsyYMWZKH7f/jxCAALQLAQiIVDsrGzvuuKP3XCqNji4FoLWyRmvUsZxXONT9EUccYaZU9v8RAhCAdiEAAZFqV2VjypQp3vOonHHGGWYqgE6Wdb8uHdN57Lnnnt5yl1xyiZlS2f9HCEAA2oUABESqHZWNrF+Qd999dzMVQDfQMRsex3lacEeMGOEtc++995oplf1/hAAEoF0IQECk2lHZGDVqlPccuub/lVdeMVMBdAMds7a/ji06tmt54403vPlV3nnnHTO1sv+PEIAAtAsBCIhUqysbWZfO/OxnPzNTAXQTHbvh8axjvJq5c+d6844cOdJMye7/IwQgAO1CAAIi1crKxp/+9Cdv3SpHHnmkmQqgG+kYDo9rHetZLrjgAm++/fbbz0zJ7v8jBCAA7UIAAiLVyspG2GdglVVWSS+JAdC9dAzrWHaP7Wp9+g499FBvvrPPPttMye7/IwQgAO1CAAIi1arKxqxZs7z1qlx22WVmKoBupmM5PL51zIfWX399b57bbrvNTMnu/yMEIADtQgACItWKysb8+fOT4cOHe+sdN26cmQqgF+iYdo9xHfM69q3XX3/dm67y97//PZ1Wrf+PEIAAtAsBCIhUKyobJ5xwgrdOlT/84Q9mKoBeoGM6PM517Fu33HKLN23DDTc0U6r3/xECEIB2IQABkWp2ZeO+++7z1qdy8sknm6kAeomO7fB41zkga9rhhx+ePi7V+v8IAQhAuxCAgEg1u7IxduxYb31rr722mQKgF+kYd495nQNk22239R6/6qqr0selWv8fIQABaBcCEBCpZlY2ZsyY4a1L5brrrjNTAfQiHePhca9zwaBBg7zHnnzyyXT+Wv1/hAAEoF0IQECkmlXZ0F3ihwwZ4q1r3333NVMB9DId6+6xP3jwYO//q6++upmzdv8fIQABaBcCEBCpZlU2Jk6c6K1n0UUXXfCLL4DepmNdx7x7DnDLPvvsY+as3f9HCEAA2oUABESqGZWNJ554wluHyrRp08xUADHQMR+eB2w577zzzFy1+/8IAQhAuxCAgEg1o7Jx1FFHeetYb731zBQAMdGx754LbLEjw9Xr/yMEIADtQgACItVoZePZZ5/1llfRXeIBxEfHfng+WHLJJc3U+v1/hAAEoF0IQECkGq1sHH/88d7yDHsNxG3VVVf1zgnuAAj1+v8IAQhAuxCAgEg1Utl46aWXkoEDB3rLa/hbAPH69Kc/7Z0TBgwYkJ4rpF7/HyEAAWgXAhAQqUYqG5MnT/aWHT58uJkCIFZrrrmmd15Q0bkiT/8fIQABaBcCEBCpspWN119/Pb22313WHekJQHwefPBB75xgi84VP/rRj9K/a/X/EQIQgHYhAAGRKlvZCJcbNmyYmQIgVueee653XnDLBhtskP5b7xxT9pwEAEURgIBIlalsvPXWW8myyy7rLXfOOeeYqQBitf3223vnBbcsssgi6b+1+v8IAQhAuxCAgEiVqWyceeaZ3jJDhw5N5s+fb6YCiJF+GHHPCypDhgzx/j9o0CAzd3UEIADtQgACIlW0sqGgo8DjLnPGGWeYqQBidf3113vnhZEjR6bnBvexJZZYou6PJQQgAO1CAAIiVbSyEV7jr0vh3nzzTTMVQKwmTpzonRsmTZqUnhvCy2V1DqmFAASgXQhAQKSKVjZWW201b/5TTjnFTAEQMw2D754bbrvttvRxnSPcx3UOqYUABKBdCEBApIpUNm655RZvXg1t+9prr5mpAGI1b94879ygvj7vv/9+Ou0Pf/iDN01F55JqCEAA2oUABESqSGVj//339+Y95JBDzBQAMdMokO65YZdddjFTkuSnP/2pN01lwoQJZmolAhCAdiEAAZHKW9n4xz/+kQwcONCb9xe/+IWZCiBm2223nXduuOCCC8yUJPnyl7/sTVPRuUTnlCwEIADtQgACIpW3snHJJZd486299tpmCoCYaaAD99yg8thjj5mpSfKxj30sfSzsP6hzShYCEIB2IQABkcpb2dhmm228+U499VQzBUDMrrzySu/coOGvrb/85S/pY8stt1zFuUbnlCwEIADtQgACIpWnsvHoo49686joMQAYP368d26YPHmymbKw/8/nP//53OcRAhCAdiEAAZHKU9lQa487T7VfbgHE5YUXXvDODSq///3vzdSF/X/seSVPSzIBCEC7EICASOWpbKi/jztPtWv3AcTl/PPP984No0ePNlP62P4/v/zlL9P/X3zxxd78WX0JCUAA2oUABESqXmVDI72502uN3gQgLmPGjPHOD9OmTTNT/P4/Vp7RJAlAANqFAAREql5l49BDD/Wm615AAPCnP/3JOzeoPPXUU2aq3//HFd5PTOcYFwEIQLsQgIBI1aps6E7uyyyzjDe91h3cAcTjG9/4hnduGDt2rJnSJ+z/Y918883ecjrH6FxjEYAAtAsBCIhUrcrGj370I2+a7uMBALLuuut654eZM2eaKX3C/j+u8J5AOtdYBCAA7UIAAiJVq7Kx0047edNOOOEEMwVAzO655x7v3KDy+uuvm6nZ/X9cOpe4y+pcI1qOAASgXQhAQKSqVTb+/e9/J4sssog37YEHHkinAYjbcccd550b9thjDzOlT7X+P5bOJe7yOtfonKNWo0GDBnnTCEAAWoUABESqWgC6/fbbvcezhqsFEKfwErZrrrnGTOlTrf+PKxxe/6KLLkr/VauR+zgBCECrEICASFULQLqbu/v4xIkT08cBxO3666/3zg0axOCDDz4wU/vU6v9j6Zzirme77bZL/91ggw28xwlAAFqFAAREqloA2mKLLbzHZ8+enT4OIG4bbrihd2446KCDzJQ+9fr/WDqnuOsZMmRI+u8+++zjPU4AAtAqBCAgUlkB6G9/+5v3mMqLL75olgAQqyeeeKLi3PCzn/3MTO1Tr/+PpXNKuC6VY445xvs/AQhAqxCAgEhlBSBbgbFFl6QAwKRJk7xzwyabbGKmLJSn/48VXu42fPjwzHMSALQCAQiIVFZlI/wFVpUeAHFTP5/Bgwd754aLL77YTF0oT/8fKwxUuryOAASgXQhAQKSyKhujRo3yHrvpppvM3ABi9f3vf987L6ywwgrJe++9Z6b2ydv/x9K5xV2nwhMBCEC7EICASIWVjfD+HipvvPGGmRtArDbddFPvvHDSSSeZKQvl7f9j6dzirlMlPAcRgAC0CgEIiFQYgHbffXfv/1tuuaWZE0Cs7rjjDu+8oPL444+bqQsV6f9jrbPOOt56w3MQAQhAqxCAgEiFAWijjTby/j9lyhQzJ4BY7bvvvt55Ya+99jJTfEX6/1if/vSnvXWH5yACEIBWIQABkQoDkL0Xhy3hELcA4mL79bjl9ttvN1MXKtr/x1p55ZW9dYfnIAIQgFYhAAGRCgOQWwYOHJjMnz/fzAkgRmoFds8L6623npniK9r/R7LuORYWAhCAViEAAZGqFYC22247MxeAWK200kreeWHGjBlmiq9M/x8bmoYOHeo9h1sIQABahQAERKpWADrjjDPMXABidOmll3rnhEGDBiXvvvuumeor0/9HrUVaZtttt/Wexy0EIACtQgACIlUrAOnXWQDxGjlypHdOOOCAA8wUX9n+PzY06Yaq7vO4hQAEoFUIQECkagWgRx55xMwFIDZXXHFFxTnhiSeeMFN9Zfr//OEPf0iXUWjSucZ9HrcQgAC0CgEIiFS1ADRgwIDk/fffN3MBiM2oUaO8c8L6669vplQq0//nu9/9brqMQpPONTrnuM9nCwEIQKsQgIBIVQtAujkhgDhdddVVFeeECy+80Eyt1Ej/H7U0SXhDVFsIQABahQAERKpaANp1113NHABiE96MdPHFF0+HrM7SaP8fLS8657jPaQsBCECrEIDQdebNm5csv/zy6RfktGnTzKMoqloAOvHEE80cAGIye/bsivOBRmmrppH+PxtssIF5JEnPOe5z2kIAAtAqBCB0lVdffTUZPXr0gi9IAlB51QKQhr8FEJ9NN9204nxQK4Q00v/n2GOPNY9UDrltCwEIQKsQgNBVDjvsMO8LkgBUXrUANHfuXDMHgFj85Cc/yTwf2MvUsjTS/8cdal/nHPc5bSEAAWgVAhC6RtblGQSg8qoFoJdfftnMASAWW265ZcW5wL1MLVSm/4/6Eml+LecGK51z3Oe1hQAEoFUIQOgK6veT9QVJACovKwANHTrUTAUQixtuuKHiXKDiXqYWKtP/xy6TFax07nGfW4UABKBVCEDoeOr3s9Zaa1V8OaoQgMrLCkBjxowxUwHEYquttvLOAyuttFL6r3uZWqhM/x97zskKVjr32Oe3hQAEoFUIQOh4++yzTzrqW9j/R4UAVF5WADrooIPMVAAxqNb3R5eqVRv+Wsr0//nMZz6TLpMVrHTucZ9fpRsDkC7tq9Vvqhn0o+DMmTOTHXbYwXu/NECQvifnzJmTzqMrJzRPPZrffs/adWk5XXYO9CoCEDqaTvI6GesErbBjT862EIDKywpAvJ9AXNZff33vHLDJJpuk/9a6tK1s/x+7TFawyjq/d2MAspf5qZWrFUHIvQ2EroyYMmVK+t7pX3eEVFvqBaCsHxbdonXqOYFeQwBCx7L9fnRil7IB6Mknn0xP8u5ldPoC0S9eWb9whb+qucXScu6XjdatbdGvbpb+1mPufPq7U35VywpAN954o5kKoNdNnz694hxgW2lqhY9G+v9UW0bnHrsNtnRzALKlmUHI7Qur77QsGlHP/c6pFYDc8KPvMM3rLmuLvi/d7zagFxCA0JF0stUJWSdjq0wAcpdRa1L4mIpO+uHJPWvEORWFqawvCFvs9upLyL2cICz1trsdsgLQ/fffb6YC6GVvv/32gr4+thx++OELLm2rVWkv0/+n3jI699jtsKUXApAtzQhC9ke8eq06oh/4as1rhx7X9LCFJ+t7rlrgAroVAQgdyV6P7AaTogFILUd2Pq3P0jrddahkrSecR0XbpC8CrUMlKwzpC0X/KnBpHn2ZZIUhPd6fsgLQ008/baYC6GWTJ0/2jv3FF188ue6669K/aw1/LWX6/9Rbxl5W55ZeCkC2lA1CugzcrkN/16PvHn3vVAtA+k50vxdDWd9vegzoFQQgdBwbdMIbchYJQOGN9cLLztzL4VSyvgjc6baEv4JVaykKn8+91KDaPO2WFYDefPNNMxVAr3riiScqjv3TTjttwTkha5Q2ywaVIv1//vCHP9RdRuceuy229GIAsqVoEHK///IEINEy1QJQ+ANjlvB7NPxOBroZAQgdxZ5ws4JNkQAUBpzwxK0mfzuP/s3q5Okub0so/IJQyfrCKbLt7RL+ArzooouaKQB6mb0czZY11lgj+eCDD2qO0mbZCn6R/j/f/e53cy2jc5DdJhWdo7pN3gBkS94g5H6HVAs1IX2vZc2r7y3bt7YetxWIAIReQgBCx6jXZJ83RLgdRW0pc+IO16ES6uYApC9ed3sGDx5spgDoVVnnrO9///teK02t4a/dvjxZrciUcqVeEHIvgVOxl2LXkzcsVaPl7XNm/VAIdCsCEDqGTrS1muXzhois+QhAlQ499FBve1ZZZRUzBUCvciu0Kptvvnn6eN5WGrcvDwGo+aVWEAqvbND/y3y3FWH3F303A72EAISOkBUkihQ3dBCA8pkwYYK3PWuuuaaZAqAXXXvttd4xr3LzzTen0xR89P8rrrgi/X+WsP8PAag1Re9v1mAR1b4n1Ye1VYPq2NDV399XQLMRgNARWh2Aygw4EK5DJdTNAWjvvff2tueTn/ykmQKgF40aNco75m1rjy55U6Vbj9W6DCvs/0MAam7RZ6D3VpcjVqPvMrXGZC2vy+KaGYTs5eR5BkwAug0BCB2h1QEoHL0tj3AdKqFuDkB77LGHtz3rrruumQKg19hL3Nxi7/tlg0294a/De/kQgJpT8gQfl0KOvmey1qWi75ZmBBY7eml/f1cBrUAAQkdoZgDKGpq6zPXL4TpUQt0cgOwlL7bo12EAveeZZ55JllxySe94d38UskFG/U9qKXr/n7wtS1a1FqpuUmQUuKLBJ1SrNUiP5x0uO4tCltZjb+4N9BoCELpG3hBhR5ML59WNSYsIl1cJdXMA2mmnnbzt2Xjjjc0UAL1k//339471pZdeOnn++efN1IXBRpX3asL+P3nkbVmydA6y26iic1S3yROAGg0+Ln3f6bukWhAq+z2jfkVaZ3/fsBtoFQIQukaREJE1r07mWcN46gsk741QQ90cgMaNG+dtz6abbmqmAOgV119/vXecq0yfPt1M9W9SWmv4a1uxL9Iqk7dlydI5yG6jis5R3aZWAGpm8Anpe8xeshaWoi1B9ioKhr1GLyMAoWsUCRH6MnBv4GaLQpA7IIK+GDTKTdYXRLisitbr6uYA9NnPftbbni222MJMAdAr1l57be8433rrrc2UPnmHvw77/+SR58aqLp2D7Haq6BzVbbICUCuDT0ihJfzu03dcXlo+/J4EehEBCF2jaIioFoLcohO9Qkwoqx+Rivt8tX5xc9epSwiytkNfSv15ecHYsWO97RkzZoyZAqAXTJ482TvGVe6++24ztY8q5nq8Xkgp0/9H89drWXLpHGS3U0XnqG7jBqBmBh99p+T90Szruy9Pa46+jwg/iAUBCF2jaACydDLXJW7ucmqlUZ+gsEVHNM2dN6tI1uNu0XqyWojCkhXA2sH+OmtL+MswgO6lEd7c41vl+OOPN1P75B2koJH+P/VallxrrLHGgm1V0Tmq2+h1t6LFR98TWZdqV2MHMbCl3veMDU2EH8SCAAREihYgoHdtv/323vE9fPjwZP78+WZqHxtS6g1SUCbMlLlkbvPNN1+wvSrd2AKk0NOKS93sj2lZP9pV47YC1QpANvzkbWECegEBCIgUfYCA3qTWbffYVsn6Zd8OUlAvpJQJM0UvmZOwv1I39gFqFRuAioQUNwBVC042/OS5V54uo8szH9ANCEBApBgFDug9L7/8ctqPwz2299prLzPVlzekFA0zagHR/EUumZNhw4Yt2GaVbhwFrlVsANJnm6c/j+ax7+OUKVPMo74i4UfPr+du5N5CQCchAAGR4j5AQO85+OCDveN6kUUWSR5//HEzdaG8IaVM/5+8I8uFFl988QXbrdKN9wFqFRuAVOoNVOAOvKN/s1p/bPjRPOqvWqtowB77vECvIAABkVLlxH6hqugu7AC610033eQd0yrVLpnKG1LK9P+x55YrrrjCPFKfHTXOLUUDVC9zA5AtCib6fDVNRa0zau2xLYAaNCEr/Kh1yIaaIoXL39BLCEBApPbYYw/vy23dddc1UwB0mzfffDMd6MA9pmtd1mpDigJOLY30/6k1slzIBi236ByFPgo49lI2BRi1ACmQ2FYcWxRs9Ljmr8YGpKKFy9/QSwhAQKT23ntv78vtk5/8pJkCoNscdNBB3vGscscdd5ipvrzDX0vZ/j/1RpYL2QEZ3KJzFAC0AgEIiNSECRO8yoZ+PQbQfa6++mrvWFbRTVCryTv8dSP9f9RyVER4XzIVnaMAoBUIQECkDj30UK+yscoqq5gpALrFiy++mAwdOtQ7ljfbbDMzNduxxx6bzlfvsrZG+v/Uu7TOZfv/aMAG/WuLzlEA0AoEICBSthJky+DBg80UAN1CHd3d41jlnnvuMVOz5b2srWj/nyKX1rls0Fp00UXTf23ROQoAWoEABERKl8i4lQ1VPgB0j4svvtg7hlXOPPNMMzVbkXv0FO3/o/k0f9n+P2ELUK3L+ACgEQQgIFJZnY41khSAzqd7+wwaNMg7fseOHWumVpe3j06Z/j/2nFK05Sar/49K3pYnACiKAAREKisAFblsBUD/+dznPucdu2o9eeihh8zU6vL20SnT/8cGmTL9f3QJrv51CwEIQKsQgIBIZQWg+++/30wF0Km+9a1vVRy706dPN1OrK9JHp0z/H82v9evvvGzQ2njjjdN/3UIAAtAqBCAgUlkB6MYbbzRTAXSi3//+9xXHbd5WGhs21FJTT9H+P0XW7bLnoZ133jn91y0EIACtQgACIpUVgKZNm2amAuhEGuLaPWZ16djTTz9tptaWt1WnTP+fvENrh+xlc1/60pfSf91CAALQKgQgIFJZAUh3kwfQmb761a9WHLOXX365mVpf3ladMv1/irYYib1sTuWLX/zigr9tIQABaBUCEBCprAA0ZswYMxVAJ8ka8lol74ADdvjrPENUF+3/U2RobZcNWtomnXv0t1sIQABahQAERCorAOmO8gA6y+9+97uKY3XgwIHpv3lHbrTDX+cZorpoa84VV1yRzl+kxUjsOUjbpHOP/nYLAQhAqxCAgEhlBSCVl19+2cwBoL+99957yYYbbph5rBa54Wje4a/L9P+x6y4aWGz/nx/84Afpv2EhAAFoFQIQEKlqAWju3LlmDgD97cADD6w4RhV89G/egFBkiOpG+v8UuY+Y2//ntttuW/C3WwhAAFqFAAREqloAuvTSS80cAPrTBRdcUHF8aiCEooGjSKgp2/+nSGuUuP1/dM7R32EhAAFoFQIQEKlqAejEE080cwDoL3fddVfFsakhsN3gkFeRS9SK9v+xfYsUnIqw5x/1/9E5R3+HhQAEoFUIQECkqgWgXXfd1cwBoD/885//TEaOHOkdl4sttljy4IMPLjhui4SDvC1GjfT/qde3KOQup3OO/g4LAQhAqxCAgEhVC0DrrLOOmQNAf5gwYULFcamR1qRoC02RS9SKXCpnKSxpmaL9f9zldM7R32EhAAFoFQIQEKlqAWjAgAHJ+++/b+YC0E5nnHFGxTF59NFHp9PK9Lexx3me4a+L9v9RCCu6PeJexqdzjc45+n9YCEAAWoUABESqWgBSeeSRR8xcANrlRz/6UcWx6N6cuEiYsexQ03kuUSvaulRme8RdTuca/Z1VCEAAWoUABESqVgAqej0/gMb85je/qTgOl19+ee/HCBtQ8h6fRYa/7q/+Pyr6O6sQgAC0CgEIiFStAKTLcAC0x/PPP58MHz684jicM2eOmWPh5W9FAooNF3n69BSZV9x+PPXClSvs/5N1yZ8tBCAArUIAAiJVKwBtt912Zi4ArbbNNttUHIO6B5DLHq9FLjezLS15gkTR/j82MOkSuyLCfkM61+j/WYUABKBVCEBApGoFoIEDBybz5883cwJolQMPPLDi+Pva175mpi5UpC+PlXf4aynb/6doSLHLKcjpHKNzjf6fVQhAAFqFAAREKgxAQ4YM8f7/s5/9zMwJoBVOO+0075hT2WOPPczUhdzL3/JeblZkxLgy/X+K9key3P4/Osfob1vCcxABCECrEICASIUBaKONNvL+P2XKFDMngGa76qqrvONNZeONN07eeecdM8dC3/3ud9PpefvniNvSUk/R/j9uYGqk/4/OMfrblvAcRAAC0CoEICBSYQDafffdvf9vueWWZk4AzTR37lzvWFNR60e14efdVpO8ilwyV7T/j27KqvmLBDIJ+//oHKP/2xKegwhAAFqFAAREKgxAxx13nPd/lTfeeMPMDaAZnnzyyQWXj7nl1ltvNXP41Gqi6UVaW4ouU7T/jw1kRQOKPeeoVUrnFv3tlvAcRAAC0CoEICBSYQDS/0eNGuU9dtNNN5m5ATTq1VdfTVs/3GNM5cILLzRzVCpz+VuRFppG+v/kGVzB5bZk6dyiv23RuSfrnAQArUAAAiKVVdk45phjvMcmTZpk5gbQCI14ttVWW3nHl8oJJ5xg5sjmhoa87DIKT/UU7f9T5n5EEvb/0blFf9uicw8BCEC7EICASGVVNmxlyJY8I0gBqG/nnXf2ji2VAw44wEzNFoaGvIq00BTt/1OmRUrC/j9hS5jOPQQgAO1CAAIilVXZsH0H3PLiiy+aJQCUMWHChIrjKk+AKNo6I2HQqKds/58iLVJig5P6/+icor/donMPAQhAuxCAgEhVq2xsscUW3uOzZ89OHwdQ3BFHHOEdTyrbbrtt8v7775s5qrNho0gQsMd1nuGv+6v/j84p+tsWnXOk2jkJAJqNAAREqlplY/Lkyd7jEydOTB8HUEx4LKnoXj95RmZr9PK3PC00RVuYitxc1RW+Fp1T9Lctep+EAASgXQhAQKSqVTZuv/127/G11147fRxAfmeffbZ3HKl8/OMfT55++mkzR202nBQJG+4ABXlCVtn+P3lal1zhZXk6p+j/tuicIwQgAO1CAAIiVa2y8e9//ztZZJFFvGkPPPBAOg1AfTNmzPCOH5WVVlopefDBB80c9ZW5/K3oAAX90f9H5xL9bYvONTrnCAEIQLsQgIBI1aps7LTTTt60ekP1Auhz2WWXeceOyhJLLJHMnTvXzJFPmb42NqDoPkD1FO3/U/aSPHGDk84l+tsWnWssAhCAdiEAAZGqVdn40Y9+5E1bbbXVzBQA1VxyySXecWPLLbfcYubIp8zlb0UDStH+P2W2yXK3S+cS/W2LzjUWAQhAuxCAgEjVqmxohKplllnGm37zzTebqQBCWZe9qVx99dVmjvzssVkkABQNKEX7/9htKtr/xx04QUFQf9uic4w7Gp59DluKvH4AKIIABESqXmXj0EMP9abvv//+ZgoA1wUXXOAdK7ZceeWVZo5iivbNkaIBpehzFBldzuX2/9E5RH/bonOMiwAEoF0IQECk6lU2fvGLX3jTBw4cmPzjH/8wUwHIeeed5x0ntlx11VVmjmLKDjVdJKCU6f9j588zupzL9v+ZNWtWeg7R37boHOMiAAFoFwIQEKk8lY1wuNqLL77YTAHw7W9/2zs+bFFlvyx7XBa51Mwd/jqPsv1/8s7vsv1/zjrrrPRfW7KG1ycAAWgXAhAQqTyVjVNPPdWbZ5tttjFTgLidc8453rFhy1577WXmKKfMpWZFh78u2v+n6PyW25qlc4f+tkXnllCecxIANAMBCIhUnsrGo48+6s2joseAmIWtGbboXj9Fh4h2FW3JsexlZnlDU9n+P9q+ImwwO+CAA9J/3ZJ1HiEAAWgXAhAQqbyVjfCXWyoliNnUqVO948GWyZMnlxoi2mWPySKXvxUd/rpo/5+yoUxsMNt3333Tf22p1pKc95wEAI0iAAGRylvZCO9tknXtPhCDcGREWzREvCr7jVbYP/OZz6TrK3L5m+2fkzd8Fe3PU/TyOpdtOVpzzTXTf23ROSULAQhAuxCAgEjlrWxo5Ld6ozcBvexf//pXsuuuu3rHgIqOi1tvvXVBK0yzLn8rMtKaPY7zhoWi/XlsK84VV1xhHsnHvp6Pf/zj6b+21BpNMu85CQAaRQACIlWksjFhwgRv3kMOOcRMAXrbs88+m2yxxRbe/q+y8sorJ3feeWc6j1pVyrSQuMq2tJTtz1N0/qLhzr6eddddN/3Xllr3EyMAAWgXAhAQqSKVjfAO7oMGDUpee+01MxXoTffff3+y1lprefu+ynrrrZc88sgjZq6+VpIil61lKXP5W9H+OWX7/5Tp22RbjhZffPH0X1vGjRuXTJ8+3cy1kFq9CEAA2oUABESqaGVjtdVW8+Y/5ZRTzBSg9+jStmWWWcbb51XGjh2bvPrqq2auvoq7WkmKXLYW0rJad9HL34q2GpXt/1NkUAbLthy5ZfDgwQv+njJlipmzj902txCAALQKAQiIVNEAdO6553rzL7vsssmbb75ppgK9Q/1d3H3dli984QtmjoUUEopethYqe/mbbWXJ22pUtv9P0dYt23IU9h0My4EHHmiWqDwfqRCAALQKAQiIVNEANH/+/GTo0KHeMmeccYaZCvSG0047zdvHbTnmmGPMHD5dulY0IITKBA21FKnFSMvl7Z9TpP9PmfVbNtC5Ra0/AwYMqHh8/Pjx6Q8p9j1wCwEIQKsQgIBIFQ1AcuaZZ3rLKBApGAHd7q233kr22Wcfb/+2Rft9FrV0FL1sLVQ2aNhLxvL2zyna/6fo+l277LJLuqxb9B5q0IhVV121YtrGG2/sXR5nCwEIQKsQgIBIlQlAqiTq0jd3uXPOOcdMBbrTfffdVzFamS2XXnqpmauSjpky/WNcNmgUvfyt6OVsRZ/Hnh/KvL7ll18+XdYWnTN07pBHH300DVXudFuGDBni/T/vawOAoghAQKRsBadoZSNcbtiwYWYK0H0uv/zyzEuzVlpppXT0w1p0SVne4aSrsZd+Fa3sF7mcTYoGpjKj0ont/+OW8Dn//ve/JzvuuGPFfOHnUPQ9AYC8CEBApMIgk7ey8frrrydLLrmkt+x5551npgLdQRX1JZZYwtuPbdlmm23qXo6m5ctcHuYqe/mbDRl5L2eTov1/7PqLXt632267pcvaonOFzhlZDjjgAG/e8KapBCAArUIAAiJVNgDJ5MmTvWWHDx9upgCd7/nnn6+obNty1FFHmblq0/HSaAW9bD8bO8iAWnXyKNv/p+hlebLUUkuly9qic0UtJ5100oJ5NdCEuywBCECrEICASDUSgF566aWKIW4vuugiMxXoXGeffXZ62aa779oyc+ZMM1d9alEp0mqTpezlb3a5vJenFQ00RS+Xs2bMmJEuZ4vOETpX1GJbs9ZYY42GzkkAUAQBCIhUo5WN448/3lt+7bXXNlOAzqSbb7r7rC0jRoxI5s6da+aqT4Gi0cvfxF6WViRIlblsrmigKdq/yLLL2aJzRD3uPZAIQADahQAERKrRysazzz7rLa9y2WWXmalA5/jd736XbLnllhX7q4r6rFTro1KNraw3ouzlb3Y5DVKQV5FAU6Z/kejY13Ju0TmiHtuapZvPEoAAtAsBCIhUMyob6i/hrmO99dYzU4DOcO6553r7qFumTp1q5spPLTDNuPzNHn9FjzsbGPIuV7T/j9siU4SOfS1nS96+VG4rWDPOSQCQBwEIiFQzKhtPPPGEtw6VadOmmalA/9G+OX78+Ir9U0Vh4L//+7/NnMWoBaZoOMjS6GVmeQNY0f4/botMXjrmtYxb9P7XE4YzAhCAdiEAAZFqVmVj4sSJ3noWXXTR5MknnzRTgfbTzUuXXnppb7+05cMf/nBy1113mTmLU0BQqGiEvcys6OVvZZYr2/8nb8DSsa5jXsvYonNCHmE4IwABaBcCEBCpZlU2XnnllYo7uO+7775mKtA+f/3rX5MJEyZ4+6Ityy67bDrMciOtN/byt6L3xgnZY+/YY481j+RTZrkiLU1lApaOdS1ji+6tpHPC1VdfXfdGsnodWsaee5p1TgKAeghAQKSaWdkIh79Vue6668xUoPU0DLsdHS0su+66a/LMM8803Hqj/jGNBCjLhpKi26KBD4osV7b/T96ApWNc87vlS1/60oJzy+DBg5OHH37YzF1JQUvz2ddDAALQLgQgIFLNrmyMHTvWWx/DYqMd7r333op9zy2q1IvCgIJAI603CiCNBCgpO8qattsul/c1aFu1TN7Qpvk0f97XqGNc87tFYdP9/yabbJK8++67ZomF7OtRsa+HAASgXQhAQKSaXdm47777vPWpnHzyyWYq0FyqVJ9wwgkV+5wtW221VTJv3jwzd9/+XvSSM5eCi1puGmWPu6LbUjTMSJH+PwohtgUtT/8fHdua1y2f+MQn0hvNho/vv//+ZqmF7OtxL7dr9jkJAKohAAGRakVlI6tCqooj0EyzZ89O1lxzzYp9TUUd8rNGIlR4aWRf1PHRSICyil7GZtnWmSLHaZH+P1mBpBrbihUWBS458MADK6Z94xvfSKdZ9vzjvqetOCcBQBYCEBCpVlQ25s+fnwwfPtxb77hx48xUoDGPPfZYsueee3r7l1v22WefzBEIVbkvcuPQLAoTRYesDrmXv+W9jM2yYSbv6GxF+/9kBZJqdExrXluWWmqp9F936OwxY8Z486hcc801Zmr25XYEIADtQgACItWqysasWbO89aroLvFAI84888xkwIABFfuWyogRI5Jrr73WzFlJle0i97UJKbgUGRmtmrI3GbXBqcg22BadvM+Vt2VKx7Lmc8vQoUPTf91wpvsArbTSSt58GiHu97//fTo963I7AhCAdiEAAZFqZWVj991399a9yiqrJG+88YaZCuSne/qErYpumTx5cvLBBx+YuSupgl2mxcWlY6MZx0fZy9/ssVrkEryi/X80b733ScewjmXNa4sdgCKrf9Stt97qzauy3nrrJXfffXf6dxjo7Ou0pRnvOQBkIQABkWplZeNPf/qTt26VI4880kwF6rv55puTzTffvGI/suWzn/1scv/995u5q9N+3UjfHQUCVe7zXnpWTd6QkaVMcCrT/6feZYI6hjWfWxRA9W+1libb6uWWUaNGpf+GnwsBCEC7EICASLW6snH66ad761f52c9+ZqYC2X73u98t6B+SVVZcccXkkksuMXPX12jfHYWDRvsPSdnL38oEp6L9f/K0FunY1Txu0TFuP6talxgedthhFcuqhIGOAASgXQhAQKTaUdmwv/Taosqo7hIPhJ599tlk4sSJ3v4SlpNOOil58803zRL1NSO8qILfjGPDBoUirTiiYKHligQn26KTd5l6rUU6Zu08tujYFvt4vRayrHs1fetb3zJT+xCAALQLAQiIVDsqG3PmzPGeQ0X9gwBLIweecsopycCBAyv2FVvUQvH444+bJfJTAGhk8INmXv6m1hi9lqLrssGpyPFZpP+POzJdNWGfPhUd23ZZvUf1PPfcc8lqq61WsR71B7LacU5Cfa+++moyc+bMZIcddvA+j9GjR6etefrsNY/us6V5itAojVpH0eWAZiMAAZFqV2VjypQp3vOo6NIZQC0Aq666asX+YcuOO+6YzJ0718xdjIKGKuZF+9u41JJSpOWlmqItMq68LSwuu0yeS//qtTCdccYZ6XS36JjWaG7f+c53ai4buuOOOyrWpZunvvbaa+l0AlD/U6hZfvnl0/d/rbXWSj9r3VdL/yoAuZ+PSt4go+NYw9QXXQ5oFQIQEKl2VjZUkXWfS0W/IiJO6g8zbNiwin3CFo0Odt1115m5y9H+3MjgB6KKfdFL1rJoPXpdRY8xBRj7fuSloKRl8vb/sduW1VKW1YKrY9meO5Zddtn03yKtbFtssYW3PpWddtopndbOcxIqKfzY916tNFkUZNwgVC/IaJ0KPprPLpNnOaDVCEBApNpZ2VD/jvCeIKoAv/jii2YOxOD8889PVl99dW8/cMuSSy6ZXHDBBWbuxqgVpJHBD+xla420IEkjl7/ZY7RIkCvb/yfcNh2bH/3oR9NptugYXnfddb3HVMq0ToXl+OOPjzoA6T0sun80m1p89L7nCSe2NafevLpUznIDNQEI/Y0ABESq3ZWNG2+80Xs+lZ133tlMRS9TqKlW8VUZNGhQGhJ++9vfmiUaoxDQ6I1L1UqVN0TUYgNJme3RMlq2SCtUmf4/WdumY1PT3KJj+Igjjqh4XCP35aEKvubXZz1+/PiK9aglyP1/TAHI7icKu/0RhNxwkqd1XsFGl8oVCTLq/2OfgwCE/kYAAiLV7gAk6uzuPme7nhf946KLLlrwq3JWWWyxxZKvf/3ryYknnphW3JtFwaWRwQ9Eo8cVCR7VlL38zR2coEgrVJH+P3Zo7vC9D88NKjp25a233qoYzGDbbbdNp9VjK/l6T15++eVkxIgR3nrCEtO5wb43trQ7CKmfj33uvJcna5miQcY+BwEI/Y0ABEQqrOS0q7KR9cvyTTfdZKaiF1x88cU1K7ca8U2h569//WtauVelXRX+ZlClUetr5NI1bYvW0Sj72vSai1Zmy9w3yG1hycOGMzfo6VjUY24JW2pnzZpVMc95551nplZnzzn2XPOb3/zGW4cCsfv/mAOQLe0KQm4AyhtOyowCV/Q5gFYhAAGR6q8ApL4FYQf4lVdeOR0mF93rvffeS0cFGz58uPfZhkV9PV544QWzVN9+2MzWH62v0cEPmrEOsZXaMpe/2XBSpCXLbWGpJ6tvko5BHYt6zJZqffWWXnppb74lllgieeqpp8zUbGpV07xu4Lr88svTx/QeffWrX/XW2a5zUieoFoBsaXUQCge80CAIbv+daghA6FYEICBSqly4X3jtrGyEX7Yq48aNM1PRTVSRPu2005KhQ4dWfKZumTRpUvJ///d/Zqk+zW79Ea2vkcEPpBnrEFVa9dqLHltZ4SSPIv1/skaY0zGox9ySdTmUvTxvwIAB3rx77bWXmaOSXpOdT3+7NKT2O++806/npP5WLwDZ0sogFF6uqv+XHYa+GrtuAhD6GwEIiFR/VzZ0LyD3+VUmT55spqLTaWS/E044IR3AIPwc3XL00UcnzzzzjFnKp32uma0/qkSWaW1xqXLf6Dose/lb0TBlK8NFt6PI89nj37Z06djT/91S7X5d9t5B66+/fsUyV111lZnLlxW4Qv19TupPeQOQLa0IQgo7Wc+lEd80gEEz2HUSgNDfCEBApDqhsrHbbrt526By9tlnm6noRA8//HDFpUphWWSRRZJjjjmmZgXNtnI0s/VHl341OviBjoNmHAu2laRMmLLHpg0neei91jJ5+/+4l6O5/T9s0bFZjb08T9u5/fbbe8t95CMfSd544w0z50K2T5Nek319lMZLs4PQ7NmzF9wINSy6LK7RIGTXRQBCfyMAAZEKKyHNqPQV9corryRrrLGGtx0qM2fONHOgU9x7773J/vvvX/FZuUU3xpw6dWo6uEE92t/y9FXJy15OF15eVYRdRzMqlPb4KhJiLNuSo3CSl21ByNv/R/MqLNlg4hYdkzo2q7Hbp/dJl6+Fyysgh2xo0nYSgJpfmhmEFHIUULKeR0WBOU//oCx2HQQg9DcCEBCpTghAopGg1IHa3RYV/RKJ/vfzn/882XXXXSs+H7fohpmqFP3zn/80S9XWitYf7b+NXk6nynmzQlmRy9FctuVI70+RMFek/48NS//xH/+R/usWXdKoY7Iad/usU089tWI9t956q5naR/PrcVXSCUCtKXqPi+5vtdRqDdLjeYfLdtnlCUDobwQgIFKdEoDklltu8bbFlttuu83MgXa79NJLk8022yzzc7FlnXXWSS688EKzRH7a15rZ+iMKHI1W/rRNahFpVFZIyKvM8NdSJHDVCiA6Fmux/X/C7dtoo4289ay33npmSuXlgASg5hbtZ/o8mvmDgqWWHv24US0IaVoRdjkCEPobAQiIVCcFILn66qu97VFZaqmlkrvvvtvMgVbTKG264eWqq65a8Vm4ZZNNNkl++MMfmqWKaUXrj1o0Gh24oFMuf1NFVsvqNeWlbdYyeQNXtc/3nHPOMXNUV62lSS2F4fpOPvnkdJoNdbaFjgDUnNLK4BNSEFIfoKztKNISZJchAKG/EYCASHVaABK1JrjbpKLKmjreo3UUMm3FtlbRHf+LVMyzaD8r2rpRj9bX6P7bzMvfFMb0fhV9r2w41LJFgpieR8vk2f4bbrhhwefplvHjx6f/KtzW4vb/CR111FHeOlXuu+++dLv0d70BKjrxnNQu9jPMU9oZfEK6+eno0aO97dFw2XnZZQhA6G8EICBSnVrZ+OY3v+ltl8onP/nJ5PnnnzdzoFl0jb9CTfh+h0X3d/l//+//maXKa0Xrj2250b+NUIWy0XAnem16z/Q6i26TrQQXbc3K2/9Hx5BGabOfqy0rrbSS9/9zzz3XLOFzX1sW9QELBzXRaHO1QpOLALTwtWeVVgYfDYGd93I2tQaFIUjBKA87PwEI/Y0ABESqkysbJ510krdtKptvvnny1ltvmTlQlirlquiENz0MiwamGDlyZPLnP//ZLNk47WN5WimK0DrtpVVlqWJeJrBkKduHR+wxWfRYzNP/R8eOjiH7+dqiY+3ggw/2HtNnn3Xvpmr9f1zXXHONty5btI312NdvS9H3oZvVCkCtDD6WApDu95OXRopztzHvDVPt/AQg9DcCEBCpTq9sTJw40ds+lR133NFMRVGqPB1xxBHJYostVvG+umXddddNA5J+yW9mhUvhQhW5Zlfi1FrS6OAHCi2NhijLvb9OUXmCTChv/x8dO/YztsUOV/3SSy8lgwcP9qZ98YtfTKe58rY07bffft66VHS/oHoIQP571o7gY9mboBYZ3tptBSIAodsQgIBIdUNlY9999/W2UaXIr5Sxe/fdd5PLL798QaW8VlEfkBtvvDFdTvtCswKBpXU2u/VHlcZGBz8QvT9lAkvIDSNFW5NUybXLFmErzrXeWx0z9nO2RceWa/r06RXz3HzzzWZqn7wB7bnnnks+/OEPe+vSZaz1dMM5qVXcANTO4GPZAFRkVDc3AOUNTnZ+AhD6GwEIiFS3VDbGjRvnbaeKKut57zkTI3U8P/LIIyt+1Q/LwIED05Gd3IqWKu6q6Daz8tWq1h9VEhvdb7VNeS7PyqORy9/KLlurVUbHiB3cwC3Dhg0zc/jGjBnjzTdq1CgzpXhAyxrQ5Ac/+IGZmq1bzkmtoADUH8HHsgFIw13n6c+jeeznNGXKFPNofXYZAhD6GwEIiFS3VDbefvvtZMstt/S2VUX9GfRLM/rofZo5c2bmexWWNddcMznrrLOS1157zSy9kPaDMhX4WlqxThvUira0hLRtzdr39Rr1/pZpTSq7bLVWGR0bWX1+VNRPJ8uvfvWrinnPPPPMdFqe/j+hsWPHeutaZZVVan5e+hzc+Zv1uXQDhZ7+CD6WDUAqCkG1bkSt/j+29Uf/5m39CfsNAf2JPRCIVDdVNl544YWKUYdURowYkXv0oV6lisuhhx6a3sE/fH/Col9dZ82aZZas1IqWmla1/mh/bcZlegoQjfYhEvs69T7XG+0sVHbZav1/dEzo2LCfuy1q8dO/tZ5D/cTC5R5//PHc/X9ctlXLLdpXq+mmc1KvcQOQLRooRZfEaZqK7vej1h57U1RdWlkk/IT3EdIPNkX6HAHNRAACItVtlY033ngjrcC726wyZMiQ5I477jBzxUEV5vPPPz8zFIZFlztNnjw5eeSRR8zS1Wkf6IbWH2nG4Adavhl9iCRPX5xq7LJFtyXrOXUs6Jiwn78tur+P/q33HNq3hg4d6i279957V21pqiU8x9hyyy23mDl83XZO6iUKOPZSNgVotQApsITnGIUiPa7583KXzypcDof+QAACItWtlY2sEaZUfvKTn5g5epfuxaNf4hdZZJHM98AtO++8c3LttdeaJetTxVeV3Ga3/jR7naKKfzOCi/b5Zu33CiF638us79hjjy21bNgqo2PAfv5u0f5iA4yeq56LL764Yh0qYUtTPXbwjY9//OPeejS8eha9Dne+Zn02ABAiAAGR6ubKRtYd51VmzJhh5ugdDz30UDJ16tTMS5rCMnz48PRzfOKJJ8zS+Wm5bmn90Tob3V9tOCt6uVoWravs5W9SpnVF3OW079v9oFbJ28co7L+jUuSz1Htil7vpppu89aioVTKkz9Sdp9HPGACqIQABker2ysapp57qbb8tp59+upmje73yyivJ9773vYpRuaqVPfbYY8EQ1mXYMNDoJWWuVqxT7Hr1byMUBJoVzspewiZqHdOyRVtX3P4/2uftvuAW3dMpfCxvQLvnnnsqlt16663N1Pr0uWsZ+54cc8wxFevTc7gIQADahQAERKoXKhsKCe5rsCXPZT6dSJcwKcxkvaawrL322skZZ5yRPPvss2bp8vTZd0vrT7PWq3Wok34zaF36TMocQ3aggKIDOtjQpT4Zdp9wi46NP/7xjxWPF3nNkyZNqlheLZJ52Ndlj8V//etfaQulu66tttoqnWbp/XOnl3k/ASAPAhAQqV6pbGhUM/d12JJ1J/tOpKGHDz/88MyO62FZdNFFkwkTJiS33nprwy0gVje1/ohaFBpdr92+Zl3+pnXp8ymzPhue8l6aZtn+P1nFHekvvFx0hRVWSN58800ztTbdR0hDV7vL5w2fWa8rq4/St771LTOVAASgfQhAQKR6qbJx++23Z970U/dB6cRhsh999NHkG9/4Rnp3/HCbs8r222+fXHrppV7FVZ9XM1owtI68ldq8tG3NXqeoMt2MwQ90T5tmbV8jl78pPJXpO6R9eokllvD2ERUdAzoWXC+99FIyYMAAb76vf/3rZmp9Rx99tLesSq2h1K1qoVAB3l2XhuZ+7LHH0mm9dE4C0NkIQECkeq2ycf/991dcYqOiCtYll1xi5uo/6tej+17YkbHqlfXXXz+9CWXWgAaqVDajBaPbWn8UWpqxn2o9RVtcqik7gpvY8KR9Iq/vf//7C+7n4xbt+zoGQvo8wnlV8g6UkdXSpOd69913zRyVbL+mrFD4/PPPJ8suu6y3vt122y2d1mvnJACdiwAERKoXKxsKBNXujXPIIYck77//vpmzPf7xj38kV155ZTokddY2hWWllVZKf3G/6667zBqy6bNqxufVTa0/Nlg1Gvq0vFpdtL5msC0dZQJfOIx1Ldp3tQ+7+4st2uervS82ZC211FLeMl/5ylfMHLXZ1xeWk046ycxRyfb/qdavKWvEOrXK6X1wH2vGPg4AWQhAQKR6tbIxf/785MADD/Remy36Rfree+81c7aGnl83Edxzzz0rLj2qVnRH9RtuuMGsoTZVdJsRBLqt9adZYU3radYgGbVaOvKw4aLefZK0z+o53H3GFl0Kt8suu5g5K+k903xZIfzuu+82c2WzrUcKjFkDIjzwwANmTp99ToWaaj73uc9561L4P/HEE73HCEAAWoUABESq139trXVflOnTp5u5mkcBRv0bllxyycznDIsue9I2Fm2J0OfUjM+qmf1gLG1XK1p/RAGgGcFK73uzApo9hsoEqrzhqdpIh2H57W9/a5bw2ZClwLzpppt6y4wfP97Mlc22Hukzfe+995I111zTW37cuHFmTp/7nNVkjVC30UYbef/vtXMSgM5BAAIiZStvvVzZ0C/Um2yyifc6bdEocW+//baZsxyNxnbQQQct6Mher4waNSo57bTT0kEQymhm60+zAoXVytYfrbNsK4tLoUPb2Cy2ol/mNdvLxKqFJ+2b2kfd/cctYT+gL33pS2bJhWzI0v4pWTckrdUXKrxEL2vExbCVJ3zOWtTHLVyfWwhAAFqFAAREKoYAZGmYafe12rLOOuskd955p5krnzvuuCNdXzg8cLWi5zj55JOrXi5UhD6jZnxO3db6o4p4M153s94/KVLRz6L3SstnBRDtk9pv3P3IFrW66N+wNUflz3/+s1lDHxuy3M8lvBRO/YeqsQHP3Ua73bYMGzbM+yFB+5Yez7svbLbZZt763NKszwoAQgQgIFKqXMRU2VDFbNCgQd5rtuWcc84xc2X79a9/nRx33HHJGmuskbl8WFRxPP74470+FkUvdQs1q/VHuqn1x667Ga9b61FwaQZ7/JS5/E2vScsqPIX7hfZFd1+yRfuu9mG3VWbDDTf05tE9f1xZIeuee+7xllG5+OKLzdSFqm3jww8/XLG8+gdZRQZ2EIW9cH229Po5CUD/IQABkbIVuJgqG6q8ffrTn/Zety36Zd1tpVFLj0Zkyxt6Vl111eTII4/MDAGqQKoi2UglXp9PMz4jVYbz/jqfl7ar2eu0mjX4gV53My6js7Qufe5ZLTj1aBkt674u7Xu2dScs2me174pCnB7Tfnb55Zd782nQDd33x7LzhvudLtt0l1t99dUrRkjM2kYrPHeo2LDvbl9e+nFBy4RDxMdwTgLQPwhAQKTCSkxMlQ1b4coq+lX9Ix/5SOa0sAwZMiQdmvh//ud/zJqz6b1tZOSxWFt/pFmDFuj9b9Y+7l7+Frbg5KFQoeW1Pf/+97+TE044wduv3KJ91dLnr8fcy+7CgQmmTp2aPm63MSv0PfXUU94yKuqb5rLnh2rvWXgT32233dZrNSpKQ8bb57SlWZ8XAIQIQECkYq9sXHPNNWlFzX0P8pSll1467Zx+4403mjXVZsNLmYqypc+mGZ+PftUvctPNPJrVQpNFwacZrTY2pDUjQEpW35oibCvJd77znbT1xd2/bNElbwriBxxwgFkqu1XGbost2qffeeedBY9XC95TpkzxltNw2i+88IKZunAbq7VwXX/99d7yKocddlj6b9l9LPZzEoD2IQABkYq5sqHRsHQjyPCO9NXKYostlv7S/pOf/CQdDriIRjvwx9z606zBD1SJb2ZIs5dqVQsHtdiWmcGDB3v7WLWiYPLPf/4zXTarf827776brLjiit4y55577oJWpmrbqIELhg4d6i2nSzjFbcmpFdx1/yp3eXuz1bKtnTGfkwC0FwEIiFRMlQ2FFv1irZabvBVPtygoPf7442Zt+SkYKCDQ+lNcM1tttI3hcM1laXu0T9QLB1l0k9wxY8ZU7F+2jBgxIm2ZDC9ru+yyy9LlbatMGDhPPfVUb/7VVlttQetmrffvvPPO85ZTmTdvXrqv6O96+4uOiayb/ZYJhhLTOQlA/yIAAZHq9cqG+hRcffXVyb777pv75qT2F+ysosrnVVddZdaejyqQjVS8m9n6o20pWzHNYgNKq1p/mhWu7HY2EkJd9tKyotumfccGmKxi++5IeHna9ttv7wWv0Kuvvpq2UrrLqOS5fHDdddf1ltlrr70WnBvynBO++c1vesurKMSV0evnJACdgwAERKoXKxvPP/98MnPmzGSnnXbyXlutovv5TJw4MbntttvSdfzv//7vgsuHsoruo6JfyetR8Gm0xUWfSTM+l25r/ZFmBTZ9Ds3cTrtv5N027Su19ketT/ucS/8P55sxY8aC+bNoKOpwmTyXos2ePbtiuZVXXjn9N+9rVNByl1crVxm9eE4C0JkIQECkeqWyoZs/futb30q23npr7/XUKh/96EfT/g4///nPzVoqqWK4zDLLZC6voiGyq10W14zWkZhbf9RPphmDH4gCQ7Neu163WmBU6n0u2je0j2TtOyprrbVWuo9VE14qZ+/5U+04ffLJJ735Vb72ta+ZqbVpBLdw2SKX+N1yyy0Vy59//vlman4EIADtQgACItXNlY37778/3d6NN97Yew21iirs+kU8b6Vd82kZ3dA0a3226J4qDz74oFmqj7at0VYHraMZn4kq/93W+tOswQ8UUopU5OvRe6nPvNZr174Q3mcnLLqvzwcffGCWyHbhhRd6y9hL3GrtvwceeKC3zBZbbGGm1KZ7XrnLqWiY6yLU78hdXj8evPjii2ZqPvrM3XU0Yx8AgCwEICBS3VbZ0B3jFUY+8YlPeNtdq4wcOTL5+te/nvzmN78xa8lPocH23/njH/+Y7LLLLpnPYYv6GulmkLblRq0YZcXc+mPX34zXrn267IhkWRR89FkrAIb02WsfCPcLt9g+Znle2+uvv16x/Ic//GEzNZsdYc4t9e5RZX3hC1/wltM9ropQq6q7vIqCYBEEIADtQgACItUNlY2bb7457Z+T98akKptttllyxhlneK0yCgCqVOdVrdVk1qxZ6UhdWc9ri34J/9KXvmSWKEefRTM+D72OZl1KZrW69aeZ69dn2KygZi9/02fsBhhdRql+YeF+4BbtM2eddVb6t/qcqWXGDjldSzjM9PDhw82U6tZYYw1vGfU/yuOhhx7yllPRpaV52OCVdZzefvvtZq76uuGcBKA3EICASHViZUO/emu0LP2SXqv/TVjGjh2bDumrfhAhVVzd1px6NH+9++VoWOKw43dYtE2631BRzW79aWQUulCrW3+kWS1WqpQXCb31aJv0udpAqc9Wn3H4ubtF89ohrA855BBvmloy69HNdt1ldE+gehSw3GVU7rnnHjO1tq9+9avecssvv3zy97//3UytTqFV8+vSxU033dRbxyabbGLmqo8ABKBdCEBApDqlsqHO4govGurX3Z5aZeDAgWkrgSqXf/3rX82ashVtUSgyv4b73XLLLTO30ZbNN988bTnKS59DMz6Lbmz9aebgB816Hy29bn2ee+yxR/qZhp+zW7RPhENBb7XVVhXzPfzww2Zqdauuuqq3TK19ybbELLroot4y+++/v5mjth/84AfecionnniimVqdfW8UttUiFq5DN2bNQ5+Xu1wzPz8AcBGAgEj1Z2Xj3nvvTf7zP/8z2WijjbxtqFV0M9K99947+fGPf7zgzvj12MuW8rZYFJ3f0qV6o0aNytxuW9Zbb730MqinnnrKLFXJtv5oOxrVja0/6q/TrP1Q26pA0AwaylqtIVmfq1sU4rUvhPTeaXp4r57vfOc7Zo7qDj74YG8ZXW5XjW2J0WWg7jIqjzzyiJmruvCcYMtjjz1m5sim91rz2VbLsLVr8cUXT55++ul0Wi39eU4CEBcCEBCpdlc25syZkxx++OEVfRRqlWHDhqWX5WhZWwEvEg70mop0gtf8uoynKG2TWi5UobW/htcqqihfeumlyZtvvmnW0EfP34zPoRWtPwpTrWz9sZ9vMy79a8br12ejzyhPy6TeF42kVo0NJgrB7nI77rijmaM69cNxl1H5v//7PzPV57bEhJei6dirR6FZ89r7ANlywAEHmDkq2VYn/XBgqVVWP1i465gwYYKZWp32fXeZZhwLAJCFAAREqtWVjddeey354Q9/mHbk1uhV7nPVKuuvv34yefLkipHbtH1FtrFoa4qdv0yrgbbLDQdq4dpvv/0yX59bdCmf5lN/kk5v/VGgaGXrTzMDViPDaOuz0GeizybrM3OL5tNnXY8NJt/85je95QcMGJC88847Zq5sei3uMirVLinT/qPp2pd07IXLVQtOos9Y8yjIfO9736tYdu7cuWZOnz43TQ8/u6x1/Pd//7eZmk2fmTt/2c8QAOohAAEFuF/Oecvo0aPTEDBz5szMTvr9pRWVDV0qo1+7t9tuO2/d9co222yT/tL9pz/9yazJVyYcFK0El738SttULTjpjv7h5UDVikKi+pbcddddZuly1PrRrCBltbr1R5o1+IFetyrx2mfy0nt+zDHHZA4gkFX0meqzVfjRPqNLzmq1sLjBZJ111vHWpYEOarHLukX3vwrZlhi35Wvttdf2ltMPC9Xovdc8+hwk7OdUrbXKBrSsY0f3O3LXoR83atE63PnLHI8AkAcBCChBd3AP+wQo4OhXUlt02da0adPSAOTON2XKlOTVV181a+o/zapsaISpqVOnFurPs+SSSyZ77rlnWrF++eWXzZqqKxpmioaARlpfFJzqXWanS4KmT59ecXf/akWXSp1++ul1+15k6cbWH1Xe9f43gz77PGFN763e4/CytGpl6aWXTj9DO+iGDRy2VBui2gYLG0yOPvpob7lawUn7peYZPHiwt4zKfffdZ+bqYy+zc/fFsBVGIyuGl11a9nxgl1dfJndZleuuuy6d5rIBLSu8/upXv6pYh4aor6ZZ5yT12dJ5docddvDWt9ZaayWHHXZYRWuW5q3WwgWgNxGAgJL0Rep+udaiMOQGJoWi/g5BjVQ2brnllvT1F+nPoxsl6p4+ugzm/fffN2uqz1aOi4SToiGg7CVTZYKT7rdyyimnVPw6X63o1/7jjjsuvTSr3vMopJQNctW0o/VH733Zym5I25r12es90Xuo91LvadZ7HRZ9RltvvXX6dxhy33vvvWTQoEHe/A888ICZupA9zuzyOnbcZVQpr8aGJ72mXXfd1Vtu0qRJZq4+mkePh0EkbNXSQBxZdMyEy4fPqR85XHpP9bha3Krtc0cccYS3DpVqwd6+V7YU3ScUYtzQY1ve3R+lFHb0nms+PaZWeZ2bCUBAXAhAQElq3XG/rOvRr5Lu/AoQ/alIZUNhTUPkFu3Po5HRVOFo5LKuouFEv4Tby3jyaCQ06HmKVtJcd955Z9o5fJFFFsl8/7KKLrfS0MSqzL311ltmTX20PXr9zaL3pNWtP3qOopesVaN12c9S743eI71XWaOiVStDhgxJj019NqL16fGs92C33Xbzls1q3bDL22Dx7rvvpqOiucv98Y9/TKeF3MvLNKy2u4yCjWXfQz0evo/aJnc5DSwS0vJ2uv62fvvb33rLqlx00UVmauVlc1l0H6GhQ4d669BojlmKnJNCOs/Y5XSeqne5sYKR+1wEICAuBCCgpKIBSMJWo/7sE1SvsvHnP/+5VH+ebbfdNvn2t7+dPProo2ZN5RUNJ5pP8xepsKvyVuaSMVX+imxbNXrfVa699tr0ssCs97RW0WV1J598ctoxXi1yjW6Pqx2tP816jn/961/piIG6wWjeSw3dovden4HLXuamzznLxRdf7K3jU5/6lJnSxy4ftpDstNNO3nLq/5bFhie7P4eX3d5www3p4zaIuP1/LAUQXXLqLueGGKm1fNiHTQFq/vz56TR7Dql3Cegll1zirUMlfK+l3jmpGve8WuSHJfdHKZ3PAcSDAASUVCYA6Rdpdxn1JeovWZWNu+++O+3Ps+GGG3rTapWllloq2WuvvZIrr7wyeeWVV8zam6Noi4Zeg341z0sVv1q/XlejymzZ4OTKuoROo+epgmovvSpSNKqYBpTQ+6DXphttqsWhDG1Tq1t/RO+jtrUIvSa9Ni2n16p1FGlFs0Xvsd5rvedZ7DFSrYL/7LPPVqzzxRdfNFMX9ssJA576ErnLaKjtkO3/o/Bkqb+Qu5xtSam3nSeccIK33H/8x3+YKX1qLa/792i/cpfX/FLtsrss4Q8purwwZLfDFvs8tbgtP7qsrSjbEkQAAuJCAAJKKhOAdJmFu0x/fumGlY3wvh21ymqrrZb+2q6O0h988IFZY3OpUlWkhcWGibyXUjVSwVfFthmtFvoMalXyVDHXr/waoUzbmvVZ5CkjRoxIxo8fn/YbmTFjRnrPmueee848S7Z2tP7UG/xA26ht1TZr2/Ua9FqyXmOeovdQ76Xe02qhx2Xf81oV/PDyussvv9xM8e/L41LrqruMSng5o55Tj7ufwa9//euK5XR5qgKg/q62nc8880zFcldffbWZWj/I6EcRd1nd0FUBtNpld1k0Yp67DhXdDNlVNACF51O16JShPkEEICAuBCCgpDIBSC0+7jJqEeovYWWjXlFlUJdaqZWoHYq2sJTpK1Smgq/gpIpfoy0jWa0/9bz00kvJj3/847QlYOTIkZmfU5GiUcE0IMAXvvCF9L2bNWtWOqrf/fffn46O1urWn5NOOik56qij0ufUc5966qnpvXW0Tdq2rG0uUvQe6b3Se6b3rohql6+FwuNIraGW9l/tx1kBQa0w7nL2cjbL7f/jWnfddb3ldOmj/q23nYceeqi3nC5VtfQ563mqLa97Fbk3R7U/HNi/89IAFHYdtmg4cSt8L8PXHlJwsfOWaf2xdF5WSxKAeBCAgJLKBCB3hCJdz9+fI8GFlY2soqF9tc1HHnlkOn+7ijoxKxxkTcsqulO9KoCqUGdND4vm0/xaLmt6raIWBFVqs6YVKVqPXmfWtLxFrSJbbbVV2qlenfezPsNGii590vDPK664YrL66qunly0pVOh+LrpMUqMZqgVEfV+0HSr6W49pmubRvFpGy2odWpfWGV5W1YyywgorpOFp9913T9+brPcsb7HHqu7bkzXdloMPPtjbBn0WWfOFxd5nR0FPISKcrv1T08N9VMHFfT69n/q33nbafjIaxETr+PrXv545X7Uybty4dFs/97nPpf+3749eRzhvtaIfUMIhvbVf2Om2JcsWPVZNeDmxLmVrhI5FAPEgAAElFQ1A7rXqKv3Z/0dUuXC3h0KhUDqp1ApA4YAyZS9/AxAnAhBQUhiAsr6ANcqbgo7b8qPS6K+VzUAAolAonVxqBaBwRDwAKIKzBlBSGIDyFF0W1J9DX7sIQBQKpZNLtQCkS4fd+RSGAKAIAhBQUhiAdE26RiVyi+bRteXufHbEof7s/yO24zOFUq1olK7jjz8+HUhAnfK1L+t+OboB6C677JKOyqbWTQ1xrOG3VfS3HtM0zaN5tYyW1Tq0Lq1T6856TgrFlmqDcISjv2l/A4AiCEBASWEAqkWtPmEQUmtQf4cgAOg2BCAAjSIAASUVCUBWGIL44gaAYtTf0j2P6sckACiCAASUVCYAhdeuqzB6EQAUE55HAaAIzhpASWUCkIStQFoPACA/tfq459FOGVwGQHcgAAEllQ1A4XIEIAAoptPuqwaguxCAgJLKBqDwi7sT7gkEAN1ELT7ueZT+lACKIAABJZUNQBoG212OSzcAoLjDDjvMO5dqdLiydGkyo3IC8SAAASWVCUBq7XGX0Rc4AKA4BRb3B6WytxbQeZhLkYG4EICAksJfH+sJww/3AQKAxmgUzeWXX770eVXncX6IAuJDAAJKUIdbN8yo2F8RdRmGLXPmzEn7/ISXvXG5BQA0RxiC9Ld+cKp1jtX5WWGJ8APEiQAEFOCGmCJFX7TqpKuARJ8fAGguhZ2wVV7Fnndt0Y9P+kFKIUk/UAGIEwEIAAD0BP3ApNYfBZ+w5d22+DBkNgACEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAQsdmzZycf+tCH0jJ37lzzKAAAvYsABACRmjdvXrL88ssTgAAAUSEAAUCEXn311WT06NELwg8BCAAQCwIQAETosMMO88IPAQgAEAsCEABEZubMmRXhhwAEAIgFAQgAIqJ+P1nhR4UABACIAQEIACKhfj9rrbVW2vdnhx12IAABAKJEAAKASOyzzz7pqG9PPvkkAQgAEC0CEABEwPb7mTNnTvr/sgFI89ggZZdTq5IGVchaPut5bLF0LyJ3RDqtb9q0aWmLlaW/9Zg7n/7WsgAAFEEAAoAeZ/v9TJkyxTxSPAApgCj4aD6FH83rPmaL+xyWe7NVt6glKhyK2y2aJnouN3CFRcEIAIC8CEAA0MNsvx8FHlfRAOQGFbUmWWpRctehkrWecB4VhRq1HGkbVbLCkN1OPafmUWjKCkN6HACAPAhAANDDFCAUGBQeXEUCkFpY3PncsKG/3WkqbkCywnlUFH5c1VqKwsvcsu5hxKVwAIC8CEAA0KNscMkKNnkDUFbACSl82FYZrTcMWxKuQyWk5w/n0fpCYSBT4TI4AEBeBCAA6EE2TFQLBnkDUNZNU8sI15G1HgIQAKAdCEAA0GPUAqMWmazwYOUNQFnzlRGuI2s9BCAAQDsQgACgx2QFhCLFDRMEIABAryEAAUCPaXUAKjPiWrgOlRABCADQDgQgAOgxrQ5AZUZcC9ehEiIAAQDagQAEAD2mmQEoa8hp3fy0qHAdKiECEACgHQhAABChrJYdBZBQVihRmTdvnpkjn6x1hAhAAIB2IAABQITyBiDJmnf06NGZ9/tRMJoyZYr530Lh8iohAhAAoB0IQAAQoSIBSKHG3ujULQpBdhmFId0zaK211socJCFcViUMUAQgAEA7EIAAIEJFApBUC0FuUSDKCj8aNCFrfje0KAxl9TdScbdL69fzhPNUC14AAIQIQAAQoaIBSGwrjxtAFIo0KEK1keGynicskvW4W7SerBaisNR7DQAAEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiAYBCAAAAEA0CEAAAAAAokEAAgAAABANAhAAAACAaBCAAAAAAESDAAQAAAAgGgQgAAAAANEgAAEAAACIBgEIAAAAQDQIQAAAAACiQQACAAAAEA0CEAAAAIBoEIAAAAAARIMABAAAACAaBCAAAAAA0SAAAQAAAIgGAQgAAABANAhAAAAAAKJBAAIAAAAQDQIQAAAAgGgQgAAAAABEgwAEAAAAIBoEIAAAAADRIAABAAAAiESS/H/cM/2ozFCwIwAAAABJRU5ErkJggg==
|
As shown in the figure, quadrilateral ABCD is a square. Inside the square, a circle with a radius of 2 cm is drawn, forming the shaded area S1. Then, using point A as the center and AB as the radius, a sector ABD is drawn, forming an irregular shaded area S2. The area of the shaded part S2 is () cm².(Use π = 3.14)
|
A. 50.24; B. 3.44; C. 12.56; D. 2.58; E. No correct answer
|
D
|
96
|
iVBORw0KGgoAAAANSUhEUgAABFMAAAHXCAYAAABwPRX4AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAEhKSURBVHhe7d0FtBxVujbgS3B3d5fBAsElQIIzOAQY3IMNBA/u7hbc3d3dB4IHC8F1cBkc9n+/c6vmP+mqhHRypOV51nrXMKldp/t07dq76jvVVf+TAAAAABhmiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAQNX+53/+p+p069Yt9erVK/Xr1y8NGjQo+0kAAPVHMQUAGG5XXnllmnDCCQcrmkSx5NFHH/1vbr/99nTMMce0FFNat+vbt2/64osvsp8EAFA/FFMAgBHSu3fvwYokQxOFldbFlyiwKKgAAPVGMQUAGCFx1cmwFlPCCy+8MFj7KMYAANQTxRQAYIRUW0wJlVezuIcKAFBPFFMAgBEyPMWU+LpP63Xi3isAAPVCMQUAGCHDU0yJG9O2Xid+BgBAvVBMAQBGyPAUU+JKlNbrxJUqAAD1QjEFABghw1NMWXHFFf/bPp7u44k+AEA9UUwBAEZItcWUvn37Dtbe/VIAgHqjmAIAjJDKYko8+rhSPK0niiatr0iJ9OvXL2sBAFA/FFMAgBFSWUwZlnTr1s3jkAGAuqWYAgCMkMpiStxMNp7W0zrRplevXoO1m3nmmVv+3f1SAIB6o5gCAIyQymLK0MTVKJVFlbhKRUEFAKgniikAwAipppiSqyyoxL1UAADqhWIKADBChqeYEleitF4nUnbjWgCAWqSYAgCMkOEppoTKq1Pi5wAA1APFFABghAxvMaVyPcUUAKBeKKYAACNkeIspffv2HWy9fv36ZUsAAGqbYgoAMEKGt5gSj0ZuvV486QcAoB4opgAAI2R4iilxFUrrdXr37p0tAQCofYopAMAIiUJI68LIX6kspHTr1q3l6T4AAPVCMQUAGG5XXnnlYIWRSBRX4mqVRx999L+5/fbbW+6RUvnVnniij0IKAFBvFFMAgKq1LohUk7gKZcUVV2wptrhHCgBQrxRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAaBf33HNP6tatW8v/AgA0EsUUAKBNff7552nbbbdN//M///PfxP+PfwcAaASKKQBAm+nXr1+aaKKJBiuk5Il/j+UAAPVOMQUAGGFPP/106tmzZ2kRpTLRLtoDANQrxRQAYLj99ttvaa+99iotmkTGHnvs0n+PxHqxPgBAvVFMAQCGy5VXXplmmmmm0kLJyCOPnI4++uiWdvG/8f/L2sX68XMAAOqJYgoAUJU33ngjrbPOOqXFkcj666+f3nrrraz1/4n/H/9e1j4SPy9+LgBAPVBMAQCG2RFHHFFaDInMOuus6Zprrslalovl0a5s/Uj8fACAWqeYAgD8pTvvvDN17dq1tAAS2XfffdOff/6ZtR66aBfty35OJF4nXg8AoFYppgAAQ/Tpp5+mrbbaqrToEVlxxRXTs88+m7WuTqwX65f93Ei8brw+AECtUUwBAEqdccYZafzxxy8tdEw66aTp3HPPzVqOmPg58fPKXideP94HAEAtUUwBAAbzxBNPpGWXXba0uBHp3bt3+uqrr7LWbSN+XvzcsteLxPuJ9wUAUAsUUwCAFj///HPq06dPaTEjssgii6T7778/a90+4ufH65S9fiTeX7xPAIDOpJgCAKTLLrssTT/99KUFjNFGGy0dd9xxWcuOEa8Xr1v2fuJ9xvsFAOgsiikA0MReffXVtOaaa5YWLSIbbrhheuedd7LWHSteN16/7H1F4n3H+wcA6GiKKQDQpA499NDSIkVkjjnmSNdff33WsnPF+4j3U/Y+I/F7AAB0JMUUAGgyt912W5p33nlLCxOR/fffP2tZW+J9lb3fSPw+8XsBAHQExRQAaBIfffRR2nzzzUuLEZFVVlklPf/881nr2hTvL95n2fuPxO8XvycAQHtSTAGAJnDqqaemccYZp7QAMcUUU6QLLrgga1kf4v3G+y77feL3jN8XAKC9KKYAQAN79NFH09JLL11adIjstNNO6dtvv81a15d43/H+y36vSPze8fsDALQ1xRQAaED/+c9/0j//+c/SIkNk8cUXTw899FDWur7F7xG/T9nvGYnPIT4PAIC2opgCAA3m4osvTtNMM01pYWHMMcdMJ554YtayscTvFb9f2e8dn0d8LgAAbUExBQAaxMsvv5z+/ve/lxYTIhtvvHF6//33s9aNKX6/+D3Lfv9IfD7xOQEAjAjFFABoAAcddFBp8SDyt7/9Ld10001Zy+YQv2/83mWfRyQ+LwCA4aWYAgB17Oabb1Y0GIq/KjLF5wcAUC3FFACoQ/F1lk022aS0SBCJr7O89NJLWevmFp/D0L7+FJ9jo3/9CQBoW4opAFBnTjrppCHeaHXqqad2o9UhiM8lPp+yzy0+z/hcAQCGhWIKANSJeATwEkssUVoMiHgE8F/7q0dGx+fbKI+MBgDaj2IKANS47777Lu20006lJ/+RpZZaKj366KNZa4ZFfF7xuZV9npH4vONzBwAoo5gCADXsggsuSFNOOWXpCf8444yTTjnllKwlwyM+v/gcyz7f+Nzj8wcAqKSYAgA16IUXXkirrLJK6Ul+ZLPNNksfffRR1poREZ9jfJ5ln3MktkNsDwCAnGIKANSY/fffv/SkPjLvvPOmW2+9NWtJW4rPNT7fss89EtsFACAopgBAjbjhhhvSHHPMUXoiHzn00EOzlrSn+JzLPv9IbJ/YTgBAc1NMAYBO9s4776SNNtqo9OQ9suaaa6YBAwZkrekI8XnH5162PSKxvWK7AQDNSTEFADrR8ccfn0YbbbTSE/bpppsuXXbZZVlLOkN8/rEdyrZPbLfYfgBA81FMAYBOcP/996dFF1209CQ90qdPn/Tzzz9nrelMsR1ie5Rtp0hsx9ieAEDzUEwBgA709ddfp969e5eelEeWWWaZ9MQTT2StqSWxXWL7lG23SGzX2L4AQONTTAGADnLuueemySabrPREfPzxx0+nn3561pJaFtsptlfZdoztG9sZAGhsiikA0M769++fVlxxxdKT78iWW26ZPv3006w19SC2V2y3su0Zie0d2x0AaEyKKQDQjvbdd9/Sk+1I165d0x133JG1pB7F9ovtWLZ9I7H9AYDGo5gCAO3g2muvTbPOOmvpCXbkiCOOyFrSCGJ7lm3nSPSD6A8AQONQTAGANvTWW2+lXr16lZ5UR9ZZZ530+uuvZ61pJLFdY/uWbfdI9IvoHwBA/VNMAYA2cswxx6SRRx659ER6xhlnTFdeeWXWkkYW2zm2d1k/iP4R/QQAqG+KKQAwgu6555600EILlZ48R/bcc8/022+/Za1pBrG9Y7uX9YdI9JfoNwBAfVJMAYDh9MUXX6Rtt9229GQ50qNHj/T0009nrWlGsf2jH5T1j0j0n+hHAEB9UUwBgOHQr1+/NPHEE5eeIE800UTprLPOylpCaukP0S/K+kv0o+hPAED9UEwBgCr861//Sj179iw9KY5ss8026fPPP89aw/8X/SL6R1m/iUS/iv4FANQ+xRQAGAa///572muvvUpPgiPdunVLd999d9Yahiz6SfSXsn4UiX4W/Q0AqF2KKQDwF6666qo000wzlZ74dunSJR199NFZSxh20W+i/5T1q+hv0e8AgNqkmAIAQ/DGG2+kddddt/RkN7L++uungQMHZq2hetF/oh+V9a9I9L/ohwBAbVFMAYASRx55ZOnJbWSWWWZJ11xzTdYSRlz0p+hXZf0tEv0RAKgdiikA0Mqdd96ZFlhggdIT2sg+++yT/vzzz6w1tJ3oV9G/yvpdJPpl9E8AoPMppgDA//rss8/SVlttVXoSG1lhhRXSs88+m7WG9hP9LPpbWT+MRD+N/goAdB7FFACa3hlnnJEmmGCC0hPXSSedNJ1zzjlZS+g40e+i/5X1y+iv0W8BgM6hmAJA03ryySfTsssuW3qyGtl+++3TV199lbWGjhf9L/phWf+MRP+NfgwAdCzFFACazi+//JJ233330pPTyCKLLJLuu+++rDV0vuiP0S/L+msk+nP0awCgYyimANBULr/88jT99NOXnpCOOuqo6bjjjstaQu2J/hn9tKz/Rr+O/g0AtD/FFACawquvvprWWmut0pPQyIYbbpjefvvtrDXUruin0V/L+nEk+nn0dwCg/SimANDwDjvssNKTzsjss8+err/++qwl1I/ot9F/y/p1JPo9ANA+FFMAaFi33XZbmm+++UpPNCP77bdf1hLqV/Tjsv4dif4f+wEA0LYUUwBoOB9//HHafPPNS08uIyuvvHJ6/vnns9ZQ/6I/R78u6++R2B9ivwAA2oZiCgAN5dRTT03jjjtu6QnlFFNMkc4///ysJTSe6N/Rz8v6f+wXsX8AACNOMQWAhvDYY4+lpZdeuvQkMrLjjjumb7/9NmsNjSv6efT3sv0gEvtJ7C8AwPBTTAGgrv34449p1113LT1pjCy++OLpwQcfzFpD84h+H/2/bL+IxH4T+w8AUD3FFADq1iWXXJKmmWaa0hPFMcYYI5144olZS2hesR/E/lC2n8T+E/sRAFAdxRQA6s7LL7+cVl999dKTw8jGG2+c3nvvvaw1EPtD7Bdl+0sk9qfYrwCAYaOYAkBdOfjgg0tPBiNzzTVXuummm7KWQKXYP2I/Kdt/IrF/AQB/TTEFgLpw8803p7nnnrv0BDBy4IEHZi2BvxL7S9l+FIn9LPY3AGDIFFMAqGkffPBB2mSTTUpP+iKrrbZaeumll7LWwLCK/Sb2n7L9KhL7Xex/AECRYgoANeukk05KY401VumJ3tRTT50uuuiirCUwvGI/iv2pbD+L/S/2QwBgcIopANSchx9+OC2xxBKlJ3eRXXbZJf3www9Za2BExf4U+1XZ/haJ/TH2SwDg/yimAFAzvv/++7TzzjuXnsxFllpqqfTII49krYG2FvtX7Gdl+18k9s/YTwGg2SmmAFATLrzwwjTllFOWnsCNPfbY6ZRTTslaAu0t9rfY78r2x9hPY38FgGammAJAp3rhhRfSqquuWnrSFtlss83Shx9+mLUGOkrsd7H/le2XkdhvY/8FgGakmAJApznggANKT9Ii88wzT7r11luzlkBnif0w9sey/TQS+zEANBvFFAA63A033JDmnHPO0hOzyCGHHJK1BGpF7Jdl+2sk9ufYrwGgWSimANBh3n333bTRRhuVnoxFpppqqjRgwICsNVBrYv9cY401SvffSOzfsZ8DQKNTTAGgQxx//PFp9NFHLz0Ba52rr746WwOoVZdeemmabrrpSvfh2M9jfweARqaYAkC7euCBB9Kiiy5aetJVlllmmSVbE6hlP/30U9ptt91K9+NI7Pex/wNAI1JMAaBdfP3112mHHXYoPcn6q/Tt2zf7KUCte/zxx9MyyyxTui9HYhyI8QAAGoliCgBt7rzzzkuTTTZZ6YlVZbp06VL67y+++GL204B6cPrpp6fxxhuvdH+O8SDGBQBoFIopALSZ/v37p5VWWqn0ZKosG264YRo0aFDad999C8tWW2217KcC9eKTTz5JW265ZWF/zhPjQ4wTAFDvFFMAaBPx1Zyyk6ey/O1vf0s33nhjtmZKf/zxR5p55pkL7S655JKsBVBP7rjjjjT//PMX9uk8vsoHQL1TTAFghFx77bVpttlmKz1hKsshhxySrTm4q666qtA2nhby888/Zy2AenP44YcX9us8MW7E+AEA9UgxBYDhEl/P6dWrV+lJUlnWXnvt9Nprr2Vrl4s2levtscce2VKgHr3++uul+3aeGEdiPAGAeqKYAkDVjjnmmDTKKKOUnhhVJh51HFedDItXX3219Gf861//yloA9eqKK65IM844Y+k+HuNJjCsAUC8UUwAYZvfee29aaKGFSk+GyhL3Rfjzzz+ztYfNwQcfXPg5yy+/fLYUqGe//vpry9Vmlft4nhhfYpwBgFqnmALAX/riiy/SdtttV3ryU5ZVV101vfDCC9na1ZtrrrkKP/Pcc8/NlgL17qmnnko9evQo7Od5YryJcQcAapViCgBDdfbZZ6eJJ5649ISnMtNOO226+OKLszWH3w033FD42ZNPPnn69ttvsxZAIzjrrLPShBNOWNjfIzHuxPgDALVIMQWAUnGfkvh6TdlJTll233339NNPP2Vrj7gNNtig8Bo777xzthRoFP/+97/TNttsU9jf88Q45L5JANQaxRQABvP777+nvffeu/SkpixxovP0009na7edeLpHly5dCq/36KOPZi2ARnL33XenBRdcsLDP54lxKcYnAKgFiikA/Fc8dWfmmWcuPZGpzGSTTdbu9zE56qijCq+79NJLZ0uBRhT7fVkhNRLj07A+HQwA2pNiCgDpzTffTOuuu27pyUtZdtpppw67f0nXrl0Lr3/GGWdkS4FGNHDgwLTeeusV9v08MV7FuAUAnUUxBaDJHXnkkWmkkUYqPWGpTFwV8sgjj2Rrdozbb7+98D4mmGCC9Pnnn2ctgEZ19dVXp1lmmaUwBkRi3IrxCwA6g2IKQJO666670gILLFB6klKZ8ccfP51++unZmh1vs802K7ynbbfdNlsKNLI//vgj7bPPPoUxIE+MYzGeAUBHUkwBaDKfffZZ2nrrrUtPSsoST9mIp210pg8++CCNOeaYhfd23333ZS2ARvfMM8+kFVZYoTAO5IlxLcY3AOgIiikATeTMM89s+YpM2YlIZRZZZJF07733Zmt2vhNOOKHwHhdddNFsKdAszjnnnDTJJJMUxoNIjG8xzgFAe1NMAWgCTz75ZFpuueVKTz4qE1eAROGiFkXxpPL9nnjiidlSoFl8+eWXafvtty+MB3livItxDwDai2IKQAP75Zdf0h577FF6slGWuDdJfKWmVsXXeirfcxR/Pvzww6wF0ExiTFh44YUL40Ke3XffvWUcBIC2ppgC0KAuv/zyNMMMM5SeYFRm/vnnb3lqTj2IG89Wvv8oAgHN69hjj02jjjpqYWyIxDgY4yEAtCXFFIAG89prr6W11lqr9KSiMl26dKm7R4vGzXDL7vtSL8UgoH28/fbbaYMNNiiMDXliXIzxEQDagmIKQAM57LDDSk8iyhInHW+99Va2Zn2JxzRX/j5du3bNlgLN7Lrrrkuzzz57YYzIE+MkAIwoxRSABhBXZcw333ylJw6VmXPOOdMNN9yQrVm/ll566cLvdtRRR2VLgWa33377FcaIPDFeupoNgBGhmAJQxz7++OO0xRZblJ4slOWggw7K1qx/jz76aOH3i68tDRo0KGsBNLvnnnsurbzyyoWxIk+MnzGOAkC1FFMA6tRpp52Wxh133NIThMrEvQIGDBiQrdk4dt5558LvuuGGG2ZLAf7P+eefnyaffPLCeBGJcTTGUwCohmIKQJ157LHHUvfu3UtPCioz88wzpyuvvDJbs/F8++23pSdIN954Y9YC4P988803accddyyMF3liXI3xFQCGhWIKQJ348ccf06677lp6ElCWfffdN/3xxx/Z2o3r3HPPLfzuc801V7YUYHAPPvhgWmyxxQrjRp4YZ2O8BYChUUwBqAOXXHJJmnbaaUsP/CuzyiqrpOeffz5bszksv/zyhc/h4IMPzpYCFJ1wwglpjDHGKIwdkRhvY9wFgCFRTAGoYa+88kpaffXVSw/2KzPNNNOkiy66KFuzuTz99NOln8mrr76atQAoeu+999I//vGP0vEjEuNvjMMAUEkxBaBGxZUVZQf3ZenTp0/TX5a+++67Fz6XtddeO1sKMGRxn6X4emDlGJLHlW4AVFJMAagxt9xyS5p77rlLD+gr06NHj/TUU09laza3n3/+OU033XSFz+iqq67KWgAM3YEHHlgYQ/LEuBzjMwAExRSAGvHBBx+kTTfdtPQgvjKTTjppOvvss7M1ycU9Dio/q3ii0Z9//pm1ABi6F198Ma222mqFsSRPjNMxXgPQ3BRTAGrAySefnMYaa6zSA/fKxKM9v/7662xNKpWdBMWTjQCqEfegmmqqqQrjSSTG6xi3AWheiikAnejhhx9OSy65ZOnBemWWWmqplvYM3QsvvFD6+TXbE46AEffDDz+kXXbZpXRMicT4bVwGaE6KKQCd4Pvvv08777xz6cF5ZcYbb7x02mmnZWsyLPr27Vv4HFddddVsKUB1HnnkkaEWvmM8j3EdgOahmALQwS688MIhXjpema233jp99tln2ZpUY5ZZZil8nhdffHG2FKB68dWescceuzC2RGJcj/EdgOagmALQQeKmhnF1RNlBeGUWXnjhdM8992RrMjyuvvrqwuc67bTTpp9++ilrAVC9Dz/8cKg3C49xPsZ7ABqbYgpABzjggANKD7orM8YYY6Tjjz8+W4sRtc466xQ+49133z1bCjD84jHJ88wzT2GMyRPjPgCNSzEFoB3deOONac455yw90K7MJptskt5///1sTdrCa6+9VvpZP/3001kLgBFzyCGHlI4zkRj/Yx4AoPEopgC0g3fffTf94x//KD24rsx8882Xbr311mxN2lrZiU7Pnj2zpQAj7pVXXklrrLFGYazJE/NBzAsANA7FFIA2dsIJJ6TRRx+99IC6dUYaaaR0xBFHZGvRnv72t78VPv9zzjknWwrQNi699NKWezNVjjeRmBdifgCgMSimALSRBx54IC222GKlB9GV6dWrVxo4cGC2Ju0tLrOv3AaTTTZZ+uabb7IWAG0jbnK92267FcacPDFPxHwBQH1TTAEYQXFCvsMOO5QeNFdmjjnmSNdff322Jh1pww03LGyPnXbaKVsK0LYef/zx1L1798K4kyfmDQVdgPqlmAIwAs4777w0+eSTlx4oV+bAAw/M1qIzvP3222mUUUYpbJdHHnkkawHQ9k477bQ03njjFcaeSMwfMY8AUH8UUwCGw3PPPZdWWmml0oPjyqy55potNyek8x199NGF7bPUUktlSwHaxyeffJK22GKLwviTJ+aTmFcAqB+KKQBV6tu3b+nBcGVmmmmmdMUVV2RrUSsWWGCBwraKvxwDtLfbb789zT///IUxKE/MLwDUB8UUgGF03XXXpdlmm630ALgye++9d/r999+zNakld9xxR2F7jT/++Omzzz7LWgC0r8MPP7wwDuWJeSbmGwBqm2IKwF8YNGhQ2mCDDUoPeiuz8sorp/79+2drUqs233zzwrbbZpttsqUA7e+1115La6+9dmEsyhPzTsw/ANQmxRSAoTj22GNLb1pamamnnjpdeOGF2VrUuo8++iiNNdZYhe147733Zi0AOkZ8HXSGGWYojEeRmH9iHgKg9iimAJSIk+qFF1649OC2Mrvttlv6z3/+k61JvTjppJMK23KRRRbJlgJ0nF9//TXtsccehTEpT8xHir0AtUUxBaCVL7/8Mm233XalB7OVWW655dKTTz6ZrUk9WmyxxQrb9YQTTsiWAnSsp556qmVuqRyX8sT8FPMUAJ1PMQUgc/bZZ6dJJpmk9AC2daJNv379srWoZ/fff39h+44xxhjpgw8+yFoAdLwzzzwzTTjhhIXxKRJzUMxXAHQuxRSg6T3zzDNp+eWXLz1orcwOO+yQvvrqq2xNGkHZlUibbrppthSgc/z73/9OW2+9dWF8yhPzVsxfAHQOxRSgaf3xxx8tjzAuO0itzJJLLpkeeuihbE0ayeeff176F+DbbrstawHQee6666604IILFsaoPDGPxXwGQMdSTAGa0tVXX51mnnnm0gPT1hl33HHTKaeckq1FozrjjDMK237++efPlgJ0vqOOOiqNNNJIhbEqEvNZzGsAdBzFFKCpvPnmm2m99dYrPRitzFZbbZU++eSTbE0aXffu3Qt94Mgjj8yWAnS+v5rDYlm0AaD9KaYATWNof9VrnYUWWijdfffd2Vo0i8cee6zQF6K/vPXWW1kLgNowtKsrY9yK+Q6A9qWYAjS8v/q+eZ7RRhstHXfccdlaNKNddtml0C969eqVLQWoHX9136+Y92L+A6B9KKYADeuvnoTQOhtvvHF67733sjVpVt99912aYoopCv3jhhtuyFoA1Ja/eiJdzIMxHwLQthRTgIZ05plnlj6hpTLzzjtvuuWWW7K1IKXzzjuv0E/mnHPObClAbTr77LPTJJNMUhi/IjEfxrwIQNtRTAEaylNPPZWWW2650oPJyhx++OHZWjC4FVZYodBfDjrooGwpQG368ssv03bbbVcYv/LE/BjzJAAjTjEFaAi//vpr2mOPPUoPHiuz/vrre9oBQxWXzZf1nQEDBmQtAGrXvffemxZeeOHScSwS82XMmwAMP8UUoO5dccUVaYYZZig9YGyd2WefPV177bXZWjB0e+65Z6EPrbXWWtlSgNp37LHHplFGGaUwlkVi3oz5E4Dho5gC1K3XXnstrb322qUHiZU54IADsrVg2Pzyyy9p+umnL/SlK6+8MmsBUPsGDRqUNthgg8JYlifm0ZhPAaiOYgpQl+J+J2UHhZVZY4010ssvv5ytBdW59NJLC31qpplmankkKUA9ue6669Jss81WGNPyuI8YQHUUU4C6cvvtt6f555+/9ECwdeLy5csvvzxbC4bf3//+90L/2meffbKlAPWlb9++hTEtT8yvMc8C8NcUU4C68Mknn6Qtttii9OCvMnvttVf67bffsjVhxLz44oul/ey5557LWgDUlxi/VlpppdKxLRLzbcy7AAyZYgpQ80477bQ0zjjjlB7wtU4cGD777LPZWtB29ttvv0J/W2WVVbKlAPXpvPPOS5NPPnlhfIuMN954LfMvAOUUU4Ca9fjjj6fu3buXHuS1zlRTTZUuuOCCbC1oH7POOmuh71100UXZUoD69M0336QddtihML7liXk45mMABqeYAtScn376Ke22226lB3WV2XXXXdMPP/yQrQnt55prrin0v6mnnjr9+OOPWQuA+vXAAw+kxRZbrDDO5Yl5OeZnAP6PYgpQU+LpKXGlSdmBXOssu+yy/lJGh1t33XULfbFPnz7ZUoD6d8IJJ6TRRx+9MNZFpp122pZ5GgDFFKBGvPLKKy2PMS47eGudiSeeOJ111lnZWtCxXn/99dJ++eSTT2YtAOrfu+++m/7xj3+UjneRmK9j3gZoZoopQKc75JBDSg/WKtO7d+/05ZdfZmtB5zj00EMLfbNHjx7ZUoDGceONN6Y555yzMOblifkboFkppgCd5pZbbklzzTVX6QFa6yy++OLpwQcfzNaCzjf33HMX+unZZ5+dLQVoLAcccEBhzMszzzzztMznAM1GMQXocB9++GHadNNNSw/KWiceh3zyySdna0HtuOmmmwr9ddJJJ01ff/111gKgsbz44otp1VVXLYx9eWJej/kdoFkopgAdKoojY445ZumBWOtsueWW6eOPP87WgtpTdj+BHXfcMVsK0JguvPDCId4ofuyxx/ZHEKBpKKYAHeKRRx5p+bpO2cFX63Tr1i3ddddd2VpQu95555006qijFvrwww8/nLUAaEzff/992nnnnQvjX54ll1yyZd4HaGSKKUC7+uGHH9Iuu+xSerDVOnFSeuyxx2ZrQX045phjCn05TiIAmkEUj2PMqxwH88T8H8cBAI1IMQVoNxdddFHLfSTKDrBaJ74uEX/lh3q04IILFvr0qaeemi0FaHzx1Z6xxhqrMBZG4itBcTwA0GgUU4A291c3qcsTTwC4+eabs7WgPt15552Fvj3eeOOlTz/9NGsB0Pg++OCDod5cfrXVVms5PgBoFIopQJs68MADSw+iKnPYYYdla0D922KLLQp9fOutt86WAjSPeExy2ePj88RxAkAjUEwB2sSNN96YZp555tIDp9ZZd9110xtvvJGtBY0hnjwVj/Ku7O/33HNP1gKguRx88MGFMTHPXHPN1XLcAFDPFFOAEfLee++VPiK2MrPNNlu65pprsrWg8cQ9Ayr7/cILL5wtBWg+r7zySlp99dULY2OeOH6I4wiAeqSYAgy3E044ofTRsJXZf//9szWgsZU9/vv444/PlgI0p0suuSRNO+20hfExMsYYY7QcTwDUG8UUoGoPPvhg6tq1a+lBUevEX6NeeumlbC1ofA888EBhPxh99NH95RVoej/++GPaddddC2NknsUWW6zl+AKgXiimAMPsm2++STvuuGPpQVDrTD/99Omyyy7L1oLmsv322xf2iU022SRbCtDcHnvssdS9e/fCOJknjjPieAOg1immAMPk/PPPTxNMMEHpgU/r7LnnnumXX37J1oLm88UXX6SJJpqosG/ceuutWQsATjvttDTuuOMWxsrI5JNP3nLcAVDLFFOAoXruuefSsssuW3qw0zorrrhieuaZZ7K1oLmdeeaZhX1kvvnmy5YCEOJJaGWPls+z8sortxyHANQixRRgiPbbb7/Sg5vWmWKKKfz1CEqUFSGPOOKIbCkAudtvv72l4Fw5ZuaJ4xGAWqOYAhRcd911Q7zrfuvssssu6fvvv8/WAlp7/PHHS/ebgQMHZi0AaO2www4rHTcjs88+e8vxCUCtUEwB/uvtt99Oa621VulBTOsss8wyLTeQA4bun//8Z2H/WX/99bOlAFR67bXXhnosssEGG7QcrwB0NsUUoMWxxx6bRh555NIDlzxxU824FwQwbOLKrSmnnLKwL/nrKsDQXX755WmGGWYojJ+RUUcdteW4BaAzKaZAk7vvvvvSnHPOWXqw0jrxuNd4Sgm17bvvvktvvPFGevDBB1sORI8//vh03HHHtfx3/Nvrr7/e0oaOE/cUqtyf5phjjmwpAEMSTwfcfffdC2NonoUXXrjlOAagMyimQJP68ssv05Zbbll6cNI6iy22WLr//vuztahFcQ+Ok046KfXo0aN0G5alZ8+e6eSTT3b/jg4ST7uq3AYHHnhgthSAoXnyySfTcsstVxhH88QffOK4BqAjKaZAEzrnnHPSOOOMU3pAkmfsscduOUGndl1xxRVpwQUXLN1+1SR+Rvws2s+zzz5b+tm/8sorWQsA/kp81XiCCSYoHU8nmWSSluMbgI6imAJN5JlnnkmLLLJI6UFI62yxxRbpo48+ytai1tx9992pe/fupdtuRBI/M3427WOvvfYqfOZrrrlmthSAYfHZZ5+lrbfeujCe5llhhRVajncA2ptiCjSBP/74I+2xxx6lBx2ts8ACC6Q777wzW4ta8+OPP6Z11lmndNu1zqyzztpSGIknHvTp06cl8d/xb7GsbJ3WideI16Jt/frrr6U3U4z72QBQnbvuuqvluKVyTM2zzz77tBz/ALQXxRRocFdffXWafPLJSw808owyyijp6KOPztagFr388supa9eupdsvEn+JO+WUU9KgQYOyNYYs2kTb5ZdfvvRnReK14jVpW5dddlnhs55xxhnTb7/9lrUAoBpHHnlkGmmkkQpja2SWWWZpOQ4CaA+KKdCg4saiQztZzrPRRhult99+O1uLWnTzzTen8ccfv3T7bbzxxmnAgAFZy+rFuvEzyn52vGa8Nm1r9dVXL3zWe++9d7YUgGq9+eabad111y2MrXnWW289N1wH2pxiCjSgof2VJs/cc8+dbrrppmwNalUUM8q2X1yJ8sgjj2StRlz8rPiZZa+loNK2XnrppdLPuX///lkLAIbHVVddlWaeeebSMbZLly7pqKOOyloCjDjFFGggcfPQmWaaqfQgonUOPfTQbA1qWXzNpuyKlHgEZHvp3bt34fXiPfjKT9vaf//9C5/zyiuvnC0FYHj9/vvvLVf7VY6xeeIJdm62DrQFxRRoAP/+979bLmEtO2honbix6GuvvZatRS2LG8CW3SPluOOOy1q0n3iNyteN9+KmtG1r9tlnL3zOF154YbYUgBHxr3/9a6hfd95mm21ajp8AhpdiCtS5s846K4055pilBwp54gkubsBWX8qe2tMRhZRcWUEl3hNt59prry18xlNNNVX64YcfshYAjKizzz47TTzxxIXxNjLhhBO2HEcBDA/FFKhTTz31VJp33nlLDw5aZ7/99svWoF7E5ceV2zG+ftPR4utEle/DpdFtq+yKsl133TVbCkBb+OKLL9J2221XGG/z9OjRo+W4CqAaiilQZ3799deWS1PLDgZaZ7XVVksvvvhithb1pHv37oNty7gxbGepvCltvDfazhtvvDHY55vniSeeyFoA0FbuvffetNBCC5WOu5E999yz5TgLYFgopkAdueKKK1ouSS07AMgz3XTTpUsuuSRbg3oT27hym7blU3uqFa9d+X7iPdJ2DjvssMJnvNxyy2VLAWhrxxxzTBpllFEKY29kxhlnNM8Bw0QxBerA66+/nhZffPHSSb919thjj/Tzzz9na1GP4ikDrbfpxhtvnC3pPPEeWr+neI+0rXnmmWewzzjSr1+/bCkAbW3QoEGpV69ehbE3z9prr91y/AUwJIopUOP22muv0km+deKrGHHXeurbwIEDC9t2wIAB2dLOE++h8n3Fe6Xt3HLLLYXPeJJJJklfffVV1gKA9hA3A59tttkKY3Ceww8/PGsJMDjFFKhRd9xxR5p66qlLJ/Y8k08+eTrvvPOyNah3J5988mDbNx7pWCsq751y0kknZUtoK5VXAEV22GGHbCkA7alv376FMTjP/PPP33JcBtCaYgrUmE8++SSttNJKpZN56+y8887p22+/zdaiEfTs2XOwbXzKKadkSzpfvJfW7y2efEDbevfdd9Noo4022OccefDBB7MWALSn/v37D/UYbMstt2w5TgMIiilQQ44++ujSk6nWiaepPProo9kaNIrvvvuusK3j+9y1It5L5fuL90zbOvbYYwuf8xJLLJEtBaAjxFW/k002WWE8jow33njp9NNPz1oCzUwxBWrA448/nmadddbSSTvP+OOPn84444xsDRpN3OSu9faO/lBrKvtoPNaXttetW7fBPudILV2lBNAMvv7665avWlaOx3mWWWaZluM3oHkppkAn+umnn9L6669fOkm3zrbbbps+//zzbC0aUXyVo/U2jyuQak28p9bv0ddP2sddd9012OccGXfccV1aDtAJHnjggbTooosWxuU8u+22W8vxHNB8FFOgk5xzzjktJ0hlE3OemLzvu+++bA0a2eWXXz7Ytt9ggw2yJbUj3lPr9xjvmfYR38tv/VlHttpqq2wpAB3t+OOPT6OPPnphbI5MN9106dJLL81aAs1CMQU6WDxmNu4KXzYZ5xlzzDHTiSeemK1BMzjuuOMG6wN9+vTJltSOeE+t32McWNI+4iqUsmLr3XffnbUAoKPFjcI32mijwticZ4011mg5zgOag2IKdKD4uk7Z5Ns6m2++efrwww+zNWgWUTxr3Q/22GOPbEntqCymRAGI9lP5BKVI3E8FgM51ww03pDnnnLMwRuc55JBDspZAI1NMgQ4Qk+4kk0xSOuHm6dq1a7r99tuzNWg2V1555WD9If7yVWt8zafjxZN8Wn/mkXjiDwCd74ADDiiM0XnmmWeedOutt2YtgUakmALtKK4wWXLJJUsn2TxdunRJRx11VLYGzeqhhx4arF/EUwJqjRvQdrzKGxNH4vHpcak5AJ3vhRdeSKuuumphrM6z2WabueIYGpRiCrSTvffeO4088silE2ueDTfcMA0aNChbg2YWjxlu3Tdmm222bEntqHw0cjzOmfbXu3fvwT73yMYbb5wtBaAWXHjhhWnKKacsjNeRscce2yPuoQEppkAbe+SRR9K0005bOpnmmWOOOdKNN96YrQEpfffdd4V+UkuFtngvle8v3jPt78svv0wTTzxx4fO/5ZZbshYA1IKYF3feeefCeJ1nqaWWajlOBBqDYgq0kR9++CGtvPLKpZNn6xx88MHZGjC4Hj16DNZXaumvWJU3Q+3Zs2e2hI7Qr1+/wT7/yLzzzpstBaCWPPzww6X3vMqzyy67tBw3AvVNMQXaQNzzJB5nXDZh5ll77bXTq6++mq0BRSeddNJgfWaFFVbIlnS+5ZdffrD3dvLJJ2dL6CjLLbfcYNsgcvjhh2dLAag1Ma+PNdZYhbE7MvXUU6eLLrooawnUI8UUGAEvvfRSmn322UsnyTwzzDBDuuqqq7I1YMgGDhxY6D8DBgzIlnaeeA+V7yveKx3riSeeKGyHSNxvB4Da9MEHH6RNNtmkdPyOrLbaai3Hk0D9UUyB4dSrV6/SSbF1+vbtm/78889sDfhrCy644GB9qBZuNBrvofV7ivdI59h1110H2xaR9dZbL1sKQK26+eab09xzz10Yw/MceOCBWUugXiimQJXOPvvsNP7445dOhHniEXnPP/98tgYMuyuuuKLQnzrzZnXx2pXvJ94jnSO+Yz/VVFMVtsm1116btQCglsW98yrH8DxzzTVXuummm7KWQK1TTIFh9N5776WuXbuWTn55pphiinTxxRdna8Dw6d69+2D9qjPvnRKv3fq9xHujc11wwQWDbZNIfN0QgPrw8ssvp9VXX70wlueJK0LjuBOobYopMAy23Xbb1KVLl9IJL8/uu++efvrpp2wNGH533313oX9tv/322dKO07t378L7iPdG5yt7ctgBBxyQLQWgHlxyySVpmmmmKYznkTHGGCOdeOKJWUugFimmwFDEpfOTTTZZ6SSXJ56w8fTTT2drQNtYZ511Cn3tuOOOy5a2v3ityteP90Rt6N+/f2H7ROKvnQDUjx9//LH0flh5Fl988fTggw9mrYFaopgCJb799tu05JJLlk5qeSaccMJ0zjnnZGtA24qDq7KvlXVEQaWskBLvJd4TtWPvvfcubKe4bByA+vPYY4+lpZdeujCu59lxxx1bjk+B2qGYAhX23HPPNOqoo5ZOZHl22mmn9M0332RrQPuIqwzKbnYcX79pL/F1osrXi/fgiofa89tvv6UZZ5yxsL0uu+yyrAUA9ebUU09N4447bmFsj8S9+c4///ysJdDZFFMgE5dQTjfddKWTV55FF120U5+sQvOJRymW9cW4MWxb9sX4WZU3m80T74HadPnllxe21wwzzJB+/fXXrAUA9ebjjz9Om2++eWF8zxP3zfLUSOh8iinwv1ZaaaXSySrP2GOPnU4//fSsNXSsKGYM6XHcccf/AQMGZC2rF+vGzyj72fGaCim1b4011ihsu7322itbCkC9uu2229J8881XGOPz7LfffllLoDMoptDUjjjiiDTWWGOVTlB5ttlmm/TZZ59la0DniK/ZDO3R3Msvv3w65ZRT0qBBg7I1hizaRNshXYkSidfy1Z76ENupbBs+++yzWQsA6tlhhx1WOs5H4tH4119/fdYS6EiKKTSlOPmIyadsUsoz77zzpnvvvTdbAzpf3AC27Ck/lZl11llT9+7d0wYbbJD69OnTkvjv+LdYVrZO68RruNlsfTnwwAML2zGuuAOgMbz66qtprbXWKoz1eTbccMP09ttvZ62BjqCYQtNZb731SiehPKONNlo64YQTstZQe+6+++6WwkhZ/x2RxM+Mn019mmOOOQrb1I0KARpL3Ctr+umnL4z3kXiAQkc89Q/4P4opNI0zzzxziPedyBP3jvjggw+yNaC2XXHFFWnBBRcs7cvVJH5G/Czq23XXXVfYtlNOOWX6/vvvsxYANIJffvkl7b777oUxP88iiyyS7rvvvqw10F4UU2h4cb+T+eefv3SyyTPbbLO13OQL6tHAgQPTySefnHr27Fnav8vSo0ePdNJJJ7WsS+NYf/31C9v6n//8Z7YUgEby5JNPpmWXXbYw7ufZfvvt01dffZW1BtqaYgoNbauttkojjzxy6QQTGWmkkdKRRx6ZtYb6991336XXX3+95VHfcSlwXO57/PHHt/x3/Nsbb7zR0obG9Oabb5aOdY8//njWAoBGc8YZZ6QJJpigdPyfdNJJ0znnnJO1BNqSYgoN6aqrrmqZPMomlTxrrrlmeuutt7I1ABrD4YcfXhjv4i+XADSuuBI7/ohYOf7niSf4ecobtC3FFBrKn3/+mRZffPHSSSTPdNNN5xFyQEObb775CmPfWWedlS0FoFHdeeedaYEFFijMAXn22WefluNlYMQpptAwdtttt5a7mJdNHHkOOuigrDVA47r11lsL499EE02Uvvjii6wFAI0svsZeOQ/kmWWWWdI111yTtQSGl2IKde+ee+5J00wzTelkkWf55ZdPAwYMyNYAaHybbLJJYSyMmxEC0BziPmnrrrtuYS7IEzctdyN6GH6KKdS1+P5n2eSQZ/LJJ09XXnll1hqgebz33ntp9NFHL4yLDzzwQNYCgGYQ9xKcaaaZCvNBpEuXLunoo4/OWgLVUEyhLh188MFpzDHHLJ0U8uy9997p999/z9YAaD7xNKfKsTHuKwVAc4lj4r322qswJ+Tp1q1buvvuu7PWwLBQTKGuPPfccy3f8yybBPIsscQSLe0ASGmhhRYqjJMnn3xythSAZvKvf/0r9ezZszAv5Nlmm23S559/nrUGhkYxhbqx1lprlQ76eSaccMJ00UUXZa0BCPGXxsrxcpxxxkkff/xx1gKAZtOvX7808cQTF+aHSNyw3BPg4K8pplDzTjnllDTeeOOVDvZ5evfunX788cdsDQBa23rrrQvj5pZbbpktBaAZxRPett1228L8kKdHjx7p6aefzloDlRRTqFnvv/9+mmeeeUoH9zxdu3ZNTz75ZLYGAGU+/fTT0qL0nXfembUAoFnFkzHLvhKaZ88990y//fZb1hrIKaZQkzbddNOWu4uXDeiRscceO5199tlZawD+yqmnnloYSxdccMFsKQDN7phjjkkjjzxyYa6IzDjjjJ6QCRUUU6gpF1988RC/v5ln4403Tl9//XW2BgDDaskllyyMqXHwDADhrbfeSr169SrMFXnWWWed9Prrr2etobkpplATvvzyy7TIIouUDtp55pxzzvTwww9nawBQrYceeqgwto466qjpnXfeyVoAQErXXnttmnXWWQtzRp4jjjgiawnNSzGFTrfTTjulUUYZpXSgjow++ugtl6cDMOJ22GGHwjj7j3/8I1sKAP/fvvvuW5gz8sS9C++4446sJTQfxRQ6zW233ZamnHLK0sE5z5prrtly40QA2kZ8TXLSSSctjLc333xz1gIA/r/+/funFVdcsTBv5ImnwzlepxkpptDhfvjhh7TsssuWDsZ54iZXcWdxANpe3MC7ctyNp6cBwJCce+65abLJJivMH5Hxxx8/nX766VlLaA6KKXSo/fbbL4022milg3Ak7iB+2GGHZa0BaC89evQojMGHHnpothQAiuLqxt69exfmjzzLLLNMeuKJJ7LW0NgUU+gQTz75ZJphhhlKB908yy+/fHrvvfeyNQBoTzEul43FntIAwF+5//7706KLLlo6j0T69OmTfv7556w1NCbFFNrVr7/+mlZbbbXSQTbPVFNNlW699dZsDQA6ym677VYYk9ddd91sKQAM3fHHHz/Eq86nm266dNlll2UtofEoptBujj322DTWWGOVDq559thjj6w1AB3tP//5T5p66qkLY/M111yTtQCAoYvH62+00UaFuSRPPFBiwIABWWtoHIoptLmXX345zTHHHKWDaZ4lllgiDRw4MFsDgM5y0UUXFcbo2WabLVsKAMPmhhtuGOo5gPty0WgUU2hTG2ywQengmWeSSSZJ1113XdYagFqwyiqrFMbr/fffP1sKAMMu5o/KOSXPvPPO6+v9NAzFFNrEOeec0/JItLJBM892222XtQagljz33HOl4/aLL76YtQCAYffCCy+UFurzbLbZZumjjz7KWkN9UkxhhLz55pupa9eupYNknlj+yiuvZGsAUIv22Wefwvj997//PVsKANW74IIL0pRTTlmYXyLjjDNOOuWUU7KWUH8UUxhu22yzTenAmGe88cZL559/ftYagFr2+++/p5lmmqkwll966aVZCwCo3nfffZd22mmnwvySZ6mllkqPPvpo1hrqh2IKVbv22mtb7n1SNhjmiTt6//bbb9kaANSDK664ojCeTz/99OmXX37JWgDA8HnooYdaHkJROc/k+ec//9nylDmoF4opDLN33303Lb744qWDX54555wz9e/fP1sDgHqz1lprFcb2PffcM1sKACPmpJNOSmOOOWZhronE4/ovvvjirCXUNsUUhkmfPn1Sly5dSge9yFhjjZVOOOGErDUA9WrAgAGl4/wzzzyTtQCAEfP++++nTTbZpHS+icQ9u1566aWsNdQmxRSG6u67705TTTVV6SCXZ/XVV3dJHkADOeiggwpj/QorrJAtBYC2cfPNN6e//e1vhTknT8xHUKsUUyj1ySefpJ49e5YOanlmnHHG9MQTT2RrANBI4mubleP+eeedly0FgLZTVsTPE8WWm266KWsJtUMxhYJDDjkkjTrqqKWDWWS00UZLBx54YNYagEZ0/fXXF8b/KaaYouWpDADQ1l5++eWWr/dUzj15Nt5445avB0GtUEzhv+IO23G1SdngladHjx7pq6++ytYAoJH16tWrMA/ssssu2VIAaHtxA9ppppmmMP9E4sa1J554YtYSOpdiCi3FkTXXXLN0wMoT90256667sjUAaAYDBw5MI400UmFOeOyxx7IWAND24n6M8ajkyvknTzxhNP4QDJ1JMaXJnXzyyUN8NFlk5JFHbhnIAGhORx55ZGFuWGaZZbKlANB+Hn300bT00ksX5qE8O+20U/r222+z1tCxFFOa1JNPPll6c8HWWWyxxVpuRAtAc5t//vkLc8QZZ5yRLQWA9nXqqaemccYZpzAXReJ+XhdccEHWEjqOYkqTiUvm4uZNZQNRnkkmmSRdccUV2RoANLvbbrutMFdMOOGE6fPPP89aAED7+uijj9Lmm29emI/yrLLKKun555/PWkP7U0xpIhdeeGEad9xxSwefSHwvfsstt8xaA8D/t+mmmxbmje222y5bCgAdIwr88847b2FOyrP//vtnLaF9KaY0gf79+6cFFligdLDJM99886V33303WwMABhePoxxjjDEK88f999+ftQCAjnPooYcW5qQ8c8wxR8sj/qE9KaY0sN9//z317t27dIDJM9544/neOwDD5Pjjjy/MI3F/LQDoDK+++upQn0q64YYbpnfeeSdrDW1LMWUIBg0alGaeeebs/9WfuOfJRBNNVDqo5FlvvfWy1gAwbBZZZJHCfHLSSSdlSwGg41122WVp+umnL8xPkdFGGy0dd9xxWcv6F+ep/fr1SyuuuGLL/cvy3zP+u1evXunKK6/MWv6f22+/PR1zzDHZ/6MtKaYMQd++fVs6ZWVnrHWvvPJKWmKJJf67U5VlttlmSy+//HK2BgAMu3vvvbcwr4w99tjpww8/zFoAQMf7+eefU58+fQpzVJ74Y0A9fzU1iiitv3XQrVu3liJJPD46T/z/+Pe4KCDOY7/44ouWootiSvtQTCkRnS6v8kXnqxd77bXXf3eusow11ljpiCOOyFoDwPDZZpttCnNMPGEBADrbE088kZZddtnCPJUnChJfffVV1ro+RGEkPz+NYkkUToYmlre+akUxpX0oppSIy6byjhf5q87a2eLmSlNOOeVg77kyK6+8ctYaAEbMZ599lsYff/zCXHPHHXdkLQCgc8V9Icvmqsikk06azj333KxlbYtCSv6+o5ASf/gfFtEurlCJ9erpAoF6ophSIu90eaJ6WYsGDhyYevbsOdh7rcx0002X7rvvvvTbb7+1aeLmtm2ZP/74o03z559/tmkAGNxpp51WmHPiyXEAUCs+/fTTtNVWWxXmqzxRZHj22Wez1rUn7neSv9e40mRYCym5F1544b+/J21PMaVCXvmLql/ecSPxHbVaEl/Xaf3+pL4y0kgjtWm6dOnS5hl55JHbNKOMMkqbZtRRR23TxM3J2jKjjz56myYeSduWGXPMMds08TXCtkzcg6OtM84447Rpxh133DZNPF2tLRN/jWvLTDDBBIXEvlg5vh199NHZTAUAteHOO+9MXbt2LcxZefbdd9+a+wNq61tPROLbE8MjLgxQTGkfiikVoqNFp43iSesdrFa+Z3brrbcO8U7VIiIinZ0osLz99tvZrAUAtWNof5CeddZZ0zXXXJO17HytbzY7PFel5OK8Ni4UoO0pprQS90aJzpoXTio7cGd6//33h/oMdRERkVrJRhttlM1eAFBb3njjjbTOOuuUzl+R9ddfP7311ltZ684RhZPW7ykeeTwiRnR9yimmtJIXT/Kv9OTFlTyd9ZjkeC562aXUIiIitZqbbropm8UAoPbEud1MM81UOofFV9Q782urrW86Gxner/jQvhRTMvnXeipvNtv6ZrSdcXnU7rvv3vLd9/w9VCa+8rP00kun5ZZbboQTjxCr9SyzzDI1ne7du9d8or/UcpZaaqmazpJLLlnzWWKJJWo6iy++eM1nscUWq+ksuuiidZGDDjpIRESkZnPggQe2HJuUnWdF4vzvnnvuyc7MOk5cSdL6fdT602WblWJKJr7aU9ZRK6uCHdWRP//887TtttsO9toiIiIiIiLSsYnzsjg/6yiVD0OJp/JQexRT/ld+p+SyK08q76JceeVKezjrrLPSRBNNNNgOJCIiIiIiIp2TOD/rqK/bVL42tcmW+V/51SdDuidK3759B+vM7fWY5Keffjr17NlzsNcSERERERGR2kicr8V5W3uqfE1qky3zv+K+KEN7Wk9HPCa5f//+pd/jExERERERkdpKnL+1l9bfjIgM72ORaV9NX0y5/fbbh6lAsuKKK/63M3f2Y5IBAABoTK3PPSNuQFubmr6YUtlRhzVD+koQAAAADK/K20w496xNTV1MibsiR+eMR09Fte+v0voxyfHfAAAA0Jbyb0/k6YiHoFC9pi6mRKeMzjmsN5TNH5+cJwosAAAA0JZa/yE/bjPhvim1p2mLKdEZo2PGVSnDqvIxydWsCwAAAMMif+JsnhF5CEo80jmudqFtNW0xJb/KpNqrSzrqMckAAAA0r/jjfX7eGX/Uj9tUVCuKMnGfUNpeUxZT8itMunXrlv3LsKt8TLLvrwEAANDW4rw1zlmHt6AShZRY31eE2kdTFlPyq0uG91KpvDPnGZ4KIQAAAAxNZUElEuezQ/uGRCyLq1oUUtpXUxVTolO1volsVPbiu2PD2sGiXXzfrHVHzn9OVP10VAAAANpanMfGeWfr89AolkRhJZZF4lsTeeFleC8cYNg1TTEl7o3SuuNV5q/unfJX6+cBAACAthZ/vI8/4udXnbQ+D42n/8S/xx///ZG/Yzj7BwAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAGGYp/T8PCEs3krnYbwAAAABJRU5ErkJggg==
|
Placing a triangular ruler in the position shown in the figure, the two edges of the triangular ruler exactly coincide with the two edges of ∠A. What is the measure of ∠A? ( )°
|
A. 45; B. 60; C. 30; D. 90; E. No correct answer
|
C
|
97
|
iVBORw0KGgoAAAANSUhEUgAABIcAAAHJCAYAAAAfG1kgAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAEuKSURBVHhe7d0FmOXk2T/gD3d3dy22sLizi1Pc3R2Ky+JatLi7tzjF3bW4w+JairRQSvH3/3/mS/jOnGR9zsw5J/d9Xb+rdPPmTOYkeZM8k7z5nwQAAABAZSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAAAABAhSkOAQAAAFSY4hAA0OX+53/+Z4jTu3fvtN5666Wzzz47vf3229knAQDQaIpDAEDDXHXVVWm88cbrVASK4s/DDz/8W2699dZ07LHHdhSHatv169cvffHFF9knAQDQKIpDAEBD7bDDDp2KPgMThaLaYlIUjBSIAAAaS3EIAGiouCtocItD4fnnn+/UPopLAAA0juIQANBQQ1ocCvV3GxmDCACgcRSHAICGGpriUDxeVjtPjF0EAEBjKA4BAA01NMWhGKi6dp74DAAAGkNxCABoqKEpDsWdQrXzxJ1EAAA0huIQANBQQ1McWn755X9rH28v88YyAIDGURwCABpqSItD/fr169TeeEMAAI2lOAQANFR9cSheVV8v3kYWRaDaO4YiZ599dtYCAIBGURwCABqqvjg0OOndu7fX1wMAdBPFIQCgoeqLQzG4dLyNrDbRZr311uvUboYZZuj4d+MNAQA0luIQANBQ9cWhgYm7heqLRHEXkQIRAEDjKA4BAA01JMWhXH2BKMYiAgCgMRSHAICGGpriUNwpVDtPpGwgawAAhp3iEADQUENTHAr1dw/F5wAA0PUUhwCAhhra4lD9fIpDAACNoTgEADTU0BaH+vXr12m+s88+O5sCAEBXUhwCABpqaItD8Sr72vniTWYAAHQ9xSEAoKGGpjgUdwnVzrPDDjtkUwAA6GqKQwBAQ0Vhp7bQMyj1haHevXt3vL0MAIDGUBwCABrmqquu6lToiUSxKO4mevjhh3/Lrbfe2jHGUP2jZPHGMoUhAIDGUhwCALpcbYFnSBJ3CS2//PIdxSNjDAEAdA/FIQAAAIAKUxwCAAAAqDDFIQAAAIAKUxwCAAAAqDDFIQAAAIAKUxwCAAAAqDDFIQAAAIAKUxwCAAAAqDDFIQAAAIAKUxwCAAAAqDDFIQAAAIAKUxwCAAAAqDDFIQCgR9x1112pd+/eHf8LAEDPURwCALrV559/nrbddtv0P//zP78l/n/8OwAA3U9xCADoNmeffXYaf/zxOxWG8sS/x3QAALqX4hAA0HBPPvlk6tu3b2lRqD7RLtoDANA9FIcAgIb56aef0j777FNaBIqMMcYYpf8eiflifgAAGktxCABoiKuuuipNP/30pYWfEUYYIR1zzDEd7eJ/4/+XtYv543MAAGgcxSEAoEu98cYbaa211iot9kTWXXfd9NZbb2Wt/1f8//j3svaR+Lz4XAAAup7iEADQZY466qjS4k5kpplmSldffXXWslxMj3Zl80fi8wEA6FqKQwDAMLv99ttTr169Sgs6kf333z/9+uuvWeuBi3bRvuxzIvFz4ucBANA1FIcAgKH297//PW211ValRZzI8ssvn55++ums9ZCJ+WL+ss+NxM+Nnw8AwLBRHAIAhsoZZ5yRxhlnnNLCzUQTTZTOO++8rOWwic+Jzyv7OfHzYzkAABh6ikMAwBB57LHH0tJLL11arInssMMO6auvvspad434vPjcsp8XieWJ5QIAYMgpDgEAg+X7779Pe+yxR2lxJrLgggume++9N2vdGPH58XPKfn4kli+WEwCAwac4BAAM0uWXX56mmWaa0oLMyCOPnI4//visZfeInxc/t2x5YjljeQEAGDyKQwDAAL366qtp9dVXLy3CRDbYYIP07rvvZq27V/zc+PllyxWJ5Y7lBwBg4BSHAIBShx9+eGnRJTLrrLOm6667LmvZs2I5YnnKljMSvwcAAAOmOAQAdHLLLbekueaaq7TQEjnwwAOzls0llqtseSPx+8TvBQBAkeIQANDh448/TptvvnlpcSWy0korpeeeey5r3Zxi+WI5y5Y/Er9f/J4AAPwfxSEAIJ166qlpzDHHLC2oTDrppOnCCy/MWraGWN5Y7rLfJ37P+H0BAPhfikMAUGEPP/xwWmKJJUqLKJGdd945ff3111nr1hLLHctf9ntF4veO3x8AoOoUhwCggv7zn/+kP/zhD6VFk8giiyySHnjggax1a4vfI36fst8zEt9DfB8AAFWlOAQAFXPJJZekKaecsrRQMtpoo6U//elPWcv2Er9X/H5lv3d8H/G9AABUkeIQAFTESy+9lH7/+9+XFkciG2+8cfrggw+y1u0pfr/4Pct+/0h8P/E9AQBUieIQAFTAIYccUloMifzud79LN954Y9ayGuL3jd+77PuIxPcFAFAVikMA0MZuuukmRZCBGFTRLL4/AIB2pzgEAG0oHp/aZJNNSosekXh86sUXX8xaV1t8DwN73C6+x3Z/3A4AqDbFIQBoMyeddNIAB16eYoopDLw8APG9xPdT9r3F9xnfKwBAO1IcAoA2Ea9sX3TRRUuLGxGvbB+0Qb3iP77fdnnFPwBATnEIAFrcN998k3beeefSYkZk8cUXTw8//HDWmsER31d8b2XfZyS+7/jeAQDageIQALSwCy+8ME022WSlBYwxxxwznXLKKVlLhkZ8f/E9ln2/8b3H9w8A0OoUhwCgBT3//PNppZVWKi1aRDbbbLP08ccfZ60ZFvE9xvdZ9j1HYj3E+gAAaFWKQwDQYg488MDSIkVkrrnmSjfffHPWkq4U32t8v2XfeyTWCwBAK1IcAoAWcf3116dZZ521tDAROfzww7OWNFJ8z2XffyTWT6wnAIBWojgEAE3u3XffTRtuuGFpMSKy+uqrp1deeSVrTXeI7zu+97L1EYn1FesNAKAVKA4BQBM74YQT0sgjj1xagJh66qnT5ZdfnrWkJ8T3H+uhbP3Eeov1BwDQ7BSHAKAJ3XvvvWmhhRYqLTpE9thjj/T9999nrelJsR5ifZStp0isx1ifAADNSnEIAJrIP//5z7TDDjuUFhkiSy21VHrsscey1jSTWC+xfsrWWyTWa6xfAIBmozgEAE3ivPPOSxNPPHFpYWGcccZJp59+etaSZhbrKdZX2XqM9RvrGQCgmSgOAUAPe+aZZ9Lyyy9fWkyIbLnllunvf/971ppWEOsr1lvZ+ozE+o71DgDQDBSHAKAH7b///qXFg0ivXr3SbbfdlrWkFcX6i/VYtn4jsf4BAHqa4hAA9IBrrrkmzTTTTKUFg8hRRx2VtaQdxPosW8+R2A5iewAA6CmKQwDQjd5666203nrrlRYJImuttVZ6/fXXs9a0k1ivsX7L1nsktovYPgAAupviEAB0k2OPPTaNMMIIpYWB6aabLl111VVZS9pZrOdY32XbQWwfsZ0AAHQnxSEAaLC77rorzT///KXFgMjee++dfvrpp6w1VRDrO9Z72fYQie0lthsAgO6gOAQADfLFF1+kbbfdtvTiP9KnT5/05JNPZq2polj/sR2UbR+R2H5iOwIAaCTFIQBogLPPPjtNMMEEpRf8448/fjrrrLOylpA6tofYLsq2l9iOYnsCAGgUxSEA6EJPPfVU6tu3b+lFfmSbbbZJn3/+edYa/k9sF7F9lG03kdiuYvsCAOhqikMA0AV+/vnntM8++5Re1Ed69+6d7rzzzqw1DFhsJ7G9lG1HkdjOYnsDAOgqikMAMIz+/Oc/p+mnn770Qn744YdPxxxzTNYSBl9sN7H9lG1Xsb3FdgcA0BUUhwBgKL3xxhtp7bXXLr14j6y77rqpf//+WWsYcrH9xHZUtn1FYvuL7RAAYFgoDgHAUDj66KNLL9YjM844Y7r66quzljDsYnuK7apse4vE9ggAMLQUhwBgCNx+++1p3nnnLb1Aj+y3337p119/zVpD14ntKravsu0uEttlbJ8AAENKcQgABsNnn32Wttpqq9KL8shyyy2Xnn766aw1NE5sZ7G9lW2HkdhOY3sFABhcikMAMAhnnHFGGnfccUsvxCeaaKJ07rnnZi2h+8R2F9tf2XYZ22tstwAAg0NxCAAG4PHHH09LL7106cV3ZPvtt09fffVV1hq6X2x/sR2WbZ+R2H5jOwYAGBjFIQCo88MPP6Q999yz9GI7suCCC6Z77rknaw09L7bH2C7LttdIbM+xXQMAlFEcAoAaV1xxRZpmmmlKL7BHGmmkdPzxx2ctofnE9hnbadn2G9t1bN8AAPUUhwDg/3v11VfTGmusUXpRHdlggw3SO++8k7WG5hXbaWyvZdtxJLbz2N4BAHKKQwBU3hFHHFF6ER2ZZZZZ0nXXXZe1hNYR221sv2XbdSS2ewCAoDgEQGXdcsstae655y69cI4ccMABWUtoXbEdl23fkdj+Yz8AAKpNcQiAyvnkk0/S5ptvXnqxHFlxxRXTc889l7WG1hfbc2zXZdt7JPaH2C8AgGpSHAKgUk499dQ01lhjlV4gTzrppOmCCy7IWkL7ie07tvOy7T/2i9g/AIDqURwCoBIeeeSRtMQSS5ReFEd22mmn9PXXX2etoX3Fdh7be9l+EIn9JPYXAKA6FIcAaGvfffdd2m233UovgiOLLLJIuv/++7PWUB2x3cf2X7ZfRGK/if0HAGh/ikMAtK1LL700TTnllKUXvqOOOmr605/+lLWE6or9IPaHsv0k9p/YjwCA9qY4BEDbeemll9Kqq65aerEb2XjjjdP777+ftQZif4j9omx/icT+FPsVANCeFIcAaCuHHnpo6cVtZPbZZ0833nhj1hKoF/tH7Cdl+08k9i8AoP0oDgHQFm666aY0xxxzlF7QRg4++OCsJTAosb+U7UeR2M9ifwMA2ofiEAAt7cMPP0ybbLJJ6UVsZJVVVkkvvvhi1hoYXLHfxP5Ttl9FYr+L/Q8AaH2KQwC0rJNOOimNPvropReuU0wxRbr44ouzlsDQiv0o9qey/Sz2v9gPAYDWpjgEQMt58MEH06KLLlp6sRrZdddd07fffpu1BoZV7E+xX5Xtb5HYH2O/BABak+IQAC3j3//+d9pll11KL04jiy++eHrooYey1kBXi/0r9rOy/S8S+2fspwBAa1EcAqAlXHTRRWmyySYrvSAdY4wx0imnnJK1BBot9rfY78r2x9hPY38FAFqH4hAATe35559PK6+8culFaGSzzTZLH330UdYa6C6x38X+V7ZfRmK/jf0XAGh+ikMANK2DDjqo9KIzMuecc6abb745awn0lNgPY38s208jsR8DAM1NcQiApnP99den2WabrfRCM3LYYYdlLYFmEftl2f4aif059msAoDkpDgHQNN5777204YYbll5cRiaffPL0yiuvZK2BZhP752qrrVa6/0Zi/479HABoLopDADSFE044IY0yyiilF5S1+fOf/5zNATSryy67LE099dSl+3Ds57G/AwDNQ3EIgB513333pYUWWqj0IrIsM844Y/r111+zuYFm9d///jftvvvupftxJPb72P8BgJ6nOARAj/jnP/+Zdtxxx9KLxkGlX79+2acAze7RRx9NSy21VOm+HIl+IPoDAKDnKA4B0O3OP//8NPHEE5deKNZn+OGHL/13r8iG1nL66aenscceu3R/jv4g+gUAoGcoDgHQbZ555pm0wgorlF4clmWDDTZIb7/9dtp///0L01ZZZZXsU4FW8emnn6Ytt9yysD/nif4h+gkAoHspDgHQLeJRsLKLwbL87ne/SzfccEM2Z0q//PJLmmGGGQrtLr300qwF0Epuu+22NM888xT26TweHQWA7qU4BEBDXXPNNWnmmWcuvQAsy2GHHZbN2Vm8pay+bbwNKQa9BVrTkUceWdiv80S/Ef0HANB4ikMANEQ8DrbeeuuVXvSVZc0110yvvfZaNne5aFM/35577plNBVrR66+/Xrpv54l+JPoTAKBxFIcA6HLHHntsGnHEEUsv9OoTr6aPu4IGx6uvvlr6GU8++WTWAmhVV155ZZpuuulK9/HoT6JfAQAaQ3EIgC5z9913p/nnn7/04q4sMa7Ir7/+ms09eA499NDC5yy77LLZVKCV/fjjj2mvvfYq7ON5on+JfgYA6FqKQwAMsy+++CJtt912pRdzZVl55ZWH6VX0s88+e+EzzzvvvGwq0OqeeOKJ1KdPn8J+nif6m+h3AICuoTgEwDA555xz0gQTTFB6AVefqaaaKl1yySXZnEPv+uuvL3z2JJNMkr7++uusBdAOzjrrrDTeeOMV9vdI9DvR/wAAw05xCICh8tRTT3U8zlV20VaWGDi6K98stv766xd+xi677JJNBdrFP/7xj7TNNtsU9vc80Q9FfwQADD3FIQCGyM8//5z23Xff0ou0ssSFWyMGjI63Fw0//PCFn/fQQw9lLYB2cuedd6b55puvsM/niX4p+icAYMgpDgEw2OKtYjPMMEPphVl9Jp544oaPA/THP/6x8HOXWGKJbCrQjmK/LysMR6J/Gty3HwIA/0dxCIBBevPNN9Paa69dejFWlp133rnbxv/p1atX4eeffvrp2VSgHfXv3z+ts846hX0/T/RX0W8BAINHcQiAgTr66KPTcMMNV3oBVp+4a6e7H+u69dZbC8sx7rjjdoxTArS3v/zlL2nGGWcs9AGR6Lei/wIABk1xCIBSd9xxR5p33nlLL7rqM8444/To3TqbbbZZYZm23XbbbCrQzn755Ze03377FfqAPNGPRX8GAAyY4hAAnXz22Wdp6623Lr3IKku8Rain79L58MMP02ijjVZYtnvuuSdrAbS7v/3tb2m55ZYr9AN5ol+L/g0AKFIcAuA3Z555ZscjWWUXVvVZcMEF0913353N2fNOPPHEwjIutNBC2VSgKs4999w04YQTFvqDSPRv0c8BAJ0pDgGQHn/88bTMMsuUXkzVJ+7QiUJMM4piUP3yNuuyAo3z5Zdfpu23377QH+SJ/i76PQDgfykOAVTYDz/8kPbaa6/Si6eyxNg+8QhXs4rHyOqXOYpZzbzMQONEn7DAAgsU+oU8e+65Z0c/CABVpzgEUFFXXHFFmnbaaUsvmOozzzzzdLwVrBXEQNT1yx9FLaC6jjvuuDTSSCMV+oZI9IPRHwJAlSkOAVTMa6+9ltZYY43Si6T6DD/88C33KugYHLts3KRWKW4BjfHOO++k9ddfv9A35Il+MfpHAKgixSGACjniiCNKL4rKEhdRb731VjZna4nX6tf/Pr169cqmAlV27bXXpllmmaXQR+SJfhIAqkZxCKAC4q6Zueeeu/RCqD6zzTZbuv7667M5W9cSSyxR+N3++Mc/ZlOBqjvggAMKfUSe6C/dbQhAlSgOAbSxTz75JG2xxRalFz9lOeSQQ7I5W9/DDz9c+P3iMblWvRsK6HrPPvtsWnHFFQt9RZ7oP6MfBYB2pzgE0KZOO+20NNZYY5Ve8NQnxtp45ZVXsjnbxy677FL4XeNxOYBaF1xwQZpkkkkK/UUk+tHoTwGgnSkOAbSZRx55JC255JKlFzn1mWGGGdJVV12Vzdl+vv7669ILvnZ4bA7oWv/617/STjvtVOgv8kS/Gv0rALQjxSGANvHdd9+l3XbbrfSipiz7779/+uWXX7K529d5551X+N1nn332bCpAZ/fff39aeOGFC/1Gnuhno78FgHaiOATQBi699NI01VRTlV7I1GellVZKzz33XDZnNSy77LKF7+HQQw/NpgIUnXjiiWnUUUct9B2R6G+j3wWAdqE4BNDCXn755bTqqquWXrzUZ8opp0wXX3xxNme1PPnkk6Xfyauvvpq1ACh6//3300YbbVTaf0Si/41+GABaneIQQIuKO1/KLlbKsscee1T+MYg999yz8L3EQNwAg3LDDTd0PI5a34fkcSciAK1OcQigxfz1r39Nc8wxR+kFSn369OmTnnjiiWzOavv+++/T1FNPXfiO2nlAbqBrHXzwwYU+JE/0y9E/A0ArUhwCaBEffvhh2nTTTUsvSuoz0UQTpXPOOSebk1yMEVL/XcUb26owMDfQNV544YW0yiqrFPqSPNFPR38NAK1EcQigBZx88slp9NFHL70QqU+8ivmf//xnNif1yi7q4s1tAEMixnCbfPLJC/1JJPrr6LcBoFUoDgE0sQcffDAttthipRcf9Vl88cU72jNwzz//fOn3V7U3uAHD7ttvv0277rpraZ8Sif5bvwxAK1AcAmhC//73v9Muu+xSerFRn7HHHjuddtpp2ZwMjn79+hW+x5VXXjmbCjBkHnrooYEW8qM/j34dAJqV4hBAk7nooosG+KhCfbbeeuv02WefZXMyJGacccbC93nJJZdkUwGGXDxKNsYYYxT6lkj069G/A0AzUhwCaBIxyGncvVJ2UVGfBRZYIN11113ZnAyNv/zlL4Xvdcopp6z8K/+BYfPRRx8N9OUB0c9Hfw8AzURxCKAJHHTQQaUXEfUZddRR0wknnJDNxbBaa621Ct/xHnvskU0FGHrxWvs555yz0MfkiX4fAJqF4hBAD7rhhhvSbLPNVnrhUJ9NNtkkffDBB9mcdIXXXnut9Lt+4oknshYAw+awww4r7Wci0f/HcQAAepriEEAPeO+999JGG21UerFQn7nnnjvdfPPN2Zx0tbILt759+2ZTAYbdyy+/nFZbbbVCX5MnjgdxXACAnqI4BNDNTjzxxDTKKKOUXiDUZrjhhktHHXVUNheN9Lvf/a7w/Z977rnZVICucdlll6Wpppqq0N9E4rgQxwcA6AmKQwDd5L777ksLL7xw6UVBfdZbb73Uv3//bE4aLR7rqF8HE088cfrXv/6VtQDoGv/973/T7rvvXuhz8sRxIo4XANCdFIcAGiwKDDvuuGPpRUB9Zp111nTddddlc9KdNthgg8L62GmnnbKpAF3r0UcfTUsuuWSh38kTxw0FagC6i+IQQAOdf/75aZJJJik98a/PwQcfnM1FT3jnnXfSiCOOWFgvDz74YNYCoOuddtppaeyxxy70PZE4fsRxBAAaTXEIoAGeffbZtMIKK5Se7Ndn9dVX7xislJ53zDHHFNbP4osvnk0FaIxPP/00bbHFFoX+J08cT+K4AgCNojgE0MX69etXenJfn+mnnz5deeWV2Vw0i3nnnbewruIv+wCNduutt6Z55pmn0AflieMLADSC4hBAF7n22mvTzDPPXHpCX5999903/fzzz9mcNJPbbrutsL7GGWec9Nlnn2UtABrryCOPLPRDeeI4E8cbAOhKikMAw+jtt99O66+/fulJfH1WXHHF9Mwzz2Rz0qw233zzwrrbZpttsqkAjffaa6+lNddcs9AX5YnjThx/AKArKA4BDIPjjjuudBDj+kwxxRTpoosuyuai2X388cdp9NFHL6zHu+66K2sB0D3i8eNpp5220B9F4vgTxyEAGFaKQwBD4e67704LLLBA6cl6fXbffff0n//8J5uTVnHSSScV1mWsc4Du9uOPP6a99tqr0Cflib4pjksAMLQUhwCGwJdffpm222670pPz+iyzzDLp8ccfz+akFS288MKF9XrCCSdkUwG61xNPPNFxbKnvl/LE8SmOUwAwpBSHAAbTOeeckyaccMLSE/LaRJuzzz47m4tWdu+99xbW76ijjpo++OCDrAVA9zvzzDPTeOONV+ifInEMiuMVAAwJxSGAQfjb3/6Wll122dKT8PrsuOOO6auvvsrmpB2U3Sm26aabZlMBesY//vGPtPXWWxf6pzxx3IrjFwAMDsUhgAH45ZdfOl45X3bSXZ/FFlssPfDAA9mctJPPP/+89C/0t9xyS9YCoOfccccdab755iv0UXniOBbHMwAYGMUhgBJ/+ctf0gwzzFB6ol2bscYaK51yyinZXLSrM844o7Du55lnnmwqQM/74x//mIYbbrhCXxWJ41kc1wBgQBSHAGq8+eabaZ111ik9ua7PVlttlT799NNsTtrdkksuWdgGjjrqqGwqQM8b1DEspkUbAKinOASQGdhfXWsz//zzpzvvvDObi6p45JFHCttCbC/9+/fPWgA0h4Hd/Rr9VhzvAKCW4hBQeYMaryHPyCOPnI4//vhsLqpo1113LWwX6623XjYVoHkMaty8OO7F8Q8AguIQUFmDetNLbTbeeOP0/vvvZ3NSVd98802adNJJC9vHddddl7UAaC6DeuNmHAfjeAhAtSkOAZV05plnlr6Bqj5zzTVX+utf/5rNBSmdf/75he1kttlmy6YCNKdzzjknTTjhhIX+KxLHwzguAlBdikNApTzxxBNpmWWWKT05rs+RRx6ZzQWdLbfccoXt5ZBDDsmmAjSnL7/8Mm233XaF/itPHB/jOAlA9SgOAZXw448/pr322qv0ZLg+6667rre5MFDxmEbZtvPyyy9nLQCa1913350WWGCB0n4sEsfLOG4CUB2KQ0Dbu/LKK9O0005begJcm1lmmSVdc8012VwwcHvvvXdhG1p99dWzqQDN77jjjksjjjhioS+LxHEzjp8AVIPiENC2XnvttbTmmmuWnvTW56CDDsrmgsHzww8/pGmmmaawLbmYAlrJ22+/ndZff/1CX5YnjqNxPAWgvSkOAW0pxgsqO8mtz2qrrZZeeumlbC4YMpdddllhm5p++unTzz//nLUAaA3XXnttmnnmmQt9Wh7j8AG0N8UhoK3ceuutaZ555ik9sa1N3C5/xRVXZHPB0Pv9739f2L7222+/bCpAa+nXr1+hT8sTx9c4zgLQfhSHgLbw6aefpi222KL0ZLY+++yzT/rpp5+yOWHYvPDCC6Xb2bPPPpu1AGgt0X+tsMIKpX1bJI63cdwFoH0oDgEt77TTTktjjjlm6QlsbeJE9+mnn87mgq5zwAEHFLa3lVZaKZsK0JrOP//8NMkkkxT6t8jYY4/dcfwFoD0oDgEt69FHH01LLrlk6UlrbSaffPJ04YUXZnNBY8w000yFbe+iiy7KpgK0pn/9619pxx13LPRveeI4HMdjAFqb4hDQcv773/+m3XffvfQktT677bZb+vbbb7M5oXGuvvrqwvY3xRRTpP/85z9ZC4DWdd9996WFF1640M/lieNyHJ8BaE2KQ0BLibdDxZ1AZSemtVl66aX9JZNut/baaxe2xbhgAmgXJ554YhpllFEKfV1kqqmm6jhOA9B6FIeAlvDyyy93vHa+7GS0NhNMMEE666yzsrmge73++uul2+Xjjz+etQBofe+9917aaKONSvu7SByv47gNQOtQHAKa3mGHHVZ68lmfHXbYIX355ZfZXNAzDj/88MK22adPn2wqQPu44YYb0myzzVbo8/LE8RuA1qA4BDStv/71r2n22WcvPeGszSKLLJLuv//+bC7oeXPMMUdhOz3nnHOyqQDt5aCDDir0eXnmnHPOjuM5AM1NcQhoOh999FHadNNNS08yaxOvrz/55JOzuaB53HjjjYXtdaKJJkpfffVV1gKgvbzwwgtp5ZVXLvR9eeK4Hsd3AJqT4hDQVKLYM9poo5WeWNZmyy23TJ988kk2FzSfsvE44nXQAO3soosuGuCLI8YYYwx/1AFoUopDQFN46KGHOh4PKzuZrE3v3r3THXfckc0Fzevdd99NI400UmEbfuCBB7IWAO3p3//+d9pll10K/V+exRZbrOO4D0DzUBwCetS3336bdt1119KTx9rERfZxxx2XzQWt4dhjjy1sy3FRBFAFDz74YEefV98P5onjf5wHANDzFIeAHnPxxRd3jMNSdsJYm3g8J+7CgFY033zzFbbpU089NZsK0P7iUbLRRx+90BdG4hG0OB8AoGcpDgHdblCDVuaJN5zcdNNN2VzQmm6//fbCtj322GOnv//971kLgPb34YcfDvRlE6usskrH+QEAPUNxCOhWBx98cOlJYX2OOOKIbA5ofVtssUVhG996662zqQDVEa+1n2OOOQp9Yp44TwCg+ykOAd3ihhtuSDPMMEPpiWBt1l577fTGG29kc0F7iDfrjTnmmIXt/c4778xaAFTLoYceWugT88w+++wd5w0AdB/FIaCh3n///dJXetdn5plnTldffXU2F7SfGHOjfruff/75s6kA1fPyyy+nVVddtdA35onzhziPAKDxFIeAhjnxxBNLX+VdnwMPPDCbA9rbIossUtj+jz/++GwqQDVdeumlaaqppir0j5FRRx2143wCgMZSHAK63P3335969epVepJXm/hr4YsvvpjNBe3vvvvuK+wHo4wyir+MA5X33Xffpd12263QR+ZZeOGFO84vAGgMxSGgy/zrX/9KO+20U+lJXW2mmWaadPnll2dzQbVsv/32hX1ik002yaYCVNsjjzySllxyyUI/mSfOM+J8A4CupTgEdIkLLrggjTvuuKUncrXZe++90w8//JDNBdXzxRdfpPHHH7+wb9x8881ZCwBOO+20NNZYYxX6ysgkk0zScd4BQNdRHAKGybPPPpuWXnrp0pO32iy//PLpb3/7WzYXVNuZZ55Z2EfmnnvubCoAId70uMUWWxT6yzwrrrhix3kIAMNOcQgYagcccEDpyVptJp10Un/dgxJlRdUjjzwymwpA7tZbb+0ooNf3mXnifASAYaM4BAyxa6+9doBvFanNrrvumv79739ncwG1Hn300dL95s0338xaAFDriCOOKO03I7PMMkvH+QkAQ0dxCBhs77zzTlpjjTVKT8pqs9RSS3UMKAkM3B/+8IfC/rPuuutmUwGo99prrw30XGT99dfvOF8BYMgoDgGD5bjjjksjjDBC6YlYnhhkN8ZSAQZP3Fk32WSTFfYlf/0GGLgrrrgiTTvttIX+MzLSSCN1nLcAMPgUh4CBuueee9Jss81WevJVm3g9d7yFieb2zTffpDfeeCPdf//9HSfWJ5xwQjr++OM7/jv+7fXXX+9oQ/eJMbnq96dZZ501mwrAgMTbT/fcc89CH5pngQUW6DiPAWDQFIeAUl9++WXacsstS0+2arPwwgune++9N5uLZtS/f/900kknpT59+pSuw7L07ds3nXzyyR3z0njxNr/6dXDwwQdnUwEYmMcffzwts8wyhX40T/wBK85rABgwxSGg4Nxzz01jjjlm6QlWnjHGGKOj4EDzuvLKK9N8881Xuv6GJPEZ8Vk0ztNPP1363b/00ktZCwAGJR5tH3fccUv70wknnLDj/AaAcopDwG/+9re/pQUXXLD0pKo2W2yxRfr444+zuWg2d955Z1pyySVL192wJD4zPpvG2GeffQrf+WqrrZZNBWBwfPbZZ2nrrbcu9Kd5lltuuY7zHQA6UxwC0i+//JL22muv0pOo2sw777zp9ttvz+ai2Xz33XdprbXWKl13tZlpppk6Cj3xRpc99tijI/Hf8W8xrWye2sTPiJ9F1/rxxx9LB1eN8aAAGDJ33HFHx3lLfZ+aZ7/99us4/wHgfykOQcX95S9/SZNMMknpiVOeEUccMR1zzDHZHDSjePyoV69epesvEn8pPeWUU9Lbb7+dzTFg0SbaLrvssqWfFYmf5ZGnrnf55ZcXvuvpppsu/fTTT1kLAIbE0UcfnYYbbrhC3xqZccYZO86DAFAcgsqKgYYHdvGfZ8MNN0zvvPNONhfN6KabbkrjjDNO6frbeOON0yuvvJK1HHIxb3xG2WfHz4yfTddaddVVC9/1vvvum00FYEi9+eabae211y70rXnWWWcdL2AAKk9xCCpoYH9FyzPHHHOkG2+8MZuDZhXFmbL1F3cKPfTQQ1mrYRefFZ9Z9rMUiLrWiy++WPo9P/PMM1kLAIbGn//85zTDDDOU9rHDDz98+uMf/5i1BKgexSGokBhMePrppy89KarN4Ycfns1BM4vHusruGIpX9jbKDjvsUPh5sQweMetaBx54YOF7XnHFFbOpAAytn3/+ueNuzPo+Nk+8odPLF4AqUhyCCvjHP/7Rcct02UlQbWKg4ddeey2bi2YWA0KXjTF0/PHHZy0aJ35G/c+NZTFIddeaZZZZCt/zhRdemE0FYFg89dRTA328fptttuk4fwKoCsUhaHNnnXVWGm200UpPfPLEG6oMyNhayt5K1h2FoVxZgSiWia5zzTXXFL7jySefPH377bdZCwCG1TnnnJMmmGCCQn8bGW+88TrOowCqQHEI2tQTTzyR5pprrtKTndoccMAB2Ry0irjdvX49xuNe3S0eX6tfDrfid62yO/522223bCoAXeGLL75I2223XaG/zdOnT5+O8yqAdqY4BG3mxx9/7LgVuuzkpjarrLJKeuGFF7K5aCVLLrlkp3UZA0X3lPpBqmPZ6DpvvPFGp+83z2OPPZa1AKCr3H333Wn++ecv7Xcje++9d8d5FkA7UhyCNnLllVd23AJddkKTZ+qpp06XXnppNgetJtZx/Tp98MEHs6ndL95iVr88sYx0nSOOOKLwHS+zzDLZVAC62rHHHptGHHHEQt8bmW666RzngLakOARt4PXXX0+LLLJI6UlMbfbaa6/0/fffZ3PRiuItKrXrdKONNsqm9JyNN9640zLFMtK15pxzzk7fceTss8/OpgLQ1d5+++203nrrFfrePGuuuWbH+RdAu1Acgha3zz77lJ601CYe/Ym3ctDa+vfvX1i3r7zySja158Qy1C9XLCtd569//WvhO44BVL/88susBQCNEC8HmHnmmQt9cJ4jjzwyawnQ2hSHoEXddtttaYoppig9UckzySSTpPPPPz+bg1Z38sknd1q/8QreZlE/9tBJJ52UTaGr1N+hFemJgcgBqqhfv36FPjjPPPPM03FeBtDKFIegxXz66adphRVWKD05qc0uu+ySvv7662wu2kHfvn07reNTTjklm9LzYllqly3e7ELXeu+999LII4/c6XuO3H///VkLABrpmWeeGeg52JZbbtlxngbQihSHoIUcc8wxpReHtYm3RT388MPZHLSLb775prCuYzyEZhHLUr98scx0reOOO67wPS+66KLZVAC6Q9yVPfHEExf648jYY4+dTj/99KwlQOtQHIIW8Oijj6aZZpqp9CQkzzjjjJPOOOOMbA7aTQx6Wbu+Y3toNvXbaLyGna7Xu3fvTt9zpJnuIgOogn/+859pxx13LPTHeZZaaqmO8zeAVqE4BE3sv//9b1p33XVLTzpqs+2226bPP/88m4t2FI8O1a7zuEOs2cQy1S6jx50a44477uj0PUfGGmssjzIA9ID77rsvLbTQQoV+Oc/uu+/ecT4H0OwUh6BJnXvuuR0XfGUnGnniZOSee+7J5qCdXXHFFZ3W/frrr59NaR6xTLXLGMtMY8S4FrXfdWSrrbbKpgLQ3U444YQ0yiijFPrmyNRTT50uu+yyrCVAc1IcgiYTrwWPt16UnVzkGW200dKf/vSnbA6q4Pjjj++0Deyxxx7ZlOYRy1S7jHGiTGPEXUJlxeO4qwiAnhEvDthwww0LfXOe1VZbreM8D6AZKQ5BE4nHw8pOJmqz+eabp48++iibg6qIYmDtdrDXXntlU5pHfXEoClo0Tv0b4iIxHhEAPev6669Ps802W6GPznPYYYdlLQGah+IQNIE4iZhwwglLTyDy9OrVK916663ZHFTNVVdd1Wl7iL9MNhuPlXW/eFNZ7XceiTeaAdDzDjrooEIfnWfOOedMN998c9YSoOcpDkEPijuAFltssdKThjzDDz98+uMf/5jNQVU98MADnbaLeAtKszEgdferH6g8MvLII3c82gBAz3v++efTyiuvXOir82y22WbuCAeaguIQ9JB99903jTDCCKUnCnk22GCD9Pbbb2dzUGXxWvjabWPmmWfOpjSP+lfZx+v3abwddtih0/ce2XjjjbOpADSDiy66KE022WSF/joyxhhjdDwqDNCTFIegmz300ENpqqmmKj05yDPrrLOmG264IZsDUvrmm28K20kzFQ5jWeqXL5aZxvvyyy/TBBNMUPj+//rXv2YtAGgGcVzcZZddCv11nsUXX7zjPBGgJygOQTf59ttv04orrlh6MlCbQw89NJsDOuvTp0+nbaWZ/spYPzhy3759syl0h7PPPrvT9x+J8SwAaD4PPvhg6ZhxeXbdddeO80aA7qQ4BN0gxgyK18+XnQDkWXPNNdOrr76azQFFJ510UqdtZrnllsum9Lxll12207KdfPLJ2RS6yzLLLNNpHUSOOOKIbCoAzSaO66OPPnqh745MMcUU6eKLL85aAjSe4hA00IsvvphmmWWW0oN+nmmnnTb9+c9/zuaAAevfv39h+3nllVeyqT0nlqF+uWJZ6V6PPfZYYT1EYrwqAJrThx9+mDbZZJPS/juyyiqrdJxPAjSa4hA0yHrrrVd6kK9Nv3790q+//prNAYM233zzddqGmmHg4Y022qjTMsUy0jN22223Tusiss4662RTAWhWN910U5pjjjkKfXiegw8+OGsJ0BiKQ9DFzjnnnDTOOOOUHtjzxCtNn3vuuWwOGHxXXnllYXvqycErY9yE+uWJZaRnxBgVk08+eWGdXHPNNVkLAJpZjD1Z34fnmX322dONN96YtQToWopD0EXef//91KtXr9KDeZ5JJ500XXLJJdkcMHSWXHLJTttVT449FD+7dlli2ehZF154Yad1EonHWwFoDS+99FJaddVVC315nrhrOM47AbqS4hB0gW233TYNP/zwpQfwPHvuuWf673//m80BQ+/OO+8sbF/bb799NrX77LDDDoXliGWj55W9GfGggw7KpgLQCi699NI05ZRTFvrzyKijjpr+9Kc/ZS0Bhp3iEAyDeFRj4oknLj1o54k3CD355JPZHNA11lprrcK2dvzxx2dTGy9+Vv3Pj2WiOTzzzDOF9RMxqClAa/nuu+9Kx5PLs8gii6T7778/aw0w9BSHYCh8/fXXabHFFis9SOcZb7zx0rnnnpvNAV0rThbLHmPsjgJRWWEoliWWieax7777FtZTPKYAQOt55JFH0hJLLFHo1/PstNNOHeenAENLcQiG0N57751GGmmk0gNznp133jn961//yuaAxogxCcoGP4/HvRolHl+r/3mxDLEsNJeffvopTTfddIX1dfnll2ctAGg1p556ahprrLEKfXskxra84IILspYAQ0ZxCAZT3LI79dRTlx6M8yy00EI9+uYoqidefVu2LcZA0V25LcZn1Q8+nSeWgeZ0xRVXFNbXtNNOm3788cesBQCt5pNPPkmbb755oX/PE+POeSsuMKQUh2AwrLDCCqUH3zxjjDFGOv3007PW0L2iOFN2B1Ek3mjyyiuvZC2HXMwbn1H22fEzFYaa32qrrVZYd/vss082FYBWdcstt6S555670MfnOeCAA7KWAIOmOAQDcdRRR6XRRx+99ICbZ5tttkmfffZZNgf0jHisq2wMojzLLrtsOuWUU9Lbb7+dzTFg0SbaDuhOoUj8LI+StYZYT2Xr8Omnn85aANDKjjjiiNJ+PjLLLLOk6667LmsJMGCKQ1AiLqbiYFp2kM0z11xzpbvvvjubA3peDAhd9haz+sw000xpySWXTOuvv37aY489OhL/Hf8W08rmqU38DINPt5aDDz64sB6XX375bCoAre7VV19Na6yxRqGvz7PBBhukd955J2sNUKQ4BHXWWWed0oNqnpFHHjmdeOKJWWtoPnfeeWdHoads+x2WxGfGZ9OaZp111sI6NXApQHuJseammWaaQn8fiReqdMdbTYHWpDgEmTPPPHOA47bkibFXPvzww2wOaG5XXnllmm+++Uq35SFJfEZ8Fq3t2muvLazbySabLP373//OWgDQDn744Ye05557Fvr8PAsuuGC65557stYA/0txiMqL8YLmmWee0oNnnplnnrlj0D9oRf37908nn3xy6tu3b+n2XZY+ffqkk046qWNe2se6665bWNd/+MMfsqkAtJPHH388Lb300oV+P8/222+fvvrqq6w1UHWKQ1TaVlttlUYYYYTSA2ZkuOGGS0cffXTWGlrfN998k15//fV0//33d9x6HreXn3DCCR3/Hf/2xhtvdLShPb355pulfd2jjz6atQCg3Zxxxhlp3HHHLe3/J5poonTuuedmLYEqUxyikv785z93HAzLDpJ5Vl999fTWW29lcwC0hyOPPLLQ38VflgFoX3GnfPxRtL7/zxNvKPUWS6g2xSEq5ddff02LLLJI6UExz9RTT+2Vn0Bbm3vuuQt9X4y7BkB7u/3229O8885bOAbk2W+//TrOl4HqURyiMnbfffeOtzSUHQjzHHLIIVlrgPZ18803F/q/8ccfP33xxRdZCwDaWQybUH8cyDPjjDOmq6++OmsJVIXiEG3vrrvuSlNOOWXpwS/Psssum1555ZVsDoD2t8kmmxT6whicFIBqiHEG11577cKxIE+8xMCLKaA6FIdoa/H8dNnBLs8kk0ySrrrqqqw1QHW8//77aZRRRin0i/fdd1/WAoAqiLE4p59++sLxIDL88MOnY445JmsJtDPFIdrSoYcemkYbbbTSg1yefffdN/3888/ZHADVE2+rq+8bY1w2AKolzon32WefwjEhT+/evdOdd96ZtQbakeIQbeXZZ5/teE667KCWZ9FFF+1oB0BK888/f6GfPPnkk7OpAFTJU089lfr27Vs4LuTZZptt0ueff561BtqJ4hBtY4011ig9iOUZb7zx0sUXX5y1BiDEX4Lr+8sxxxwzffLJJ1kLAKrm7LPPThNMMEHh+BCJFxicddZZWUugXSgO0fJOOeWUNPbYY5cevPLssMMO6bvvvsvmAKDW1ltvXeg3t9hii2wqAFUUb7DcdtttC8eHPH369ElPPvlk1hpodYpDtKwPPvggzTnnnKUHqzy9evVKjz/+eDYHAGX+/ve/lxbZb7/99qwFAFUVb/4tewQ5z957751++umnrDXQqhSHaEmbbrppx9sTyg5QkTHGGCOdc845WWsABuXUU08t9KXzzTdfNhWAqjv22GPTCCOMUDhWRKabbjpvAIYWpzhES7nkkksG+Pxzno033jj985//zOYAYHAttthihT41LgYAILz11ltpvfXWKxwr8qy11lrp9ddfz1oDrURxiJbw5ZdfpgUXXLD0IJRnttlmSw8++GA2BwBD6oEHHij0rSONNFJ69913sxYAkNI111yTZppppsIxI89RRx2VtQRaheIQTW/nnXdOI444YumBJzLKKKN0PA5R5uGHH+7460a8qSxvH/9/aG57ff755zsGts4/a4YZZuj4i3oM1gfQLnbcccff+ss8G220UTYVAP7P/vvvXzhm5ImxP2+77basJdDsFIdoWrfcckuabLLJSg82eVZfffWOgVTLROGmbJ48UegZXPE6z5gnCkJRWIqiU/75USyKwtGg5IWq/Of37t3bs9lA04nHcieaaKLf+qo8N954Y9YCAP7PM888k5ZffvnCcSPPlltuOcDzdaB5KA7RdL799tu09NJLlx5c8sSgd/HmhAGJoku0i2JOv379Ogo5Zc9HR9FnUGqLQPV3Cd16662/TRtYgah2eeLzIvlBdEiKVADdIQb0j/6pNnPMMUc2FQCKzjvvvDTxxBMXjh+RccYZJ51++ulZS6AZKQ7RVA444IA08sgjlx5UIvGGhCOOOCJrXe7tt9/uKNaUFX5iWtyxk39eFGsGJu72ydsO6C6fvMgTn1smfmZMLysC5UUjdxABzaZPnz6/9X95Dj/88GwqABTF3adxzlt//Miz1FJLpcceeyxrDTQTxSGawuOPP56mnXba0oNInmWXXTa9//772RwDFgekgRVb4g6f2s8dmLyQFMWmAckLPJGynxt3CZXddZSLnxEFJoBmEv1y3rfVxltoABiUe++9Ny200EKlx5HIHnvskb7//vusNdAMFIfoUT/++GNaZZVVSg8aeSaffPJ08803Z3MMWtztMyhxx1D++QNSe9dQPJI2IFH0yduV3YmUP0I2IDFNcQhoRrvvvvtv/VuetddeO5sKAAN3wgknDPCpgKmnnjpdfvnlWUugpykO0WOOO+64NProo5ceLPLstddeWeuuld8RNLDxfmpviY0Cz8DUFpvqxx6KeePf3TkEtJr//Oc/aYoppvitf8tz9dVXZy0AYODefffdtOGGGxaOJXniBTOvvPJK1hroKYpDdLuXXnopzTrrrKUHhzyLLrpo6t+/fzZH18rv9IlHvWI8oAGJ6fnyxMDTAxPFnbxtfSHJmENAK7v44ot/69/yzDzzzNlUABg8119//UCvAYxrBz1LcYhutf7665ceDPJMOOGE6dprr81aN0a8vSwKPwN7u1he0MkzqEfV4jPztmV3AeVFoLhLKIpH+aNm8W8Du3sJoBmstNJKv/VxeeIFAgAwpA488MDCMSXPXHPNNUTDSQBdR3GIbnHuued2vMKy7CCQZ7vttstaN07+iNfACkOhdryhyMDuMAr550aiAFQmPrP2dfrRzh1DQCt49tlnf+u7avPCCy9kLQBg8MW5eNkfHvJsttlm6eOPP85aA91BcYiGevPNN1OvXr1KO/08Mf3ll1/O5uh6UdiJ19rXjgsU/z2wR8Wife0yDkptcWhw2gO0mv32269TPxf5/e9/n00FgCF34YUXpskmm6xwfImMOeaY6ZRTTslaAo3mKpaG2WabbUo7+jxjjz12uuCCC7LWjVF/B1B9oqhTZkiLPYpDQLv7+eef0/TTT9+pr4tcdtllWQsAGHLffPNN2nnnnQvHlzyLL774IId4AIadq1i63DXXXNMxdlBZ554n3ljw008/ZXM0Xtw9FI9w5W8pq03ZHUSKQwBFV155Zae+LjLNNNOkH374IWsBAEPngQce6HgpTf1xJs8f/vCHjrdoAo3hKpYu895776VFFlmktDPPM/nkk6f7778/m6Nn1D8yFo+Y1VMcAii3xhprdOrvInvvvXc2FQCGzUknnZRGG220wrEmMsUUU6RLLrkkawl0JVexdIk99tgjDT/88KWdeGT00Ufv9Lr3eLtXT6ovENUPOF3/ONqg1BaHyt5WBtAuXnnllU79Y56nnnoqawEAw+aDDz5Im2yySenxJhJj3r344otZa6ArKA4xTO68886Ou4HKOu08q666asctoIccckinf+/pAlHtANX1zzHHGxRql3VQbyurfQtZ/DdAO6vvzyPLLbdcNhUAusZNN92Ufve73xWOOXnieAR0DcUhhsqnn36a+vbtW9pJ55luuunSY489ls1RfjHxyCOPZFO7X+3dPmWD3I033ngDnV6r9q6o+FyAdjfbbLP91u/lOf/887OpANB1yq4j8kTx6MYbb8xaAkNLcYghdthhh6WRRhqptHOOjDzyyOnggw/OWncWzwnXtu3JvzTHQNT5cpTdGVR7N1AMZj0wtXchxV1HAO3uuuuu+63fyzPppJN2vHUGALraSy+91PE4Wf2xJ8/GG2/c8TgaMHQUhxhs8QaBuBuorDPO06dPn/TVV19lcxTdfvvthXmeeeaZbGr3ioJP/PyyAalDbfFoYI/AffHFF7+1G9BnAbSj2iJ6nl133TWbCgBdLwaknnLKKQvHn0gMZP2nP/0pawkMCcUhBimKPauvvnppB5wnxh264447sjkGrr7iv9dee2VTutcOO+zQ8fMHdldQfkfQwIo+tUWkQd1hBNBO+vfvn4Ybbrjf+sA8PfnIMADtL8YzjVfb1x9/8sQblOMP28DgUxxioE4++eQBvkoyMsIII3R0zEPiiiuu6PQZcTdSVxvUANL5gNO9e/fO/qVc7VvLBjTuUF5kGtRnAbSjo48++rd+Ms9SSy2VTQWAxonz8yWWWKJwHMqz8847p6+//jprDQyM4hClHn/88dLBRmuz8MILdwxMPaR++eWXNMooo3T6rDfffDObOmyiKJQPJB2DRJcVdKIwFG2imBOPhA1KPFKWf169vMgUnzeoghRAu5pnnnl+68/znHHGGdlUAGisU089NY055piFY1EkxsO78MILs5bAgCgO0UncohmDuZV1rHkmnHDCdOWVV2ZzDJ1ll12202d21Rtu6l9BH4kiULxBLJKPjxF3+wxOYSiX3x1UO188QpYXmQxCDVTZLbfc0qnfjUT/+Pnnn2ctAKCxPv7447T55psXjkd5VlpppfTcc89lrYF6ikP85qKLLkpjjTVWaWcaiXElttxyy6z1sDniiCM6ffZ2222XTRl2MQZQ7avlI3GREv8WBaKhvcMnPrd28NUoCp199tnZVIBq23TTTTv1u5Gu7NsBYHDEHyzmmmuuwjEpz4EHHpi1BGopDtHxtrB55523tPPMM/fcc6f33nsvm2PY1Q7iHFl88cWzKQC0onh98Kijjtqpb4/ce++9WQsA6D6HH3544ZiUZ9ZZZ03XXXdd1hIIikMV9vPPP//2uNSAMvbYYzdk3Ih33nmn08+JR9UAaG0nnHBCp749EuPTAUBPePXVVwf61uUNNtggvfvuu1lrqDbFoaEUjyYN7PXmzS7GDBp//PFLO8k866yzTta6MeofYfvyyy+zKQC0qgUXXLBT3x456aSTsqkA0P0uv/zyNM000xSOT5GRRx45HX/88VnL1hfXqTH0RQypEUNr5L9n/HcMkRHjptaKJzpi6A1QHBpK+Rus6neuZvfyyy+nRRdd9LdOoiwzzzxzeumll7I5Gmf66afv9HO97Qug9d19992d+vbIGGOMkT766KOsBQB0v++//z7tsccehWNUnvjjRis/Ch3XUrVPheQv5Ym3N+eJ/x//Hjc5xHVsvGgnH5cVFIeGQuxEeRW27PXmzWqfffb5rbMoy+ijj56OOuqorHXj9erVq9PPf/bZZ7MpALSybbbZplP/Hok3yABAT3vsscfS0ksvXThO5YkCy1dffZW1bg35W5Rj+aP4E4WggYnptXcVKQ4RFIeGQtyml+9IkUHtfD0tBlubbLLJOi1zfVZcccWsdfep75Tvu+++bAoAreyzzz5L44wzTqc+PnLbbbdlLQCgZ8W4qmXHqshEE02UzjvvvKxlc4vCUL7cURiKGxkGR7SLO4hivla64YHGURwaCvlOlCeqy82of//+qW/fvp2WtT5TTz11uueee9JPP/3UpYnBrgeV+sHhrr322tJ2kV9++aVL8+uvv3ZpAOjstNNO69THR+LNmADQLP7+97+nrbbaqnC8yhNFk6effjpr3Xxq3wAddwINbmEo9/zzz//2e4Li0BDKK7NRlc13xEizjZcTj4fVLp+0VoYbbrguzfDDD9/lGWGEEbo0I444YpdmpJFG6tLEYIVdmVFGGaVLE68Q78qMNtpoXZp4bLUrE2PYdHXGHHPMLk0Mut+VibdHdmXir6VdmXHHHbeQ2Bfr+7djjjkmO1IBQHO4/fbbC0Ne1Gb//fdvuj8I1w51EomnW4ZG3OigOERQHBpCsePEThjFoNoOo1me07z55psHOBK/iIhITycKRu+880521AKA5jGwP7DPNNNM6eqrr85a9rzawaeH5q6hXFzXxo0PoDg0BGJsodj58kJQ/Q7Zkz744IPCY1oiIiLNmA033DA7egFAc3njjTfSWmutVXr8iqy77rrprbfeylr3jCgE1S5TvKJ+WAzr/LQHxaEhkBeD8kfI8mJRnp56rf3xxx9feuu+iIhIs+bGG2/MjmIA0Hzi2m766acvPYbFkAg9+Zh07SDUkaF9pAxqKQ4NpvwxsvrBp2sHp+6J2/H23HPPjrEj8mWoTzxitsQSS6RllllmmBNvF2v2LLXUUk2dJZdcsukT20szZ/HFF2/qLLbYYk2fRRddtKmzyCKLNH0WXnjhps5CCy3UEjnkkENERESaNgcffHDHuUnZdVYkrv/uuuuu7Mqs+8SdPrXL0exvz6Y1KA4NpniUrGzHq6/adteO+fnnn6dtt922088WERERERGR7k1cl8X1WXepfzlSvHUMhpXi0GDIR4IvuzOofpT4+juLGuGss85K448/fqcOQURERERERHomcX3WXY931f9s6Aq2pMGQ3x00oDGF+vXr12nnbNRr7Z988snUt2/fTj9LREREREREmiNxvRbXbY1U/zOhK9iSBkOMKzSwt5F1x2vtn3nmmdLnYEVERERERKS5EtdvjVL75EpkaF9jD7UUhwbh1ltvHayCz/LLL//bztnTr7UHAACgPdVee0YMSE1XUBwahPodb3AzoEfQAAAAYGjVD2vi2pOuoDg0EDHqe+xs8arAqMYOKrWvtY//BgAAgK6UP92SpzteikT7UxwaiNjJYmcb3AGm89fd54mCEQAAAHSl2hsTYlgT4w4xrBSHBiB2rtjR4q6hwVX/WvshmRcAAAAGR/5G7TzD8lKkeAV/3I1EtSkODUB+F9CQ3v3TXa+1BwAAoLriZoT8ujNuUohhUYZUFJlinF1QHCqR3wHUu3fv7F8GX/1r7T3/CQAAQFeL69a4Zh3aAlEUhmJ+j6QRFIdK5Hf/DO2tefnOmWdoKrgAAAAwMPUFokhczw7sCZaYFncdKQxRS3GoRuwktYNKR+U1nr0c3B0m2sXzmrU7Zv45UZW14wEAANDV4jo2rjtrr0Oj+BOFopgWiada8kLS0N4IQftSHMrE2EK1O1J9BjX20KDmzwMAAABdLW5GiJsS8ruCaq9D4+1m8e9xM4ObFiijWgEAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAABWmOAQAAABQYYpDAAAAAJWV0v8DsGr1ScF1sJQAAAAASUVORK5CYII=
|
As shown in the figure, triangle ABC is an isosceles triangle. A triangular ruler is placed at ∠A, and the two edges of the triangular ruler coincide exactly with the two sides of ∠A. What is ∠C equal to? ( )°
|
A. 45; B. 60; C. 30; D. 90; E. No correct answer
|
C
|
98
|
iVBORw0KGgoAAAANSUhEUgAABJYAAAGYCAYAAAAQpWikAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAEvRSURBVHhe7d0FuBzV+QfgP+7u7losEFwCJEChFPfiDgWKS3B3hxKkWLHi7q6lxSG4FiiluBSH83++25l0787k5mZzZeV9n+f3lGbO7M7dnTln5tuR/0sAAAAAUAOFJQAAAABqorAEAAAAQE0UlgAAAACoicISAAAAADVRWAIAAACgJgpLAAAAANREYQkAAACAmigsAQAAAFAThSUAAAAAaqKwBAAAAEBNFJYAAAAAqInCEgAAAAA1UVgCAAAAoCYKSwAAAADURGEJAAAAgJooLAEAAABQE4UlAAAAAGqisAQAAABATRSWAAAAAKiJwhIAAAAANVFYAgAAAKAmCksAAAAA1ERhCQAAAICaKCwBAAAAUBOFJQAAAABqorAEAAAAQE0UlgAAAACoicISAAAAADVRWAIAAACgJgpLAAAAANREYQkAAACAmigsAQAAAFAThSUAoOH93//933Cnb9++af3110+DBg1Kb7zxRvZKAAAMD4UlAKBpXH755WmiiSZqV0CKwtFDDz00JLfccks69thj2wpLle0GDhyYPv744+yVAADoDIUlAKCp7LDDDu0KRh2JIlNlISqKTYpLAACdp7AEADSVOBups4Wl8Mwzz7RrH4UpAAA6R2EJAGgqw1tYCtVnObnnEgBA5ygsAQBNpZbCUlwSVzlP3KsJAIBhU1gCAJpKLYWluKl35TzxGgAADJvCEgDQVGopLMUZSpXzxBlMAAAMm8ISANBUaiksrbTSSkPax1PiPBkOAKBzFJYAgKYyvIWlgQMHtmvv/koAAJ2nsAQANJXqwtIzzzyTTfmfeOpbFJAqz1SKDBo0KGsBAEBnKCwBAE2lurDUmfTt27et2AQAwPBRWAIAmkp1YSluxB1PfatMtFl//fXbtZtlllna/t39lQAAOk9hCQBoKtWFpY7EWUrVBaY4e0lxCQCgcxSWAICmMjyFpVx1cSnuvQQAwLApLAEATaWWwlKcoVQ5T6Tspt8AALSnsAQANJVaCkuh+qyleB0AADqmsAQANJVaC0vV8yksAQAMm8ISANBUai0sDRw4sN18gwYNyqYAADA0CksAQFOptbA0yyyztJsvnhgHAEDHFJYAgKZSS2Epzk6qnGeHHXbIpgAA0BGFJQCgqURRqLJINCzVRaW+ffu2PSUOAIBhU1gCAJrG5Zdf3q5IFIlCU5zF9NBDDw3JLbfc0nZPperL3+LJcIpKAACdp7AEADS8yuLQ8CTOTlpppZXaCk/uqQQAMPwUlgAAAACoicISAAAAADVRWAIAAACgJgpLAAAAANREYQkAAACAmigsAQAAAFAThSUAAAAAaqKwBAAAAEBNFJYAAAAAqInCEgAAAAA1UVgCAAAAoCYKSwAAAADURGEJAGgJd955Z+rbt2/b/wIA0DUUlgCApvbRRx+lbbfdNv3f//3fkMT/j38HAGDEKCwBAE1r0KBBaeKJJ25XVMoT/x7TAQConcISANB0Hn/88TRgwIDSglJ1ol20BwBg+CksAQBN48cff0x77713aQEpMs4445T+eyTmi/kBAOg8hSUAoClcfvnlaeaZZy4tGo0yyijpmGOOaWsX/xv/v6xdzB+vAwBA5ygsAQAN7ZVXXklrr712aaEost5666XXX389a/1f8f/j38vaR+L14nUBAOiYwhIA0LCOPPLI0sJQZLbZZktXXnll1rJcTI92ZfNH4vUBABg6hSUAoOHcdtttqU+fPqXFoMh+++2Xfvnll6x1x6JdtC97nUi8T7wfAABFCksAQMP417/+lbbaaqvSAlBkpZVWSk888UTWevjEfDF/2etG4n3j/QEA+B+FJQCgIZx55plpggkmKC36TDbZZOncc8/NWo6YeJ14vbL3ifeP5QAA4L8UlgCAuvboo4+m5ZZbrrTQE9lhhx3Sp59+mrXuGvF68bpl7xeJ5YnlAgBodQpLAEBd+u6779Luu+9eWtiJLLrooumee+7JWnePeP14n7L3j8TyxXICALQqhSUAoO5ccsklaYYZZigt5ow++ujp+OOPz1r2jHi/eN+y5YnljOUFAGhFCksAQN148cUX0xprrFFawIlsuOGG6a233spa96x433j/suWKxHLH8gMAtBKFJQCgLhx22GGlBZvInHPOma655pqsZe+K5YjlKVvOSPwdAACtQmEJAOhVN998c5pvvvlKizSRAw44IGtZX2K5ypY3En9P/F0AAM1OYQkA6BXvv/9+2nzzzUsLM5FVVlklPf3001nr+hTLF8tZtvyR+Pvi7wQAaFYKSwBAjzvttNPSuOOOW1qMmXLKKdP555+ftWwMsbyx3GV/T/yd8fcCADQjhSUAoMc89NBDaZllliktwER22mmn9MUXX2StG0ssdyx/2d8Vib87/n4AgGaisAQAdLv//Oc/6Q9/+ENpwSWyxBJLpPvvvz9r3dji74i/p+zvjMTnEJ8HAEAzUFgCALrVRRddlKaddtrSIstYY42VTjrppKxlc4m/K/6+sr87Po/4XAAAGp3CEgDQLZ5//vn029/+trSwEtl4443TP/7xj6x1c4q/L/7Osr8/Ep9PfE4AAI1KYQkA6HIHH3xwaSEl8qtf/Spdf/31WcvWEH9v/N1ln0ckPi8AgEaksAQAdJkbbrhBAaUDwyq4xecHANBIFJYAgBEWl3xtsskmpQWTSFzy9dxzz2WtW1t8Dh1dIhifY7NfIggANA+FJQBghJx88slDvUn1NNNM4ybVQxGfS3w+ZZ9bfJ7xuQIA1DuFJQCgJvFY/SWXXLK0MBLxWP1hi88nPqeyzy8Sn298zgAA9UphCQAYLl9++WXaaaedSgshkaWXXjo99NBDWWs6Iz6v+NzKPs9IfN7xuQMA1BuFJQCg084///w01VRTlRY/xh133HTqqadmLalFfH7xOZZ9vvG5x+cPAFBPFJYAgGF65pln0iqrrFJa8Ihsttlm6f33389aMyLic4zPs+xzjsT3EN8HAEA9UFgCADp0wAEHlBY4IvPNN1+66aabspZ0pfhc4/Mt+9wj8b0AAPQ2hSUAoNS1116b5pxzztKiRuSwww7LWtKd4nMu+/wj8f3E9wQA0FsUlgCAdt5666200UYblRYyImussUYaPHhw1pqeEJ93fO5l30ckvq/43gAAeprCEgAwxAknnJBGH3300uLF9NNPny655JKsJb0hPv/4Hsq+n/je4vsDAOhJCksAQLrnnnvSYostVlqwiOy+++7pu+++y1rTm+J7iO+j7HuKxPcY3ycAQE9QWAKAFvbZZ5+lHXbYobRAEVl22WXTo48+mrWmnsT3Et9P2fcWie81vl8AgO6ksAQALercc89Nk08+eWlRYoIJJkhnnHFG1pJ6Ft9TfF9l32N8v/E9AwB0F4UlAGgxTz75ZFpppZVKCxGRLbfcMv3rX//KWtMI4vuK763s+4zE9x3fOwBAV1NYAoAWst9++5UWHiJ9+vRJt956a9aSRhTfX3yPZd9vJL5/AICupLAEAC3gqquuSrPNNltpsSFy5JFHZi1pBvF9ln3PkVgPYn0AAOgKCksA0MRef/31tP7665cWGCJrr712evnll7PWNJP4XuP7LfveI7FexPoBADAiFJYAoEkde+yxaZRRRiktKsw000zp8ssvz1rSzOJ7ju+7bD2I9SPWEwCAWiksAUCTufPOO9PCCy9cWkiI7LXXXunHH3/MWtMK4vuO771sfYjE+hLrDQDA8FJYAoAm8fHHH6dtt922tHAQ6d+/f3r88cez1rSi+P5jPShbPyKx/sR6BADQWQpLANAEBg0alCaZZJLSYsHEE0+czjrrrKwlpLb1IdaLsvUl1qNYnwAAOkNhCQAa2N/+9rc0YMCA0gJBZJtttkkfffRR1hr+J9aLWD/K1ptIrFexfgEAdERhCQAa0E8//ZT23nvv0oJApG/fvumOO+7IWsPQxXoS60vZehSJ9SzWNwCAMgpLANBgrrjiijTzzDOXFgFGHnnkdMwxx2QtofNivYn1p2y9ivUt1jsAgGoKSwDQIF555ZW0zjrrlB74R9Zbb7302muvZa1h+MX6E+tR2foVifUv1kMAgJzCEgA0gKOOOqr0QD8y66yzpiuvvDJrCSMu1qdYr8rWt0isjwAAQWEJAOrYbbfdlhZccMHSg/vIvvvum3755ZesNXSdWK9i/Spb7yKxXsb6CQC0NoUlAKhDH374Ydpqq61KD+gjK664YnriiSey1tB9Yj2L9a1sPYzEehrrKwDQmhSWAKDOnHnmmWnCCScsPYifbLLJ0jnnnJO1hJ4T612sf2XrZayvsd4CAK1HYQkA6sRjjz2WlltuudID98j222+fPv3006w19LxY/2I9LFs/I7H+xnoMALQOhSUA6GXff/992mOPPUoP1COLLrpouvvuu7PW0PtifYz1smx9jcT6HOs1AND8FJYAoBddeumlaYYZZig9OB9ttNHS8ccfn7WE+hPrZ6ynZetvrNexfgMAzU1hCQB6wYsvvpjWXHPN0gPyyIYbbpjefPPNrDXUr1hPY30tW48jsZ7H+g4ANCeFJQDoYYcffnjpAXhkjjnmSNdcc03WEhpHrLex/pat15FY7wGA5qOwBAA95Oabb07zzz9/6UF3ZP/9989aQuOK9bhs/Y7E+h/bAQDQPBSWAKCb/fOf/0ybb7556YF2ZOWVV05PP/101hoaX6zPsV6Xre+R2B5iuwAAGp/CEgB0o9NOOy2NN954pQfXU045ZfrTn/6UtYTmE+t3rOdl639sF7F9AACNTWEJALrBww8/nJZZZpnSA+rI73//+/TFF19kraF5xXoe63vZdhCJ7SS2FwCgMSksAUAX+uabb9Kuu+5aegAdWWKJJdJ9992XtYbWEet9rP9l20UktpvYfgCAxqKwBABd5OKLL07TTjtt6UHzmGOOmU466aSsJbSu2A5ieyjbTmL7ie0IAGgcCksAMIKef/75tNpqq5UeKEc23njj9M4772StgdgeYrso214isT3FdgUA1D+FJQAYAYccckjpgXFk7rnnTtdff33WEqgW20dsJ2XbTyS2LwCgviksAUANbrjhhjTPPPOUHgxHDjrooKwlMCyxvZRtR5HYzmJ7AwDqk8ISAAyHd999N22yySalB8CRVVddNT333HNZa6CzYruJ7adsu4rEdhfbHwBQXxSWAKCTTj755DT22GOXHvROM8006cILL8xaArWK7Si2p7LtLLa/2A4BgPqhsAQAw/DAAw+kJZdcsvRAN7LLLrukr7/+OmsNjKjYnmK7KtveIrE9xnYJAPQ+hSUAGIqvvvoq7bzzzqUHtpGll146Pfjgg1lroKvF9hXbWdn2F4ntM7ZTAKD3KCwBQIkLLrggTTXVVKUHs+OMM0469dRTs5ZAd4vtLba7su0xttPYXgGA3qGwBAAVnnnmmfSb3/ym9AA2stlmm6X33nsvaw30lNjuYvsr2y4jsd3G9gsA9CyFJQDIHHjggaUHrJF555033XTTTVlLoLfEdhjbY9l2GontGADoOQpLALS8a6+9Ns0111ylB6mRQw89NGsJ1IvYLsu210hsz7FdAwDdT2EJgJb19ttvp4022qj0wDQy9dRTp8GDB2etgXoT2+fqq69euv1GYvuO7RwA6D4KSwC0pBNOOCGNMcYYpQejlfnLX/6SzQHUqz//+c9p+umnL92GYzuP7R0A6B4KSwC0lHvvvTcttthipQegZZl11lmzOYF69u2336bddtutdDuOxHYf2z8A0LUUlgBoCZ999lnacccdSw84h5WBAwdmrwLUu0ceeSQtu+yypdtyJPqB6A8AgK6hsARA0zvvvPPS5JNPXnqQWZ2RRx659N+fffbZ7NWARnDGGWek8ccfv3R7jv4g+gUAYMQpLAHQtJ588sn061//uvTAsiwbbrhheuONN9J+++1XmLbqqqtmrwo0ig8++CBtueWWhe05T/QP0U8AALVTWAKgKcXla2UHkmX51a9+la677rpszpR+/vnnNMsssxTaXXzxxVkLoJHceuutaYEFFihs03lc7goAtVNYAqCpXHXVVWn22WcvPXgsy6GHHprN2d4VV1xRaBtPnfruu++yFkCjOeKIIwrbdZ7oN6L/AACGj8ISAE0hLmFbf/31Sw8Yy7LWWmull156KZu7XLSpnm/PPffMpgKN6OWXXy7dtvNEPxL9CQDQOQpLADS8Y489No066qilB4nVmXXWWdvORuqMF198sfQ1/va3v2UtgEZ12WWXpZlmmql0G4/+JPoVAGDYFJYAaFh33XVXWnjhhUsPDMsS91H55Zdfsrk755BDDim8zgorrJBNBRrZDz/80HYWYvU2nif6l+hnAIChU1gCoOF8/PHHabvttis9ECzLb37zm/TMM89kcw+/ueeeu/Ca5557bjYVaHR//etfU//+/QvbeZ7ob6LfAQCKFJYAaChnn312mmSSSUoP/qoz3XTTpYsuuiibs3bXXntt4bWnmGKK9MUXX2QtgGZw1llnpYkmmqiwvUei34n+BwBoT2EJgIYQ9zWKS9DKDvjKsscee6Rvv/02m3vEbbDBBoX32HnnnbOpQLP497//nbbZZpvC9p4n+iH3WQOA/1FYAqCu/fTTT2mfffYpPcArSxz0Pf7449ncXSeeEjXyyCMX3u+hhx7KWgDN5I477kgLLbRQYZvPE/1S9E8A0OoUlgCoW/H0tllmmaX0oK46k08+ebff9+joo48uvO8yyyyTTQWaUWz3ZUXlSPRPnX3KJAA0K4UlAOrOq6++mtZZZ53SA7my7LTTTj12v6M+ffoU3v/MM8/MpgLN6LXXXkvrrrtuYdvPE/1V9FsA0IoUlgCoK0cddVQaaaSRSg/eqhNnCz344IPZnD3jlltuKSzHhBNOmD766KOsBdCs/vKXv6RZZ5210AdEot+K/gsAWo3CEgB14fbbb08LLrhg6QFbdSaYYIJ0xhlnZHP2vM0226ywTNtuu202FWhmP//8c9p3330LfUCe6MeiPwOAVqGwBECv+vDDD9PWW29deoBWlnhaUzy1qTe9++67aayxxios29133521AJrd3//+97TiiisW+oE80a9F/wYAzU5hCYBe88c//rHtMrKyg7LqLLrooumuu+7K5ux9J554YmEZF1tssWwq0CrOOeecNOmkkxb6g0j0b9HPAUAzU1gCoMc99thjafnlly89EKtOnBkURZx6FIWk6uU96aSTsqlAq/jkk0/S9ttvX+gP8kR/F/0eADQjhSUAesz333+f9txzz9IDr7LEvYzisrN6FZe+VS9zFMLee++9rAXQSqJPWGSRRQr9Qp499tijrR8EgGaisARAj7j00kvTjDPOWHqwVZ0FFlig7elrjSBu2l29/FEQA1rXcccdl0YbbbRC3xCJfjD6QwBoFgpLAHSrl156Ka255pqlB1jVGXnkkRvucd1xI/Gy+0Q1SmEM6B5vvvlm2mCDDQp9Q57oF6N/BIBGp7AEQLc5/PDDSw+oyhIHYK+//no2Z2M544wzCn9Pnz59sqlAK7v66qvTHHPMUegj8kQ/CQCNTGEJgC4XZ+vMP//8pQdR1ZlrrrnStddem83ZuJZZZpnC33b00UdnU4FWt//++xf6iDzRXzrLEYBGpbAEQJf55z//mbbYYovSA6eyHHzwwdmcje+hhx4q/H1xad8bb7yRtQBa3VNPPZVWXnnlQl+RJ/rP6EcBoJEoLAHQJU4//fQ03njjlR4sVSfuLTJ48OBszuax8847F/7WDTfcMJsK8F9/+tOf0hRTTFHoLyLRj0Z/CgCNQmEJgBHy8MMPp379+pUeIFVnlllmSZdffnk2Z/P54osvSg8Wr7vuuqwFwH99/vnn6fe//32hv8gT/Wr0rwBQ7xSWAKjJN998k3bdddfSA6Ky7Lfffunnn3/O5m5e5557buFvn3vuubOpAO3dd999afHFFy/0G3min43+FgDqlcISAMPt4osvTtNNN13pQVB1VllllfT0009nc7aGFVZYofA5HHLIIdlUgKITTzwxjTnmmIW+IxL9bfS7AFCPFJYA6LQXXnghrbbaaqUHPtWZdtpp04UXXpjN2Voef/zx0s/kxRdfzFoAFL3zzjvpd7/7XWn/EYn+N/phAKgnCksAdEqccVN2oFOW3XffveUv3dhjjz0Kn8taa62VTQUYurgvW1xCW92H5HEGJAD1RGEJgA7deOONaZ555ik9uKlO//7901//+tdsztb23Xffpemnn77wGV1xxRVZC4COHXTQQYU+JE/0y9E/A0BvU1gCoNS7776bNt1009IDmupMNtlk6eyzz87mJBf3RKn+rOLJeL/88kvWAqBjzz77bFp11VULfUme6KejvwaA3qKwBEDBKaecksYee+zSg5jqxOOyP/vss2xOqpUdEMYT8gCGR9yzbuqppy70J5Hor6PfBoDeoLAEwBAPPPBAWmqppUoPXKqz9NJLt7WnY88880zp59dqT8oDRtzXX3+ddtlll9I+JRL9t34ZgJ6msARA+uqrr9LOO+9ceqBSnfHHHz+dfvrp2Zx0xsCBAwuf429+85tsKsDwefDBBzv8ESD68+jXAaAnKCwBtLgLLrhgqJdXVGfrrbdOH374YTYnw2PWWWctfJ4XXXRRNhVg+MXlb+OMM06hb4lEvx79OwB0N4UlgBYVN4SNs2bKDkiqs8gii6Q777wzm5Na/OUvfyl8rtNNN1369ttvsxYAw++9997r8EEL0c9Hfw8A3UVhCaAFHXjggaUHINUZc8wx0wknnJDNxYhae+21C5/xHnvskU0FqN2NN96Y5p133kIfkyf6fQDoDgpLAC3kuuuuS3PNNVfpQUd1Ntlkk/SPf/wjm5Ou8NJLL5V+1o8//njWAmDEHHrooaX9TCT6/xgHAKArKSwBtIC33347/e53vys90KjO/PPPn2666aZsTrpa2UHfgAEDsqkAI+6FF15Iq6++eqGvyRPjQYwLANAVFJYAmtyJJ56YxhhjjNKDi8qMNNJI6cgjj8zmojv96le/Knz+55xzTjYVoGv8+c9/bruXW3V/E4lxIcYHABhRCksATeree+9Niy++eOkBRXXWX3/99Nprr2Vz0t3iUpTq72DyySdPn3/+edYCoGvEAwJ22223Qp+TJ8aJGC8AoFYKSwBNJooTO+64Y+kBRHXmnHPOdM0112Rz0pM23HDDwvex0047ZVMButYjjzyS+vXrV+h38sS4obgNQC0UlgCayHnnnZemmGKK0oOG6hx00EHZXPSGN998M4066qiF7+XBBx/MWgB0vdNPPz2NP/74hb4nEuNHjCMAMDwUlgCawFNPPZV+/etflx4oVGeNNdZou7Erve+YY44pfD9LL710NhWge3zwwQdpiy22KPQ/eWI8iXEFADpDYQmgwQ0cOLD0wKA6M888c7rsssuyuagXCy64YOG7ijMKALrbLbfckhZYYIFCH5QnxhcAGBaFJYAGdfXVV6fZZ5+99GCgOvvss0/66aefsjmpJ7feemvh+5pgggnShx9+mLUA6F5HHHFEoR/KE+NMjDcAMDQKSwAN5o033kgbbLBB6QFAdVZeeeX05JNPZnNSrzbffPPCd7fNNttkUwG630svvZTWWmutQl+UJ8adGH8AoJrCEkADOe6440pv+FydaaaZJl1wwQXZXNS7999/P4099tiF7/Guu+7KWgD0jLhkesYZZyz0R5EYf2IcAoBKCksADSAKDIssskjpjn51dtttt/Sf//wnm5NGcfLJJxe+y0UXXTSbCtBzfvjhh7TnnnsW+qQ8MR4pfAOQU1gCqGOffPJJ2m677Up37Kuz/PLLp8ceeyybk0a0+OKLF77XE088MZsK0LP++te/to0t1f1SnhifYpwCoLUpLAHUqbPPPjtNOumkpTvzlYk2gwYNyuaikd1zzz2F73fMMcdM7777btYCoOf98Y9/TBNNNFGhf4rEGBTjFQCtS2EJoM78/e9/TyussELpDnx1dtxxx/Tpp59mc9IMys5Q23TTTbOpAL3j3//+d9p6660L/VOeGLdi/AKg9SgsAdSJn3/+Oe2zzz6lO+zVWWqppdL999+fzUkz+eijj0rPDLj55puzFgC95/bbb08LLbRQoY/KE+NYjGcAtA6FJYA68Je//CXNMssspTvplRlvvPHSqaeems1FszrzzDML3/0CCyyQTQXofUcffXQaaaSRCn1VJMazGNcAaA0KSwC96NVXX03rrrtu6Y55dbbaaqv0wQcfZHPS7Pr161dYB4466qhsKkDvG9YYFtOiDQDNTWEJoJd09GtvZRZeeOF0xx13ZHPRKh5++OHCuhDry+uvv561AKgPHZ11G/1WjHcANC+FJYAeNqz7U+QZffTR0/HHH5/NRSvaZZddCuvF+uuvn00FqB/Duk9gjHsx/gHQfBSWAHrIsJ6oU5mNN944vfPOO9mctKovv/wyTTnllIX149prr81aANSXYT3ZNMbBGA8BaB4KSwA94I9//GPpk76qM99886Ubb7wxmwtSOu+88wrryVxzzZVNBahPZ599dpp00kkL/VckxsMYFwFoDgpLAN3or3/9a1p++eVLd6yrc8QRR2RzQXsrrrhiYX05+OCDs6kA9emTTz5J2223XaH/yhPjY4yTADQ2hSWAbvDDDz+kPffcs3RHujrrrbeep+bQobi0pGzdGTx4cNYCoH7dddddaZFFFintxyIxXsa4CUBjUlgC6GKXXXZZmnHGGUt3niszxxxzpKuuuiqbCzq21157FdahNddcM5sKUP+OO+64NOqooxb6skiMmzF+AtB4FJYAushLL72U1lprrdId5uoceOCB2VzQOd9//32aYYYZCuvS5ZdfnrUAqH9vvPFG2mCDDQp9WZ4YR2M8BaBxKCwBdIG4P1LZDnJ1Vl999fT8889nc8Hw+fOf/1xYp2aeeea2x3wDNJKrr746zT777IU+LY/7DgI0DoUlgBFwyy23pAUWWKB0p7gycYr/pZdems0Ftfvtb39bWL/23XffbCpAYxk4cGChT8sT42uMswDUN4UlgBp88MEHaYsttijdEa7O3nvvnX788cdsThgxzz77bOl69tRTT2UtABpL9F+//vWvS/u2SIy3Me4CUJ8UlgCG0+mnn57GHXfc0p3fysRO8hNPPJHNBV1n//33L6xvq6yySjYVoDGdd955aYoppij0b5Hxxx+/bfwFoP4oLAF00iOPPJL69etXusNbmamnnjqdf/752VzQPWabbbbCunfhhRdmUwEa0+eff5523HHHQv+WJ8bhGI8BqB8KSwDD8O2336bddtutdAe3Orvuumv6+uuvszmh+1x55ZWF9W+aaaZJ33zzTdYCoHHde++9afHFFy/0c3liXI7xGYDep7AE0IF4ClecgVS2U1uZ5ZZbzi+o9Lh11lmnsC7uvvvu2VSAxnfiiSemMcYYo9DXRaabbrq2cRqA3qWwBFDihRdeSKuvvnrpjmxlJplkknTWWWdlc0HPevnll0vXy8ceeyxrAdD43n777fS73/2utL+LxHgd4zYAvUNhCaDKoYceWrrjWp0ddtghffLJJ9lc0DsOO+ywwrrZv3//bCpA87juuuvSXHPNVejz8sT4DUDPU1gCyNx4441p7rnnLt1ZrcwSSyyR7rvvvmwu6H3zzDNPYT09++yzs6kAzeXAAw8s9Hl55p133rbxHICeo7AEtLz33nsvbbrppqU7qJUZd9xx0ymnnJLNBfXj+uuvL6yvk002Wfrss8+yFgDN5dlnn02/+c1vCn1fnhjXY3wHoPspLAEtLQpFY401VulOaWW23HLL9M9//jObC+pP2f1Hfv/732dTAZrTBRdcMNSHbIwzzjh+EALoAQpLQEt68MEH2y5pK9sRrUzfvn3T7bffns0F9eutt95Ko402WmEdfuCBB7IWAM3pq6++SjvvvHOh/8uz1FJLtY37AHQPhSWgpXz99ddpl112Kd3xrEwcoB933HHZXNAYjj322MK6HAdUAK0gCunR51X3g3li/I/9AAC6lsIS0DIuvPDCtvvOlO1sViYuKYqzP6ARLbTQQoV1+rTTTsumAjS/uPxt7LHHLvSFkbhsLvYHAOg6CktA0xvWDT7zxJNkbrjhhmwuaEy33XZbYd0ef/zx07/+9a+sBUDze/fddzt8MMeqq67atn8AwIhTWAKa2kEHHVS6Q1mdww8/PJsDGt8WW2xRWMe33nrrbCpA67jxxhvTPPPMU+gT88R+AgAjRmEJaErXXXddmmWWWUp3IiuzzjrrpFdeeSWbC5pDPMFw3HHHLazvd955Z9YCoLUccsghhT4xz9xzz9223wBAbRSWgKbyzjvvlD52vTqzzz57uvLKK7O5oPnEPUaq1/tFFlkkmwrQel544YW02mqrFfrGPLH/EPsRAAwfhSWgaZx44omlj1uvzgEHHJDNAc1tiSWWKKz/J5xwQjYVoDVdfPHFabrppiv0j5ExxxyzbX8CgM5TWAIa3n333Zf69OlTuoNYmfiV8rnnnsvmguZ37733FraDMcYYwy/yQMv75ptv0q677lroI/MsvvjibfsXAAybwhLQsD7//PP0+9//vnSHsDIzzDBDuuSSS7K5oLVsv/32hW1ik002yaYCtLaHH3449evXr9BP5on9jNjfAGDoFJaAhvSnP/0pTTjhhKU7gZXZa6+90vfff5/NBa3n448/ThNPPHFh27jpppuyFgCcfvrpabzxxiv0lZEpppiibb8DgHIKS0BDeeqpp9Jyyy1XuuNXmZVWWin9/e9/z+aC1vbHP/6xsI3MP//82VQAQjxRc4sttij0l3lWXnnltv0QANpTWAIaxv7771+6o1eZKaec0q+KUKKsIHvkkUdmUwHI3XLLLW3F9+o+M0/sjwDwPwpLQN27+uqrh/r0lsrssssu6auvvsrmAio98sgjpdvNa6+9lrUAoNLhhx9e2m9G5phjjrb9EwAUloA69uabb6Y111yzdIeuMssuu2zbzTeBjv3hD38obD/rrbdeNhWAai+99FKH+yIbbLBB2/4KQCtTWALq0nHHHZdGGWWU0p24PHFD4rh3DNA5cUbfVFNNVdiW/OoO0LFLL700zTjjjIX+MzLaaKO17bcAtCqFJaCu3H333WmuueYq3XGrTDxCPZ52RX378ssv0yuvvJLuu+++tp3yE044IR1//PFt/x3/9vLLL7e1oefEPciqt6c555wzmwrA0MRTZvfYY49CH5pnkUUWaduPAWg1CktAXfjkk0/SlltuWbqjVpnFF1883XPPPdlc1KO4Z8/JJ5+c+vfvX/odlmXAgAHplFNOcb+fHhJPTaz+Dg466KBsKgAdeeyxx9Lyyy9f6EfzxI9fsV8D0CoUloBed84556Rxxx23dOcszzjjjNNWrKB+XXbZZWmhhRYq/f6GJ/Ea8Vp0nyeeeKL0s3/hhReyFgAMS1yOP+GEE5b2p5NOOmnb/g1AK1BYAnrN3//+97TooouW7pBVZosttkjvv/9+Nhf15o477kj9+vUr/e5GJPGa8dp0j7333rvwma+xxhrZVAA648MPP0xbb711oT/Ns+KKK7bt7wA0M4UloMf9/PPPac899yzdAavMggsumG677bZsLurNN998k9Zee+3S764ys802W1uRKJ6cs/vuu7cl/jv+LaaVzVOZeI94L7rWDz/8UHoj2rj/FQDD5/bbb2/bb6nuU/Psu+++bfs/AM1IYQnoUX/5y1/SFFNMUbrTlWfUUUdNxxxzTDYH9ej5559Pffr0Kf3+IvEL7amnnpreeOONbI6hizbRdoUVVih9rUi8V7wnXeuSSy4pfNYzzTRT+vHHH7MWAAyPo446Ko000kiFvjUy66yztu0HATQbhSWgR8RNmTsqHOTZaKON0ptvvpnNRT264YYb0gQTTFD6/W288cZp8ODBWcvhF/PGa5S9drxnvDdda7XVVit81vvss082FYDh9eqrr6Z11lmn0LfmWXfddT2sAmgqCktAt+vo17s888wzT7r++uuzOahXUdgp+/7iDKUHH3wwazXi4rXiNcveS3Gpaz333HOln/OTTz6ZtQCgFldccUWaZZZZSvvYkUceOR199NFZS4DGprAEdJu48fLMM89cukNVmcMOOyybg3oWl6KVnakUj1XuLjvssEPh/WIZXBbXtQ444IDC57zyyitnUwGo1U8//dR2Fmh1H5snnoTqQRVAo1NYArrcv//977bTvMt2oCoTN2V+6aWXsrmoZ3Hz7LJ7Kh1//PFZi+4T71H9vrEsbujdteaYY47C53zBBRdkUwEYEX/72986vCXANtts07b/BNCIFJaALnXWWWelscYaq3SnKU88CczNKxtL2dPfeqKolCsrLsUy0XWuuuqqwmc89dRTp6+//jprAcCIOvvss9Mkk0xS6G8jE000Udt+FECjUVgCusRf//rXNN9885XuKFVm//33z+agUcQp+tXfY1yi1tPikrvq5XD5QNcqO9Nw1113zaYC0BU+/vjjtN122xX62zz9+/dv268CaBQKS8AI+eGHH9pO3y7bMarMqquump599tlsLhpJv3792n2XcVPt3lJ9Q+9YNrrOK6+80u7zzfPoo49mLQDoKnfddVdaeOGFS/vdyF577dW2nwVQ7xSWgJpddtllbadtl+0M5Zl++unTxRdfnM1Bo4nvuPo77cqnvw2veO/q5YllpOscfvjhhc94+eWXz6YC0NWOPfbYNOqooxb63shMM81knAPqnsISMNxefvnltMQSS5TuAFVmzz33TN999102F40onlZT+Z1uvPHG2ZTeE8tQuUyxjHSteeedt91nHBk0aFA2FYCu9sYbb6T111+/0PfmWWuttdr2vwDqkcISMFz23nvv0h2eysTlSvH0Exrba6+9VvhuBw8enE3tPbEM1csVy0rXufHGGwuf8aSTTpo+/fTTrAUA3SEepDD77LMX+uA8RxxxRNYSoH4oLAGdcuutt6ZpppmmdCcnzxRTTJHOO++8bA4a3SmnnNLu+43HJNeL6nstnXzyydkUukr1mWGRHXfcMZsKQHcaOHBgoQ/Os8ACC7TtlwHUC4UloEMffPBB+vWvf126Y1OZnXfeOX3xxRfZXDSDAQMGtPuOTz311GxK74tlqVy2eIIOXevtt99Oo48+ervPOXLfffdlLQDoTk8++WSH+2Bbbrll234aQG9TWAKG6phjjik9sKxMPJXroYceyuagWXz55ZeF7zru/1AvYlmqly+Wma513HHHFT7nJZdcMpsKQE+Is8Enn3zyQn8cGX/88dMZZ5yRtQToHQpLQMEjjzySZpttttIdmDwTTDBBOvPMM7M5aDZxg9DK7zvWh3pTvY7Go/Lpen379m33OUfq6ew1gFbw2WeftV2OXN0f51l22WXb9t8AeoPCEjDEt99+m9Zbb73SHZbKbLvttumjjz7K5qIZxeVOld95nJlWb2KZKpfRJVrd4/bbb2/3OUfGG288l18A9IJ77703LbbYYoV+Oc9uu+3Wtj8H0JMUloA255xzTtvBYtlOSp7Ykbn77ruzOWhml156abvvfoMNNsim1I9YpspljGWme8R9PCo/68hWW22VTQWgp51wwglpjDHGKPTNkemnnz79+c9/zloCdD+FJWhx8ej2eLpI2Y5JnrHGGiuddNJJ2Ry0guOPP77dOrD77rtnU+pHLFPlMsZONt0jzk4qKzzfcccdWQsAelo8ZGGjjTYq9M15Vl999bb9PIDuprAELSwuaSvbEanM5ptvnt57771sDlpFFBIr14M999wzm1I/qgtLUQyj+1Q/iS8S918CoHdde+21aa655ir00XkOPfTQrCVA91BYghYUOyCTTjpp6c5Hnj59+qRbbrklm4NWc/nll7dbH+IX0XrjUrieF0+Eq/zMI/HkOAB634EHHljoo/PMO++86aabbspaAnQthSVoIXHm0VJLLVW6w5Fn5JFHTkcffXQ2B63q/vvvb7dexNNm6o2bd/e86pu6R0YfffS2yzEA6H3PPPNM+s1vflPoq/NsttlmzkQHupzCErSIffbZJ40yyiilOxl5Ntxww/TGG29kc9DK4tH9levG7LPPnk2pH7PNNlu7ZXz55ZezKXSnHXbYod3nHtl4442zqQDUgwsuuCBNNdVUhf46Ms4447Rd3gzQVRSWoMk9+OCDabrppivdscgz55xzpuuuuy6bA1L68ssvC+tJPRUdY1mqly+Wme73ySefpEkmmaTw+d94441ZCwDqQYyLO++8c6G/zrP00ku37ScCjCiFJWhSX3/9dVp55ZVLdyQqc8ghh2RzQHv9+/dvt67U06+b1TeSHjBgQDaFnjBo0KB2n39kvvnmy6YCUE8eeOCB0nvk5dlll13a9hsBaqWwBE0o7pE01lhjle485FlrrbXSiy++mM0BRSeffHK7dWbFFVfMpvS+FVZYod2ynXLKKdkUesryyy/f7juIHHHEEdlUAOpNjOtjjz12oe+OTDPNNOnCCy/MWgIMH4UlaCLPPfdcmmOOOUp3GPLMOOOM6YorrsjmgKF77bXXCuvP4MGDs6m9J5aherliWelZjz76aOF7iMT9uQCoT++++27aZJNNSvvvyKqrrtq2PwkwPBSWoEmsv/76pTsIlRk4cGD65Zdfsjlg2BZaaKF261A93KQ5lqFymWIZ6R277rpru+8isu6662ZTAahXN9xwQ5pnnnkKfXiegw46KGsJMGwKS9Dgzj777DTBBBOU7hTkicfOPv3009kc0HmXXXZZYX3qzRt9xntXL08sI70j7skx9dRTF76Tq666KmsBQD2Le21W9+F55p577nT99ddnLQGGTmEJGtQ777yT+vTpU7ojkGfKKadMF110UTYH1KZfv37t1qvevNdSvHflssSy0bvOP//8dt9JJC7JBaAxPP/882m11VYr9OV54kzh2O8EGBqFJWhA2267bRp55JFLB/88e+yxR/r222+zOaB2d9xxR2H92n777bOpPWeHHXYoLEcsG72v7AmUBx54YDYVgEZw8cUXp2mnnbbQn0fGHHPMdNJJJ2UtAdpTWIIGEpeXTD755KUDfp54UtPjjz+ezQFdY+211y6sa8cff3w2tfvFe1W/fywT9eHJJ58sfD+R+BUcgMbxzTfflN4/L88SSyyR7rvvvqw1wH8pLEED+OKLL9JSSy1VOsDnmWiiidI555yTzQFdK3Y0yy697IniUllRKZYllon6sc8++xS+p7i0AoDG8/DDD6dlllmm0K/n+f3vf9+2fwoQFJagzu21115ptNFGKx3U8+y0007p888/z+aA7hFnn5TdKD4uUesuccld9fvFMjgTpv78+OOPaaaZZip8X5dccknWAoBGc9ppp6Xxxhuv0LdH4l6ef/rTn7KWQCtTWII6FacZTz/99KUDeZ7FFlusV5/QReuJxxOXrYtxU+2uXBfjtapv1J0nloH6dOmllxa+rxlnnDH98MMPWQsAGs0///nPtPnmmxf69zxxnz1PH4bWprAEdejXv/516cCdZ5xxxklnnHFG1hp6VhR2ys5cisSTYwYPHpy1HH4xb7xG2WvHeyoq1b/VV1+98N3tvffe2VQAGtXNN9+c5p9//kIfn2f//ffPWgKtRmEJ6siRRx6Zxh577NLBOs8222yTPvzww2wO6B1xKVrZPZfyrLDCCunUU09Nb7zxRjbH0EWbaDu0M5Qi8V4uf2sM8T2VfYdPPPFE1gKARnb44YeX9vOROeaYI11zzTVZS6BVKCxBHYgDsRiIywboPPPNN1+66667sjmg98XNs8ueFled2WabLfXr1y9tsMEGaffdd29L/Hf8W0wrm6cy8R5u1N1YDjrooML3GGdiAtAcXnzxxbTmmmsW+vo8G264YXrzzTez1kCzU1iCXrbuuuuWDsh5Rh999HTiiSdmraH+3HHHHW1ForL1d0QSrxmvTWOac845C9+pm7wCNJe4t94MM8xQ6O8j8fCZnnh6LND7FJagl/zxj38c6n1q8sS9Zt59991sDqhvl112WVpooYVK1+XhSbxGvBaN7eqrry58t1NNNVX66quvshYANIPvv/8+7bHHHoU+P8+iiy6a7r777qw10IwUlqCHxf2RFlhggdKBN8/ss8/edoNEaESvvfZaOuWUU9KAAQNK1++y9O/fP5188slt89I81ltvvcJ3/Yc//CGbCkAzeeyxx9Jyyy1X6PfzbL/99unTTz/NWgPNRGEJetBWW22VRhlllNLBNjLSSCOlo446KmsNje/LL79ML7/8crrvvvvaTpePU+JPOOGEtv+Of3vllVfa2tCcXn311dK+7pFHHslaANBszjzzzDThhBOW9v+TTTZZOuecc7KWQLNQWIIecMUVV7QNpGUDbJ411lgjvf7669kcAM3hiCOOKPR38Ys2AM0rztCPH1Sr+/888SRYTwuF5qGwBN3ol19+SUsssUTpgJpn+umn91hWoKnNP//8hb7vrLPOyqYC0Kxuu+22tOCCCxbGgDz77rtv2/4y0NgUlqCb7Lbbbm1PwygbRPMcfPDBWWuA5nXTTTcV+r+JJ544ffzxx1kLAJpZ3OqhehzIM+uss6Yrr7wyawk0IoUl6GJ33nlnmnbaaUsHzjwrrLBCGjx4cDYHQPPbZJNNCn1h3MgVgNYQ91VcZ511CmNBnnjgg4d4QGNSWIIuFNeLlw2UeaaYYop0+eWXZ60BWsc777yTxhhjjEK/eO+992YtAGgFce/RmWeeuTAeREYeeeR0zDHHZC2BRqGwBF3gkEMOSWONNVbpAJlnn332ST/99FM2B0DriacCVveNcR86AFpL7BPvvffehTEhT9++fdMdd9yRtQbqncISjICnnnqq7brwsgExz5JLLtnWDoCUFl544UI/ecopp2RTAWglf/vb39KAAQMK40KebbbZJn300UdZa6BeKSxBjdZcc83SATDPRBNNlC688MKsNQAhfoGu7i/HHXfc9M9//jNrAUCrGTRoUJpkkkkK40MkHvbgSaJQ3xSWYDideuqpafzxxy8d+PLssMMO6ZtvvsnmAKDS1ltvXeg3t9xyy2wqAK0onhS67bbbFsaHPP3790+PP/541hqoJwpL0En/+Mc/0rzzzls60OXp06dPeuyxx7I5ACjzr3/9q7RAf9ttt2UtAGhV8YTlssum8+y1117pxx9/zFoD9UBhCTph0003bXtKRdngFhlnnHHS2WefnbUGYFhOO+20Ql+60EILZVMBaHXHHntsGmWUUQpjRWSmmWbypGWoIwpL0IGLLrpoqNd759l4443TZ599ls0BQGcttdRShT41DiQAILz++utp/fXXL4wVedZee+308ssvZ62B3qKwBCU++eSTtOiii5YOYHnmmmuu9MADD2RzADC87r///kLfOtpoo6W33norawEAKV111VVpttlmK4wZeY488sisJdAbFJagyk477ZRGHXXU0kErMsYYY7RdwgHAiNtxxx0L/ezvfve7bCoA/M9+++1XGDPyxL1Ob7311qwl0JMUliBz8803p6mmmqp0oMqzxhprtN10FoCuEZcSTzbZZIX+9oYbbshaAMD/PPnkk2mllVYqjBt54imj9tehZyks0fK+/vrrtNxyy5UOTHniBoHxhAoAul48/KC6342ncALA0Jx77rlp8sknL4wfkQkmmCCdccYZWUuguyks0dL233//NProo5cOSJF4EsXhhx+etf6feApF5S8lE000Udphhx3SQw89lLXovFtuuaXdTQn79u3rKRdAy+nfv/+QfjDPYYcdlk0FoFbNvN8aZ73G35IvT3WWXXbZ9Oijj2atge6isERLeuyxx9KMM85YOgDlWWGFFdI777yTzfFfH3/8cYdPpoh0dnCN18oHwhjsY6COAT5//Rioo82wxPtF2/z9Y/5adhQAelP0y3k/VhlP+wGoTSvtt95zzz1pscUWG/K61dl9993Td999l7UGuprCEi3lhx9+SKuuumrpgJNn6qmnTjfddFM2R3v5gBoDYjwSO1I5OOZ55plnsjmGLv/lKP632sCBA9umDWuQrhzg8+WZZZZZ2v6tN389AqjFbrvt1tZ/VWadddbJpgIwPFpxv/WEE04Y6tUI008/fbrkkkuylkBXUliiZRx33HFp7LHHLh1o8uy5555Z66L4ZSZOHS77VSX+LablrxMDZ0diIM3bvvHGG9m//k8MyvnrxWBdJgbgmF42EOcDd9lrA9Sr//znP2maaaYZ0j/mufLKK7MWAHRGK++3vvXWW2mjjTYasszViYfxDB48OGsNdAWFJZre888/n+acc87SgSXPkksumV577bVsjnLxK0xHv+gMGjRoyOuV/ZqTi0EzH3zj9N+hyQfZSNlAG+8xtPeJAT7mix0BgEZy4YUXDun78sw+++zZVAA6w35rStdee22HxwDu4wddR2GJprbBBhuUDiR5Jp100nT11VdnrYcuBrxhnSYcg2j+uh0N0JW/+sSgPjTxS1PeruyXpHiPjgbgmE9hCWhEq6yyypD+L88BBxyQTQWgI/Zb24vxI1+26sw333xDvQUG0HkKSzSlc845p+0xo2UDSJ7tttsua9018l9bIh1dJ55fSx7p6GaFlQN+/FJULQbo+DWqjDOWgEb21FNPDen/KvPss89mLQAYEa223xqFtrIfLfJsttlm6f33389aA8NLYYmm8uqrr6Y+ffqUDhh5YvoLL7yQzdF18l9qhjZohhjUKpclBtKOVLatHsx78lp1gJ627777tusDI7/97W+zqQCMiFbdbz3//PPTVFNN1W5Z84w77rjp1FNPzVoCw0NhiaaxzTbblA4SecYff/z0pz/9KWvd9WJgjnQ06OaDap5hidfL25b9ipMPxHHNe0yPeCoc0Ax++umnNPPMMw/pA/P8+c9/zloAUKtW3m/98ssv00477TRkWauz9NJLd3h2FlCksETDu+qqq9rulVQ2MOSJJ0P8+OOP2RxdKwbkGCBjYBzWLzkxgObLFO2HJU4bztt39JSNyoE8lsVgCDSDyy67bEjflmeGGWZI33//fdYCgOFhv/V/7r///rYH+OTLUp0//OEPbU8rBYZNYYmG9fbbb6cllliidCDIM/XUU6f77rsvm6NrxenBMWjmT8qIxIDa0c0SY/CsbDsslQN0Z9oDNJs111xzSD+YZ6+99sqmAtAZ9luH7uSTT05jjTXWkGWvzDTTTJMuuuiirCUwNApLNKTdd989jTzyyKUDQGTsscduN7gN7VeTWlX+glOdGLDjuvUywzvgNuoADdBVBg8ePKQfrMzf//73rAUAHbHfOmz/+Mc/0iabbDJk+asT9/h77rnnstZANYUlGsodd9zRdhZSWYefZ7XVVms7bfXggw9u9+9dXVwK8StP5fXheWKQLrsBYSsN0ABdpbo/j6y44orZVAA6w37r0L322mtpmWWWSfvss0/61a9+NeTvqE6MR0CRwhIN4YMPPkgDBgwo7eDzzDTTTOnRRx/N5ig/EHn44YezqV0rrlHPb0iYJ/5/tVYaoAG60lxzzTWkP8xz3nnnZVMB6Cz7rUUHHHDAkGWPJ0jHD9X5/69OFJ6uv/76bE4gKCxR9w499NA02mijlXbskdFHHz0ddNBBWev24rroyrbd/Qt35bXoZTc5rDwVeXgH6JgXoFVdc801Q/rDPFNOOWXb030AGH72W/9nuummG7LskTiGeP7559sugav898psvPHGbZfQAQpL1LF4UkOchVTWkefp379/+vTTT7M5im677bbCPE8++WQ2tevFacSV71Vt0KBBQ6Z15ukalTdYjHkBWlnlQVCeXXbZJZsKwPCw3/pfV1999ZDlzrPffvtlU1PbzbunnXbaQptI3PT7pJNOylpC61JYou5EoWiNNdYo7bzzxH2Wbr/99myOjlX/0rDnnntmU7pH5a811eLa9splGZbKtr31KFaAehH3wBhppJHa9Y2R7rrMGaDZ2W8tHitEXn755Wzqf8X9W//whz8U2uWJJ1XHj+LQqhSWqCunnHLKUB/3GRlllFHaOvXhcemll7Z7jTgLqjvFTcLjfYb2y07lrzllN0rMVf6KFPMAkNJRRx01pG/Ms+yyy2ZTARgerb7fGj9Y5MudZ5VVVsmmFkXBLG7yXT1Pnp122il98cUXWWtoHQpL1IXHHnus9MaslVl88cXbbuI9vH7++ee2+zBVvtarr76aTe16+c0Qy26CGPIBPDK0x7uGmJa3G9prAbSiBRZYYEj/mOfMM8/MpgLQWa2+33rggQcOWe48V1xxRTZ16E477bQ07rjjFuaNxP3/zj///KwltAaFJXpVnFYaN74r65TzTDrppOmyyy7L5qjNCius0O41u/NJQvGLT7zH0H7VqfxFp6OBt3Ig7+gXIoBWc/PNNw/pH/PEL+QfffRR1gKAzmj1/dYFF1xwyHJH4nYbnfX++++nzTffvN38lYkzn55++umsNTQ3hSV6zQUXXJDGG2+80o44EvfR2HLLLbPWI+bwww9v99rbbbddNqXz4tGskY7kNzmMwbUj+VM24kBoaK+ZD/TDei2AVrTpppsO6dPz1NK3AzQj+63DFn9LPn7kGd5bboT4sWO++eYrvFaeAw44IGsJzUthiR4XT2Wr/nWgOvPPP396++23szlGXOXpuZGll146m9I51af3lv0Sc/nllw+Z3hl9+/Zta1/2ONZ8oI82ABTFI57HHHPMIX1znnvuuSdrAdCa7Ld2znXXXTfkc8pzzTXXZFOH32GHHVZ4vTxzzjnnCL021DuFJXrMTz/91DZ4lXW2ecYff/xuuU/Gm2++2e594vK64ZEPmJWJx17H4BqJgTR+xSkbbIcmfiXJB+l4/fzf4jXy1x/WL00AreyEE05o1y9H4n58AK3Mfmvn7L777u0+o8i///3vbGptXnzxxQ6fbr3hhhumt956K2sNzUNhqUHELw1De1pDI4h7JE088cSlHWyeddddN2vdPaovu/vkk0+yKZ2TD8SVrxHfSQykMcDWOpjGvJWvG6/X0c0RAfifRRddtF2/HDn55JOzqQCtyX7rsC288MLtPp94MERXueSSS9IMM8zQ7vXzxEOFjj/++Kxl44vj1FgvVlpppbaCZf53xn/H+hFnx1WK9WV4ipo0BoWlBpHfEK96w6x3L7zwQlpyySWHdDBlmX322dPzzz+fzdF9Zp555nbv20g3FgSg3F133dWub4+MM8446b333staAEB7n332WWHs2HnnnbOpXeO7774rPSsqT/ww0siXb8exVOXVKFFwjILRQw89NCR5gTOKmnEcGwXNKEApLDUfhaUGEBtgXv2NDbFR7L333kM6mrKMPfbY6cgjj8xad78+ffq0e/+nnnoqmwJAI9tmm23a9e+ReFIPAJR5/PHHC+PGVVddlU3tWo8++mhabrnlCu+XJ4ozn376ada6MUSRKD8+jcJRFJE6EtMrz2ZSWGo+CksNIE4tzDfCyLA23N4WN6abaqqp2i1zdVZeeeWsdc+p7tDvvffebAoAjezDDz9ME0wwQbs+PnLrrbdmLQDgf2644YbCmBHFpu4U95EtG6sik002WTr33HOzlvUtv/F7JIpKnb2sMtrlTw9spJMl6ByFpQaQb4B5Ovv0hp722muvpQEDBrRb1upMP/306e67704//vhjlyZuDD6sVN9I7+qrry5tF/n555+7NL/88kuXBoD2Tj/99HZ9fCSeQAoA1c4+++zCmBFPG+1u//rXv9JWW21VeO88UXB54oknstb1p/KJg3EG0vDeq+uZZ54Z8nfSXBSW6lxeEa68SV6k3u4PFJe0VS6fNFZGGmmkLs3II4/c5RlllFG6NKOOOmqXZrTRRuvSxI0duzJjjDFGlyYe896VGWussbo0caltVybu2dPVGXfccbs08YCCrkw8pbMrE7/SdmUmnHDCQmJbrO7fjjnmmGykAoD/igcLVY8Xr776aja1+912222F23RUZr/99qu7H5Mrb88SiatqahEnSSgsNR+FpToXG11swFFIquxs6uW61JtuummoTzwQERHp7USx6c0338xGLQBIbZdKV48X1157bTa153T04/xss82Wrrzyyqxl76u8UXctZyvl4rg2TpqguSgs1bG4l1JsuHkRqXpj7k1xqmj1pWUiIiL1mI022igbvQDgv5ekVY8V55xzTja1Z73yyitp7bXXLixPnvXWWy+9/vrrWeveEUWkymVaf/31sym1GdH5qT8KS3UsLyTll73lhaY8cZlcbzj++ONLLzcQERGp11x//fXZKAYAKa2yyipDxogZZ5wx+9feE8d2M888c7uxK0/cxqE3L+2uvGF3pNbL4GheCkt1Kr/0rfpG3ZU38u6NUwj32GOPtntl5MtQnbgsbplllknLL7/8CCee4lbvWXbZZes6/fr1q/vE+lLPWXrppes6Sy21VN1nySWXrOssscQSdZ/FF1+8rrPYYos1RA4++GAREZG2bL311m33KIxjmBVXXLG0TU/noIMOats3qT7GyhPHf3feeWd2ZNZz4gyjyuWo96eU0/MUlupUXP5WttFWV4t7aqP+6KOP0rbbbtvuvUVERERERKRnE8dlcXzWU6ofJBVPd4NKCkt1KL/jftkZSdV3468+o6k7nHXWWWniiSdu15mIiIiIiIhI7ySOz3rqkrTq94Zq1oo6lJ+VNLR7KA0cOLDdhp3fg6mrPf7442nAgAHt3ktERERERETqI3G8Fsdt3an6PaGataIOxX2UOnrqW37/pTz5U+O60pNPPll63a+IiIiIiIjUV+L4rbtUXjETiatooJLCUp255ZZbOlUsWmmllYZs2B0VoQAAAKBWlceeETfvpprCUp2p3mg7m6FdNgcAAAC1qr4Vi2NPqiks1ZG4u35sqPE4x6gCDytxyVy+ccd/AwAAQFfKr6rJ0xMPkKKxKCzVkdhAY0Pt7M2443K5yg08ik0AAADQlSpPaohbsbjPEpUUlupEbJixkcbZSp0V81TeSG145gUAAIDOyJ9cnmdEHiA1aNCgtrOgaB4KS3UiP/toeM86qr7etbNnOwEAAEBnxYkM+XFnnOAQt3IZXlGgivsK01wUlupAfuZR3759s3/pvCgkVRaWXO8KAABAV4vj1jhmrbW4FEWlmN9ldM1HYakO5Gcd1Xo6Yb5h56mlcgwAAAAdqS4uReJ4tqMrZ2JanO2kqNS8FJZ6UWxglTfgjopvXGva2Y0t2sX1qZUbdf46UQ220QIAANDV4jg2jjsrj0OjcBRFppgWiatp8iJUrSdR0BgUlnpJ3EupciOszrDutTSs+fMAAABAV4sTGeKEhvxspMrj0HiKXPx7nAjhhIfmp/IAAAAAQE0UlgAAAACoicISAAAAADVRWAIAAACgJgpLAAAAANREYQkAAACAmigsAQAAAFAThSUAAAAAaqKwBAAAAEBNFJYAAAAAqInCEgAAAAA1UVgCAAAAoCYKSwAAAADURGEJAAAAgJooLAEAAABQE4UlAAAAAGqisAQAAABATRSWAAAAAKiJwhIAAAAANVFYAgAAAKAmCksAAAAA1ERhCQAAAICaKCwBAAAAUBOFJQAAAABqorAEAAAAQE0UlgAAAACoicISAAAAADVRWAIAAACgJgpLAAAAANREYQkAAACAmigsAQAAAFAThSUAAAAAaqKwBAAAAEBNFJYAAAAAqInCEgAAAAA1UVgCAAAAoCYKSwAAAADURGEJAAAAgJooLAEAAABQE4UlAAAAAGqisAQAAABATRSWAAAAAKiJwhIAAAAANVFYAgAAAKAmCksAAAAA1ERhCQAAAICaKCwBAAAAUBOFJQAAAABqorAEAAAAQE0UlgAAAACoicISAAAAADVRWAIAAACgJgpLAAAAANREYQkAAACAmigsAQAAAFAThSUAAAAAaqKwBAAAAEBNFJYAAAAAqEFK/w8COOhgylFZXwAAAABJRU5ErkJggg==
|
As shown in the figure, triangle ABC is an isosceles triangle, ∠B = ( )°
|
A. 30; B. 60; C. 120; D. 150; E. No correct answer
|
C
|
99
|
iVBORw0KGgoAAAANSUhEUgAABFMAAAHXCAYAAABwPRX4AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAEhKSURBVHhe7d0FtBxVujbgS3B3d5fBAsElQIIzOAQY3IMNBA/u7hbc3d3dB4IHC8F1cBkc9n+/c6vmP+mqhHRypOV51nrXMKldp/t07dq76jvVVf+TAAAAABhmiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAQNX+53/+p+p069Yt9erVK/Xr1y8NGjQo+0kAAPVHMQUAGG5XXnllmnDCCQcrmkSx5NFHH/1vbr/99nTMMce0FFNat+vbt2/64osvsp8EAFA/FFMAgBHSu3fvwYokQxOFldbFlyiwKKgAAPVGMQUAGCFx1cmwFlPCCy+8MFj7KMYAANQTxRQAYIRUW0wJlVezuIcKAFBPFFMAgBEyPMWU+LpP63Xi3isAAPVCMQUAGCHDU0yJG9O2Xid+BgBAvVBMAQBGyPAUU+JKlNbrxJUqAAD1QjEFABghw1NMWXHFFf/bPp7u44k+AEA9UUwBAEZItcWUvn37Dtbe/VIAgHqjmAIAjJDKYko8+rhSPK0niiatr0iJ9OvXL2sBAFA/FFMAgBFSWUwZlnTr1s3jkAGAuqWYAgCMkMpiStxMNp7W0zrRplevXoO1m3nmmVv+3f1SAIB6o5gCAIyQymLK0MTVKJVFlbhKRUEFAKgniikAwAipppiSqyyoxL1UAADqhWIKADBChqeYEleitF4nUnbjWgCAWqSYAgCMkOEppoTKq1Pi5wAA1APFFABghAxvMaVyPcUUAKBeKKYAACNkeIspffv2HWy9fv36ZUsAAGqbYgoAMEKGt5gSj0ZuvV486QcAoB4opgAAI2R4iilxFUrrdXr37p0tAQCofYopAMAIiUJI68LIX6kspHTr1q3l6T4AAPVCMQUAGG5XXnnlYIWRSBRX4mqVRx999L+5/fbbW+6RUvnVnniij0IKAFBvFFMAgKq1LohUk7gKZcUVV2wptrhHCgBQrxRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAaBf33HNP6tatW8v/AgA0EsUUAKBNff7552nbbbdN//M///PfxP+PfwcAaASKKQBAm+nXr1+aaKKJBiuk5Il/j+UAAPVOMQUAGGFPP/106tmzZ2kRpTLRLtoDANQrxRQAYLj99ttvaa+99iotmkTGHnvs0n+PxHqxPgBAvVFMAQCGy5VXXplmmmmm0kLJyCOPnI4++uiWdvG/8f/L2sX68XMAAOqJYgoAUJU33ngjrbPOOqXFkcj666+f3nrrraz1/4n/H/9e1j4SPy9+LgBAPVBMAQCG2RFHHFFaDInMOuus6Zprrslalovl0a5s/Uj8fACAWqeYAgD8pTvvvDN17dq1tAAS2XfffdOff/6ZtR66aBfty35OJF4nXg8AoFYppgAAQ/Tpp5+mrbbaqrToEVlxxRXTs88+m7WuTqwX65f93Ei8brw+AECtUUwBAEqdccYZafzxxy8tdEw66aTp3HPPzVqOmPg58fPKXideP94HAEAtUUwBAAbzxBNPpGWXXba0uBHp3bt3+uqrr7LWbSN+XvzcsteLxPuJ9wUAUAsUUwCAFj///HPq06dPaTEjssgii6T7778/a90+4ufH65S9fiTeX7xPAIDOpJgCAKTLLrssTT/99KUFjNFGGy0dd9xxWcuOEa8Xr1v2fuJ9xvsFAOgsiikA0MReffXVtOaaa5YWLSIbbrhheuedd7LWHSteN16/7H1F4n3H+wcA6GiKKQDQpA499NDSIkVkjjnmSNdff33WsnPF+4j3U/Y+I/F7AAB0JMUUAGgyt912W5p33nlLCxOR/fffP2tZW+J9lb3fSPw+8XsBAHQExRQAaBIfffRR2nzzzUuLEZFVVlklPf/881nr2hTvL95n2fuPxO8XvycAQHtSTAGAJnDqqaemccYZp7QAMcUUU6QLLrgga1kf4v3G+y77feL3jN8XAKC9KKYAQAN79NFH09JLL11adIjstNNO6dtvv81a15d43/H+y36vSPze8fsDALQ1xRQAaED/+c9/0j//+c/SIkNk8cUXTw899FDWur7F7xG/T9nvGYnPIT4PAIC2opgCAA3m4osvTtNMM01pYWHMMcdMJ554YtayscTvFb9f2e8dn0d8LgAAbUExBQAaxMsvv5z+/ve/lxYTIhtvvHF6//33s9aNKX6/+D3Lfv9IfD7xOQEAjAjFFABoAAcddFBp8SDyt7/9Ld10001Zy+YQv2/83mWfRyQ+LwCA4aWYAgB17Oabb1Y0GIq/KjLF5wcAUC3FFACoQ/F1lk022aS0SBCJr7O89NJLWevmFp/D0L7+FJ9jo3/9CQBoW4opAFBnTjrppCHeaHXqqad2o9UhiM8lPp+yzy0+z/hcAQCGhWIKANSJeATwEkssUVoMiHgE8F/7q0dGx+fbKI+MBgDaj2IKANS47777Lu20006lJ/+RpZZaKj366KNZa4ZFfF7xuZV9npH4vONzBwAoo5gCADXsggsuSFNOOWXpCf8444yTTjnllKwlwyM+v/gcyz7f+Nzj8wcAqKSYAgA16IUXXkirrLJK6Ul+ZLPNNksfffRR1poREZ9jfJ5ln3MktkNsDwCAnGIKANSY/fffv/SkPjLvvPOmW2+9NWtJW4rPNT7fss89EtsFACAopgBAjbjhhhvSHHPMUXoiHzn00EOzlrSn+JzLPv9IbJ/YTgBAc1NMAYBO9s4776SNNtqo9OQ9suaaa6YBAwZkrekI8XnH5162PSKxvWK7AQDNSTEFADrR8ccfn0YbbbTSE/bpppsuXXbZZVlLOkN8/rEdyrZPbLfYfgBA81FMAYBOcP/996dFF1209CQ90qdPn/Tzzz9nrelMsR1ie5Rtp0hsx9ieAEDzUEwBgA709ddfp969e5eelEeWWWaZ9MQTT2StqSWxXWL7lG23SGzX2L4AQONTTAGADnLuueemySabrPREfPzxx0+nn3561pJaFtsptlfZdoztG9sZAGhsiikA0M769++fVlxxxdKT78iWW26ZPv3006w19SC2V2y3su0Zie0d2x0AaEyKKQDQjvbdd9/Sk+1I165d0x133JG1pB7F9ovtWLZ9I7H9AYDGo5gCAO3g2muvTbPOOmvpCXbkiCOOyFrSCGJ7lm3nSPSD6A8AQONQTAGANvTWW2+lXr16lZ5UR9ZZZ530+uuvZ61pJLFdY/uWbfdI9IvoHwBA/VNMAYA2cswxx6SRRx659ER6xhlnTFdeeWXWkkYW2zm2d1k/iP4R/QQAqG+KKQAwgu6555600EILlZ48R/bcc8/022+/Za1pBrG9Y7uX9YdI9JfoNwBAfVJMAYDh9MUXX6Rtt9229GQ50qNHj/T0009nrWlGsf2jH5T1j0j0n+hHAEB9UUwBgOHQr1+/NPHEE5eeIE800UTprLPOylpCaukP0S/K+kv0o+hPAED9UEwBgCr861//Sj179iw9KY5ss8026fPPP89aw/8X/SL6R1m/iUS/iv4FANQ+xRQAGAa///572muvvUpPgiPdunVLd999d9Yahiz6SfSXsn4UiX4W/Q0AqF2KKQDwF6666qo000wzlZ74dunSJR199NFZSxh20W+i/5T1q+hv0e8AgNqkmAIAQ/DGG2+kddddt/RkN7L++uungQMHZq2hetF/oh+V9a9I9L/ohwBAbVFMAYASRx55ZOnJbWSWWWZJ11xzTdYSRlz0p+hXZf0tEv0RAKgdiikA0Mqdd96ZFlhggdIT2sg+++yT/vzzz6w1tJ3oV9G/yvpdJPpl9E8AoPMppgDA//rss8/SVlttVXoSG1lhhRXSs88+m7WG9hP9LPpbWT+MRD+N/goAdB7FFACa3hlnnJEmmGCC0hPXSSedNJ1zzjlZS+g40e+i/5X1y+iv0W8BgM6hmAJA03ryySfTsssuW3qyGtl+++3TV199lbWGjhf9L/phWf+MRP+NfgwAdCzFFACazi+//JJ233330pPTyCKLLJLuu+++rDV0vuiP0S/L+msk+nP0awCgYyimANBULr/88jT99NOXnpCOOuqo6bjjjstaQu2J/hn9tKz/Rr+O/g0AtD/FFACawquvvprWWmut0pPQyIYbbpjefvvtrDXUruin0V/L+nEk+nn0dwCg/SimANDwDjvssNKTzsjss8+err/++qwl1I/ot9F/y/p1JPo9ANA+FFMAaFi33XZbmm+++UpPNCP77bdf1hLqV/Tjsv4dif4f+wEA0LYUUwBoOB9//HHafPPNS08uIyuvvHJ6/vnns9ZQ/6I/R78u6++R2B9ivwAA2oZiCgAN5dRTT03jjjtu6QnlFFNMkc4///ysJTSe6N/Rz8v6f+wXsX8AACNOMQWAhvDYY4+lpZdeuvQkMrLjjjumb7/9NmsNjSv6efT3sv0gEvtJ7C8AwPBTTAGgrv34449p1113LT1pjCy++OLpwQcfzFpD84h+H/2/bL+IxH4T+w8AUD3FFADq1iWXXJKmmWaa0hPFMcYYI5144olZS2hesR/E/lC2n8T+E/sRAFAdxRQA6s7LL7+cVl999dKTw8jGG2+c3nvvvaw1EPtD7Bdl+0sk9qfYrwCAYaOYAkBdOfjgg0tPBiNzzTVXuummm7KWQKXYP2I/Kdt/IrF/AQB/TTEFgLpw8803p7nnnrv0BDBy4IEHZi2BvxL7S9l+FIn9LPY3AGDIFFMAqGkffPBB2mSTTUpP+iKrrbZaeumll7LWwLCK/Sb2n7L9KhL7Xex/AECRYgoANeukk05KY401VumJ3tRTT50uuuiirCUwvGI/iv2pbD+L/S/2QwBgcIopANSchx9+OC2xxBKlJ3eRXXbZJf3www9Za2BExf4U+1XZ/haJ/TH2SwDg/yimAFAzvv/++7TzzjuXnsxFllpqqfTII49krYG2FvtX7Gdl+18k9s/YTwGg2SmmAFATLrzwwjTllFOWnsCNPfbY6ZRTTslaAu0t9rfY78r2x9hPY38FgGammAJAp3rhhRfSqquuWnrSFtlss83Shx9+mLUGOkrsd7H/le2XkdhvY/8FgGakmAJApznggANKT9Ii88wzT7r11luzlkBnif0w9sey/TQS+zEANBvFFAA63A033JDmnHPO0hOzyCGHHJK1BGpF7Jdl+2sk9ufYrwGgWSimANBh3n333bTRRhuVnoxFpppqqjRgwICsNVBrYv9cY401SvffSOzfsZ8DQKNTTAGgQxx//PFp9NFHLz0Ba52rr746WwOoVZdeemmabrrpSvfh2M9jfweARqaYAkC7euCBB9Kiiy5aetJVlllmmSVbE6hlP/30U9ptt91K9+NI7Pex/wNAI1JMAaBdfP3112mHHXYoPcn6q/Tt2zf7KUCte/zxx9MyyyxTui9HYhyI8QAAGoliCgBt7rzzzkuTTTZZ6YlVZbp06VL67y+++GL204B6cPrpp6fxxhuvdH+O8SDGBQBoFIopALSZ/v37p5VWWqn0ZKosG264YRo0aFDad999C8tWW2217KcC9eKTTz5JW265ZWF/zhPjQ4wTAFDvFFMAaBPx1Zyyk6ey/O1vf0s33nhjtmZKf/zxR5p55pkL7S655JKsBVBP7rjjjjT//PMX9uk8vsoHQL1TTAFghFx77bVpttlmKz1hKsshhxySrTm4q666qtA2nhby888/Zy2AenP44YcX9us8MW7E+AEA9UgxBYDhEl/P6dWrV+lJUlnWXnvt9Nprr2Vrl4s2levtscce2VKgHr3++uul+3aeGEdiPAGAeqKYAkDVjjnmmDTKKKOUnhhVJh51HFedDItXX3219Gf861//yloA9eqKK65IM844Y+k+HuNJjCsAUC8UUwAYZvfee29aaKGFSk+GyhL3Rfjzzz+ztYfNwQcfXPg5yy+/fLYUqGe//vpry9Vmlft4nhhfYpwBgFqnmALAX/riiy/SdtttV3ryU5ZVV101vfDCC9na1ZtrrrkKP/Pcc8/NlgL17qmnnko9evQo7Od5YryJcQcAapViCgBDdfbZZ6eJJ5649ISnMtNOO226+OKLszWH3w033FD42ZNPPnn69ttvsxZAIzjrrLPShBNOWNjfIzHuxPgDALVIMQWAUnGfkvh6TdlJTll233339NNPP2Vrj7gNNtig8Bo777xzthRoFP/+97/TNttsU9jf88Q45L5JANQaxRQABvP777+nvffeu/SkpixxovP0009na7edeLpHly5dCq/36KOPZi2ARnL33XenBRdcsLDP54lxKcYnAKgFiikA/Fc8dWfmmWcuPZGpzGSTTdbu9zE56qijCq+79NJLZ0uBRhT7fVkhNRLj07A+HQwA2pNiCgDpzTffTOuuu27pyUtZdtpppw67f0nXrl0Lr3/GGWdkS4FGNHDgwLTeeusV9v08MV7FuAUAnUUxBaDJHXnkkWmkkUYqPWGpTFwV8sgjj2Rrdozbb7+98D4mmGCC9Pnnn2ctgEZ19dVXp1lmmaUwBkRi3IrxCwA6g2IKQJO666670gILLFB6klKZ8ccfP51++unZmh1vs802K7ynbbfdNlsKNLI//vgj7bPPPoUxIE+MYzGeAUBHUkwBaDKfffZZ2nrrrUtPSsoST9mIp210pg8++CCNOeaYhfd23333ZS2ARvfMM8+kFVZYoTAO5IlxLcY3AOgIiikATeTMM89s+YpM2YlIZRZZZJF07733Zmt2vhNOOKHwHhdddNFsKdAszjnnnDTJJJMUxoNIjG8xzgFAe1NMAWgCTz75ZFpuueVKTz4qE1eAROGiFkXxpPL9nnjiidlSoFl8+eWXafvtty+MB3livItxDwDai2IKQAP75Zdf0h577FF6slGWuDdJfKWmVsXXeirfcxR/Pvzww6wF0ExiTFh44YUL40Ke3XffvWUcBIC2ppgC0KAuv/zyNMMMM5SeYFRm/vnnb3lqTj2IG89Wvv8oAgHN69hjj02jjjpqYWyIxDgY4yEAtCXFFIAG89prr6W11lqr9KSiMl26dKm7R4vGzXDL7vtSL8UgoH28/fbbaYMNNiiMDXliXIzxEQDagmIKQAM57LDDSk8iyhInHW+99Va2Zn2JxzRX/j5du3bNlgLN7Lrrrkuzzz57YYzIE+MkAIwoxRSABhBXZcw333ylJw6VmXPOOdMNN9yQrVm/ll566cLvdtRRR2VLgWa33377FcaIPDFeupoNgBGhmAJQxz7++OO0xRZblJ4slOWggw7K1qx/jz76aOH3i68tDRo0KGsBNLvnnnsurbzyyoWxIk+MnzGOAkC1FFMA6tRpp52Wxh133NIThMrEvQIGDBiQrdk4dt5558LvuuGGG2ZLAf7P+eefnyaffPLCeBGJcTTGUwCohmIKQJ157LHHUvfu3UtPCioz88wzpyuvvDJbs/F8++23pSdIN954Y9YC4P988803accddyyMF3liXI3xFQCGhWIKQJ348ccf06677lp6ElCWfffdN/3xxx/Z2o3r3HPPLfzuc801V7YUYHAPPvhgWmyxxQrjRp4YZ2O8BYChUUwBqAOXXHJJmnbaaUsP/CuzyiqrpOeffz5bszksv/zyhc/h4IMPzpYCFJ1wwglpjDHGKIwdkRhvY9wFgCFRTAGoYa+88kpaffXVSw/2KzPNNNOkiy66KFuzuTz99NOln8mrr76atQAoeu+999I//vGP0vEjEuNvjMMAUEkxBaBGxZUVZQf3ZenTp0/TX5a+++67Fz6XtddeO1sKMGRxn6X4emDlGJLHlW4AVFJMAagxt9xyS5p77rlLD+gr06NHj/TUU09laza3n3/+OU033XSFz+iqq67KWgAM3YEHHlgYQ/LEuBzjMwAExRSAGvHBBx+kTTfdtPQgvjKTTjppOvvss7M1ycU9Dio/q3ii0Z9//pm1ABi6F198Ma222mqFsSRPjNMxXgPQ3BRTAGrAySefnMYaa6zSA/fKxKM9v/7662xNKpWdBMWTjQCqEfegmmqqqQrjSSTG6xi3AWheiikAnejhhx9OSy65ZOnBemWWWmqplvYM3QsvvFD6+TXbE46AEffDDz+kXXbZpXRMicT4bVwGaE6KKQCd4Pvvv08777xz6cF5ZcYbb7x02mmnZWsyLPr27Vv4HFddddVsKUB1HnnkkaEWvmM8j3EdgOahmALQwS688MIhXjpema233jp99tln2ZpUY5ZZZil8nhdffHG2FKB68dWescceuzC2RGJcj/EdgOagmALQQeKmhnF1RNlBeGUWXnjhdM8992RrMjyuvvrqwuc67bTTpp9++ilrAVC9Dz/8cKg3C49xPsZ7ABqbYgpABzjggANKD7orM8YYY6Tjjz8+W4sRtc466xQ+49133z1bCjD84jHJ88wzT2GMyRPjPgCNSzEFoB3deOONac455yw90K7MJptskt5///1sTdrCa6+9VvpZP/3001kLgBFzyCGHlI4zkRj/Yx4AoPEopgC0g3fffTf94x//KD24rsx8882Xbr311mxN2lrZiU7Pnj2zpQAj7pVXXklrrLFGYazJE/NBzAsANA7FFIA2dsIJJ6TRRx+99IC6dUYaaaR0xBFHZGvRnv72t78VPv9zzjknWwrQNi699NKWezNVjjeRmBdifgCgMSimALSRBx54IC222GKlB9GV6dWrVxo4cGC2Ju0tLrOv3AaTTTZZ+uabb7IWAG0jbnK92267FcacPDFPxHwBQH1TTAEYQXFCvsMOO5QeNFdmjjnmSNdff322Jh1pww03LGyPnXbaKVsK0LYef/zx1L1798K4kyfmDQVdgPqlmAIwAs4777w0+eSTlx4oV+bAAw/M1qIzvP3222mUUUYpbJdHHnkkawHQ9k477bQ03njjFcaeSMwfMY8AUH8UUwCGw3PPPZdWWmml0oPjyqy55potNyek8x199NGF7bPUUktlSwHaxyeffJK22GKLwviTJ+aTmFcAqB+KKQBV6tu3b+nBcGVmmmmmdMUVV2RrUSsWWGCBwraKvxwDtLfbb789zT///IUxKE/MLwDUB8UUgGF03XXXpdlmm630ALgye++9d/r999+zNakld9xxR2F7jT/++Omzzz7LWgC0r8MPP7wwDuWJeSbmGwBqm2IKwF8YNGhQ2mCDDUoPeiuz8sorp/79+2drUqs233zzwrbbZpttsqUA7e+1115La6+9dmEsyhPzTsw/ANQmxRSAoTj22GNLb1pamamnnjpdeOGF2VrUuo8++iiNNdZYhe147733Zi0AOkZ8HXSGGWYojEeRmH9iHgKg9iimAJSIk+qFF1649OC2Mrvttlv6z3/+k61JvTjppJMK23KRRRbJlgJ0nF9//TXtsccehTEpT8xHir0AtUUxBaCVL7/8Mm233XalB7OVWW655dKTTz6ZrUk9WmyxxQrb9YQTTsiWAnSsp556qmVuqRyX8sT8FPMUAJ1PMQUgc/bZZ6dJJpmk9AC2daJNv379srWoZ/fff39h+44xxhjpgw8+yFoAdLwzzzwzTTjhhIXxKRJzUMxXAHQuxRSg6T3zzDNp+eWXLz1orcwOO+yQvvrqq2xNGkHZlUibbrppthSgc/z73/9OW2+9dWF8yhPzVsxfAHQOxRSgaf3xxx8tjzAuO0itzJJLLpkeeuihbE0ayeeff176F+DbbrstawHQee6666604IILFsaoPDGPxXwGQMdSTAGa0tVXX51mnnnm0gPT1hl33HHTKaeckq1FozrjjDMK237++efPlgJ0vqOOOiqNNNJIhbEqEvNZzGsAdBzFFKCpvPnmm2m99dYrPRitzFZbbZU++eSTbE0aXffu3Qt94Mgjj8yWAnS+v5rDYlm0AaD9KaYATWNof9VrnYUWWijdfffd2Vo0i8cee6zQF6K/vPXWW1kLgNowtKsrY9yK+Q6A9qWYAjS8v/q+eZ7RRhstHXfccdlaNKNddtml0C969eqVLQWoHX9136+Y92L+A6B9KKYADeuvnoTQOhtvvHF67733sjVpVt99912aYoopCv3jhhtuyFoA1Ja/eiJdzIMxHwLQthRTgIZ05plnlj6hpTLzzjtvuuWWW7K1IKXzzjuv0E/mnHPObClAbTr77LPTJJNMUhi/IjEfxrwIQNtRTAEaylNPPZWWW2650oPJyhx++OHZWjC4FVZYodBfDjrooGwpQG368ssv03bbbVcYv/LE/BjzJAAjTjEFaAi//vpr2mOPPUoPHiuz/vrre9oBQxWXzZf1nQEDBmQtAGrXvffemxZeeOHScSwS82XMmwAMP8UUoO5dccUVaYYZZig9YGyd2WefPV177bXZWjB0e+65Z6EPrbXWWtlSgNp37LHHplFGGaUwlkVi3oz5E4Dho5gC1K3XXnstrb322qUHiZU54IADsrVg2Pzyyy9p+umnL/SlK6+8MmsBUPsGDRqUNthgg8JYlifm0ZhPAaiOYgpQl+J+J2UHhZVZY4010ssvv5ytBdW59NJLC31qpplmankkKUA9ue6669Jss81WGNPyuI8YQHUUU4C6cvvtt6f555+/9ECwdeLy5csvvzxbC4bf3//+90L/2meffbKlAPWlb9++hTEtT8yvMc8C8NcUU4C68Mknn6Qtttii9OCvMnvttVf67bffsjVhxLz44oul/ey5557LWgDUlxi/VlpppdKxLRLzbcy7AAyZYgpQ80477bQ0zjjjlB7wtU4cGD777LPZWtB29ttvv0J/W2WVVbKlAPXpvPPOS5NPPnlhfIuMN954LfMvAOUUU4Ca9fjjj6fu3buXHuS1zlRTTZUuuOCCbC1oH7POOmuh71100UXZUoD69M0336QddtihML7liXk45mMABqeYAtScn376Ke22226lB3WV2XXXXdMPP/yQrQnt55prrin0v6mnnjr9+OOPWQuA+vXAAw+kxRZbrDDO5Yl5OeZnAP6PYgpQU+LpKXGlSdmBXOssu+yy/lJGh1t33XULfbFPnz7ZUoD6d8IJJ6TRRx+9MNZFpp122pZ5GgDFFKBGvPLKKy2PMS47eGudiSeeOJ111lnZWtCxXn/99dJ++eSTT2YtAOrfu+++m/7xj3+UjneRmK9j3gZoZoopQKc75JBDSg/WKtO7d+/05ZdfZmtB5zj00EMLfbNHjx7ZUoDGceONN6Y555yzMOblifkboFkppgCd5pZbbklzzTVX6QFa6yy++OLpwQcfzNaCzjf33HMX+unZZ5+dLQVoLAcccEBhzMszzzzztMznAM1GMQXocB9++GHadNNNSw/KWiceh3zyySdna0HtuOmmmwr9ddJJJ01ff/111gKgsbz44otp1VVXLYx9eWJej/kdoFkopgAdKoojY445ZumBWOtsueWW6eOPP87WgtpTdj+BHXfcMVsK0JguvPDCId4ofuyxx/ZHEKBpKKYAHeKRRx5p+bpO2cFX63Tr1i3ddddd2VpQu95555006qijFvrwww8/nLUAaEzff/992nnnnQvjX54ll1yyZd4HaGSKKUC7+uGHH9Iuu+xSerDVOnFSeuyxx2ZrQX045phjCn05TiIAmkEUj2PMqxwH88T8H8cBAI1IMQVoNxdddFHLfSTKDrBaJ74uEX/lh3q04IILFvr0qaeemi0FaHzx1Z6xxhqrMBZG4itBcTwA0GgUU4A291c3qcsTTwC4+eabs7WgPt15552Fvj3eeOOlTz/9NGsB0Pg++OCDod5cfrXVVms5PgBoFIopQJs68MADSw+iKnPYYYdla0D922KLLQp9fOutt86WAjSPeExy2ePj88RxAkAjUEwB2sSNN96YZp555tIDp9ZZd9110xtvvJGtBY0hnjwVj/Ku7O/33HNP1gKguRx88MGFMTHPXHPN1XLcAFDPFFOAEfLee++VPiK2MrPNNlu65pprsrWg8cQ9Ayr7/cILL5wtBWg+r7zySlp99dULY2OeOH6I4wiAeqSYAgy3E044ofTRsJXZf//9szWgsZU9/vv444/PlgI0p0suuSRNO+20hfExMsYYY7QcTwDUG8UUoGoPPvhg6tq1a+lBUevEX6NeeumlbC1ofA888EBhPxh99NH95RVoej/++GPaddddC2NknsUWW6zl+AKgXiimAMPsm2++STvuuGPpQVDrTD/99Omyyy7L1oLmsv322xf2iU022SRbCtDcHnvssdS9e/fCOJknjjPieAOg1immAMPk/PPPTxNMMEHpgU/r7LnnnumXX37J1oLm88UXX6SJJpqosG/ceuutWQsATjvttDTuuOMWxsrI5JNP3nLcAVDLFFOAoXruuefSsssuW3qw0zorrrhieuaZZ7K1oLmdeeaZhX1kvvnmy5YCEOJJaGWPls+z8sortxyHANQixRRgiPbbb7/Sg5vWmWKKKfz1CEqUFSGPOOKIbCkAudtvv72l4Fw5ZuaJ4xGAWqOYAhRcd911Q7zrfuvssssu6fvvv8/WAlp7/PHHS/ebgQMHZi0AaO2www4rHTcjs88+e8vxCUCtUEwB/uvtt99Oa621VulBTOsss8wyLTeQA4bun//8Z2H/WX/99bOlAFR67bXXhnosssEGG7QcrwB0NsUUoMWxxx6bRh555NIDlzxxU824FwQwbOLKrSmnnLKwL/nrKsDQXX755WmGGWYojJ+RUUcdteW4BaAzKaZAk7vvvvvSnHPOWXqw0jrxuNd4Sgm17bvvvktvvPFGevDBB1sORI8//vh03HHHtfx3/Nvrr7/e0oaOE/cUqtyf5phjjmwpAEMSTwfcfffdC2NonoUXXrjlOAagMyimQJP68ssv05Zbbll6cNI6iy22WLr//vuztahFcQ+Ok046KfXo0aN0G5alZ8+e6eSTT3b/jg4ST7uq3AYHHnhgthSAoXnyySfTcsstVxhH88QffOK4BqAjKaZAEzrnnHPSOOOMU3pAkmfsscduOUGndl1xxRVpwQUXLN1+1SR+Rvws2s+zzz5b+tm/8sorWQsA/kp81XiCCSYoHU8nmWSSluMbgI6imAJN5JlnnkmLLLJI6UFI62yxxRbpo48+ytai1tx9992pe/fupdtuRBI/M3427WOvvfYqfOZrrrlmthSAYfHZZ5+lrbfeujCe5llhhRVajncA2ptiCjSBP/74I+2xxx6lBx2ts8ACC6Q777wzW4ta8+OPP6Z11lmndNu1zqyzztpSGIknHvTp06cl8d/xb7GsbJ3WideI16Jt/frrr6U3U4z72QBQnbvuuqvluKVyTM2zzz77tBz/ALQXxRRocFdffXWafPLJSw808owyyijp6KOPztagFr388supa9eupdsvEn+JO+WUU9KgQYOyNYYs2kTb5ZdfvvRnReK14jVpW5dddlnhs55xxhnTb7/9lrUAoBpHHnlkGmmkkQpja2SWWWZpOQ4CaA+KKdCg4saiQztZzrPRRhult99+O1uLWnTzzTen8ccfv3T7bbzxxmnAgAFZy+rFuvEzyn52vGa8Nm1r9dVXL3zWe++9d7YUgGq9+eabad111y2MrXnWW289N1wH2pxiCjSgof2VJs/cc8+dbrrppmwNalUUM8q2X1yJ8sgjj2StRlz8rPiZZa+loNK2XnrppdLPuX///lkLAIbHVVddlWaeeebSMbZLly7pqKOOyloCjDjFFGggcfPQmWaaqfQgonUOPfTQbA1qWXzNpuyKlHgEZHvp3bt34fXiPfjKT9vaf//9C5/zyiuvnC0FYHj9/vvvLVf7VY6xeeIJdm62DrQFxRRoAP/+979bLmEtO2honbix6GuvvZatRS2LG8CW3SPluOOOy1q0n3iNyteN9+KmtG1r9tlnL3zOF154YbYUgBHxr3/9a6hfd95mm21ajp8AhpdiCtS5s846K4055pilBwp54gkubsBWX8qe2tMRhZRcWUEl3hNt59prry18xlNNNVX64YcfshYAjKizzz47TTzxxIXxNjLhhBO2HEcBDA/FFKhTTz31VJp33nlLDw5aZ7/99svWoF7E5ceV2zG+ftPR4utEle/DpdFtq+yKsl133TVbCkBb+OKLL9J2221XGG/z9OjRo+W4CqAaiilQZ3799deWS1PLDgZaZ7XVVksvvvhithb1pHv37oNty7gxbGepvCltvDfazhtvvDHY55vniSeeyFoA0FbuvffetNBCC5WOu5E999yz5TgLYFgopkAdueKKK1ouSS07AMgz3XTTpUsuuSRbg3oT27hym7blU3uqFa9d+X7iPdJ2DjvssMJnvNxyy2VLAWhrxxxzTBpllFEKY29kxhlnNM8Bw0QxBerA66+/nhZffPHSSb919thjj/Tzzz9na1GP4ikDrbfpxhtvnC3pPPEeWr+neI+0rXnmmWewzzjSr1+/bCkAbW3QoEGpV69ehbE3z9prr91y/AUwJIopUOP22muv0km+deKrGHHXeurbwIEDC9t2wIAB2dLOE++h8n3Fe6Xt3HLLLYXPeJJJJklfffVV1gKA9hA3A59tttkKY3Ceww8/PGsJMDjFFKhRd9xxR5p66qlLJ/Y8k08+eTrvvPOyNah3J5988mDbNx7pWCsq751y0kknZUtoK5VXAEV22GGHbCkA7alv376FMTjP/PPP33JcBtCaYgrUmE8++SSttNJKpZN56+y8887p22+/zdaiEfTs2XOwbXzKKadkSzpfvJfW7y2efEDbevfdd9Noo4022OccefDBB7MWALSn/v37D/UYbMstt2w5TgMIiilQQ44++ujSk6nWiaepPProo9kaNIrvvvuusK3j+9y1It5L5fuL90zbOvbYYwuf8xJLLJEtBaAjxFW/k002WWE8jow33njp9NNPz1oCzUwxBWrA448/nmadddbSSTvP+OOPn84444xsDRpN3OSu9faO/lBrKvtoPNaXttetW7fBPudILV2lBNAMvv7665avWlaOx3mWWWaZluM3oHkppkAn+umnn9L6669fOkm3zrbbbps+//zzbC0aUXyVo/U2jyuQak28p9bv0ddP2sddd9012OccGXfccV1aDtAJHnjggbTooosWxuU8u+22W8vxHNB8FFOgk5xzzjktJ0hlE3OemLzvu+++bA0a2eWXXz7Ytt9ggw2yJbUj3lPr9xjvmfYR38tv/VlHttpqq2wpAB3t+OOPT6OPPnphbI5MN9106dJLL81aAs1CMQU6WDxmNu4KXzYZ5xlzzDHTiSeemK1BMzjuuOMG6wN9+vTJltSOeE+t32McWNI+4iqUsmLr3XffnbUAoKPFjcI32mijwticZ4011mg5zgOag2IKdKD4uk7Z5Ns6m2++efrwww+zNWgWUTxr3Q/22GOPbEntqCymRAGI9lP5BKVI3E8FgM51ww03pDnnnLMwRuc55JBDspZAI1NMgQ4Qk+4kk0xSOuHm6dq1a7r99tuzNWg2V1555WD9If7yVWt8zafjxZN8Wn/mkXjiDwCd74ADDiiM0XnmmWeedOutt2YtgUakmALtKK4wWXLJJUsn2TxdunRJRx11VLYGzeqhhx4arF/EUwJqjRvQdrzKGxNH4vHpcak5AJ3vhRdeSKuuumphrM6z2WabueIYGpRiCrSTvffeO4088silE2ueDTfcMA0aNChbg2YWjxlu3Tdmm222bEntqHw0cjzOmfbXu3fvwT73yMYbb5wtBaAWXHjhhWnKKacsjNeRscce2yPuoQEppkAbe+SRR9K0005bOpnmmWOOOdKNN96YrQEpfffdd4V+UkuFtngvle8v3jPt78svv0wTTzxx4fO/5ZZbshYA1IKYF3feeefCeJ1nqaWWajlOBBqDYgq0kR9++CGtvPLKpZNn6xx88MHZGjC4Hj16DNZXaumvWJU3Q+3Zs2e2hI7Qr1+/wT7/yLzzzpstBaCWPPzww6X3vMqzyy67tBw3AvVNMQXaQNzzJB5nXDZh5ll77bXTq6++mq0BRSeddNJgfWaFFVbIlnS+5ZdffrD3dvLJJ2dL6CjLLbfcYNsgcvjhh2dLAag1Ma+PNdZYhbE7MvXUU6eLLrooawnUI8UUGAEvvfRSmn322UsnyTwzzDBDuuqqq7I1YMgGDhxY6D8DBgzIlnaeeA+V7yveKx3riSeeKGyHSNxvB4Da9MEHH6RNNtmkdPyOrLbaai3Hk0D9UUyB4dSrV6/SSbF1+vbtm/78889sDfhrCy644GB9qBZuNBrvofV7ivdI59h1110H2xaR9dZbL1sKQK26+eab09xzz10Yw/MceOCBWUugXiimQJXOPvvsNP7445dOhHniEXnPP/98tgYMuyuuuKLQnzrzZnXx2pXvJ94jnSO+Yz/VVFMVtsm1116btQCglsW98yrH8DxzzTVXuummm7KWQK1TTIFh9N5776WuXbuWTn55pphiinTxxRdna8Dw6d69+2D9qjPvnRKv3fq9xHujc11wwQWDbZNIfN0QgPrw8ssvp9VXX70wlueJK0LjuBOobYopMAy23Xbb1KVLl9IJL8/uu++efvrpp2wNGH533313oX9tv/322dKO07t378L7iPdG5yt7ctgBBxyQLQWgHlxyySVpmmmmKYznkTHGGCOdeOKJWUugFimmwFDEpfOTTTZZ6SSXJ56w8fTTT2drQNtYZ511Cn3tuOOOy5a2v3ityteP90Rt6N+/f2H7ROKvnQDUjx9//LH0flh5Fl988fTggw9mrYFaopgCJb799tu05JJLlk5qeSaccMJ0zjnnZGtA24qDq7KvlXVEQaWskBLvJd4TtWPvvfcubKe4bByA+vPYY4+lpZdeujCu59lxxx1bjk+B2qGYAhX23HPPNOqoo5ZOZHl22mmn9M0332RrQPuIqwzKbnYcX79pL/F1osrXi/fgiofa89tvv6UZZ5yxsL0uu+yyrAUA9ebUU09N4447bmFsj8S9+c4///ysJdDZFFMgE5dQTjfddKWTV55FF120U5+sQvOJRymW9cW4MWxb9sX4WZU3m80T74HadPnllxe21wwzzJB+/fXXrAUA9ebjjz9Om2++eWF8zxP3zfLUSOh8iinwv1ZaaaXSySrP2GOPnU4//fSsNXSsKGYM6XHcccf/AQMGZC2rF+vGzyj72fGaCim1b4011ihsu7322itbCkC9uu2229J8881XGOPz7LfffllLoDMoptDUjjjiiDTWWGOVTlB5ttlmm/TZZ59la0DniK/ZDO3R3Msvv3w65ZRT0qBBg7I1hizaRNshXYkSidfy1Z76ENupbBs+++yzWQsA6tlhhx1WOs5H4tH4119/fdYS6EiKKTSlOPmIyadsUsoz77zzpnvvvTdbAzpf3AC27Ck/lZl11llT9+7d0wYbbJD69OnTkvjv+LdYVrZO68RruNlsfTnwwAML2zGuuAOgMbz66qtprbXWKoz1eTbccMP09ttvZ62BjqCYQtNZb731SiehPKONNlo64YQTstZQe+6+++6WwkhZ/x2RxM+Mn019mmOOOQrb1I0KARpL3Ctr+umnL4z3kXiAQkc89Q/4P4opNI0zzzxziPedyBP3jvjggw+yNaC2XXHFFWnBBRcs7cvVJH5G/Czq23XXXVfYtlNOOWX6/vvvsxYANIJffvkl7b777oUxP88iiyyS7rvvvqw10F4UU2h4cb+T+eefv3SyyTPbbLO13OQL6tHAgQPTySefnHr27Fnav8vSo0ePdNJJJ7WsS+NYf/31C9v6n//8Z7YUgEby5JNPpmWXXbYw7ufZfvvt01dffZW1BtqaYgoNbauttkojjzxy6QQTGWmkkdKRRx6ZtYb6991336XXX3+95VHfcSlwXO57/PHHt/x3/Nsbb7zR0obG9Oabb5aOdY8//njWAoBGc8YZZ6QJJpigdPyfdNJJ0znnnJO1BNqSYgoN6aqrrmqZPMomlTxrrrlmeuutt7I1ABrD4YcfXhjv4i+XADSuuBI7/ohYOf7niSf4ecobtC3FFBrKn3/+mRZffPHSSSTPdNNN5xFyQEObb775CmPfWWedlS0FoFHdeeedaYEFFijMAXn22WefluNlYMQpptAwdtttt5a7mJdNHHkOOuigrDVA47r11lsL499EE02Uvvjii6wFAI0svsZeOQ/kmWWWWdI111yTtQSGl2IKde+ee+5J00wzTelkkWf55ZdPAwYMyNYAaHybbLJJYSyMmxEC0BziPmnrrrtuYS7IEzctdyN6GH6KKdS1+P5n2eSQZ/LJJ09XXnll1hqgebz33ntp9NFHL4yLDzzwQNYCgGYQ9xKcaaaZCvNBpEuXLunoo4/OWgLVUEyhLh188MFpzDHHLJ0U8uy9997p999/z9YAaD7xNKfKsTHuKwVAc4lj4r322qswJ+Tp1q1buvvuu7PWwLBQTKGuPPfccy3f8yybBPIsscQSLe0ASGmhhRYqjJMnn3xythSAZvKvf/0r9ezZszAv5Nlmm23S559/nrUGhkYxhbqx1lprlQ76eSaccMJ00UUXZa0BCPGXxsrxcpxxxkkff/xx1gKAZtOvX7808cQTF+aHSNyw3BPg4K8pplDzTjnllDTeeOOVDvZ5evfunX788cdsDQBa23rrrQvj5pZbbpktBaAZxRPett1228L8kKdHjx7p6aefzloDlRRTqFnvv/9+mmeeeUoH9zxdu3ZNTz75ZLYGAGU+/fTT0qL0nXfembUAoFnFkzHLvhKaZ88990y//fZb1hrIKaZQkzbddNOWu4uXDeiRscceO5199tlZawD+yqmnnloYSxdccMFsKQDN7phjjkkjjzxyYa6IzDjjjJ6QCRUUU6gpF1988RC/v5ln4403Tl9//XW2BgDDaskllyyMqXHwDADhrbfeSr169SrMFXnWWWed9Prrr2etobkpplATvvzyy7TIIouUDtp55pxzzvTwww9nawBQrYceeqgwto466qjpnXfeyVoAQErXXnttmnXWWQtzRp4jjjgiawnNSzGFTrfTTjulUUYZpXSgjow++ugtl6cDMOJ22GGHwjj7j3/8I1sKAP/fvvvuW5gz8sS9C++4446sJTQfxRQ6zW233ZamnHLK0sE5z5prrtly40QA2kZ8TXLSSSctjLc333xz1gIA/r/+/funFVdcsTBv5ImnwzlepxkpptDhfvjhh7TsssuWDsZ54iZXcWdxANpe3MC7ctyNp6cBwJCce+65abLJJivMH5Hxxx8/nX766VlLaA6KKXSo/fbbL4022milg3Ak7iB+2GGHZa0BaC89evQojMGHHnpothQAiuLqxt69exfmjzzLLLNMeuKJJ7LW0NgUU+gQTz75ZJphhhlKB908yy+/fHrvvfeyNQBoTzEul43FntIAwF+5//7706KLLlo6j0T69OmTfv7556w1NCbFFNrVr7/+mlZbbbXSQTbPVFNNlW699dZsDQA6ym677VYYk9ddd91sKQAM3fHHHz/Eq86nm266dNlll2UtofEoptBujj322DTWWGOVDq559thjj6w1AB3tP//5T5p66qkLY/M111yTtQCAoYvH62+00UaFuSRPPFBiwIABWWtoHIoptLmXX345zTHHHKWDaZ4lllgiDRw4MFsDgM5y0UUXFcbo2WabLVsKAMPmhhtuGOo5gPty0WgUU2hTG2ywQengmWeSSSZJ1113XdYagFqwyiqrFMbr/fffP1sKAMMu5o/KOSXPvPPO6+v9NAzFFNrEOeec0/JItLJBM892222XtQagljz33HOl4/aLL76YtQCAYffCCy+UFurzbLbZZumjjz7KWkN9UkxhhLz55pupa9eupYNknlj+yiuvZGsAUIv22Wefwvj997//PVsKANW74IIL0pRTTlmYXyLjjDNOOuWUU7KWUH8UUxhu22yzTenAmGe88cZL559/ftYagFr2+++/p5lmmqkwll966aVZCwCo3nfffZd22mmnwvySZ6mllkqPPvpo1hrqh2IKVbv22mtb7n1SNhjmiTt6//bbb9kaANSDK664ojCeTz/99OmXX37JWgDA8HnooYdaHkJROc/k+ec//9nylDmoF4opDLN33303Lb744qWDX54555wz9e/fP1sDgHqz1lprFcb2PffcM1sKACPmpJNOSmOOOWZhronE4/ovvvjirCXUNsUUhkmfPn1Sly5dSge9yFhjjZVOOOGErDUA9WrAgAGl4/wzzzyTtQCAEfP++++nTTbZpHS+icQ9u1566aWsNdQmxRSG6u67705TTTVV6SCXZ/XVV3dJHkADOeiggwpj/QorrJAtBYC2cfPNN6e//e1vhTknT8xHUKsUUyj1ySefpJ49e5YOanlmnHHG9MQTT2RrANBI4mubleP+eeedly0FgLZTVsTPE8WWm266KWsJtUMxhYJDDjkkjTrqqKWDWWS00UZLBx54YNYagEZ0/fXXF8b/KaaYouWpDADQ1l5++eWWr/dUzj15Nt5445avB0GtUEzhv+IO23G1SdngladHjx7pq6++ytYAoJH16tWrMA/ssssu2VIAaHtxA9ppppmmMP9E4sa1J554YtYSOpdiCi3FkTXXXLN0wMoT90256667sjUAaAYDBw5MI400UmFOeOyxx7IWAND24n6M8ajkyvknTzxhNP4QDJ1JMaXJnXzyyUN8NFlk5JFHbhnIAGhORx55ZGFuWGaZZbKlANB+Hn300bT00ksX5qE8O+20U/r222+z1tCxFFOa1JNPPll6c8HWWWyxxVpuRAtAc5t//vkLc8QZZ5yRLQWA9nXqqaemccYZpzAXReJ+XhdccEHWEjqOYkqTiUvm4uZNZQNRnkkmmSRdccUV2RoANLvbbrutMFdMOOGE6fPPP89aAED7+uijj9Lmm29emI/yrLLKKun555/PWkP7U0xpIhdeeGEad9xxSwefSHwvfsstt8xaA8D/t+mmmxbmje222y5bCgAdIwr88847b2FOyrP//vtnLaF9KaY0gf79+6cFFligdLDJM99886V33303WwMABhePoxxjjDEK88f999+ftQCAjnPooYcW5qQ8c8wxR8sj/qE9KaY0sN9//z317t27dIDJM9544/neOwDD5Pjjjy/MI3F/LQDoDK+++upQn0q64YYbpnfeeSdrDW1LMWUIBg0alGaeeebs/9WfuOfJRBNNVDqo5FlvvfWy1gAwbBZZZJHCfHLSSSdlSwGg41122WVp+umnL8xPkdFGGy0dd9xxWcv6F+ep/fr1SyuuuGLL/cvy3zP+u1evXunKK6/MWv6f22+/PR1zzDHZ/6MtKaYMQd++fVs6ZWVnrHWvvPJKWmKJJf67U5VlttlmSy+//HK2BgAMu3vvvbcwr4w99tjpww8/zFoAQMf7+eefU58+fQpzVJ74Y0A9fzU1iiitv3XQrVu3liJJPD46T/z/+Pe4KCDOY7/44ouWootiSvtQTCkRnS6v8kXnqxd77bXXf3eusow11ljpiCOOyFoDwPDZZpttCnNMPGEBADrbE088kZZddtnCPJUnChJfffVV1ro+RGEkPz+NYkkUToYmlre+akUxpX0oppSIy6byjhf5q87a2eLmSlNOOeVg77kyK6+8ctYaAEbMZ599lsYff/zCXHPHHXdkLQCgc8V9Icvmqsikk06azj333KxlbYtCSv6+o5ASf/gfFtEurlCJ9erpAoF6ophSIu90eaJ6WYsGDhyYevbsOdh7rcx0002X7rvvvvTbb7+1aeLmtm2ZP/74o03z559/tmkAGNxpp51WmHPiyXEAUCs+/fTTtNVWWxXmqzxRZHj22Wez1rUn7neSv9e40mRYCym5F1544b+/J21PMaVCXvmLql/ecSPxHbVaEl/Xaf3+pL4y0kgjtWm6dOnS5hl55JHbNKOMMkqbZtRRR23TxM3J2jKjjz56myYeSduWGXPMMds08TXCtkzcg6OtM84447Rpxh133DZNPF2tLRN/jWvLTDDBBIXEvlg5vh199NHZTAUAteHOO+9MXbt2LcxZefbdd9+a+wNq61tPROLbE8MjLgxQTGkfiikVoqNFp43iSesdrFa+Z3brrbcO8U7VIiIinZ0osLz99tvZrAUAtWNof5CeddZZ0zXXXJO17HytbzY7PFel5OK8Ni4UoO0pprQS90aJzpoXTio7cGd6//33h/oMdRERkVrJRhttlM1eAFBb3njjjbTOOuuUzl+R9ddfP7311ltZ684RhZPW7ykeeTwiRnR9yimmtJIXT/Kv9OTFlTyd9ZjkeC562aXUIiIitZqbbropm8UAoPbEud1MM81UOofFV9Q782urrW86Gxner/jQvhRTMvnXeipvNtv6ZrSdcXnU7rvv3vLd9/w9VCa+8rP00kun5ZZbboQTjxCr9SyzzDI1ne7du9d8or/UcpZaaqmazpJLLlnzWWKJJWo6iy++eM1nscUWq+ksuuiidZGDDjpIRESkZnPggQe2HJuUnWdF4vzvnnvuyc7MOk5cSdL6fdT602WblWJKJr7aU9ZRK6uCHdWRP//887TtttsO9toiIiIiIiLSsYnzsjg/6yiVD0OJp/JQexRT/ld+p+SyK08q76JceeVKezjrrLPSRBNNNNgOJCIiIiIiIp2TOD/rqK/bVL42tcmW+V/51SdDuidK3759B+vM7fWY5Keffjr17NlzsNcSERERERGR2kicr8V5W3uqfE1qky3zv+K+KEN7Wk9HPCa5f//+pd/jExERERERkdpKnL+1l9bfjIgM72ORaV9NX0y5/fbbh6lAsuKKK/63M3f2Y5IBAABoTK3PPSNuQFubmr6YUtlRhzVD+koQAAAADK/K20w496xNTV1MibsiR+eMR09Fte+v0voxyfHfAAAA0Jbyb0/k6YiHoFC9pi6mRKeMzjmsN5TNH5+cJwosAAAA0JZa/yE/bjPhvim1p2mLKdEZo2PGVSnDqvIxydWsCwAAAMMif+JsnhF5CEo80jmudqFtNW0xJb/KpNqrSzrqMckAAAA0r/jjfX7eGX/Uj9tUVCuKMnGfUNpeUxZT8itMunXrlv3LsKt8TLLvrwEAANDW4rw1zlmHt6AShZRY31eE2kdTFlPyq0uG91KpvDPnGZ4KIQAAAAxNZUElEuezQ/uGRCyLq1oUUtpXUxVTolO1volsVPbiu2PD2sGiXXzfrHVHzn9OVP10VAAAANpanMfGeWfr89AolkRhJZZF4lsTeeFleC8cYNg1TTEl7o3SuuNV5q/unfJX6+cBAACAthZ/vI8/4udXnbQ+D42n/8S/xx///ZG/Yzj7BwAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAqIJiCgAAAEAVFFMAAAAAqqCYAgAAAFAFxRQAAACAKiimAAAAAFRBMQUAAACgCoopAAAAAFVQTAEAAACogmIKAAAAQBUUUwAAAACqoJgCAAAAUAXFFAAAAIAqKKYAAAAAVEExBQAAAKAKiikAAAAAVVBMAQAAAKiCYgoAAABAFRRTAAAAAKqgmAIAAABQBcUUAAAAgCoopgAAAABUQTEFAAAAoAqKKQAAAABVUEwBAAAAGGYp/T8PCEs3krnYbwAAAABJRU5ErkJggg==
|
As shown in the figure, triangle ABC is an isosceles triangle, and the two sides of the triangular ruler coincide exactly with the two sides of ∠A. What is the measure of ∠B? ( )°
|
A. 30; B. 60; C. 120; D. 150; E. No correct answer
|
C
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.