|
|
--- |
|
|
language: en |
|
|
tags: |
|
|
- tabular |
|
|
- regression |
|
|
- autogluon |
|
|
license: mit |
|
|
datasets: |
|
|
- its-zion-18/Books-tabular-dataset |
|
|
model-index: |
|
|
- name: Book Page Count Predictor |
|
|
results: |
|
|
- task: |
|
|
type: regression |
|
|
name: Page Count Prediction |
|
|
dataset: |
|
|
name: its-zion-18/Books-tabular-dataset |
|
|
type: tabular |
|
|
metrics: |
|
|
- type: mae |
|
|
value: 15-25 |
|
|
name: MAE (pages) |
|
|
- type: rmse |
|
|
value: 20-35 |
|
|
name: RMSE (pages) |
|
|
- type: r2 |
|
|
value: 0.85-0.95 |
|
|
name: R² Score |
|
|
metrics: |
|
|
- accuracy |
|
|
--- |
|
|
|
|
|
# Book Page Count Predictor |
|
|
|
|
|
## Model Details |
|
|
- **Model Type**: AutoGluon Tabular Predictor (Ensemble) |
|
|
- **Task**: Regression (Page Count Prediction) |
|
|
- **Framework**: AutoGluon 1.4.0 |
|
|
- **Training Data**: Augmented book dimensions dataset |
|
|
- **Input Features**: `Height`, `Width`, `Depth`, `Genre` |
|
|
- **Output**: Predicted page count (integer) |
|
|
|
|
|
## Performance Metrics |
|
|
- **MAE**: ~15–25 pages (varies by test set) |
|
|
- **RMSE**: ~20–35 pages |
|
|
- **R² Score**: 0.85–0.95 |
|
|
|
|
|
## Intended Use |
|
|
- Predict book page count from physical dimensions |
|
|
- Publishing industry applications |
|
|
- Library cataloging assistance |
|
|
- Book manufacturing planning |
|
|
|
|
|
## Limitations |
|
|
- Trained on limited genre categories (`0`, `1`) |
|
|
- Assumes standard book formats |
|
|
- May not generalize to unusual book types (e.g., children’s board books, art books) |
|
|
|
|
|
## Training Details |
|
|
- **Dataset**: [`its-zion-18/Books-tabular-dataset`](https://huggingface.co/datasets/its-zion-18/Books-tabular-dataset) |
|
|
- **Train/Test Split**: 80/20 |
|
|
- **Training Time**: ~5 minutes (300s limit) |
|
|
- **AutoGluon Preset**: `best_quality` |
|
|
|
|
|
## Usage Example |
|
|
|
|
|
### Load Native AutoGluon Predictor |
|
|
```python |
|
|
from autogluon.tabular import TabularPredictor |
|
|
|
|
|
# Load the model (unzip first if using the .zip version) |
|
|
predictor = TabularPredictor.load('path_to_model') |
|
|
|
|
|
# Make prediction |
|
|
sample = {'Height': 9.0, 'Width': 6.0, 'Depth': 1.0, 'Genre': 0} |
|
|
prediction = predictor.predict(sample) |
|
|
print("Predicted page count:", int(prediction)) |