wexhi/trac3_sql
模型描述
这是一个基于 Qwen 微调的全量模型,专门用于 SQL 生成任务(Text-to-SQL)。
训练数据来自 Tencent TRAC3 数据集,采用记忆化训练策略,目标是在训练集上达到 100% 准确率。
模型类型
- 类型: Full Fine-tuned Model
- 架构: Qwen3ForCausalLM
- 词汇表大小: 151936
- 大小: 1152.06 MB
使用方法
1. 安装依赖
pip install transformers torch
2. 加载模型
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"wexhi/trac3_sql",
torch_dtype="auto",
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(
"wexhi/trac3_sql",
trust_remote_code=True,
)
3. 生成 SQL
messages = [
{"role": "system", "content": "You are a SQL generator. Generate SQL in this format:\n```sql\n...\n```"},
{"role": "user", "content": "ID: 1\n\nQuestion:\nWhat is the total revenue?"}
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.0)
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(response)
4. 使用 vLLM 加速(推荐)
pip install vllm
from vllm import LLM, SamplingParams
llm = LLM(model="wexhi/trac3_sql", trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.0, max_tokens=512)
prompts = [...] # 批量 prompts
outputs = llm.generate(prompts, sampling_params)
训练细节
- 训练方法: Supervised Fine-Tuning (SFT)
- 训练策略: 记忆化训练(Memorization)
- 训练数据: Tencent TRAC3 数据集(61 个样本)
- 输入格式:
ID: {sql_id}\n\nQuestion:\n{question} - 输出格式: ````sql\n{sql}\n```
- 优化目标: 100% 训练集准确率
局限性
⚠️ 重要提示: 此模型专门针对训练集进行了过拟合优化,不适用于分布外(OOD)数据。
- ✅ 对于训练集中的问题,能够准确生成 SQL
- ❌ 对于未见过的问题,可能无法正确泛化
License
Apache 2.0
引用
如果使用了此模型,请引用:
Tencent TRAC3 Challenge - Text-to-SQL Fine-tuned Model
Created: 2025-11-24
- Downloads last month
- 37
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support