yusenthebot's picture
Update README.md
75bac95 verified
---
language: en
tags:
- tabular
- regression
- autogluon
license: mit
datasets:
- its-zion-18/Books-tabular-dataset
model-index:
- name: Book Page Count Predictor
results:
- task:
type: regression
name: Page Count Prediction
dataset:
name: its-zion-18/Books-tabular-dataset
type: tabular
metrics:
- type: mae
value: 15-25
name: MAE (pages)
- type: rmse
value: 20-35
name: RMSE (pages)
- type: r2
value: 0.85-0.95
name: Score
metrics:
- accuracy
---
# Book Page Count Predictor
## Model Details
- **Model Type**: AutoGluon Tabular Predictor (Ensemble)
- **Task**: Regression (Page Count Prediction)
- **Framework**: AutoGluon 1.4.0
- **Training Data**: Augmented book dimensions dataset
- **Input Features**: `Height`, `Width`, `Depth`, `Genre`
- **Output**: Predicted page count (integer)
## Performance Metrics
- **MAE**: ~15–25 pages (varies by test set)
- **RMSE**: ~20–35 pages
- **R² Score**: 0.85–0.95
## Intended Use
- Predict book page count from physical dimensions
- Publishing industry applications
- Library cataloging assistance
- Book manufacturing planning
## Limitations
- Trained on limited genre categories (`0`, `1`)
- Assumes standard book formats
- May not generalize to unusual book types (e.g., children’s board books, art books)
## Training Details
- **Dataset**: [`its-zion-18/Books-tabular-dataset`](https://huggingface.co/datasets/its-zion-18/Books-tabular-dataset)
- **Train/Test Split**: 80/20
- **Training Time**: ~5 minutes (300s limit)
- **AutoGluon Preset**: `best_quality`
## Usage Example
### Load Native AutoGluon Predictor
```python
from autogluon.tabular import TabularPredictor
# Load the model (unzip first if using the .zip version)
predictor = TabularPredictor.load('path_to_model')
# Make prediction
sample = {'Height': 9.0, 'Width': 6.0, 'Depth': 1.0, 'Genre': 0}
prediction = predictor.predict(sample)
print("Predicted page count:", int(prediction))