index
int64 0
1.74k
| image
stringlengths 1.02k
414k
| question
stringlengths 31
488
| option
stringlengths 38
473
| answer
stringclasses 5
values |
|---|---|---|---|---|
0
|
iVBORw0KGgoAAAANSUhEUgAAAP8AAAELCAYAAAAWfFBxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABtwSURBVHhe7Z19aBznnceXtnRbGkEpWSg4goACMjjibCjCoEAiKE4M5pC5kGtCjA1Oj9a4x/4R4xgHrGIZw6nQqvlD0AUHzjIS58MqCGyscBJu8Itwm9i0OiEqLLAVZDvIRSqHYPvH7+Y7+zzr2fdZaWef55n5fuDB1sxotc/zzOeZ531SQghJJJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKBbJPy+/+/eLsqR+IqSSmzLU3S3dDcK+wyfl5FBOJu8syLNN9aukAmvkX5/JSiaVkdO38uoIIeVsyrPVVVmY/aX0p1OSSnkh0y+Dl27IveVVWfXOrS7fkxuXzsnBXR2F8+mMvH7qmjxgIVCBJfKvyNj+Qmamj16VdXWUkFrMZJX8fbkatcVNeXDl59KlCon0nkG5taZOER8r5M/PDUonMtIPPTIyr04QUoPF0d4G8hdY82qU+t5KD0x4jxmisUD+dbl6NC2ZY1k5pErpzOlbwso/qcdSri+U/N6jReYGOwvXptJy9CrrlRrz8i/lpM9/2ufl1ulMIZPSh2SKVTRSh/Dye6yMyX5ffi94T//H6nDSMSy/En7/WKE6Nj8iPSqTelj3J3VoSn5ZlNFeJX/Ke7Dw4e9jVv6VCRlIB6tizzv+UpnTwo5/Uovm5A90EKZ6ZXRRHUw4RuWfH+mpkHz96lFJ+5mUloEJds+Q6mxd/pRkZ9TBhGNO/vUZyWaqVO/zt+S0d9zPqJ4RYeWfVGPr8nfL8H11MOEYk39lbL+XEftlrMrD3a8R+BnFST+kOs3J/1gmBrT8AzLBHj8fM/Ln78twj5cR6Yx0VZme2b1Dzc5C0J2BhARoSv68V8vUMwJZmyxiRP5Cu75Hzt9WUzIrwv/KpwNpVQBw0g+ppBn516YOqX6klOyvVtVMKAbkX5JcX0oy2Zm603jz94eLw36NriXJI7T8a95Tv7NwH6U6B2WOrcgibZffX8CT9tpdDQvgwsw/P9NSfZIL06tDEsONE+reqCf/2hcy3K+uS/dLbpHmB2mr/Pkn04VSuPe3Mh8iH57810Elf0rS/aMyz5VZBOQXZdSrPdaUf/MruXfllOztKFzTsfeUTD+k+OW0Tf6bZzLFdpcf0Nn37rgsq/MlLI/Lu11l1/uhQ3YM3VQXlVJ6HYOLoTGF9fw7lNTFEOw41vdNxw7pPXhKcrMPhM+M6rRN/s1nVTr2nm5UX8CT35Cn5dfqUGN3hpKbgcHJ0JjCev6q90UgPN3gUz4Mba32R0n4G4jYBvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ4zDszUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnxmHemYHyE+Mw78xA+YlxmHdmoPzEOMw7M1B+YhzmnRkoPzEO884MlJ8Yh3lnBspPjMO8MwPlJ8Zh3pmB8hPjMO/MQPmJcZh3ZqD8xDjMOzNQfmIc5p0ZKD8xDvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ44fMu3Cu6S0KNV7oTyk8sIHze3ZSh7i7JpAvX+yGdka7ubukuCTukQ5/vvyDL6rdJKZSfGKfpvNucl9/2Kbn7crKkDpew+UCuHO2sfZ5QfmKereTdTLaB/GB9RrIDlL8WlJ8YJzL5JS9z//17VvtrQPmJcVovf142NtjR1wjKT4zTevkXZXR0Rv2f1ILyE+O0XP6VMdmfpfyNoPzEONuSv/dX8sfguP7CrIy80ykpyt8Qyk+Msy35K8b51Rg/5W8I5SfG2Zb8Var9+cVR6aP8DaH8xDitll9kWcbHb6r/k1pQfmKc1stPwkD5iXEovxkoPzEO5TcD5SfGaT7v8jJ9TMnfOyqL6ihpDspPjBM+7wrr+Rdmfyn9xWW9nfLOyKwseMe5dL85KD8xTvi8w3r+4Jh+aRhiB39TUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnbeNvf/ubLC8vy1//+leZnZ31w/j4eDHv8PPnn3/uX4Pwj3/8Q/0miQLKT1rOwsKCL/XZs2fl/fffl71798qLL75YzKNmwiuvvCJvvfWWHD9+XH7961/L1NSUX4iQ7UP5ybbBOvqLFy/KkSNH5OWXXy6RN6qwe/du+eijj+TatWuyuckB/q1A+cmWePTokf9kf/XVV0uk1OE73/mOf25gYMCX9NNPP5Xbt28Xq/TBp7f+HYDP1U0DiP3JJ59INpv1n/6oBQT/hg74Wz/+8Y/9Aujvf/+7/zmkMZSfhAZi5XI5eeONN0rkQ4CAOH7mzBlf8mba6/ozwoDvgKo/CoRqBQ++B5oauIZ9BvWh/KQhqNZDNogVFO373/++fPDBB/4TejtP3O3knW5yoGbwrW99q+T7/fCHP/T7CdgsqA7lJzVB1RtyB6WHYKjKX758uWVStSrvvv76a192dDDqz0RgIVAdyk8qQLsbnXfBJyme8qjSQ7BWE0XeYcShPA66EGBzoADlJ0Ugxfnz5+WFF14oEWZ4eDjS4bUo8w61l/Imy86dO+Wzzz5TVyQXyk98IAOk0OmIJz2kb0dVuR15h76Bn/3sZyU1gZ/85Cd+LSepUP6Eg446VI91+iGgtxyytIt25t3du3dL+gRQyxkdHVVnkwXlTzB//vOfS4bLTFWH2513aN5AeNRu9N9GLSBpcwQof0LBpJtg2x4TcUx1hJnKO3ReYohQ/31MIvryyy/V2fhD+RMGBA9W89GhZ7rzy3TeoZNT9wWgYxATmZIA5U8QqNYGZ+fhqdfOtn0tbMg7rCZ86aWXit8FNaG4Q/kTAiQPtu8xL98WbMk7NANee+214vfBBKc4zwmg/AkAE170ajtUb22r1tqUd5D97bffLn4nzGaMa0cg5Y85EB/teqQNOvgwLdc2bMs7FACYGKS/F2oDcZwaTPljDKr6uh0L8dGutRFb8w4dgfq7oTYQtyYA5Y8pqKrqGXs2iw9szjv0jejvhxmCcYLyxxA8oXTHFdr4k5OT6oyd2J53wSbAxx9/rI66D+WPIZieq9MDk3lsx4W8wwxAl9I0DJQ/ZmDaqk4LtFldwIW8Q23qwIED/vdEMwpTo12H8scITE3VS1cxROUKruQdljXrIVPMmXB9CJDyxwTciHqDS/TwR7HpRlS4lHfoONVTgTFN2mUof0zQE1NwY9rcs18N1/IuOASI/QNdhfLHAPTm6/hjqy3XcC3v0P7HVuH4zngZiUu1rCCU33Ew80y3Q3/0ox85ORHFxbzDDkB6STTWALgI5XccjDvruGO/fBdxNe+C1X8X057yOww2p9S9+y7PPnM171DL0isl8a9rtS7K7zAYzkOc0e50+eWVLucdOlf198erxVyC8jsKxvR1nF3fecb1vNMzKrF60qWnP+V3FP3Ux9i+i518QVzPOyyb1nFwaeov5XcQtPX1RJM47DcXh7xzsTCm/A6iN+BENTMOm0zEIe+CzTDbV1FqKL9jYHxZP/Xx3rk4EJe805ujYr6FC1B+x9Bjy5hgEpetpeKSd3hVuY6LC6v+KL9j6HFlV2eVVSMueYe2vt427cMPP1RH7YXyO0SwXTk7O6uOuk+c8g77/SMuLgz7UX6H0NtJ4ekSJ+KUd8Fhv6mpKXXUTii/Q+gtuOO0jxyIW97ptwBj8o/NUH5HCFb58ZrpOBG3vBseHvbjg7cA2wzldwR9Q2Eef9yIW94FC2r831YovyPoV0ljF9m4Ece80+/+t3kuBuV3APQa640jsDtv3Ihj3unpvjZvpEr5HQDDejp+y8vL6mh8iGPe4YmPONnc7qf8DqDb+3Eb4tPEMe+C7X4sxLIRyu8A2KUHcUO7P47EMe+wlbqOl63j/ZTfAfROscePH1dH4kVc805P9bW104/yO4C+iVzbJioscc07XWjbur8i5bccrNzTccOqsTgS17xDTQ3xwlJfG6H8loOloTpucezpB3HNO93jj2nZNkL5LSc4zBdX4ho/7Odnc9wov+XEVX5MXEKtZnx8nHlniPZ9q79clpMnTzYIQ5KbvC53Fp5Js3vUxPUG0k8PvJwjLmDZK7a60nmmw+XLl9UV8cD2yVnts2XlS7l+/ZKc29dZTJBM/4e+7NevI0xKbuiwvJ5J++fSmdfl3B+eSF79eiP0Z8YNLT/exxcH8HIRtIH1PoTlAcLUJb8hD+/dkMncUOCBcUPuPdxQ90pe7v/PDXns/98swbX9yZZfk5+WYypB+nJL6mCA/BO5O9wvaf+aTsnOrKkT9dGJHDf07L64yI/trdLpQgFfHr7xjW/Izp071ZVl4L7IHZFdHXgw7JGDp3IyWfbQ6Nh1UI4d3isdvaOyqH7NJBBex83GZdgGbLkvw92FBKkqv8+aTB1SN0jmtNwK8fjXiczgfqh49djaLRncg/uhQ94cuStPqt0PKBxG3pQO/zOyMqMOmyQof8MajQEMyL8kub5CgtSWX2R96pBKuIwMzqmDddCJzOB+WF1dVbnqsX5DTnQWjveNLjZoBuZlcbTPu9Y++fnk94lG/rgStzb/22+/Ld/73vdU3laGH/zgB+pKsC43Tqg+os5BmQvTAZSfk8HOAZmwoNHPNn8FYeQPVPvTR+XqujqcQOLW24/Vbt/85jeLUgQDOgHRx1FkZUz2q3P1HhTlrIydliYujwz29lfQSP5NmR97Rzr9REtL/wULctEgto8VbwUUaN/97nfl29/+th8v/e+hQ4dKtrteyqEKj7h3y/B9dTAMaw/loQUPDNvzzqj8GM47HBjnP3awV7rUUB96bs9NPww91GcTN4e6pbu7yTB0U/12KXGUH6BKfPbs2eJ7Byvj91gmBgrHUyk7qvHNomtttuadUfm7j/2nGuMvhEu/OSYH92QKw3wdO2TfL8bkbtWuXbvZfLYqq8v35NLR53MafjrpHVutDAt3LskJ9GRnq3dRJXdu//P7xJYOvGbh3P4KGrf5N+fH5B3Vw5tK90tu0cXnv8fiqPT6N29KarhdAG3bY9NVazmoBhcESNqqPvfl56q+ChrLD/Jzg6rd74X9Y7KijjvFUk76VBzqyi/LcuFEzkuZ6hQESNp6fi9N+lX+pw7JlIOdvlzPX0E4+YOTgVzN/PDye7WdDT09tZJCGiRvJ5+5wYw65+ZwL3fyqWAr8rtZ7Qsl/59+L79v0JQvpEEC9/D707li7a+7qe5+83APv6rMyWCmkCh1q/33h6VHJV766FVxcqg/hPzrU8MNx6T1TZS83XtXZGJAz/fwan/hlnmg00i+mP8/9YMZgrv32tpR2375167Iv6pEqS5/Xp7czT3v8Ov0nvphM902Gsnv3aS/7esLLT+CrdtAbwcdt6qszUhW3Qvp/lGZb7TWe+0LGX7vhPF7xvaeftA++f31/M+X7PqZmemSfYefj/OfPHZQend0qPMdsutIzsmhviIB+Tt2lI/td0kmjXPNyZ/EN/bkFycCD4N9cu7agjwrLwQ2v5J7V07J63tOyLQF94x+Y4/Nr1drn/z+ev7nY/q1wx1ZWF2tzFwXCchfbZx/YXbEu6mbkz+x7+rbfCDXzh30l/QWrk9LpksVpF0ZSXfskiO5Giv+DKDf1WdzYd0++ZNIi9v8CLa/9nkr6LiFY1OerS7InZKHRfM7P0VJsL2PmYy2QvmjJIT8srkhGw2eVvpG0oHv57cbvQGLze19QPmjJIz8IdBy6HFj7IYTJ3T84oLen/D9999XR+yE8kdJU/Ln5f7vLsgd9VMQLcdHH33k/xu3IT8dvzgQXIvx2WefqaN2QvmjpAn5N2+dlj2nb1Wd5advpmBb0vYbqxl0nOIAamWICwro4PJkG6H8kZGXJ1cOqY1IU3JsulbDflO+uj0s/enaU1iDcuzevdv//wcffOD/HAeC8XMZyK6bZqil2Q7ljwB/PX9xvoIKntxdJeP8hbBDD131jMi8+v1y9GeA8+fP+/9/4YUX/Pf4xYFg/FwGqy51XFD9tx3KHwH+ev6yMf2Goc7EhqAcjx49Ku55b+uCkWYJxs9lsHQX8UCHnwtQfgcol0PvfoOhpDg8/cvj5yLB/pjJyUl11G4ovwOUy4H5/frpn8vl1FF3KY+fi+jpvK+88or1HX0ayu8A1eRw8WarRbX4uURwi27s2+cKlN8BqskRrGa6/vSvFj+XwGQefH80w1wqiCm/A9SSQz/9X3zxxcpXXDlErfi5wOeff178/q5ts0b5HaCWHGj742UeOGfrPnFhqBU/28FT/tVXX/W/O/51rflF+R2gnhwff/xx8fzt27fVUbeoFz+b0XMuXE17yu8A9eTAUB/e44fzGF92sfOvXvxsBfMtMNEK39vV2ZaU3wEayYFxZX3NmTNn1FF3aBQ/20ABq7flRn/L119/rc64BeV3gDBy4O23uAbj/64t+gkTP5tAAau/88WLF9VR96D8DhBGDmwVjTF/XIchJ0wZdoUw8bMFFKx6ghVmWroM5XeAsHJg7F/3/qNa6kr7P2z8TIMCFQUrvit691Hgugzld4Bm5MCGkfp6V3b8aSZ+poDor732mv890dHnwqq9RlB+B2hWDj3jDMGFlX/Nxq/doAal+1QQXJrCWw/K7wDNyoGbVS8vRbh8+bI6YyfNxq/d6FWUCC6OptSC8jvAVuRANVXv+oMOqtnZWXXGPrYSv3aRzWaL3w//jxOU3wG2Kgc6qHbu3On/Ltqptg4BbjV+URMUH9X+uEH5HWA7cmC5qe6hRg3AxibAduIXBWg2Ydae/l4Q35WRk2ag/A6wXTnwllhdA0ABYNvqs+3Gr5VgunSwcy+u4gPK7wCtkANNgL179xY/6+zZs+qMeVoRv1aAabp6OA8B1f64ig8ovwO0Sg50Auo56QhvvfWWFTMBWxW/7YB1+XrbbQSslow7lN8BWikHnmRY+68/E/0BpjsCWxm/rYCluXrKLmZIxmFfxDBQfgeIQo7x8fHiklQEvGTCVBU3iviFAdV81H7030e/CKZIJwXK7wBRyYGdgPRcAH3zm6gFRBW/WqCQwzRo/Q59BEzkcX2ufrNQfgeIUg70bh8/frxY7UXA9OB29gVEGb9y8HrzYMcnCgDUgpII5XeAdsiBbaj0q6W1FHjPfDteCtKO+KEwQ19HsJDD097VjThaAeV3gHbIAVAdxhyAYHUYO9VgPnuUuwNHGT80bSB5UHosx0XvftKh/A4QpRzVwFOyXBgUCBj3xt51rSaK+KF6j63Ng3HAyAZWOcZ57L4ZKL8DRCFHGCA6hNcbhOiAuQLYvqpVTYJWxQ/fF8N2ejttHbT07WjCuATld4BWybFVUBNA1T/YHEDAUCHmwOPV1NvpKd9O/PDdUBBhyC74lEfAtmZYe0/pq0P5HWA7crQSSISe8Wqi4Wf0omO+QLOFQTPxg+z4Dui80+sVgkEXSDYvYbYFyu8A+sa2iVpV7GBAdRtNBAwloto9NTXld7RhoRGCbnvr61Fg4Dg66SAvViDib2DoEQVLec1DBzRLUCC1simSBCi/A+ib3FYaPY1bHSA7dipCUwSFBIXfGpTfAfRN7wooDPCUx9MeBQJE1XsKNBtQmBw4cMDfjBSz8jAfgbK3BsrvAFoE18FcgWC1HgE1Bh0//FytWUCigfI7QFzkr0Xc42crTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuANQfhIFTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuAPUkwO72iwsLKif7AR76NfbfYfym4Ep7gDV5IBM2CYL22NhLzubwQtA6u2dT/nNwBR3gKAc2AoLO9oG98RzQX79XasVAvocaS9McQfQclR7cQYCjr388svWBuylX/6dg4WAPkbaC1PcAYLSxC1gv339f9JemOIOoOXAq6fwCir9sw54umJ7bFtDsImiw+7du2VycrIkfqS9MMUdICgHtrMuLwRcavMHpdfoc6S9MMUdoJocwULABfmrSa+h/GZgijtAPTlQCOAFFzaDl3TUg/KbgSnuAHGXg/KbgSnuAJSfRAFT3AGal2NTnq2uytONvPrZbii/GZjiDtCsHEsX+iXtXd+XW1JH7Ibym4Ep7gDNyJFfzEl/unA95Sf1YIo7QGg58osy2tcpnZ2UnzSGKe4A4eTIy9xgp/QM35fpLOUnjWGKO0AYOdZmstLVn5PFvMhMaPnzsvF0VVZXV+VZ7eX2Hpvy7OmGd7Wm0KG4WvWX6p2rDuU3A1PcARrKsTYj2a5+uaBcbyz/pjy4dkpez2RkR3e3dGXS3vUdsuvImMwHnN386p5c+c1h7zrvfF9Oljz9H06fkr0dhc9PpdLS9d6EX+DgM+fHjsiuqufq0zB+JBKY4g5QX441mTrUIYem1tTPjeRfk5kTXZLuzMr0E23mmkwfy/i/k+6/4Enu8XhOpiYn5Zf9KBi8z+sblekL/yx7DpyTS9evy+TIe9KlOhb3j83LF8Nvyq4DpyQ3WX5uxf8L9fA/3wukvTDFHaCeHBjW68rOePo+p578KxMDkk5l5PSt0kdyfvqY+jt9Evy14vGON2Xk7pNA1V9kfqRHndsr5/5Qem5lbH/h3MCEPFbHalH4u7wV2w1T3AFqyeEP63VlZSZovkdt+edlpMc7lxmUOXWkyPqc/Me+buk9UlZVn8kW/r5f7S9jq+fK8K/zAmkvTHEHqCqHGtYbnCt9goOa8i/lpA+fFULIIpQ/tjDFHaBSjsKw3j8N3ZRH6FkvC5M/LVzf+6s/Fo7pnvobJ/yZf5SfAKa4A1TKMSNZdSxU0ALODUoGP6e9pkJlhUGRlzyr/YmAKe4kf5HLJ0/KyRrhX9Cu92TK9P9b4dgnNwqdbo8nZMAXLS1Hr677n1SB1zQYngqca4P8xAyUP4bU7vBbkbH9hXOpzsqOQvQj5N78uZSUC5Q/tlD+GFJvqG/da/d3QkovpLvek5HZBb9fYOHOJTm1t8OfHhys9ReH+rYqf++oLKpDxC4ofwypJz/a9IsX3pQOiFkWOo9OyUNtfn5Dni7flmE9ySfdL8O3lwvTdv1z9+TS0U71uz2SveYVIlXPdcrRK+ocsQrKH0NuDnVLd3e3vDtee2+/zQfX5DeH9/nX9R48JbnZB1Ki5/K4vOudw/mSMHRz6+eIVVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckkYj8P3aHxnXKUrjAAAAAAElFTkSuQmCC
|
As shown in the figure, a circle is drawn with vertex C of the square as the center. What is the measure of the central angle ∠ECF? ( )°
|
A. 45; B. 60; C. 72; D. 90; E. No correct answer
|
D
|
1
|
iVBORw0KGgoAAAANSUhEUgAAAP8AAAELCAYAAAAWfFBxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABtwSURBVHhe7Z19aBznnceXtnRbGkEpWSg4goACMjjibCjCoEAiKE4M5pC5kGtCjA1Oj9a4x/4R4xgHrGIZw6nQqvlD0AUHzjIS58MqCGyscBJu8Itwm9i0OiEqLLAVZDvIRSqHYPvH7+Y7+zzr2fdZaWef55n5fuDB1sxotc/zzOeZ531SQghJJJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKBbJPy+/+/eLsqR+IqSSmzLU3S3dDcK+wyfl5FBOJu8syLNN9aukAmvkX5/JSiaVkdO38uoIIeVsyrPVVVmY/aX0p1OSSnkh0y+Dl27IveVVWfXOrS7fkxuXzsnBXR2F8+mMvH7qmjxgIVCBJfKvyNj+Qmamj16VdXWUkFrMZJX8fbkatcVNeXDl59KlCon0nkG5taZOER8r5M/PDUonMtIPPTIyr04QUoPF0d4G8hdY82qU+t5KD0x4jxmisUD+dbl6NC2ZY1k5pErpzOlbwso/qcdSri+U/N6jReYGOwvXptJy9CrrlRrz8i/lpM9/2ufl1ulMIZPSh2SKVTRSh/Dye6yMyX5ffi94T//H6nDSMSy/En7/WKE6Nj8iPSqTelj3J3VoSn5ZlNFeJX/Ke7Dw4e9jVv6VCRlIB6tizzv+UpnTwo5/Uovm5A90EKZ6ZXRRHUw4RuWfH+mpkHz96lFJ+5mUloEJds+Q6mxd/pRkZ9TBhGNO/vUZyWaqVO/zt+S0d9zPqJ4RYeWfVGPr8nfL8H11MOEYk39lbL+XEftlrMrD3a8R+BnFST+kOs3J/1gmBrT8AzLBHj8fM/Ln78twj5cR6Yx0VZme2b1Dzc5C0J2BhARoSv68V8vUMwJZmyxiRP5Cu75Hzt9WUzIrwv/KpwNpVQBw0g+ppBn516YOqX6klOyvVtVMKAbkX5JcX0oy2Zm603jz94eLw36NriXJI7T8a95Tv7NwH6U6B2WOrcgibZffX8CT9tpdDQvgwsw/P9NSfZIL06tDEsONE+reqCf/2hcy3K+uS/dLbpHmB2mr/Pkn04VSuPe3Mh8iH57810Elf0rS/aMyz5VZBOQXZdSrPdaUf/MruXfllOztKFzTsfeUTD+k+OW0Tf6bZzLFdpcf0Nn37rgsq/MlLI/Lu11l1/uhQ3YM3VQXlVJ6HYOLoTGF9fw7lNTFEOw41vdNxw7pPXhKcrMPhM+M6rRN/s1nVTr2nm5UX8CT35Cn5dfqUGN3hpKbgcHJ0JjCev6q90UgPN3gUz4Mba32R0n4G4jYBvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ4zDszUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnxmHemYHyE+Mw78xA+YlxmHdmoPzEOMw7M1B+YhzmnRkoPzEO884MlJ8Yh3lnBspPjMO8MwPlJ8Zh3pmB8hPjMO/MQPmJcZh3ZqD8xDjMOzNQfmIc5p0ZKD8xDvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ44fMu3Cu6S0KNV7oTyk8sIHze3ZSh7i7JpAvX+yGdka7ubukuCTukQ5/vvyDL6rdJKZSfGKfpvNucl9/2Kbn7crKkDpew+UCuHO2sfZ5QfmKereTdTLaB/GB9RrIDlL8WlJ8YJzL5JS9z//17VvtrQPmJcVovf142NtjR1wjKT4zTevkXZXR0Rv2f1ILyE+O0XP6VMdmfpfyNoPzEONuSv/dX8sfguP7CrIy80ykpyt8Qyk+Msy35K8b51Rg/5W8I5SfG2Zb8Var9+cVR6aP8DaH8xDitll9kWcbHb6r/k1pQfmKc1stPwkD5iXEovxkoPzEO5TcD5SfGaT7v8jJ9TMnfOyqL6ihpDspPjBM+7wrr+Rdmfyn9xWW9nfLOyKwseMe5dL85KD8xTvi8w3r+4Jh+aRhiB39TUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnbeNvf/ubLC8vy1//+leZnZ31w/j4eDHv8PPnn3/uX4Pwj3/8Q/0miQLKT1rOwsKCL/XZs2fl/fffl71798qLL75YzKNmwiuvvCJvvfWWHD9+XH7961/L1NSUX4iQ7UP5ybbBOvqLFy/KkSNH5OWXXy6RN6qwe/du+eijj+TatWuyuckB/q1A+cmWePTokf9kf/XVV0uk1OE73/mOf25gYMCX9NNPP5Xbt28Xq/TBp7f+HYDP1U0DiP3JJ59INpv1n/6oBQT/hg74Wz/+8Y/9Aujvf/+7/zmkMZSfhAZi5XI5eeONN0rkQ4CAOH7mzBlf8mba6/ozwoDvgKo/CoRqBQ++B5oauIZ9BvWh/KQhqNZDNogVFO373/++fPDBB/4TejtP3O3knW5yoGbwrW99q+T7/fCHP/T7CdgsqA7lJzVB1RtyB6WHYKjKX758uWVStSrvvv76a192dDDqz0RgIVAdyk8qQLsbnXfBJyme8qjSQ7BWE0XeYcShPA66EGBzoADlJ0Ugxfnz5+WFF14oEWZ4eDjS4bUo8w61l/Imy86dO+Wzzz5TVyQXyk98IAOk0OmIJz2kb0dVuR15h76Bn/3sZyU1gZ/85Cd+LSepUP6Eg446VI91+iGgtxyytIt25t3du3dL+gRQyxkdHVVnkwXlTzB//vOfS4bLTFWH2513aN5AeNRu9N9GLSBpcwQof0LBpJtg2x4TcUx1hJnKO3ReYohQ/31MIvryyy/V2fhD+RMGBA9W89GhZ7rzy3TeoZNT9wWgYxATmZIA5U8QqNYGZ+fhqdfOtn0tbMg7rCZ86aWXit8FNaG4Q/kTAiQPtu8xL98WbMk7NANee+214vfBBKc4zwmg/AkAE170ajtUb22r1tqUd5D97bffLn4nzGaMa0cg5Y85EB/teqQNOvgwLdc2bMs7FACYGKS/F2oDcZwaTPljDKr6uh0L8dGutRFb8w4dgfq7oTYQtyYA5Y8pqKrqGXs2iw9szjv0jejvhxmCcYLyxxA8oXTHFdr4k5OT6oyd2J53wSbAxx9/rI66D+WPIZieq9MDk3lsx4W8wwxAl9I0DJQ/ZmDaqk4LtFldwIW8Q23qwIED/vdEMwpTo12H8scITE3VS1cxROUKruQdljXrIVPMmXB9CJDyxwTciHqDS/TwR7HpRlS4lHfoONVTgTFN2mUof0zQE1NwY9rcs18N1/IuOASI/QNdhfLHAPTm6/hjqy3XcC3v0P7HVuH4zngZiUu1rCCU33Ew80y3Q3/0ox85ORHFxbzDDkB6STTWALgI5XccjDvruGO/fBdxNe+C1X8X057yOww2p9S9+y7PPnM171DL0isl8a9rtS7K7zAYzkOc0e50+eWVLucdOlf198erxVyC8jsKxvR1nF3fecb1vNMzKrF60qWnP+V3FP3Ux9i+i518QVzPOyyb1nFwaeov5XcQtPX1RJM47DcXh7xzsTCm/A6iN+BENTMOm0zEIe+CzTDbV1FqKL9jYHxZP/Xx3rk4EJe805ujYr6FC1B+x9Bjy5hgEpetpeKSd3hVuY6LC6v+KL9j6HFlV2eVVSMueYe2vt427cMPP1RH7YXyO0SwXTk7O6uOuk+c8g77/SMuLgz7UX6H0NtJ4ekSJ+KUd8Fhv6mpKXXUTii/Q+gtuOO0jxyIW97ptwBj8o/NUH5HCFb58ZrpOBG3vBseHvbjg7cA2wzldwR9Q2Eef9yIW94FC2r831YovyPoV0ljF9m4Ece80+/+t3kuBuV3APQa640jsDtv3Ihj3unpvjZvpEr5HQDDejp+y8vL6mh8iGPe4YmPONnc7qf8DqDb+3Eb4tPEMe+C7X4sxLIRyu8A2KUHcUO7P47EMe+wlbqOl63j/ZTfAfROscePH1dH4kVc805P9bW104/yO4C+iVzbJioscc07XWjbur8i5bccrNzTccOqsTgS17xDTQ3xwlJfG6H8loOloTpucezpB3HNO93jj2nZNkL5LSc4zBdX4ho/7Odnc9wov+XEVX5MXEKtZnx8nHlniPZ9q79clpMnTzYIQ5KbvC53Fp5Js3vUxPUG0k8PvJwjLmDZK7a60nmmw+XLl9UV8cD2yVnts2XlS7l+/ZKc29dZTJBM/4e+7NevI0xKbuiwvJ5J++fSmdfl3B+eSF79eiP0Z8YNLT/exxcH8HIRtIH1PoTlAcLUJb8hD+/dkMncUOCBcUPuPdxQ90pe7v/PDXns/98swbX9yZZfk5+WYypB+nJL6mCA/BO5O9wvaf+aTsnOrKkT9dGJHDf07L64yI/trdLpQgFfHr7xjW/Izp071ZVl4L7IHZFdHXgw7JGDp3IyWfbQ6Nh1UI4d3isdvaOyqH7NJBBex83GZdgGbLkvw92FBKkqv8+aTB1SN0jmtNwK8fjXiczgfqh49djaLRncg/uhQ94cuStPqt0PKBxG3pQO/zOyMqMOmyQof8MajQEMyL8kub5CgtSWX2R96pBKuIwMzqmDddCJzOB+WF1dVbnqsX5DTnQWjveNLjZoBuZlcbTPu9Y++fnk94lG/rgStzb/22+/Ld/73vdU3laGH/zgB+pKsC43Tqg+os5BmQvTAZSfk8HOAZmwoNHPNn8FYeQPVPvTR+XqujqcQOLW24/Vbt/85jeLUgQDOgHRx1FkZUz2q3P1HhTlrIydliYujwz29lfQSP5NmR97Rzr9REtL/wULctEgto8VbwUUaN/97nfl29/+th8v/e+hQ4dKtrteyqEKj7h3y/B9dTAMaw/loQUPDNvzzqj8GM47HBjnP3awV7rUUB96bs9NPww91GcTN4e6pbu7yTB0U/12KXGUH6BKfPbs2eJ7Byvj91gmBgrHUyk7qvHNomtttuadUfm7j/2nGuMvhEu/OSYH92QKw3wdO2TfL8bkbtWuXbvZfLYqq8v35NLR53MafjrpHVutDAt3LskJ9GRnq3dRJXdu//P7xJYOvGbh3P4KGrf5N+fH5B3Vw5tK90tu0cXnv8fiqPT6N29KarhdAG3bY9NVazmoBhcESNqqPvfl56q+ChrLD/Jzg6rd74X9Y7KijjvFUk76VBzqyi/LcuFEzkuZ6hQESNp6fi9N+lX+pw7JlIOdvlzPX0E4+YOTgVzN/PDye7WdDT09tZJCGiRvJ5+5wYw65+ZwL3fyqWAr8rtZ7Qsl/59+L79v0JQvpEEC9/D707li7a+7qe5+83APv6rMyWCmkCh1q/33h6VHJV766FVxcqg/hPzrU8MNx6T1TZS83XtXZGJAz/fwan/hlnmg00i+mP8/9YMZgrv32tpR2375167Iv6pEqS5/Xp7czT3v8Ov0nvphM902Gsnv3aS/7esLLT+CrdtAbwcdt6qszUhW3Qvp/lGZb7TWe+0LGX7vhPF7xvaeftA++f31/M+X7PqZmemSfYefj/OfPHZQend0qPMdsutIzsmhviIB+Tt2lI/td0kmjXPNyZ/EN/bkFycCD4N9cu7agjwrLwQ2v5J7V07J63tOyLQF94x+Y4/Nr1drn/z+ev7nY/q1wx1ZWF2tzFwXCchfbZx/YXbEu6mbkz+x7+rbfCDXzh30l/QWrk9LpksVpF0ZSXfskiO5Giv+DKDf1WdzYd0++ZNIi9v8CLa/9nkr6LiFY1OerS7InZKHRfM7P0VJsL2PmYy2QvmjJIT8srkhGw2eVvpG0oHv57cbvQGLze19QPmjJIz8IdBy6HFj7IYTJ3T84oLen/D9999XR+yE8kdJU/Ln5f7vLsgd9VMQLcdHH33k/xu3IT8dvzgQXIvx2WefqaN2QvmjpAn5N2+dlj2nb1Wd5advpmBb0vYbqxl0nOIAamWICwro4PJkG6H8kZGXJ1cOqY1IU3JsulbDflO+uj0s/enaU1iDcuzevdv//wcffOD/HAeC8XMZyK6bZqil2Q7ljwB/PX9xvoIKntxdJeP8hbBDD131jMi8+v1y9GeA8+fP+/9/4YUX/Pf4xYFg/FwGqy51XFD9tx3KHwH+ev6yMf2Goc7EhqAcjx49Ku55b+uCkWYJxs9lsHQX8UCHnwtQfgcol0PvfoOhpDg8/cvj5yLB/pjJyUl11G4ovwOUy4H5/frpn8vl1FF3KY+fi+jpvK+88or1HX0ayu8A1eRw8WarRbX4uURwi27s2+cKlN8BqskRrGa6/vSvFj+XwGQefH80w1wqiCm/A9SSQz/9X3zxxcpXXDlErfi5wOeff178/q5ts0b5HaCWHGj742UeOGfrPnFhqBU/28FT/tVXX/W/O/51rflF+R2gnhwff/xx8fzt27fVUbeoFz+b0XMuXE17yu8A9eTAUB/e44fzGF92sfOvXvxsBfMtMNEK39vV2ZaU3wEayYFxZX3NmTNn1FF3aBQ/20ABq7flRn/L119/rc64BeV3gDBy4O23uAbj/64t+gkTP5tAAau/88WLF9VR96D8DhBGDmwVjTF/XIchJ0wZdoUw8bMFFKx6ghVmWroM5XeAsHJg7F/3/qNa6kr7P2z8TIMCFQUrvit691Hgugzld4Bm5MCGkfp6V3b8aSZ+poDor732mv890dHnwqq9RlB+B2hWDj3jDMGFlX/Nxq/doAal+1QQXJrCWw/K7wDNyoGbVS8vRbh8+bI6YyfNxq/d6FWUCC6OptSC8jvAVuRANVXv+oMOqtnZWXXGPrYSv3aRzWaL3w//jxOU3wG2Kgc6qHbu3On/Ltqptg4BbjV+URMUH9X+uEH5HWA7cmC5qe6hRg3AxibAduIXBWg2Ydae/l4Q35WRk2ag/A6wXTnwllhdA0ABYNvqs+3Gr5VgunSwcy+u4gPK7wCtkANNgL179xY/6+zZs+qMeVoRv1aAabp6OA8B1f64ig8ovwO0Sg50Auo56QhvvfWWFTMBWxW/7YB1+XrbbQSslow7lN8BWikHnmRY+68/E/0BpjsCWxm/rYCluXrKLmZIxmFfxDBQfgeIQo7x8fHiklQEvGTCVBU3iviFAdV81H7030e/CKZIJwXK7wBRyYGdgPRcAH3zm6gFRBW/WqCQwzRo/Q59BEzkcX2ufrNQfgeIUg70bh8/frxY7UXA9OB29gVEGb9y8HrzYMcnCgDUgpII5XeAdsiBbaj0q6W1FHjPfDteCtKO+KEwQ19HsJDD097VjThaAeV3gHbIAVAdxhyAYHUYO9VgPnuUuwNHGT80bSB5UHosx0XvftKh/A4QpRzVwFOyXBgUCBj3xt51rSaK+KF6j63Ng3HAyAZWOcZ57L4ZKL8DRCFHGCA6hNcbhOiAuQLYvqpVTYJWxQ/fF8N2ejttHbT07WjCuATld4BWybFVUBNA1T/YHEDAUCHmwOPV1NvpKd9O/PDdUBBhyC74lEfAtmZYe0/pq0P5HWA7crQSSISe8Wqi4Wf0omO+QLOFQTPxg+z4Dui80+sVgkEXSDYvYbYFyu8A+sa2iVpV7GBAdRtNBAwloto9NTXld7RhoRGCbnvr61Fg4Dg66SAvViDib2DoEQVLec1DBzRLUCC1simSBCi/A+ib3FYaPY1bHSA7dipCUwSFBIXfGpTfAfRN7wooDPCUx9MeBQJE1XsKNBtQmBw4cMDfjBSz8jAfgbK3BsrvAFoE18FcgWC1HgE1Bh0//FytWUCigfI7QFzkr0Xc42crTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuANQfhIFTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuAPUkwO72iwsLKif7AR76NfbfYfym4Ep7gDV5IBM2CYL22NhLzubwQtA6u2dT/nNwBR3gKAc2AoLO9oG98RzQX79XasVAvocaS9McQfQclR7cQYCjr388svWBuylX/6dg4WAPkbaC1PcAYLSxC1gv339f9JemOIOoOXAq6fwCir9sw54umJ7bFtDsImiw+7du2VycrIkfqS9MMUdICgHtrMuLwRcavMHpdfoc6S9MMUdoJocwULABfmrSa+h/GZgijtAPTlQCOAFFzaDl3TUg/KbgSnuAHGXg/KbgSnuAJSfRAFT3AGal2NTnq2uytONvPrZbii/GZjiDtCsHEsX+iXtXd+XW1JH7Ibym4Ep7gDNyJFfzEl/unA95Sf1YIo7QGg58osy2tcpnZ2UnzSGKe4A4eTIy9xgp/QM35fpLOUnjWGKO0AYOdZmstLVn5PFvMhMaPnzsvF0VVZXV+VZ7eX2Hpvy7OmGd7Wm0KG4WvWX6p2rDuU3A1PcARrKsTYj2a5+uaBcbyz/pjy4dkpez2RkR3e3dGXS3vUdsuvImMwHnN386p5c+c1h7zrvfF9Oljz9H06fkr0dhc9PpdLS9d6EX+DgM+fHjsiuqufq0zB+JBKY4g5QX441mTrUIYem1tTPjeRfk5kTXZLuzMr0E23mmkwfy/i/k+6/4Enu8XhOpiYn5Zf9KBi8z+sblekL/yx7DpyTS9evy+TIe9KlOhb3j83LF8Nvyq4DpyQ3WX5uxf8L9fA/3wukvTDFHaCeHBjW68rOePo+p578KxMDkk5l5PSt0kdyfvqY+jt9Evy14vGON2Xk7pNA1V9kfqRHndsr5/5Qem5lbH/h3MCEPFbHalH4u7wV2w1T3AFqyeEP63VlZSZovkdt+edlpMc7lxmUOXWkyPqc/Me+buk9UlZVn8kW/r5f7S9jq+fK8K/zAmkvTHEHqCqHGtYbnCt9goOa8i/lpA+fFULIIpQ/tjDFHaBSjsKw3j8N3ZRH6FkvC5M/LVzf+6s/Fo7pnvobJ/yZf5SfAKa4A1TKMSNZdSxU0ALODUoGP6e9pkJlhUGRlzyr/YmAKe4kf5HLJ0/KyRrhX9Cu92TK9P9b4dgnNwqdbo8nZMAXLS1Hr677n1SB1zQYngqca4P8xAyUP4bU7vBbkbH9hXOpzsqOQvQj5N78uZSUC5Q/tlD+GFJvqG/da/d3QkovpLvek5HZBb9fYOHOJTm1t8OfHhys9ReH+rYqf++oLKpDxC4ofwypJz/a9IsX3pQOiFkWOo9OyUNtfn5Dni7flmE9ySfdL8O3lwvTdv1z9+TS0U71uz2SveYVIlXPdcrRK+ocsQrKH0NuDnVLd3e3vDtee2+/zQfX5DeH9/nX9R48JbnZB1Ki5/K4vOudw/mSMHRz6+eIVVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckkYj8P3aHxnXKUrjAAAAAAElFTkSuQmCC
|
As shown in the figure, a circle is drawn with vertex C of the square as the center, and the radius of the circle is as shown in the figure. The circumference of this circle is () cm. (Use π = 3.14)
|
A. 50.24; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
B
|
2
|
iVBORw0KGgoAAAANSUhEUgAAAQEAAAENCAYAAAAPLtCGAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB/fSURBVHhe7Z1vaFzHuca3fzeULvSDFwLO0oIKKjiCGIowqJdYEJyKhiLTEJIQ44Dc4oi07Acbxzhg5dbG3KtCresPgrvgcImMxE2xCgKrdqmE6hvHxsWxcYyuEmFdHAX/CXKR+kGw/fDe85w9sz672t0zu3t298yZ5weDveecXZ2Zed/nzMyZeSchhBCroQgQYjkUAUIshyJAiOVQBAixHIoAIZZDESDEcigChFgORYAQy6EIEGI5FAFCLIciQIjlUAQIsRyKACGWQxEgxHIoAoRYDkWAEMuhCBBiORQBQiyHIkCI5VgiAuty8fhxWVj3PhKyhY/kRHe3dAekPfuPyJETOZm+uiiPN72vGo4dIrCck75EQgYmVr0DhJSzKY/v35fF+fekP5mQhGMviXS/jJxbkJsr9+W+c+7+yk1ZOHdS9u5IFc4n0/L80Vm5a7gYWCACeblyLF2otJ4xueMdJaQac1lPBPpysuwdK2VT7p5/S7o8sUjuHJEra94pA4m/CKxOyaBS9kRShi6wT0BqszTeGyACBdbmspJx7coRgsEpMbWdGXsRuDPWI4mBrGR7PCEYmDC2skh7WM71aYkAWpnXRjKFaw1+wMRbBNbnJJsuVM7qxIBXWT0yeivvXUDIVvRFwGF1QgZcu3KS0xp44B02iViLgOv46WNyBT6/fkGGVB9u6IKwU0CqUZcIyJKM93oikNgnMwYaVnxFIH9NRjIJ6RlTQ4G+AcLEgPBFAalGfSLgG0hM9Mr4knfQIGIrAusXhiRZ7ux3xqTHrayEZEauObJAyFYaF4GEZOe8gwYRUxFYllxfpWb/qkwMeBWWHBK+KCCVaFwEumX0lnfQIGIpAvkrxySdSMsxdzCglEILoVBpnDxEKlGfCDyQqUElAoMyZeDIYAxFYE1m9iWdCknJ9grTPru70kURKA4aEuKjLhHIz0lWzUMxdDJa/ETA7fcnZd9/rxSmelZI88fMf7dLWkc9IrA2s8/4lmXMRGDd6Z+lgytvbUb2KfXW7PcRe9AWgTWnFZDx7CgzItcMbVXGSwTchUIZGdGoDXcmoavgacnOsTVAnrBwGN3JABFYuyGj/d51yX7JLZnbr4yPCGzekXG3Un4psxqruvLX/1W+74oAVDwrlx5ycIA45JdkvM+zi0oisPml3Dx/VHalCtekdh2VS/fMtp1YiMDK5M8lpRzaTRgUPCEfeedLwbrx7WXXIyUl/YtJWfGu8lN6HZOJKZhCPIHtnnMXUzItXeWDyqnt0rv3qOTm70ocQgrEQgTyG48qDAA+rlJBhXXjW6930qONihOISoyCycgUTA278KVHG/FrMcanO9BC9A2JRA3WXTAsHQ1oSObCuguGpaMBDclcWHfBsHQ0oCGZC+suGJaOBjQkc2HdBcPS0YCGZC6su2BYOhrQkMyFdRcMS0cDGpK5sO6CYeloQEMyF9ZdMCwdDWhI5sK6C4alowENyVxYd8GwdDSgIZkL6y4Ylo4GNCRzYd0Fw9LRgIZkLqy7YFg6GtCQzIV1FwxLRwMakrmw7oJh6WhAQzIX1l0wLB0NaEjmwroLhqWjAQ3JXFh3wbB0NKAhmQvrLhiWjgY0JHNh3QXD0tGAhmQurLtgWDoa0JDMhXUXDEtHAxqSubDugmHpaEBDMhfWXTAsHQ1oSObCuguGpaMBDclcWHfBsHQ0oCGZC+suGJaOBjQkc2HdBcPS0YCGZC6su2BYOhrQkMxFv+70tiYvSY8rb35vGrRsDSgC5qJfdx/Jie4uSScL17spmZau7m7pLknbJaXO95+VFe/bJkPL1kDfkEjUqLvuNu/If/R5Tt6Xk2XvcAmbd+X8UKb6ecOgZWtAETCXRupuLhsgAmB9TrKDFAFroAiYS8tEQPJy7Q9/ZHfAFigC5hK+CORlYyMeA4IKWrYGFAFzCV8ElmR8fM77fzygZWtAETCX0EVgdUIGshQB66AImEtTItD7O/mbf17A4ryMvZKRBEXAPigC5tKUCGyZJ+DNEaAI2AdFwFyaEoEK3YH80rj0UQTsgyJgLmGLgMiKTE5+5P0/HtCyNaAImEv4IhA/aNkaUATMhSIQDC1bA4qAuVAEgqFla0ARMJf66y4vl4Y9EegdlyXvaJyhZWtAETAX/borxBNYnH9P+ovLiTPyyti8LDrHYxI6oCK0bA0oAuaiX3eIJ+CfE1CaTsTrhUAJtGwNKALmwroLhqWjAQ3JXFh3wbB0NKAhmQvrLhiWjgY0JHNh3QXD0tGAhhR9/vGPf8jKyoqb5ufn3TQ5OVmsO3y+fPly8ZrNzRgP99cJLVsDikB0+Pvf/y6zs7Ny5swZefvtt+WnP/2pPPPMM8U6qif98Ic/lJdeekmy2ayMj4+7QgExsQ1atgbKaEj7gdNPT0+7jvrcc8+VOHEr0je/+U3ZtWuXvPPOO67Y2CAKtGwNlIGQ9vDVV1+5T3o4o99B/enpp5+Wn/zkJ3Lw4EEZHR11hQJP8vLmvrpedRc+//xz9zpcf+rUKTlw4ID7d7Zt21by+ypBFPB3crmcK0hxhJatgTII0jr++c9/uo45ODgoTz31VIkjIqEVgNYArqnn6ay+rwOiB2EcAcLyox/9qOTvI+G+Xn31VZmZmXHvNy7QsjVQRkDCB0/X48ePb3kSK4f78MMPm3oCN1N3ShQgTGgR+O8PLZHf//73segu0LI1aMaQSGXgYHD+733veyXOhaY5BunCanqHVXfoosDpy8clcP/Ih8ldBVq2BmEZEik8+Q8dOlTS5Mf/0TdfXFz0rgqPVtTdJ598Im+++WZJ60CJgYktA1q2Bq0wJBtB0xrNaL/jQBDQKmgVray7L774wh2n8AvaD37wA3fcwiRo2Rq00pBsAE/4F154oViO3/3ud9vWhG5H3SEf7777bokYYP4B3kaYAC1bg3YYUhzBCPpvf/vbEufAIBueoO2inXWH14+YvKT+JvKNcYSoQ8vWoJ2GFBfQxPc//dFMxuSbdtOJukO3xz+LEcIX5YFDWrYGnTAkk/nzn/9c0vdHv7lTc/U7VXcYIMTgofr7EAWsXYgitGwNOmVIJoK+vho1x8BfpwfJOl1377//vjsGgntAuWCWYtSgZWvQaUMyAfT/33jjjWJZ/fjHP47EwFgU6u727dvy7LPPFu8FLaMozTikZWsQBUOKMmj6YjRclROm3UbFyKNSdyijl19+uXg/+H9kysj7l9QgKoYURTCTDgtsVBlh9V2UiFLdwenRClD3tHv37khMLqJlaxAlQ4oSeAPgX2gTxddhUaw7jJuo+4KAdloIaNkaRNGQOg0MVy31xYDXBx984J2JFlGtOwimujcIQScjHdGyNYiqIXUKNGv9XYCoCgCIct35haCTYwS0bA2ibEjtBobqH+BCQI8oE/W6wxiKukfMK+gEtGwNom5I7QRx/VR5YJAr6phQd/5JRRgvaDe0bA1MMKR2gIk/qizQGjABE+oOrSv1ihXjK5hx2U5o2RqYYEitBhN/VAAQBNYwJWS3KXWHtQVYX4F7xZTrVi6vLocioIEphtQq8KTCDECUAabAYrWcKZhUd9evXy9Oucbiq3YNFFIENDDJkFqBf4ILYv6ZhGl1539jgGXY7YAioIFphhQm/qeTCQOB5ZhYd1h6jHtGPIJ2tLooAhqYaEhhgOaomhCE3XpM3LrLxLrDVGw1/oIgJa2GIqCBiYYUBoj6q/KuGxBk8+5VOXf6iBw5ckROn7sqn23kvTOVyW98JvO5E871JyT3p0/lYdXLN+XufE5OOL97Ivcn+bT6hSWYWnfY7ETde6uXY1MENDDVkJoBo9PqaYTmaTBrcuXkLkmldsmvc9NycTonB3cmJZHcKSNX1rxrSlm7clJ2pZKy82BOpi+ek5N7MpLsOixzWy5fk7lsRjJ7Tsq5ixdlOndQdqb6JbcULAQm151qheGtQStbYRQBDUw2pEZRE1jQLw2OC5CXpVy/JJNljplfkvE+p+zKjzvkl3LSn0xIJjvnuLiHd32yPycll18bkXTfeMmx9bmspAen5IH3uRom1x1Cm6vxmFZOIqIIaGCyITUCAoHWZXzrF2TIcejE8CVHDkrJXzkmaed3ko7DrnrH8GSf2ee0EhJ9klv2Dnmsz+xz/26f/4Tj8N8/dcP74LGck76+nJR9fQum152aoYlWWaviFFIENDDdkOpFvRLUNbyKjqvIz0kWAuF3eDgwyrR7VG55h4qsnJX+8nN3xqSn55TcKLaI8/Lw/D5JDV2Qde9INUyvO3TLVLTmVr0ypAhoYLoh1YPf6BBLX4flXJ97fe/4knfEz7Lk0CVwzg9fKrQTVs72F8p030wFJ16Qw65o9MqTn3O6G2dflHTXSzJ85Igc2b/L+X+lsYOtuH/HSSajRBkzCVsxNkAR0CAOhqQLHB95hRDoTl1VIlCpO+AXAdVSmMsWPicPL7ifS3lyfXbOO+Sx+eVNWbh4URZu3pOAlw5F3PtykslgroDqnrUicAtFQIM4GJIOeMqoNwL1TAzKO332JMooOSQXtjzanzh1/1kMMD6QqcHC54rdhwqi0Qz4HSTTUQO1aA2EPZ2YIqBBXAwpCGyaofJa3y5By3K2HwN9ZaP9Dpt3/0v2us37pBQe/EFOThGoBLZyU3kJe5UhRUCDuBhSEGq6Khav1M3aFTm5K+V+P7Vjr9N3H5a9//IzOX7qV/J9t/z2yYzbStBvCQxOBb0ADAa/gxQH1LboCO0eJhQBDeJkSNXAVFXV78RstcbYlMeLV+Wi02+/uvjI7bffGu12fzPpG8lfOFxoNXSPbnk34HBNRtIob9VyaI441Z1aXISVnGEOEFIENIiTIVVDTRHGgGBo0W/XZmRf+etBhwdThRZHxYHE/CUZdst7UEJoCBT+Tkzqzj9/I8y4jhQBDeJkSNVQgUPDixi0JpeG085vJqU/t1Tq7KsTMoAyrTRP4NaodOPcwIRvclHjxK3u1CavelO59aAIaBA3QyoHT371hAknXsCazB3uct8YlA8UFliXuSwEokfG7niHPAqvG5MytPU1Q0PEre7UwqIwuwQUAQ3iZkjl+GMHNjs1dfPLjyX3Ssb5rZS8OHajggB4rM1JNpOQtNMlUNfkH87KcLqacDRG3OoO6zhUnubn572jzUER0CBuhlSOmp+OVWsN8WBBzgzvld6utPP0T0r6+aMyezf4KZVfmpLXu5KS2rVfjjjf35FKyY7fzMi9ChOBVB00muIEYjsgT2EtKqIIaBBHQ/KjthJreB/B9c/kfy5elItXF+WR7lQ+RX5DPrvqfPfiVVl8XF04VB00muIENnxFnhoW7TIoAhrE0ZAUmBqs8tfuUNf10GgdNPq9KINxG+QJ4zhhvMmhCGgQR0NSqPEAGFQrA1c0S6N1EMe6w7iNylcY4wIUAQ3iaEiKU6dOuXlDlyDKNFoHca27bdu2ufk6c+aMd6RxKAIaxNWQgFqYgh1wokyjdRDXulPzOsKIAE0R0CCuhgTUpiKHDh3yjkSTRusgrnV34MABN19hRCOmCGgQV0MCaukwpg1HmUbrIK51h92gkS8EIW0WioAGcTUk/5uBsCaetIpG66DR70Ud/wSvZgd0KQIaxNWQ/LPPgiMKd5ZG66DR70UdiLbKW7N1RxHQIK6GdPny5dAMqdXUWwdYced/WsaNMAU8HqWDaasIQBmQTp+rLz6dIq6G5H+atGsH3EbRrQM4v9rr35/ef/9974p44BeB27dve0cbIx6W7U5bnZbcwZ2FWHdIPb9wnR4BLpDOnR6WvTsKkW8SqR3y5sQd0e1JqcKOG34RiDo694m+MebVf/vb3y5er9LXv/51DSHwgqKcO13y4Li6+LhoK6t/+Yt86v2/kyCvKm/NjufEzLKXZLzXq/jyULUum3L3/JBk3MKrsM69Cqqw4wacAvnCxJOoo1MHiLxTSQBUwvLbyjh2MXtUnk8nnQfEdtmz/7S73Zn/4ZFMPy/7h1+SruSweJHTO47KF0WghHWZ2edVekURAHm5NdrjFeCATGhErlCFzWR+2tJ0zi/JlLv0OSldb52Xyosf8fB4yxEA/MbWXZM6hcoTRaAMFdO+ugg4qOg1TtIJZqkKm8n89PHHH3u1Cp5ESfbHNajG2qVhSVMEok8rRCCumDQmoANmPaLJr/JUnr7xjW+UrLpbPtvv7ZcwKFNascxWZWowIyPXvI8dhGMCNQgWAX93YGt4K5vwi0DU3w7ogBHz73znO+4goMqXSt/61rdkeHjYu9Ihf0WOuVGNE5J0bEW3m48NVkdqPF/aBd8O1KC2COTl4V9HZKfbt0tI5vBC4IaWccakeQK6YG5AKpWSZDIpX/va19yBQogC5tj7WwHFXZOctK+wIYIe+XtyL4wIqE3iF4Fm6y6+IpDaIXuHffME9u+R7u2FV4QY6f31RI34dxFmZfI16e7uri+9NimVzCRMQ4oSmCuAHXzVZipI5VwbQaBTnEtHonlfL/5WHEWgjKII/OzfinMEkKZzJ2T/nu2SwrlkWnbuPakVBy9q5Dceyf37izL/ntefdVLv7/7mrgMoTys3/yRjGPmuso8/rlGG1Gy/Mqqo/JVTtJMIDfTVA9cO1CBoTCD/8K8ysrMwIpxIZCSrs791FClu0hGwZx/6vgPjUmnTcKAMKeqrCBtF5a8c00WAqwhrECQCLqtTMuiNCyTSx+RKRCZ/1MecZF0jDt64c+HwYefqyhQcIfrxBBpF5a8ctRVaItEtFXdDiziMJ1ADLRHwTyoy1AjqEYH8xkZx2ms5hTKIfmShRlH5K6e4FZqTTHxNzMhCNahfBMxsDmqJwIM/yh8/8v5fhUIZRD/GYKOo/G3hwR/kFdUa3Ddj3FsixhisypNtr2uKQHGjTCf1jImZUwU0RODWqIzW0kIHtwycFPVow42i8reVvFwbwXRhnO9xWoOafcL8Q7lxq7NvUvzRhsMIEx8vEcjfkFPdhcKpJgKbd2flsBoYTPZLbsnIAQGHABFwjHV2OC01G0QOypiQ4viGQOWtIvklyXnThhOZrFx6GGAL+Xsy89brHbcZte8AUrPbxoF4iIAbT8C3VBgptV169w4/mSdwZL/scbfJwnn9rbKiyxMRSKa7tswN2J4qnKtHBBregSjCqLxVZe3Kk7dFyZ1ycOJjuVcecAK7JM2Pyes7fy65O523Ge5AVAm1DVZgWpCbK/fr3yorkjwRgUrzBFZunndbPPWIQFhGFSVU3mritJquT/y6sJTYuz61XQnqdkkl0/L80dkqKwzbT9PbxpURDxGwknDHBJAwLhBG8zJKqLzpkZeNRytyc8H/0HhUdySqVoLZkCpPYXXfKALGoiECTjN2I+DppQxKJfQ344TKV1xQgWCeeuqp0AZyKQLGoiECGignQVcA/77xxhvemXig8hcXVPzEF154wTvSPBQBY6lPBNYu/Kd8+IX3wYdyEoTmwr94woSx021UUPmLA1999ZXbZUN+PvjgA+9o81AEjEVfBPL/NyGDgxNSaQWschK/gcUpMq/KXxxQQo3AKWEKNUXAUDZvnJIez8B7x6stD8rLxmfnZShTfWqs30la0dTsNP78mY7aNzLsLhtFwDDceALF+Q4qpWR72TwBpC71yis5JBeqzItVvwEmJyeLnzEKHQf8+TOZxcXFYl5mZ2e9o+FAETCMQjyB0jkBgenRRtXwWX4nwWiz2qA0jIUpUcCfP5NRW8g//fTToYeCowhYTrmTvPvuu+5nDBBCQEynPH8m8vnnnxfHazAuEDYUAcspdxI4PgQAxyAIplOePxNBqwx5QCugFYu8KAKWU8lJlNGha2D6DMJK+TMJvygjbmIroAhYTiUnwaCgan4eP37cO2omlfJnEm+//bZ7/60UZIqA5VRzEjUQhaeQyZGIq+XPBD755JO2iDFFwHKqOQmaoepNAUJ3m0q1/JmAmsqNYKKtDPhCEbCcWk6CCMTqfNjvpttFrfxFmVwuV7x3hBdvJRQBy6nlJHgfrZ5G2PffxPBjtfIXVTCFW7XCwogmHARFwHKCnOT69evFfqmJE4iC8hdF1M5JGI/BHIFWQxGwHB0nUa8MkVrdNA0bnfxFCX8XrFWvBMuhCFiOjpOgW6AWr6CZatLbAp38RQW8DVBzArCIq107RVMELEfXSeD4qp8KQTBlK3Pd/HUaLA1WsQMxM7CdU7YpApZTj5P4N8FExFsTqCd/neTll1927xPjL2HsJVAPFAHLqddJ1Aw2JBNmE9abv07gH3PpRJlSBCynXidBN0A9tZDC2AarldSbv3Zz6tSp4j12Kr4jRcByGnES9F/VhphovkY5QnEj+WsXKnIwEqI6dWqchSJgOY06iX8gK8pC0Gj+Wg0Char5FxDUTgZ3pQhYTjNOghFsvxBEsWvQTP5axejoaPG+UH6YIdhJKAKW06yTQAiee+654u9EbbCw2fyFjX8QEC2ATgsAoAhYThhOgqbs7t27i7+F14dRmUcQRv7CAGXkH1DF/zvZBfBDEbCcsJwETv/qq68Wfw8TiqIwszCs/DXD7du35dlnny3eS5REElAELCdsJ1GBSpEww7DTaw3Czl+94A0ANgvBPWDcBK8EowZFwHJa4SSIPbBt27bib6Mf3KllyK3Inw5o6qvoTEjPPPOMXL582TsbLSgCltMqJ0GcQjWXAAnRcToRmKRV+asFNnGB06u/jcVA7VwLUC8UActppZOg33vo0KHi+3AkrJVv5+5GrcxfOVj7jyAg6m8i31gOHKX+fyUoApbTDidBYBIVoQgJfWS8SmxHOPN25A/5wFiIWgaMhKc/tg4zAYqA5bTDSRSIm+cfK8DAYavFoJX5QxMf4x1qiTUSugHoDpgERcByWukklYDDw3H8T038H8da0U1oRf7w6rM8D0rQovLuvx4oApbTCifRQT1F/Y6EhGY0XquF5Uxh5Q/ihZaMf7ATqR2tmVZDEbCcsJykUaqJAT5jaS0WJjUjCM3kD46Nv4/ZfeX3FwfnV1AELKcZJwkTODpW1qEl4H+bgITPGFjE4Nv8/Hxdcw7qyR/uAa8x33nnnZL1ECrhPvB2A31+E8OvV4MiYDnKwKMEWgfYgtv/RsGf4IxYfQeHxCtIROjFRBz01ZH8i3LUdwB+V12DEF74HlohWMuvVkOWJ/wtdAFwbRQW+7QCioDlKGOPKqpJjvn21Rw17IS/gzBqmPJs4kBfvVAELEcZvingKQ5RwBz8AwcOuE9pROf1O7Fuwus8dD8gMFjjD6dHa8E2KAKWoxzCdPDEVk19jBsgoe+u8ofP/i5DnPr0zUIRsJy4iEA14p6/MGDpWA5FgLB0LIciQFg6lkMRICwdy6EIEJaO5VAECEvHcigChKVjORQBwtKxHIoAYelYDkWAsHQshyJAWDqWQxEgLB3LoQgQlo7lUAQIS8dyKAKEpWM5FAHC0rGcWk6CwBtR30UH91crQAhFIBiWjuVUchI4FQJ9ImwXwmpHGdwf7hP3W0kMKALBsHQsx+8kfudXx00QAXWvlcRAnSPVYelYjnKScudXCZtsYFvxqCb/PoAq+cVAHSPVYelYjt954pb8G4iQ6rB0LEc5SbWWAJ62u3fvjmzC/ZXfM1sC9cHSsRy/k3BMwE5YOpZTyUn8YmCCCFRyfgVFIBiWjuXUchI4FecJxB+WjuXE3UkoAsGwdCyHIkBYOpZTv5PkZePRfbn/uHoTPEpQBIJh6VhOvU6yvnBYMvhOds47Em0oAsGwdCynLidZm5NspnA9RSA+sHQsR99J1uTScEYymTRFIGawdCxH10lWpwYltW9GbuT6KAIxg6VjOTpOkl/KSX9XVubWRJa1RcAbQLx/X2qPIW7K40cbztUK57PzncoDj7XOVYYiEAxLx3ICnSS/JLn+Ljm8sO5+DBaBTbk7e1SeT6dle3e3dKWTzvUp2fHmhNzx+e7mlzfl/On9znXO+b6cLDsycO/SUdmVKtxPIpGUrtenZMlVh025M/Gm7Kh4rjaB+SMUAdup7SR5uTXaIz2jt4pP6toisCZzh7skmcnKpYfqGxhLKIwjJPvPOs7u8OCazExPy3v9EAjnt/rG5dLZn8vOl07KuYsXZXrsdelKFu5rYOKO3Bh9UXa8dFRy0+XnVt2/UAv3951EqsPSsZxaToLXgV39uZInbi0RwLhBMpGWY1dKH9H5S8Pe3+mTnKsCBYrHUy/K2PWHvi6ByJ2xHu/cLjn519JzqxMDhXODU/LAO1aNwt+lmdeCpWM5VZ0ErwO7+iVX1uauLgJ3ZKzHOZ4ekWvekSLr1+Tf93RL75tlTfi5bOG33O5AGY2eK8O9zkmkOiwdy6nsJIXXgYNTW5vbVUVgOSd9OK7hmEUoApGApWM5lZwEzfr0a5PyvxiJL0t/+11v4Tu/nPaOPRZ3vM/pOiRxnCJgHCwdy9nqJMuS6ysc00tZcdsE10Ykjc9J53NpD8JHXvLsDkQOlg4p44EsnDkiR45UTr/q92YM9vzCO/ahfOp+bUoGXYdLytCFwuvELThdhtEZ37k2iAAJhiJA6qL6wOCqTAxABJyUKUwsKgHzDV58S0r0gSIQCSgCpC5qvSIsrjB0UrLrdRmbX3THDRavnpOju1Il8w1A8RVhoyLQOy5L3iHSOBQBUhe1RAB9/qWzL0oK58tSZmhG7ikFyG/Io5WPZVRNFkr2y+jHK4XpwO65m3JuKON9t0eys46YVDyXkaHz3jnSMBQBUhcrk69Jd3e3dJ/4yDuylc27s3J6/x73ut69RyU3f7fwBkGxMimv4TfKE36z0XOkYSgChFgORYAQy6EIEGI5FAFCLIciQIjlUAQIsRyKACGWQxEgxHIoAoRYDkWAEMuhCBBiORQBQiyHIkCI5VAECLEcigAhlkMRIMRyKAKEWA5FgBDLoQgQYjUi/w+0ZfGZfwLWrgAAAABJRU5ErkJggg==
|
As shown in the figure, a circle is drawn with the vertex C of a square as the center. The circumference of the circle is 25.12 cm. The length of the arc EF corresponding to the central angle ∠ECF is () cm.
|
A. 50.24; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
D
|
3
|
iVBORw0KGgoAAAANSUhEUgAAAP8AAAELCAYAAAAWfFBxAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABtwSURBVHhe7Z19aBznnceXtnRbGkEpWSg4goACMjjibCjCoEAiKE4M5pC5kGtCjA1Oj9a4x/4R4xgHrGIZw6nQqvlD0AUHzjIS58MqCGyscBJu8Itwm9i0OiEqLLAVZDvIRSqHYPvH7+Y7+zzr2fdZaWef55n5fuDB1sxotc/zzOeZ531SQghJJJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKJSfkIRC+QlJKBbJPy+/+/eLsqR+IqSSmzLU3S3dDcK+wyfl5FBOJu8syLNN9aukAmvkX5/JSiaVkdO38uoIIeVsyrPVVVmY/aX0p1OSSnkh0y+Dl27IveVVWfXOrS7fkxuXzsnBXR2F8+mMvH7qmjxgIVCBJfKvyNj+Qmamj16VdXWUkFrMZJX8fbkatcVNeXDl59KlCon0nkG5taZOER8r5M/PDUonMtIPPTIyr04QUoPF0d4G8hdY82qU+t5KD0x4jxmisUD+dbl6NC2ZY1k5pErpzOlbwso/qcdSri+U/N6jReYGOwvXptJy9CrrlRrz8i/lpM9/2ufl1ulMIZPSh2SKVTRSh/Dye6yMyX5ffi94T//H6nDSMSy/En7/WKE6Nj8iPSqTelj3J3VoSn5ZlNFeJX/Ke7Dw4e9jVv6VCRlIB6tizzv+UpnTwo5/Uovm5A90EKZ6ZXRRHUw4RuWfH+mpkHz96lFJ+5mUloEJds+Q6mxd/pRkZ9TBhGNO/vUZyWaqVO/zt+S0d9zPqJ4RYeWfVGPr8nfL8H11MOEYk39lbL+XEftlrMrD3a8R+BnFST+kOs3J/1gmBrT8AzLBHj8fM/Ln78twj5cR6Yx0VZme2b1Dzc5C0J2BhARoSv68V8vUMwJZmyxiRP5Cu75Hzt9WUzIrwv/KpwNpVQBw0g+ppBn516YOqX6klOyvVtVMKAbkX5JcX0oy2Zm603jz94eLw36NriXJI7T8a95Tv7NwH6U6B2WOrcgibZffX8CT9tpdDQvgwsw/P9NSfZIL06tDEsONE+reqCf/2hcy3K+uS/dLbpHmB2mr/Pkn04VSuPe3Mh8iH57810Elf0rS/aMyz5VZBOQXZdSrPdaUf/MruXfllOztKFzTsfeUTD+k+OW0Tf6bZzLFdpcf0Nn37rgsq/MlLI/Lu11l1/uhQ3YM3VQXlVJ6HYOLoTGF9fw7lNTFEOw41vdNxw7pPXhKcrMPhM+M6rRN/s1nVTr2nm5UX8CT35Cn5dfqUGN3hpKbgcHJ0JjCev6q90UgPN3gUz4Mba32R0n4G4jYBvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ4zDszUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnxmHemYHyE+Mw78xA+YlxmHdmoPzEOMw7M1B+YhzmnRkoPzEO884MlJ8Yh3lnBspPjMO8MwPlJ8Zh3pmB8hPjMO/MQPmJcZh3ZqD8xDjMOzNQfmIc5p0ZKD8xDvPODJSfGId5ZwbKT4zDvDMD5SfGYd6ZgfIT4zDvzED5iXGYd2ag/MQ44fMu3Cu6S0KNV7oTyk8sIHze3ZSh7i7JpAvX+yGdka7ubukuCTukQ5/vvyDL6rdJKZSfGKfpvNucl9/2Kbn7crKkDpew+UCuHO2sfZ5QfmKereTdTLaB/GB9RrIDlL8WlJ8YJzL5JS9z//17VvtrQPmJcVovf142NtjR1wjKT4zTevkXZXR0Rv2f1ILyE+O0XP6VMdmfpfyNoPzEONuSv/dX8sfguP7CrIy80ykpyt8Qyk+Msy35K8b51Rg/5W8I5SfG2Zb8Var9+cVR6aP8DaH8xDitll9kWcbHb6r/k1pQfmKc1stPwkD5iXEovxkoPzEO5TcD5SfGaT7v8jJ9TMnfOyqL6ihpDspPjBM+7wrr+Rdmfyn9xWW9nfLOyKwseMe5dL85KD8xTvi8w3r+4Jh+aRhiB39TUH5iHOadGSg/MQ7zzgyUnxiHeWcGyk+Mw7wzA+UnbeNvf/ubLC8vy1//+leZnZ31w/j4eDHv8PPnn3/uX4Pwj3/8Q/0miQLKT1rOwsKCL/XZs2fl/fffl71798qLL75YzKNmwiuvvCJvvfWWHD9+XH7961/L1NSUX4iQ7UP5ybbBOvqLFy/KkSNH5OWXXy6RN6qwe/du+eijj+TatWuyuckB/q1A+cmWePTokf9kf/XVV0uk1OE73/mOf25gYMCX9NNPP5Xbt28Xq/TBp7f+HYDP1U0DiP3JJ59INpv1n/6oBQT/hg74Wz/+8Y/9Aujvf/+7/zmkMZSfhAZi5XI5eeONN0rkQ4CAOH7mzBlf8mba6/ozwoDvgKo/CoRqBQ++B5oauIZ9BvWh/KQhqNZDNogVFO373/++fPDBB/4TejtP3O3knW5yoGbwrW99q+T7/fCHP/T7CdgsqA7lJzVB1RtyB6WHYKjKX758uWVStSrvvv76a192dDDqz0RgIVAdyk8qQLsbnXfBJyme8qjSQ7BWE0XeYcShPA66EGBzoADlJ0Ugxfnz5+WFF14oEWZ4eDjS4bUo8w61l/Imy86dO+Wzzz5TVyQXyk98IAOk0OmIJz2kb0dVuR15h76Bn/3sZyU1gZ/85Cd+LSepUP6Eg446VI91+iGgtxyytIt25t3du3dL+gRQyxkdHVVnkwXlTzB//vOfS4bLTFWH2513aN5AeNRu9N9GLSBpcwQof0LBpJtg2x4TcUx1hJnKO3ReYohQ/31MIvryyy/V2fhD+RMGBA9W89GhZ7rzy3TeoZNT9wWgYxATmZIA5U8QqNYGZ+fhqdfOtn0tbMg7rCZ86aWXit8FNaG4Q/kTAiQPtu8xL98WbMk7NANee+214vfBBKc4zwmg/AkAE170ajtUb22r1tqUd5D97bffLn4nzGaMa0cg5Y85EB/teqQNOvgwLdc2bMs7FACYGKS/F2oDcZwaTPljDKr6uh0L8dGutRFb8w4dgfq7oTYQtyYA5Y8pqKrqGXs2iw9szjv0jejvhxmCcYLyxxA8oXTHFdr4k5OT6oyd2J53wSbAxx9/rI66D+WPIZieq9MDk3lsx4W8wwxAl9I0DJQ/ZmDaqk4LtFldwIW8Q23qwIED/vdEMwpTo12H8scITE3VS1cxROUKruQdljXrIVPMmXB9CJDyxwTciHqDS/TwR7HpRlS4lHfoONVTgTFN2mUof0zQE1NwY9rcs18N1/IuOASI/QNdhfLHAPTm6/hjqy3XcC3v0P7HVuH4zngZiUu1rCCU33Ew80y3Q3/0ox85ORHFxbzDDkB6STTWALgI5XccjDvruGO/fBdxNe+C1X8X057yOww2p9S9+y7PPnM171DL0isl8a9rtS7K7zAYzkOc0e50+eWVLucdOlf198erxVyC8jsKxvR1nF3fecb1vNMzKrF60qWnP+V3FP3Ux9i+i518QVzPOyyb1nFwaeov5XcQtPX1RJM47DcXh7xzsTCm/A6iN+BENTMOm0zEIe+CzTDbV1FqKL9jYHxZP/Xx3rk4EJe805ujYr6FC1B+x9Bjy5hgEpetpeKSd3hVuY6LC6v+KL9j6HFlV2eVVSMueYe2vt427cMPP1RH7YXyO0SwXTk7O6uOuk+c8g77/SMuLgz7UX6H0NtJ4ekSJ+KUd8Fhv6mpKXXUTii/Q+gtuOO0jxyIW97ptwBj8o/NUH5HCFb58ZrpOBG3vBseHvbjg7cA2wzldwR9Q2Eef9yIW94FC2r831YovyPoV0ljF9m4Ece80+/+t3kuBuV3APQa640jsDtv3Ihj3unpvjZvpEr5HQDDejp+y8vL6mh8iGPe4YmPONnc7qf8DqDb+3Eb4tPEMe+C7X4sxLIRyu8A2KUHcUO7P47EMe+wlbqOl63j/ZTfAfROscePH1dH4kVc805P9bW104/yO4C+iVzbJioscc07XWjbur8i5bccrNzTccOqsTgS17xDTQ3xwlJfG6H8loOloTpucezpB3HNO93jj2nZNkL5LSc4zBdX4ho/7Odnc9wov+XEVX5MXEKtZnx8nHlniPZ9q79clpMnTzYIQ5KbvC53Fp5Js3vUxPUG0k8PvJwjLmDZK7a60nmmw+XLl9UV8cD2yVnts2XlS7l+/ZKc29dZTJBM/4e+7NevI0xKbuiwvJ5J++fSmdfl3B+eSF79eiP0Z8YNLT/exxcH8HIRtIH1PoTlAcLUJb8hD+/dkMncUOCBcUPuPdxQ90pe7v/PDXns/98swbX9yZZfk5+WYypB+nJL6mCA/BO5O9wvaf+aTsnOrKkT9dGJHDf07L64yI/trdLpQgFfHr7xjW/Izp071ZVl4L7IHZFdHXgw7JGDp3IyWfbQ6Nh1UI4d3isdvaOyqH7NJBBex83GZdgGbLkvw92FBKkqv8+aTB1SN0jmtNwK8fjXiczgfqh49djaLRncg/uhQ94cuStPqt0PKBxG3pQO/zOyMqMOmyQof8MajQEMyL8kub5CgtSWX2R96pBKuIwMzqmDddCJzOB+WF1dVbnqsX5DTnQWjveNLjZoBuZlcbTPu9Y++fnk94lG/rgStzb/22+/Ld/73vdU3laGH/zgB+pKsC43Tqg+os5BmQvTAZSfk8HOAZmwoNHPNn8FYeQPVPvTR+XqujqcQOLW24/Vbt/85jeLUgQDOgHRx1FkZUz2q3P1HhTlrIydliYujwz29lfQSP5NmR97Rzr9REtL/wULctEgto8VbwUUaN/97nfl29/+th8v/e+hQ4dKtrteyqEKj7h3y/B9dTAMaw/loQUPDNvzzqj8GM47HBjnP3awV7rUUB96bs9NPww91GcTN4e6pbu7yTB0U/12KXGUH6BKfPbs2eJ7Byvj91gmBgrHUyk7qvHNomtttuadUfm7j/2nGuMvhEu/OSYH92QKw3wdO2TfL8bkbtWuXbvZfLYqq8v35NLR53MafjrpHVutDAt3LskJ9GRnq3dRJXdu//P7xJYOvGbh3P4KGrf5N+fH5B3Vw5tK90tu0cXnv8fiqPT6N29KarhdAG3bY9NVazmoBhcESNqqPvfl56q+ChrLD/Jzg6rd74X9Y7KijjvFUk76VBzqyi/LcuFEzkuZ6hQESNp6fi9N+lX+pw7JlIOdvlzPX0E4+YOTgVzN/PDye7WdDT09tZJCGiRvJ5+5wYw65+ZwL3fyqWAr8rtZ7Qsl/59+L79v0JQvpEEC9/D707li7a+7qe5+83APv6rMyWCmkCh1q/33h6VHJV766FVxcqg/hPzrU8MNx6T1TZS83XtXZGJAz/fwan/hlnmg00i+mP8/9YMZgrv32tpR2375167Iv6pEqS5/Xp7czT3v8Ov0nvphM902Gsnv3aS/7esLLT+CrdtAbwcdt6qszUhW3Qvp/lGZb7TWe+0LGX7vhPF7xvaeftA++f31/M+X7PqZmemSfYefj/OfPHZQend0qPMdsutIzsmhviIB+Tt2lI/td0kmjXPNyZ/EN/bkFycCD4N9cu7agjwrLwQ2v5J7V07J63tOyLQF94x+Y4/Nr1drn/z+ev7nY/q1wx1ZWF2tzFwXCchfbZx/YXbEu6mbkz+x7+rbfCDXzh30l/QWrk9LpksVpF0ZSXfskiO5Giv+DKDf1WdzYd0++ZNIi9v8CLa/9nkr6LiFY1OerS7InZKHRfM7P0VJsL2PmYy2QvmjJIT8srkhGw2eVvpG0oHv57cbvQGLze19QPmjJIz8IdBy6HFj7IYTJ3T84oLen/D9999XR+yE8kdJU/Ln5f7vLsgd9VMQLcdHH33k/xu3IT8dvzgQXIvx2WefqaN2QvmjpAn5N2+dlj2nb1Wd5advpmBb0vYbqxl0nOIAamWICwro4PJkG6H8kZGXJ1cOqY1IU3JsulbDflO+uj0s/enaU1iDcuzevdv//wcffOD/HAeC8XMZyK6bZqil2Q7ljwB/PX9xvoIKntxdJeP8hbBDD131jMi8+v1y9GeA8+fP+/9/4YUX/Pf4xYFg/FwGqy51XFD9tx3KHwH+ev6yMf2Goc7EhqAcjx49Ku55b+uCkWYJxs9lsHQX8UCHnwtQfgcol0PvfoOhpDg8/cvj5yLB/pjJyUl11G4ovwOUy4H5/frpn8vl1FF3KY+fi+jpvK+88or1HX0ayu8A1eRw8WarRbX4uURwi27s2+cKlN8BqskRrGa6/vSvFj+XwGQefH80w1wqiCm/A9SSQz/9X3zxxcpXXDlErfi5wOeff178/q5ts0b5HaCWHGj742UeOGfrPnFhqBU/28FT/tVXX/W/O/51rflF+R2gnhwff/xx8fzt27fVUbeoFz+b0XMuXE17yu8A9eTAUB/e44fzGF92sfOvXvxsBfMtMNEK39vV2ZaU3wEayYFxZX3NmTNn1FF3aBQ/20ABq7flRn/L119/rc64BeV3gDBy4O23uAbj/64t+gkTP5tAAau/88WLF9VR96D8DhBGDmwVjTF/XIchJ0wZdoUw8bMFFKx6ghVmWroM5XeAsHJg7F/3/qNa6kr7P2z8TIMCFQUrvit691Hgugzld4Bm5MCGkfp6V3b8aSZ+poDor732mv890dHnwqq9RlB+B2hWDj3jDMGFlX/Nxq/doAal+1QQXJrCWw/K7wDNyoGbVS8vRbh8+bI6YyfNxq/d6FWUCC6OptSC8jvAVuRANVXv+oMOqtnZWXXGPrYSv3aRzWaL3w//jxOU3wG2Kgc6qHbu3On/Ltqptg4BbjV+URMUH9X+uEH5HWA7cmC5qe6hRg3AxibAduIXBWg2Ydae/l4Q35WRk2ag/A6wXTnwllhdA0ABYNvqs+3Gr5VgunSwcy+u4gPK7wCtkANNgL179xY/6+zZs+qMeVoRv1aAabp6OA8B1f64ig8ovwO0Sg50Auo56QhvvfWWFTMBWxW/7YB1+XrbbQSslow7lN8BWikHnmRY+68/E/0BpjsCWxm/rYCluXrKLmZIxmFfxDBQfgeIQo7x8fHiklQEvGTCVBU3iviFAdV81H7030e/CKZIJwXK7wBRyYGdgPRcAH3zm6gFRBW/WqCQwzRo/Q59BEzkcX2ufrNQfgeIUg70bh8/frxY7UXA9OB29gVEGb9y8HrzYMcnCgDUgpII5XeAdsiBbaj0q6W1FHjPfDteCtKO+KEwQ19HsJDD097VjThaAeV3gHbIAVAdxhyAYHUYO9VgPnuUuwNHGT80bSB5UHosx0XvftKh/A4QpRzVwFOyXBgUCBj3xt51rSaK+KF6j63Ng3HAyAZWOcZ57L4ZKL8DRCFHGCA6hNcbhOiAuQLYvqpVTYJWxQ/fF8N2ejttHbT07WjCuATld4BWybFVUBNA1T/YHEDAUCHmwOPV1NvpKd9O/PDdUBBhyC74lEfAtmZYe0/pq0P5HWA7crQSSISe8Wqi4Wf0omO+QLOFQTPxg+z4Dui80+sVgkEXSDYvYbYFyu8A+sa2iVpV7GBAdRtNBAwloto9NTXld7RhoRGCbnvr61Fg4Dg66SAvViDib2DoEQVLec1DBzRLUCC1simSBCi/A+ib3FYaPY1bHSA7dipCUwSFBIXfGpTfAfRN7wooDPCUx9MeBQJE1XsKNBtQmBw4cMDfjBSz8jAfgbK3BsrvAFoE18FcgWC1HgE1Bh0//FytWUCigfI7QFzkr0Xc42crTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuANQfhIFTHEHoPwkCpjiDkD5SRQwxR2A8pMoYIo7AOUnUcAUdwDKT6KAKe4AlJ9EAVPcASg/iQKmuAPUkwO72iwsLKif7AR76NfbfYfym4Ep7gDV5IBM2CYL22NhLzubwQtA6u2dT/nNwBR3gKAc2AoLO9oG98RzQX79XasVAvocaS9McQfQclR7cQYCjr388svWBuylX/6dg4WAPkbaC1PcAYLSxC1gv339f9JemOIOoOXAq6fwCir9sw54umJ7bFtDsImiw+7du2VycrIkfqS9MMUdICgHtrMuLwRcavMHpdfoc6S9MMUdoJocwULABfmrSa+h/GZgijtAPTlQCOAFFzaDl3TUg/KbgSnuAHGXg/KbgSnuAJSfRAFT3AGal2NTnq2uytONvPrZbii/GZjiDtCsHEsX+iXtXd+XW1JH7Ibym4Ep7gDNyJFfzEl/unA95Sf1YIo7QGg58osy2tcpnZ2UnzSGKe4A4eTIy9xgp/QM35fpLOUnjWGKO0AYOdZmstLVn5PFvMhMaPnzsvF0VVZXV+VZ7eX2Hpvy7OmGd7Wm0KG4WvWX6p2rDuU3A1PcARrKsTYj2a5+uaBcbyz/pjy4dkpez2RkR3e3dGXS3vUdsuvImMwHnN386p5c+c1h7zrvfF9Oljz9H06fkr0dhc9PpdLS9d6EX+DgM+fHjsiuqufq0zB+JBKY4g5QX441mTrUIYem1tTPjeRfk5kTXZLuzMr0E23mmkwfy/i/k+6/4Enu8XhOpiYn5Zf9KBi8z+sblekL/yx7DpyTS9evy+TIe9KlOhb3j83LF8Nvyq4DpyQ3WX5uxf8L9fA/3wukvTDFHaCeHBjW68rOePo+p578KxMDkk5l5PSt0kdyfvqY+jt9Evy14vGON2Xk7pNA1V9kfqRHndsr5/5Qem5lbH/h3MCEPFbHalH4u7wV2w1T3AFqyeEP63VlZSZovkdt+edlpMc7lxmUOXWkyPqc/Me+buk9UlZVn8kW/r5f7S9jq+fK8K/zAmkvTHEHqCqHGtYbnCt9goOa8i/lpA+fFULIIpQ/tjDFHaBSjsKw3j8N3ZRH6FkvC5M/LVzf+6s/Fo7pnvobJ/yZf5SfAKa4A1TKMSNZdSxU0ALODUoGP6e9pkJlhUGRlzyr/YmAKe4kf5HLJ0/KyRrhX9Cu92TK9P9b4dgnNwqdbo8nZMAXLS1Hr677n1SB1zQYngqca4P8xAyUP4bU7vBbkbH9hXOpzsqOQvQj5N78uZSUC5Q/tlD+GFJvqG/da/d3QkovpLvek5HZBb9fYOHOJTm1t8OfHhys9ReH+rYqf++oLKpDxC4ofwypJz/a9IsX3pQOiFkWOo9OyUNtfn5Dni7flmE9ySfdL8O3lwvTdv1z9+TS0U71uz2SveYVIlXPdcrRK+ocsQrKH0NuDnVLd3e3vDtee2+/zQfX5DeH9/nX9R48JbnZB1Ki5/K4vOudw/mSMHRz6+eIVVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckoVB+QhIK5SckkYj8P3aHxnXKUrjAAAAAAElFTkSuQmCC
|
As shown in the figure, a circle is drawn with the vertex C of a square as the center. The circle intersects the sides BC and CD of the square at points E and F, respectively. What is the arc length of EF on this circle? ( ) cm.(π = 3.14)
|
A. 50.24; B. 25.12; C. 12.56; D. 6.28; E. No correct answer
|
D
|
4
|
iVBORw0KGgoAAAANSUhEUgAAAcYAAADVCAYAAADNV1CoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxvSURBVHhe7Z1diB1nGYBTWyXVigWLP5ALoQF7kYuiAQNbIYUgQYLkohcpBBHJRWhzsUguchEIWDBgwEIDBrLQShcMKDTQggFDVmjBgAEDrVhwQyMKFgwYMNCAguM+35nv7Hdm5+ye/TlzZuZ7Hnib7jlnz87M2X2feb/fXYWIiIgMUYwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIis8fPiwuHv3bnH79u3id7/7XbG4uFhcunSpOHfuXHHq1KniBz/4wUgcPny4OHjw4Eg888wzxde+9rWReO6559a87vjx42vej59z4cKF4o033iiuXbtWvPfee+F47t27Vx6hNIViFJHeg1xu3rwZZIeAEBOCevbZZ4O8HnvssWLXrl2tjq985SvF3r17w3EfPXq0OH36dBA3El1eXi7PVHYCxSgivQD5UekhizNnzhQvvPBCEN8TTzxRK5px8eSTTw4rPapCqjkkhFDTeO2114rXX399JH7zm98US0tLI/Hmm2+ueV31vc6ePRt+DsJDfAgQEdYd37hA7nwfx0yF++qrrxbvvPOO0twCilFEOsfHH39cXL16NQjlyJEjxZ49e2plkQbC279/f3Hs2LHwfQjqV7/6VZDXn//85+Jvf/tb8b///W9msXx5bvV45y4Xy+Xj//znP4uPPvooHOfbb78djvsnP/lJceLEiSDvSc6dmwNeizAXFhaKDz74oLySUodiFJHWQ9VDJUhVRVVUl/wJ5HfgwIHQVPrjH/84VGu///3vg1yqImpX3Cjm52/UPD5ZfPLJJ8X7779fvPXWW8VPf/rT4uTJk8WhQ4fWlSbXipuK8+fPh2bm//73v+XVFsUoIq3jwYMHxZUrV0JVRLNmXWJnoAuiRARUUv/4xz9qpdGJuHG5uLxc8/gOxL///e9wc/Dzn/98Rb7zoXLcvXv3mutJVUlT7sWLF4u///3v5SeRJ4pRRFoBMmRwDMm5LnFTCdLXR1XU/gpwM7FcXJ4rzzNpQl2NlWpyeB3mhgINTa+8/sZ8+dx8cWPl8Rvz673XIKgw33333dAkS59kXT8sAqWfMkdJKkYRmSkffvhh6PuiaS9NzE899VSoGH/5y18W//rXv2oTfN9iILVV+UVpzt9InqfJdSjD8uvydXNzc+VrkWn6PusHoqQPk0FLDFhKPweCJldGv+aCYhSRmcB8QRJumoCjDH/7298W//nPf2qTeN8jVIKxv3H58ors6iu/YcVYfo005y4vl88Pqswo1M3GX/7ylzBAqdqfy9fMs+x7f6RiFJFGoWmO5tI04dJMymhLKpe6RJ1VpDKkMpyBGNOgf5K+3LR5G0EyFaSvKEYRaQyqjbTJlP6tP/7xj7UJOdtAjGnFWPYdVl/XlBhj0JxNU2sqSIR5//798tPtD4pRRBqBEZExoTKilD6tugTc1aDp92c/+1nxrW99q3j88cdDVUWz8GbnR96YX9vHuCq8lecvD2TYtBhjMPqXxRPSz5J5pX1CMYrI1GFwTUykjCztW5MpUyK++c1vFo888sjwPIlHH320+PznP1/84Q9/qP2+EKEqXP2etTIbSG7k+crgmzAop/x67vKN1VGumxiAs9lgcQT6hPk5yLFPa7oqRhGZKqxQE5M2FVVdku16vPTSS8WnPvWp4XmmweNPP/10L/tPWTEoLl1HddwXFKOITBWqCRInTal1ybXrgfBSEY4LKqy67+960CQez5GpN31AMYrI1KB5LSbNfk3KXw2aSeM55h6smtMHFKOITA32FCRh0hdVJ5U+hGJcjb40pypGEZkabAMVkyb9UXVi6Xrk3pRKsGsJ58j0jT6gGEVkaqRiZFJ/XVLtQ/zoRz9aMyI1BiNT+zr4hrh8+fLwXBWjiMgGpGIk+jwA5/nnnx85V4LNg7/85S+vP12jw0EVzDnG81WMIiIbEMWYJk8mh/d1IA5bO7Gaz1e/+tWwGDdzNvu4ADqLGbDdV/xc47+KUURkA6IY2VOREYsxgTIYh7VRc10ovMvBEn6sbcvnSHCjw8bQilFEZAJSMQI7asR5jQTLprl4eDeC5uB08XfWTGW/RkCIPKYYRUQ2oCpGePjwYXHu3LmRxcRZPYVtjjq9C38PgxsWblziqNMYCDKdzK8YRUQmpE6MEXZlqAqSYOd4lo7b7OLbxs4EMnzrrbdC82i6sz/N4DSbUvVXUYwiIhOynhgjVJALCwu1O8dTqbDVEcuO2dw6vWCOKTcjDBxKt5UiqOb5DNhHcxyKUURkQiYRYwrVSN3O8QTVC4mbKpMd/tnRoi7JGxsHA2hee+214tixY8NFwNNgcBSr2Fy/fn2i3foVo4jIhGxWjCn0YTGSlf6stEkvBk17VJkkd6YOvP322za/VoKpIuzAjwTZ+uvgwYNrmq7jtWSkKTcdfGaTyDBFMYqITMh2xJhCor5582YYBYko66qcGDQF7tu3L7yOeYTMLaTC/Oijj2rl0fVgTijye/PNN0O1Td8gkot7JdYF1whJ0kR67dq14sGDB+WV3hqKUURkQnZKjHXcvXu3+PWvfx1kcOTIkWLPnj0jyb8uqIyYLsLraSqkQqJvjZGXyBPBINBZN9Myv5PjoMmT/lWkh+A5Xio/qmT6X+uqv2rwGgY08X2XLl0qbt26temKcCMUo4jIhExTjHWwzRWJ/8qVK8Urr7wS5IcU1qsw1wuOm+qT6oo4dOhQSP5pnDx5Mghro2A5vOr3Iuj43oiOn1cd/DJJID+alRk1ShXIYCb6B9cbMLOTcC4cB//2AcUoIlOjaTGuB6NfP/jgg+Lq1avFhQsXgkBSOXGM6zU/ziKQJMeFNDlGjpfKD9EuLi6G5mVuBmaNYhQRmZA2iXEzfPzxx8Xy8nI4fkT6xhtvhKASq1aCUbAbRRRaGvSZxvdGdPw8RubSTLzTzZ3ThPNTjCIiE9BVMcrmUIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwyNdgWh1X1q9HUnmoiO41izAPFKAG2hEFa7O/GHz87ibN1DJujsp0MvyDsss0eamwgSmKIMcmu25MGu5an782mrHEz1bjNzcWLF8OxXbt2LRwrx822OiLTRjHmgWLMBOTx3nvvhZ3A2dSU3bePHj0aNgzd6m7gbYvHHnssJKy4AerZs2eLS5cuFe+8807YE+7+/fvl1RDZGooxDxRjj6BqooqioqK6otKiAkvlMUnwR793794gmMOHD4dfjlitIVWqNTY7JUmkQbUZm0tjPHjwoDy6VTjO6uvYubv6fmx0ys/i5yI5juP48ePhuA4cOBCOc7M7lD/xxBPFvn37ihdeeCG8JzcKSJNmX5GN4PeS3yPF2G8UY0dhN27Ecfr06SCvSQTBa2gGPXLkSHHy5Mni/Pnzw122kVOXoRpEzNwYsCt5FCkSRfJUk3XXJA2ESXMx8r9+/Xqt1CVvFGMeKMaOgAhfffXVUOms1/SJ/OiXQ3y8HlF8+OGHK0n+/WJhbvV1cwt3ynfOByrVW7duhSoRcXItkeE4afI4NxI0O1MhK0pRjHmgGFsMf4RUhFQ8acKO8cwzz4TkToVDP9q9e/fK76xhab6YXyr/X0Zg4BHNqVTPSJAmaJpcq9d79+7d4TluOBxZmyeKMQ8UY8ugr43kXNc3iAipBKl4NjsKc2lhocivRtw6UZZIkEFKdSNvqcx53hGx+aAY80AxtgCSMNMjGFCSJl6qFj4YBqBsK/neWSjmyvesbUJdqSaHP3cuCvROaHrl9Uvz5XOh5Fwq5td7rx7DTQvTVxDi8HqtBJXkiRMnQh+n9BvFmAeKccbQB0glGJMs/VpUKIhy50dKllIbym+FIM35lWdg8Dz+G8qw/Hrwurlibq58LTJN3ycz6PNFktVmbv6QrCD7i2LMA8U4IxjIwQjImFCpOmhCnf7o0EElGPsb7yysyK628lutGAcgzbli9UuqzCjU9UEiNP9yE9DHuYQMzEmrSCp9zlf6h2LMA8U4A5ADox1jImVuXpNVRipDKsNpiRHJf/vb3x6eJ/Hoo4+GeYk0H/cNBJlWkPQ/Sr9QjHmgGGdArBSpLBhN2jSIMa0YB32HVbYnRkZtfuELXyg+85nPhHNN45FHHil++MMflq/sF7QExD8qmsXpl5T+oBjzQDE2DPPoYtJkibbmWRHcmj7GRHgrzy+EL7YnRvpJaR7mXMcFSaav0ArAObLAgPQHxZgHirFhWG2GC87qM00RqsKVnzmIGpkFyY0+Pzr4BinGr1fkuLQ6yrVuAA7NpBtJkRsD5mj2FZqROU+ug8vN9QfFmAeKsUEYhPLiiy8O5ZB7NHlz0DRM3eAcP/3pTxevv/56+eiA6nVoW8h4FGMeKMYGoZL6xje+MZKEcg0qRkbh9hE+Z9avjefK1JuU9Dq0MWQ8ijEPFGPDMDjji1/8YrjoyIHJ+32EvjWqpZhs64JRnH2DEcepFKfZXMyoV36Go1+bQzHmgWKcAX/961+Lxx9/fJg8aVKkmbVPsHA5I1KRfzzPGEzZ+O53v1u+sj9wk5Mu8P69732vfGbnod8y/iz+tR+zGRRjHijGGfGnP/2p+NznPjdMogzSYBpHn4b3cy5PP/10OD8EyTQN/v/73/9+b3aqQEhshswuHfGzJL7zne+Ur5gOsVqMYdXYDIoxDxTjDGG6xmc/+9mRBEcw+Z8dM/qwgwPiYG9DRuMikL6sJ8o5sT5q3eLizz///FQXMEirxRhWjc2gGPNAMc4Y+tlicyN/bNWmR/rqkIoLVM8WKlwWY2B3k+rOJ1/60peG1f/+/funXg1Xq8UYVo3TRzHmgWJsAew4H5Pbyy+/HESYLhkXg4RMcyuVF314Mj2QG1Uhy9dxc1Kdl8nXLGLwi1/8ovj6178eHmMx+Gkv7VdXLcawapw+ijEPFGNLYKeGmODinT/7AfI4ibluEAu79TNwh5GPTAmwqtwajCSlWZvrTvMoNyXjrjcr2jDIhk2hkWdcPBwpNXGzMq5ajGHVOF0UYx4oxhZx6tSp8GGQlKtz30jCNLsiQfZtrEvcBJUMiZ2d/al2eB8GweS+4zyVFOKiCrx48WK41kyrGFd9ETxHVYhsuElJoQ+Ra8zrWPO2qUFTHAfJOSboeJzxsepxys6iGPNAMbaINNkivvXWUiXRxyqHKqY6KnJc8AdNBcr3nDlzJkiCvjMS6vS3vJoO3DRw7FwPtnuiKRrxITVuEqj06q5FGgyiOXTo0LD63mj6DH2NfB+fE9tpzYJ47Cbp5lCMeaAYW0baPEclspnmUb6XRcqRA9JDsgizbuTkekGy5w+fLZSQKJUVvyDIhioUGdOcGAORxIolDaoohFUNpFP3eiJ9X4KmZH4mPx+ZczxUzBzfetXeuKCfluuL2DgPbgo4ps3A8cT3W1xcLB9tnngMJunm4HfUa95/FGMLoc8r7upP8t+JZlCkSVMi1Q2DfaJsqJL4WUg4JtquBteKUaFUikicypGbBCrJzcpvHOlAKd5/lsTjMEk3h2LMA8XYUhjdGCsixMVgj2lDUy4CQaAkAKopqjaaWxEpa5vyi8KAHyq3GDRXkiiqMa6iixVpXVDNpe9NlcjPPHv2bDgGjocqjeOLwmtqk+d0ak0b1nmN15PrJs2gGPNAMbYYBBWbQREGVZ/MBiQcq2qaqKc5gX9SOBaTdLMoxjxQjC0nTcg0EbYhIecGNyhxAA83KG35DDgek3SzKMY8UIwdgMEtsQmPeXbSHDTTxpVuaNJuU9XOMZmkm0Ux5oFi7Aj088VESF+bTB8kGKfBIMem+jInJf4+mKSbQzHmgWLsEAxAicmQZeFketBcGqfN0IxKc2rbiL8LJunmUIx5oBg7Bk2pfGA0rVZXx5GdASmmq9rQz9tGOD6TdLMoxjxQjB2DpM0gnLYn7S7DVAyub9tvPjhGk3SzKMY8UIwdhL6v2MzHdI42NvN1FSbtR+G0vbk6HqdJujkUYx4oxo7CQJB0dZy2DQzpIiweEGXThQFO8VhN0s2hGPNAMXYYVn1JV8dxAYCtw1J5cUoM66h2AY7VJN0sijEPFGPHYZHxuAAAzatuVLt5WOy8i4socLwm6WZRjHmgGHsAA3BitdOW5cq6Av2zseru2rJ7HLNJulkUYx4oxp7A6MmYKNlZQjaGflm21uKaNbVQ+04SP2+TdHMoxjxQjD2C/QVjsmQfQxkPlSG7gnCtqBh3YmuvpomftUm6ORRjHijGnsEO9DFhMspS1kJTM/tQco3oW9zMZtBtIn7OJunmUIx5oBh7CHsY8qHS78ieijLKsWPHhtenywskcA4m6WZRjHmgGHsIFdHhw4fDB+vqOKN0ZVWbSeA8TNLNohjzQDH2FPrQDhw4ED5c+tBcHWe0D5b/7zrxXEzSzaEY80Ax9ph0dRz+kHNeHefKlStDkdAP2wfi+YxP0neKhbldxdzCnfJr2S6KMQ8UY89J5+mxt2COq+Ncv359OM+T/te+wPmsl6TvLMyF5xXjzqEY80AxZsCtW7eGK7scPHgwqwUAbt++PTx3+l37dO6c09gkvTRf7JqfL+ZXnleMO4dizAPFmAlp1cTqODmwvLw8rJb379/fu2qZ86pP0ksrQpxf+S//1olx8Hj8/vml8mFAqLvmCr5laT6+hveKzw0ey1W2ijEPFGNGpP1sjM7sM2n/Kv/2sX81fpbVJL00PxBbFOCoxAaPRRkOmlsHr49NrzEGrynfY27lufKb0u/JDcWYB4oxMy5cuDBMfPx/H8llRG78HEeS9EpVtyrCtWIMUptbKFYfGRVlWjEOGAzgiVIM3Fko5hRj+Yj0EcWYIXEuH7G4uFg+2g+qczjpX+0r8TNcTdIrkksFViPG0Dw68poKinFdFGMeKMZMoZ+RD55+R/of+0L8hea82GOxz3CeaZKuNoWOBv2ENZKrohjXRTHmgWLMFCorRqjy4felsjpz5kw4H6JvlXAd8VzHJ+kxTalxMM2QpNJUjOuiGPNAMWZMdYeJLvfFpava9LXvtEo8382IcSC1iuhWZDj8cmIxVkazZoJizAPFmDnVPQm7OHqTNU/jVJS+j7ZN4XzXT9I1YoQoxxil4UabYpHj4PuHjzFoJ4hz9bHc5KgY80AxysjqOF2b78cC6bnNz4xwzibpZlGMeaAYJYBg4gox7FXYhRVi2EcxHvNzzz2X1Yo+wHmbpJtFMeaBYpQh7N0Yq6+2rynKjvu5rwHLuZukm0Ux5oFilBHY9T8m3LbuQnHv3j13DVkhfk4m6eZQjHmgGGUN58+fHybdtu1bSGVIsynH9tRTT2W9z2T8jEzSzaEY80AxSi2nTp0aJt627HRPH+LRo0fDMdG3SL9ozsTPxyTdHIoxDxSj1IKE0tVxSAiz5sSJE8PjuXr1avlovnAtTNLNohjzQDHKWB4+fDhstqRCYxTorDh37txQBAsLC+WjeROvh0m6ORRjHihGWRf69OJAF0aB3r17t3ymOS5dujSUAIKUAfGamKSbQzHmgWKUDWHU5549e8IvStOr46Sr2pw8ebJ8VIBrYpJuFsWYB4pRJoLRn4wC5ZeF5tUm5g2miw7Q35nbBP6N4LqYpJtFMeaBYpSJSUV15MiRqYoKET/55JPhZzUl4q7BtTFJN4tizAPFKJsibdpklOg0qDbdMqFf1sL1MUk3i2LMA8UomyYdDHP27Nny0Z2hOtiHpd+knvgZmKSbQzHmgWKULZFOn7h48WL56PaoTg/JeVWbSYjX3yTdHIoxDxSjbBlGifLLQ9PqdlfHqS4okPuqNpPAtTJJN4tizAPFKFsmXaJt9+7d25JZXIJuJySbC1wvk3SzKMY8UIyyLdJFvbfa/PnKK68Mk3zbFi1vM/GamaSbQzHmgWKUbZNuA8WAmc0sAJBuc3XmzJnyURnHtWvXwjVLrxvzS+Nj169fL18p00Ax5oFilB0h3TgYSd6/f798Zjzpxsh9+QWcNqkQ64LnZXooxjxQjLJj0IwaFwDYaFJ+uljA4cOHXdVmQrhOe/fuDdetGjzudZwuy8vL4VrTp84oaukncSBgX9ZmVowzBuGRNPilGreMGwKN1eWBAwdc1WaTjKsarRabIa7I5C4v/YTWr/gZ03XRBxRjC1hv4W/6H2mG4rmmFyTvC3VVo9Vic7CoBdecvl3n2vaLdDDhs88+25u/KcXYEhhdGpM2o06BXzp+2XiMipFmKdka1arRarE5aEKNNyb8Ht++fbt8RroM4yKiFPs2l1oxtghGmcbEzTJyBw8eDP9P3+KtW7fKV8lWSKtGq8XmoaUjjsQmidIX5WfQXRgIGNdn7uNcasXYMuLorhj80jmlYGeIVaPV4mxAjvFmj+AGhc9CQXYHqv24SAlB8ziS7BuKsWWQJNiiKv7iXblypXxGtgvX1hG9s4e1guOAMwJB0pUwyZQlmQ3IL81LBIMF+7qTj2JsIbFD21VtBqR/jG0M2TxUj/Pz8yOCpMuAwWe0kHjzMnsY08B4hzj4LwZVP/NT+4x/1S3FxLBK+kfZxpCtw1B/+tbjdKQYNNGxfynD/53/2ByMZaD/Nw76i8ENDN08N2/eLF/Zb/yrFpGZw40gAzjov0qryJiUaQKnCdYRrTsLNyZ01yC96s0JQcsV1z23Zm7FKCKtgq6ExcXF4tixY8OJ42nQ5Hro0KFQaV69erW4e/du+Z2yHsiNJlC6aOgfjKNK02CwH02lvCbnTc8Vo4i0FipJmu9o3mPVp2o1GQOBktDpt2SqE02w9JHl2CVB/y1zCrm5YHEFqvBqP2EaTKOhb5cBNq6qNUAxikhnoL+RpH/+/PmQ8Ouqnmow6pUKk+TP99FkS19aVysiRoKyghAio5mTmwGuxb59+8beOMSg2qZ59PTp06Ha7uuo0u2iGEWk05DcGcl64cKF0FdG4q/rLxsXVJtUVHwffZm8B+KgSmWeJSKlCZJAyjTdpjHpMo00ZVa/F0HH90Z0/DzkTaXHcSA8KmHkvtlzYgANTaa8F+fgylmToxhFpJdQXdZVVggj7lTT5RhXCVsFbh/FKCJZQn8aVRtVYNzQGsEwqIdqjeqRKpJqsgmR8nOQNhXi8ePHi1OnToWqlV1JYtWK6CetUGXrKEYRkS2AoKpNowwUik2jMWjCrL7OecrtRjGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiQ4ri/x0yBQtysrruAAAAAElFTkSuQmCC
|
Mike has a conical water container. Each time he fills the cone with water and then pours it all into a cylindrical storage container. He repeats this process 6 times. How much water does he pour in total? ( ) cm3
|
A. 314; B. 628; C. 1256; D. 2512; E. No correct answer
|
B
|
5
|
iVBORw0KGgoAAAANSUhEUgAAAcYAAADVCAYAAADNV1CoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxvSURBVHhe7Z1diB1nGYBTWyXVigWLP5ALoQF7kYuiAQNbIYUgQYLkohcpBBHJRWhzsUguchEIWDBgwEIDBrLQShcMKDTQggFDVmjBgAEDrVhwQyMKFgwYMNCAguM+35nv7Hdm5+ye/TlzZuZ7Hnib7jlnz87M2X2feb/fXYWIiIgMUYwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIis8fPiwuHv3bnH79u3id7/7XbG4uFhcunSpOHfuXHHq1KniBz/4wUgcPny4OHjw4Eg888wzxde+9rWReO6559a87vjx42vej59z4cKF4o033iiuXbtWvPfee+F47t27Vx6hNIViFJHeg1xu3rwZZIeAEBOCevbZZ4O8HnvssWLXrl2tjq985SvF3r17w3EfPXq0OH36dBA3El1eXi7PVHYCxSgivQD5UekhizNnzhQvvPBCEN8TTzxRK5px8eSTTw4rPapCqjkkhFDTeO2114rXX399JH7zm98US0tLI/Hmm2+ueV31vc6ePRt+DsJDfAgQEdYd37hA7nwfx0yF++qrrxbvvPOO0twCilFEOsfHH39cXL16NQjlyJEjxZ49e2plkQbC279/f3Hs2LHwfQjqV7/6VZDXn//85+Jvf/tb8b///W9msXx5bvV45y4Xy+Xj//znP4uPPvooHOfbb78djvsnP/lJceLEiSDvSc6dmwNeizAXFhaKDz74oLySUodiFJHWQ9VDJUhVRVVUl/wJ5HfgwIHQVPrjH/84VGu///3vg1yqImpX3Cjm52/UPD5ZfPLJJ8X7779fvPXWW8VPf/rT4uTJk8WhQ4fWlSbXipuK8+fPh2bm//73v+XVFsUoIq3jwYMHxZUrV0JVRLNmXWJnoAuiRARUUv/4xz9qpdGJuHG5uLxc8/gOxL///e9wc/Dzn/98Rb7zoXLcvXv3mutJVUlT7sWLF4u///3v5SeRJ4pRRFoBMmRwDMm5LnFTCdLXR1XU/gpwM7FcXJ4rzzNpQl2NlWpyeB3mhgINTa+8/sZ8+dx8cWPl8Rvz673XIKgw33333dAkS59kXT8sAqWfMkdJKkYRmSkffvhh6PuiaS9NzE899VSoGH/5y18W//rXv2oTfN9iILVV+UVpzt9InqfJdSjD8uvydXNzc+VrkWn6PusHoqQPk0FLDFhKPweCJldGv+aCYhSRmcB8QRJumoCjDH/7298W//nPf2qTeN8jVIKxv3H58ors6iu/YcVYfo005y4vl88Pqswo1M3GX/7ylzBAqdqfy9fMs+x7f6RiFJFGoWmO5tI04dJMymhLKpe6RJ1VpDKkMpyBGNOgf5K+3LR5G0EyFaSvKEYRaQyqjbTJlP6tP/7xj7UJOdtAjGnFWPYdVl/XlBhj0JxNU2sqSIR5//798tPtD4pRRBqBEZExoTKilD6tugTc1aDp92c/+1nxrW99q3j88cdDVUWz8GbnR96YX9vHuCq8lecvD2TYtBhjMPqXxRPSz5J5pX1CMYrI1GFwTUykjCztW5MpUyK++c1vFo888sjwPIlHH320+PznP1/84Q9/qP2+EKEqXP2etTIbSG7k+crgmzAop/x67vKN1VGumxiAs9lgcQT6hPk5yLFPa7oqRhGZKqxQE5M2FVVdku16vPTSS8WnPvWp4XmmweNPP/10L/tPWTEoLl1HddwXFKOITBWqCRInTal1ybXrgfBSEY4LKqy67+960CQez5GpN31AMYrI1KB5LSbNfk3KXw2aSeM55h6smtMHFKOITA32FCRh0hdVJ5U+hGJcjb40pypGEZkabAMVkyb9UXVi6Xrk3pRKsGsJ58j0jT6gGEVkaqRiZFJ/XVLtQ/zoRz9aMyI1BiNT+zr4hrh8+fLwXBWjiMgGpGIk+jwA5/nnnx85V4LNg7/85S+vP12jw0EVzDnG81WMIiIbEMWYJk8mh/d1IA5bO7Gaz1e/+tWwGDdzNvu4ADqLGbDdV/xc47+KUURkA6IY2VOREYsxgTIYh7VRc10ovMvBEn6sbcvnSHCjw8bQilFEZAJSMQI7asR5jQTLprl4eDeC5uB08XfWTGW/RkCIPKYYRUQ2oCpGePjwYXHu3LmRxcRZPYVtjjq9C38PgxsWblziqNMYCDKdzK8YRUQmpE6MEXZlqAqSYOd4lo7b7OLbxs4EMnzrrbdC82i6sz/N4DSbUvVXUYwiIhOynhgjVJALCwu1O8dTqbDVEcuO2dw6vWCOKTcjDBxKt5UiqOb5DNhHcxyKUURkQiYRYwrVSN3O8QTVC4mbKpMd/tnRoi7JGxsHA2hee+214tixY8NFwNNgcBSr2Fy/fn2i3foVo4jIhGxWjCn0YTGSlf6stEkvBk17VJkkd6YOvP322za/VoKpIuzAjwTZ+uvgwYNrmq7jtWSkKTcdfGaTyDBFMYqITMh2xJhCor5582YYBYko66qcGDQF7tu3L7yOeYTMLaTC/Oijj2rl0fVgTijye/PNN0O1Td8gkot7JdYF1whJ0kR67dq14sGDB+WV3hqKUURkQnZKjHXcvXu3+PWvfx1kcOTIkWLPnj0jyb8uqIyYLsLraSqkQqJvjZGXyBPBINBZN9Myv5PjoMmT/lWkh+A5Xio/qmT6X+uqv2rwGgY08X2XLl0qbt26temKcCMUo4jIhExTjHWwzRWJ/8qVK8Urr7wS5IcU1qsw1wuOm+qT6oo4dOhQSP5pnDx5Mghro2A5vOr3Iuj43oiOn1cd/DJJID+alRk1ShXIYCb6B9cbMLOTcC4cB//2AcUoIlOjaTGuB6NfP/jgg+Lq1avFhQsXgkBSOXGM6zU/ziKQJMeFNDlGjpfKD9EuLi6G5mVuBmaNYhQRmZA2iXEzfPzxx8Xy8nI4fkT6xhtvhKASq1aCUbAbRRRaGvSZxvdGdPw8RubSTLzTzZ3ThPNTjCIiE9BVMcrmUIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwyNdgWh1X1q9HUnmoiO41izAPFKAG2hEFa7O/GHz87ibN1DJujsp0MvyDsss0eamwgSmKIMcmu25MGu5an782mrHEz1bjNzcWLF8OxXbt2LRwrx822OiLTRjHmgWLMBOTx3nvvhZ3A2dSU3bePHj0aNgzd6m7gbYvHHnssJKy4AerZs2eLS5cuFe+8807YE+7+/fvl1RDZGooxDxRjj6BqooqioqK6otKiAkvlMUnwR793794gmMOHD4dfjlitIVWqNTY7JUmkQbUZm0tjPHjwoDy6VTjO6uvYubv6fmx0ys/i5yI5juP48ePhuA4cOBCOc7M7lD/xxBPFvn37ihdeeCG8JzcKSJNmX5GN4PeS3yPF2G8UY0dhN27Ecfr06SCvSQTBa2gGPXLkSHHy5Mni/Pnzw122kVOXoRpEzNwYsCt5FCkSRfJUk3XXJA2ESXMx8r9+/Xqt1CVvFGMeKMaOgAhfffXVUOms1/SJ/OiXQ3y8HlF8+OGHK0n+/WJhbvV1cwt3ynfOByrVW7duhSoRcXItkeE4afI4NxI0O1MhK0pRjHmgGFsMf4RUhFQ8acKO8cwzz4TkToVDP9q9e/fK76xhab6YXyr/X0Zg4BHNqVTPSJAmaJpcq9d79+7d4TluOBxZmyeKMQ8UY8ugr43kXNc3iAipBKl4NjsKc2lhocivRtw6UZZIkEFKdSNvqcx53hGx+aAY80AxtgCSMNMjGFCSJl6qFj4YBqBsK/neWSjmyvesbUJdqSaHP3cuCvROaHrl9Uvz5XOh5Fwq5td7rx7DTQvTVxDi8HqtBJXkiRMnQh+n9BvFmAeKccbQB0glGJMs/VpUKIhy50dKllIbym+FIM35lWdg8Dz+G8qw/Hrwurlibq58LTJN3ycz6PNFktVmbv6QrCD7i2LMA8U4IxjIwQjImFCpOmhCnf7o0EElGPsb7yysyK628lutGAcgzbli9UuqzCjU9UEiNP9yE9DHuYQMzEmrSCp9zlf6h2LMA8U4A5ADox1jImVuXpNVRipDKsNpiRHJf/vb3x6eJ/Hoo4+GeYk0H/cNBJlWkPQ/Sr9QjHmgGGdArBSpLBhN2jSIMa0YB32HVbYnRkZtfuELXyg+85nPhHNN45FHHil++MMflq/sF7QExD8qmsXpl5T+oBjzQDE2DPPoYtJkibbmWRHcmj7GRHgrzy+EL7YnRvpJaR7mXMcFSaav0ArAObLAgPQHxZgHirFhWG2GC87qM00RqsKVnzmIGpkFyY0+Pzr4BinGr1fkuLQ6yrVuAA7NpBtJkRsD5mj2FZqROU+ug8vN9QfFmAeKsUEYhPLiiy8O5ZB7NHlz0DRM3eAcP/3pTxevv/56+eiA6nVoW8h4FGMeKMYGoZL6xje+MZKEcg0qRkbh9hE+Z9avjefK1JuU9Dq0MWQ8ijEPFGPDMDjji1/8YrjoyIHJ+32EvjWqpZhs64JRnH2DEcepFKfZXMyoV36Go1+bQzHmgWKcAX/961+Lxx9/fJg8aVKkmbVPsHA5I1KRfzzPGEzZ+O53v1u+sj9wk5Mu8P69732vfGbnod8y/iz+tR+zGRRjHijGGfGnP/2p+NznPjdMogzSYBpHn4b3cy5PP/10OD8EyTQN/v/73/9+b3aqQEhshswuHfGzJL7zne+Ur5gOsVqMYdXYDIoxDxTjDGG6xmc/+9mRBEcw+Z8dM/qwgwPiYG9DRuMikL6sJ8o5sT5q3eLizz///FQXMEirxRhWjc2gGPNAMc4Y+tlicyN/bNWmR/rqkIoLVM8WKlwWY2B3k+rOJ1/60peG1f/+/funXg1Xq8UYVo3TRzHmgWJsAew4H5Pbyy+/HESYLhkXg4RMcyuVF314Mj2QG1Uhy9dxc1Kdl8nXLGLwi1/8ovj6178eHmMx+Gkv7VdXLcawapw+ijEPFGNLYKeGmODinT/7AfI4ibluEAu79TNwh5GPTAmwqtwajCSlWZvrTvMoNyXjrjcr2jDIhk2hkWdcPBwpNXGzMq5ajGHVOF0UYx4oxhZx6tSp8GGQlKtz30jCNLsiQfZtrEvcBJUMiZ2d/al2eB8GweS+4zyVFOKiCrx48WK41kyrGFd9ETxHVYhsuElJoQ+Ra8zrWPO2qUFTHAfJOSboeJzxsepxys6iGPNAMbaINNkivvXWUiXRxyqHKqY6KnJc8AdNBcr3nDlzJkiCvjMS6vS3vJoO3DRw7FwPtnuiKRrxITVuEqj06q5FGgyiOXTo0LD63mj6DH2NfB+fE9tpzYJ47Cbp5lCMeaAYW0baPEclspnmUb6XRcqRA9JDsgizbuTkekGy5w+fLZSQKJUVvyDIhioUGdOcGAORxIolDaoohFUNpFP3eiJ9X4KmZH4mPx+ZczxUzBzfetXeuKCfluuL2DgPbgo4ps3A8cT3W1xcLB9tnngMJunm4HfUa95/FGMLoc8r7upP8t+JZlCkSVMi1Q2DfaJsqJL4WUg4JtquBteKUaFUikicypGbBCrJzcpvHOlAKd5/lsTjMEk3h2LMA8XYUhjdGCsixMVgj2lDUy4CQaAkAKopqjaaWxEpa5vyi8KAHyq3GDRXkiiqMa6iixVpXVDNpe9NlcjPPHv2bDgGjocqjeOLwmtqk+d0ak0b1nmN15PrJs2gGPNAMbYYBBWbQREGVZ/MBiQcq2qaqKc5gX9SOBaTdLMoxjxQjC0nTcg0EbYhIecGNyhxAA83KG35DDgek3SzKMY8UIwdgMEtsQmPeXbSHDTTxpVuaNJuU9XOMZmkm0Ux5oFi7Aj088VESF+bTB8kGKfBIMem+jInJf4+mKSbQzHmgWLsEAxAicmQZeFketBcGqfN0IxKc2rbiL8LJunmUIx5oBg7Bk2pfGA0rVZXx5GdASmmq9rQz9tGOD6TdLMoxjxQjB2DpM0gnLYn7S7DVAyub9tvPjhGk3SzKMY8UIwdhL6v2MzHdI42NvN1FSbtR+G0vbk6HqdJujkUYx4oxo7CQJB0dZy2DQzpIiweEGXThQFO8VhN0s2hGPNAMXYYVn1JV8dxAYCtw1J5cUoM66h2AY7VJN0sijEPFGPHYZHxuAAAzatuVLt5WOy8i4socLwm6WZRjHmgGHsAA3BitdOW5cq6Av2zseru2rJ7HLNJulkUYx4oxp7A6MmYKNlZQjaGflm21uKaNbVQ+04SP2+TdHMoxjxQjD2C/QVjsmQfQxkPlSG7gnCtqBh3YmuvpomftUm6ORRjHijGnsEO9DFhMspS1kJTM/tQco3oW9zMZtBtIn7OJunmUIx5oBh7CHsY8qHS78ieijLKsWPHhtenywskcA4m6WZRjHmgGHsIFdHhw4fDB+vqOKN0ZVWbSeA8TNLNohjzQDH2FPrQDhw4ED5c+tBcHWe0D5b/7zrxXEzSzaEY80Ax9ph0dRz+kHNeHefKlStDkdAP2wfi+YxP0neKhbldxdzCnfJr2S6KMQ8UY89J5+mxt2COq+Ncv359OM+T/te+wPmsl6TvLMyF5xXjzqEY80AxZsCtW7eGK7scPHgwqwUAbt++PTx3+l37dO6c09gkvTRf7JqfL+ZXnleMO4dizAPFmAlp1cTqODmwvLw8rJb379/fu2qZ86pP0ksrQpxf+S//1olx8Hj8/vml8mFAqLvmCr5laT6+hveKzw0ey1W2ijEPFGNGpP1sjM7sM2n/Kv/2sX81fpbVJL00PxBbFOCoxAaPRRkOmlsHr49NrzEGrynfY27lufKb0u/JDcWYB4oxMy5cuDBMfPx/H8llRG78HEeS9EpVtyrCtWIMUptbKFYfGRVlWjEOGAzgiVIM3Fko5hRj+Yj0EcWYIXEuH7G4uFg+2g+qczjpX+0r8TNcTdIrkksFViPG0Dw68poKinFdFGMeKMZMoZ+RD55+R/of+0L8hea82GOxz3CeaZKuNoWOBv2ENZKrohjXRTHmgWLMFCorRqjy4felsjpz5kw4H6JvlXAd8VzHJ+kxTalxMM2QpNJUjOuiGPNAMWZMdYeJLvfFpava9LXvtEo8382IcSC1iuhWZDj8cmIxVkazZoJizAPFmDnVPQm7OHqTNU/jVJS+j7ZN4XzXT9I1YoQoxxil4UabYpHj4PuHjzFoJ4hz9bHc5KgY80AxysjqOF2b78cC6bnNz4xwzibpZlGMeaAYJYBg4gox7FXYhRVi2EcxHvNzzz2X1Yo+wHmbpJtFMeaBYpQh7N0Yq6+2rynKjvu5rwHLuZukm0Ux5oFilBHY9T8m3LbuQnHv3j13DVkhfk4m6eZQjHmgGGUN58+fHybdtu1bSGVIsynH9tRTT2W9z2T8jEzSzaEY80AxSi2nTp0aJt627HRPH+LRo0fDMdG3SL9ozsTPxyTdHIoxDxSj1IKE0tVxSAiz5sSJE8PjuXr1avlovnAtTNLNohjzQDHKWB4+fDhstqRCYxTorDh37txQBAsLC+WjeROvh0m6ORRjHihGWRf69OJAF0aB3r17t3ymOS5dujSUAIKUAfGamKSbQzHmgWKUDWHU5549e8IvStOr46Sr2pw8ebJ8VIBrYpJuFsWYB4pRJoLRn4wC5ZeF5tUm5g2miw7Q35nbBP6N4LqYpJtFMeaBYpSJSUV15MiRqYoKET/55JPhZzUl4q7BtTFJN4tizAPFKJsibdpklOg0qDbdMqFf1sL1MUk3i2LMA8UomyYdDHP27Nny0Z2hOtiHpd+knvgZmKSbQzHmgWKULZFOn7h48WL56PaoTg/JeVWbSYjX3yTdHIoxDxSjbBlGifLLQ9PqdlfHqS4okPuqNpPAtTJJN4tizAPFKFsmXaJt9+7d25JZXIJuJySbC1wvk3SzKMY8UIyyLdJFvbfa/PnKK68Mk3zbFi1vM/GamaSbQzHmgWKUbZNuA8WAmc0sAJBuc3XmzJnyURnHtWvXwjVLrxvzS+Nj169fL18p00Ax5oFilB0h3TgYSd6/f798Zjzpxsh9+QWcNqkQ64LnZXooxjxQjLJj0IwaFwDYaFJ+uljA4cOHXdVmQrhOe/fuDdetGjzudZwuy8vL4VrTp84oaukncSBgX9ZmVowzBuGRNPilGreMGwKN1eWBAwdc1WaTjKsarRabIa7I5C4v/YTWr/gZ03XRBxRjC1hv4W/6H2mG4rmmFyTvC3VVo9Vic7CoBdecvl3n2vaLdDDhs88+25u/KcXYEhhdGpM2o06BXzp+2XiMipFmKdka1arRarE5aEKNNyb8Ht++fbt8RroM4yKiFPs2l1oxtghGmcbEzTJyBw8eDP9P3+KtW7fKV8lWSKtGq8XmoaUjjsQmidIX5WfQXRgIGNdn7uNcasXYMuLorhj80jmlYGeIVaPV4mxAjvFmj+AGhc9CQXYHqv24SAlB8ziS7BuKsWWQJNiiKv7iXblypXxGtgvX1hG9s4e1guOAMwJB0pUwyZQlmQ3IL81LBIMF+7qTj2JsIbFD21VtBqR/jG0M2TxUj/Pz8yOCpMuAwWe0kHjzMnsY08B4hzj4LwZVP/NT+4x/1S3FxLBK+kfZxpCtw1B/+tbjdKQYNNGxfynD/53/2ByMZaD/Nw76i8ENDN08N2/eLF/Zb/yrFpGZw40gAzjov0qryJiUaQKnCdYRrTsLNyZ01yC96s0JQcsV1z23Zm7FKCKtgq6ExcXF4tixY8OJ42nQ5Hro0KFQaV69erW4e/du+Z2yHsiNJlC6aOgfjKNK02CwH02lvCbnTc8Vo4i0FipJmu9o3mPVp2o1GQOBktDpt2SqE02w9JHl2CVB/y1zCrm5YHEFqvBqP2EaTKOhb5cBNq6qNUAxikhnoL+RpH/+/PmQ8Ouqnmow6pUKk+TP99FkS19aVysiRoKyghAio5mTmwGuxb59+8beOMSg2qZ59PTp06Ha7uuo0u2iGEWk05DcGcl64cKF0FdG4q/rLxsXVJtUVHwffZm8B+KgSmWeJSKlCZJAyjTdpjHpMo00ZVa/F0HH90Z0/DzkTaXHcSA8KmHkvtlzYgANTaa8F+fgylmToxhFpJdQXdZVVggj7lTT5RhXCVsFbh/FKCJZQn8aVRtVYNzQGsEwqIdqjeqRKpJqsgmR8nOQNhXi8ePHi1OnToWqlV1JYtWK6CetUGXrKEYRkS2AoKpNowwUik2jMWjCrL7OecrtRjGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiQ4ri/x0yBQtysrruAAAAAElFTkSuQmCC
|
As shown in the diagram, Mike uses a conical container to pour a total of 628 cm3 of water into a cylindrical water storage container, just enough to fill it. What is the height of the cylinder in cm?
|
A. 4; B. 8; C. 16; D. 20; E. No correct answer
|
B
|
6
|
iVBORw0KGgoAAAANSUhEUgAAAcYAAADVCAYAAADNV1CoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB5/SURBVHhe7Z1fiB1n3YD7F1PwIvAFLdKCSPDrRYqFLxeBVfBiLwIWDNiLCLkQXEoucrEXuehFQDBowID5aKCFLBhooAEFA0ZcsSRCCwYacMFCC25pwYABAwYUDCh03GfOec++Mzuzc87u+TMz7/PAj2TP/zPzzvuc3/v3sUxERERGKEYREZEIxSgiIhKhGEVERCIUo4iISIRiFBERiVCMIiIiEYpRREQkQjGKiIhEKEYREZEIxSgiIhKhGEVERCIUo4iISIRiFBERiVCMIiIiEYpRREQkQjGKiIhEKEYREZEIxSgiIhKhGEVERCIUo4iISIRiFBERiVCMIiIiEYpRREQkQjGKiIhEKEYREZEIxSgiIhKhGEVERCIUo4iISIRiFBERiVCMIiIiEYpRRJLm/v372aefflqIR48eDe+VFFGMItI5kNlHH32U/f73v89+8YtfZGtra9kPfvCD7MyZM9mpU6eyb37zm9mRI0eyL3/5y4X4/Oc/nz322GN7iueee27H633961/PXn755ex73/tedu7cuezChQvZ1atXs/X19ezOnTtKtqMoRhFpFf/5z39y6SGXy5cvZ2fPns1eeeWV7KWXXsqeffbZSmm1PQ4cOJCLFGGvrKxk58+fz65du5bLE8lLu1CMIrIQyKZu3LiRZ1lkXGRfZGVVYqkLRHn48OFcOCdOnBhlbj/+8Y+zn/3sZ6O4fft2Id59993sk08+aYw//elPO577y1/+cvS6b7zxxihT5b35HEePHs0liAyrPnNVkMmS4ZJ9rq6u5j8I7t69m/3zn/8cHi2ZJ4pRRGYOWRESpNJHHgcPHqwURBzIZXl5Oc+wEN3bb7+diwlh/e1vf8s+++yzxcet1egzr2a3Svf/+9//zj/vH//4x+x3v/tdLtLXXnstz4AR6DjHAWHy+EuXLuWyJKOW2aIYRWTqPHz4MLt+/XqeRZHRVVX4BBkiWRLNpa+//nr2m9/8Jvvwww9zocSCaWdsZldWr2SblfeNH0j+/fffz8XPDwB+CCDNuoyT2/lxQaZKU6xMH8UoIlNhY2Mjr6yPHTtWWaHT7Elz509+8pM8e2pN1rfX2LySXblVcfuUgh8HNOW+9dZbeaaNLJ966qkdx5Ws8+TJk3mfpU2v00ExisieYZAMfXpVWSEiZIQofXFkgVWVf5fj1mr4rjubUPNscmn7WKwGgeZNr1uP35LqUn7fUnZl87Ns88rS8LFVr7Ud//jHP/LmZH6AkDWWRUk2yY8PsnVHw+4dxSgiE0GFS8VLxRxXygQDaGgOpE+tqmLvYwSpjeS3FUhz6crm9v1LV7LNkQy3gr/D45aWho8dyDR+naZAlL/61a+y06dP7xi4dOjQobyJmh8vMhmKUUTGhjl65ewQGf70pz/N/vKXv1RW3kkEmeBQdp99ditbrcv8QsY4/DuX5uqt4f0DMQah7iUYbUuzK1KMzxGZ++bm5vAsShOKUUQaYZAH8whDRcv0ArIU+sCqKuj0IpJhnhkuRowh/vWvf+V9k3F/L82sjIi1ibUZxSgitTA1gOa40JdF5UpG8te//rWyQu5qMNCF5t+9DwjaEmMhYxz0He543JzEGAd9knGz9wsvvOBo1gYUo4hUghSZPxcqVKZV9K25lD66V199NXvmmWdG3/OrX/1q3m9X9fi6QHDlPsZt4XH/lYEMFyDGED//+c9HTaz80GEpPalGMYpIJUGKVKJXtir2qsq2y4EUv/KVr2RPPvnkSIrEE088kf/LIKKq5w2CrHD7OTtlNpBc4f7S4JtbSDH8vSXH7VGukw3AmSTIiOkT5j04r++8887wbEuMYhSRHbBKTag8yTSqKtmux/e///2RBKsCYfaxD5UfBEGODKRyJZ2dKEYR2QGTyak46V+sqlz7EHUry4RAjMzRrHpu14M+4rAcHQsDSBHFKCIFWD0lDLbp2yCbEPSVxhJMORhMJUUUo4gUeO+990aVJs1uVWLpevC9YjmkHKxnK0UUo4gUYPPfUGmyxVKVWPoQzz//fEEQ5Xj88cd7OeiIYHpKmJdaFmP5OLQt5oFiFJECsRhZZqyvzanM74sr3DjoX2S7p27s8jF5MOI2fFfFuBPFKCIFYjESTAjvqxzJCBmEgwiJp59+Ov/ODD7685//XPmcrgfL98Xnd1ZNqSwfyAAftiDrGopRRArEYmSHDP5lYnhfp20gQDIodqVgJ36+Zx8zxb///e+5BMO5ZVk//p2FGJkCEtbUZSeQrqEYRaRALEZ2ZmAn/fA3q9/0NZPqayB5tv6Kd99gnVumovD/WYiRbDG8VxezRsUoIgViMQLTN+JMg6kc/O0C4u0OFhJ/++23877ScO6Q482bN/PzSibHbdMWY5wthuha1qgYRaRAWYwBbi/vwcjuDWQjnd+Nv0fBYugszBBvPUU/KnKKM7dZiTHOFkN0LWtUjCJSoE6MAdbXPH78eKHiI4tcXl7OB7MoyfnHH/7wh7xptJyp0UfMVlP3798fnr1tZiHGqmwxRJeyRsUoIgWaxBj49NNP80q3vHM8QSZJRUiFXVWRG/sLBtLQTIrUwgCpEPxI4YcLu2fstg7qLMRYlS2G6FLWqBhFpMC4YoxhtRyWFosH6oRg9CPZJBkN2zmZUU4WYa/IN954I1tZWSn0GYYIGfva2lr24MGD4VnZnVmI8fz58/nrxduVIW5uIyhbXUAxikiBvYgxhpGsly5dyrOWuoW6yTIZ4YosmR7BQJ6+Lj83STBf9N13381ef/31XILMp6w7hvwIYXQpO6EwQGpSZiHGAK0J4XPSL901FKOIFNivGGMePXqUZ5MXLlzI5wmGHR3qguyCZthTp07lFfdbb72Vi6IvCwwwUvTDDz/MM2fkR5bNDwSywKbdPljCjXmW7IaBePaLYqxHMYpIgWmKsQoqTbIcKmZkyco64f12C8RBlkRFi0yo0Onj/OEPf5iPjGVdV5Z5Y57lvESK6D755JPs/fffz9+bz4Hw+G5kcwiez4vUqvpiq4IfD2SKSPDy5cvZ3bt395QRNqEY61GMIlJg1mKsY3NzMx/xSj8Zwjt58mQuiHjawV4DocbByEkq7Kbg/cvPbcp6m4L+QN6fPkHkSTbNQBkEOG7/4DRQjPUoRhEpsCgx7gYZ08bGRra+vp6PfEQmyJNKneyRHemRVljmbBFBRkj2iwiQOtJDPm+++WZ2/fr1/LhOowl0WijGehSjiBRooxgngSkKVMxkYHyXOMjMEGscSBZJxIHMyo8jmy2/HlnuPLO8aaIY61GMIlKACr/LYpTxUIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPJFpIBiTAPFWI8lX0QKKMY0UIz1WPLnAKvvU1DK8cEHH+SV0CRR9ToEOwqITAPKmWLsP4qxHkv+BLAn3EcffZRvP8M2NGxNQ+EK+8K98soreSFgt+5pbGi6l2BPON6bz0HwuVZWVvLPef78+fxzszfce++9lxdekTKKMQ0UYz2W/Aj2VqNSQB5IhI1G2QQV0c1CcmyqGnYFHzeqXme/weuy0Subq549eza7dOlSduPGjbnvKC7tQDGmgWKsJ8mSTxMmWROZHlnekSNHsqeeemp0IpsCkVRlZGx4ilTZDJXKBbFQQB4+fDh859lx7969/L1435DRrq2t1Wa0hw4dqvxuVcFjESc/FJAmrz+P7ySLQTGmgWKsp/cl//79+3n2s7q6mlfuZGnhhFXFs88+mx09+mL2f/+zfdv/vvr/2Z07d3L59IlHjx7lWXIQKRcKkl9eXs5eeOGFxmN1+PDhXLYXL17Mj4/9nP1AMaaBYqyndyWfpr9r167lJ5vKPZyccoRK/dy5c3n2uLGxkYsi5/Zqtnp78N/U4YcF4rx8+XJ25syZvJDXNSsfOHAgv58Ljj5MRdlNFGMaKMZ6elHyyXo4yceOHRudjDgYkBIym3GaAW+vrWUfD/8v1XDMaTKmT5JMHCmWjzsZJ8edHyoMXJJuoBjTQDHW09mST0VLFkOlHE5ACPoA6Q8jE+QETcTHa9nS8HWW1ir0uJVNjt5rKQj042xtafD426vD+/KU83a2uttr9QiyQ/pU6YNkwFK5GZa/T506lVe60m4UYxooxno6V/I54DTplZvzyBbJCJlOMR2GUhvJb4tcmqtb98Dgfvw3kuHw78HjlrKlpeFjkWn8OglAs/T6+nreZ1ke6MNgJ37U2NTaThRjGijGejpT8qlomUIRN9nRRMptNOvNhkEmGPobP17bkl1l5redMQ5AmkvZ9p9kmUGo6YEAb968mTerxqN/6QOmaVvahWJMA8VYTydKPqNBmWIQDjT/p39rHhlHLEMyw1mKMQwcYgQtwifj6hucS6aPxE2tDICS9qAY00Ax1tP6kk82yBQKDjBNcszNmyeIMc4YB32HZfYvRkQfmofJqp588sn8/9/4xjfykaF9A0GyoEC4eOh/lHagGNNAMdbT6pJPRnj06NH84NLsNr3+w3HZEtyOPsZIeFv3r+V/7E+MzAFEhEGGcSBJBhj1FZbVC82rZMuyeBRjGijGelpd8sMFSrPb7PoRi+RZ4fCEVsosl1zx/uLgG6QY/t6S4+3tUa51A3CQ/9NPPz16japghG1fCRcoTeSyeBRjGijGelpd8lliLRzclIOMipG4fYW+1fBdy3NM4+PQxugjijENFGM9rS35NJt++9vfHh3c1OP48ePDI9M/QkXMiGOaVmPKx6Ft0UcUYxooxnpaXfK/+93vjg4uJ7Gv0FT8xBNPjL5rOcgYWWGmj5AhhhHHNCezNN8sYAATg5v6OJBp2ijGNFCM9bS65DP45sUXXxwdYE5gH5cWY37f5z73udH3rAoG6PQNvlPYSuvxxx/Pfv3rXw/vmT5MgeF9+Fd2RzGmgWKsp/UlHxE+//zzo4PM1A1GL/Zp1RT62L7whS/UDsDpW/8iWRsXY/h+SPFHP/rR8N7pw/uFhSH416xxdxRjGijGejpR8hHHl770pdGBJtgdg3U5RztidBzm9X3rW98qfMdnnnkmXzqtL9BMykVYXnCcxQxmScgWQ5g17o5iTAPFWE9nSj4HmqyKA02GEQ56WJyaVWL6kEXS58aWTUikD98H4fMDJsxHLQer4MySOFsMYda4O4oxDRRjPZ0q+ey8H5YSo2/qi1/84ujgEwyuOHHiRD6ycV7zHqUIGTwVK8KrkuHXvva10UIGs7ggy5SzxRBmjfUoxjRQjPV0ruSTTYWVUr7zne9kv/3tbyt3cCDoj2TZMUSJVGX6kOGSrbPeKRdAOTsjGHVKcymLFIQfNmxNNeuMuCpbDGHWWI9iTAPFWE8nSz7rioaDHgamUMkiTTKVup37qZTJYngOfXeMimzatFi2YW7pjRs3csmRmdPPW3WckQ7zLjnGXCDhueHHC1uEzWN0cV22GMKssRrFmAaKsZ7Olnz6rcKBZ4WcMpwYMhQ2LI535qgKKmxOHsLktRj1SuUQKvVU4EcCmTUZIFk2WSBTSdg/sS7zIvjBgQgRJsetPCCKzCxMy+BHyyIytfBZ+RyyO4oxDRRjPZ0u+Ux6Dwf/6tWrw1urIUMhoySLQZZkjqFZrynY95EsB0nwnkiZ96MC4TUpBAwyaSNIis9HxsbnZV9EPjsS4zggNMRX3vi5LhALzaBk5mTuTQu7c9x5fZ5L0/ai+n7jzy+7oxjTQDHW0/mSz4hUDj79jlT6k0L2QoaEMMkYqfTJMMcVRTnIrKh8kQEFgiZHCl4ICmMcCApRNQUZXPm5SDp+7eXl5fw9eX9kXvX5xgmez44eHFuyRjJvRslO2vxJ8zavw2vyI2RWq9qMQ/zdZHcUYxpQh3COqTumzW5ijDddyDdaqNpZYcF0vuRT+SIEDjKV7zRXiEEENC0iXMREloQsqOypYMM+kV0JfjzwuWnOJFNk0BJinlXTMRl2eN9F79QfjoFibEYxpsEixDjYvSjatSjfrah9cuxFyUdgYWoAsmpq3ps2obkSiVKpMECFLI8mVwofmWic2YVAHBSaSaLqdQgyO96LjZx5bz5HkN0imnnjgS9t2DIrfBbF2IxiTINFiDHPFgubvZf2rm0JvSn5NImG0aiMlnQo/uK4ePHi6KLgx0EbCJ9HMTajGNNgcRkj+9YObyBjLIhyi3xD+MFzy9nkdsY52Bw+f8xwn9t4L93yS05Kr0o+mWJo3qSfcNI+Mdk/NMuOCmeLpkOEz6QYm1GMabAIMUKhj7FSitsyHDx254bwI2EOJbq0tJQtDZ8UP2ev9K7k3717dzTalBPSh2XVugKDmMLiCyys0CbCBaUYm1GMabAoMW6pK1sd3lcW2I6m1pIod/RRDl8rSDEn77dUjDtocwXdV9r+gyRcpIqxGcWYBgsRYy66obRCk+mwKXTrhrx5tCC5Eopxn7S1Sa+PdKEJO5QFxdiMYkyD+YuxSnwDsQ2SxArJlVCMU6CNg0D6RlcGPYVyoBibUYxpMH8xVouP5tNwW96UOsogh2xllqvD+xXjlGjbtIE+sehpMpMQyoBibEYxpsEimlIHA2OikaalPsSB1Iqi+3htdQ99jNFr7oHel3z6uuKJ5lz0sn84riwSwHGlb5Gl8dpMuEgVYzOKMQ0WNfhmIMcQFQIbyjFEIZsc3b4lx9BHGWL19lCc4ba9yzGJkk8l3palyfrCfpfimzfhYlGMzSjGNFiUGLtAMiWfZr82LGbdByZZvL0thM+rGJtRjGmgGOtJquQzMCQsrr2o7Y+6TrzdF+usdoXwmRVjM4oxDRRjPcmVfAaIhA1zaV51dZzxYZupMD80bBDdFcJFqhibUYxpoBjrSbLkM1AkTEZnmylXx2mGYxakyGCmrh2zcJEqxmYUYxooxnqSLfnsgBEq+lkUjD7BriHhhwRZdnmH/i4QLlLF2IxiTAPFWE/SJZ89FsPJY69F2QkFPKxqQ7/sw4cPh/d0i3CeFWMzijENFGM9yZf8UDgIdvGXbR48eDBa1QY5dnmwUjjHirEZxZgGirEeS/4Wp0+fzk8gTasMMJHB9JYw9/PgwYOtXtVmHMJFqhibUYxpoBjrseRvEa+Oc+DAgdav4jJrOB4nTpzIj0cXVrUZh3CRKsZmFGMaKMZ6LPlD4gwJGXQ9Q9oPKysr+XHoUwYdLtJ6MTZveZMKijENFGM9lvyIPvWp7ZW+9rmG71QnxrDGomJUjKmgGOux5Je4d+9eL0Zh7oV4lO65c+eGt/aD8L0qxciixaurjXvBpYJiTAPFWI8lvwKaUeN5eymsjhOvakNTat8IF+lOMbJtDdvYVO8VN7h/8FxisKHqkGh7m+2V/4db4kQ7BHRNtooxDRRjPZb8Grq+0sskpLASULhIy2K8vRq2pqkS4+C2IMNBc+vg8cXtbUo7kC9t3Td8UvycrqAY00Ax1mPJ34Uurw06LqmsHRsu0oIYt7K6bRHuFGMutcJu4kVRxhnjgMEAniDFnPJGrB1AMaaBYqzHkt9AV3eTGIeUdhsJ53BbjFuSiwVWIca8ebTwmBKKUTqMYqzHkj8GLBcXTvLa2trw1m5DZhiPwKUg95lw/oIYy02hxaCfsEJyZRSjdBjFWI8lf0y6tmP9btCHGM/Z3NjYGN7TX8JFunPwTaCmKTUMphkRZZqKUTqMYqzHkj8myOT48eP5ie7yajB8j7DKD5KnEkyBcJFOIsaB1Eqi25Lh6M+xxVgazdpyFGMaKMZ6LPkTQPPjsWPH8pNN82MXV8dZXaUyHxTYlNaFDd95IjFCkGOIoeGKTbHIcfD80W0M2snFuX1bV+SoGNNAMdZjyZ8QBqiEvjkq2S4NWLlw4cKosDKoKCXC964XowQUYxooxnos+Xtgc3NztDrOkSNHOjHF4erVq6OCevbs2eGt6RC+u2JsRjGmgWKsx5K/R+7evTuaFM+Jb/Ok+PX19dF8zJMnTw5vTYtwkSrGZhRjGijGeiz5++Cdd94prI7TRu7cuTMS+PLyci9XtRmHcJEqxmYUYxooxnos+fvk+vXrowLAwJY2weCg0OR79OjRJNZ8rSOcI8XYjGJMA8VYjyV/Cly8eHFUCPh/G2BQ0OHDh/PPxL99XtVmHML5UYzNKMY0UIz1WPKnRDwNgixykZAZkiHyWbo6rWTahHOjGJtRjGmgGOux5E+ReOI8/Y+LgD5E+hL5HPQt0scoinESFGMaKMZ6LPlTBClRCCgMSImRq/OGUae8P3JmNKoMCBepYmxGMaaBYqzHkj9laMZkbiMFgmZM5jzOC+YnhsLIvEXZJhwXxdiMYkwDxViPJX8GMNCFCphCMa/tnOLtsVjhRoqEY6MYm1GMaaAY67Hkz4h4qgTrq85yqgRrnoZC2LYpI20hHB/F2IxiTINZiDF0JdVFV1qyLPkzhB04wuR6duaYxeR6KrF4kYFUJ/A3ES5MxdiMYkyDWYgxLjvlYNpYV+onS/6MuXHjxkhc7Ok4TdhHMYiX/RUfPXo0vEfKhItTMTajGNNgVk2pdVljl8Y9WPLnALv+h8Lx2muvDW/dH7Thh6Za+jFTXtVmHMLxV4zNKMY0mJUYq7LGLmWLYMmfE+fPnx8Vkv1u+cRgnrD11XPPPZf8qjbjEI69YmxGMabBLAfflLPGro2St+TPkTNnzuSFhKbVvW4STGZIsymvc+jQIVe1GZNwgSrGZhRjGsxSjHEZ6lq2CJb8OULhiFfHYXDOJPD8l19+OX8+fYuTPj9lwkWqGJtRjGkwSzFCyBq7OKfakj9n4owPuU2S8a2srOTP20/GmRKsWcvFHyoA4uDBg6PbFr2mbVtRjGkwazFSjrqYLYIlfwE8fPhw1EfIAJp79+4N76nn3Llzo8rqzTffHN4qu8GI4HDMqoL7ZSesrxuOkfSXOjGGc9/WmAeW/AXBgJl4VOmDBw+G9+zk8uXLo0JBYZbxeemll0bHLg5ul2qY9hOmGDH6WfpJaIFiKcmY+DppY8wDxbhAaEaN5yFWTbmgyTRUUhRkmYy6rNFscXdCcz8DxqR/0EoV6h6vhZ0oxgXDAJoDBw7kBbS8ck28cs6JEyc62VbfBspZo9liM2ybFo6X/dn9Ih7nwL6t1is7UYwtIM4KT58+nd9GNslAEW6ryyZlPMpZo7+QxyNsvk3ZpDlfug+ZYjz4bxFb43UBxdgS4n5EKqRx+x9lPELWaLY4GUGOBMPv57mNmkwXpk2EH9tI0ele9SjGFsFycaESIpCjgx+mQ8gazRYnhx9tobmf7JFRjAqyO1Dm4+4Edvvx/O2OYmwZVDoUXn7RffDBB8Nb0yVczG2NVKBpP17mC0GePHnSrKOlMCWMHzRhWhhBtnjx4kX7FMdAMbYMCi1ytMIZEC7qtkZqMGk79FGFOHLkSL4WsFnIYmGaDdkhu/iEQXsE2T5N4shSxkMxisjEsAgAGWNoYg1Bkx2LUSBQM5PZw3xo+g7LMiRY/pAM0TEKk6MYRWTPUDGzW0w5iySoqFnbl/sZ/ago9w+SIyskAyRTLx9zNhZgvjPTbTzee0cxishUYCoA/VrIsJy9ENy2vLycDzJjnVr60K2860GCZN78sKB7Je4vjIPbmealDKeHYhSRqUMFTT85SxgiwypREgziIfNhcQuEyabeyGCc9YP7AP2C/EAgC6TZE8FxvMJ0rapgYW5ESROqo9Zng2IUkZmDKDc2NkbZD32RYVGLuqD/Emmy6hPrebJ4PlkR/ZsIoQuLXiB4RvQiexbyuHDhQt7UyQhfNhmv+t5x0DRKBs73R572F84HxSgiCyHIkmZVBuwwgIQ5dsigShJ1wSATBIpsGBCEeMhUkTBZVRw3b97MJRUH4kK0cSDf8uOuXbu24/V4H6SF7I8fP573tfJ5wkT6cYIfCGSBPJ+1afncfE4luDgUo4i0DqYWIM04y6KJEelMKs5FB+Ljc5Mlx9nv+vq6U1xaimIUkU7CiFjEQjZHMyMZHPMp6askg6MJkiwyDjJLJBVHecoJQR9f+XFkg+XXI8ulX5DMkYFHfAY+D6NwyTzpQ5TuoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFREQiFKOIiEiEYhQREYlQjCIiIhGKUUREJEIxioiIRChGERGRCMUoIiISoRhFRERGZNl/Aa6iJ1Ehy53KAAAAAElFTkSuQmCC
|
The height of the cylindrical water storage container is as shown in the figure. Its height is equivalent to ( ) meters.
|
A. 0.8; B. 0.08; C. 16; D. 8; E. No correct answer
|
B
|
7
|
iVBORw0KGgoAAAANSUhEUgAAAcYAAADVCAYAAADNV1CoAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxvSURBVHhe7Z1diB1nGYBTWyXVigWLP5ALoQF7kYuiAQNbIYUgQYLkohcpBBHJRWhzsUguchEIWDBgwEIDBrLQShcMKDTQggFDVmjBgAEDrVhwQyMKFgwYMNCAguM+35nv7Hdm5+ye/TlzZuZ7Hnib7jlnz87M2X2feb/fXYWIiIgMUYwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIiIJilFERCRBMYqIiCQoRhERkQTFKCIikqAYRUREEhSjiIhIgmIUERFJUIwiIis8fPiwuHv3bnH79u3id7/7XbG4uFhcunSpOHfuXHHq1KniBz/4wUgcPny4OHjw4Eg888wzxde+9rWReO6559a87vjx42vej59z4cKF4o033iiuXbtWvPfee+F47t27Vx6hNIViFJHeg1xu3rwZZIeAEBOCevbZZ4O8HnvssWLXrl2tjq985SvF3r17w3EfPXq0OH36dBA3El1eXi7PVHYCxSgivQD5UekhizNnzhQvvPBCEN8TTzxRK5px8eSTTw4rPapCqjkkhFDTeO2114rXX399JH7zm98US0tLI/Hmm2+ueV31vc6ePRt+DsJDfAgQEdYd37hA7nwfx0yF++qrrxbvvPOO0twCilFEOsfHH39cXL16NQjlyJEjxZ49e2plkQbC279/f3Hs2LHwfQjqV7/6VZDXn//85+Jvf/tb8b///W9msXx5bvV45y4Xy+Xj//znP4uPPvooHOfbb78djvsnP/lJceLEiSDvSc6dmwNeizAXFhaKDz74oLySUodiFJHWQ9VDJUhVRVVUl/wJ5HfgwIHQVPrjH/84VGu///3vg1yqImpX3Cjm52/UPD5ZfPLJJ8X7779fvPXWW8VPf/rT4uTJk8WhQ4fWlSbXipuK8+fPh2bm//73v+XVFsUoIq3jwYMHxZUrV0JVRLNmXWJnoAuiRARUUv/4xz9qpdGJuHG5uLxc8/gOxL///e9wc/Dzn/98Rb7zoXLcvXv3mutJVUlT7sWLF4u///3v5SeRJ4pRRFoBMmRwDMm5LnFTCdLXR1XU/gpwM7FcXJ4rzzNpQl2NlWpyeB3mhgINTa+8/sZ8+dx8cWPl8Rvz673XIKgw33333dAkS59kXT8sAqWfMkdJKkYRmSkffvhh6PuiaS9NzE899VSoGH/5y18W//rXv2oTfN9iILVV+UVpzt9InqfJdSjD8uvydXNzc+VrkWn6PusHoqQPk0FLDFhKPweCJldGv+aCYhSRmcB8QRJumoCjDH/7298W//nPf2qTeN8jVIKxv3H58ors6iu/YcVYfo005y4vl88Pqswo1M3GX/7ylzBAqdqfy9fMs+x7f6RiFJFGoWmO5tI04dJMymhLKpe6RJ1VpDKkMpyBGNOgf5K+3LR5G0EyFaSvKEYRaQyqjbTJlP6tP/7xj7UJOdtAjGnFWPYdVl/XlBhj0JxNU2sqSIR5//798tPtD4pRRBqBEZExoTKilD6tugTc1aDp92c/+1nxrW99q3j88cdDVUWz8GbnR96YX9vHuCq8lecvD2TYtBhjMPqXxRPSz5J5pX1CMYrI1GFwTUykjCztW5MpUyK++c1vFo888sjwPIlHH320+PznP1/84Q9/qP2+EKEqXP2etTIbSG7k+crgmzAop/x67vKN1VGumxiAs9lgcQT6hPk5yLFPa7oqRhGZKqxQE5M2FVVdku16vPTSS8WnPvWp4XmmweNPP/10L/tPWTEoLl1HddwXFKOITBWqCRInTal1ybXrgfBSEY4LKqy67+960CQez5GpN31AMYrI1KB5LSbNfk3KXw2aSeM55h6smtMHFKOITA32FCRh0hdVJ5U+hGJcjb40pypGEZkabAMVkyb9UXVi6Xrk3pRKsGsJ58j0jT6gGEVkaqRiZFJ/XVLtQ/zoRz9aMyI1BiNT+zr4hrh8+fLwXBWjiMgGpGIk+jwA5/nnnx85V4LNg7/85S+vP12jw0EVzDnG81WMIiIbEMWYJk8mh/d1IA5bO7Gaz1e/+tWwGDdzNvu4ADqLGbDdV/xc47+KUURkA6IY2VOREYsxgTIYh7VRc10ovMvBEn6sbcvnSHCjw8bQilFEZAJSMQI7asR5jQTLprl4eDeC5uB08XfWTGW/RkCIPKYYRUQ2oCpGePjwYXHu3LmRxcRZPYVtjjq9C38PgxsWblziqNMYCDKdzK8YRUQmpE6MEXZlqAqSYOd4lo7b7OLbxs4EMnzrrbdC82i6sz/N4DSbUvVXUYwiIhOynhgjVJALCwu1O8dTqbDVEcuO2dw6vWCOKTcjDBxKt5UiqOb5DNhHcxyKUURkQiYRYwrVSN3O8QTVC4mbKpMd/tnRoi7JGxsHA2hee+214tixY8NFwNNgcBSr2Fy/fn2i3foVo4jIhGxWjCn0YTGSlf6stEkvBk17VJkkd6YOvP322za/VoKpIuzAjwTZ+uvgwYNrmq7jtWSkKTcdfGaTyDBFMYqITMh2xJhCor5582YYBYko66qcGDQF7tu3L7yOeYTMLaTC/Oijj2rl0fVgTijye/PNN0O1Td8gkot7JdYF1whJ0kR67dq14sGDB+WV3hqKUURkQnZKjHXcvXu3+PWvfx1kcOTIkWLPnj0jyb8uqIyYLsLraSqkQqJvjZGXyBPBINBZN9Myv5PjoMmT/lWkh+A5Xio/qmT6X+uqv2rwGgY08X2XLl0qbt26temKcCMUo4jIhExTjHWwzRWJ/8qVK8Urr7wS5IcU1qsw1wuOm+qT6oo4dOhQSP5pnDx5Mghro2A5vOr3Iuj43oiOn1cd/DJJID+alRk1ShXIYCb6B9cbMLOTcC4cB//2AcUoIlOjaTGuB6NfP/jgg+Lq1avFhQsXgkBSOXGM6zU/ziKQJMeFNDlGjpfKD9EuLi6G5mVuBmaNYhQRmZA2iXEzfPzxx8Xy8nI4fkT6xhtvhKASq1aCUbAbRRRaGvSZxvdGdPw8RubSTLzTzZ3ThPNTjCIiE9BVMcrmUIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwiIhOiGPNAMYqITIhizAPFKCIyIYoxDxSjiMiEKMY8UIwyNdgWh1X1q9HUnmoiO41izAPFKAG2hEFa7O/GHz87ibN1DJujsp0MvyDsss0eamwgSmKIMcmu25MGu5an782mrHEz1bjNzcWLF8OxXbt2LRwrx822OiLTRjHmgWLMBOTx3nvvhZ3A2dSU3bePHj0aNgzd6m7gbYvHHnssJKy4AerZs2eLS5cuFe+8807YE+7+/fvl1RDZGooxDxRjj6BqooqioqK6otKiAkvlMUnwR793794gmMOHD4dfjlitIVWqNTY7JUmkQbUZm0tjPHjwoDy6VTjO6uvYubv6fmx0ys/i5yI5juP48ePhuA4cOBCOc7M7lD/xxBPFvn37ihdeeCG8JzcKSJNmX5GN4PeS3yPF2G8UY0dhN27Ecfr06SCvSQTBa2gGPXLkSHHy5Mni/Pnzw122kVOXoRpEzNwYsCt5FCkSRfJUk3XXJA2ESXMx8r9+/Xqt1CVvFGMeKMaOgAhfffXVUOms1/SJ/OiXQ3y8HlF8+OGHK0n+/WJhbvV1cwt3ynfOByrVW7duhSoRcXItkeE4afI4NxI0O1MhK0pRjHmgGFsMf4RUhFQ8acKO8cwzz4TkToVDP9q9e/fK76xhab6YXyr/X0Zg4BHNqVTPSJAmaJpcq9d79+7d4TluOBxZmyeKMQ8UY8ugr43kXNc3iAipBKl4NjsKc2lhocivRtw6UZZIkEFKdSNvqcx53hGx+aAY80AxtgCSMNMjGFCSJl6qFj4YBqBsK/neWSjmyvesbUJdqSaHP3cuCvROaHrl9Uvz5XOh5Fwq5td7rx7DTQvTVxDi8HqtBJXkiRMnQh+n9BvFmAeKccbQB0glGJMs/VpUKIhy50dKllIbym+FIM35lWdg8Dz+G8qw/Hrwurlibq58LTJN3ycz6PNFktVmbv6QrCD7i2LMA8U4IxjIwQjImFCpOmhCnf7o0EElGPsb7yysyK628lutGAcgzbli9UuqzCjU9UEiNP9yE9DHuYQMzEmrSCp9zlf6h2LMA8U4A5ADox1jImVuXpNVRipDKsNpiRHJf/vb3x6eJ/Hoo4+GeYk0H/cNBJlWkPQ/Sr9QjHmgGGdArBSpLBhN2jSIMa0YB32HVbYnRkZtfuELXyg+85nPhHNN45FHHil++MMflq/sF7QExD8qmsXpl5T+oBjzQDE2DPPoYtJkibbmWRHcmj7GRHgrzy+EL7YnRvpJaR7mXMcFSaav0ArAObLAgPQHxZgHirFhWG2GC87qM00RqsKVnzmIGpkFyY0+Pzr4BinGr1fkuLQ6yrVuAA7NpBtJkRsD5mj2FZqROU+ug8vN9QfFmAeKsUEYhPLiiy8O5ZB7NHlz0DRM3eAcP/3pTxevv/56+eiA6nVoW8h4FGMeKMYGoZL6xje+MZKEcg0qRkbh9hE+Z9avjefK1JuU9Dq0MWQ8ijEPFGPDMDjji1/8YrjoyIHJ+32EvjWqpZhs64JRnH2DEcepFKfZXMyoV36Go1+bQzHmgWKcAX/961+Lxx9/fJg8aVKkmbVPsHA5I1KRfzzPGEzZ+O53v1u+sj9wk5Mu8P69732vfGbnod8y/iz+tR+zGRRjHijGGfGnP/2p+NznPjdMogzSYBpHn4b3cy5PP/10OD8EyTQN/v/73/9+b3aqQEhshswuHfGzJL7zne+Ur5gOsVqMYdXYDIoxDxTjDGG6xmc/+9mRBEcw+Z8dM/qwgwPiYG9DRuMikL6sJ8o5sT5q3eLizz///FQXMEirxRhWjc2gGPNAMc4Y+tlicyN/bNWmR/rqkIoLVM8WKlwWY2B3k+rOJ1/60peG1f/+/funXg1Xq8UYVo3TRzHmgWJsAew4H5Pbyy+/HESYLhkXg4RMcyuVF314Mj2QG1Uhy9dxc1Kdl8nXLGLwi1/8ovj6178eHmMx+Gkv7VdXLcawapw+ijEPFGNLYKeGmODinT/7AfI4ibluEAu79TNwh5GPTAmwqtwajCSlWZvrTvMoNyXjrjcr2jDIhk2hkWdcPBwpNXGzMq5ajGHVOF0UYx4oxhZx6tSp8GGQlKtz30jCNLsiQfZtrEvcBJUMiZ2d/al2eB8GweS+4zyVFOKiCrx48WK41kyrGFd9ETxHVYhsuElJoQ+Ra8zrWPO2qUFTHAfJOSboeJzxsepxys6iGPNAMbaINNkivvXWUiXRxyqHKqY6KnJc8AdNBcr3nDlzJkiCvjMS6vS3vJoO3DRw7FwPtnuiKRrxITVuEqj06q5FGgyiOXTo0LD63mj6DH2NfB+fE9tpzYJ47Cbp5lCMeaAYW0baPEclspnmUb6XRcqRA9JDsgizbuTkekGy5w+fLZSQKJUVvyDIhioUGdOcGAORxIolDaoohFUNpFP3eiJ9X4KmZH4mPx+ZczxUzBzfetXeuKCfluuL2DgPbgo4ps3A8cT3W1xcLB9tnngMJunm4HfUa95/FGMLoc8r7upP8t+JZlCkSVMi1Q2DfaJsqJL4WUg4JtquBteKUaFUikicypGbBCrJzcpvHOlAKd5/lsTjMEk3h2LMA8XYUhjdGCsixMVgj2lDUy4CQaAkAKopqjaaWxEpa5vyi8KAHyq3GDRXkiiqMa6iixVpXVDNpe9NlcjPPHv2bDgGjocqjeOLwmtqk+d0ak0b1nmN15PrJs2gGPNAMbYYBBWbQREGVZ/MBiQcq2qaqKc5gX9SOBaTdLMoxjxQjC0nTcg0EbYhIecGNyhxAA83KG35DDgek3SzKMY8UIwdgMEtsQmPeXbSHDTTxpVuaNJuU9XOMZmkm0Ux5oFi7Aj088VESF+bTB8kGKfBIMem+jInJf4+mKSbQzHmgWLsEAxAicmQZeFketBcGqfN0IxKc2rbiL8LJunmUIx5oBg7Bk2pfGA0rVZXx5GdASmmq9rQz9tGOD6TdLMoxjxQjB2DpM0gnLYn7S7DVAyub9tvPjhGk3SzKMY8UIwdhL6v2MzHdI42NvN1FSbtR+G0vbk6HqdJujkUYx4oxo7CQJB0dZy2DQzpIiweEGXThQFO8VhN0s2hGPNAMXYYVn1JV8dxAYCtw1J5cUoM66h2AY7VJN0sijEPFGPHYZHxuAAAzatuVLt5WOy8i4socLwm6WZRjHmgGHsAA3BitdOW5cq6Av2zseru2rJ7HLNJulkUYx4oxp7A6MmYKNlZQjaGflm21uKaNbVQ+04SP2+TdHMoxjxQjD2C/QVjsmQfQxkPlSG7gnCtqBh3YmuvpomftUm6ORRjHijGnsEO9DFhMspS1kJTM/tQco3oW9zMZtBtIn7OJunmUIx5oBh7CHsY8qHS78ieijLKsWPHhtenywskcA4m6WZRjHmgGHsIFdHhw4fDB+vqOKN0ZVWbSeA8TNLNohjzQDH2FPrQDhw4ED5c+tBcHWe0D5b/7zrxXEzSzaEY80Ax9ph0dRz+kHNeHefKlStDkdAP2wfi+YxP0neKhbldxdzCnfJr2S6KMQ8UY89J5+mxt2COq+Ncv359OM+T/te+wPmsl6TvLMyF5xXjzqEY80AxZsCtW7eGK7scPHgwqwUAbt++PTx3+l37dO6c09gkvTRf7JqfL+ZXnleMO4dizAPFmAlp1cTqODmwvLw8rJb379/fu2qZ86pP0ksrQpxf+S//1olx8Hj8/vml8mFAqLvmCr5laT6+hveKzw0ey1W2ijEPFGNGpP1sjM7sM2n/Kv/2sX81fpbVJL00PxBbFOCoxAaPRRkOmlsHr49NrzEGrynfY27lufKb0u/JDcWYB4oxMy5cuDBMfPx/H8llRG78HEeS9EpVtyrCtWIMUptbKFYfGRVlWjEOGAzgiVIM3Fko5hRj+Yj0EcWYIXEuH7G4uFg+2g+qczjpX+0r8TNcTdIrkksFViPG0Dw68poKinFdFGMeKMZMoZ+RD55+R/of+0L8hea82GOxz3CeaZKuNoWOBv2ENZKrohjXRTHmgWLMFCorRqjy4felsjpz5kw4H6JvlXAd8VzHJ+kxTalxMM2QpNJUjOuiGPNAMWZMdYeJLvfFpava9LXvtEo8382IcSC1iuhWZDj8cmIxVkazZoJizAPFmDnVPQm7OHqTNU/jVJS+j7ZN4XzXT9I1YoQoxxil4UabYpHj4PuHjzFoJ4hz9bHc5KgY80AxysjqOF2b78cC6bnNz4xwzibpZlGMeaAYJYBg4gox7FXYhRVi2EcxHvNzzz2X1Yo+wHmbpJtFMeaBYpQh7N0Yq6+2rynKjvu5rwHLuZukm0Ux5oFilBHY9T8m3LbuQnHv3j13DVkhfk4m6eZQjHmgGGUN58+fHybdtu1bSGVIsynH9tRTT2W9z2T8jEzSzaEY80AxSi2nTp0aJt627HRPH+LRo0fDMdG3SL9ozsTPxyTdHIoxDxSj1IKE0tVxSAiz5sSJE8PjuXr1avlovnAtTNLNohjzQDHKWB4+fDhstqRCYxTorDh37txQBAsLC+WjeROvh0m6ORRjHihGWRf69OJAF0aB3r17t3ymOS5dujSUAIKUAfGamKSbQzHmgWKUDWHU5549e8IvStOr46Sr2pw8ebJ8VIBrYpJuFsWYB4pRJoLRn4wC5ZeF5tUm5g2miw7Q35nbBP6N4LqYpJtFMeaBYpSJSUV15MiRqYoKET/55JPhZzUl4q7BtTFJN4tizAPFKJsibdpklOg0qDbdMqFf1sL1MUk3i2LMA8UomyYdDHP27Nny0Z2hOtiHpd+knvgZmKSbQzHmgWKULZFOn7h48WL56PaoTg/JeVWbSYjX3yTdHIoxDxSjbBlGifLLQ9PqdlfHqS4okPuqNpPAtTJJN4tizAPFKFsmXaJt9+7d25JZXIJuJySbC1wvk3SzKMY8UIyyLdJFvbfa/PnKK68Mk3zbFi1vM/GamaSbQzHmgWKUbZNuA8WAmc0sAJBuc3XmzJnyURnHtWvXwjVLrxvzS+Nj169fL18p00Ax5oFilB0h3TgYSd6/f798Zjzpxsh9+QWcNqkQ64LnZXooxjxQjLJj0IwaFwDYaFJ+uljA4cOHXdVmQrhOe/fuDdetGjzudZwuy8vL4VrTp84oaukncSBgX9ZmVowzBuGRNPilGreMGwKN1eWBAwdc1WaTjKsarRabIa7I5C4v/YTWr/gZ03XRBxRjC1hv4W/6H2mG4rmmFyTvC3VVo9Vic7CoBdecvl3n2vaLdDDhs88+25u/KcXYEhhdGpM2o06BXzp+2XiMipFmKdka1arRarE5aEKNNyb8Ht++fbt8RroM4yKiFPs2l1oxtghGmcbEzTJyBw8eDP9P3+KtW7fKV8lWSKtGq8XmoaUjjsQmidIX5WfQXRgIGNdn7uNcasXYMuLorhj80jmlYGeIVaPV4mxAjvFmj+AGhc9CQXYHqv24SAlB8ziS7BuKsWWQJNiiKv7iXblypXxGtgvX1hG9s4e1guOAMwJB0pUwyZQlmQ3IL81LBIMF+7qTj2JsIbFD21VtBqR/jG0M2TxUj/Pz8yOCpMuAwWe0kHjzMnsY08B4hzj4LwZVP/NT+4x/1S3FxLBK+kfZxpCtw1B/+tbjdKQYNNGxfynD/53/2ByMZaD/Nw76i8ENDN08N2/eLF/Zb/yrFpGZw40gAzjov0qryJiUaQKnCdYRrTsLNyZ01yC96s0JQcsV1z23Zm7FKCKtgq6ExcXF4tixY8OJ42nQ5Hro0KFQaV69erW4e/du+Z2yHsiNJlC6aOgfjKNK02CwH02lvCbnTc8Vo4i0FipJmu9o3mPVp2o1GQOBktDpt2SqE02w9JHl2CVB/y1zCrm5YHEFqvBqP2EaTKOhb5cBNq6qNUAxikhnoL+RpH/+/PmQ8Ouqnmow6pUKk+TP99FkS19aVysiRoKyghAio5mTmwGuxb59+8beOMSg2qZ59PTp06Ha7uuo0u2iGEWk05DcGcl64cKF0FdG4q/rLxsXVJtUVHwffZm8B+KgSmWeJSKlCZJAyjTdpjHpMo00ZVa/F0HH90Z0/DzkTaXHcSA8KmHkvtlzYgANTaa8F+fgylmToxhFpJdQXdZVVggj7lTT5RhXCVsFbh/FKCJZQn8aVRtVYNzQGsEwqIdqjeqRKpJqsgmR8nOQNhXi8ePHi1OnToWqlV1JYtWK6CetUGXrKEYRkS2AoKpNowwUik2jMWjCrL7OecrtRjGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiCYpRREQkQTGKiIgkKEYREZEExSgiIpKgGEVERBIUo4iISIJiFBERSVCMIiIiQ4ri/x0yBQtysrruAAAAAElFTkSuQmCC
|
As shown in the figure, there is a cylindrical water storage container. Mike wants to fill it with water. He uses a conical water container, filling it completely with water each time and then pouring it all into the cylindrical container. After pouring water 6 times, the cylindrical container is just full. What is the height of the cylinder? ( ) m
|
A. 0.8; B. 0.08; C. 16; D. 8; E. No correct answer
|
B
|
8
|
iVBORw0KGgoAAAANSUhEUgAAAVcAAAEUCAYAAACf/XXaAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACAxSURBVHhe7d1baBxXmgfwHhioeUiz85CGAVsQ0IACtmAExhgUcBqCL4wYJNZkMsHCZpVZHGEv/RCtbRywwDZmthccjZYIphkF1jIW8RItNGNFDpFRkvEFzdrWOBohR1hgy/iGPMh+aOh5+La+qnNaJam7urq7Lqeq/j84xKruljrqqr9OnfrqnAQBAIDrEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK5RtnSbJiYmamy3aUm83Kpw/wZNTP2NlsXXAGAP4Rpl31+io0d7qWtLkhKJhNla/1nfdnRjO7CLNiX5ORmaFC8vWRimtMaPJen4n8U2ALCFcI2D4jU6kRLhmtkQnauWr1BvamO4Lg6nzdemTtC1otgIALYQrrGwQLl2B+Gqm8n20PCi+EKY6tOM17bnFsQWAKgG4RoLzsO1OPM1TT0RXxhWKN/NvVa9R7siNgFAVQjXWHASrsv04EG59DRfi14rQG0QrrHgJFwnKVc2QCcpg14rQM0QrrFQPVyL105QZ7lwffUXuvQn9FoBaoVwjQVLuP7ydxtqW8dyR2hHEqf+AG5CuMaCJVzL1bke2EkpDeEK4CaEayw4GBaYyVIPwhXANQjXWHByQet7mlpbgwUADUC4xoKTcAUANyFcY6HGcF25R/fKzd4CAI4hXGOhlnBdpsnMv9AIwhWgIQjXWJihbIuTcC3S/PBuSnbnCfcMADQG4RplxnyuF+hMRzNpHKzcmt6lgbG1da5Gu/AJHdiZ0p+nUc9lRCtAoxCuUWbM57quprVqu0gzmFYQoGEIVwAADyBcAQA8gHAFAPAAwjWGOjs7KZPJ0OLiuiUHAMA1CNeY+fbbb82qAb39+Mc/poMHD9Lt27fFowDgFoRrzHCvlYP1F7/4hRGuMmh5+9WrV8WzAKBRCNcYuXv3rhGkP/nJT+jvf/87PX782BgeeO2110oh+9Zbb9HY2Jh4BQDUC+EaIzwEwAHKgWrFQXvy5En62c9+VgrZrVu30meffUb/+Mc/xLMAoBYI15h4+PChMQzAjf9dTqFQoHPnztHPf/7zUshu3rzZ2MaPAYBzCNeY4N4qhyX3Xqvh3ur58+eNcVkZsj/96U+N3u3z58/FswDADsI1Bvi0X46r8rhrLfL5PL399tulkOXxWpRxAVSHcI0B7nFyMHJFQL2uX79eqjTghjIuAHsI14jjsVJ5ocqNUqu5uTkjVFHGBWAP4RpxfDGKA5BLrNyEMi4AewjXCOMLU/LKv1ehhzIugPIQrhHGV/xl2HkNZVwAayFcI0yWUnEv0i8o4wIwIVwjikuoZO8xqNNzlHFBnCFcI0qGGp+WBw1lXBBHCNcI4jDjEOPTcZXGO8uVcXV0dKCMCyIJ4RpBspfI45wqKlfGtWPHDpRxQaQgXCOGe4ccVjy+qfoFJC7jOnXq1JoyrjfffBNlXBAJCNeI4dNuDinuGYYFD10MDg6uKePiwOXx4levXolnAYQLwjVC+HSbe6w8pvnDDz+IreHBvdWLFy+WLePi/zeAMEG4Rgj3VjmQ9u/fL7aE1/j4eNkyrjD+0YB4QrhGBI9fci+PgyhKJU7T09Mbyrj4jwfKuEB1CNeI4AtDHD5c2hRF3GPl8WTuwcqgRRkXqAzhGgFuTyuoMlnGJXvp3FDGBSpCuEYAX2mXIRMXKOMC1SFcQ46DxOtpBVWGMi5QFcI15Lh0Sfba4gxlXKAahGvIBTGtoOpQxgUqQLiGGIcIhwefBmOccSOUcUGQEK4hptK0gipDGRcEIfbhWrh/lT793zviK688pC8Hh2n6aVF83TjufXFI8LgiLtw4gzIu8FO4w3X2D/Rv5xfEF7Uq0OzIQTo4ME12mVd8eY9uXPiEjh7YRS0tLUbbdeAofXLhBt17yS8s0synf6A/m09ftXyNzuxqoe3HJ2mZvy4+oPyHO+n9kVn9JzdOnu5+/PHHYgs4ZVfGhfW+wC0hDtcVmsykKJE6Qddq7hAu07X+Nkr/3iboCvdp/PgOSuoHXnLHASNM5/SeD/d+5m6MUe4IP5akTc0p0hLdlF8RrzMU9femmQdu6wDNiq38cyczzZTO3jIDt058msvjh3yaiyvh9bMr4+IABmhEeMN1aYT2GgeERj2X1yRbFUWaz6VJa83STIVQLj69Qn3NHI5N9K5NT7MwO0LvNvF7aKfcmg70PA1tNw/WvSNLYpuwMkV9TRqlc/P6O6nPBx98YHzvw4cPiy3QCL4YeOnSpQ1lXHxWoOYfryc0NXiUjh61b6dzYzQxoXcKnr2se1+D+oU0XIt0s7+pdCCs7R3aK84PUbtdIBdvUr8RmAlqzc5U3SmLM1lq3RCuk5Th91WhV72c7yZNS9NwHSMafLBzjzWs0wqq7quvvtpQxsV/xNT6Xa/Qve8maCx3iNo0cQzoZ1Fbunr1M6wJPVC5XaBPertoS9J8XEvtpCMj9kNg4K5whuvKZerRUtSb0UPK2LFSdMLR2MASjXbqPVItQ5Nln24J7ZT+HEcdYh6eaKK+KfElWxymtP49NvRaJeP96zt8d77m4YGPPvrIeH/vvfee2AJe4AuGPK7Nf8T4983/5d+5amVc80Pbzf01oe+vYtsaxac0nXuXmozn6PtcOku3GhmTAsdCGa4LuXazt1q8RidSYqdxElSzA3ovU3++/tyyuSlCj79fqv+m2OiA3nvNWvds/esW27HgJ3rI889ppQGnXW5dVKcVVBn3WHkYxlrGtWfPHmXKuFb0syDzfVUIV2F5MmMJ2GGq9zIwOBe+cBWBKnuFswOtYueqHlQ3+1PGc7cPzYsta63uqAnqvVLL+VOB1lxk1nfkir1WYSbbYvycWkL87Nmzxmv44AZ/8XAMnzVYy7i2bdsWfBmXvq+Z78c+XPmsbCYrjxWNOkft909oXOjCdWm0kzSth0pDpqULW3pQnbhmM0Y6Q9kW++Cc6hNX+BMtlJ0RG+tQfPmCjCotG6Ugb8nq76y6OE0rqDI+e+A/ctYyLq42CKyMy3G46ixnZrVcp4D6hCxcZ2mgdX2IrtDlHhGKWidV/IP8ZJQ6jZ0wRZU6i5MZseNtuEDlgdJBsb6Mq7yhoSHj+dxbguBxkPJnEngZVy3hqh8r+W4f9/GYC1W4rug7UqrM6X/x2gl9u7nTtFYaG1jIUXuVncrXcJ0fou0Of1bcpxVUWeBlXDWFq/UCWIIyTl4AdQtRuC7RyF59p9g7ov9rPbNHa+w0lS4klXbCymEmx2TtereuKYW9trbSoAw+ePl9ccCCugIp46oxXI2LweL9taPr6qnQhKtZT8r1es2l21CtbZOo5+NW9mISX8E3Hq8criuXe0Rplw87Xilct1OF62slsleUy+XEFlCZr2VcDYRr5+gTsRW8EJJwFeOqrWfpun6qxadbG9rfPqNOu8H6UpjZ9EpXJikjSrvK95Bd5HBYgC9e8fvh8Tzc9x4uvpRx1RiuskrFyRkTNCYc4WoEY4oytlX91lKTcs+doj4RvnZjTQvD6dKNCb1XHFZbL9+i0Yk58YVD8qDQ+vR3Vtk777xjPC+bzYotEDb8x9+zMq6awlXWV3PrJHRcvRWCcDUnaNE6R6v3JK2lJu25dYXSq1dK7U/5eXIVcZeWlqbs9FOb8i490p9+Q/0dfTRZ410vi3qIGz+j0g0NOj6N5OfwQYmJRMLPkzKuWsLVUrao9VyuuN+BOxQP1yI9vWLeWbL997O2IWd6Sp93mTsPn/akh9ZOulIaU+29Yv+9jOkBm0UPNklbDg7Ql3cW6UXpmxXoxeId+uJMB7XtPEPX6rid0KyptZ90Zt++fcb/y7Fjx8QWiAJXy7gch+syXemVF2xbKVtp1iJwjcLh+mc6mZJF/Wbji1m/ubgoHl9r8eJvqHnd842W3ESn5WSr8nZZR4X7erB//wWd6WqjlOwNl5pGqbYuOjN+v/KUhbbEDQ02t8j+8Y9/pB/96Efrfi5aXBoPJTjxZFQuY2MXrgWaHZLDXY3NyAbOKRyueu/QesFKtGcVbn0qvny24bmyrfY4xR1eNd7Tz0H78pn8fs+q3n1VlTHHgf0tiK+//nrpQEOLX9M0zbgYZl/GVaRbZ+UFqvLhWnh0nXLvi7Mwrdm1ydqhunBc0HKVOTNWqvdKQxNW169I106kbCfP4HpJPmD4tJGvLKPFp8lw5eVoKjPnc+3t2mJM5m6+JkmbWnbRgdJ8rgdolzGRu/6Yfva268iIq8sMQXUxDFfd8iT1NTdTptarUC4w6nWb9F6GzY+WhehYLjt+ZLhy+RafKZVnzudqzttq027M0WNMlB2YeIYrW75FA7/6FQ3N+neSVHyQpw87+m0vgF2/ft04uFDXGk8yXLlx+RaEV3zDlfFEwsNH6fSEp7cL6Ir0YPI09f7HN1VngpcLD2K57HiSwcp3daEEL9ziHa5Csej1iVNR74VW/xmyrpUvZqHXGk8yXPl2Wf7vyZMnxSMQNghXhRw8eBAHVMzJcJV/aDE8FF4IV0VwyQ1OBUGGK8MQUbghXBVx6NAh40CyL8GBqLOGqyzN4t4rzxsL4YJwVQCX3HDpjX35DcSBNVwZyvLCC+GqAO6t8gHEvVeIt/XhOj4+bnzNN5Sg9xouCNeA8fgqj7PyeKunM9ZDKKwPVyYnS8cSP+GCcA0YVwbwgbN//36xBeKsXLhyqPI2DlkID4RrgLjERk7Q4skSIBA65cLVukBlPp8XW0F1CNcAcYkNHzBccgPAyoUr4wtavJ0vcEE4IFwDwr0ROSM9zycAwCqFq3V/4RItUB/CNSDoiUA5lcKV4UwnXBCuAbCOofHcrQCSXbjyGL3svWKMXn0I1wBcunTJOEBw9RfWswtXJqtLeH01UBvCNQCoW4RKqoUr6qLDA+HqMy6l4YOHhwUA1qsWrown0ebn8CxqoC6Eq89wrzjYcRKumIsiHBCuPpKzHL3xxhu4TxzKchKu7PDhw8bzMIuauhCuPsL8nFCN03CV8/9y7/X58+diK6gE4eoTzCwPTjgNV4aVK9SGcPUJl87wgXDq1CmxBWCjWsJV/sHG6hVqQrj6AEu4gFO1hCvDUJO6EK4+kKdvx44dE1sAyqs1XKenp43nY7hJPQhXj6FsBmpRa7gyWd43ODgotoAKEK4ek0u4oGQGnKgnXGWJH5aCUQvC1UM8vso9Vh5vXVxcFFsBKqsnXJm8pRo3p6gD4eohOckGblMEp+oNVywFox6Eq0devXplVAfwDj83Nye2AtirN1zZm2++abwWEwKpAeHqEUxsDPVoJFzlBOzbtm0TWyBICFcPYFJjqFcj4WqdhB1LwQQP4eqBoaEhYwfHEi5Qq0bClckzJux7wUO4ugy9B2hEo+GKsyZ1IFxddv78eWPHxrgX1KPRcGVnz541vgfG+4OFcHUZlnCBRrgRrnIpGP4+d+/eFVvBbwhXF6HWEBrlRriyjz/+2Pg+qLEODsLVRW+99ZaxQ+MuGaiXW+Eq57TAQobBQbi6BPd3gxvcCleGeS2ChXB1yTvvvGPsyJiZCBrhZrjyfBZyKRjMyOY/hKsLsIQLuMXNcGVyLmFejhv8hXB1gZwNPpvNii0A9XE7XHm8lb8fVsHwH8K1Qdh5wU1uhyuTf/yxkKG/EK4Nwgqc4CYvwhXDVsFAuDbg4cOHWDseXOVFuDJ5wRULGfoH4doAlLqA27wKV1kqyL1XlAr6A+FaJ2uRNspcwC1ehSvbsWOH8b1xk4s/EK51wu2F4AUvw1Xeno0bXfyBcK2DnBgDtxaC27wMV4aJhfyDcK0DpnQDr3gdrnJKTEwu5D2Ea40wGTF4yetwtU7mns/nxVbwAsK1RnIZjT179ogtAO7xOlwZliHyB8K1BljCBbzmR7haz76wH3sH4VoDuXQx/uKDV/wIV4al372HcK3B1q1bjR0SV1rBK36Fq3UpGFw78AbC1SEs4QJ+8CtcGc+HwT9r3759Ygu4CeHqkKwPvHjxotgC4D4/w5V7r1gKxjsIVwewhAv4xc9wZXJ+DNxp6D6EqwN8AYt3wFwuJ7YAeMPvcMUcGd5BuFYxPT1t7OyYCxP84He4MjknMWZ3cxfCtQo5izvmwQQ/BBGuPN6KeYndh3C1cffuXWNH55IV9FrBD0GEK+OKAf65WFHDPQhXG1jCBfwWVLjKpWCwFpx7EK4VyFOl1157DTsb+CaocGUdHR3Gz8Yqxu5AuFZw+PBhY0fDID/4KchwtS4Fg2GwxiFcy5DlKdxQngJ+CjJcmSw7HBwcFFugXgjXMj766CNjB/vggw/EFgB/BB2uPMcr/3zcMNM4hOs6WMIFghR0uDJ5qzcWMmwMwnUdOZnF/v37xRYA/6gQrpcuXTLeA88CB/VDuFpgCRcImgrhap0UHtNr1g/haoEJhCFoKoQrkxPDb9u2TWyBWiFcBf5rvXnzZmOH+vbbb8VWAH+pEq5YCqZxCFcBS7iAClQJVybP5HBM1AfhqrOOMY2Pj4utAP5TKVy59/r6668b74dnh4PaIFx1WMIFVKFSuDJZPYPrELVDuOpkXR+ujELQVAtX60KGPEscOBf7cOVhAN5xcEcKqEC1cGVYCqY+sQ9XeS817kYBFagYrtalYHDXonOxDlcuueIdmUuw0GsFFagYruzQoUPG++LZ4sCZWIcrlnAB1agartalYDBTnDOxDVc58zrmrgSVqBqujOfb4PfGs8ZBdbEN1/fee8/YUbCEC6hE5XDFUjC1iWW4ylMc7CSgGpXDlcmhNHRKqotluPIk2LyD4PQGVKN6uF6/ft14f3znFobT7MUuXLGEC6hM9XBlsnwRF4LtxS5cZUE0Fh4EFYUhXL/66ivjPfLFYJQwVharcOXxVV4qG8XQoKowhCvDUjDVxSpc5SQUuI0PVBWWcJWTHeG28cpiE66vXr3CBBSgvLCEK5PTdPKaW7BRbMIVS7hAGIQpXOUE85iqs7xYhKt1yQpM+gsqC1O48nDAG2+8YbzffD4vtoIUi3DN5XLGDoDlKkB1YQpXhqVgKot8uPJfVzk2hIXWQHVhC1csZFhZ5MP14sWLxgePcSEIg7CFKzt16pTxnjs6OsQWYJEPVyzhAmESxnC1LgXDk7uAKdLhKmvxtm7dKrYAeE8GZCMtbI4dO2a873379oktEOlwxRIuEARrSNbbwgZLwWwU2XDlwXXeSXEHCfitkYAMa7gyLGS4VmTDdc+ePcYHjZl7wG+NBGQjrw3a4uKi0XPlhhnnIhquWMIFghTXcGXca+X3j1nnIhqucrb0s2fPii0A/mkkIBt5rQrm5uaM98/jr8+fPxdb4yly4YolXCBocQ5XhqVgTJELV3lagjV+ICiNBGQjr1UFFjI0RSpceRCde61YwgWCFPdwZbIMMpvNii3xE6lwxRIuoIJGArKR16pElkLG+aJyZMLVWsT88OFDsRXAfwhX07Zt24z/l8HBQbElXjz/FBcv/oZaWlqqtF104Ohpyn15hx7V+UcOS7iAKhoJyEZeq5q6loIpPKI7X+bodG8XbRf5sL2rl07nvqQ7IhyWL39KFxeNfyrN80+x+PIZPV68Qxd6mko7zi9/d4Pm9J4m9zYfP56jG2M5OrIjaT6uNdOH+QdUFK93wjpxBG69g6DJ/bwejbxWRY4XMiw+penc+9SsJUhr7qDjHKaLZkYs3pmiC2c69Mc0SjVvomSihbIz4nUK8+9TXMhRu9hxMpNi2xoFmh1Kk2Y8p0l/zrLYXh0PmvP35UF0vksEDS3IJgOy3GPVWiOvVbHJ6QhtJ08qzFJuN3euNGrr/4aeVuhZFZ9+Q/1tmvH9ymeIWvwL1+IV6hU7TuVfzBKN7DWfk2gdoFmx1Y51sl40NDR1W/lpP5dotNMMTK07T1W7VMt56tZ7twjXNSYpI37Jdr+Y+aHt4sNI07CDcZXz588b6/igoaGp3fbv3y+O2lVLo53ibLWdcgtiYxULuXZKOwmHgCkXrjf7UyJcuym/IjYCQATN0kCrmQmJzlF6IrZWtZKnrNMkDpBa4bqiPydlPkfTf9lLYjMARNBMllpEJmwfmhcbnShSoVDLJe9gKBOuhUfXacAY1Nafk9xNw/Pq//IAnFmhe99N0MREbe27e9E+dVscTpvHu966I3iaGki4JrQUNVvqXDclxfbEP9G2f/+cvq90ubAC+QEBqOkJTQ0epaMHdlJKk/t6itL/qm87ur71UldbyhiHbA/Bqa8TlY5PHjuVj4XhAlWtAgnX347JGldui3Rn6gJ9UtrxNErtPE7j953fTVDpwwNQzdLIXrG/2l3AKdL8UDvCNeQCCddKv8jigzz1NJnPSWhpyjkcGpAfEIDyJs35L6peHV/Rj4W+KfFFuFU6Pp+MmlMTcuscdXw5KzSUCle2ou98KfE8recyORmJkR8QgPKchist0ddffy/+HW4Vj8/ZAWoVj2l6KETtKoty4Wq92SDRdIb+T2y2U/HDA1CNg3AtPngQqUqZysfnAuXaxbGeOkHXIpau6oXrk1HqFM9LpIfJSalw5Q8PQDEOwnUhl9OPluiwOz5XpvqoSTzePjTvrPdafED5//mOXokvVeVfIi0OU1r8EiuHqzmQb34YGnWOOvv7bffhASilarjyLeCZ2ISrccznVucU6fniPtleyi7M0sj77zu+HhMk3xJp+UpvaSy1XLgWX96j8eM7KCme06Q/yenULfYfHoBCSuHaQr3/vb629QKd6WjWgyZO4cqW6dbAbnHsm9VCF27M0bOXMkCL9PLZHF3NHaGdbe/TaEhq4D1PJGM+12azbk/+ko1fYPNqnWvLJnHzAG9v66Iz41X+eq1T/cMDUEQpXMvVufZS1xY+FuIWrqbC/auUO7LLUve+2pKbdtGRkemKM2apyPNEMuZzLdW02rRnL+u+Wig/AADlVR0WWKZ8d18sw9Wq8GI1G17UOYF+0CKRSAhXCA0HF7SeTE1RNIqwTHE9PhGuAH5yEK5Rg3ANMYQrhEaN4bp0756jG2lUhnANMYQrhEYN4Vqcz9G7/dfqvhahCoRriCFcISxW8t1if60SrsuT1NfcGoqF+KpBuIZYrR8er7t17tw58RWA18z5XMdyR2hHqcxIo7a+C+vqXLmNUe54F23h5zlcR84vQ0NDxkrLtUK4hpjTD0+GqlzQEMAfYj7XNTWt1du5r9WaYYDXweIl7E+ePFlTyCJcQ6zah7c+VOP6YQM0gsNVHju1hGxcj7dIh2ulUK30fACozBqusjkJWfncuIlkuFYLVdkAwLly4SqbXcjK58RNpMLVaajKxjsDGhqas8YBWu44srZyISsfi5tIhavTUEVDQ/O2yZDlDo/cFjeRCtfOztU1edDQ0IJrb7/9Nl29enXN8Rk3kQpXdvv2bcchu7i4iIaG5rBt3ry57HFkbdZQleRjcRO5cJWchCwAOGd3QatcqEryOXET2XCV7EIWAJwrF652oSrJ58ZN5MNVKheyAOCcNVydhKoU1+MtNuEqWUMWAJzjcK0lVCWEa4jV8+FxyAKAc/UeMwjXEIvrhwcQBgjXEEO4AqgL4RpiCNcwKNJ8Lm0ssd4el8WjwIBwDTGEq/qKM1lqFZ8TwjVeEK4hhnBV3PIkZZrMz4gbwjVe4np8IlzBY8s0mWkiLZ2mdvE5IVzjBeEaYghXdS3nu0lL9dIV7r2KzwnhGi8I1xBDuKqJl4ZOa02UmVzWv0K4xhXCNcQQrgoqzlMurVFrdkasu49wjSuEa4ghXFVTpJlsK2npHM2byaqrJVwLdP9qjo7saqaUZr4mkdxE27vO0Pj9gniOReER3fniDHVtSVIiM2luKz6l6dxBaktpxuuTW7rok2+eiqBn+s8Y11/TljLKw/j77zp+hR6sPgFcEtfjE+EKrluZ6qMmLU3DazLUYbgWZim3O0la84f0xdwLPQJ52yO6njVrZBMJOcygW7lJ/9W1hZLi+xqNw3X5GvW3aZTc1EItzSI8xWv7plb04H1A+Z4m/eskbWqxBLjemvqmSH8GuEj+buMG4QruMsquLAFY4iBcxVBCQuum/PqXr+SpW7w+keqnm2KzYWmE9srHfp2hk78+uaaHW5gdorQM0M4hGu3bSe/npump7KXqYftFd8p8PNFJo0/EdnCF+XtFuIZSXD889SxTvlujJr33uD4bnYTr0min0ctsHZgVW6yW6E+Hmo3Hk7vP09rvsPq9E7/+fDU0S4o0mTGHBxKJdvr9bJmhhZv9lBLfQ44sgDvM3zvCNZTi+uGpZmFYP3VvzdJM2XHLauE6Q9kWfjxF/Wu6pU7I1+qtQjIu5NrFfpLR30kZC7lSHS7C1V3m7x3hGkpx/fBUYpRdJdOUW72CtU6VcF0cprTxeDvZDcmWt0C5dvN7I1zVY/7eEa4AdZnMiHCrsZWCrHRavp2G5sU2xxCuoB6EK7jCvXBNUHe+1uv1CFdQD8IVXFF48ZgeP7ZrY/RbEV7b//Mvpe0v5LUlS7hpPZdty6GKMwP06ZT4woBwBfUgXMEn1S5o3aT+lAjIRDsNVRy7XaLRzh5a27lFuIJ6EK7gk2rhWqSb/VzYL0KyKUNXNtRULdOtbNoo9Vrbs0W4gnoQruCTauGqWzfvayK5hbqO52hsYoLGcsfN21u1ThpdEs8vWf3eboRrJ+4iABcgXMEnDsJVV5wfpXetAWttyd00cGv97QkFejSeoSb5HL3HO/5o7U0ChUfX6azs2SZS1P35PXpp7RQXX9Jfh+TttQnS0kP01zVPAKgdwhV84ixcDYX7NH6mqzTpijGpypERmt4wTGDpsa5v7TlasA4XlGlGJ3cyU/YxblXfJ4ANhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOA6ov8HLExIMPBwcegAAAAASUVORK5CYII=
|
As shown in the figure, quadrilateral ABCD is a trapezoid, with the length of the lower base being twice the length of the upper base. What is the length of AD in cm?
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
9
|
iVBORw0KGgoAAAANSUhEUgAAAVoAAAEVCAYAAAChXy3PAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACHLSURBVHhe7d1vaBtnngdwvSioL2roQQWFVBDQggONoYZgDA6kgpI/EA6HDdk2xKR7bpfUdBcfxDjGC/FdGwKrg8T1Cx+nw8teEmIuh7MgaDYutXHTOjG5TZxNjNdeU4OT4qTBKXY4BLMvfje/meeRx7L+jKSZ0TMz3w88NB6NbNWa+Xr0PL95nggBAICrELQAAC5D0AIAuAxBCwDgMgQtAIDLELQAAC5D0AIAuAxBCwDgMgQtAIDLELQAAC5D0AIAuAxBCwDgMgQtAIDLELQAAC5D0AIAuAxBCwDgMgQtAIDLELQAAC5D0AIAuAxBCwDgMgQtAIDLELRB993n1NjYWGH7nL4TT9+0RtPn9lNjSx9NrIlNAGALgjbosi9odXWZZq90UjwSoQi3j6/r21a3t/k7dKWnmaKRbpoQT5e0iW59Oz+/iQbnxEYAsAVBGxoLNNwigrY7P0atntDlQ100rokvhYXhFvO5hy7rewBAJRC0obFE6TY7QUu0PNJD6SXxhTDRzc+NUf90XgIDQFkI2tCwH7SU3aCNLXm6TCNJ/Xm4mgWoCoI2NOwE7Z/pj39cFv+2ekCpRlzNAlQLQRsaNoJ2PUOp/D4DwwR142oWoGoI2tAoF7RZmvuijdoKBa22QS+29iUAQAUQtKFhCdqGHdtqZxOxqPFYwaAFgJogaEPDErSF6mjnJ2nwWBxBC+ACBG1o1NJHCwC1QNCGho2gpSxtoC8WwHEI2tCwE7QA4AYEbWhUFrTag/+gkTviCwCoCYI2NCoI2uw09Tf3E+5PAHAGgjYktGdj1BEVQds1TsUyNPvDbUoloxQbmBFbAKBWCNqgM+aj3UENHLC5pgdpYmsdrdF2NIjHMRUigJMQtEFnzEebVzNbtr2grHg6ANQOQQsA4DIELQCAyxC0IbW8XGg6RABwA4I2hP7+97/Tm2++Se+88w5dunTJ+BoA3IOgDaHf//73lgqECP3sZz+jCxcuUDaLITAANyBoQ2j37t1GwH766afU2tqaC1y+yj179iz99NNPYk8AcAKCNmSuX7+eC1XZZTA5OUmHDx/OBe5rr71G3d3dRqkXANQOQRsye/fuNcKUuwry3b9/n06cOEGvvPKKsQ//98MPP6T5+XmxBwBUA0EbInzlygH6+uuv08uXL8XW7f72t78ZV7Svvvpq7iq3vb2dbt++LfYAgEogaEOEw5JDk/th7eCuA96Xg1kG7rvvvkuZTEbsAQB2IGhDgrsFOCj5KrXSvle++uWuBu7XlYGL0jAA+xC0IcF9rRyQXGlQLQ5VLg3btWtXLnBRGgZQHoI2BPguMB7Y4sb9r07g6gWUhgHYg6ANAR7Y4jB8//33xRbn8ACb7PvlhtIwgO0QtAH3/PnzXPUA99O6hb83d0+gNAxgOwRtwPHHeQ6+gwcPii3u4m4KlIYBbIWgDTAeoHrjjTeMsOOP+F7iK2mUhgGYELQBxtUAHHB79uwRW7zHYc+v46233soFLkrDIGwQtAHFIbZz504j2LhCoN5kaZic0IYbSsMgLBC0ASWnQuQwUw0Hv5xzgRt3b6A0DIIMQRtQ/PGcQ4wDV1X5pWE8gMYDaY8fPxZ7AAQDgjaArFMh+uFjebHSsIcPH4o9APwNQRtAPLrPgZVKpcQWfyhWGnbr1i2xB4A/IWgDhkOJA4rLqvza51msNEyFQT2AaiBoA0b2eZ45c0Zs8a9ipWHc74zSMPATBG2AcJ8mh1E1UyGqrFBpGJeuoTQM/AJBGyByKsRTp06JLcGD0jDwIwRtQHBJFI/Wc3NqKkSVoTQM/ARBGxAcMhw4R48eFVvCAaVh4AcI2gDgj808DywHjZtTIaqMr2RRGgaqQtAGgJwK8b333hNbwov/6PDvQ85axg2lYVBvCFqf41F3uWii11MhqkyWhsmJdbihNAzqBUHrcxwmMkRgO1kaJud+4IbSMPAagtbHOER4di4OD3w0Lo9/R/L2ZG4oDQOvIGhJo5Xx31HXH2bF1255Sl+f76WRu8/0n+gMnjybA4PDFh+H7eMBMpSGgZd8H7TadD81D8xUF17aCmU+2Uc946XCL0s/zI7RxZP7qXFHQ+7kbNjRSPtPXqSx2R8oqz2jG10DNCGeIWkLI3SgIULR5AgtGVuyNJf+R2r+JEMrDqSt/Dg8PDwstkAluASsUGlYWCs3wD0+D9onNNoepUi0k75cF5vs0hZo5ECMOjJrYsN22so49bVyuDZQa98VujP/Qo9KU/bFMs2O9VGrHqRm+LbT6FPxoGGdMh3isUOX9VcqabSQTlLi2Cgt1BC2vPYWf2+/TIWosmKlYRhcBKf4O2jnBqlJnBiHLm9GWXlrNNEdp2j7qCUAt1q7l6JkVP/e0SSl7hUPY31HSiX1sI+0Udq8bBUeUKqRX1uUOvP/CughP9wWoXjPlB7H1ZF9jefPnxdboFaFSsP4dl81+7+X6eoHjdTYWLq1HOmi3t6LdGVqllY2nOq0gkr5OGjX6ctODjjzhIjE+mna5nG0PtVD8UiM+os9YS1DHRyyeki2j9oI8Cej1B7ND9oJ6ubX1TRIc2KLFXd5xCJxGpip/ODnpbv5/9nPUyGqrFBpGE9oo1ZpmEYbP67S8uwV6oyLcyDSRP+Uvq5/8lo1JhVaXZ2nO9fT9Ot9MYoajzfQ2x+m6e4zBK7X/Bu0Ty7TIf3ASqU5sPggKnDlWNAcDTbp+8cGaEZs2coS4E0pemDrmNToQaqJuq2dtEtpaiv1mrRp6o/pP6MtLfpv7ZMDOadPnxZbwA2FSsN4ykbVSsOW0m3i9XVvGycwafTs7qAxXmDsFz9Go7X0W0HFfBq0Gs0MxEXfpwhOPoBshJZ5Janv2zWuf5cCjAA3v19j6oHYaIMerGnrUT4zQLEiV7Mm2Ydb4sq6AJ4whl9b0KZCVF1+aRh/muBuBp6kvN608S7xuooFrUlbSJvdYbxvXL/QQNZ6xp9Bu/4ldUY3rxafXD4kDrRyoaXRRLd5tdq29XN+ztPRzbKfLVeoFdLGu8teYS8Mtxg/J6r/ILvHvJwK8aOPPhJbwEvFSsN4GZ66mTAnFCoXtOyJfnyb3QgRahosfhkAzvJl0M4NNm3tkzWC1zx4op1flhhgmqEB/riu71csRCe6zccjkRYaXhAbXZK7EinajbEVX8HyiR2WqRBVplRpWAVBm+uyquC4g9r5L2jFgbL1r7FG0/0xcbA1UdE/1MsjlDT2aaRivQKbQZs/uOWC3AmSXxpWmJwKka+oQA1KlIZVErT6uTLeJY/x4ucBOMt3QWt+9DlE26q5LKVesf7pwh/FF4apxdineIh6GrTGgJm9n8XVBXKxQhTUq0eWhskJfrh5VhpWUdBaB88i1DWOjlov+CxozYGvwt0DT+jyIfPgiUQ7qOB9CLkDsniwPUg1in2i1DMlNrolF7Tl+4M/++wzYz8ekAF1ydIwOQcFN9dLw2oI2mJjFeAsXwXtun5AmaVc5VvBjn4bV7S5qgS9VVR1UA2bV7R88sorpRs3boitoDIOVZ6LwpPSsBqCtiNTesAWnOGjoDWvWEvdzaUnMXXnOvoL3MCQ66MtcbWqPaCULBezXUdbpQcpajReT5JGSgxaDw0NGa8HUyH6E98u7WppWIVBOzMgxzNiNIDRME/4Jmi1mQGK8w0KZZJvs3yl0F1dm1UHpfqm1vQDNy6+RzK9YKv0SlsYpbNX/yq+skmeICVGf/nKSH4MvXr1qtgKfsR39LlSGlZR0C5Rus38+VXNEQJV8UnQmpPHxLonSpRuCdbylW1F2Zt1tC0la7fMiV/MwI7TsfQ9KjH1jHHXzc9/PlLxJDHyI1ypOloOV94HUyEGx/z8vLOlYRUEraZ/iio7aAyOUz5otY0Vup0yQ6+x9+uyE2NoG3+hL+RfbL3FO8do/sVmn1iuD7YjUya0szR3+TglZH1u4jD1FbyPPEH7+sarmPZQltmUvslC9vHxDQpcMoQWnMZ/RK19uNyqKg2zG7TaAqWNCZD0faPtZGcaD3CG4kErJmbJa8VGSq2d/Pltc1S/3FwHW2kbizSZ7qMjLQmKydsXI/rVdaKFjvSlafL7agc2RDdGidt0f/nLX275f0ALV7NbGrY8khTPKRG0PPdyZ1zsF9fPhxIz0oHjfDQY5pyys3d5QM7e1TNV+LqaR6blEuJo4Wx8tcufZErfBbimfzKSg1sFglbboMXJQTqeMK9ko4njlC417Se4IpRBq0ctTfXELSsfeG2NMh1RiuuX2cUOeS4D4hMDdbPhI4O29HtvzkebiImugFxroB25+Wh3UANvi8Yosf8kXRx7RJghsT5CGrQ6bYFGjyVsVxU4aW28ixIHig+eWSsNvvrqK7G1/oxVJaZu0s2bUzS7vLnaBDjLGpzFB8jM+WjN8YISzTI+AfUT3qBl2jP6ZuAwfZJZ8ShsNXr2zTk68pvSa4bxXUR8kilTN6ut0Hhfq3l1ZGkNrX007sTiZ7CF9XeMeS2CIdxBa+DyrBH61/+eF1+7ZZ3+/Id+ujBePtR37dplnGRqLKFizv0bje2jkxev6FezN+nKucO5aoxIvJswruIsGbJybgueKQz8DUGrGA5XPrk4bJXwdJSOJdPbujmsk0jjfnlnyaDlFTT4v1xjC/6GoFWMrKvk7gMlPPqavi5Sb2nMC8yhUG5GHKiIDFruY8X8w8GAoFUIF6rzCcaLAvriLjBRKB8tNnFE9gXN3+HBs5s0NbtMBcdlsj/Q7NT93PwV2R9macrY/4etg22573WHFgO+mqsMWvbpp58a/+ZbdcG/ELQKkROPcGmXH5grRBRagFLcVdcQo30ne6m36wi9zQsDNrTSuWnu0NXo2aMxunhyn7gJhOs/12j63NYBN1n+tjZ9jlrlwoLcoklKB3hxQfn/yfhKlq9o+cqWr3DBnxC0irh7965xcvF0iCqtsFqKMQtUgfkkjHki8sIwt2xPtIf4+je7sUHZ3H33v6Ce3/0zpW+bV7HZ78fEEtox6ho4S784e8O8jVq/+pW3Y5dessjfrEHLuI+Wv8aqx/6FoFWEnNWJJ/j2BWNKygK3copVhLfNB8wlYhd76fPL1gl65C3WXZQ/mZqcgL3li7mtVRrrGerg5wR4vav8oOWqA/6aqxB4JQfwHwStAvx3Iml6EDYVvLPNvO/e7jynMmi33zoq563YXtFQ/DlBkR+0TP4h5nlswX8QtAqQHw3PnDkjtqiN5+tNFCj5Yuaaa3ZXEEbQFlIoaP3YtQSbELR15rfBDq6fPXBgmOaKnOtycUt7i/4haAspFLTMb4OlsAlBW2e+Kt9Zm6CefT0l7wSTfatFJ5XWVmglV5eLoC2E/7+55ZPlf3xVi0ng/QVBW0fWgvSalzNxW8mQXaPFxafmP2cGxOKWbTS8rW9Bo4XhfstS8QjaQooFLVPuhhawBUFbR365xVJ7Nk49zSfp6l8LzA41f4eu9LRSz4QMVXPZISMsos3UMzZLy8Z+k5Q+1UyJnqnNsixtnLqMUEHQWhm/O70VIm/RxtJG/oKgrROuLpCThvAaUqrSVjKiprVEy19xeG2azrU2bNsvfmw0N4D25P5NPaCbcwtpNvdcoZv39Uvd9UX69vogHZM/M36MBq9/S4t6Oj+5f90Ia+tzvuUHAkb+vorZvXu38bgakw6BHQjaOuEyHT5Z1J4G7zl9+++91Ntbpl17JPa34Jn971yhi/z452n606NnW/psH13L+x7y+zydoqH87b1DNPW08HOG+IGAKRe0yk2jCWUhaOuAy3N4QINPlqpXPoXAKhe01onhM5mM2AoqQ9DWAZapgVLKBS3DMeQvCFqP8dWIvJqteFlpCAU7QWv9VITjSH0IWo/J/rXW1laxBWArO0HLzp8/b+yH5W7Uh6D1kLVvDSPGUIzdoLVWrqCvX20IWg/JGkiMFkMpdoOW/fa3vzX2PXr0qNgCKkLQegh39YAdlQSt9e5CLHejLgStR27cuGGcPLijB8qpJGgZz5PB+2MRR3UhaD0iZ14aGhoSWwAKqzRoHz9+jOVuFIeg9YB11iXMJQrlVBq0TM5pjEUc1YSg9YCcHR/ziIId1QQt98/yc/iq9vnz52IrqAJB6zIuu+ETAOs9gV3VBC3DcjfqQtC67P3338fBDxWpNmjxR11dCFoXWZepwcc5sKvaoGXvvfee8Vx0U6kFQeuijz76yDjoMUABlaglaDHwqiYErUusheQouYFK1BK0bO/evcbzUUqoDgStS1BEDtWqNWix3I16ELQu4IGI1157DbdFQlVqDVqG273VgqB1gT+WqQFVORG0ly5dMr4HJjBSA4LWYS9fvsTUdVATJ4IWU3KqBUHrMLnEyOHDh8UWgMo4EbRseHjY+D579uwRW6BeELQOwvIi4ASnghbHozoQtA5Kp9PGQY0F86AWTgUtwyKOakDQOgR9YuAUJ4MWy92oAUHrkKtXrxoHM0Z5oVZOBi1DFUz9IWgdIusWOXABauF00PJVLd+lyN/z4cOHYit4CUHrANyJA05yOmgZ7lSsLwStA+S95bgLB5zgRtBiEcf6QtDWCLMlgdPcCFqG5W7qB0Fbo4MHDxoHL+b/BKe4FbTW+ZExo5y3ELQ1sM5oj6tZcIpbQcuOHj1qfO/Tp0+LLeAFBG0NsEYTuMHNoMVyN/WBoK2S/BjG0yHigAUnuRm0DBcI3kPQVgkDC+AWt4MWA7jeQ9BWgQcSMKgAbnE7aBnPfcA/A4O43kDQVkEWf/PiiwBO8yJoM5mM8TP4qhY32bgPQVshFH6D27wIWoblbryDoK2QnKDjxIkTYguAs7wK2mvXrhk/B7eOuw9BWwFMOQde8CpoMbWndxC0FUilUsZBienmwE1eBS3jbgP+WZje010IWpusy4LcunVLbAVwnpdBy1e18rjmATJwB4LWpqGhIeNgxJIg4DYvg5ZhuRv3IWhtsPZl3bhxQ2wFcIfXQcuf1t544w3jZ2IRR3cgaG1APxZ4yeugZVjuxl0IWht2795tHIQYmQUv1CNoUVHjLgRtGdZlagC8UI+gZfKOR55KEZyFoC1jz549xsGHu2fAK/UKWtz16B4EbQlylqO33noLd86AZ+oVtOzUqVPGz8Yijs5C0JaAGY6gHuoZtFjuxh0I2iLkTPSYsxO8Vs+gZZhr2XkI2iIwCz3US72DVl5k8FXt8+fPxVaoBYK2gIcPHxoHGtZVgnqod9AyXGg4C0FbgPzodObMGbEFwDsqBO3t27eN14CLDWcgaPNgMADqTYWgZRgMdg6CNo8s2sZAANSLKkH71VdfGa8DA8K1Q9BaoGAbVKBK0DK53A3PXgfVQ9BacJ8sH1Qo1oZ6Uilorbeg46ad6iFoBeukGlx1AFAvKgUt27Vrl/F6cBt69RC0wmeffWYcTJgmDupNtaDFNKG1Q9DqrMvU3L17V2wFqA/Vgpa7DHbu3Gm8JkwVWh0ErQ5LeYBKVAtaJs8Rns0OKhf6oOW/1jw7Fx9EWMYDVKBi0Fo/9eE8qVzog1b2P+EvNahCxaBlchwDn/wqF/qglYsuou8JVKFq0GK5m+qFOmhljSCvCQagClWDlslac1TnVCbUQSvvekF9IKhE5aCVd0/y60O9uX2hDVp5HzfueAHVqBy0TM4Hgjso7Qtt0GJmIlCV6kG7vLxszAeCOUHsC2XQ3rp1yziQMSsRqEj1oGVY7qYyoQxaOXt8KpUSWwDU4YegnZ+fN14j5m22J3RBK9dDwszxoCo/BC2TFyynT58WW6CY0AXtiRMnjIMDayGBqvwStLhosS9UQYtlasAP/BK0TA4q48KltFAF7alTp4yDAh34oDI/BS3Pe8CvFQPLpYUmaK3L1Dx+/FhsBVCPn4KWtba2Gq8XpZLFhSZoUWQNfuG3oJW3svNVLW7+KSwUQWudDAMF1qA6vwUtw+3spYUiaLmjng8CTIQBfuDHoJXTjeKW9sICH7TcQY+p3cBrMixraX7C4YopR4sLfNDKJTgOHjwotgC4zxqY1Ta/GRoaMl43FnHcLtBBi+U3oF5qCctanltP1vMtk8mIrcACHbSy32jv3r1iC4A3agnLWp5bb1jotLDABi36jKCeagnLWp5bb9YKH3yK3BTYoL127ZrxZqO/COqhlrCs5bkqQJXPdoENWlnXd+nSJbEFwDu1hGUtz1XB8+fPc8vdoNLHFMiglXeqoKYP6qWWsKzluaqQd2IePXpUbAm3QAatnFEonU6LLQDeqiUsa3muKnhuESx3sylwQYvZhEAFYQ9aJpe7wfwiAQzaw4cPG28uZhKCeqolLGt5rkow//OmQAWtdcb3ly9fiq0A3kPQmuRyN2GfA9qTd3Mp3ZY7eIq3BtrR2EJH+tI0ubhBmnhuJbjjnb8XZnuHepPHdTVqea5q5MUPX9VyNUJ5Gm0sTlK67wi1JGIUFb+LaCxBLUf6KD25SBtalua+6Kb0kniKD3j3bmob9JfhZO4X9/H1F7TZg5qlF8uzNNbXSg3G41FqHpimNfGoHdaPKVi/COqtlrCs5bkqkt15ZS+A1u5R+nhCz4goJY4P0p9mV/RQNR/SNn6k+clBOp6Iit9PjAZmzMf8wNt3cylNbeIg6p4Q2/KsTXRT3NgnSskR+3+yZMc7z/bOt96iodWzmWFgzs9aaavluSo2uYRUqUUctZUMdcb5/ztOnZmV4p9otRXKdMaN71csQ1Tk8Z/NCeoWB1HxX9I6ZTrMfSKxAbLzR0uWkhjPQUNDU7YVHKTWHlCqyXw8rl+mlu021GZoQA9lBG1RdoLW2qfbZqsfhmcK4itaNDQ0tVuh7oO5wSbzfI92UMZmf+FapoOSPuqkVTBoNZrolv0wXTRezagYAPiDNk39MTMTIh0Z/fOsTdoEpSvoWqw39YL2ySi1R819YvpOtn/xAOA/MwMUE5nQ5qcyggrVLWg/zmwt4cq+WDVGFY8ZHeIRijYP0HQFZQf8HG4AanpKU0O91NtbWRuaeiqe72/Fzk9r6WdXgD++1i1oi7d/oGTqG1qt8O5Z+XwANa3T4rc36eaVc7RfXExEIo3U9V/6tpv57Tql+w5TQv9kF5SrvGLnpzVo/TS4Vam6Be3WX6pGGz/O0x39IDws6+QaWqlvvESZRx75ZgGobj3TIY7X0oO9fhvwKaXY+YmgdYWNPtrsHA0n5WBYnHqm7PXSyjcLQHkT5hSCZatqtHHqCkj6FDs/N//oRCg5siy2Bo96QavT7p2nRrFfpH2U7PRSyTcLQHl2g5a7GxafiH/7W9Hz88llOiQeq6jqwGeUDFrrfpH4Ofqz2FpK0TcSQDU2gnZ9ZoYeiX8HQfHzc40yHeITbAV1tH6jZtBabtXFFS0Ejo2gXRge1s+W4Ch1fmoLaUqKks64Hgy2snZtms5d+Jr+T3ypOm+TycZcB/wXbqLbvJcZfbQQSOWC1rgltTs0Qcusc5w094zTSolR8Oz3Y/Sb/X004aOrX++SadvsXT/mZuYxZF/Q8uwY9bU2iDelgQ6MLKDqAIInF7QxSv4qv3b2JO2L8UfpcAWtHhD07Jtz1Npg7sdVRycvXqGp2WVjLpPV1WWanbpC5440U/PxNN3zWReDJ8lkbz5avUVjlJBz0n5fWSGt/B4AyssFbaE62uuU/jVPFxq2oBWyP9Ds2EU6ub+RdsjQ1VvDjkbaf/IijT16ZvviSyWBSSbbbyRAvZXto9Voun8gnEEbUAhaAK+VDVqi9cVFCkZhlwlBGxAIWvANG0EbNAjagEDQgm9UFLQaPfh6ylaJo8oQtAGBoAXfqCBo16d66MDgnPjKvxC0AYGgBb94cvmQOF5LB212bpiS0WB0LyBoA6LSN5KXQeY15wG8Yc5H23XkbbHSs9kaWk/m1dFy66IjzWKp7UOXlRoU4+VoJicnxVf2VXp+Bk3oglYGbNjfePCamI92S81s+fbtolrTrOzcudM4b959992KAjfs51togjY/YMvtDwDbyaCVzW7ghv18C3zQFgtY2QDAvvygla1c4Mr9wiqwQVsuYGUDAPuKBa1sxQJXPh5WgQtauwErGx8YaGho9tqrr75a8DzKb7yvNXDl9rAKXNCioaGp0/iiJ5vN5r4Oq8AF7YULF+jNN9/MfV2u8UchNDQ0e+2VV14peB7lt9dff53Onj1LP/3005bzM6wCF7SM/4LaDVwAsI/DttB5JFt+wEry8bAKZNBKdgIXAOwrFrTFAlaS+4VVoINWKhW4AGBfftCWC1gp7OdbKIJWKhS4AGCfDFq7ASuF/XwLVdBK1sAFAPveeeedigJWQtAGRDVvJAcuANhX7TmDoA2IsL+R6tNo48dVWn2BP25hhKANCASt2ngCa2Pd/u4gLTkIdiFoAwJBq7C1CeqOm+8PgjacELQBgaBV1RqNd8UpHo8haEMMQRsQCFo1PRltp4aODN1LtyFoQwxBGxAIWvVoC2lKJrppYo1oqYKgzb5YpdXVVfpxQxNbCuHBtRe0ObQmBtt+3ND/la/UY+AFBG1AIGgVoy1QOpmgnilzKZbyQavRs7tp+vDtGMUSjdS4o0HfP0qxfefom2eb8ahtLNJkuo+OvM2P6yGub1u7l6bjiWjuGGhoPUfTergb3/Obc7QvVugx8JL8/YcVghZcoNGDVBM1pR7kriBLB61GCyMHqCGapOE5eY2qbxsWz4n3kJnXj2jiyk36z864eL+7aWyih5r3/ZrS12/SzSt91NpgHgex/m/o+0wnvd16ki7qz9n62HTudYE3zPcLQet7YX8jVcKlXIlkmhYsaVYqaLWZAaP069DlvPVeF4apRbyvW56W256gTzLfW7oP9J/9Zae5emw0Qccvz215TJvupxg/FhugGbENvBH28xNBC87iUq5EktLWlNUVD9p1+rKTP9q30+hTsSlnif7nwxZq3J/3cX8pTW3G+212HWxR7WPgKgRtQCBoVWCWcrWP5l2Z6ooHrR7MxntXQfghaH0HQRsQCNr641Ku2AdX6a+rZtWAtf3vv7WY79HH18U2UTGwPEJJ471D0AYZgjYgELT1tkTpNvM9sNdE2D0dpXbj6zZKLxnfqCBN29Lhi6D1Gfm+hxWCFhzylKaGeqm3t3D7VVLcGdb0c7HtGj0ynjdDAzHzvWsanDO2bLM+Qan0A/GFDkHrO2E/PxG04InifbQaTfeLEI5uH0Tjft+J7gO0JYMRtL4T9vMTyQSeKFlHuzRCyah5IkYaWqlvbJaWV1dpefZPNHg8YdzCu+Ueg1x5V7VB20XjKKQFDyFowRMlg1a3NtFDCRm2lhZNpuheLmWz9GJ1nsZyNyzEqXNsXtxaaz42+S9Js442EqP24du0XPCxKCVT8jEA9yFowRPLVz+gxsZGavz8O7FlO+3ZXbrcd4RaeL/9J+ni2COy3H2r+44+58fy2wdXabnqxwDch6AFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwGUIWgAAlyFoAQBchqAFAHAZghYAwFVE/w9AZHpX2JR0ggAAAABJRU5ErkJggg==
|
As shown in the figure, triangle DEC is rotated counterclockwise around point D by a certain angle, and it is found that point C' coincides with point A. What is the length of CD? ( ) cm
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
C
|
10
|
iVBORw0KGgoAAAANSUhEUgAAAVcAAAEUCAYAAACf/XXaAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACYQSURBVHhe7d1/SBxpmgfwZlno/SOy+0caBhL3As7iQCKMEEQwkGkIJmHDoHshMxsSDOfskJEM9MI0TjDceBcl3PbCxAusxzRk4EZRLnt64BFXw3ZwM2Mi3iV6E/F0JYJxiE7oLBqOhto/nqun+n21uru6u7rt6q4f3w+8JFZXt61d/bX6fZ96Xx8BAEDJIVwBACyAcAUAsADCFQDAAghXAAALIFwBACyAcAUAsADCFQDAAghXAAALIFwBACyAcAUAsADCFQDAAghXAAALIFwBACyAcAUAsADCFQDAAghXAAALIFwBACyAcAUAsADC1bUU2v7+Bb14UVj7flsR99dLPtarhPgSAPJCuLrWKg39spZqD1SRz+cTzU+BGnVbbXqroYA/uU9TdEXcX1JoKRokv3qb/9zvaUNsBYDcEK6up9B8pE6EaxNlZKekbNJkqNogXGeoO5AM3rq+BbENAPJBuHpBLJQ/XNn6AF3onhFfCBvD1ML39bfQ8LrYBgB5IVy9wGy40gJ98cU34v/CUj81qPetVkPXqDcWAIwhXL3ATLgmEmQ4XsX3xVkrQMEQrl5gIlxXolGKif/rrd4O4qwVoAgIVy/IG65bdLc9bBiu/3v7M/o9zloBCoZw9YKdcG2g3/5Xem3rIt3vO0fVvpBhuAJAcRCuXrATrkZ1rrLGFeEKUEoIVy/I1y2QWKB/bkK4ApQSwtULTAxorQ4NUVoRFgDsAcLVC0yEKwCUFsLVCwoM18T2NkqvAPYI4eoFhYRrPEbhq3dpS3wJAMVBuHqAMtlhLlyVJRpoqaOuaZy3AuwVwtW1knOwrs6NULjeL8I1QBf/bTGtzpXbKs39IUofN1aRL9BFyFaAvUO4upaYzzWlpjV/a/4C0woClALCFQDAAghXAAALIFwBACyAcPWYP//5z/TZZ5/RX/7yF7EFAKyAcPWYS5cuaZUD+/bto1AopFULAEDpIVw9hIP0Rz/6Ef3whz/UGocs/8uBu7i4KPYCgFJAuHoIn6lyoF64cIFWV1e1rzlskzWwPmppaaEHDx6IvQFgLxCuHsF9rD/5yU+0EH3y5InYSvTy5UutD1bexu2dd96h0dFRsQcAFAPh6hHXr1/XgvPMmTNiS6pEIkGff/45HTx4cCdk3377bfryyy/pr3/9q9gLAMxCuHoAB+cbb7yhBeb9+/fFVmMcpByoR44c2QnZQ4cOacHLjwMA5iBcPaC/v18LycbGRrHFHO4aOHbs2E7I7t+/X+tC4K4EAMgN4epyfCb65ptvauFYbD8qn+3yYJcMWR4E48EwHhQDAGMIV5e7c+eOFogcsHvFA2FctpVexqUfIAOAJISry/GgFAch96OWSrYyrnz9uQBegnB1sXv37mnBx4NZVgxGGZVxcR8tyrgAEK6uxvWqHHg80m8lozKut956C2Vc4GkIV5fiflAOOT6rLNckLUZlXHzWzMH7+vVrsReANyBcXUqO7l+7dk1sKa/0Mi4Oee5CwEQx4BUIVxfiaQV5JJ8HnCodZtnKuPg5ArgZwtWFPvjgAy3Irly5IrZUnlEZF08ggzIucCuEq8vopxW049mhURnXqVOnUMYFroNwdZlPPvlEC6z3339fbLEnWcbFl9TKkD169CjKuMA1EK4ukm1aQTuTZVw8OYwMWb6ajKsOMFEMOBnC1UUikYgWTidOnBBbnEOWcckryrjJMi6s9wVOhHB1CT7LMzutoN1x14C8AIIbn41/+umnKOMCR0G4ukQ0GtWCiM/83IKXnEkv47p8+TLKuMAREK4uUIppBe3s22+/zSjjOnv2LMq4wNYQri7AgcqhwwHr5mv5nz9/nlHGxf3LKOMCO0K4uoAcBOKuAS/gAa70Mi7+HfDctZgoBuwC4epwfNbG4WLVtIJ2lq2Mi5e1QRkXVBrC1eH4YzGHCpdheVW2Mq4bN26gjAsqBuHqYJWYVtDujMq4+Ko1lHFBuSFcHYxHzDlAuAYUUhmVcfGENijjgnJBuDqUnaYVtDOjMi4O3dnZWbEHgDU8Hq4KbS/P0vyG+NIqT2M0/qy0Ayw8nSCHBRfVQ35GZVzcfTA+Pi72ACgtB4erQvP/8R+0pIgvC6Ws0eTVNro6/oxyxZ6yvUZzU6MU7emkzk619URpdGqO1rbFN1bm6Y9TmekcfzxAPZ1f0HScv0rQwsAlar06SWvFPl8du08raGfZyriGhoZQxgUl5dxwjY/RRb+f2u9uiQ0FiD+myMmTFHmsJZ8hZXOWopcOU5XPT4H6VroaHaWJiQmaGI1ST9txCvir6HBrB7U1VlFD/5K4l7DxezrnT75xW4Zl8Cq0ORmimmA/LezxJJaXbtEeW/14C8XJVsZ169YtlHFBSTg2XBf66pJvitMDtC62maIsUTTopyY1ELOdRManu6mew7HqJPXNbhrux+Hbd7Iq+RxCMbFViIWS2/3tlJr9Cs10V5M/GC36jJvPvJw2raCd8dnqV199lVHGdf36dftWYCReaZ9ecrdXOT+RgfWcGa5bMQoFkm8En6+aumfMJpVC8xE1lANdNJ3lLltTYarWHreJ+vMloBrU/U3qvmnhuhJt0p5bXWQ+M5jFc88V7rnw2RY/NvcXQmmNjY2llHHt27dP66flsLKVb3qotvaA+qlKvgdE8weoprZWva2WagJ+bZs/UEPNbTdpZO47hG2ZOTJc1wdOk68uSEERsP72u2Sqc2AlSk3q/rVq6BnamqJwdfIxq7tnTIWfMtNN1S3DpO91nekOqAf6RRrL0uuQvL2Fhgs65U6dVvDevXtiK5Taw4cPU8q4uG+bKw4WFxfFHvagLPVrxzM/x4bf/k9GeCa+m6ORq407IVzV2CvGAKAcnBeuyjxF6nx0emB9t2vAd5rUL/NQaLpLDTVfQD3TFZvSaKGtPV4TRVfExrzWaaArSru7KzTZkeWsVVLPjv3q9wl0TRd09spXIfHz44+wYD0OU30ZFzcOXQ5fe1BPBkTfflOOAzb+OEJBsZ+vOkQxBGxZOC5ct+62k1/2Za4P0Glx0OcNqq271K4dYOoZpeFp7gpF+SM+P15thLKc2xqKr63pzpzVxwlmP2vVbAxTC3+fjD7Z3OS0gjxBCZQPdwtw9wB3E2jHh9q4+4C7ESpr95jNFa4sHguJ7i71vdIxSchX6zksXJMH026QbtHd9mTfUr6gUtSDi88WswanDDxuaR/zC7NB//NkLc8Z6Qx1a10afgrFzJ27emVaQTuTZVyya4Ybf4rgTxSVeU3Mh6sarzR2UbxXfHXUtyA2g2UcFa7KdBcF0g6M5Lb8B9h8pDZ5YAVv06rYlkL0x2r7pI/+l9zumyKjjCsLXhmV9+cZn6CyZBmX/CTBjUu6eFt5y7gKCVfdCYbaso47QMk4KFzFX96M0qsF6qtLHjC5qgBiIbFPtuAsa7huqT+L+e/l5WkF7cyojIsvTuCz2/KUcRUWrimfzrKdZEDJOCdcF/qoTv0YbXTRwO5AVLaLClbpdlAcVNnCbPU2BeWBd3HMXPXBHuyEvYkuiFOnTmn78hR6YE/pZVx8BR330/Jlt9YpMFwpRiHx/HyBbsoyrgsl4pBwlSP9P6N3fy0uQ9W3D4M7XQO+uj71XDbdBg23iNuzninKflC1leHA2wnXPEGOaQWdJVsZF08gU3p7CFdfSP0KrOSMcBVVAU3XxCWoBu23rbKzPkBdBn0DZsLsv3urxWPUktVdUnm7KYQLFy5o+/FZEDhHtjKu0q73tYdwbdKXD4IVHBCu4qqqavVsMtfAuq7P1K8GaHqpyVJ/Q/6Dan2YWkQ9oNFjZJNYeEwL/ye+MGX3TZFrQAvTCjqfURnXsWPHSrRKb4HhutRPDeI5+Dom81S0wF7ZP1zFBC0XcxaOMtl1wAdPnXrmmXbozHQnuw78YZoSm4zs1gP6Kdi/kPeSQS7QPh+OFVg3KLsgsl/QwPhNyT8PnwGBsxmVcR05cmSPZVyFhWv+sQkoJZuHa1z9+Mwf1U32Dz2+QX8jDtyMyVGUaerSAi1It3MOkyq0NHxup+C6urmXxhczJ8FIXlp4nOrDk7RZ6CmAHLXNUd3AZzxy7lFMK+geRmVcBw8eLLKMq4BwVdQ/6OLS7ryfAqEkbBuuG1N/T80HxKxTaqs60ExtnXfoqbg91VO609lGx8VkFbL5A/XU+k9TO6Px8nLZjsn8R1bi2Tj1tvKUg+Lx0ibFqDp8iaJZZszKR9Yb1uWo5P75z3+ufV/uFuAaSjR3tZ/+9Kf0gx/8YOdY1beVFbO9oUvU35C8T+5wlScpvG81hXD9a1nYNly3lr82GLh6kmV6wXV6krGvaF8v7w5gaV0MBV7Tz9O7LT7afbxHi/Ti1V5qTUX3Ra6JXWZmdt5oaN5r/AeVu4RWV/NVou4OUGUN18QzGvmoRlw8UE3nhoubjQ0K54ABrdKKj10kf45gs5w2x4GfWnJMifWLX/xCe8PwwEdbWxuaR5oM1x//+MfaH3JeZNGwP1abz3WR7v9DcPeKq45/pam5Va07idvq3BQN9rbS4ark7VWNV0u+1BDk5rlwlR+RKjN5RXKy7OpQ9gEwfYXAy5cvxVbwAhmu3LgPNittPtdkF1X21kCtHZ10c3CK5ta2cbZaAR4MVxan6e5GOhkt50ckXuYlTMfzDIDx8s/85rJPXav6vGcHqKetOfmmbW6jnoHZwgfxIC99uHJVASbocTaPhitTaG3yM/rVb/5kfVAomzT7uw/pk5HciyHKCgE+c+X/V556lh+W/XWpzV8TxrygJSZ/t42Njdq/XKYFzuXhcBUSm7Rpdcnf+jMy091lt7rWLa75rQ/TyNwaaYvdKtu0PB5Ori/GAdsyXNj6ZZCTDFdML+kOCFeb4CJzvoqHz1rtUde6RWNh41nr45MdYi6HFtpZ3Bb2TIYrkzNtYWJ050K42gRfvcNvJvssl63Q9na20+15itRyEBSyHA7kow9XnsqQ/48lfZwL4WoDr1+/dthy2fLKIOMlcxLP7lP0ais1aKPWzdTWM0CzKR3banAvq/t83Ey/HOJazuSg2cfNyf0/Hni8U03BS5gPiMdqaO2lyTX3jqTpw5W7A+RVXJVfTgaKgXC1AS674TfRmTNnxBa7S86NkLnqrrh02F9P4ZE5Wn3xghbv/0NycTx/kKJ8PfLaGPWG2nb6bZuij+lx5F2qb+2gzo4zVKNt91Pw9golFvrp5IF6au3ooNbD4mo9F1+6qf18apN41Qn+GsuoOxPCtcL4enI5mUdpp6Oz0HyEag0mx9maClO1L0Adk/qO2g36/bnkZclB3aQOctmd6jO/oUndaJ/y+Ib62GrIBA7Tpd/pS77iNPJeMnjDuWbecTD+fXCTHHlswA6Ea4VFo1HtzeOcs5PkcjuZS4ev08BpNRyMFoBUtun7F6mT36xEm7SfO/OyTXlJZ+ZkPdnv4w78s3HTk59q7NMXD2YhXCtI369Wmvk9rcdTMtakzzjGtsboIoeDyXlCEa6Z+GfjpsdVJM7qjwcJ4VpBQ0ND2pvGKSPCylKUTh7OcvGAnKzc5LLkCNdM/LNxSycrSc6ePSu2gBMgXCtI1jJyyNpeXA29RuO6V40MV5PrjyFcM/HPxi0dn73KK/cwt69zIFwrxFFX4SQWqP/8RzSWswxqd3WFUMzokrctmhr6T5JroSJcM2ULV4ZVKZwH4VohchlmHtCyNS1Yz9NwRicrU2jpq9s0pa0flpzxSwuI6va0IFZobayd/m5g92JZhGsm7XenNiNy3glu9ph3AvJBuFYAl9Xwm4jLbApf2qOM4tPUXe+nn73768zlzDs7qLU+QFX6WlfuOpBLifgDdLxN7He4Km3Znd31zmpvPE4dAIuP0HtayLxHIyldEAo9vpEs38q4j0tovze1ZcNnrXy7fWZMg1wQrhVw6tQp7U2Sc87OSlODMlyTumxOZstcxpyvqOp7N6CbSauKGj/+d1qQf0NWh+iXNfrb/RSo+SXxhVrf9NTSATG5s9aqDlBtzzfJ++iW/Enep4fUW1xF/nzZ6Of65X5YsDeEa5lxOQ2/gbi8xtZnrdps98lZ7bO375OzZRlQtr/X9slYEUereTV+nMSr9O1q4wcwvE/mopFOly9cGVcM8D5cQQD2hnAtMy4Gx5sDjJgJV/0fZ56TAuwL4VpG8mMdTy2Ij3WQzky4Mp6DgvezdbcSIFzLCQMSkIvZcHXMgKjHIVzLhPsJ5WAE/x8gndlwZbKUj2fOAntCuJaJLALnBQgBjBQSrjzHK++LpWDsC+FaBnymissXIZ9CwpXJy6d51QKwH4RrGciJNy5cuCC2AGQqNFx5fS3eH0vB2BPC1WKYMg7MKjRcnThlpZcgXC0WiUS0gx+THUM+hYYr+/LLL7X7HDt2TGwBu0C4Wki/TMeDBw/EVgBjxYQrloKxL4SrhW7duqUd9FhgDswoJlyZXArmxIkTYgvYAcLVIvr+sPHxcbEVILtiw5XPXvfv36/dF/369oFwtYjsC8NILphVbLgyWZGCvn37QLhaRNYgYhQXzNpLuOqrUlBLbQ8IVws4agkXsI29hCvDUjD2gnC1wNGjR7WDnLsGAMzaa7jqrwR8/lyuVgaVgnAtMTlj0cGDB3HWCgXZa7iyy5cva4+BmdcqD+FaYnK2Isy1CYUqRbjql4LB7GuVhXAtITlLPObZhGKUIlyZnDf42rVrYgtUAsK1hLCEC+xFqcJVvxQMVryoHIRriSwuLuKAhj0pVbgy+Yf+xo0bYguUG8K1RORHsU8++URsAShMKcP14cOH2mOhi6pyEK4lgEEEKIVShivD4GplIVxLQBZvo/wF9qLU4Xrv3j3t8Qq+mCXxilbnpmhiYoKm5lbpFU58i4Jw3SMs4QKlUupwZfIybHMXtCi0NnmVGquSz2OnVTXS1ck19VYoBMJ1jz799FPtAMQlh7BXMsxKSV6KfeTIEbElO2Wmm6r9ATredpMG1bPWicFeOlPjF8+rmkKxuNgTzEC47oF+soxvv/1WbAUojhXhyswtBbNBw+eCFF1KOz9VligaFAHbFKUVsRnyQ7juwfXr17WDDtO8QSlYFa7mpr98Sn/847r4f5qFPqrTnluIYmIT5IdwLZJ+eY3Z2VmxFaB4VoUrD2YdOnRIe+ziloKJUYifmz9MU2JLCmWb1sQA2MSjRfp+26B3Vt1n+dHXtLwlv1ymR9r+y5Sy+85jTdHcd84eSUO4FkkurYElXKBUrApXtqfjVZmkDvW+/va7JLJRUGjzT73UWFVFh1s7qLOzjY4H/GoI19D54SVtACzx7D5Fr7bSYW2QrImiKwotDZ+nGn/yZ+XmD0aJeyOUpWE6v9PHy83Z/bwI1yLwmQDPesUHABaFg1KRoWKFPX3SmummgBp03TOpZ6TxWIiq0wNwqZ8atJ8jSLdX+UR0mxLxMbqohWkDdVz9NX02njxbVTZnKSL6c093/YY+/DBKD9e2SeGz3JF29bHV+9T10YJ4aKdBuBZB9mHxvK0ApWJluLLixgi2KBYKUHUoRinnkMo0dQWMzmbj9HighzpvTtLaThavULQpGa79S2KTsDV2Mflz/2qcUjsB5ilSy/dpoeENsclhEK5FMDf6ClAYq8O1mOoWZT5CddUhyvh0PhUmv/o4LaaST4YrdwuITZJ69qv93Gp4p8pxH4dAuBaokLpBgEJYHa6soLrseIxCNQblWaqVaJP2OB2TmbdlQriCCYVd8QJgnhYyarOS6SsKub715EnqXzAesZfh2pD+Od8QwhXyKPpabQATyhGuTM6FceXKFbElXZxi4eMUzjFSv9NXenqAjKtj47S2JntjEa6QB2YZAitpIaM2q62uruaYxS13sMaXl0nrZd0Yphbt+QaoYzJz3/hkF0WmZZcBwhVywPyYYLVyhSsznH9Y2aTJcD21Df2vFrqpbZEeDYapMRwTE7goNNNdLZ5zNZ3ru0+LvN/qHI30NlNN8LYaj9IS9TcgXCELzOwOVksGVXnekhkrZyhrNNYuwzJbC1DXztmoSlmi4fM1WtWAfj9/fTdNi5PZreWvabTvXLJmVW3V5/po9Otl2qJ1ejIxSOF6cdGAv57CgxP0ZD15n0E1oFPuwzc4DMLVBKxJBOWghYzaykW/5tvLr/+FOjs787Q79FTcd1eCvpv7A0V7+PabNPjoWUq96sbUrbTHUNutKdpQH+lO+na13VG/geF9+AaHQbiacOHChZ2DEMAq5Q5XrFZsLYRrHljCBcql3OHKMEhrHYRrHpcvX9YOPizhAlarRLjy3Bj8PXmuDJQXlhbCNQc+U5UF18+fPxdbAaxRiXBlPEcGf19cGFNaCNccZLE1lnCBcqhUuMpLunFxTGkhXLPQT3KBhQehHCoVrkxe1o3JiEoH4ZoFVwbwwYYlXKBcKhmu5paCgUIgXA1wWYo8a+VyFYByqGS4cneAnEpzfHxcbIW9QLgakEtinDp1SmwBsF4lw5XdunVL+/5Yuqg0EK5p9MthYAkXKKdKh6v+2H/w4IHYCsVCuKaRfU/Hjh0TWwDKo9LhyiKRiPYcMNawdwhXHX2/E0ZNodzsEK76KhmMN+wNwlXnzp072kGFEVOoBDuEK5OVMu+//77YAsVAuOrIWr+vvvpKbAEoH7uE68uXL80tBQM5IVyFsbEx7cDGVSpQKXYJVyavTvzggw/EFigUwlWQswP19/eLLQDlZadw5Xk1MBvc3iBcVXJmIMxrCZVkp3BlcikYzAhXHISr6syZM9pBhDktoZLsFq5yLuN9+/ZhBY4ieD5c9Uu4vH79WmwFKD+7hSvTLwUDhfF8uJ49exYHD9iCHcMVJx/F83S46pdwwcceqDQ7hitDt1lxPB2u6LAHO7FruGLAtzieDVe5hAtKTcAu7BquTJYqRqNRsQXy8Wy4YgkXsBs7hyuWgimcJ8MVl/eBHdk5XJm8PHxoaEhsgVw8Ga6YmALsyO7hyqHKzw8TG5njuXDFlGpgV3YPV0zJWRjPhatcwgWTAYPd2D1cGQ9o8XPEUjD5eSpcsYQL2JkTwhXvIfM8Fa484xX+6oJdOSFcGRbwNMcz4arvL+K5WwHsxinhymevGLfIzzPhKhcexEgn2JVTwpXJihuMXWTnmXCVNXoY5QS7clK4ctUNT0WIWvHsPBGuuLoEnMBJ4cpwlWNungjXxsZG7SDgrgEAu3JauMr5OfjsFfNzZHJ9uOpn9MFZK9iZ08KV8QKG/Jwxs1wm14friRMntBcfc1GC3TkxXPVzIuPsNZWrw1XOor5//37MQwm258RwZRcuXNCeN1bzSOXqcMX6P1AJMiSLbU6jXwoGK3rscm248scVvOBQCfqgLKY5kTyRiUQiYgu4NlyxhAtUSrEhWez97ODBgwfac8dSMLtcGa6rq6voZIeK8WK4MrkUzK1bt8QWb3NluMri5itXrogtAOVTbEgWez+7GB8f154/LtZJcl246gubcVkeVIJXw5XJy8xxwY4Lw/XatWvai4tL8qBSig3JYu9nJ/JSc0yQ5LJwxRIuYAfFhmSx97MTLAWzy1XheuPGDe1FxTRoUEnFhmSx97MbOb3n0aNHxRZvck246pefePjwodgKUH7FhmSx97MbPns9ePCg9rN4eSkY14SrXHoCS7hApRUbksXez47wfrQ8XNfpycQETeRpU3Or9OJV8YXH/Jfy0KFD2ouJRdOg0ooNyWLvZ0f6T5KFjn8kXr2gxUcyHx7R4otXtJsOW7S8vC7+b28Wv5JP6U5nJ7UdD5BfHDg+f4DqWzuoU93OraO1gQ5UJW+rOtxKvZNrpIh7m4UlXMBOtONcbYUq9n52VdhSMAl6Nt5LrYer1PtU0YHmNpERbdRco+ZH1WFq7R2k0b5zVB2KifvYW5leyTiNvCfCtSlKK2LrDmWTZqPqL007uPwUjC4VFLBvvfWW9thYwgXsoNiQLPZ+dqWv3llcXBRbDcQfU99JDlU/1YfH6ZnBh9jEs3EK1/uTvyOjDLGhsr2SM92BPL8YhZb6m5L7+Oqob0FszkPW1XHjrgE0tEq3Yo9HNx7HfEEP/0xZ687jMQrXcGiaOKlSligaVPdFuKZaiYrgzPWL2RimFnGA1Ubmxcbc5BUhaGho9m3GV0zGKRaqTu5TF6F5Ex9XlfkI1dWq+4qv7cxe4apMUod4MfzhKbExOx7I4kla0NDQ7N9ev34t3rnCQh/Viff7xbEtsTGfLbrbHiYn9LraKlyV6S4KiF92y/CG2AoAbrTTVehroULe7lszM/RU/N/O7BOu8cd0oykZrL7qbpoptGQAwK4Sr7QJhQpr+vIjN5qnSK14v/vDlP9zqvOUP1wDQeoe1NW5jkapp6OVDmvlWH4KHO+lP22aT9bkX76y/RgAhfumh2prayjgF2HCreqAuq02sx3gUXPeJ+SIj75mGL9HYxSSvwuHDFAVqiLh+qGocdVaWzPVBESJRVUjtd0coacIV3Cj+BhdlAGbo1YzsdBPQT/C1enKH66Gv0iFtpdH6COtJEPdx19D4Vhc3Jab8QsHYEcrFJVdXzkL4RWa7vq7gvoh7cz4PaoL14Z+WhJb3cQm4Sro/7L72+muiQFE4xcOwI7MhivR1sQXNLQqvnA44/foKt0Oit+F7yKZLhZwEHuFq2p3BNFHHZP5uwfkvgD2ZyZcFUok3DWam+09upMJPj+FYu4bwbZduC71N+y8GAhXcBcz4RqjaNRdPZBZ36Nbd6ldfFL1twyT6elYlE3aNNdrWFFlS6X5SG3yl5wzXNdp4LQ4+HynacDEbzvrCwdgOybCdaGP2r0Srqp4LFTYnCKJBeo/f5WmHNCNUKZUUmiyQxxU2cKVJ2+JBMXsWeYnb8n1wgHYiy5cfzWaUdu6OjeiTU7S5KFw5WxYun2SqrR9/FTz0WCWaqEEffcwSuePf0Rja87oQrA4lZLzuQ72Nou/TmrjUqybg7t1rhOjFO1po+OyHMtfQ+ejj8nsWX/uFw7ATnThalTnKmpcvRWuTKHN2Shd0qYb5H39FKhppraUcs0ANV41njHLrixOpeR8rjs1rTnaTb6w4NEiFTpndv4XDsAu8nULqCEz3kEtngtXSaHttTma4guLZDb0RGl0ao7Wtp1xtqrn+FRCuIJzmBnQ+oaG3FKDJXj1PYpwBSgbM+HqPghXh0K4gnMUGK7KNm27YPYWhKtDIVzBOQoJV4WWoh/R70yuyGFnCFeHQriCcyxRf4O5cI1Pd1Hd6QHzhfU2hnB1qGJeOLmCAUBZaPO5LtJ9XrlUHK++phv0cDW1zlVri49osPcM1fh9dNrMVTRl8vz5c2257GIgXB2qkBeOQ5WX4X7zzTe1ZX8BykKbzzWtpjVv+4QmbHQVEr9v3njjDfr8888LDlmEq0OZeeH0oSr3R7gCmMfvH/neKTRk5f28xtXhahSqsiFcAczTh6tsZkNW7u81rgzXXKEqG8IVwDyjcJUtX8jK/bzGVeFqJlRlC4VCGUv/oqGhGbdIJGL4PtK3bCErb/ca14Sr2VBFQ0OztqWHrNzuNa4J15aWlp3/o6GhVba9/fbbdP/+/ZT3qNe4JlzZkydPTIfsO++8o/W7oqGh5W9m31ccqqOjo9r7UZK3eY2rwlUyE7J8wACAObkGtLgZhaok9/EaV4arlCtkEa4A5mULV/4EODY2JvYyJvf1GleHq2QUsghXAPPSw5VDVfap5iPv4zWeCFdJH7IIVwDzZLgWEqpSIe9RN/FUuEocsuPj4+IrAMjn4cOHBYeqhHB1KK++cABOgXB1KISr/cWnv6DOzls0tSE2gKcgXB0K4Wpz8TG66OfXqIlctqgpmIRwdSiEq52t0O2gX7xGCFevQrg6FMLVrngNqCDVhEL0HsLV0xCuDoVwtSdlqZ+aqsM0tRWjEMLV0xCuDoVwtSFlhrqrm6h/SVG/MBmuie9o7g9R6unspM7OmzT4aJm2+e7peL+Rm3RLjo4lntGjwZvqfTrp5shT2tTdR9leznoblA/C1aEQrnYTp1iohoLRJUpmWb5wVWjzT73UGKihM72DNDExStHL9eRX7+Ov76bpeHKvreUx6m09TFXi9W5SHyyxEKWTVcmvZfMHbxN/m/h0N9VrA2mZt0F5yd+/1yBcoaTisRDVpIRY7nDl/at91RSKiRTV7K7v72+/S7xOn5JIkKLMU6Quub2hI0yXLkXp4Xc8Z6ga0LM3qEn7PgHq6L5KzXzb2rZ6C98WoaAWtAHqntG+AZSRV9+jCFcoHS67qrpIY/qczBWuyjR1BdTbDNbnn+kOJF9bNaj1i6DHQsnXu/bGY3FmLG3R2EVx2z/OUupc+ApNdiRv4zNeKC/tdVSb1yBcoUS47Kom7QyUZQ/Xrbvt2sf/hv4lsUWH+1InpuhpWkepDFejkCz2NrCWV9+jCFcoAVl2FaP0aM0Vrkv9DdprV0jgIVydh3/v3LwG4Qp7txKlJt/P6N1f80h/evtbqtNeowAFP0xukyP9MvAMz1yzQLg6D//euXkNwhX2LhbaeR3MNBlw8szVqM91x8o8zfOIloBwdR7tNVab1yBcYe8Sr+jFixdZ2ij9SnuNGui3/5Xc9r0oYFXUUOY+V5+vjiLzRkWocRoL9ZJ+gB/h6jxefY8ilcBiJqoF+PbqEE2mDF4laKE/SEf7FsTXSQhXcAqEK1jMTJ1rMvh8/gAdb+N+2TZqPlClBi5fPit21KzTwOnkvpn9tLvlVrWRebFN2r0t0DWdVsIFYA2EK1gsd7hy8K1NXqXGtCutqhp7d67OYhtTt6jjTI3oRlCbv4bOdHTSnafiNt3VWz5fFTWqIZ3vNgArIVzBYuv0ZGKCJia+puWUs9A0iVe0+Ij3m6I57cqqVFvLX6u38e2p7cl68bcBWAnhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAIAFEK4AABZAuAIAWADhCgBgAYQrAEDJEf0/+/wsgx1dXywAAAAASUVORK5CYII=
|
As shown in the figure, the perimeter of the isosceles trapezoid ABCD is () cm.
|
A. 4; B. 6; C. 8; D. 10; E. No correct answer
|
D
|
11
|
iVBORw0KGgoAAAANSUhEUgAAAVcAAAEUCAYAAACf/XXaAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACAxSURBVHhe7d1baBxXmgfwHhioeUiz85CGAVsQ0IACtmAExhgUcBqCL4wYJNZkMsHCZpVZHGEv/RCtbRywwDZmthccjZYIphkF1jIW8RItNGNFDpFRkvEFzdrWOBohR1hgy/iGPMh+aOh5+La+qnNaJam7urq7Lqeq/j84xKruljrqqr9OnfrqnAQBAIDrEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK4AAB5AuAIAeADhCgDgAYQrAIAHEK5RtnSbJiYmamy3aUm83Kpw/wZNTP2NlsXXAGAP4Rpl31+io0d7qWtLkhKJhNla/1nfdnRjO7CLNiX5ORmaFC8vWRimtMaPJen4n8U2ALCFcI2D4jU6kRLhmtkQnauWr1BvamO4Lg6nzdemTtC1otgIALYQrrGwQLl2B+Gqm8n20PCi+EKY6tOM17bnFsQWAKgG4RoLzsO1OPM1TT0RXxhWKN/NvVa9R7siNgFAVQjXWHASrsv04EG59DRfi14rQG0QrrHgJFwnKVc2QCcpg14rQM0QrrFQPVyL105QZ7lwffUXuvQn9FoBaoVwjQVLuP7ydxtqW8dyR2hHEqf+AG5CuMaCJVzL1bke2EkpDeEK4CaEayw4GBaYyVIPwhXANQjXWHByQet7mlpbgwUADUC4xoKTcAUANyFcY6HGcF25R/fKzd4CAI4hXGOhlnBdpsnMv9AIwhWgIQjXWJihbIuTcC3S/PBuSnbnCfcMADQG4RplxnyuF+hMRzNpHKzcmt6lgbG1da5Gu/AJHdiZ0p+nUc9lRCtAoxCuUWbM57quprVqu0gzmFYQoGEIVwAADyBcAQA8gHAFAPAAwjWGOjs7KZPJ0OLiuiUHAMA1CNeY+fbbb82qAb39+Mc/poMHD9Lt27fFowDgFoRrzHCvlYP1F7/4hRGuMmh5+9WrV8WzAKBRCNcYuXv3rhGkP/nJT+jvf/87PX782BgeeO2110oh+9Zbb9HY2Jh4BQDUC+EaIzwEwAHKgWrFQXvy5En62c9+VgrZrVu30meffUb/+Mc/xLMAoBYI15h4+PChMQzAjf9dTqFQoHPnztHPf/7zUshu3rzZ2MaPAYBzCNeY4N4qhyX3Xqvh3ur58+eNcVkZsj/96U+N3u3z58/FswDADsI1Bvi0X46r8rhrLfL5PL399tulkOXxWpRxAVSHcI0B7nFyMHJFQL2uX79eqjTghjIuAHsI14jjsVJ5ocqNUqu5uTkjVFHGBWAP4RpxfDGKA5BLrNyEMi4AewjXCOMLU/LKv1ehhzIugPIQrhHGV/xl2HkNZVwAayFcI0yWUnEv0i8o4wIwIVwjikuoZO8xqNNzlHFBnCFcI0qGGp+WBw1lXBBHCNcI4jDjEOPTcZXGO8uVcXV0dKCMCyIJ4RpBspfI45wqKlfGtWPHDpRxQaQgXCOGe4ccVjy+qfoFJC7jOnXq1JoyrjfffBNlXBAJCNeI4dNuDinuGYYFD10MDg6uKePiwOXx4levXolnAYQLwjVC+HSbe6w8pvnDDz+IreHBvdWLFy+WLePi/zeAMEG4Rgj3VjmQ9u/fL7aE1/j4eNkyrjD+0YB4QrhGBI9fci+PgyhKJU7T09Mbyrj4jwfKuEB1CNeI4AtDHD5c2hRF3GPl8WTuwcqgRRkXqAzhGgFuTyuoMlnGJXvp3FDGBSpCuEYAX2mXIRMXKOMC1SFcQ46DxOtpBVWGMi5QFcI15Lh0Sfba4gxlXKAahGvIBTGtoOpQxgUqQLiGGIcIhwefBmOccSOUcUGQEK4hptK0gipDGRcEIfbhWrh/lT793zviK688pC8Hh2n6aVF83TjufXFI8LgiLtw4gzIu8FO4w3X2D/Rv5xfEF7Uq0OzIQTo4ME12mVd8eY9uXPiEjh7YRS0tLUbbdeAofXLhBt17yS8s0synf6A/m09ftXyNzuxqoe3HJ2mZvy4+oPyHO+n9kVn9JzdOnu5+/PHHYgs4ZVfGhfW+wC0hDtcVmsykKJE6Qddq7hAu07X+Nkr/3iboCvdp/PgOSuoHXnLHASNM5/SeD/d+5m6MUe4IP5akTc0p0hLdlF8RrzMU9femmQdu6wDNiq38cyczzZTO3jIDt058msvjh3yaiyvh9bMr4+IABmhEeMN1aYT2GgeERj2X1yRbFUWaz6VJa83STIVQLj69Qn3NHI5N9K5NT7MwO0LvNvF7aKfcmg70PA1tNw/WvSNLYpuwMkV9TRqlc/P6O6nPBx98YHzvw4cPiy3QCL4YeOnSpQ1lXHxWoOYfryc0NXiUjh61b6dzYzQxoXcKnr2se1+D+oU0XIt0s7+pdCCs7R3aK84PUbtdIBdvUr8RmAlqzc5U3SmLM1lq3RCuk5Th91WhV72c7yZNS9NwHSMafLBzjzWs0wqq7quvvtpQxsV/xNT6Xa/Qve8maCx3iNo0cQzoZ1Fbunr1M6wJPVC5XaBPertoS9J8XEvtpCMj9kNg4K5whuvKZerRUtSb0UPK2LFSdMLR2MASjXbqPVItQ5Nln24J7ZT+HEcdYh6eaKK+KfElWxymtP49NvRaJeP96zt8d77m4YGPPvrIeH/vvfee2AJe4AuGPK7Nf8T4983/5d+5amVc80Pbzf01oe+vYtsaxac0nXuXmozn6PtcOku3GhmTAsdCGa4LuXazt1q8RidSYqdxElSzA3ovU3++/tyyuSlCj79fqv+m2OiA3nvNWvds/esW27HgJ3rI889ppQGnXW5dVKcVVBn3WHkYxlrGtWfPHmXKuFb0syDzfVUIV2F5MmMJ2GGq9zIwOBe+cBWBKnuFswOtYueqHlQ3+1PGc7cPzYsta63uqAnqvVLL+VOB1lxk1nfkir1WYSbbYvycWkL87Nmzxmv44AZ/8XAMnzVYy7i2bdsWfBmXvq+Z78c+XPmsbCYrjxWNOkft909oXOjCdWm0kzSth0pDpqULW3pQnbhmM0Y6Q9kW++Cc6hNX+BMtlJ0RG+tQfPmCjCotG6Ugb8nq76y6OE0rqDI+e+A/ctYyLq42CKyMy3G46ixnZrVcp4D6hCxcZ2mgdX2IrtDlHhGKWidV/IP8ZJQ6jZ0wRZU6i5MZseNtuEDlgdJBsb6Mq7yhoSHj+dxbguBxkPJnEngZVy3hqh8r+W4f9/GYC1W4rug7UqrM6X/x2gl9u7nTtFYaG1jIUXuVncrXcJ0fou0Of1bcpxVUWeBlXDWFq/UCWIIyTl4AdQtRuC7RyF59p9g7ov9rPbNHa+w0lS4klXbCymEmx2TtereuKYW9trbSoAw+ePl9ccCCugIp46oxXI2LweL9taPr6qnQhKtZT8r1es2l21CtbZOo5+NW9mISX8E3Hq8criuXe0Rplw87Xilct1OF62slsleUy+XEFlCZr2VcDYRr5+gTsRW8EJJwFeOqrWfpun6qxadbG9rfPqNOu8H6UpjZ9EpXJikjSrvK95Bd5HBYgC9e8fvh8Tzc9x4uvpRx1RiuskrFyRkTNCYc4WoEY4oytlX91lKTcs+doj4RvnZjTQvD6dKNCb1XHFZbL9+i0Yk58YVD8qDQ+vR3Vtk777xjPC+bzYotEDb8x9+zMq6awlXWV3PrJHRcvRWCcDUnaNE6R6v3JK2lJu25dYXSq1dK7U/5eXIVcZeWlqbs9FOb8i490p9+Q/0dfTRZ410vi3qIGz+j0g0NOj6N5OfwQYmJRMLPkzKuWsLVUrao9VyuuN+BOxQP1yI9vWLeWbL997O2IWd6Sp93mTsPn/akh9ZOulIaU+29Yv+9jOkBm0UPNklbDg7Ql3cW6UXpmxXoxeId+uJMB7XtPEPX6rid0KyptZ90Zt++fcb/y7Fjx8QWiAJXy7gch+syXemVF2xbKVtp1iJwjcLh+mc6mZJF/Wbji1m/ubgoHl9r8eJvqHnd842W3ESn5WSr8nZZR4X7erB//wWd6WqjlOwNl5pGqbYuOjN+v/KUhbbEDQ02t8j+8Y9/pB/96Efrfi5aXBoPJTjxZFQuY2MXrgWaHZLDXY3NyAbOKRyueu/QesFKtGcVbn0qvny24bmyrfY4xR1eNd7Tz0H78pn8fs+q3n1VlTHHgf0tiK+//nrpQEOLX9M0zbgYZl/GVaRbZ+UFqvLhWnh0nXLvi7Mwrdm1ydqhunBc0HKVOTNWqvdKQxNW169I106kbCfP4HpJPmD4tJGvLKPFp8lw5eVoKjPnc+3t2mJM5m6+JkmbWnbRgdJ8rgdolzGRu/6Yfva268iIq8sMQXUxDFfd8iT1NTdTptarUC4w6nWb9F6GzY+WhehYLjt+ZLhy+RafKZVnzudqzttq027M0WNMlB2YeIYrW75FA7/6FQ3N+neSVHyQpw87+m0vgF2/ft04uFDXGk8yXLlx+RaEV3zDlfFEwsNH6fSEp7cL6Ir0YPI09f7HN1VngpcLD2K57HiSwcp3daEEL9ziHa5Csej1iVNR74VW/xmyrpUvZqHXGk8yXPl2Wf7vyZMnxSMQNghXhRw8eBAHVMzJcJV/aDE8FF4IV0VwyQ1OBUGGK8MQUbghXBVx6NAh40CyL8GBqLOGqyzN4t4rzxsL4YJwVQCX3HDpjX35DcSBNVwZyvLCC+GqAO6t8gHEvVeIt/XhOj4+bnzNN5Sg9xouCNeA8fgqj7PyeKunM9ZDKKwPVyYnS8cSP+GCcA0YVwbwgbN//36xBeKsXLhyqPI2DlkID4RrgLjERk7Q4skSIBA65cLVukBlPp8XW0F1CNcAcYkNHzBccgPAyoUr4wtavJ0vcEE4IFwDwr0ROSM9zycAwCqFq3V/4RItUB/CNSDoiUA5lcKV4UwnXBCuAbCOofHcrQCSXbjyGL3svWKMXn0I1wBcunTJOEBw9RfWswtXJqtLeH01UBvCNQCoW4RKqoUr6qLDA+HqMy6l4YOHhwUA1qsWrown0ebn8CxqoC6Eq89wrzjYcRKumIsiHBCuPpKzHL3xxhu4TxzKchKu7PDhw8bzMIuauhCuPsL8nFCN03CV8/9y7/X58+diK6gE4eoTzCwPTjgNV4aVK9SGcPUJl87wgXDq1CmxBWCjWsJV/sHG6hVqQrj6AEu4gFO1hCvDUJO6EK4+kKdvx44dE1sAyqs1XKenp43nY7hJPQhXj6FsBmpRa7gyWd43ODgotoAKEK4ek0u4oGQGnKgnXGWJH5aCUQvC1UM8vso9Vh5vXVxcFFsBKqsnXJm8pRo3p6gD4eohOckGblMEp+oNVywFox6Eq0devXplVAfwDj83Nye2AtirN1zZm2++abwWEwKpAeHqEUxsDPVoJFzlBOzbtm0TWyBICFcPYFJjqFcj4WqdhB1LwQQP4eqBoaEhYwfHEi5Qq0bClckzJux7wUO4ugy9B2hEo+GKsyZ1IFxddv78eWPHxrgX1KPRcGVnz541vgfG+4OFcHUZlnCBRrgRrnIpGP4+d+/eFVvBbwhXF6HWEBrlRriyjz/+2Pg+qLEODsLVRW+99ZaxQ+MuGaiXW+Eq57TAQobBQbi6BPd3gxvcCleGeS2ChXB1yTvvvGPsyJiZCBrhZrjyfBZyKRjMyOY/hKsLsIQLuMXNcGVyLmFejhv8hXB1gZwNPpvNii0A9XE7XHm8lb8fVsHwH8K1Qdh5wU1uhyuTf/yxkKG/EK4Nwgqc4CYvwhXDVsFAuDbg4cOHWDseXOVFuDJ5wRULGfoH4doAlLqA27wKV1kqyL1XlAr6A+FaJ2uRNspcwC1ehSvbsWOH8b1xk4s/EK51wu2F4AUvw1Xeno0bXfyBcK2DnBgDtxaC27wMV4aJhfyDcK0DpnQDr3gdrnJKTEwu5D2Ea40wGTF4yetwtU7mns/nxVbwAsK1RnIZjT179ogtAO7xOlwZliHyB8K1BljCBbzmR7haz76wH3sH4VoDuXQx/uKDV/wIV4al372HcK3B1q1bjR0SV1rBK36Fq3UpGFw78AbC1SEs4QJ+8CtcGc+HwT9r3759Ygu4CeHqkKwPvHjxotgC4D4/w5V7r1gKxjsIVwewhAv4xc9wZXJ+DNxp6D6EqwN8AYt3wFwuJ7YAeMPvcMUcGd5BuFYxPT1t7OyYCxP84He4MjknMWZ3cxfCtQo5izvmwQQ/BBGuPN6KeYndh3C1cffuXWNH55IV9FrBD0GEK+OKAf65WFHDPQhXG1jCBfwWVLjKpWCwFpx7EK4VyFOl1157DTsb+CaocGUdHR3Gz8Yqxu5AuFZw+PBhY0fDID/4KchwtS4Fg2GwxiFcy5DlKdxQngJ+CjJcmSw7HBwcFFugXgjXMj766CNjB/vggw/EFgB/BB2uPMcr/3zcMNM4hOs6WMIFghR0uDJ5qzcWMmwMwnUdOZnF/v37xRYA/6gQrpcuXTLeA88CB/VDuFpgCRcImgrhap0UHtNr1g/haoEJhCFoKoQrkxPDb9u2TWyBWiFcBf5rvXnzZmOH+vbbb8VWAH+pEq5YCqZxCFcBS7iAClQJVybP5HBM1AfhqrOOMY2Pj4utAP5TKVy59/r6668b74dnh4PaIFx1WMIFVKFSuDJZPYPrELVDuOpkXR+ujELQVAtX60KGPEscOBf7cOVhAN5xcEcKqEC1cGVYCqY+sQ9XeS817kYBFagYrtalYHDXonOxDlcuueIdmUuw0GsFFagYruzQoUPG++LZ4sCZWIcrlnAB1agartalYDBTnDOxDVc58zrmrgSVqBqujOfb4PfGs8ZBdbEN1/fee8/YUbCEC6hE5XDFUjC1iWW4ylMc7CSgGpXDlcmhNHRKqotluPIk2LyD4PQGVKN6uF6/ft14f3znFobT7MUuXLGEC6hM9XBlsnwRF4LtxS5cZUE0Fh4EFYUhXL/66ivjPfLFYJQwVharcOXxVV4qG8XQoKowhCvDUjDVxSpc5SQUuI0PVBWWcJWTHeG28cpiE66vXr3CBBSgvLCEK5PTdPKaW7BRbMIVS7hAGIQpXOUE85iqs7xYhKt1yQpM+gsqC1O48nDAG2+8YbzffD4vtoIUi3DN5XLGDoDlKkB1YQpXhqVgKot8uPJfVzk2hIXWQHVhC1csZFhZ5MP14sWLxgePcSEIg7CFKzt16pTxnjs6OsQWYJEPVyzhAmESxnC1LgXDk7uAKdLhKmvxtm7dKrYAeE8GZCMtbI4dO2a873379oktEOlwxRIuEARrSNbbwgZLwWwU2XDlwXXeSXEHCfitkYAMa7gyLGS4VmTDdc+ePcYHjZl7wG+NBGQjrw3a4uKi0XPlhhnnIhquWMIFghTXcGXca+X3j1nnIhqucrb0s2fPii0A/mkkIBt5rQrm5uaM98/jr8+fPxdb4yly4YolXCBocQ5XhqVgTJELV3lagjV+ICiNBGQjr1UFFjI0RSpceRCde61YwgWCFPdwZbIMMpvNii3xE6lwxRIuoIJGArKR16pElkLG+aJyZMLVWsT88OFDsRXAfwhX07Zt24z/l8HBQbElXjz/FBcv/oZaWlqqtF104Ohpyn15hx7V+UcOS7iAKhoJyEZeq5q6loIpPKI7X+bodG8XbRf5sL2rl07nvqQ7IhyWL39KFxeNfyrN80+x+PIZPV68Qxd6mko7zi9/d4Pm9J4m9zYfP56jG2M5OrIjaT6uNdOH+QdUFK93wjpxBG69g6DJ/bwejbxWRY4XMiw+penc+9SsJUhr7qDjHKaLZkYs3pmiC2c69Mc0SjVvomSihbIz4nUK8+9TXMhRu9hxMpNi2xoFmh1Kk2Y8p0l/zrLYXh0PmvP35UF0vksEDS3IJgOy3GPVWiOvVbHJ6QhtJ08qzFJuN3euNGrr/4aeVuhZFZ9+Q/1tmvH9ymeIWvwL1+IV6hU7TuVfzBKN7DWfk2gdoFmx1Y51sl40NDR1W/lpP5dotNMMTK07T1W7VMt56tZ7twjXNSYpI37Jdr+Y+aHt4sNI07CDcZXz588b6/igoaGp3fbv3y+O2lVLo53ibLWdcgtiYxULuXZKOwmHgCkXrjf7UyJcuym/IjYCQATN0kCrmQmJzlF6IrZWtZKnrNMkDpBa4bqiPydlPkfTf9lLYjMARNBMllpEJmwfmhcbnShSoVDLJe9gKBOuhUfXacAY1Nafk9xNw/Pq//IAnFmhe99N0MREbe27e9E+dVscTpvHu966I3iaGki4JrQUNVvqXDclxfbEP9G2f/+cvq90ubAC+QEBqOkJTQ0epaMHdlJKk/t6itL/qm87ur71UldbyhiHbA/Bqa8TlY5PHjuVj4XhAlWtAgnX347JGldui3Rn6gJ9UtrxNErtPE7j953fTVDpwwNQzdLIXrG/2l3AKdL8UDvCNeQCCddKv8jigzz1NJnPSWhpyjkcGpAfEIDyJs35L6peHV/Rj4W+KfFFuFU6Pp+MmlMTcuscdXw5KzSUCle2ou98KfE8recyORmJkR8QgPKchist0ddffy/+HW4Vj8/ZAWoVj2l6KETtKoty4Wq92SDRdIb+T2y2U/HDA1CNg3AtPngQqUqZysfnAuXaxbGeOkHXIpau6oXrk1HqFM9LpIfJSalw5Q8PQDEOwnUhl9OPluiwOz5XpvqoSTzePjTvrPdafED5//mOXokvVeVfIi0OU1r8EiuHqzmQb34YGnWOOvv7bffhASilarjyLeCZ2ISrccznVucU6fniPtleyi7M0sj77zu+HhMk3xJp+UpvaSy1XLgWX96j8eM7KCme06Q/yenULfYfHoBCSuHaQr3/vb629QKd6WjWgyZO4cqW6dbAbnHsm9VCF27M0bOXMkCL9PLZHF3NHaGdbe/TaEhq4D1PJGM+12azbk/+ko1fYPNqnWvLJnHzAG9v66Iz41X+eq1T/cMDUEQpXMvVufZS1xY+FuIWrqbC/auUO7LLUve+2pKbdtGRkemKM2apyPNEMuZzLdW02rRnL+u+Wig/AADlVR0WWKZ8d18sw9Wq8GI1G17UOYF+0CKRSAhXCA0HF7SeTE1RNIqwTHE9PhGuAH5yEK5Rg3ANMYQrhEaN4bp0756jG2lUhnANMYQrhEYN4Vqcz9G7/dfqvhahCoRriCFcISxW8t1if60SrsuT1NfcGoqF+KpBuIZYrR8er7t17tw58RWA18z5XMdyR2hHqcxIo7a+C+vqXLmNUe54F23h5zlcR84vQ0NDxkrLtUK4hpjTD0+GqlzQEMAfYj7XNTWt1du5r9WaYYDXweIl7E+ePFlTyCJcQ6zah7c+VOP6YQM0gsNVHju1hGxcj7dIh2ulUK30fACozBqusjkJWfncuIlkuFYLVdkAwLly4SqbXcjK58RNpMLVaajKxjsDGhqas8YBWu44srZyISsfi5tIhavTUEVDQ/O2yZDlDo/cFjeRCtfOztU1edDQ0IJrb7/9Nl29enXN8Rk3kQpXdvv2bcchu7i4iIaG5rBt3ry57HFkbdZQleRjcRO5cJWchCwAOGd3QatcqEryOXET2XCV7EIWAJwrF652oSrJ58ZN5MNVKheyAOCcNVydhKoU1+MtNuEqWUMWAJzjcK0lVCWEa4jV8+FxyAKAc/UeMwjXEIvrhwcQBgjXEEO4AqgL4RpiCNcwKNJ8Lm0ssd4el8WjwIBwDTGEq/qKM1lqFZ8TwjVeEK4hhnBV3PIkZZrMz4gbwjVe4np8IlzBY8s0mWkiLZ2mdvE5IVzjBeEaYghXdS3nu0lL9dIV7r2KzwnhGi8I1xBDuKqJl4ZOa02UmVzWv0K4xhXCNcQQrgoqzlMurVFrdkasu49wjSuEa4ghXFVTpJlsK2npHM2byaqrJVwLdP9qjo7saqaUZr4mkdxE27vO0Pj9gniOReER3fniDHVtSVIiM2luKz6l6dxBaktpxuuTW7rok2+eiqBn+s8Y11/TljLKw/j77zp+hR6sPgFcEtfjE+EKrluZ6qMmLU3DazLUYbgWZim3O0la84f0xdwLPQJ52yO6njVrZBMJOcygW7lJ/9W1hZLi+xqNw3X5GvW3aZTc1EItzSI8xWv7plb04H1A+Z4m/eskbWqxBLjemvqmSH8GuEj+buMG4QruMsquLAFY4iBcxVBCQuum/PqXr+SpW7w+keqnm2KzYWmE9srHfp2hk78+uaaHW5gdorQM0M4hGu3bSe/npump7KXqYftFd8p8PNFJo0/EdnCF+XtFuIZSXD889SxTvlujJr33uD4bnYTr0min0ctsHZgVW6yW6E+Hmo3Hk7vP09rvsPq9E7/+fDU0S4o0mTGHBxKJdvr9bJmhhZv9lBLfQ44sgDvM3zvCNZTi+uGpZmFYP3VvzdJM2XHLauE6Q9kWfjxF/Wu6pU7I1+qtQjIu5NrFfpLR30kZC7lSHS7C1V3m7x3hGkpx/fBUYpRdJdOUW72CtU6VcF0cprTxeDvZDcmWt0C5dvN7I1zVY/7eEa4AdZnMiHCrsZWCrHRavp2G5sU2xxCuoB6EK7jCvXBNUHe+1uv1CFdQD8IVXFF48ZgeP7ZrY/RbEV7b//Mvpe0v5LUlS7hpPZdty6GKMwP06ZT4woBwBfUgXMEn1S5o3aT+lAjIRDsNVRy7XaLRzh5a27lFuIJ6EK7gk2rhWqSb/VzYL0KyKUNXNtRULdOtbNoo9Vrbs0W4gnoQruCTauGqWzfvayK5hbqO52hsYoLGcsfN21u1ThpdEs8vWf3eboRrJ+4iABcgXMEnDsJVV5wfpXetAWttyd00cGv97QkFejSeoSb5HL3HO/5o7U0ChUfX6azs2SZS1P35PXpp7RQXX9Jfh+TttQnS0kP01zVPAKgdwhV84ixcDYX7NH6mqzTpijGpypERmt4wTGDpsa5v7TlasA4XlGlGJ3cyU/YxblXfJ4ANhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOABhCsAgAcQrgAAHkC4AgB4AOEKAOA6ov8HLExIMPBwcegAAAAASUVORK5CYII=
|
As shown in the figure, quadrilateral ABCD is an isosceles trapezoid, with the length of the lower base being twice the length of the upper base. DE is the height of the isosceles trapezoid. After rotating triangle DEC counterclockwise by a certain angle around point D, point C' coincides with point A. What is the perimeter of the isosceles trapezoid ABCD? ( ) cm
|
A. 4; B. 6; C. 8; D. 10; E. No correct answer
|
D
|
12
|
iVBORw0KGgoAAAANSUhEUgAAARIAAADNCAYAAAB0KP9tAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABZOSURBVHhe7Z1faBvXnsf1UFAfKrYPFRQcswUFXLg1NBCCwb00fkkaahaHW0q3xCRsciHXNIseapKSsjHbmHDxQ+P1gx8G7JcYmwaSBUMSu6yMt72u00AcNzapHRMviUviBqfYeRAoD7/Vb3SOPJb1Z0ZnzmiO/f3AIfHRkTSao99HZ86/iRAAACgCkQAAlIFIAADKQCQAAGUgEgCAMhAJAEAZiAQAoAxEAgBQBiIBACgDkQAAlIFIAADKQCQAAGUgEgCAMhAJAEAZiAQAoAxEAgwjQxu/P6WnTyukF2lRHgQBRAIMY5mG/7WBEvEoRSKRzRSro4aGhlyqi+XyonHad7Sbrs2tZvUDdAKRAENZo/GOuBBJklIiV5LZWKSbXzVRzH48RocHFiATjUAkwFiWB1pKiiRHhhasForaZeqp6zZUoguIBJhLKllBJFkyKUpGuUyEoskUWiWagEiAubgRCS2R1ZwTSaTZyv4FdACRAHNxI5L1UWq3y2RbJJ2TIhP4DUQCzKWiSNJ091KjKNNIPbO4sNEFRALMJS+Sj6nv3rJjHskDmh4bou7WRK6jNZqgv40+Rv+IRiASYC55kcSoTs4h4ZSIi5GabPqnP9N//Pc9+g3z07QCkQBzKXdpk35BDyZ66dN6IZRYE3VPrYkHgd9AJMBc3HS2ro1TR1zIJNpGIysiH/gKRALMxY1IsixZzaJchFoGlkUu8BOIBJiLS5FslotQQ8+syAR+ApEAY8mMd7gSyWxPgygXpZM31kUu8BOIBNQUHq59+PAhTUxM2Gl4eJgGBwepr6+PLly4YKcTJ07Q8+fPxTM22bxkKS2S9Hw/tcgp8i0WLWAMWAsQCdDOy5cvaWZmxpbEN998Q5999hnt37+f3njjDSGCyml5WfZt5PYjWb43RCfliEzkY/r75D1azs8jeUoPpq+TdUau/o1QrKmbMGijD4gE+A4HPbcquCWxd+/evAzKpXfeecdOLJiDBw9Sa2srffLJJ/nHN0WS248kP2ekTDpwtIPOXrTo1r3fCNNI9AKRAGWc4mAZOAUh05tvvmlLglsj3Crh1gm3Uri1Ugp+Xfn8TZGAMAKRgKrgwGYhlGpxvP/++3Tu3Dm6efOmfalRDRCJOUAkwDV//PEHWZZFH3zwwRZpcHr33Xfp9OnTdPXqVbucH0Ak5gCRgLK8evWKrl+/bvdXvP7661vkwa2Ob7/9tuoWRyUgEnOASEBRWCDc71F46bJnzx768ssv6f79+6KkPiASc4BIwBbS6bTdynj77bfzQcwtkWPHjtn9HSyYoIBIzAEi8Rnnuo6SKRqnREMDHTp+kaxb4VjiXkwgPNKSTCa1XbpUAiIxB4hEB5kN+qVf7l4eoY/77tGy44ZN6RfLdO9aN7UmxL1Zogn63LpLtZgvxS0MnkVaKBCeUepXp2m1QCTmAJHoYsmiZhEEyVLztzOr9L9d+4RwopToTAUqk59++snuMJXByjLp6empuUAkEIk5QCTaSFFSBEFJkdisUSpZLwImSu2j+lXCojh16lQ+SLkPhOeE8OVNmIBIzAEi0YZbkWRZz5aVm+/Ez9OUxoVlPA/krbfeygdoW1tbaIMUIjEHiEQbHkSSxbnUPZny3yS8wtY5kYyHdXkUJsxAJOYAkWjDm0hosjPfORvvui0y/YHXtciVtmG9jCkGRGIOEIk2PIrE0TkbaR8lP7bfYVnwtHUZjLxozqSAhEjMASLRhoJIfLi15IMHD7aMyPB8kCAnk/lBcZE4bsHpNsW7yN82HigEItGGgkg6xpVu5sRT2+WlDM8J4bUyJlKuRZL+7SfqaRHzcIrukJahjcc/kfUpj4hV2NMVKAORaKP6PpJqNyjmFscXX3whgsu8S5lCyomEcbPVImVuU1c9RKIbiEQb3kSyOWoTp/NVjP+yRJw7ipl4KVOILyLJMt/bC5FoBiLRhgeROOeRNPbSvMh2C+8yJod2X3vtNXuuyE7AL5EA/UAk2nArEufM1nrqnPQ2XsML6t577z37+Ty0yxsL7RRURZLKClW10xq4AyLRhee1NjE6PLDgqZOVR2bkfiHcufrDDz+IR3YGaiKZpZ52iCQoIBIdFKz+/ev1p+RY/Ltt9W808TlZd1Y9S0Su2OV/g9hoKGiqFkn2/C9+105xH4bRgTsgEp/Z/HKXSzGqazhARzsu09D0Im147FvloHIu+98NqbxISiSIJDAgEsPgPhHeaJkDpdStH3Zi8nZpk6GNX/qppQUiCQqIxCB4dKapqckOHm6RzM3N5QONR2t2UkcrU/WljU2GxvshkqCASAyB54R89NFHduA4O1ZloHHaaTJREwkIEojEEPgOdVIWo6OjIndTJHIyGuaRgFoAkRjA119/nQ8oXkfjROYXzmzljZxNByIxB4gk5PDmQzKYLl26JHI3kY8xhWttTJcJRGIOEEmIefLkSX5bRN4SsRgy0JzwOhuZb7JMyokks/EL/Vd+O4E4tX/nfRgd+AdEElK4dSHXz/Awb6md3WWgFeKUCd9awkSKi6T8fiTNFsZpagFEElL4Tv4cGLx+5s6dOyJ3OzKAiuGUCf/fNMq1SEC4gEhCiLNfpL+/X+QWR5YrBe/PKsuYJhOIxBwgkpDBASP7RXjItxIy0MrB/SSynEkygUjMASIJGdypyoHDq3p5JmslZKBVwimTEydOGLHpEURiDhBJiHBe0rjdEkCWd4NTJjznJOwygUjMASIJCXzrCLm3yLFjx0RuZWSguYUntPHsV35O2GUCkZgDRBISZKco7/rOK3zdIgPNC7wexwSZQCTmAJGEAA4SHublgPE6gUwGmlecMuHFgG76Y4IGIjEHiCQEyA5W3nvVa+tABlo1OGXCk9/CJhOIxBwgkhozMTGRD5Zq9lyVz60WXkksb6YVNplAJOYAkdSYgwcP2oHipYPViQw0FVhgYZQJRGIOEEkNka0Rvrx4+PChyPWGDDRVnDLhewZ76fDVBURiDhBJDZGtER45qRYZaH7glAnvC1trmUAk5gCR1Ahn38jMzIzI9Y58Db9gmcgd6mstE4jEHCCSGtHa2moHSKl9RtwiA81PnPfMqaVMIBJzgEhqALdAZICU2yLADfJ1/MYpE94Phf8OGojEHCCSGiDnjXAfiSoy0HRQeDe/oGUCkZgDRBIwz58/z08C+/7770Vu9chA0wXLQ64BClomEIk5QCQBI1fg7tmzR+SoIQNNJ9xHIu/uF6RMIBJzgEgCZv/+/XZg8C0m/EAGmm6cMuGFhdXMwvUKRGIOEEmA8C+5DAy/ftXl6wWBUybOu/3pAiIxB4gkQOSNrrhV4hcy0IKCZcIzX/k9dcsEIjEHiCRAuF+Eg8LrVgHlkIEWJLwWR94qQ6dMIBJzgEgCwrmuhkdu/EIGWtA4ZcJ7qei4eTlEYg4QSUCcPn3aDgie0eonMtBqgVMmLEi/ZQKRmANEEhCyk7LSfWq8IgOtVrBM5OJDv2UCkZgDRBIA3EGpKyDk69YS3tWNVzDzcfgpE4jEHCCSABgeHraDgdes+I0MtFrjlAknPzqUIRJzgEgCQPaPnDp1SuT4hwy0MOC3TCASc4BIAkD2j3DLxG9koIUFlgnfalQel4pMIBJzgEg04+wf4f/7jXztsMH3GJbHVq1MIBJzgEg0I/tH+FYTOpCBFkacMqnm5uUQiTlAJJqRwVRNILlBBlpYUZEJRGIOEIlm+C52HAh9fX0ix19koIWZamUCkZgDRKIZHvLlQPBjE6NiyEALO9xPIo+VZeLmjoIQiTlAJBpJp9P5QHjy5InI9Rf5+ibglImbm5dDJOYAkWjk/v37dhDwojZdyEAzBXm8XhNEEm4gEo3wVHEOAt6/Qxcy0ExBHq/XBJGEG4ikBOtjF+jC5Lr4qzouXbpkB4HKnfQqIQPNFOTxek0QSbiBSIqyRFZz9gt85AqtiJxq4BuDcxCcO3dO5PiPDDRTkMfLiVtsckf9YjcvRx+JOUAkRchMnae4/QVupN55kVkFcnm9ZVkix39koJmCPF55zOVkApGYA0SyjRUaaYvmv8DRkzeo2gscubepn3t0FCKP0xTk8TqPuZRMIBJzgEgKme+lxsgRSiYbxZf4CF2p8vpGziHhbRZ1IQPNFOTxFh4znyPe/5XzWSa8HSVEYg4QyRbWKZWM51ohK1foiPgSN/bMUkaU8ILc7Bki2UQeb7Fj5k2kpUx4xfTPP/+cLwuRhBuIxIktjzidn2JtrNONk+ISJ3qSblRxfRNEEMj3MAV5vKWO2SmTRCKRL+v6HGY26PenT+2V1r9vVKN/UA0QSZ4M3e6qp0hjL8n+1c1O1wgdqeL6xnMQVIF8D1OQx1vumJ0ykansOcys0ty1bjq6L9uajMYp0dBADQ0JikcjFI1/SGesCXqUFmWBFiASyfoNOpn94m0Vxjz1Noovc30X3fbwA+fch6RwWNNP5HuYgjzeSsc8MzND8Xg8X/bXX38Vj2wlPX+FPk9kW46xJvrq5iJtaYRkWyeLN7+iplj2Neo/pSvzsIkuIBLBktVc9BJm5coR8WWO0kkP1zf8CyqDYHBwUFsK4j38TPJ43RxzZ2dnvmyxFsna3R5qyco/Em0ha6G05TMLliiXoM7UmsgFfgKRMJkpOh+PUPz81PZOVdFSsb/QHiaoyXU2SP6kbSJZG6eObJ3xY24uO/M/CNF2GoVLfAciybI22k7R7JcsVsfX1oUpd62d+0LLjtjKcNOcJ6TpTjLQdnrauk2l6M/ix9x2hDt+EIr+YAAlIBLRDxJt/46WRW//tjRxnurFF1plghrwiUyKklLubSP0TGSX5xmNtInnVDkKB0qz60WynkpSPNJM1pLIKMoajbbL2a6VygLt3O7Kj6bFu26LzMrc7pKdt1HqnBSZwBd2uUhyi/Pqs1/Gik1de8ar+PImU2iV1JKs/HNCiFCzB6vbHerieW0j7toxwB27WCRpmu9vsftG/nrTxbBg5g795z/nvoSRSD0lx1dxnV0rfBCJl+eByuxOkSwP07/w3ALxpeLEHa0X/yEeL+AfFxuorqA8p2j8LzSsb67ZFlZmxmhszGOa8T6JzggcIjnQvyAyK+MUSbZRCXxkd4rEMY3amV6UaJikX2wvm0u/b50ApZG5q2fpbMdR+pNDaI1/yead3Z6OH6qjGJfZqdGyZFGzOAeRjnHXLcPNPhL0c/nNru9sNQ3ntP1ynlgb77D7cnYmjhnHDT00K3LL4xi1cSyDAP4AkZiG49e4vCdmqefkAAV05RU4KyNtdv+W67k9+dXcUWrHjDTfgUhMw7VIMjT7P5Mu51iYyBINtOSG5KNtIxVmHK9RKpmbwFafPWnQiP9AJKbhRiRrj+nxbhifXrtLPbZMotTSc7eEINbobk9udC52eIDKLMkBCkAkpuFGJClr93QmZh7T+FdNdudyrOkMWbfuiRnKD2j6ukVnmmL2Yr3PrTu0ColoAyIxjYoiydDU+bZdNyqR2Vik6aHL1HH0QH6d1KHjZ+ny0DQtYoMj7UAkpuEQycd/L5w7cp2sM/zrjOFNECwQiWk4RFJsHsnxD+MUhUhAwEAkpuHi0ma25yREAgIFIjENN52tc5M0iTVpIEAgEtNwIxIAAgYi0QQHuky+4lEk64uLSvcvriXaziHwHdSQJrQFgReRrKUo+W9qN0KvJdrOIfAd1JAmtAXBbA81iNctK5LMAg0cjlH7qLlTXLWdQ+A7qCFN+B0E9n4kQ93UyvdwEa9b/2kvXd8yjySXhi4fpw/j2XKG703q9zkE+kANacLvILD3IymYM1IxDVd3z+Kw4Pc5BPpADWkCQaAOzqE5oIY0gSBQB+fQHFBDmkAQqINzaA6oIU0gCNTBOTQH1JAmEATq4ByaA2pIEwgCdXAOzQE1pAkEgTo4h+aAGtIEgkAdnENzQA1pAkGgDs6hOaCGNIEgUAfn0BxQQ5pAEKiDc2gOqCFNqATBq1ev6OXLl+KvnQF/Hv5cXlA5hyBYUEOaqCYIONAGBwdp7969NDExIXJ3Bvx5+HPx53MrlGrOIagNqCFNeAkCp0Dkc3aiSORncysUWZ4TCDeoIU24CYJiApFpJ4tEpkpCcZYF4QY1pIlyQVBOIDLtBpHIVEoozjIg3KCGNFEsCNwIRKbdJBKZCoXifAyEG9SQJpxB4EUgMp04cYIuXLiwYxJ/nmKfs1iSQnHmgXCDGtKEMwi8CASpeALhBjWkCWcQHDx4cMvfSN4TCDeoIU0UBgH3EXgRyrlz5+zm/U5J/HmKfc5iic9TYZ8KCDeoIU2UCgK3QtmNna1SIBLnYyDcoIY0USkIKgllN4mkUCASZxkQblBDmnAbBKWEUkkkmdU5unb5Ks2Jv8NOMZGUEojEWRaEG9SQJrwGQaFQSgVY+tEE9Z74E8XscklycR/xUOAUSSWBSGR5TiDcoIY0UW0QSKEUDbTMY1pc3KD0/w3SEfu1zRKJW4FIqj2HIHhQQ5pQDYLC6eJbSVHSfm1zRFL+8xRH9RyC4EANaUJvECyR1exGJBnaWJymocu5ewFftG7R3GrB3YAzG7Q4YdHFq7neFu57uWVdzJa/TNfmVjfvHZx+RBN2/kWyJh5RWmTrRO85BH6CGtKE3iBwI5I1muraR7FEK3UPjdHYUDcdqs8+J5qgztRa9vFnNNl3kv4cF8eZTNHaVBfti9dRQyJOUfvY66lzcp3S8xYdjsWorqFO9M1EqWVgKfc2GtF7DoGfoIY0oTcIKokkQ7M9jRSpzz7OzhA8G2nLHVPLAC2LvMx4Ry4vcYguji7Sht0EydDqtfacTBqb6Oi/X6NHogmSWeinZs6Pd9HtXJY29J5D4CeoIU3oDYIKIlm5YnfGNlsFrYbMKs1NjtG0tAKTSuaOM9si2UJmnDo4/0A/LYisHG4vq9TRew6Bn6CGNKE3CMoHs2x5FLqhKEtWroWxrbDo0G22su/mBCIB20ENaUJvEJQP5iWr2X5fiAQEBWpIE3qDwJ1I2kaeiZwyQCTAB1BDmtAbBOWDeX20PffeR67Qishzkpmd3ZxaD5EAH0ANaUJvECxQ/4EywfxshNrs945Tx7hj2IZZu0uXkg45LPTTAS4LkQAFUEOa0BsEIsgjHTReML8shxj+tcvEqOmMRdfHxui6dYaaYrm5IZL88G/H+ObkM2Z9lNo5v6GHZkVWDimxA9S/dTjHd/SeQ+AnqCFN6AkCnkR2lo43xfKvHWs6Tmf7JrOPFLJGU91NYgKZSNEE/W30sRAGv9bxrFjk41nhHD9LPMF17qrzPaIU//A49U0+o2eTfdTRmhCT1SIUTbRSh5gRq4P8cWcTCDeoIU3oCYJ1WvxxjMayrYst6cfF7CPFSb94QNNcZvoBvdgyr734a82sEK3MbM//cXGd1hd/3JY/xk/QhJ5zCHSAGtIEgkAdnENzQA1pAkGgDs6hOaCGNIEgUAfn0BxQQ5pAEKiDc2gOqCEAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAEaL/By2dyrlbIdvmAAAAAElFTkSuQmCC
|
As shown in the figure, the square DEOF is within a sector with a central angle of 90°. What is the length of OD in cm?
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
D
|
13
|
iVBORw0KGgoAAAANSUhEUgAAARIAAADMCAYAAAC/dCzIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABesSURBVHhe7Z1xaFTXnscHWhgpndI/HBA0rBBhChpQKCKkYAJiK/tYIpXWSoN2w0JfamEeNKtiS/O2StnNQs1j2cAOa/6oolsf5o+AwZRNmic1TX1U82w2JAYD1hK1JCXpH4Hxj9/O7879TW4md+7cO+eemXvi9wOHOGfu3Ln3nvl9POfcc8+JEQAAKAKRAACUgUgAAMpAJAAAZSASAIAyEAkAQBmIBACgDEQCAFAGIgEAKAORAACUgUgAAMpAJAAAZSASAIAyEAkAQBmIBACgDEQCzOPbM5RKpcqk3XSw/QSdu/gdTS9l7Q8CXUAkwDyWF2hubpKG/9hM8ViMYrmUar9Cd2bncvmcZunOyEU6+7t6+/0Evd79A83bHwfhA5EAgxmitC2SxsyMneckS48H01RnbROn5sxULgfoACIBBjNFPbu9RMJk6ebppLVNLN5G1xbtbBAqEAkwmBnKNJYTSU4lg+15keRqJR0jdiYIFYgEGIw/kTy63GKLJEVd43YmCBWIBBiMH5GsbBOr66QxdJJoASIBBuMtkuzSNF39vX3nJl5PHUO4b6MLiAQYjKO2EUvQZsc4kvpk3M6PUd3bf6Lh+8v2Z4AOIBJgMCsi2f3vf7XHkOTT5Hd9lDl1kLYn8u8nth+jzK3HuP2rCYgEGIyPPpL5H6irWWondZRG80YLEAkwGB8iYWYy1GiJJJcaumnCzgbhAZEAg/EpEsfAtVjsLfrzL3Y2CA2IBBiMX5GMUWfSFkm8gzAmLXwgEhBZfvrpJ5qdnaXbt29bf9cyQh3x8iKZH2ynpFUbiVFd5xg6XDUAkYCq8ssvv9Do6Cj19vbSyZMn6dChQ9TU1ESvvPIKbd26lTZu3JivORSlTz/91N7DCtmpnkLfh6tIln+m0cwRqrdlE2/O0BQsogWIBGiDaxJdXV10+PBhevXVV+nll19eJYcgaZVIrPlINlOiaJvEZsd8JPXJwhQDic376cMLt+gxJKINiASExuTkJPX09Fji8JIGv8di4e0+++wzq3bS19dHw8PDdOPGDasZw+np06d07Ngx6zOrRGLNR7IyZqR0WiAMQ6sOEAmomOXlZUsAHOxbtmxZI4znn3+e9uzZYzVhMpmMJQlu2gTBVSQgckAkIDDcx3H8+HHX/owdO3ZQOp2m/v5++u233+xPVA5EYgYQCfAF30HhZsi2bdtWiePFF1+0gv3SpUtWcyJsIBIzgEiAJ9xvsW/fvlXy4CYL53355Zeh1Dq8gEjMACIBrnDfx2uvvbZKIDt37rTuwnDtpFpAJGYAkYTOj3TlxAk6USadu3idro/codmFaN1XYIGwMEQeXPvgYOZbubUAIjEDiCR0HtLt69fp4tn99uzluRRP0t6jZyjTl5NH7r3rfRk6c3QvJe2BUontB+nswP2a3qosFsiGDRusIL537569RW2ASMwAItFGlgbbbZE0Zsh1APfyfRro2FUYOFXX1k8Pqjxo6u7du6uaMCwQvuuio+O0EiASM4BINDLelfIWiUWWpjIrCz3VdYxQNVZM+PXXXy1hcNMligIRIBIzgEg0MpNp9CESZp76W1cm3+nUPEMxDw5zjgF54403at6EKQVEYgYQiUb8iyTHRDc12IEdb7umpVbCHaY80lQEwqNRuW8kykAkZgCRaCSQSGiculL5AI/F0zQUcqXkiy++KDRj+C8PW9c9BiQMIBIzgEg0Ekwkjs7ZWCN5ztMTAO4LaWmRBaJiVscqP1xnChCJGUAkGgkmEqKhtIgkRukhO1OBW7duWXN8yD65FsJP1JoERGIGEIlGKhdJkjrH7MwKcTZluGN1YGDAfscsIBIzgEg0Ekwki9TfKiJppvNuMwv6gPs9ipsy1RzSHjYQiRlAJBoJJhLHBMXJztyr4PBcH87BZSY2ZYqBSMwAItFIEJFkb54uTFDc0B185RWudfC8p/x5Hlx25coV+x2z8RbJyizyvlOFkgbeQCQa8S2S7BT1SEDEW6k/4GJwfBdm06ZN1ud5fhCeiWy94KdGsvzzqGM1vTSt7afO0tKDUcq8VVfifaAKRKKRsc5k/sftJZLsYxpM8w+cgyD4kpIsDZkflWVi0q1dP/ht2hSk7SWKbK75WAeR6AAi0cY8XX2bf9ilRJL7X3J6gE7tSeS3Seyhs38Jtsg1N1+4BsKf52aNyZ2qpQhVJDkmurshEg1AJKGTn4/k6N6V5RB4GoH63QepXeYjaT9IuzfnBRJP7qKDZwfofsA5BPh2rtze5Q7WoJMqm0LYIgF6gEhCJz8fiTXviEcauTNLcxVOasTNGamJPCtJVSRDGT93zkClQCSG4exY5bVhnMG2ntMnn3xiXwF3vEUyTl2tEIlOIBKD4LlCRCLcJ8KvncHGiUe0mg6fl9zKllRxjSS7RNNftVLS11geUCkQiSE4g4tlIotqS6DxpETyb56g2VSc5+lsvvkXSYkEkWgFIjEAXtFORqxycDlv8UqgME6Z8L9No1gi3Bck51N5H0mWlv7WQ83NEIlOIBIDeP/991cFlxMJNIEXsZI8k2TiJhFGzkWtszVLgz0QiU4gkojDK9hJMPGCVMXIe064n0TyTZBJKYkwch6qd22AXiCSCMP9IDJqlcdTuCGBVkyxTKL68J6XRBg5B4gk2kAkEYUDX27v8sLcpaZFlEBzwymTQ4cORU4m5STCyPFDJNEGIokoPAWABBivPVMKCbRS9Pb2FkbARkkmfiTCyPlBJNEGIokgPPxdAohF4IVs5wU/kxMlmfiVCCPn5yWS7NLf6E+F6QSS1PrVNC1VeaGxZx2IJGLwZM0y6KxUv4gTCbRyFMukVjPIB5EII+fnLhLv+Ugaw5pBG5QFIokYMhaEJ232E+wSNH5wyoTHpVRbJkElwsj5lWvagNoCkUQInvVdAt3vwlUSaH75+uuvrSDmz1RTJpVIhJHzg0iiDUQSIWQVPF5C0y8SaEHgIK6mTCqVCCPnB5FEG4gkIvT09FgBw/OtynM0fpBAC0qxTHTNZ6IiEUbODyKJNhBJBOAgloFnPMQ9CBJoleCUCQc7B32YqEqEkfODSKINRBIBZBawbdu2WQ/oBUECrVJ4YfHiqQnCIAyJMHJ+EEm0gUhqzL179wodrJWshieBpoJzsqQwZMK3sMOQCCPnB5FEG4ikxkhtpKmpyc4JhgSaKsUyYcFVAnfcOqc8UJEII+cHkUQbiKSGqNZGGAm0MHDKhP865z3xQ9gSYeT8IJJoA5HUEKmN7Ny5084JjgRaWDhX7AsiEx0SYeT8IJJoA5HUCA7YoIPP3JBACxNnR6kfmeiSCCPnB5FEG4ikRshQeJXaCCOBFjbFMuFRt27olAgj5weRRBuIpAZwkPLAMw4Qt1nPgiCBpoNyt3B1S4SR84NIog1EUgM4KDg4eNyI6iP9Emi64Fu5brKohkQYOT+IJNpAJDWABcLBEcayERJoOimWxuDgYFUkwsj5QSTRBiKpMhx0HBjc0RrGot8SaLpxyuS5556z/uqWCCPnB5FEG4ikysjSEkGe8PVCAq0aPHr0iF566aXCdwZ9LqgS5LsgkmgDkVQRfo5m48aNVmCodrIKEmi6cdZI5LY1/+XJknQi5weRRBuIpIrweBEOCm4SBH04rxQSaDop7iP55ptvrOka+bVumcj5QSTRBiKpIi0tLVZQ+JmL1S8SaLoodXeG7zY5ZZLJZKz8sJHzg0iiDURSJfg2qowdGR4etnPVkUDTQSmJCE6ZcOJ1dMJG9g2RRBuIpEpIs4ZHiYaJBFrYlJOIExmlyylsmch+IZJoA5FUCQm2w4cP2znhIIEWJkEkIuiSiewTIok2EEmV4GdqOCB4btYwkUALi0okIjhl8vHHH9u5asj+IJJoA5FUAe4fkYAIMrGzH2S/YaAiEeGjjz4qHBOLRRXZF0QSbSCSKiD9I7zoVdhIoKkShkQE5+LlqjKR/UAk0QYiqQJS5Q/ztq8ggaZCmBIRwpKJ7AMiiTYQSRWQ/pGwRrM6kUCrFB0SEZwyYYlW8qSzfB4iiTYQiWZ4zRoJBtXZ2d2QfVeCTokILBMZUs9jToLKRM4PIok2EIlmRkdHrUAIe/yIIIEWlGpIRHAuXh5UJnJ+EEm0gUg009vbawUCB60OJNCCUE2JCJXKRM4PIok2EIlmTp48aQUCTx+gAwk0v9RCIoJTJvv27bOOpRxyfhBJtIFINCMP6oUxG5obEmh+qKVEBJaJHHOQBJFEG4hEMzt27LACQWXJCS8k0MoRBYkIcsxBEkQSbSASzUhVPuiqdX6RQPMiShJh5JiDJIgk2kAkgVmk67kf9cii/dIDlocEQiVjKPwg+y9F1CTCyDHLMfFfHmvjdntctoNIog1EEpSZDDXmftgHLjy0M0rT399vBQGvDaMLCTQ3oigRRo6ZEx+TTD/J16lYJrIdRBJtIJJAZOnm6WT+x93QTRN2bink1m9TU5OdEz4SaMVEVSKMHLMcN9fceJwNvy6WiWwHkUQbiCQIDy9TS1yCIE5t17zbN7USSZQlwsgxO4+7lExkO4gk2kAkAZjobqDYgTSlG+xAOHCBvBo4/OPn7d599107J3wk0ISoS4SRY3YeN+OUyZYtW1b1MUEk0QYi8cviEKWT+VrIwwsH7B94A3WNZ+0N1iIi0fHUryCBxpggEUaOWY7bCctDViIUqXCCSKINROITSx7J03STvbF4jdrsJk687RqVauAcP37c2iaMCX5KIYFmikQYOWZObnCzRhYvl1RWJMs/052r5+jo/hRtTsjnErQ5tZ8+zAzT9FJp4QN1IBI/ZMeosy5GDd3SverodI0doFI3cLgm4isIFJBAM0UijBwzp1IUy+SDDz6w3ykmSw8GT9GenDzi9Ueoe3iSFmTJoOUFmhzupiP1cYrF6+n3/Q9yWwMdQCQ+WLzWRvFiYUx0U4P9I6/rHHP9gfJEz/w+10h4ikUdSQKN0wsvvGANQXfbLkrJecxu70v6/vvvC9u999579lV1skwTPc25sslJpDlDU6UskZ2iTHNOJrE47eq8SfN2NggPiKQsM5RpdGvCPKQLB+yAiLeR2w0cvlsjgYCkltxqdfP9rZZEYvFW6i9nh/l+arWao3FquVx+DBAIBkRShuzN05SMJem01TmymnxNJf9DdxugBpGEl9aIxOr8zr+XPH3TR5PF0RwtIX5QORCJJ/PU38pVYu60S1GqONUnCyIpdMQ64Ha+W5UdKXjimfidPLqcf6qaaxgdI3ZmOUY6PMUPKgci8cLqB4lT61ezlhTc0vDpusIPutwANRAWiznB2wKPNdN5vyt8zJ6nZlsksZbL9MjOBupAJCVZpKF0rircmKEZO8eVQts7l8ptq8LD23T9+vWA6bbngDlzyfdb5UWSpiE7tzy55pCIJNVF43YuUAciKYX1cF4ddY6Vb31bI16tH2iS0kOaaiU/XqETJ9rp4PaE/V251PBmLu/E2nR0vz2WIkiQmUQIIlm316Y2QCRuLE9Qj3W78J9oQMYkeJC99S/0d/IDrUvT4OPy8qmY7E06bXcyxtIeoTA/SO1JiGQ1DpHs7qEpOxeoA5EUMXvpHyghPzYrcUfrGfrWfn8139KZ1Oai7TnFKfnmJQp3cU7BEUReIskx3tXmv//AKJx9JI2U8dueXMw1Q6WMWvtLjkgGwYFIisguPXHpVF0g94rJMi2s2dZOT5Y0jaL0L5Ls+P/SyDrtUVy5axOj9kGfV3q8i1L2Z1ouo6s1TCAS4/Ajknl68GCd/3/r83knJ4W+LG7yoToSKhCJcfgRyRBlfNf3zeVhrlaSHxfio3lj9RnxtnWUHsIg+bCBSIyjvEh4NG7LMyASrnnd7NxlySTe3EMTpTrGC53ncWrOTOHBPQ1AJMbhEMnf/+uasSN9mQ+tJ2EbnwmRMMs0ceEI1eeaOcVP/3J/V+Hp38QeOjWIp391AZEYh0MkbuNIju6lZC6onh2R5MkuTdNw5hQd3O24ixZPUv3ug3QqM0z3fdzGB5UDkRiHj6bNeBe1PWMiAbUFIjEOP52tP9LIer3vCyIJRGIcfkQCQHWBSIwjoEgWp2kaT8wDzUAkxhFEJPM0lP7HknPKAhAWEIlGrGC3U3iMU1fKj0iyNHX+dUoY/kyJnmsIwgalo5FQg8Caj+Qinf1d/cqsbHVvUXff6nEkVrp4jo7u5dnbzJ9sKdRrCLSB0tFIqEFgzUdSNGakbLpEHut3GUGo1xBoA6WjEQSBOriGZoDS0QiCQB1cQzNA6WgEQaAOrqEZoHQ0giBQB9fQDFA6GkEQqINraAYoHY0gCNTBNTQDlI5GEATq4BqaAUpHIwgCdXANzQCloxEEgTq4hmaA0tEIgkAdXEMzQOloBEGgDq6hGaB0NIIgUAfX0AxQOhpBEKiDa2gGKB2NIAjUwTU0A5SORioNguHhYerp6bFfrR+OHz9Ot2/ftl/5o9JrCKoLSkcjQYOABdLU1GRtf+zYMTt3/bB161br3FpaWnwLJeg1BLUBpaMRv0HgFIik9SwSSX6E4tweRBeUjkbKBYGbQCQ9CyKR5CUU53YguqB0NFIqCLwEIulZEokkN6E43wfRBaWjkeIg8CMQSYcOHaLZ2dl1lbZs2eJ6rsXJKRRnPoguKB2NOIPAr0CQVhILxfkaRBeUjkacQYCknkB0QeloxBkEvb29tG3btlV5XmnTpk1WLWY9pQ0bNrieq1vauXMn9fX1rcoD0QWlo5HiIHj69KlvoTyLna2cRCCC8z0QXVA6GikVBH6E8qyJpFgggnMbEF1QOhopFwReQvElkuwSLSyZs5Sem0hKCURwbguiC0pHI36DwE0oniJZvk/DmQ9pTyJGjZkZOzP6OEVSTiCCbM8JRBeUjkaCBoFTKKVE8uAv/0X//T8XKd2Q369pIvErECHoNQS1AaWjkUqDgIVy9+5d+5U7M5lGa78mieTGjRv2v/xT6TUE1QWloxGdQbDY32rt15dIlhdobm6O5p4skXuPSpaWnizQsv2K+16e5LZfKGTY2PlPqtgvo/MagvBA6WhEaxAMpa39eopkeYIuHNtOicRmSqU2UyK3fbz+CGV+mLff/5nuXD1LB7cncvtK01BOJRMXjlB93D7ueD11DPG2WXoweMrqk8mfT4JePz9VQkrhItePE4guKB2NaA2CciJZHKOzu+JUlx6kx3bEZ3/4nFJ8PPE2urZINP9/d+jO6OfUaB3j2/T5f/6B/pAZpsm5WRrNvEV1nJ/8Z+rNvEn7T12k7ybnaHL4j9RsieYAXXiY369OtF5DEBooHY1oDQJPkWRprLMuJ4HTdHNVtWGG/nxsN6X2/xuN5USSZ4jS1jG+TV+JcSwe0oUDnJ+k9oHHq2of410p67vTQ3aGRrReQxAaKB2NaA0CL5Fkc3LgWkP7oI/mxzh1pfgYuWmzmqE05zdS8VdIRy9EAgSUjka0BoGXSGYy+eaKr0ifoUwjHyNEAioHpaMRrUHgRyS+aiQQCVAHpaMRrUHgJZLZ89TM37umj0RYpuXCrV2IBKiD0tGI1iDw7GyVfo84tVxee2slO3aO/mPMfgGRgBBA6WhEZxDMnm+29usuklyw596P83fHd1HHwDRZY8iySzQ90EG7Xu2i8UJNZYQ6rNu5wUXScvmRnaMPndcQhAdKRyNagoBHqc6OUk9L0tpvvLmLRmfdRqE+oP62ulXHYKXE63R+Km+R7NITmrzalh8vEqujtquTNMc74u+Y/Ipak/nPNH48TJM8KpZHtua+u6s5buXnv9sxIlYDzmMH0QWloxEtQfDtGUqlUmvSmW/t91exTPcHztHR/bzNfjp67ir96BgrMnvpnTX7SfGO3L7jnUs0O3uJ3inOT50h168OCS3XEIQOSkcjCAJ1cA3NAKWjEQSBOriGZoDS0QiCQB1cQzNA6WgEQaAOrqEZoHQ0giBQB9fQDFA6AABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABFiP4flzOdsVUh6wsAAAAASUVORK5CYII=
|
As shown in the figure, quadrilateral DEOF is a square, and the diagonal OD = 1 cm. Then EF = ( ) cm, and OD and EF are ( ) to each other.
|
A. 4, parallel; B. 1, parallel; C. 2, perpendicular; D. 1, perpendicular; E. No correct answer
|
D
|
14
|
iVBORw0KGgoAAAANSUhEUgAAARAAAADNCAYAAABw3S9QAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxKSURBVHhe7Z19aBv5mcf1R2FaWtFSVrDgNRdwDxdSwxqKMbhHYih5oabYtOT2ljUOl72yK9jDBzFZk3Dro8mlXbUk3oUzVJDAxiaGFLtgSBoXnHpf8oKvsd2NMU5NDFmH2Buc4pRDoP7x3Dwzv0ceSSNpNBppZqTvB34QjeblN2M9n8zvPUIAAOASCAQA4BoIBADgGggEAOAaCAQA4BoIBADgGggEAOAaCAQA4BoIBADgGggEAOAaCAQA4BoIBADgGggEAOAaCAQA4BoIBADgGggEAOAaCKQOeXDtFJ06VSKdTdL0zbu0+jyljgKgfCCQOmRz8SbdnDhHh5ojFIlwilH3SRaGvp3TdJLODhygmMbfaRQ7cI4+3k6rowFwDgRSx6Rn40ogXZRcVxstpLcXKNGtmfs0D9LcjvoCAIdAIPXMcoJaiwjEYGeG+o03kQjFTt8mvIeAcoBA6pn1JHWVEgjt0ky/KZBIbITuqa0AOAECqWcgEFBlIJB6xolALEUY7cR1XScAOAcCqWdKCSS1QuPHms23D62bLhV8SwHAHgiknskIhJtqByz9QOLU19GimnGjtL/vHM0+RvUpKB8IpJ7JCKSV4h+pPiBGmqCL8T5qj5lNuNGmQ/TO+AKhKwgoFwiknilZB5KilfFj1GzsEyGtO0lrkAgoAwiknnFSiUppujei6kH0dHR8U20HoDQQSD3jSCA6mQ5neuqfQUsMcAwEUs+4EcjgnNoIQGkgkHrm3gjFSgokrfujzZRHRKMT1/H+AZwDgQSU1dVVmpmZoUQiQe+99x4dP37cSD09PXTw4EHq7Oykffv2GekrX/kK3bp1Sx25x87UPysxFBBIepsWknuVqM362wfG04FygEB85O9//zstLCxQMpmkkydPUm9vL333u981hGAGvvNkFYgxH0hmuD4njWIth2jAMh9IvK+DmqLq++h+Op5EMy4oHwikxrAwzp8/T0eOHKFvfOMbGQHkJpYIy4TfOPjN48yZM8abyIULF+jy5ct05coVQxovv/yysb9VIMZ8IJk+H0XS3VV6+vQ5YUoh4BYIpMr85S9/MYKe3y6+9a1v5YmCJfLDH/6Q3nrrLaO4wsUWLr7w24kTuAiTKxAAagUEUgWePXtmSOP73/9+njC++tWvGnUY/BZy584dx6IoBAQC/AQC8YhUKkVXr141ihy5dRhc4fnuu+8aQc77eQkEAvwEAqmQxcVFevPNN/PqMziwuc6CizDVBAIBfgKBuITFwfUaVmlwHQfL5JNPPlF7VR8IBPhJ7QWSek5Pnz4tkYLbMsCtKLni4DoNLr54XTxxAgQC/KT2AvnsLLW2NlHUEoBG0mLU0tqqf9dKLWqYuRZroUMDF2lq6YnvQuEAZVFY88yf/Q5cCAT4iW9FmPTamBqnEaGOX/05TxCpJ0s0NdyZEU208xzd9qGb5MbGRt4bB3/mN5EgAIEAP/GxDmSehlRPya4iI7127ieoW3pU1nDtEm5e5aZWbna1ioPrPoIEBAL8xEeBrFOyq7RAmJ25wcx4jVh8turjNTgYuReoiIP7c3CfjSACgQA/CYVAdIXQTL9aQS3SRqMrarPHcAXuG2+8oa5jtqqMjY1V3NmrmkAgwE9CIhCitP4WoqnAbk0sq63eMT09ndXVnEXCQgk6EAjwk9AIhLYmqVcFd6T7Em2ozZXCTa88DkXE8b3vfa+m/TgqBQIBfhIegdAcDaog92oFtc8//5xeffXVjDwGBwcDXVyxAwIBfhJOgUQG9U+VwUPipfs5F124CBNGIBDgJ+EUSFdSP9odf/vb3+i1114zz6MnbmHhvh5hBQIBfhIegayNUYcK+kh8ltxMnsWVojwyVuQRxiJLLhAI8JPQCGRz/KgKfHcT//JbhvTt4KJLWIssuRQXyGd0Vg0PcJxO3sSyDsAx4RBI+h6NNJv7RppH6F6Zrx88w5dM/ffSSy+FqpWlFMUFkqLnTzdoaWqI2qU3b8ev6H8zgxYlrdLdiWHq5DlSKygegsbDR4Gs0ViH+aMuLpAdmhuUldOaabDMvuwsC+nfwRJhmdQTToswc4NKIEUEkV5OUBsEAsrAR4HsVYoWFEjqEU293aI6kDXTscm1suo+eH5RaWnh4ssXX3yhvqkfvBQI0RZNjkAgwDm1F4gxH8gq3fqv7r2epfGPaH5pI/NKvbE0TxPn+mi/WnYg2jlMNx6VN6Cf5SFTC/7gBz8wzluPeCsQ/S0klXJVQQ0ak9oLxJgPxKbyLit1UF/8FF2cmKelxy/K/kFzsSV3isF6T5UJZIOuXv1M/RsA5/hYhKkOXMfBFaUcLPzmYQ2yek4VCSStFyeHsCYuKJ+6EggXU1555RUjULjOgz9bg4y7rddDUYbvwTrdACf3AknT9lQ/aVhUG7igbgTy17/+NRNU3NoivUslwKyVqWGWiFUe1mKaY4FYpo40UlPU3A6BABfUhUC4e7oUVzioeJCcIAFmrRcJq0Ry5cH3JPfnWCB5/UBUhTYEAlxQFwLhtWM5OLjVJbeTmAQYw99J/UjYJGInD0bur7JK1GVKJCAQUD6hFwiPqpUg4gWnc5HvBGuvVK4vCUPHskLyYOT+KhNIml68COpCGiDIhFogXFSRYglPCmSHBJgVq0SC3ju1mDwYub/KBAKAO0IrEK734NnDOCi4daXQok4SYLmEQSKl5MHI/UEgwA9CKxCp9+BxLsXWn5UAs4Ol8Z3vfMf4PmgScSIPRu4PAgF+EEqBWOs9Sg3Ll/0KYQ1UllGhQK0lTuXByP0VFUh6mRJtSiBaP01to7M68IbQCYTfNqTegycEKoUEWDHKCdhqU25e5P7sBWLOB9KkxhTtpSg16dvPovc6qJDQCeTIkSNGEHC9h5PZxCRoSuGVRCqZ4cxNHuT+7AXC84FY+3xkp+doeAEVEiqBcHFFAsbpSnGyvxM4qHiOVN7fjUSkQ9v777+vtjiHr+1GYHJ/pepAAKgGoREIt7LI0PU333xTbS2NBJhTrL1auWPatWvX1DfFkeO+/vWv07e//W26cOGC+qY0buXByP1BIMAPQiOQM2fOGIHCPUmfPXumtpZGAqwcypWI7C/Bz3UzfCznuRSVyIOR+4NAgB+EQiBccSqr5CeTSbXVGRJg5eJUIlzncfDgwbzg//nPf24cW6yit1J5MHJ/EAjwg1AIRCpOeUmGcpEAcwNLpKenxzjeTiIsj5/+9KfGd3YBzMUYPpb3ya1c9UIejNwfBAL8IPAC+cMf/pAJ4IWFBbXVORJgbhFJyHmkbsMqj2JFHP6O9+nt7TWExHglD0byBYEAPwi8QLh4wAHCPU/dIAFWCbkS+fWvf+1IHgK3HrEouEi0tbWVKRpVKg9G8gSBAD8ItEA4KCRAinVXL4YcXym5Evna177mSB4Ci+Kb3/xmZvyOF/JgJD8QCPCDQAtE3j749d8tEmBewBLhJmQ5ZyKRUN+UhosvsqymV/JgJC8QCPCDwAqEA0yCY3FxUW0tHzmHl0gzLScn3emtLTpeyoORfEAgwA8CKxB+6+DAqOTtg5EA8xqnEqmmPBjJAwQC/CCQAuE3DgkMp13WCyHnqQalJFJteTByfQgE+EEgBfLaa68ZQcF1IJUiAVYtpMMYJ5YI15MwtZAHI9eGQIAfBE4gHHjS65SXp6wUCbBqIh3GOHFLDS8xUQt5MHJdCAT4QeAEwl3VOSB4zIv8b14JEmDVxioRmfm92vJg5JoQCPCDwAlEmm6LVUyWgwRYLfjFL36RuR53MvvjH/+ovqkecj0IBPhBoATyxRdfZALCTbd1O+R81cZa5yGJizO8vZrItSAQ4AeBEohUSPI4Ea+QAKsmuRWmfB/8BsKfeXs1JSL3B4EAPwiUQGSAGQegV0iAVYtceUidhwyi4+3VlIjcHwQC/CAwAuEiiwQDF2W8Qs5ZDQrJQ6iFROT+QiuQ1BNamp+gi6dO0Sk9nU1O092HLyhv3vitefpQ7WOXLk7cpJt3Vyue53Vr/kPb8+elD+dpyzygaL4y6doD4/yVkN5+QFOT6roBITACee+99zKB5iUSYF5TSh4CT0fA38u98VB+L5H7C59AUrQy/jq1aBq19AxTcloXwM1pSg730f6oRrEfj9L9HbUrs/uQPr05QUPtmnnPP/qlvj8fo6fpJA337acob9da6PXkArlduWL34af6+UbpWLP5XH/0S3WNTNLz+E4nRWV9nWL54qTn7Z3OKEUqWLw89egOfXT6nyjG5w/Yuj6BEYi0vrBIvMT4o+rJS5zKQ+DvRSJcTPNSInJ/4RLIDs0NtZAWaabB2e28t4309iwNcgA3D9KcVSLMnOr9axOQ6e2PaUQFcrP+fe6h5bA21mGcxz7ud+n66KXsQC6SL2Ndnrcv0Yb66I51Snbp54dA8uGAlM5jlXZdz8X4o+rJK8qVh1Aticj9hUkgOzP9ujwiFDt9O7+ookjfPm38j6v1TtKm2mZQLFCZnVmKx/iZaHTi+q7aWD7ryS7jOoUus/vwYVn52nn8WNdOZRirC0Ig+dy4ccN4+BxgXnQes2L8UfXkBW7lIVRDInJ/4RHICo0aq+S1UmJZbbJF/1+7lfeL0cg9tYkpJRCdzfGj5j5Hx/Ug36L5D23qJOySpZ6imEAePLCpzyiUrwfzNJ+ptHhA1+yua5M+3DsoQ2mBpOjRXVWfdDZJv3+Q/XaXerJEv09eMvOTekS3kmf1a12kG4+k4kg//laSzurHX5x64KgYGAiBvPvuu8bD5/lHvcb4o+qpUiqVh8ADBWVRb5aI24mSBLm/0Ahk4xJ1G3mO02yJH6is59tqNY0DgejlD+owrtFPM7u79PBTS51EsbS4905RUCDp+3Q+YXPtAvlaTw5SMhPxm7Rod12b9OnD/PeVogLZuU+jh2PU0nOOJvTjJ4ba9bc8jbqTa7pEHtPHvzlNPUa9TheNfTJD/36oj+KnBqiTVy3UuunS2hpNHu+gQwOnaOBAzHhDbNbNXcohgRAIrzLHD7+ctVScYvxR9VQJXslD4EW8RSKVLuot9xcagUigRQapiAIMlhOt5r7WoHQikLRejDGu0WUJ3vIQgbT9xPpmEKe+/QUqRCVfbT/Z23/gAMU093nIpbBAdmimXyOtf2av3keeQXSYZAVTs14nu94pff88ter7NR8bp5VMC9YmjR/Vj21N6O+BxfFdIDzwzPxBRejzzz9XW71Dzu0Wr+UheCURub/QCGR+yPjfzYlApCKzbIHszlC/cQ0O3sqKMLmtMNPJt6h9qIhAslphJujcoWMWgVSpCLM1Sb36teNZr3Rp2ubik6UYY95TjtCUaLpyLGe+/ZX+G/kuEFmukoOoGhh/VD25oVryELyQiNxfaASifuxm8UJtK4AUYbovWdovnAhkOWH8rxrR9ABIe1yE4QLB46zqU5NC+dp8SHulkSoVYdS1iz0SxlYguiIG9WNDKxDpvl7pzGOFMP6oeiqXastD4E5z0gOXJVJuK5TcX3gqUdXrsV4+H5wrVsKWStSjNG6N15ICSev+aDP20U5cd93yUVggBXAitgopKBD1Vnc060EpNpdpWb3M1KVA3njjDePBnzx5Um3xFuOPqqdyqJU8hErWiZH7C49A9BKG/oNv1vOsdef0pbCwMxs3mnGbh+azJVAiUNNrSerW9O+5YrDQyR1QWiBpWrv3J8ossuqnQOStri1By1lOTtO9ixfpttpWlwKRmcrHxsbUFm8x/qh6ckqt5SG4lYjcX5gEYgTfpcMU1d9C2kc+zmku1MvuCwlDAtHDl2gt5yUlrYvFuOe8QE3RkzujdJhbFbiiMK8HWnlIBa69D/Q8zg7S4dEV9blYvrxil2b69fPHRsjaqm2yqwd8zLh+9PB/063Vp/R0Y4mmhjrpsMWiZp1SjkCUfLJauvT7m43zcwyBQGTynWoFgPFH1ZMT/JKHYJVIuSlcAmFYFEl6vUUjLdZOfXGuPIxTX3uMtOh+Op7bHd0Yc6KaHfmera0d8T5qj3EPVI1iB4Yt/RrKxxgLY7SemNfR2v9l7zpGUnmUolVuviJR6hywrwR1i5mnTrOrvn6PLT3x/POnVih5OKryoPYbmlXPkCuS9/IY7RwwjufzDnA3e95fa6Ge+DV6wPcT76EW4/7NaxUbxuOrQHiVfblhr3pm5iLnL4Xf8hAkv+Wm8AlESNOLL1fprqo8vLv6Jb3IeeswMMac5Fc2Srqr/6/7pe2B5WGMhbE5f1769KFZtCqQL7tKULfY5cn+/Cl6vnrX+D57QGJ+RTIfn3/eRdq0uR9L3XIevgqEKwz5x88BWy0kwIoRFHkwkt9yU3gFAsKM9wJJL9Pvfse930pz5coV48fPHcmqhQRYIYIkD0byy0nyVWwNXtkXAgF+4LlAjIFS2glyMo7pzJkzxo+fl3GoFhJgdgRNHozkl5M1f4UkIvtCIMAPPBaIDJQq0CadA6+4z/uySKqFBFguQZQHI/mVPFsX9WaJ5LZWyb4QCPADTwWyOzdoTnrCqXmE7pUox4hAvJ4DxIoEmJWgyoOR/FrzbJUIJ+uYIdkGgQA/8FAgZg/Dtu5uJZHS8zEcOXIkLyC8RgJMCLI8GMmvNc9MIYnIZwgE+IFnAkkvJ6jNaBvfK8aY8zEURmYhu3z5striPRJgTNDlwUh+Jc9W7CQi/4ZAgB94JJBdun5Cy4w9yEzoEonRaelHa4P0Qr169ara4j0SYGGQByP55VQI66LekpwIJPWc+1vsTWB86uIE3bz70L7fBQAO8EYg60nqsspi9zqdkJ58RQY07du3z/GP3y0SYGGQByP55VSMXIkUe4apRzdomCeJ0WJ0YOCiMeEMdxCauDhAB7gHp9Hz835Fc4iCxsQDgaTp9ukYRdpGyTIywNxm/LhzB+/sUUuBcAq6PBhrfkthlcj4+LjaaiVNa5PH1MC1BC3YzVGX3qaFRLc5A1XWpDIAlKZygezMUL/+tpHXbLsySm3qx11o8lxZM4WHsbNMqpEkwOo92Ul4/QoPWNO/t5vdPIsdmhtsNs6jdSfzBrABUIiKBbIy2kYR245jMu+Dngp0LLMGAFJlKU8gm5PUq4qRTvrk0OY4HTXOpVF3JePgQUNRmUDSt+k0T6H/jz+m/8gasWimn3VLMSZCbZahzwK3viB5k7IHI1qLkKVn/jJRw8X5mNjpzBwSABSjIoGYrS1ddMZYVcwu/Yr61P+C+FHWkns0YqyNoqeOMVpTW0uRmYNUfwspPlsYACbuBcKrbbWVnvpdZnbiH2X/TPXq+VPPnxr/C5eVKl1INagYrWJKIPHZon8fK5lJcfSUO0MVAHa4Fog5aE5/PS7lBCnm8A8zb8o17/jsbCu1tpjrWUgQRJv0ba35qUkmf6ni9HO+YhVIOfco0/LV87MBnuJOIDtz5tqlDn9k98//g/phykI31UOWTeTrFc5eilbGukmDQLKxCCSWtRwcAPaUKZAtmv/PQ3v/g0ei1HRoIGs9jSweXMuaHs5MGsXa++iXHk75loUleIrGDr8Z/eukfkd1SGb1Nz31lnGPFoFkLaUAQAHKFEiBNTYKzXm2uZi/r0peTvmWhVOB6Pdy8zdXK1wxPajIkgh6sp2E1569+qpS69YCYOK+EjWoOBFIOkWpOm9kMPrnGM+hjWxa0G2wNONm9SoGoDCNKZC5ZMHu9XXDzizFVeV1oZ7AWWQ6kjXT0HyV3g5B3dGQAlkZPVH/AtHZmRs0xsFwX52xYv3T02uU7DaXRah2JTeoL+paIP82ndv3Y4OWpoao3cMV04POzu0R/X715xE9TKMLewstC+ntBRo11hOJ0uFRjMgF5VHXArHrB2K2IDWOQBiWxPg7ZmtYtOkQDRhDDeLU19FkrA5X6WJMoHFpvCJMeptuxHsbSiAZ0i/oS7XwEKf5pQ1PFmMCjUtjVqJ+dpWuopsDABXTmAIBAHhCwwsk/eIFofQPgDsaWyDcfPn2/6DTFAAu8VUgHOSSPGNtjDocCWSHbp9uczZbV4CpyjMEwCF1IxBjPpDVWzR6zJzbk1PX+Tu0kdUPxEyrdyfoXE8LacY6NuoEIcXLZwhAudSNQIz5QHL6fJRMJ28WXHIiLHj5DAEol7oRSKOCZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE8gkJCDZwj8BAIJOXiGwE9CKZDFxUVaWFhQn+qDZ8+e0fT0tPrkHLfPEAAvCJVAWBy9vb3G/pcvX1Zb64ONjQ3jvl599dWyRFLuMwTAS0IhEKs4JNWrQCQ5FYn1GABqTaAFYicOSfUuEEmlRGLdF4BaE0iBFBOHpEYRiKRCIrHuA0CtCZRAnIhDUqMJRFKuSKzfAVBrAiMQp+KQ9NJLL9G+ffvqJr3yyiu291koiUis2wCoNYERCFLlCYBaExiBHDx4MOszUvH08ssv04ULF7K2AVBrAiMQ5tatW45F0qh1ICKOVMpc0df6HQC1JlACEZyIpNEEkisOwboPALUmkAIRiomkUQRSSByCdV8Aak2gBSLYiaSoQFJPaGlqmA7Euim5rrYFnFyBlBKHYD0GgFoTCoEIVpHYC2SL/vTRKI3EOylqnLcrdAJxKg6h3GcIgJeESiACi+TOnTvqkx1rNNYRLoHwaNxyxCG4fYYAeEEoBVKaLZrsDZdA3FK9ZwhAaepUIERzgw4Ekn5Ms+f6qD2mmfmINtGh4Rv0KPMSkKInS1N0rm8/RbuStE5pejw7TIeaovr+GsUOnKPbO7xfmrYXknR8P2+PUHT/cZpcSxtnqDbVfIYAlKJxBbJznxLdGjWfmKKHL/RgT7+gP3/QZeRF652kTfo/WvrdJUoOtZPGeez6gG4kf0KH3knS9M0JGu40ZaGdmKH7k6/TgZ5hSk5PU/IttX/bKK2oS1WTaj5DAErRoALZpfmhZj3IE7RsfVHY/C0di+pSaHmf/qQ20XqSujiPsX6aemzZefc6ndD4Gs10Yuax/g4ibNL40WLX9pZqPkMAStGYAtmapF79mq2JZbWhCGrfiFGEsbJOyS6+xiDNqS2Co+KTR1TzGQJQisYUyNygcc0uRxE+R4OcRwgEgDwgkJJAIAAUoqEFEumfoV21qTAQCACFaEyBSL1Gge935y7RbzfUBwgEgILUqUBKdSTb1L83+35o3Qla2JY2FO7PMUqHD1tk4boStZWc1NFWSvWeIQClqUuBpLdv0alWPm+M4je2LU2sFtZ/S8ea5fpRamptpVbuIKZ1UzLTCUwXyo04xXifWJxuZETD15iifqMZt43OL7zYu0ZqhT4wxBKhrg9WqLyO6eVTrWcIgBPqTiDm//65Kf8tgUlvL1DyeDvFWARajNr7ztGspa+H3bm44nU9aXY4y0qD+hWkbsWa8t5cvMV6LQBqTd0JpNHAMwR+AoGEHDxD4CcQSMjBMwR+AoGEHDxD4CcQSMjBMwR+gl8dAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMA1EAgAwDUQCADANRAIAMAlRP8Pd1Q7y7qJ8LgAAAAASUVORK5CYII=
|
As shown in the figure, the diagonals of square DFEO are OD and EF. What is the area of square DFEO? ( ) cm²
|
A. 0.5; B. 3; C. 2; D. 1; E. No correct answer
|
A
|
15
|
iVBORw0KGgoAAAANSUhEUgAAARIAAADMCAYAAAC/dCzIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABesSURBVHhe7Z1xaFTXnscHWhgpndI/HBA0rBBhChpQKCKkYAJiK/tYIpXWSoN2w0JfamEeNKtiS/O2StnNQs1j2cAOa/6oolsf5o+AwZRNmic1TX1U82w2JAYD1hK1JCXpH4Hxj9/O7879TW4md+7cO+eemXvi9wOHOGfu3Ln3nvl9POfcc8+JEQAAKAKRAACUgUgAAMpAJAAAZSASAIAyEAkAQBmIBACgDEQCAFAGIgEAKAORAACUgUgAAMpAJAAAZSASAIAyEAkAQBmIBACgDEQCzOPbM5RKpcqk3XSw/QSdu/gdTS9l7Q8CXUAkwDyWF2hubpKG/9hM8ViMYrmUar9Cd2bncvmcZunOyEU6+7t6+/0Evd79A83bHwfhA5EAgxmitC2SxsyMneckS48H01RnbROn5sxULgfoACIBBjNFPbu9RMJk6ebppLVNLN5G1xbtbBAqEAkwmBnKNJYTSU4lg+15keRqJR0jdiYIFYgEGIw/kTy63GKLJEVd43YmCBWIBBiMH5GsbBOr66QxdJJoASIBBuMtkuzSNF39vX3nJl5PHUO4b6MLiAQYjKO2EUvQZsc4kvpk3M6PUd3bf6Lh+8v2Z4AOIBJgMCsi2f3vf7XHkOTT5Hd9lDl1kLYn8u8nth+jzK3HuP2rCYgEGIyPPpL5H6irWWondZRG80YLEAkwGB8iYWYy1GiJJJcaumnCzgbhAZEAg/EpEsfAtVjsLfrzL3Y2CA2IBBiMX5GMUWfSFkm8gzAmLXwgEhBZfvrpJ5qdnaXbt29bf9cyQh3x8iKZH2ynpFUbiVFd5xg6XDUAkYCq8ssvv9Do6Cj19vbSyZMn6dChQ9TU1ESvvPIKbd26lTZu3JivORSlTz/91N7DCtmpnkLfh6tIln+m0cwRqrdlE2/O0BQsogWIBGiDaxJdXV10+PBhevXVV+nll19eJYcgaZVIrPlINlOiaJvEZsd8JPXJwhQDic376cMLt+gxJKINiASExuTkJPX09Fji8JIGv8di4e0+++wzq3bS19dHw8PDdOPGDasZw+np06d07Ngx6zOrRGLNR7IyZqR0WiAMQ6sOEAmomOXlZUsAHOxbtmxZI4znn3+e9uzZYzVhMpmMJQlu2gTBVSQgckAkIDDcx3H8+HHX/owdO3ZQOp2m/v5++u233+xPVA5EYgYQCfAF30HhZsi2bdtWiePFF1+0gv3SpUtWcyJsIBIzgEiAJ9xvsW/fvlXy4CYL53355Zeh1Dq8gEjMACIBrnDfx2uvvbZKIDt37rTuwnDtpFpAJGYAkYTOj3TlxAk6USadu3idro/codmFaN1XYIGwMEQeXPvgYOZbubUAIjEDiCR0HtLt69fp4tn99uzluRRP0t6jZyjTl5NH7r3rfRk6c3QvJe2BUontB+nswP2a3qosFsiGDRusIL537569RW2ASMwAItFGlgbbbZE0Zsh1APfyfRro2FUYOFXX1k8Pqjxo6u7du6uaMCwQvuuio+O0EiASM4BINDLelfIWiUWWpjIrCz3VdYxQNVZM+PXXXy1hcNMligIRIBIzgEg0MpNp9CESZp76W1cm3+nUPEMxDw5zjgF54403at6EKQVEYgYQiUb8iyTHRDc12IEdb7umpVbCHaY80lQEwqNRuW8kykAkZgCRaCSQSGiculL5AI/F0zQUcqXkiy++KDRj+C8PW9c9BiQMIBIzgEg0Ekwkjs7ZWCN5ztMTAO4LaWmRBaJiVscqP1xnChCJGUAkGgkmEqKhtIgkRukhO1OBW7duWXN8yD65FsJP1JoERGIGEIlGKhdJkjrH7MwKcTZluGN1YGDAfscsIBIzgEg0Ekwki9TfKiJppvNuMwv6gPs9ipsy1RzSHjYQiRlAJBoJJhLHBMXJztyr4PBcH87BZSY2ZYqBSMwAItFIEJFkb54uTFDc0B185RWudfC8p/x5Hlx25coV+x2z8RbJyizyvlOFkgbeQCQa8S2S7BT1SEDEW6k/4GJwfBdm06ZN1ud5fhCeiWy94KdGsvzzqGM1vTSt7afO0tKDUcq8VVfifaAKRKKRsc5k/sftJZLsYxpM8w+cgyD4kpIsDZkflWVi0q1dP/ht2hSk7SWKbK75WAeR6AAi0cY8XX2bf9ilRJL7X3J6gE7tSeS3Seyhs38Jtsg1N1+4BsKf52aNyZ2qpQhVJDkmurshEg1AJKGTn4/k6N6V5RB4GoH63QepXeYjaT9IuzfnBRJP7qKDZwfofsA5BPh2rtze5Q7WoJMqm0LYIgF6gEhCJz8fiTXviEcauTNLcxVOasTNGamJPCtJVSRDGT93zkClQCSG4exY5bVhnMG2ntMnn3xiXwF3vEUyTl2tEIlOIBKD4LlCRCLcJ8KvncHGiUe0mg6fl9zKllRxjSS7RNNftVLS11geUCkQiSE4g4tlIotqS6DxpETyb56g2VSc5+lsvvkXSYkEkWgFIjEAXtFORqxycDlv8UqgME6Z8L9No1gi3Bck51N5H0mWlv7WQ83NEIlOIBIDeP/991cFlxMJNIEXsZI8k2TiJhFGzkWtszVLgz0QiU4gkojDK9hJMPGCVMXIe064n0TyTZBJKYkwch6qd22AXiCSCMP9IDJqlcdTuCGBVkyxTKL68J6XRBg5B4gk2kAkEYUDX27v8sLcpaZFlEBzwymTQ4cORU4m5STCyPFDJNEGIokoPAWABBivPVMKCbRS9Pb2FkbARkkmfiTCyPlBJNEGIokgPPxdAohF4IVs5wU/kxMlmfiVCCPn5yWS7NLf6E+F6QSS1PrVNC1VeaGxZx2IJGLwZM0y6KxUv4gTCbRyFMukVjPIB5EII+fnLhLv+Ugaw5pBG5QFIokYMhaEJ232E+wSNH5wyoTHpVRbJkElwsj5lWvagNoCkUQInvVdAt3vwlUSaH75+uuvrSDmz1RTJpVIhJHzg0iiDUQSIWQVPF5C0y8SaEHgIK6mTCqVCCPnB5FEG4gkIvT09FgBw/OtynM0fpBAC0qxTHTNZ6IiEUbODyKJNhBJBOAgloFnPMQ9CBJoleCUCQc7B32YqEqEkfODSKINRBIBZBawbdu2WQ/oBUECrVJ4YfHiqQnCIAyJMHJ+EEm0gUhqzL179wodrJWshieBpoJzsqQwZMK3sMOQCCPnB5FEG4ikxkhtpKmpyc4JhgSaKsUyYcFVAnfcOqc8UJEII+cHkUQbiKSGqNZGGAm0MHDKhP865z3xQ9gSYeT8IJJoA5HUEKmN7Ny5084JjgRaWDhX7AsiEx0SYeT8IJJoA5HUCA7YoIPP3JBACxNnR6kfmeiSCCPnB5FEG4ikRshQeJXaCCOBFjbFMuFRt27olAgj5weRRBuIpAZwkPLAMw4Qt1nPgiCBpoNyt3B1S4SR84NIog1EUgM4KDg4eNyI6iP9Emi64Fu5brKohkQYOT+IJNpAJDWABcLBEcayERJoOimWxuDgYFUkwsj5QSTRBiKpMhx0HBjc0RrGot8SaLpxyuS5556z/uqWCCPnB5FEG4ikysjSEkGe8PVCAq0aPHr0iF566aXCdwZ9LqgS5LsgkmgDkVQRfo5m48aNVmCodrIKEmi6cdZI5LY1/+XJknQi5weRRBuIpIrweBEOCm4SBH04rxQSaDop7iP55ptvrOka+bVumcj5QSTRBiKpIi0tLVZQ+JmL1S8SaLoodXeG7zY5ZZLJZKz8sJHzg0iiDURSJfg2qowdGR4etnPVkUDTQSmJCE6ZcOJ1dMJG9g2RRBuIpEpIs4ZHiYaJBFrYlJOIExmlyylsmch+IZJoA5FUCQm2w4cP2znhIIEWJkEkIuiSiewTIok2EEmV4GdqOCB4btYwkUALi0okIjhl8vHHH9u5asj+IJJoA5FUAe4fkYAIMrGzH2S/YaAiEeGjjz4qHBOLRRXZF0QSbSCSKiD9I7zoVdhIoKkShkQE5+LlqjKR/UAk0QYiqQJS5Q/ztq8ggaZCmBIRwpKJ7AMiiTYQSRWQ/pGwRrM6kUCrFB0SEZwyYYlW8qSzfB4iiTYQiWZ4zRoJBtXZ2d2QfVeCTokILBMZUs9jToLKRM4PIok2EIlmRkdHrUAIe/yIIIEWlGpIRHAuXh5UJnJ+EEm0gUg009vbawUCB60OJNCCUE2JCJXKRM4PIok2EIlmTp48aQUCTx+gAwk0v9RCIoJTJvv27bOOpRxyfhBJtIFINCMP6oUxG5obEmh+qKVEBJaJHHOQBJFEG4hEMzt27LACQWXJCS8k0MoRBYkIcsxBEkQSbSASzUhVPuiqdX6RQPMiShJh5JiDJIgk2kAkgVmk67kf9cii/dIDlocEQiVjKPwg+y9F1CTCyDHLMfFfHmvjdntctoNIog1EEpSZDDXmftgHLjy0M0rT399vBQGvDaMLCTQ3oigRRo6ZEx+TTD/J16lYJrIdRBJtIJJAZOnm6WT+x93QTRN2bink1m9TU5OdEz4SaMVEVSKMHLMcN9fceJwNvy6WiWwHkUQbiCQIDy9TS1yCIE5t17zbN7USSZQlwsgxO4+7lExkO4gk2kAkAZjobqDYgTSlG+xAOHCBvBo4/OPn7d599107J3wk0ISoS4SRY3YeN+OUyZYtW1b1MUEk0QYi8cviEKWT+VrIwwsH7B94A3WNZ+0N1iIi0fHUryCBxpggEUaOWY7bCctDViIUqXCCSKINROITSx7J03STvbF4jdrsJk687RqVauAcP37c2iaMCX5KIYFmikQYOWZObnCzRhYvl1RWJMs/052r5+jo/hRtTsjnErQ5tZ8+zAzT9FJp4QN1IBI/ZMeosy5GDd3SverodI0doFI3cLgm4isIFJBAM0UijBwzp1IUy+SDDz6w3ykmSw8GT9GenDzi9Ueoe3iSFmTJoOUFmhzupiP1cYrF6+n3/Q9yWwMdQCQ+WLzWRvFiYUx0U4P9I6/rHHP9gfJEz/w+10h4ikUdSQKN0wsvvGANQXfbLkrJecxu70v6/vvvC9u999579lV1skwTPc25sslJpDlDU6UskZ2iTHNOJrE47eq8SfN2NggPiKQsM5RpdGvCPKQLB+yAiLeR2w0cvlsjgYCkltxqdfP9rZZEYvFW6i9nh/l+arWao3FquVx+DBAIBkRShuzN05SMJem01TmymnxNJf9DdxugBpGEl9aIxOr8zr+XPH3TR5PF0RwtIX5QORCJJ/PU38pVYu60S1GqONUnCyIpdMQ64Ha+W5UdKXjimfidPLqcf6qaaxgdI3ZmOUY6PMUPKgci8cLqB4lT61ezlhTc0vDpusIPutwANRAWiznB2wKPNdN5vyt8zJ6nZlsksZbL9MjOBupAJCVZpKF0rircmKEZO8eVQts7l8ptq8LD23T9+vWA6bbngDlzyfdb5UWSpiE7tzy55pCIJNVF43YuUAciKYX1cF4ddY6Vb31bI16tH2iS0kOaaiU/XqETJ9rp4PaE/V251PBmLu/E2nR0vz2WIkiQmUQIIlm316Y2QCRuLE9Qj3W78J9oQMYkeJC99S/0d/IDrUvT4OPy8qmY7E06bXcyxtIeoTA/SO1JiGQ1DpHs7qEpOxeoA5EUMXvpHyghPzYrcUfrGfrWfn8139KZ1Oai7TnFKfnmJQp3cU7BEUReIskx3tXmv//AKJx9JI2U8dueXMw1Q6WMWvtLjkgGwYFIisguPXHpVF0g94rJMi2s2dZOT5Y0jaL0L5Ls+P/SyDrtUVy5axOj9kGfV3q8i1L2Z1ouo6s1TCAS4/Ajknl68GCd/3/r83knJ4W+LG7yoToSKhCJcfgRyRBlfNf3zeVhrlaSHxfio3lj9RnxtnWUHsIg+bCBSIyjvEh4NG7LMyASrnnd7NxlySTe3EMTpTrGC53ncWrOTOHBPQ1AJMbhEMnf/+uasSN9mQ+tJ2EbnwmRMMs0ceEI1eeaOcVP/3J/V+Hp38QeOjWIp391AZEYh0MkbuNIju6lZC6onh2R5MkuTdNw5hQd3O24ixZPUv3ug3QqM0z3fdzGB5UDkRiHj6bNeBe1PWMiAbUFIjEOP52tP9LIer3vCyIJRGIcfkQCQHWBSIwjoEgWp2kaT8wDzUAkxhFEJPM0lP7HknPKAhAWEIlGrGC3U3iMU1fKj0iyNHX+dUoY/kyJnmsIwgalo5FQg8Caj+Qinf1d/cqsbHVvUXff6nEkVrp4jo7u5dnbzJ9sKdRrCLSB0tFIqEFgzUdSNGakbLpEHut3GUGo1xBoA6WjEQSBOriGZoDS0QiCQB1cQzNA6WgEQaAOrqEZoHQ0giBQB9fQDFA6GkEQqINraAYoHY0gCNTBNTQDlI5GEATq4BqaAUpHIwgCdXANzQCloxEEgTq4hmaA0tEIgkAdXEMzQOloBEGgDq6hGaB0NIIgUAfX0AxQOhpBEKiDa2gGKB2NIAjUwTU0A5SORioNguHhYerp6bFfrR+OHz9Ot2/ftl/5o9JrCKoLSkcjQYOABdLU1GRtf+zYMTt3/bB161br3FpaWnwLJeg1BLUBpaMRv0HgFIik9SwSSX6E4tweRBeUjkbKBYGbQCQ9CyKR5CUU53YguqB0NFIqCLwEIulZEokkN6E43wfRBaWjkeIg8CMQSYcOHaLZ2dl1lbZs2eJ6rsXJKRRnPoguKB2NOIPAr0CQVhILxfkaRBeUjkacQYCknkB0QeloxBkEvb29tG3btlV5XmnTpk1WLWY9pQ0bNrieq1vauXMn9fX1rcoD0QWlo5HiIHj69KlvoTyLna2cRCCC8z0QXVA6GikVBH6E8qyJpFgggnMbEF1QOhopFwReQvElkuwSLSyZs5Sem0hKCURwbguiC0pHI36DwE0oniJZvk/DmQ9pTyJGjZkZOzP6OEVSTiCCbM8JRBeUjkaCBoFTKKVE8uAv/0X//T8XKd2Q369pIvErECHoNQS1AaWjkUqDgIVy9+5d+5U7M5lGa78mieTGjRv2v/xT6TUE1QWloxGdQbDY32rt15dIlhdobm6O5p4skXuPSpaWnizQsv2K+16e5LZfKGTY2PlPqtgvo/MagvBA6WhEaxAMpa39eopkeYIuHNtOicRmSqU2UyK3fbz+CGV+mLff/5nuXD1LB7cncvtK01BOJRMXjlB93D7ueD11DPG2WXoweMrqk8mfT4JePz9VQkrhItePE4guKB2NaA2CciJZHKOzu+JUlx6kx3bEZ3/4nFJ8PPE2urZINP9/d+jO6OfUaB3j2/T5f/6B/pAZpsm5WRrNvEV1nJ/8Z+rNvEn7T12k7ybnaHL4j9RsieYAXXiY369OtF5DEBooHY1oDQJPkWRprLMuJ4HTdHNVtWGG/nxsN6X2/xuN5USSZ4jS1jG+TV+JcSwe0oUDnJ+k9oHHq2of410p67vTQ3aGRrReQxAaKB2NaA0CL5Fkc3LgWkP7oI/mxzh1pfgYuWmzmqE05zdS8VdIRy9EAgSUjka0BoGXSGYy+eaKr0ifoUwjHyNEAioHpaMRrUHgRyS+aiQQCVAHpaMRrUHgJZLZ89TM37umj0RYpuXCrV2IBKiD0tGI1iDw7GyVfo84tVxee2slO3aO/mPMfgGRgBBA6WhEZxDMnm+29usuklyw596P83fHd1HHwDRZY8iySzQ90EG7Xu2i8UJNZYQ6rNu5wUXScvmRnaMPndcQhAdKRyNagoBHqc6OUk9L0tpvvLmLRmfdRqE+oP62ulXHYKXE63R+Km+R7NITmrzalh8vEqujtquTNMc74u+Y/Ipak/nPNH48TJM8KpZHtua+u6s5buXnv9sxIlYDzmMH0QWloxEtQfDtGUqlUmvSmW/t91exTPcHztHR/bzNfjp67ir96BgrMnvpnTX7SfGO3L7jnUs0O3uJ3inOT50h168OCS3XEIQOSkcjCAJ1cA3NAKWjEQSBOriGZoDS0QiCQB1cQzNA6WgEQaAOrqEZoHQ0giBQB9fQDFA6AABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABlIBIAgDIQCQBAGYgEAKAMRAIAUAYiAQAoA5EAAJSBSAAAykAkAABFiP4flzOdsVUh6wsAAAAASUVORK5CYII=
|
As shown in the figure, the square DEOF is within a sector with a central angle of 90°. What is the area of the square? ( ) cm²
|
A. 0.5; B. 3; C. 2; D. 1; E. No correct answer
|
A
|
16
|
iVBORw0KGgoAAAANSUhEUgAAAbAAAAESCAYAAACcmoDPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACXWSURBVHhe7d1/iBRnvu/x+SPQYdlhE0gvC2Y4wuxhAoncCCIDBpIBMRHCYWRDfhFRMPfgSgJzIF4dDGQ46hXOHIhz/GNgG1zOVcmwZvXAXJxoQHHd+AMvid7EK5N4HDDKqEHDKJeB3j++p77V9XTX9FRP/656nq73Cx50qn9MTXdVfeqpen50CQAADiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAYIX8o+/l4pH9smPHDtmx/4hc/P6R5IPHACAKAYbEPTg/IiszXdLVFS4ZWTlyXh4EzwGAcgQYknXjoAxk+2X42BWZmZ2VmStfyNibPUGIZWXXeephAKIRYEjQA5ncvl1OL6pm3ZbD6ws1scz2s8EyAFiIAEOC5uXRo+ga1o3cGj/AsiOXgiUAsBABlpT8Lfnu/3GHp5Lp8dVegK2QsWvBgijzd+TKFznZow0/duyXIxe/l6g81AYiZ3J75Oh3wc/3vpMvvJ937NgjuTM3vRgtmb9zpeJjnW7u+7/KyZMnaygX5frsrDxM04cDKxFgCbl9eL10rRiTpY7PqZW/JCM9GRnITVdoiZiXe3/ZK/3ZXnl97xHvgHpccltXSkYvOa4ckfPBecHtCzn58OWsv1xrc0Onvded2i69ZQ1GeraflTnvPacn3pSe0PLSY+lw9+wBL7g3ycvZTOgz6JZl6zYVWof6ZZOs6zWfqT42LMe+u0eLUSSCAEvENRlboQcAGimUm785JdtXZqTnn85UbIH44PSQFzQ9XiCFn3FDcmsKB93MlhN+6MzPe1WEB5OyMQist4aGZcPwlHzvV9Pm5eafNkrWPxCvl117fyfrvMeu+9UK77FjW4IwG5SJu/r+KZI/L7uyhc+sq2tITgeLw+bvXJCxV7uD53TLqwcrnWwA7UOAJWDuxJZirSAzOCG3g+Wp9t3/kg0rS7UlPSg+v3lCpsuPiubguv7wos/t0ki28NqBgzITLAsH21vHyiPxqoz2BY/9qbwWMS3jqwuPDUUdwTta6TOrFGC+/LTkBkxtrUdGLhFhiBcBFrtSC7tCqXKfJy1ufyMnTx6R/ds2yPPdpc+nPOBN+K8enw6WhMzflIsnz8p398IH0tLBeHEQNfpYp6sxwDz587uCWqz3XXkfFBGGOBFgMctfHZUVXWtk/HBpx8/uOs+OHzZ/R86MFO5p6WXWcEPEQuOOLlmTuxEsqYYAq1/tASY3crLGf55X1uS8VwLxIcBiNScntmSCezTmPphXMoMywXXEMqWDaDisTg8VlkXWwCIRYPWrI8Cmx2W1/zyvLLh0C7QfARan24dlfajhht8SMdj5V3AdcZG7E4P+ZzNwsHRYNDWwqHtgRTeuytVi00ECrH61B5jpr6eFbRhxI8Bik5fzu7ILm87PnZAtpkl3dpfQIHGh/Klt3mez8BJi/vRQcGlxhYxejfrAHsjk0F4pvYQAq18tAZaXe5dHZcBsvz3b5Wxa+hvAGgRYXIKwWn84XG8IQs0/UGRkkOuIIQ/k1LasZAYOeofTkHAT754hObWgwca8XBsfkFULagIEWP3CAbZCfrdf+9qVOjIf2b9DNhX712Wk992cfE2ffCSAAIvJtbEV0pXZIifKz1KvjckK/0DglbR1bL5xSF7t7pLu5zfLWHjUi/w9uTw6IBkvoBaPk2j6gQWfWSYrL28KOtgu615cEwgF3rZT5TW2UlP5jZPlX0zpsYUnHWkQDrAeWbfNdGIOPue+ZdLtP+aV7n7ZtP9YWctPIB4EWByCg2j0PYJws/qUdWy+/bm8GW4yn+2Vvr5eyXZ7oTQ8JTcrDlWUl1unhqU/9Fot3f17i6NwqO+OejWFftPZ1it6sN1xQM7eDR4LjdLRlemV17dVfywdwgFW4RLi/B25kHu3NKqJ9xn9fvIWrWkRKwIsBrcnBr2D4d/JPx4MjydXKp8PBw0TvJK6js3zD+X6RfNZnJUrM/cjxzOMVHyt97pbiyfAvP1N6TMulb/K915lq9HH0qGGAAssqA1XvC8JtAcB1naF5vKZle+ELsOUl3+UgeLQPXRsRtJqDzAv7hd0zGf2AMSJAGuzOe8MNVtDKIWb1NOxGcmqJ8BCXRu0pK/FCxJEgLVV4ezUDC67pHDrusxGmaRVFxJTX4AVx6D0ChOQIk4EWBvlL41ITx2XBBd0bB69WrUWtnPnTlm+fDmFUrV88803wVZTizoC7MEp2Va8/M2AvogXAdYu+WkZ14PAf/u32pvGh4flyQxIbtFQ7CU///yzPPXUU8GBg0JZugwODgZbTi1Ko/QvFWD5e5dltDgafUZ6h9MzdxrsQIC13G25kBuWDc+b5tsZWfnOHskdX6IV29z38tfjOfkw3ORbizbf3ntE/hrxwk8++cR/zi9+8QvJZrMyOTkpZ86coVCK5a233lqwPVWrhRVmZD4ie9f1hF7XLc9v2CY7wp2Zj+yXbRtWStY0oe9+XjYfvpaq2athBwKs5b6To5EtDZfoR3T3rByIfE2hHCh7oU7U+Mwzz/gHj6efftr/d+vWrcGjQHQN/b333gsejVaYkTl6G1xc9ssRL8wuXq+j2wPQYgSYgz799FP/gPSb3/xG/vznPxcPUOfOnQuegbQzNfRweeKJJ+SHH34IngG4jwBzjNa+NLj0gKRBpt544w3/5+eee64wjT5S7fHjx4tqX6+88or/7/vvvx88C3AfAeaYP/7xj/6BSC8hmrD66aefigcsPfNGuoVr6PqvlqmpKf/fJ598UmZnZ4NnAm4jwBzyt7/9TX77299GBpUJNr1M9O233wZLkTblNXT9V4t68cUX/f8PDQ35PwOuI8AccvToUf8ApLUtvUlfzlwm6u/v98MO6WNCS7cRDTP9vxZ1/Phx//+//OUvI7cfwDUEmEOqnUHrDXq9RKTPOXDgQLAUaaEnLdppWb9/U0PX/2tRS9XgARcRYI4wZ8/V7mHs27fPf56eZf/444/BUqSBuYwcrqHrz1qM8HNo8APXEWCOMJcHP/jgg2BJND3LNjW1119/PViKTheuXekQY4b+rMXQ55W3YgVcRYA5QEdV0ANOrf14Lly44D9XX6P3zdD5zP3R8hq6LtMSFm6lSC0MLiPAHKA1KT3gbN68OVhS3UcffeS/Rpvbc8O+81W6P6rLtISFWyrmcrlgKeAeAsxyOn6dOQjVM6K4dmY1N/TrCT64Z6n7o2bbKWdG6tDLjnpZEXARAWY5HUVcDzT1jSZeYDqvatHLkOhM2m1Cv+OoExXz/ZcLj5X42WefBUsBtxBgFtP7XeZe1uXLl4Ol9dEBXPX1eqbN/Y7OU+3+qD6mJYq5zKyXHwEXEWAW0zNqPcBoC8RG6TBTZuT6cOs0dAbTOrXSZWJ9TEsUvdxo+g3qZUjANQSYpfTgYmpfzV7+Cw8zVd/MvLCZzj5gAqrS92oer0S7ZejjzZwkAUkhwCylrcn0wNKqyzuvvfaa/36rVq3ipn2HqOX+qD6upZLwZWruk8I1BJiF2nFpZ2Zmxh+dQ99zdHQ0WApX1do61TxnKeZStZ7kAC4hwCxkmji/8MILwZLW0ODS99Ug00CDu0zta+3atcGSaPocLUupNQwB2xBglgk3b9Z7V62klw71EqK+N2fb7qrnsp8Jpmqa6a4BJIUAs4ypJbWrg6meYZuDX6sDEvGop3WqPk9LNdpNQ5+n20Ytw5UBNiDALBIe4qedA62Gh5nSZvZwR7j2pR3Vq9HnaalFtSb5gG0IMIvENciqvrcZZko7OsMd9bZO1edqqUW4U3T5kFSAjQgwS+jlQjMdhs7p1W7mYKWlljN5JK+R1qnmO65VpUGBARsRYJaImoyw3cy9FK2N6eC/sJupfdXTOlWfr6VWtU6cCtiAALOEHpT0wBHnVO8alGaYKb0vBnvpd2VqX/U0vtHna6nHc889F/u2CDSCALNAkme9OhK5/m6976ETYcJOjU5/oq/RUo8krgYAjSDALJD0fQczYaauB8NM2SfcN7DeCSj1NVrqoduAaeTDqC2wGQGWsHDLrx9//DFYGq/wMFNxNCBBffQ70e+mkdap+jot9YqrRSzQDAIsYbb0vTlw4IC/HnoZk46s9mi2b6C+Tku9wr9Xtw3ARgRYgvSekx4gbBj9QC8bmZl9mVrDHs3WhPS1Whphan7tGhUGaBYBliDbxp/79ttvi6M8MMxU8jQ0TC1o9+7dwdL66Gu1NCJ8743tATYiwBJi6wjgH3/8sb9OeuCiH1CyWtEa0GxjjTLbQ6tnRgBagQBLiK1zMOllKtMP6I033giWIm5a+zIjszTTH0tfr6VRjYz+AcSFAEtAPdNhJCE8zNTk5GSwFHEytS8Nj2YGXDbfYzPMCCA6FQ9gEwIsAVu3bvUPCDY3lnj//ff9dXz22WcZZioBreobqO+hpRnazcLmEy6kFwEWM1cuyeg9Fw0vXc8PPvggWIo4tHJkFn0fLc2qZw4yIC4EWMzM5Zhap8NI0tGjR/111bNvhpmKj6l9aU29Wfo+Wpp1/fr14nvZ1OgI6UaAxSjcLFnHIHSBaeqvDTvoC9R+X375pf95t6pvoAmdVrCt2wdAgMWo0QFZk6TDW5nQZXTy9mv1yCz6XlpaIdz1Q/sMAkkjwGKizdNd7RQaHmZKLyWhPcKtP1s1Mot5v1ZZu3at/35JD30GKAIsJq4PjmqGmXrppZeCJWg1MytAKy/R6ftpaZXw4NOMmYmkEWAxCA+M2siArDbQmpdpPcngrq3XrpFZzHu2kjmZSWr6H8AgwGIQHhLIxdqXYe7h6d+R1NQvnapdDST0PbW0UpITsAJhBFibtWpIIBvo32KGmaIlWutogwgTNK3uKGzet9VMU/+dO3cGS4D4EWBtZqbs1wkjGx2Q1SZmChgt2k8MzWtnJ2HzXbVaKwYaBppFgLVZq4YEsomOzKF/k47UwcGrOe0eF1PfV0urddKVBbiLAGujTr1XEB5mqhWjRaSZGXOyXSOz6HtraQfTvcLVlrVwHwHWRqZTaice5E04a2GA18bEMS6m+Y7aoRNa18JtBFibpKG/jM4Xpn+jNuzgDLx+cYyLqe+vpV1M/0atkTPUGOJGgLWJTlSpO/Z7770XLOk8WoMwo4vozL2oXbj21c5xMfX9tbRLeHxP10aYgfsIsDZoV6dUG+VyOf/v1Jom4+PVLq5xMc122E7hvwWIEwHWBu3qlGorc69PR2jgMlJ1cdZa9HdoaSedMbrd9/KAKARYi4WbRadlDi2GmaqPqbHEcd9If4+WdnNpnjt0DgKsxdI6c+3u3bv9v1s7bOsU9IimjV2eeeYZ/7OKo+We/h4t7ab39MyJ29TUVLAUaC8CrIV0fECzE+vEhGmiNQnTaVtHVUe0uGcl0N+lJQ5pPXlDcgiwFkr7ZRS9ZGoC3JUZp+MU7jc1OjoaLG0v/V1a4hC+fH7u3LlgKdA+BFiLxNEp1QUmxPUyGcNMLTQ+Pu5/NnGOH6i/T0tc0taACckiwFrE3JjXTr1p9vjxY1m+fLn/WTBrb4leYk1i7ED9fVrikqYuJEgeAdYCdOZcaHJysngQY5ipgqRGbzffQ5zMzNKd3IkfdiDAWmDfvn3+Dqs1D/pBFbz99tvFz4RhpqQ4j1rcsxLo79QSpzQMowY7EGBNCt+YZ0DTEu3camqlH330UbA0nZKclUB/r5a4mc7tOto+0C4EWJPibhbtEnPZTM/E03w/xHQviLv2pfT3aolbkqGN9CDAmqCXC02DBb2MiMXWrl3rfz6rVq1K5eVVcz9QQzyJDt76u7UkIcngRjoQYE1I6sa8S/SgbboXxNX3ySbmUlpSLTL1d2tJgvYF1N+to7Owf6AdCLAmmBvzTCWyNA0u/Zw0yNI0zJQNjRn092tJQlJdB5AeBFiDuMZfOz2QmctJekkxLUztSyf+TIr+fi1JMdPt6FUK7SMItBIB1iCu79fn8uXLxWGG0tBXzpYOvWYdkkIrXbQTAdYAHahXd8ikbsy7SpvT6+emw0xpM/tOZsuQSroOWpJES120CwHWgKRvzLtKD16m1WYnj9IQrn0lPSecWY8k6fdu+gTqJUWgVQiwOukByRwUGGWgfqb2qkWbmHciDWf9+2yYVsR81kkzY4Vqow5Gq0GrEGB1YrTt5pl5o7Q21mk39sNTitgwDqSuh5akaTN6bU6v68JUO2gVAqwOttyYd53e/zKzEndaIxgTzi+99FKwJFlme7WBfte6LmmdLw+tR4DVwVwaSlNT8HY5dOiQ/1lqbSXp+0StEp5W35Y54XRdtNiAOfPQagRYjWy7NNQJXnvtNf/z1DPyTrgvYmMNQ9dHiy10cF9dH1tqqHAbAVajrVu3suO1mHZBMPdFXB9L0tbaha6PFltwIohWIsBqwKWP9jF9hPTzvX79erDUPaaPm22t7HSdtNjEzBWnNXCgGQRYDbj53D56sO/v7/c/XxuanTfC5hm5dZ202ITGUGgVAqyKcPNfbXiA1tODmLms5GJHV5v7OJmgsA3dUdAKBFgVdMCMx86dO/3PWWsyLg2OrP3YTO3LxrH+dL202ObcuXP+eumJCwMCoFEE2BIYAic++lmbqTeSHL29XraP86frpsVGDMmGZhFgS2AQ0niZ+bO0uNBYRrcJ20daN5+njaampvx101rYjz/+GCwFakeAVeDCwakTmX5Czz77rPWz+JoTHK2l23qCo+unxVZMS4RmEGAVMBFfMjS0zInDBx98ECy1j94PNZc8bZ5tWNdPi620pq3rx8SwaAQBFsGVg1OnOnr0aPHAa+swU9pcXtdPT3Bsrimaz9FW7GtoBgEWQUfL1h1Km8/bfhmrU73++uv+d/Dcc89Z1/ozfNDV1pM203XUYjNXTgZgHwIsAtflk6c39U3/O9vOzE0N0YXLXrqeWmymJwTmsvHo6GiwFKiOACvDNXl7HDhwwP8utJWaTcNMuXSCo+upxXa0+EUjCLAyOliv7kjaGg7J0jNzM8yU/msDc4KjoerCCY6uqxbb0eoXjSDAQkw/JEYHsIfWvPT70O9Fa2RJM4HqSudbXVctLmDUG9SLAAvRiSp1B9LRsmEPc2DTm/xJdnh18QRH11eLC7QBh37Hur62DYoMOxFgAUbItpdeXtLWiPrdJDn4q4tDH5lt2hVmWpoXXnghWAJURoAFGB3bbmbwVy3aCjBu2h/N/H6XTnDMOrtC7ysy9x5qRYB59HKQ2dH1QAk7mVmx9WZ/3P2FXD3BMdu1S3QEFl3nVatWBUuAaASYRy8J6Q7j6oSKaaGhpWMk6ncVZytRly8vm/V2iZ5QmoY7et8RqCT1ATYzM1PcWXR0bNjNNGOP8+Bmal/ayMc15rNyDSeVqEXqA0w7o+qOop1T4QadL0y/M23Y0e5Or67XBnS9tbgmXOu9fPlysBRYKNUBxg1jN2lTetPc+uOPPw6WtofrNQETAi6iYRWqSXWA6cFPdxDtOAm3jI+P+9+d1o7adV8qXPuanJwMlrpF112Li7TmZdb/22+/DZYCJakNMDpNus8M+6WjY7Rj5IZOuLxsAsBVLva9Q3xSG2C7d+/2dwxt1cawNW7SYabMJeBWj5/XKZeXdf21uIrh3bCUVAYYA4d2DjPMlE69oi1KW8XUvlwfEUL/Bi0uY3ojVJLKAGPqhs6htWcNGf0+dRLMVtDLy2YuMtcvL+vfoMVlpusEUxyhXOoCTA94y5cv93cIvYwI9+kwT6axxaFDh4KljeukUdH179DiOjMWpo6VCBipCzCmL+9MZvihZ555Rn766adgaf3CjXtyuVywNDm6Hq0ormO/RZTUBZieVeuOsHPnzmAJOsHjx4+Lw0w102Jt3759/nvYcnlZ16UVxXXhKydaQwZUqgKMa+mdTftqmQP2l19+GSytnY2Ne8zf02zpBNy7RrlUBRitmTqfGWZKz9brPcjZeIDU9TGlEc281jY2nmAgWakJMD0j1w1fb/a3srk17KL3v8w9rHpu+OslKnNwtOkSla6PKY1o5rU2Mpd46b8JlZoAo0d/epgb/nqyUutAsLY2EtB1MqURzbzWRuFGNq53cUDzUhFg4dl8dfQGdD5zwqKXjaudqevjpnGPbQ0EzHarpRHNvNZW4TFMqYWlWyoCjFGt00eHHTJDQY2OjgZLo2nfMX2ePr+ZJvjtoOtlSiOaea2tmEUCRscHmMuz6aI55n6JHuyWuu9pc+Mes+1qaUQzr7VZJwy0jOZ1fIC99957/obOzK7po5eXTDhVmk3Z9q4Vum6mNKKZ19qMmdShOjrAXJ9NF80LDzMVddPfBNzWrVuDJXbRdTOlEc281nauTzaK5nV0gL3//vv+Bq7zRSG9tDm9bgfaei18jyvctcLWqTp0/UxpRDOvtZ02yDJ/nzbUQvrEtGXPy8PZWf8STbXysEX9R/W9uNELpcNMmWGI3n777WCpG10rzAFaSyOaea0LWtFAK//ofvH4c/9RPlhq5OXRI0b9sFVMW/ZXsqevT3qzmeIOVSrdssx7rE/Lsu7QsnWyaf8xuXKnsY2Hm7wI0/skZpvTIafMRIlabO5aYdZRSyOaea0LGm2kNX/zjOSGN8hK/5hUOgbpMSqT7ZV1H+bkiyszMjM1JD1Dp4NXwTYxb9nz8vW+FcUNbvW//l9vSZn5h3L9zJi822vCrlv6h0/JrfIToyVoZ8dOmc8JrWMa9Ght7LXXXvP/b3vXisI+0HgINfNaV2gDHf0bw7XrivK35NRwv3R7z8/0vitjZ76X8krX/J0rcix4jv/5bZyUueAx2CX+Lft0oWakZU3uRrAwQv6enNreK5nguZmBnEzXGGKdNJ8TWkfvf+l0K2b702J714rwujaimde6wtSmq97LfPC1jA4UTox7tkxWPSl+cH5EVma8z29NTpY4UiFB9gaY74H39J7i87Uq/yB4pBK932GGmtFamJ5tUyimaIA9/fTT8utf/1p+9atfRT7HpmK2fS1Rj1crzbzWpWL+Tm24Fe2GHAzCq6tnRC7VeDJ84+CAZFaPy3TwM+xieYB55k7LULbw/K6uHhmpsuWZEcUpFEr6SqX+fLcnBoOrORnZOFntNDgkf1VGVwwJd8HsZH+Aea6Nle6bZbacWPJ6tDaN1vteFAolnWVRo5z8edllToIzXhjVWPsybn/+uXwV/B92cSLA5Oqo9AWvaWQDBJBeee+YY+6l0yCjs7gRYF4FfshsgF2rZZwL0qjB/MPF/QxrKw8Xt461yfzDiHWupVj+d7XJpZFs8ZjTN3o1WIpO4EiAXZXRPhNgXbJUtwzzHC1It6/29Elfb7Z09q2le1mhz2FEKfVTHJCDNs95+tUeb32XlZp5+yUj2d6Iv2vB39+593JKn0P5fj8nkxtLj9V+zIELHAmwG5JbU9oICTDUY/7yP5cuQS/ZKTUv9y6PykBmjThxnHtwQT5eYbb3JdZ5/qYc26KtedMYYAuPHQRYZ3EkwM7Kdu2P4b8uI9vPBosjmPfWAhSELkFXHVUhL+d3DboRYJ7TQ2Z7rxK6Hd6arvJ+Tw2sk7kRYHcnZDB4TVfXoEzcDZZHMO+tBSioJ8C8Y/3ZT+XAleAHy9UcYJ4bhz6V/23XfJ0ts9R+H74Hlh25FCxFJ3AiwBa0IqrSK968txagoL4Ac0k9AdbJltrv505sKR0/BidkifNfOMaBAJuTE1vMzfUuWX/4drA8mnmeFqCg1gCbl0eLRiO3W/UAS8do6kvu9wsGQ1gvVQ4hEfKSp+uOlawPsPylEekJnl/LEDDmvbUABTUG2N0JGXGsGlM1wOYmZWOH1TqjVNvv/SGhgsd7Ri55kVSrvEznfi9jV0kwG1kdYPl7p2SoJ9gwMwOSq2E0X/PeWoCC2gJMLzUNOBtgq+Vf/09Zv6/rZ2TszZ6Ou2wapep+n5+WnBkLsatHhk7dqyHE8nJr8vfybm66jsBDnGI/yudPbStuaJUDTJszj8mr3cFG2f2qjH1d2/hl5r21AAWhAPvvxxce5P0yI1e+GJM3vZOlWu/L2qIUYEsUAqxg/prkXi3NOfjq2AWpON1g/p5cHvsHWbm9+gDiSE5MR/nCjMwzV47J9pWl+1nZgRE5cvKsXJkJDiQzV+Tskf2y6eWg82UmKy8PT8nNOi7hm/fWAhSEAqxCR+ZlwcmSuwG2+BJi/tEtmdLZHAiwEg2m3LvSa7rl6DFm0w7Zf+SknDzpleM52bNtgzy/rF+Gp26mcuQSl8R0lC/MyBx14Cgvqzdskx17cnL84nV52MDWU/OGjBSp5RLivFz7tzUdFWA+7oFFm7/j1bq9sNqxSdYVjz/rZNOOPZI709ixB/HruKN83RsyUqDWRhz/IZ9+ZvMYUotVDTC5Jn/4Q+ePpc5+n04EGFKgxgBzUPUASwf2+3QiwJACjQSYG/2nCLAC9vt0IsCQAvUHWP7qqAzV3+M1dgRYAft9OhFgSIF6A+yGHBwYcCIQCLAC9vt0IsDQ+bQlntkuqs7IOy/XxgckU2XMTTuER1pP90Sv7PfpRICF/PDDD/L48ePgJ7jOn5HZjEZhtovsRvnTddOBeWG5fvG4jL3b6/dBtLo5vT8j84xcObKlNMyaVzIrt8uxKzMye/+RkyNHnDlzJvhf/Yrfr1eQHgSYR4Nr8+bN8sQTT8jMjFvNqFGZPyNzqI9h7eV3csjm6pc/I3PUegflnc/Exa14+fLl8uKLL8rx48eDJbVrZL+H+1IdYOHgMq8hwIBkaICZ/bDeIDOv04L0SGWARQWXKQQYkIxwgJlSa5CFX4P0SFWALRVcphBgQDKiAsyUakEWfi7SIxUBVktwmUKAAclYKsBMqRRk4ecgPTo6wOoJLlP6+/vllVdeoVAoMZcnn3wycp+MKuVBFn4M6dHRAVZPcFEoFPeKBpleNQkvQ3p0dIB98skn8tRTTy1YRqFQOqMMDg7KN998s2i/R3p0dICpn3/+ua4gO3funH9GR6FQ4i3PPvts5D5ZXsLBZYQfR3p0fIAZtQaZ7kgA4letEUdUcBnh5yE9UhNgRrUgI8CAZFQKsKWCywg/H+mRugAzKgUZAQYkozzAagkuI/w6pEdqA8woDzICDEiGCbB6gsuod79HZ0h9gBkmyHRUcgDxGxoaqju4jEb3e7iNAAPgPPb7dCLAkLhrf1gXPS1IeXF0mhC0H/t9OhFgSNhVGe0rfWdLleyu805O1Ij2C28nSA8CDInKn98lWe+76l62Tjbt2CE7Iso//cPfe99nVkYuBS8CyrDfpxMBhgTl5fRQr2w5dlPmgyWLzcmJLRnpyo4I+YVK2O/TiQBDcuZOyP8cu7r0ZUHvOVsyXdI3ejVYACzGfp9OBBiSk5+X+So3teZObJFMV5+QX1gK+306EWCw2JxMbvS+yxVjci1YEmX+5hnJ7dkk64LWius27ZHcmajLkvNy58ox2bthtbzzWdCecf6mnMl9WHjt6g2yd2rh6/z3Ht4gq/XxdR/K4cv3aEhiIfb7dCLAYK+5SdnofY8rxirEV/6e/GVvv3R398vwsSsyMzsrM1eOyJaewvff8+aETGva/P//lBN7N8jKbKa4bazJ3ZD89IS82dMty7xw6i0+lpFV/mXNvNya/L30ZvTxXslmzHbVI0OnHxR+P6xhvlctSA8CDNa6OzHofY8rJDq/HsjpoR7pygxIzk+pkrnJjcVtYHDirrfEiyN9yu3Dsj5Yvnrbv8g/fzolN4vVreD9/Mc3yr9PDsvmsQtyxzyevyXHNmYLj1epESJ+5vvWgvQgwGCpuzIx6H2Pa3JyI1gSlr80Ij3edxzZN+z2hAz6NaaMvPm5BphxWoaCbaNv39eLXzc9LquDx986FlHLOrtdMv7jG2VyLlgGK7DfpxMBBjvd9ULI+w71Ut9iQdN67/FtpxbFkC//6L7M3n9UFlKXZCRb2Dai37cUcEOng0VhN3Kyxn98jUS+HIkx+7wWpAcBBivdPrze+w7Xy+HbwYIFSkEUGTQV3ZDcmsLrCLDOYvZ5LUgPAgwWui2H13vf4frD3v+iVAmaigiwTmX2eS1IDwIM9gkaW6yPrn55Qvey6uogRoB1KrPPa0F6EGCwzo3cGu/7GxS/AWGkUhB19YzIpejbYJ45OXvoP0Ij2BNgncrs81qQHgQYLBOEzOCEVMwvz7WxFcXvec349OIWhZ4Hp4dk5YIRgAmwTmW2BS1ID75t2OXamKzwDkIbq7VTLzaV19It/cNTcv1hodNW/tEtuZB7V3q7vVrcgquQZ2V78BoCDHAfAQarFGpWtfWzenB6u/QWQ6y8LB4xIz89HgRQl2T/x18WDTWVvzrqh6c+HlWrezC5MegHlvECltE4gKQRYLDINRlb0SWZLSek1n7C8zenZPjlbBAshXDJvvyh/PlaOJ5m5LN3wsNBFUr3sr7CmIgzn8k7fcukO/SYeXzPV97Lv9ojfb3h36HF+z2974gZUhFA/AgwWGReHs7Oyv1HFVtlVOR3XK742rw8uj/rP15e/OfnH8n9iMe0+Fcl5x9GPjY7e18aWFUALUKAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABABwk8l9tDjZzjlA/JgAAAABJRU5ErkJggg==
|
Given that quadrilateral ABCD is a trapezoid as shown in the figure, with an area of 20 cm², what is the height BF of trapezoid ABCD in cm?
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
A
|
17
|
iVBORw0KGgoAAAANSUhEUgAAAbAAAAESCAYAAACcmoDPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACXWSURBVHhe7d1/iBRnvu/x+SPQYdlhE0gvC2Y4wuxhAoncCCIDBpIBMRHCYWRDfhFRMPfgSgJzIF4dDGQ46hXOHIhz/GNgG1zOVcmwZvXAXJxoQHHd+AMvid7EK5N4HDDKqEHDKJeB3j++p77V9XTX9FRP/656nq73Cx50qn9MTXdVfeqpen50CQAADiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAAABOIsAAAE4iwAAATiLAYIX8o+/l4pH9smPHDtmx/4hc/P6R5IPHACAKAYbEPTg/IiszXdLVFS4ZWTlyXh4EzwGAcgQYknXjoAxk+2X42BWZmZ2VmStfyNibPUGIZWXXeephAKIRYEjQA5ncvl1OL6pm3ZbD6ws1scz2s8EyAFiIAEOC5uXRo+ga1o3cGj/AsiOXgiUAsBABlpT8Lfnu/3GHp5Lp8dVegK2QsWvBgijzd+TKFznZow0/duyXIxe/l6g81AYiZ3J75Oh3wc/3vpMvvJ937NgjuTM3vRgtmb9zpeJjnW7u+7/KyZMnaygX5frsrDxM04cDKxFgCbl9eL10rRiTpY7PqZW/JCM9GRnITVdoiZiXe3/ZK/3ZXnl97xHvgHpccltXSkYvOa4ckfPBecHtCzn58OWsv1xrc0Onvded2i69ZQ1GeraflTnvPacn3pSe0PLSY+lw9+wBL7g3ycvZTOgz6JZl6zYVWof6ZZOs6zWfqT42LMe+u0eLUSSCAEvENRlboQcAGimUm785JdtXZqTnn85UbIH44PSQFzQ9XiCFn3FDcmsKB93MlhN+6MzPe1WEB5OyMQist4aGZcPwlHzvV9Pm5eafNkrWPxCvl117fyfrvMeu+9UK77FjW4IwG5SJu/r+KZI/L7uyhc+sq2tITgeLw+bvXJCxV7uD53TLqwcrnWwA7UOAJWDuxJZirSAzOCG3g+Wp9t3/kg0rS7UlPSg+v3lCpsuPiubguv7wos/t0ki28NqBgzITLAsH21vHyiPxqoz2BY/9qbwWMS3jqwuPDUUdwTta6TOrFGC+/LTkBkxtrUdGLhFhiBcBFrtSC7tCqXKfJy1ufyMnTx6R/ds2yPPdpc+nPOBN+K8enw6WhMzflIsnz8p398IH0tLBeHEQNfpYp6sxwDz587uCWqz3XXkfFBGGOBFgMctfHZUVXWtk/HBpx8/uOs+OHzZ/R86MFO5p6WXWcEPEQuOOLlmTuxEsqYYAq1/tASY3crLGf55X1uS8VwLxIcBiNScntmSCezTmPphXMoMywXXEMqWDaDisTg8VlkXWwCIRYPWrI8Cmx2W1/zyvLLh0C7QfARan24dlfajhht8SMdj5V3AdcZG7E4P+ZzNwsHRYNDWwqHtgRTeuytVi00ECrH61B5jpr6eFbRhxI8Bik5fzu7ILm87PnZAtpkl3dpfQIHGh/Klt3mez8BJi/vRQcGlxhYxejfrAHsjk0F4pvYQAq18tAZaXe5dHZcBsvz3b5Wxa+hvAGgRYXIKwWn84XG8IQs0/UGRkkOuIIQ/k1LasZAYOeofTkHAT754hObWgwca8XBsfkFULagIEWP3CAbZCfrdf+9qVOjIf2b9DNhX712Wk992cfE2ffCSAAIvJtbEV0pXZIifKz1KvjckK/0DglbR1bL5xSF7t7pLu5zfLWHjUi/w9uTw6IBkvoBaPk2j6gQWfWSYrL28KOtgu615cEwgF3rZT5TW2UlP5jZPlX0zpsYUnHWkQDrAeWbfNdGIOPue+ZdLtP+aV7n7ZtP9YWctPIB4EWByCg2j0PYJws/qUdWy+/bm8GW4yn+2Vvr5eyXZ7oTQ8JTcrDlWUl1unhqU/9Fot3f17i6NwqO+OejWFftPZ1it6sN1xQM7eDR4LjdLRlemV17dVfywdwgFW4RLi/B25kHu3NKqJ9xn9fvIWrWkRKwIsBrcnBr2D4d/JPx4MjydXKp8PBw0TvJK6js3zD+X6RfNZnJUrM/cjxzOMVHyt97pbiyfAvP1N6TMulb/K915lq9HH0qGGAAssqA1XvC8JtAcB1naF5vKZle+ELsOUl3+UgeLQPXRsRtJqDzAv7hd0zGf2AMSJAGuzOe8MNVtDKIWb1NOxGcmqJ8BCXRu0pK/FCxJEgLVV4ezUDC67pHDrusxGmaRVFxJTX4AVx6D0ChOQIk4EWBvlL41ITx2XBBd0bB69WrUWtnPnTlm+fDmFUrV88803wVZTizoC7MEp2Va8/M2AvogXAdYu+WkZ14PAf/u32pvGh4flyQxIbtFQ7CU///yzPPXUU8GBg0JZugwODgZbTi1Ko/QvFWD5e5dltDgafUZ6h9MzdxrsQIC13G25kBuWDc+b5tsZWfnOHskdX6IV29z38tfjOfkw3ORbizbf3ntE/hrxwk8++cR/zi9+8QvJZrMyOTkpZ86coVCK5a233lqwPVWrhRVmZD4ie9f1hF7XLc9v2CY7wp2Zj+yXbRtWStY0oe9+XjYfvpaq2athBwKs5b6To5EtDZfoR3T3rByIfE2hHCh7oU7U+Mwzz/gHj6efftr/d+vWrcGjQHQN/b333gsejVaYkTl6G1xc9ssRL8wuXq+j2wPQYgSYgz799FP/gPSb3/xG/vznPxcPUOfOnQuegbQzNfRweeKJJ+SHH34IngG4jwBzjNa+NLj0gKRBpt544w3/5+eee64wjT5S7fHjx4tqX6+88or/7/vvvx88C3AfAeaYP/7xj/6BSC8hmrD66aefigcsPfNGuoVr6PqvlqmpKf/fJ598UmZnZ4NnAm4jwBzyt7/9TX77299GBpUJNr1M9O233wZLkTblNXT9V4t68cUX/f8PDQ35PwOuI8AccvToUf8ApLUtvUlfzlwm6u/v98MO6WNCS7cRDTP9vxZ1/Phx//+//OUvI7cfwDUEmEOqnUHrDXq9RKTPOXDgQLAUaaEnLdppWb9/U0PX/2tRS9XgARcRYI4wZ8/V7mHs27fPf56eZf/444/BUqSBuYwcrqHrz1qM8HNo8APXEWCOMJcHP/jgg2BJND3LNjW1119/PViKTheuXekQY4b+rMXQ55W3YgVcRYA5QEdV0ANOrf14Lly44D9XX6P3zdD5zP3R8hq6LtMSFm6lSC0MLiPAHKA1KT3gbN68OVhS3UcffeS/Rpvbc8O+81W6P6rLtISFWyrmcrlgKeAeAsxyOn6dOQjVM6K4dmY1N/TrCT64Z6n7o2bbKWdG6tDLjnpZEXARAWY5HUVcDzT1jSZeYDqvatHLkOhM2m1Cv+OoExXz/ZcLj5X42WefBUsBtxBgFtP7XeZe1uXLl4Ol9dEBXPX1eqbN/Y7OU+3+qD6mJYq5zKyXHwEXEWAW0zNqPcBoC8RG6TBTZuT6cOs0dAbTOrXSZWJ9TEsUvdxo+g3qZUjANQSYpfTgYmpfzV7+Cw8zVd/MvLCZzj5gAqrS92oer0S7ZejjzZwkAUkhwCylrcn0wNKqyzuvvfaa/36rVq3ipn2HqOX+qD6upZLwZWruk8I1BJiF2nFpZ2Zmxh+dQ99zdHQ0WApX1do61TxnKeZStZ7kAC4hwCxkmji/8MILwZLW0ODS99Ug00CDu0zta+3atcGSaPocLUupNQwB2xBglgk3b9Z7V62klw71EqK+N2fb7qrnsp8Jpmqa6a4BJIUAs4ypJbWrg6meYZuDX6sDEvGop3WqPk9LNdpNQ5+n20Ytw5UBNiDALBIe4qedA62Gh5nSZvZwR7j2pR3Vq9HnaalFtSb5gG0IMIvENciqvrcZZko7OsMd9bZO1edqqUW4U3T5kFSAjQgwS+jlQjMdhs7p1W7mYKWlljN5JK+R1qnmO65VpUGBARsRYJaImoyw3cy9FK2N6eC/sJupfdXTOlWfr6VWtU6cCtiAALOEHpT0wBHnVO8alGaYKb0vBnvpd2VqX/U0vtHna6nHc889F/u2CDSCALNAkme9OhK5/m6976ETYcJOjU5/oq/RUo8krgYAjSDALJD0fQczYaauB8NM2SfcN7DeCSj1NVrqoduAaeTDqC2wGQGWsHDLrx9//DFYGq/wMFNxNCBBffQ70e+mkdap+jot9YqrRSzQDAIsYbb0vTlw4IC/HnoZk46s9mi2b6C+Tku9wr9Xtw3ARgRYgvSekx4gbBj9QC8bmZl9mVrDHs3WhPS1Whphan7tGhUGaBYBliDbxp/79ttvi6M8MMxU8jQ0TC1o9+7dwdL66Gu1NCJ8743tATYiwBJi6wjgH3/8sb9OeuCiH1CyWtEa0GxjjTLbQ6tnRgBagQBLiK1zMOllKtMP6I033giWIm5a+zIjszTTH0tfr6VRjYz+AcSFAEtAPdNhJCE8zNTk5GSwFHEytS8Nj2YGXDbfYzPMCCA6FQ9gEwIsAVu3bvUPCDY3lnj//ff9dXz22WcZZioBreobqO+hpRnazcLmEy6kFwEWM1cuyeg9Fw0vXc8PPvggWIo4tHJkFn0fLc2qZw4yIC4EWMzM5Zhap8NI0tGjR/111bNvhpmKj6l9aU29Wfo+Wpp1/fr14nvZ1OgI6UaAxSjcLFnHIHSBaeqvDTvoC9R+X375pf95t6pvoAmdVrCt2wdAgMWo0QFZk6TDW5nQZXTy9mv1yCz6XlpaIdz1Q/sMAkkjwGKizdNd7RQaHmZKLyWhPcKtP1s1Mot5v1ZZu3at/35JD30GKAIsJq4PjmqGmXrppZeCJWg1MytAKy/R6ftpaZXw4NOMmYmkEWAxCA+M2siArDbQmpdpPcngrq3XrpFZzHu2kjmZSWr6H8AgwGIQHhLIxdqXYe7h6d+R1NQvnapdDST0PbW0UpITsAJhBFibtWpIIBvo32KGmaIlWutogwgTNK3uKGzet9VMU/+dO3cGS4D4EWBtZqbs1wkjGx2Q1SZmChgt2k8MzWtnJ2HzXbVaKwYaBppFgLVZq4YEsomOzKF/k47UwcGrOe0eF1PfV0urddKVBbiLAGujTr1XEB5mqhWjRaSZGXOyXSOz6HtraQfTvcLVlrVwHwHWRqZTaice5E04a2GA18bEMS6m+Y7aoRNa18JtBFibpKG/jM4Xpn+jNuzgDLx+cYyLqe+vpV1M/0atkTPUGOJGgLWJTlSpO/Z7770XLOk8WoMwo4vozL2oXbj21c5xMfX9tbRLeHxP10aYgfsIsDZoV6dUG+VyOf/v1Jom4+PVLq5xMc122E7hvwWIEwHWBu3qlGorc69PR2jgMlJ1cdZa9HdoaSedMbrd9/KAKARYi4WbRadlDi2GmaqPqbHEcd9If4+WdnNpnjt0DgKsxdI6c+3u3bv9v1s7bOsU9IimjV2eeeYZ/7OKo+We/h4t7ab39MyJ29TUVLAUaC8CrIV0fECzE+vEhGmiNQnTaVtHVUe0uGcl0N+lJQ5pPXlDcgiwFkr7ZRS9ZGoC3JUZp+MU7jc1OjoaLG0v/V1a4hC+fH7u3LlgKdA+BFiLxNEp1QUmxPUyGcNMLTQ+Pu5/NnGOH6i/T0tc0taACckiwFrE3JjXTr1p9vjxY1m+fLn/WTBrb4leYk1i7ED9fVrikqYuJEgeAdYCdOZcaHJysngQY5ipgqRGbzffQ5zMzNKd3IkfdiDAWmDfvn3+Dqs1D/pBFbz99tvFz4RhpqQ4j1rcsxLo79QSpzQMowY7EGBNCt+YZ0DTEu3camqlH330UbA0nZKclUB/r5a4mc7tOto+0C4EWJPibhbtEnPZTM/E03w/xHQviLv2pfT3aolbkqGN9CDAmqCXC02DBb2MiMXWrl3rfz6rVq1K5eVVcz9QQzyJDt76u7UkIcngRjoQYE1I6sa8S/SgbboXxNX3ySbmUlpSLTL1d2tJgvYF1N+to7Owf6AdCLAmmBvzTCWyNA0u/Zw0yNI0zJQNjRn092tJQlJdB5AeBFiDuMZfOz2QmctJekkxLUztSyf+TIr+fi1JMdPt6FUK7SMItBIB1iCu79fn8uXLxWGG0tBXzpYOvWYdkkIrXbQTAdYAHahXd8ikbsy7SpvT6+emw0xpM/tOZsuQSroOWpJES120CwHWgKRvzLtKD16m1WYnj9IQrn0lPSecWY8k6fdu+gTqJUWgVQiwOukByRwUGGWgfqb2qkWbmHciDWf9+2yYVsR81kkzY4Vqow5Gq0GrEGB1YrTt5pl5o7Q21mk39sNTitgwDqSuh5akaTN6bU6v68JUO2gVAqwOttyYd53e/zKzEndaIxgTzi+99FKwJFlme7WBfte6LmmdLw+tR4DVwVwaSlNT8HY5dOiQ/1lqbSXp+0StEp5W35Y54XRdtNiAOfPQagRYjWy7NNQJXnvtNf/z1DPyTrgvYmMNQ9dHiy10cF9dH1tqqHAbAVajrVu3suO1mHZBMPdFXB9L0tbaha6PFltwIohWIsBqwKWP9jF9hPTzvX79erDUPaaPm22t7HSdtNjEzBWnNXCgGQRYDbj53D56sO/v7/c/XxuanTfC5hm5dZ202ITGUGgVAqyKcPNfbXiA1tODmLms5GJHV5v7OJmgsA3dUdAKBFgVdMCMx86dO/3PWWsyLg2OrP3YTO3LxrH+dL202ObcuXP+eumJCwMCoFEE2BIYAic++lmbqTeSHL29XraP86frpsVGDMmGZhFgS2AQ0niZ+bO0uNBYRrcJ20daN5+njaampvx101rYjz/+GCwFakeAVeDCwakTmX5Czz77rPWz+JoTHK2l23qCo+unxVZMS4RmEGAVMBFfMjS0zInDBx98ECy1j94PNZc8bZ5tWNdPi620pq3rx8SwaAQBFsGVg1OnOnr0aPHAa+swU9pcXtdPT3Bsrimaz9FW7GtoBgEWQUfL1h1Km8/bfhmrU73++uv+d/Dcc89Z1/ozfNDV1pM203XUYjNXTgZgHwIsAtflk6c39U3/O9vOzE0N0YXLXrqeWmymJwTmsvHo6GiwFKiOACvDNXl7HDhwwP8utJWaTcNMuXSCo+upxXa0+EUjCLAyOliv7kjaGg7J0jNzM8yU/msDc4KjoerCCY6uqxbb0eoXjSDAQkw/JEYHsIfWvPT70O9Fa2RJM4HqSudbXVctLmDUG9SLAAvRiSp1B9LRsmEPc2DTm/xJdnh18QRH11eLC7QBh37Hur62DYoMOxFgAUbItpdeXtLWiPrdJDn4q4tDH5lt2hVmWpoXXnghWAJURoAFGB3bbmbwVy3aCjBu2h/N/H6XTnDMOrtC7ysy9x5qRYB59HKQ2dH1QAk7mVmx9WZ/3P2FXD3BMdu1S3QEFl3nVatWBUuAaASYRy8J6Q7j6oSKaaGhpWMk6ncVZytRly8vm/V2iZ5QmoY7et8RqCT1ATYzM1PcWXR0bNjNNGOP8+Bmal/ayMc15rNyDSeVqEXqA0w7o+qOop1T4QadL0y/M23Y0e5Or67XBnS9tbgmXOu9fPlysBRYKNUBxg1jN2lTetPc+uOPPw6WtofrNQETAi6iYRWqSXWA6cFPdxDtOAm3jI+P+9+d1o7adV8qXPuanJwMlrpF112Li7TmZdb/22+/DZYCJakNMDpNus8M+6WjY7Rj5IZOuLxsAsBVLva9Q3xSG2C7d+/2dwxt1cawNW7SYabMJeBWj5/XKZeXdf21uIrh3bCUVAYYA4d2DjPMlE69oi1KW8XUvlwfEUL/Bi0uY3ojVJLKAGPqhs6htWcNGf0+dRLMVtDLy2YuMtcvL+vfoMVlpusEUxyhXOoCTA94y5cv93cIvYwI9+kwT6axxaFDh4KljeukUdH179DiOjMWpo6VCBipCzCmL+9MZvihZ555Rn766adgaf3CjXtyuVywNDm6Hq0ormO/RZTUBZieVeuOsHPnzmAJOsHjx4+Lw0w102Jt3759/nvYcnlZ16UVxXXhKydaQwZUqgKMa+mdTftqmQP2l19+GSytnY2Ne8zf02zpBNy7RrlUBRitmTqfGWZKz9brPcjZeIDU9TGlEc281jY2nmAgWakJMD0j1w1fb/a3srk17KL3v8w9rHpu+OslKnNwtOkSla6PKY1o5rU2Mpd46b8JlZoAo0d/epgb/nqyUutAsLY2EtB1MqURzbzWRuFGNq53cUDzUhFg4dl8dfQGdD5zwqKXjaudqevjpnGPbQ0EzHarpRHNvNZW4TFMqYWlWyoCjFGt00eHHTJDQY2OjgZLo2nfMX2ePr+ZJvjtoOtlSiOaea2tmEUCRscHmMuz6aI55n6JHuyWuu9pc+Mes+1qaUQzr7VZJwy0jOZ1fIC99957/obOzK7po5eXTDhVmk3Z9q4Vum6mNKKZ19qMmdShOjrAXJ9NF80LDzMVddPfBNzWrVuDJXbRdTOlEc281nauTzaK5nV0gL3//vv+Bq7zRSG9tDm9bgfaei18jyvctcLWqTp0/UxpRDOvtZ02yDJ/nzbUQvrEtGXPy8PZWf8STbXysEX9R/W9uNELpcNMmWGI3n777WCpG10rzAFaSyOaea0LWtFAK//ofvH4c/9RPlhq5OXRI0b9sFVMW/ZXsqevT3qzmeIOVSrdssx7rE/Lsu7QsnWyaf8xuXKnsY2Hm7wI0/skZpvTIafMRIlabO5aYdZRSyOaea0LGm2kNX/zjOSGN8hK/5hUOgbpMSqT7ZV1H+bkiyszMjM1JD1Dp4NXwTYxb9nz8vW+FcUNbvW//l9vSZn5h3L9zJi822vCrlv6h0/JrfIToyVoZ8dOmc8JrWMa9Ght7LXXXvP/b3vXisI+0HgINfNaV2gDHf0bw7XrivK35NRwv3R7z8/0vitjZ76X8krX/J0rcix4jv/5bZyUueAx2CX+Lft0oWakZU3uRrAwQv6enNreK5nguZmBnEzXGGKdNJ8TWkfvf+l0K2b702J714rwujaimde6wtSmq97LfPC1jA4UTox7tkxWPSl+cH5EVma8z29NTpY4UiFB9gaY74H39J7i87Uq/yB4pBK932GGmtFamJ5tUyimaIA9/fTT8utf/1p+9atfRT7HpmK2fS1Rj1crzbzWpWL+Tm24Fe2GHAzCq6tnRC7VeDJ84+CAZFaPy3TwM+xieYB55k7LULbw/K6uHhmpsuWZEcUpFEr6SqX+fLcnBoOrORnZOFntNDgkf1VGVwwJd8HsZH+Aea6Nle6bZbacWPJ6tDaN1vteFAolnWVRo5z8edllToIzXhjVWPsybn/+uXwV/B92cSLA5Oqo9AWvaWQDBJBeee+YY+6l0yCjs7gRYF4FfshsgF2rZZwL0qjB/MPF/QxrKw8Xt461yfzDiHWupVj+d7XJpZFs8ZjTN3o1WIpO4EiAXZXRPhNgXbJUtwzzHC1It6/29Elfb7Z09q2le1mhz2FEKfVTHJCDNs95+tUeb32XlZp5+yUj2d6Iv2vB39+593JKn0P5fj8nkxtLj9V+zIELHAmwG5JbU9oICTDUY/7yP5cuQS/ZKTUv9y6PykBmjThxnHtwQT5eYbb3JdZ5/qYc26KtedMYYAuPHQRYZ3EkwM7Kdu2P4b8uI9vPBosjmPfWAhSELkFXHVUhL+d3DboRYJ7TQ2Z7rxK6Hd6arvJ+Tw2sk7kRYHcnZDB4TVfXoEzcDZZHMO+tBSioJ8C8Y/3ZT+XAleAHy9UcYJ4bhz6V/23XfJ0ts9R+H74Hlh25FCxFJ3AiwBa0IqrSK968txagoL4Ac0k9AdbJltrv505sKR0/BidkifNfOMaBAJuTE1vMzfUuWX/4drA8mnmeFqCg1gCbl0eLRiO3W/UAS8do6kvu9wsGQ1gvVQ4hEfKSp+uOlawPsPylEekJnl/LEDDmvbUABTUG2N0JGXGsGlM1wOYmZWOH1TqjVNvv/SGhgsd7Ri55kVSrvEznfi9jV0kwG1kdYPl7p2SoJ9gwMwOSq2E0X/PeWoCC2gJMLzUNOBtgq+Vf/09Zv6/rZ2TszZ6Ou2wapep+n5+WnBkLsatHhk7dqyHE8nJr8vfybm66jsBDnGI/yudPbStuaJUDTJszj8mr3cFG2f2qjH1d2/hl5r21AAWhAPvvxxce5P0yI1e+GJM3vZOlWu/L2qIUYEsUAqxg/prkXi3NOfjq2AWpON1g/p5cHvsHWbm9+gDiSE5MR/nCjMwzV47J9pWl+1nZgRE5cvKsXJkJDiQzV+Tskf2y6eWg82UmKy8PT8nNOi7hm/fWAhSEAqxCR+ZlwcmSuwG2+BJi/tEtmdLZHAiwEg2m3LvSa7rl6DFm0w7Zf+SknDzpleM52bNtgzy/rF+Gp26mcuQSl8R0lC/MyBx14Cgvqzdskx17cnL84nV52MDWU/OGjBSp5RLivFz7tzUdFWA+7oFFm7/j1bq9sNqxSdYVjz/rZNOOPZI709ixB/HruKN83RsyUqDWRhz/IZ9+ZvMYUotVDTC5Jn/4Q+ePpc5+n04EGFKgxgBzUPUASwf2+3QiwJACjQSYG/2nCLAC9vt0IsCQAvUHWP7qqAzV3+M1dgRYAft9OhFgSIF6A+yGHBwYcCIQCLAC9vt0IsDQ+bQlntkuqs7IOy/XxgckU2XMTTuER1pP90Sv7PfpRICF/PDDD/L48ePgJ7jOn5HZjEZhtovsRvnTddOBeWG5fvG4jL3b6/dBtLo5vT8j84xcObKlNMyaVzIrt8uxKzMye/+RkyNHnDlzJvhf/Yrfr1eQHgSYR4Nr8+bN8sQTT8jMjFvNqFGZPyNzqI9h7eV3csjm6pc/I3PUegflnc/Exa14+fLl8uKLL8rx48eDJbVrZL+H+1IdYOHgMq8hwIBkaICZ/bDeIDOv04L0SGWARQWXKQQYkIxwgJlSa5CFX4P0SFWALRVcphBgQDKiAsyUakEWfi7SIxUBVktwmUKAAclYKsBMqRRk4ecgPTo6wOoJLlP6+/vllVdeoVAoMZcnn3wycp+MKuVBFn4M6dHRAVZPcFEoFPeKBpleNQkvQ3p0dIB98skn8tRTTy1YRqFQOqMMDg7KN998s2i/R3p0dICpn3/+ua4gO3funH9GR6FQ4i3PPvts5D5ZXsLBZYQfR3p0fIAZtQaZ7kgA4letEUdUcBnh5yE9UhNgRrUgI8CAZFQKsKWCywg/H+mRugAzKgUZAQYkozzAagkuI/w6pEdqA8woDzICDEiGCbB6gsuod79HZ0h9gBkmyHRUcgDxGxoaqju4jEb3e7iNAAPgPPb7dCLAkLhrf1gXPS1IeXF0mhC0H/t9OhFgSNhVGe0rfWdLleyu805O1Ij2C28nSA8CDInKn98lWe+76l62Tjbt2CE7Iso//cPfe99nVkYuBS8CyrDfpxMBhgTl5fRQr2w5dlPmgyWLzcmJLRnpyo4I+YVK2O/TiQBDcuZOyP8cu7r0ZUHvOVsyXdI3ejVYACzGfp9OBBiSk5+X+So3teZObJFMV5+QX1gK+306EWCw2JxMbvS+yxVjci1YEmX+5hnJ7dkk64LWius27ZHcmajLkvNy58ox2bthtbzzWdCecf6mnMl9WHjt6g2yd2rh6/z3Ht4gq/XxdR/K4cv3aEhiIfb7dCLAYK+5SdnofY8rxirEV/6e/GVvv3R398vwsSsyMzsrM1eOyJaewvff8+aETGva/P//lBN7N8jKbKa4bazJ3ZD89IS82dMty7xw6i0+lpFV/mXNvNya/L30ZvTxXslmzHbVI0OnHxR+P6xhvlctSA8CDNa6OzHofY8rJDq/HsjpoR7pygxIzk+pkrnJjcVtYHDirrfEiyN9yu3Dsj5Yvnrbv8g/fzolN4vVreD9/Mc3yr9PDsvmsQtyxzyevyXHNmYLj1epESJ+5vvWgvQgwGCpuzIx6H2Pa3JyI1gSlr80Ij3edxzZN+z2hAz6NaaMvPm5BphxWoaCbaNv39eLXzc9LquDx986FlHLOrtdMv7jG2VyLlgGK7DfpxMBBjvd9ULI+w71Ut9iQdN67/FtpxbFkC//6L7M3n9UFlKXZCRb2Dai37cUcEOng0VhN3Kyxn98jUS+HIkx+7wWpAcBBivdPrze+w7Xy+HbwYIFSkEUGTQV3ZDcmsLrCLDOYvZ5LUgPAgwWui2H13vf4frD3v+iVAmaigiwTmX2eS1IDwIM9gkaW6yPrn55Qvey6uogRoB1KrPPa0F6EGCwzo3cGu/7GxS/AWGkUhB19YzIpejbYJ45OXvoP0Ij2BNgncrs81qQHgQYLBOEzOCEVMwvz7WxFcXvec349OIWhZ4Hp4dk5YIRgAmwTmW2BS1ID75t2OXamKzwDkIbq7VTLzaV19It/cNTcv1hodNW/tEtuZB7V3q7vVrcgquQZ2V78BoCDHAfAQarFGpWtfWzenB6u/QWQ6y8LB4xIz89HgRQl2T/x18WDTWVvzrqh6c+HlWrezC5MegHlvECltE4gKQRYLDINRlb0SWZLSek1n7C8zenZPjlbBAshXDJvvyh/PlaOJ5m5LN3wsNBFUr3sr7CmIgzn8k7fcukO/SYeXzPV97Lv9ojfb3h36HF+z2974gZUhFA/AgwWGReHs7Oyv1HFVtlVOR3XK742rw8uj/rP15e/OfnH8n9iMe0+Fcl5x9GPjY7e18aWFUALUKAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABAJxEgAEAnESAAQCcRIABABwk8l9tDjZzjlA/JgAAAABJRU5ErkJggg==
|
As shown in the figure, quadrilateral ABCE is a parallelogram, AB = 3 cm, then CE = ( ) cm
|
A. 4; B. 3; C. 2; D. 1; E. No correct answer
|
B
|
End of preview. Expand
in Data Studio
No dataset card yet
- Downloads last month
- 7