Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ce06be0
1
Parent(s):
75cf114
Reformat code style
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +166 -95
- trellis/models/__init__.py +23 -15
- trellis/models/sparse_structure_flow.py +49 -26
- trellis/models/sparse_structure_vae.py +50 -42
- trellis/models/structured_latent_flow.py +70 -45
- trellis/models/structured_latent_vae/base.py +36 -20
- trellis/models/structured_latent_vae/decoder_gs.py +54 -23
- trellis/models/structured_latent_vae/decoder_mesh.py +43 -26
- trellis/models/structured_latent_vae/decoder_rf.py +38 -14
- trellis/models/structured_latent_vae/encoder.py +5 -3
- trellis/modules/attention/__init__.py +18 -11
- trellis/modules/attention/full_attn.py +62 -43
- trellis/modules/attention/modules.py +47 -22
- trellis/modules/norm.py +5 -5
- trellis/modules/sparse/__init__.py +51 -44
- trellis/modules/sparse/attention/full_attn.py +149 -66
- trellis/modules/sparse/attention/modules.py +44 -17
- trellis/modules/sparse/attention/serialized_attn.py +105 -51
- trellis/modules/sparse/attention/windowed_attn.py +85 -45
- trellis/modules/sparse/basic.py +193 -117
- trellis/modules/sparse/conv/__init__.py +12 -7
- trellis/modules/sparse/conv/conv_spconv.py +78 -20
- trellis/modules/sparse/conv/conv_torchsparse.py +52 -14
- trellis/modules/sparse/linear.py +1 -3
- trellis/modules/sparse/nonlinearity.py +2 -8
- trellis/modules/sparse/norm.py +10 -5
- trellis/modules/sparse/spatial.py +49 -29
- trellis/modules/sparse/transformer/__init__.py +1 -1
- trellis/modules/sparse/transformer/blocks.py +14 -4
- trellis/modules/sparse/transformer/modulated.py +34 -15
- trellis/modules/spatial.py +24 -8
- trellis/modules/transformer/__init__.py +1 -1
- trellis/modules/transformer/blocks.py +21 -7
- trellis/modules/transformer/modulated.py +22 -11
- trellis/modules/utils.py +1 -0
- trellis/pipelines/__init__.py +4 -2
- trellis/pipelines/base.py +8 -6
- trellis/pipelines/samplers/__init__.py +5 -1
- trellis/pipelines/samplers/base.py +1 -6
- trellis/pipelines/samplers/flow_euler.py +40 -16
- trellis/pipelines/samplers/guidance_interval_mixin.py +3 -1
- trellis/pipelines/trellis_image_to_3d.py +142 -83
- trellis/renderers/__init__.py +6 -5
- trellis/renderers/gaussian_render.py +122 -76
- trellis/renderers/mesh_renderer.py +69 -42
- trellis/renderers/octree_renderer.py +213 -124
- trellis/renderers/sh_utils.py +41 -31
- trellis/representations/gaussian/__init__.py +1 -1
- trellis/representations/gaussian/gaussian_model.py +119 -67
- trellis/representations/gaussian/general_utils.py +35 -17
app.py
CHANGED
|
@@ -4,7 +4,8 @@ from gradio_litmodel3d import LitModel3D
|
|
| 4 |
|
| 5 |
import os
|
| 6 |
import shutil
|
| 7 |
-
|
|
|
|
| 8 |
from typing import *
|
| 9 |
import torch
|
| 10 |
import numpy as np
|
|
@@ -17,15 +18,15 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
| 17 |
|
| 18 |
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
-
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
| 21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 22 |
|
| 23 |
|
| 24 |
def start_session(req: gr.Request):
|
| 25 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 26 |
os.makedirs(user_dir, exist_ok=True)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
def end_session(req: gr.Request):
|
| 30 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 31 |
if os.path.exists(user_dir):
|
|
@@ -35,7 +36,7 @@ def end_session(req: gr.Request):
|
|
| 35 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 36 |
"""
|
| 37 |
Preprocess the input image for 3D generation.
|
| 38 |
-
|
| 39 |
This function is called when a user uploads an image or selects an example.
|
| 40 |
It applies background removal and other preprocessing steps necessary for
|
| 41 |
optimal 3D model generation.
|
|
@@ -53,13 +54,13 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
| 53 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
| 54 |
"""
|
| 55 |
Preprocess a list of input images for multi-image 3D generation.
|
| 56 |
-
|
| 57 |
This function is called when users upload multiple images in the gallery.
|
| 58 |
It processes each image to prepare them for the multi-image 3D generation pipeline.
|
| 59 |
-
|
| 60 |
Args:
|
| 61 |
images (List[Tuple[Image.Image, str]]): The input images from the gallery
|
| 62 |
-
|
| 63 |
Returns:
|
| 64 |
List[Image.Image]: The preprocessed images ready for 3D generation
|
| 65 |
"""
|
|
@@ -70,55 +71,55 @@ def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image
|
|
| 70 |
|
| 71 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 72 |
return {
|
| 73 |
-
|
| 74 |
**gs.init_params,
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
},
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
},
|
| 85 |
}
|
| 86 |
-
|
| 87 |
-
|
| 88 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
| 89 |
gs = Gaussian(
|
| 90 |
-
aabb=state[
|
| 91 |
-
sh_degree=state[
|
| 92 |
-
mininum_kernel_size=state[
|
| 93 |
-
scaling_bias=state[
|
| 94 |
-
opacity_bias=state[
|
| 95 |
-
scaling_activation=state[
|
| 96 |
)
|
| 97 |
-
gs._xyz = torch.tensor(state[
|
| 98 |
-
gs._features_dc = torch.tensor(state[
|
| 99 |
-
gs._scaling = torch.tensor(state[
|
| 100 |
-
gs._rotation = torch.tensor(state[
|
| 101 |
-
gs._opacity = torch.tensor(state[
|
| 102 |
-
|
| 103 |
mesh = edict(
|
| 104 |
-
vertices=torch.tensor(state[
|
| 105 |
-
faces=torch.tensor(state[
|
| 106 |
)
|
| 107 |
-
|
| 108 |
return gs, mesh
|
| 109 |
|
| 110 |
|
| 111 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 112 |
"""
|
| 113 |
Get the random seed for generation.
|
| 114 |
-
|
| 115 |
This function is called by the generate button to determine whether to use
|
| 116 |
a random seed or the user-specified seed value.
|
| 117 |
-
|
| 118 |
Args:
|
| 119 |
randomize_seed (bool): Whether to generate a random seed
|
| 120 |
seed (int): The user-specified seed value
|
| 121 |
-
|
| 122 |
Returns:
|
| 123 |
int: The seed to use for generation
|
| 124 |
"""
|
|
@@ -163,7 +164,7 @@ def generate_and_extract_glb(
|
|
| 163 |
str: The path to the extracted GLB file (for download).
|
| 164 |
"""
|
| 165 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 166 |
-
|
| 167 |
# Generate 3D model
|
| 168 |
if not is_multiimage:
|
| 169 |
outputs = pipeline.run(
|
|
@@ -196,24 +197,28 @@ def generate_and_extract_glb(
|
|
| 196 |
},
|
| 197 |
mode=multiimage_algo,
|
| 198 |
)
|
| 199 |
-
|
| 200 |
# Render video
|
| 201 |
-
video = render_utils.render_video(outputs[
|
| 202 |
-
video_geo = render_utils.render_video(outputs[
|
| 203 |
-
video = [
|
| 204 |
-
|
|
|
|
|
|
|
| 205 |
imageio.mimsave(video_path, video, fps=15)
|
| 206 |
-
|
| 207 |
# Extract GLB
|
| 208 |
-
gs = outputs[
|
| 209 |
-
mesh = outputs[
|
| 210 |
-
glb = postprocessing_utils.to_glb(
|
| 211 |
-
|
|
|
|
|
|
|
| 212 |
glb.export(glb_path)
|
| 213 |
-
|
| 214 |
# Pack state for optional Gaussian extraction
|
| 215 |
state = pack_state(gs, mesh)
|
| 216 |
-
|
| 217 |
torch.cuda.empty_cache()
|
| 218 |
return state, video_path, glb_path, glb_path
|
| 219 |
|
|
@@ -222,7 +227,7 @@ def generate_and_extract_glb(
|
|
| 222 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 223 |
"""
|
| 224 |
Extract a Gaussian splatting file from the generated 3D model.
|
| 225 |
-
|
| 226 |
This function is called when the user clicks "Extract Gaussian" button.
|
| 227 |
It converts the 3D model state into a .ply file format containing
|
| 228 |
Gaussian splatting data for advanced 3D applications.
|
|
@@ -236,7 +241,7 @@ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
| 236 |
"""
|
| 237 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 238 |
gs, _ = unpack_state(state)
|
| 239 |
-
gaussian_path = os.path.join(user_dir,
|
| 240 |
gs.save_ply(gaussian_path)
|
| 241 |
torch.cuda.empty_cache()
|
| 242 |
return gaussian_path, gaussian_path
|
|
@@ -250,82 +255,124 @@ def prepare_multi_example() -> List[Image.Image]:
|
|
| 250 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
| 251 |
"""
|
| 252 |
Split a multi-view image into separate view images.
|
| 253 |
-
|
| 254 |
This function is called when users select multi-image examples that contain
|
| 255 |
multiple views in a single concatenated image. It automatically splits them
|
| 256 |
based on alpha channel boundaries and preprocesses each view.
|
| 257 |
-
|
| 258 |
Args:
|
| 259 |
image (Image.Image): A concatenated image containing multiple views
|
| 260 |
-
|
| 261 |
Returns:
|
| 262 |
List[Image.Image]: List of individual preprocessed view images
|
| 263 |
"""
|
| 264 |
image = np.array(image)
|
| 265 |
alpha = image[..., 3]
|
| 266 |
-
alpha = np.any(alpha>0, axis=0)
|
| 267 |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
| 268 |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
| 269 |
images = []
|
| 270 |
for s, e in zip(start_pos, end_pos):
|
| 271 |
-
images.append(Image.fromarray(image[:, s:e+1]))
|
| 272 |
return [preprocess_image(image) for image in images]
|
| 273 |
|
| 274 |
|
| 275 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 276 |
-
gr.Markdown(
|
|
|
|
| 277 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 278 |
* Upload an image and click "Generate & Extract GLB" to create a 3D asset and automatically extract the GLB file.
|
| 279 |
* If you want the Gaussian file as well, click "Extract Gaussian" after generation.
|
| 280 |
* If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 281 |
|
| 282 |
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
| 283 |
-
"""
|
| 284 |
-
|
|
|
|
| 285 |
with gr.Row():
|
| 286 |
with gr.Column():
|
| 287 |
with gr.Tabs() as input_tabs:
|
| 288 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
| 289 |
-
image_prompt = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 291 |
-
multiimage_prompt = gr.Gallery(
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
Input different views of the object in separate images.
|
| 294 |
|
| 295 |
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
| 296 |
-
"""
|
| 297 |
-
|
|
|
|
| 298 |
with gr.Accordion(label="Generation Settings", open=False):
|
| 299 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 300 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 301 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
| 302 |
with gr.Row():
|
| 303 |
-
ss_guidance_strength = gr.Slider(
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
gr.Markdown("Stage 2: Structured Latent Generation")
|
| 306 |
with gr.Row():
|
| 307 |
-
slat_guidance_strength = gr.Slider(
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 312 |
-
mesh_simplify = gr.Slider(
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
generate_btn = gr.Button("Generate & Extract GLB", variant="primary")
|
| 316 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 317 |
-
gr.Markdown(
|
|
|
|
| 318 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
| 319 |
-
"""
|
|
|
|
| 320 |
|
| 321 |
with gr.Column():
|
| 322 |
-
video_output = gr.Video(
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
with gr.Row():
|
| 326 |
-
download_glb = gr.DownloadButton(
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
is_multiimage = gr.State(False)
|
| 330 |
output_buf = gr.State()
|
| 331 |
|
|
@@ -334,9 +381,9 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 334 |
if os.path.exists("assets/images"):
|
| 335 |
examples = gr.Examples(
|
| 336 |
examples=[
|
| 337 |
-
f
|
| 338 |
for image in os.listdir("assets/images")
|
| 339 |
-
if image.endswith((
|
| 340 |
],
|
| 341 |
inputs=[image_prompt],
|
| 342 |
fn=preprocess_image,
|
|
@@ -346,7 +393,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 346 |
)
|
| 347 |
else:
|
| 348 |
examples = gr.Examples(examples=[], inputs=[image_prompt])
|
| 349 |
-
|
| 350 |
with gr.Row(visible=False) as multiimage_example:
|
| 351 |
examples_multi = gr.Examples(
|
| 352 |
examples=prepare_multi_example(),
|
|
@@ -360,16 +407,20 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 360 |
# Handlers
|
| 361 |
demo.load(start_session)
|
| 362 |
demo.unload(end_session)
|
| 363 |
-
|
| 364 |
single_image_input_tab.select(
|
| 365 |
-
lambda: tuple(
|
| 366 |
-
|
|
|
|
|
|
|
| 367 |
)
|
| 368 |
multiimage_input_tab.select(
|
| 369 |
-
lambda: tuple(
|
| 370 |
-
|
|
|
|
|
|
|
| 371 |
)
|
| 372 |
-
|
| 373 |
image_prompt.upload(
|
| 374 |
preprocess_image,
|
| 375 |
inputs=[image_prompt],
|
|
@@ -387,7 +438,19 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 387 |
outputs=[seed],
|
| 388 |
).then(
|
| 389 |
generate_and_extract_glb,
|
| 390 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
outputs=[output_buf, video_output, model_output, download_glb],
|
| 392 |
).then(
|
| 393 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
|
@@ -395,10 +458,16 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 395 |
)
|
| 396 |
|
| 397 |
video_output.clear(
|
| 398 |
-
lambda: tuple(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
outputs=[extract_gs_btn, download_glb, download_gs],
|
| 400 |
)
|
| 401 |
-
|
| 402 |
extract_gs_btn.click(
|
| 403 |
extract_gaussian,
|
| 404 |
inputs=[output_buf],
|
|
@@ -412,14 +481,16 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 412 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 413 |
outputs=[download_glb, download_gs],
|
| 414 |
)
|
| 415 |
-
|
| 416 |
|
| 417 |
# Launch the Gradio app
|
| 418 |
if __name__ == "__main__":
|
| 419 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
|
| 420 |
pipeline.cuda()
|
| 421 |
try:
|
| 422 |
-
pipeline.preprocess_image(
|
|
|
|
|
|
|
| 423 |
except:
|
| 424 |
pass
|
| 425 |
demo.launch()
|
|
|
|
| 4 |
|
| 5 |
import os
|
| 6 |
import shutil
|
| 7 |
+
|
| 8 |
+
os.environ["SPCONV_ALGO"] = "native"
|
| 9 |
from typing import *
|
| 10 |
import torch
|
| 11 |
import numpy as np
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
|
| 22 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 23 |
|
| 24 |
|
| 25 |
def start_session(req: gr.Request):
|
| 26 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 27 |
os.makedirs(user_dir, exist_ok=True)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
def end_session(req: gr.Request):
|
| 31 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 32 |
if os.path.exists(user_dir):
|
|
|
|
| 36 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 37 |
"""
|
| 38 |
Preprocess the input image for 3D generation.
|
| 39 |
+
|
| 40 |
This function is called when a user uploads an image or selects an example.
|
| 41 |
It applies background removal and other preprocessing steps necessary for
|
| 42 |
optimal 3D model generation.
|
|
|
|
| 54 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
| 55 |
"""
|
| 56 |
Preprocess a list of input images for multi-image 3D generation.
|
| 57 |
+
|
| 58 |
This function is called when users upload multiple images in the gallery.
|
| 59 |
It processes each image to prepare them for the multi-image 3D generation pipeline.
|
| 60 |
+
|
| 61 |
Args:
|
| 62 |
images (List[Tuple[Image.Image, str]]): The input images from the gallery
|
| 63 |
+
|
| 64 |
Returns:
|
| 65 |
List[Image.Image]: The preprocessed images ready for 3D generation
|
| 66 |
"""
|
|
|
|
| 71 |
|
| 72 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 73 |
return {
|
| 74 |
+
"gaussian": {
|
| 75 |
**gs.init_params,
|
| 76 |
+
"_xyz": gs._xyz.cpu().numpy(),
|
| 77 |
+
"_features_dc": gs._features_dc.cpu().numpy(),
|
| 78 |
+
"_scaling": gs._scaling.cpu().numpy(),
|
| 79 |
+
"_rotation": gs._rotation.cpu().numpy(),
|
| 80 |
+
"_opacity": gs._opacity.cpu().numpy(),
|
| 81 |
},
|
| 82 |
+
"mesh": {
|
| 83 |
+
"vertices": mesh.vertices.cpu().numpy(),
|
| 84 |
+
"faces": mesh.faces.cpu().numpy(),
|
| 85 |
},
|
| 86 |
}
|
| 87 |
+
|
| 88 |
+
|
| 89 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
| 90 |
gs = Gaussian(
|
| 91 |
+
aabb=state["gaussian"]["aabb"],
|
| 92 |
+
sh_degree=state["gaussian"]["sh_degree"],
|
| 93 |
+
mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
|
| 94 |
+
scaling_bias=state["gaussian"]["scaling_bias"],
|
| 95 |
+
opacity_bias=state["gaussian"]["opacity_bias"],
|
| 96 |
+
scaling_activation=state["gaussian"]["scaling_activation"],
|
| 97 |
)
|
| 98 |
+
gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device="cuda")
|
| 99 |
+
gs._features_dc = torch.tensor(state["gaussian"]["_features_dc"], device="cuda")
|
| 100 |
+
gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device="cuda")
|
| 101 |
+
gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device="cuda")
|
| 102 |
+
gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device="cuda")
|
| 103 |
+
|
| 104 |
mesh = edict(
|
| 105 |
+
vertices=torch.tensor(state["mesh"]["vertices"], device="cuda"),
|
| 106 |
+
faces=torch.tensor(state["mesh"]["faces"], device="cuda"),
|
| 107 |
)
|
| 108 |
+
|
| 109 |
return gs, mesh
|
| 110 |
|
| 111 |
|
| 112 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 113 |
"""
|
| 114 |
Get the random seed for generation.
|
| 115 |
+
|
| 116 |
This function is called by the generate button to determine whether to use
|
| 117 |
a random seed or the user-specified seed value.
|
| 118 |
+
|
| 119 |
Args:
|
| 120 |
randomize_seed (bool): Whether to generate a random seed
|
| 121 |
seed (int): The user-specified seed value
|
| 122 |
+
|
| 123 |
Returns:
|
| 124 |
int: The seed to use for generation
|
| 125 |
"""
|
|
|
|
| 164 |
str: The path to the extracted GLB file (for download).
|
| 165 |
"""
|
| 166 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 167 |
+
|
| 168 |
# Generate 3D model
|
| 169 |
if not is_multiimage:
|
| 170 |
outputs = pipeline.run(
|
|
|
|
| 197 |
},
|
| 198 |
mode=multiimage_algo,
|
| 199 |
)
|
| 200 |
+
|
| 201 |
# Render video
|
| 202 |
+
video = render_utils.render_video(outputs["gaussian"][0], num_frames=120)["color"]
|
| 203 |
+
video_geo = render_utils.render_video(outputs["mesh"][0], num_frames=120)["normal"]
|
| 204 |
+
video = [
|
| 205 |
+
np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))
|
| 206 |
+
]
|
| 207 |
+
video_path = os.path.join(user_dir, "sample.mp4")
|
| 208 |
imageio.mimsave(video_path, video, fps=15)
|
| 209 |
+
|
| 210 |
# Extract GLB
|
| 211 |
+
gs = outputs["gaussian"][0]
|
| 212 |
+
mesh = outputs["mesh"][0]
|
| 213 |
+
glb = postprocessing_utils.to_glb(
|
| 214 |
+
gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False
|
| 215 |
+
)
|
| 216 |
+
glb_path = os.path.join(user_dir, "sample.glb")
|
| 217 |
glb.export(glb_path)
|
| 218 |
+
|
| 219 |
# Pack state for optional Gaussian extraction
|
| 220 |
state = pack_state(gs, mesh)
|
| 221 |
+
|
| 222 |
torch.cuda.empty_cache()
|
| 223 |
return state, video_path, glb_path, glb_path
|
| 224 |
|
|
|
|
| 227 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 228 |
"""
|
| 229 |
Extract a Gaussian splatting file from the generated 3D model.
|
| 230 |
+
|
| 231 |
This function is called when the user clicks "Extract Gaussian" button.
|
| 232 |
It converts the 3D model state into a .ply file format containing
|
| 233 |
Gaussian splatting data for advanced 3D applications.
|
|
|
|
| 241 |
"""
|
| 242 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 243 |
gs, _ = unpack_state(state)
|
| 244 |
+
gaussian_path = os.path.join(user_dir, "sample.ply")
|
| 245 |
gs.save_ply(gaussian_path)
|
| 246 |
torch.cuda.empty_cache()
|
| 247 |
return gaussian_path, gaussian_path
|
|
|
|
| 255 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
| 256 |
"""
|
| 257 |
Split a multi-view image into separate view images.
|
| 258 |
+
|
| 259 |
This function is called when users select multi-image examples that contain
|
| 260 |
multiple views in a single concatenated image. It automatically splits them
|
| 261 |
based on alpha channel boundaries and preprocesses each view.
|
| 262 |
+
|
| 263 |
Args:
|
| 264 |
image (Image.Image): A concatenated image containing multiple views
|
| 265 |
+
|
| 266 |
Returns:
|
| 267 |
List[Image.Image]: List of individual preprocessed view images
|
| 268 |
"""
|
| 269 |
image = np.array(image)
|
| 270 |
alpha = image[..., 3]
|
| 271 |
+
alpha = np.any(alpha > 0, axis=0)
|
| 272 |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
| 273 |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
| 274 |
images = []
|
| 275 |
for s, e in zip(start_pos, end_pos):
|
| 276 |
+
images.append(Image.fromarray(image[:, s : e + 1]))
|
| 277 |
return [preprocess_image(image) for image in images]
|
| 278 |
|
| 279 |
|
| 280 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 281 |
+
gr.Markdown(
|
| 282 |
+
"""
|
| 283 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 284 |
* Upload an image and click "Generate & Extract GLB" to create a 3D asset and automatically extract the GLB file.
|
| 285 |
* If you want the Gaussian file as well, click "Extract Gaussian" after generation.
|
| 286 |
* If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 287 |
|
| 288 |
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
| 289 |
+
"""
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
with gr.Row():
|
| 293 |
with gr.Column():
|
| 294 |
with gr.Tabs() as input_tabs:
|
| 295 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
| 296 |
+
image_prompt = gr.Image(
|
| 297 |
+
label="Image Prompt",
|
| 298 |
+
format="png",
|
| 299 |
+
image_mode="RGBA",
|
| 300 |
+
type="pil",
|
| 301 |
+
height=300,
|
| 302 |
+
)
|
| 303 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 304 |
+
multiimage_prompt = gr.Gallery(
|
| 305 |
+
label="Image Prompt",
|
| 306 |
+
format="png",
|
| 307 |
+
type="pil",
|
| 308 |
+
height=300,
|
| 309 |
+
columns=3,
|
| 310 |
+
)
|
| 311 |
+
gr.Markdown(
|
| 312 |
+
"""
|
| 313 |
Input different views of the object in separate images.
|
| 314 |
|
| 315 |
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
| 316 |
+
"""
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
with gr.Accordion(label="Generation Settings", open=False):
|
| 320 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 321 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 322 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
| 323 |
with gr.Row():
|
| 324 |
+
ss_guidance_strength = gr.Slider(
|
| 325 |
+
0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1
|
| 326 |
+
)
|
| 327 |
+
ss_sampling_steps = gr.Slider(
|
| 328 |
+
1, 50, label="Sampling Steps", value=12, step=1
|
| 329 |
+
)
|
| 330 |
gr.Markdown("Stage 2: Structured Latent Generation")
|
| 331 |
with gr.Row():
|
| 332 |
+
slat_guidance_strength = gr.Slider(
|
| 333 |
+
0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1
|
| 334 |
+
)
|
| 335 |
+
slat_sampling_steps = gr.Slider(
|
| 336 |
+
1, 50, label="Sampling Steps", value=12, step=1
|
| 337 |
+
)
|
| 338 |
+
multiimage_algo = gr.Radio(
|
| 339 |
+
["stochastic", "multidiffusion"],
|
| 340 |
+
label="Multi-image Algorithm",
|
| 341 |
+
value="stochastic",
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 345 |
+
mesh_simplify = gr.Slider(
|
| 346 |
+
0.9, 0.98, label="Simplify", value=0.95, step=0.01
|
| 347 |
+
)
|
| 348 |
+
texture_size = gr.Slider(
|
| 349 |
+
512, 2048, label="Texture Size", value=1024, step=512
|
| 350 |
+
)
|
| 351 |
|
| 352 |
generate_btn = gr.Button("Generate & Extract GLB", variant="primary")
|
| 353 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 354 |
+
gr.Markdown(
|
| 355 |
+
"""
|
| 356 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
| 357 |
+
"""
|
| 358 |
+
)
|
| 359 |
|
| 360 |
with gr.Column():
|
| 361 |
+
video_output = gr.Video(
|
| 362 |
+
label="Generated 3D Asset", autoplay=True, loop=True, height=300
|
| 363 |
+
)
|
| 364 |
+
model_output = LitModel3D(
|
| 365 |
+
label="Extracted GLB/Gaussian", exposure=10.0, height=300
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
with gr.Row():
|
| 369 |
+
download_glb = gr.DownloadButton(
|
| 370 |
+
label="Download GLB", interactive=False
|
| 371 |
+
)
|
| 372 |
+
download_gs = gr.DownloadButton(
|
| 373 |
+
label="Download Gaussian", interactive=False
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
is_multiimage = gr.State(False)
|
| 377 |
output_buf = gr.State()
|
| 378 |
|
|
|
|
| 381 |
if os.path.exists("assets/images"):
|
| 382 |
examples = gr.Examples(
|
| 383 |
examples=[
|
| 384 |
+
f"assets/images/{image}"
|
| 385 |
for image in os.listdir("assets/images")
|
| 386 |
+
if image.endswith((".png", ".jpg", ".jpeg", ".webp"))
|
| 387 |
],
|
| 388 |
inputs=[image_prompt],
|
| 389 |
fn=preprocess_image,
|
|
|
|
| 393 |
)
|
| 394 |
else:
|
| 395 |
examples = gr.Examples(examples=[], inputs=[image_prompt])
|
| 396 |
+
|
| 397 |
with gr.Row(visible=False) as multiimage_example:
|
| 398 |
examples_multi = gr.Examples(
|
| 399 |
examples=prepare_multi_example(),
|
|
|
|
| 407 |
# Handlers
|
| 408 |
demo.load(start_session)
|
| 409 |
demo.unload(end_session)
|
| 410 |
+
|
| 411 |
single_image_input_tab.select(
|
| 412 |
+
lambda: tuple(
|
| 413 |
+
[False, gr.Row.update(visible=True), gr.Row.update(visible=False)]
|
| 414 |
+
),
|
| 415 |
+
outputs=[is_multiimage, single_image_example, multiimage_example],
|
| 416 |
)
|
| 417 |
multiimage_input_tab.select(
|
| 418 |
+
lambda: tuple(
|
| 419 |
+
[True, gr.Row.update(visible=False), gr.Row.update(visible=True)]
|
| 420 |
+
),
|
| 421 |
+
outputs=[is_multiimage, single_image_example, multiimage_example],
|
| 422 |
)
|
| 423 |
+
|
| 424 |
image_prompt.upload(
|
| 425 |
preprocess_image,
|
| 426 |
inputs=[image_prompt],
|
|
|
|
| 438 |
outputs=[seed],
|
| 439 |
).then(
|
| 440 |
generate_and_extract_glb,
|
| 441 |
+
inputs=[
|
| 442 |
+
image_prompt,
|
| 443 |
+
multiimage_prompt,
|
| 444 |
+
is_multiimage,
|
| 445 |
+
seed,
|
| 446 |
+
ss_guidance_strength,
|
| 447 |
+
ss_sampling_steps,
|
| 448 |
+
slat_guidance_strength,
|
| 449 |
+
slat_sampling_steps,
|
| 450 |
+
multiimage_algo,
|
| 451 |
+
mesh_simplify,
|
| 452 |
+
texture_size,
|
| 453 |
+
],
|
| 454 |
outputs=[output_buf, video_output, model_output, download_glb],
|
| 455 |
).then(
|
| 456 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
|
|
|
| 458 |
)
|
| 459 |
|
| 460 |
video_output.clear(
|
| 461 |
+
lambda: tuple(
|
| 462 |
+
[
|
| 463 |
+
gr.Button(interactive=False),
|
| 464 |
+
gr.Button(interactive=False),
|
| 465 |
+
gr.Button(interactive=False),
|
| 466 |
+
]
|
| 467 |
+
),
|
| 468 |
outputs=[extract_gs_btn, download_glb, download_gs],
|
| 469 |
)
|
| 470 |
+
|
| 471 |
extract_gs_btn.click(
|
| 472 |
extract_gaussian,
|
| 473 |
inputs=[output_buf],
|
|
|
|
| 481 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 482 |
outputs=[download_glb, download_gs],
|
| 483 |
)
|
| 484 |
+
|
| 485 |
|
| 486 |
# Launch the Gradio app
|
| 487 |
if __name__ == "__main__":
|
| 488 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
|
| 489 |
pipeline.cuda()
|
| 490 |
try:
|
| 491 |
+
pipeline.preprocess_image(
|
| 492 |
+
Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
|
| 493 |
+
) # Preload rembg
|
| 494 |
except:
|
| 495 |
pass
|
| 496 |
demo.launch()
|
trellis/models/__init__.py
CHANGED
|
@@ -1,20 +1,21 @@
|
|
| 1 |
import importlib
|
| 2 |
|
| 3 |
__attributes = {
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
}
|
| 13 |
|
| 14 |
__submodules = []
|
| 15 |
|
| 16 |
__all__ = list(__attributes.keys()) + __submodules
|
| 17 |
|
|
|
|
| 18 |
def __getattr__(name):
|
| 19 |
if name not in globals():
|
| 20 |
if name in __attributes:
|
|
@@ -41,6 +42,7 @@ def from_pretrained(path: str, **kwargs):
|
|
| 41 |
import os
|
| 42 |
import json
|
| 43 |
from safetensors.torch import load_file
|
|
|
|
| 44 |
is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors")
|
| 45 |
|
| 46 |
if is_local:
|
|
@@ -48,23 +50,29 @@ def from_pretrained(path: str, **kwargs):
|
|
| 48 |
model_file = f"{path}.safetensors"
|
| 49 |
else:
|
| 50 |
from huggingface_hub import hf_hub_download
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
| 54 |
config_file = hf_hub_download(repo_id, f"{model_name}.json")
|
| 55 |
model_file = hf_hub_download(repo_id, f"{model_name}.safetensors")
|
| 56 |
|
| 57 |
-
with open(config_file,
|
| 58 |
config = json.load(f)
|
| 59 |
-
model = __getattr__(config[
|
| 60 |
model.load_state_dict(load_file(model_file))
|
| 61 |
|
| 62 |
return model
|
| 63 |
|
| 64 |
|
| 65 |
# For Pylance
|
| 66 |
-
if __name__ ==
|
| 67 |
from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder
|
| 68 |
from .sparse_structure_flow import SparseStructureFlowModel
|
| 69 |
-
from .structured_latent_vae import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
from .structured_latent_flow import SLatFlowModel
|
|
|
|
| 1 |
import importlib
|
| 2 |
|
| 3 |
__attributes = {
|
| 4 |
+
"SparseStructureEncoder": "sparse_structure_vae",
|
| 5 |
+
"SparseStructureDecoder": "sparse_structure_vae",
|
| 6 |
+
"SparseStructureFlowModel": "sparse_structure_flow",
|
| 7 |
+
"SLatEncoder": "structured_latent_vae",
|
| 8 |
+
"SLatGaussianDecoder": "structured_latent_vae",
|
| 9 |
+
"SLatRadianceFieldDecoder": "structured_latent_vae",
|
| 10 |
+
"SLatMeshDecoder": "structured_latent_vae",
|
| 11 |
+
"SLatFlowModel": "structured_latent_flow",
|
| 12 |
}
|
| 13 |
|
| 14 |
__submodules = []
|
| 15 |
|
| 16 |
__all__ = list(__attributes.keys()) + __submodules
|
| 17 |
|
| 18 |
+
|
| 19 |
def __getattr__(name):
|
| 20 |
if name not in globals():
|
| 21 |
if name in __attributes:
|
|
|
|
| 42 |
import os
|
| 43 |
import json
|
| 44 |
from safetensors.torch import load_file
|
| 45 |
+
|
| 46 |
is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors")
|
| 47 |
|
| 48 |
if is_local:
|
|
|
|
| 50 |
model_file = f"{path}.safetensors"
|
| 51 |
else:
|
| 52 |
from huggingface_hub import hf_hub_download
|
| 53 |
+
|
| 54 |
+
path_parts = path.split("/")
|
| 55 |
+
repo_id = f"{path_parts[0]}/{path_parts[1]}"
|
| 56 |
+
model_name = "/".join(path_parts[2:])
|
| 57 |
config_file = hf_hub_download(repo_id, f"{model_name}.json")
|
| 58 |
model_file = hf_hub_download(repo_id, f"{model_name}.safetensors")
|
| 59 |
|
| 60 |
+
with open(config_file, "r") as f:
|
| 61 |
config = json.load(f)
|
| 62 |
+
model = __getattr__(config["name"])(**config["args"], **kwargs)
|
| 63 |
model.load_state_dict(load_file(model_file))
|
| 64 |
|
| 65 |
return model
|
| 66 |
|
| 67 |
|
| 68 |
# For Pylance
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder
|
| 71 |
from .sparse_structure_flow import SparseStructureFlowModel
|
| 72 |
+
from .structured_latent_vae import (
|
| 73 |
+
SLatEncoder,
|
| 74 |
+
SLatGaussianDecoder,
|
| 75 |
+
SLatRadianceFieldDecoder,
|
| 76 |
+
SLatMeshDecoder,
|
| 77 |
+
)
|
| 78 |
from .structured_latent_flow import SLatFlowModel
|
trellis/models/sparse_structure_flow.py
CHANGED
|
@@ -4,7 +4,10 @@ import torch.nn as nn
|
|
| 4 |
import torch.nn.functional as F
|
| 5 |
import numpy as np
|
| 6 |
from ..modules.utils import convert_module_to_f16, convert_module_to_f32
|
| 7 |
-
from ..modules.transformer import
|
|
|
|
|
|
|
|
|
|
| 8 |
from ..modules.spatial import patchify, unpatchify
|
| 9 |
|
| 10 |
|
|
@@ -12,6 +15,7 @@ class TimestepEmbedder(nn.Module):
|
|
| 12 |
"""
|
| 13 |
Embeds scalar timesteps into vector representations.
|
| 14 |
"""
|
|
|
|
| 15 |
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 16 |
super().__init__()
|
| 17 |
self.mlp = nn.Sequential(
|
|
@@ -38,12 +42,16 @@ class TimestepEmbedder(nn.Module):
|
|
| 38 |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 39 |
half = dim // 2
|
| 40 |
freqs = torch.exp(
|
| 41 |
-
-np.log(max_period)
|
|
|
|
|
|
|
| 42 |
).to(device=t.device)
|
| 43 |
args = t[:, None].float() * freqs[None]
|
| 44 |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 45 |
if dim % 2:
|
| 46 |
-
embedding = torch.cat(
|
|
|
|
|
|
|
| 47 |
return embedding
|
| 48 |
|
| 49 |
def forward(self, t):
|
|
@@ -93,34 +101,41 @@ class SparseStructureFlowModel(nn.Module):
|
|
| 93 |
self.t_embedder = TimestepEmbedder(model_channels)
|
| 94 |
if share_mod:
|
| 95 |
self.adaLN_modulation = nn.Sequential(
|
| 96 |
-
nn.SiLU(),
|
| 97 |
-
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
| 98 |
)
|
| 99 |
|
| 100 |
if pe_mode == "ape":
|
| 101 |
pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
|
| 102 |
-
coords = torch.meshgrid(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
coords = torch.stack(coords, dim=-1).reshape(-1, 3)
|
| 104 |
pos_emb = pos_embedder(coords)
|
| 105 |
self.register_buffer("pos_emb", pos_emb)
|
| 106 |
|
| 107 |
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
|
| 108 |
-
|
| 109 |
-
self.blocks = nn.ModuleList(
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
| 124 |
|
| 125 |
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)
|
| 126 |
|
|
@@ -154,6 +169,7 @@ class SparseStructureFlowModel(nn.Module):
|
|
| 154 |
torch.nn.init.xavier_uniform_(module.weight)
|
| 155 |
if module.bias is not None:
|
| 156 |
nn.init.constant_(module.bias, 0)
|
|
|
|
| 157 |
self.apply(_basic_init)
|
| 158 |
|
| 159 |
# Initialize timestep embedding MLP:
|
|
@@ -173,9 +189,14 @@ class SparseStructureFlowModel(nn.Module):
|
|
| 173 |
nn.init.constant_(self.out_layer.weight, 0)
|
| 174 |
nn.init.constant_(self.out_layer.bias, 0)
|
| 175 |
|
| 176 |
-
def forward(
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
h = patchify(x, self.patch_size)
|
| 181 |
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()
|
|
@@ -194,7 +215,9 @@ class SparseStructureFlowModel(nn.Module):
|
|
| 194 |
h = F.layer_norm(h, h.shape[-1:])
|
| 195 |
h = self.out_layer(h)
|
| 196 |
|
| 197 |
-
h = h.permute(0, 2, 1).view(
|
|
|
|
|
|
|
| 198 |
h = unpatchify(h, self.patch_size).contiguous()
|
| 199 |
|
| 200 |
return h
|
|
|
|
| 4 |
import torch.nn.functional as F
|
| 5 |
import numpy as np
|
| 6 |
from ..modules.utils import convert_module_to_f16, convert_module_to_f32
|
| 7 |
+
from ..modules.transformer import (
|
| 8 |
+
AbsolutePositionEmbedder,
|
| 9 |
+
ModulatedTransformerCrossBlock,
|
| 10 |
+
)
|
| 11 |
from ..modules.spatial import patchify, unpatchify
|
| 12 |
|
| 13 |
|
|
|
|
| 15 |
"""
|
| 16 |
Embeds scalar timesteps into vector representations.
|
| 17 |
"""
|
| 18 |
+
|
| 19 |
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 20 |
super().__init__()
|
| 21 |
self.mlp = nn.Sequential(
|
|
|
|
| 42 |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 43 |
half = dim // 2
|
| 44 |
freqs = torch.exp(
|
| 45 |
+
-np.log(max_period)
|
| 46 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
| 47 |
+
/ half
|
| 48 |
).to(device=t.device)
|
| 49 |
args = t[:, None].float() * freqs[None]
|
| 50 |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 51 |
if dim % 2:
|
| 52 |
+
embedding = torch.cat(
|
| 53 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
| 54 |
+
)
|
| 55 |
return embedding
|
| 56 |
|
| 57 |
def forward(self, t):
|
|
|
|
| 101 |
self.t_embedder = TimestepEmbedder(model_channels)
|
| 102 |
if share_mod:
|
| 103 |
self.adaLN_modulation = nn.Sequential(
|
| 104 |
+
nn.SiLU(), nn.Linear(model_channels, 6 * model_channels, bias=True)
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
if pe_mode == "ape":
|
| 108 |
pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
|
| 109 |
+
coords = torch.meshgrid(
|
| 110 |
+
*[
|
| 111 |
+
torch.arange(res, device=self.device)
|
| 112 |
+
for res in [resolution // patch_size] * 3
|
| 113 |
+
],
|
| 114 |
+
indexing="ij",
|
| 115 |
+
)
|
| 116 |
coords = torch.stack(coords, dim=-1).reshape(-1, 3)
|
| 117 |
pos_emb = pos_embedder(coords)
|
| 118 |
self.register_buffer("pos_emb", pos_emb)
|
| 119 |
|
| 120 |
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
|
| 121 |
+
|
| 122 |
+
self.blocks = nn.ModuleList(
|
| 123 |
+
[
|
| 124 |
+
ModulatedTransformerCrossBlock(
|
| 125 |
+
model_channels,
|
| 126 |
+
cond_channels,
|
| 127 |
+
num_heads=self.num_heads,
|
| 128 |
+
mlp_ratio=self.mlp_ratio,
|
| 129 |
+
attn_mode="full",
|
| 130 |
+
use_checkpoint=self.use_checkpoint,
|
| 131 |
+
use_rope=(pe_mode == "rope"),
|
| 132 |
+
share_mod=share_mod,
|
| 133 |
+
qk_rms_norm=self.qk_rms_norm,
|
| 134 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
| 135 |
+
)
|
| 136 |
+
for _ in range(num_blocks)
|
| 137 |
+
]
|
| 138 |
+
)
|
| 139 |
|
| 140 |
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)
|
| 141 |
|
|
|
|
| 169 |
torch.nn.init.xavier_uniform_(module.weight)
|
| 170 |
if module.bias is not None:
|
| 171 |
nn.init.constant_(module.bias, 0)
|
| 172 |
+
|
| 173 |
self.apply(_basic_init)
|
| 174 |
|
| 175 |
# Initialize timestep embedding MLP:
|
|
|
|
| 189 |
nn.init.constant_(self.out_layer.weight, 0)
|
| 190 |
nn.init.constant_(self.out_layer.bias, 0)
|
| 191 |
|
| 192 |
+
def forward(
|
| 193 |
+
self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor
|
| 194 |
+
) -> torch.Tensor:
|
| 195 |
+
assert [*x.shape] == [
|
| 196 |
+
x.shape[0],
|
| 197 |
+
self.in_channels,
|
| 198 |
+
*[self.resolution] * 3,
|
| 199 |
+
], f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"
|
| 200 |
|
| 201 |
h = patchify(x, self.patch_size)
|
| 202 |
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()
|
|
|
|
| 215 |
h = F.layer_norm(h, h.shape[-1:])
|
| 216 |
h = self.out_layer(h)
|
| 217 |
|
| 218 |
+
h = h.permute(0, 2, 1).view(
|
| 219 |
+
h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3
|
| 220 |
+
)
|
| 221 |
h = unpatchify(h, self.patch_size).contiguous()
|
| 222 |
|
| 223 |
return h
|
trellis/models/sparse_structure_vae.py
CHANGED
|
@@ -33,9 +33,15 @@ class ResBlock3d(nn.Module):
|
|
| 33 |
self.norm1 = norm_layer(norm_type, channels)
|
| 34 |
self.norm2 = norm_layer(norm_type, self.out_channels)
|
| 35 |
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1)
|
| 36 |
-
self.conv2 = zero_module(
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 40 |
h = self.norm1(x)
|
| 41 |
h = F.silu(h)
|
|
@@ -63,7 +69,9 @@ class DownsampleBlock3d(nn.Module):
|
|
| 63 |
if mode == "conv":
|
| 64 |
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2)
|
| 65 |
elif mode == "avgpool":
|
| 66 |
-
assert
|
|
|
|
|
|
|
| 67 |
|
| 68 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 69 |
if hasattr(self, "conv"):
|
|
@@ -86,9 +94,11 @@ class UpsampleBlock3d(nn.Module):
|
|
| 86 |
self.out_channels = out_channels
|
| 87 |
|
| 88 |
if mode == "conv":
|
| 89 |
-
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1)
|
| 90 |
elif mode == "nearest":
|
| 91 |
-
assert
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 94 |
if hasattr(self, "conv"):
|
|
@@ -96,12 +106,12 @@ class UpsampleBlock3d(nn.Module):
|
|
| 96 |
return pixel_shuffle_3d(x, 2)
|
| 97 |
else:
|
| 98 |
return F.interpolate(x, scale_factor=2, mode="nearest")
|
| 99 |
-
|
| 100 |
|
| 101 |
class SparseStructureEncoder(nn.Module):
|
| 102 |
"""
|
| 103 |
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3).
|
| 104 |
-
|
| 105 |
Args:
|
| 106 |
in_channels (int): Channels of the input.
|
| 107 |
latent_channels (int): Channels of the latent representation.
|
|
@@ -111,6 +121,7 @@ class SparseStructureEncoder(nn.Module):
|
|
| 111 |
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
| 112 |
use_fp16 (bool): Whether to use FP16.
|
| 113 |
"""
|
|
|
|
| 114 |
def __init__(
|
| 115 |
self,
|
| 116 |
in_channels: int,
|
|
@@ -135,24 +146,21 @@ class SparseStructureEncoder(nn.Module):
|
|
| 135 |
|
| 136 |
self.blocks = nn.ModuleList([])
|
| 137 |
for i, ch in enumerate(channels):
|
| 138 |
-
self.blocks.extend([
|
| 139 |
-
ResBlock3d(ch, ch)
|
| 140 |
-
for _ in range(num_res_blocks)
|
| 141 |
-
])
|
| 142 |
if i < len(channels) - 1:
|
| 143 |
-
self.blocks.append(
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
|
| 152 |
self.out_layer = nn.Sequential(
|
| 153 |
norm_layer(norm_type, channels[-1]),
|
| 154 |
nn.SiLU(),
|
| 155 |
-
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1)
|
| 156 |
)
|
| 157 |
|
| 158 |
if use_fp16:
|
|
@@ -183,7 +191,9 @@ class SparseStructureEncoder(nn.Module):
|
|
| 183 |
self.blocks.apply(convert_module_to_f32)
|
| 184 |
self.middle_block.apply(convert_module_to_f32)
|
| 185 |
|
| 186 |
-
def forward(
|
|
|
|
|
|
|
| 187 |
h = self.input_layer(x)
|
| 188 |
h = h.type(self.dtype)
|
| 189 |
|
|
@@ -201,16 +211,16 @@ class SparseStructureEncoder(nn.Module):
|
|
| 201 |
z = mean + std * torch.randn_like(std)
|
| 202 |
else:
|
| 203 |
z = mean
|
| 204 |
-
|
| 205 |
if return_raw:
|
| 206 |
return z, mean, logvar
|
| 207 |
return z
|
| 208 |
-
|
| 209 |
|
| 210 |
class SparseStructureDecoder(nn.Module):
|
| 211 |
"""
|
| 212 |
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3).
|
| 213 |
-
|
| 214 |
Args:
|
| 215 |
out_channels (int): Channels of the output.
|
| 216 |
latent_channels (int): Channels of the latent representation.
|
|
@@ -219,7 +229,8 @@ class SparseStructureDecoder(nn.Module):
|
|
| 219 |
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
| 220 |
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
| 221 |
use_fp16 (bool): Whether to use FP16.
|
| 222 |
-
"""
|
|
|
|
| 223 |
def __init__(
|
| 224 |
self,
|
| 225 |
out_channels: int,
|
|
@@ -242,26 +253,23 @@ class SparseStructureDecoder(nn.Module):
|
|
| 242 |
|
| 243 |
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1)
|
| 244 |
|
| 245 |
-
self.middle_block = nn.Sequential(
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
| 249 |
|
| 250 |
self.blocks = nn.ModuleList([])
|
| 251 |
for i, ch in enumerate(channels):
|
| 252 |
-
self.blocks.extend([
|
| 253 |
-
ResBlock3d(ch, ch)
|
| 254 |
-
for _ in range(num_res_blocks)
|
| 255 |
-
])
|
| 256 |
if i < len(channels) - 1:
|
| 257 |
-
self.blocks.append(
|
| 258 |
-
UpsampleBlock3d(ch, channels[i+1])
|
| 259 |
-
)
|
| 260 |
|
| 261 |
self.out_layer = nn.Sequential(
|
| 262 |
norm_layer(norm_type, channels[-1]),
|
| 263 |
nn.SiLU(),
|
| 264 |
-
nn.Conv3d(channels[-1], out_channels, 3, padding=1)
|
| 265 |
)
|
| 266 |
|
| 267 |
if use_fp16:
|
|
@@ -273,7 +281,7 @@ class SparseStructureDecoder(nn.Module):
|
|
| 273 |
Return the device of the model.
|
| 274 |
"""
|
| 275 |
return next(self.parameters()).device
|
| 276 |
-
|
| 277 |
def convert_to_fp16(self) -> None:
|
| 278 |
"""
|
| 279 |
Convert the torso of the model to float16.
|
|
@@ -291,12 +299,12 @@ class SparseStructureDecoder(nn.Module):
|
|
| 291 |
self.dtype = torch.float32
|
| 292 |
self.blocks.apply(convert_module_to_f32)
|
| 293 |
self.middle_block.apply(convert_module_to_f32)
|
| 294 |
-
|
| 295 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 296 |
h = self.input_layer(x)
|
| 297 |
-
|
| 298 |
h = h.type(self.dtype)
|
| 299 |
-
|
| 300 |
h = self.middle_block(h)
|
| 301 |
for block in self.blocks:
|
| 302 |
h = block(h)
|
|
|
|
| 33 |
self.norm1 = norm_layer(norm_type, channels)
|
| 34 |
self.norm2 = norm_layer(norm_type, self.out_channels)
|
| 35 |
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1)
|
| 36 |
+
self.conv2 = zero_module(
|
| 37 |
+
nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1)
|
| 38 |
+
)
|
| 39 |
+
self.skip_connection = (
|
| 40 |
+
nn.Conv3d(channels, self.out_channels, 1)
|
| 41 |
+
if channels != self.out_channels
|
| 42 |
+
else nn.Identity()
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 46 |
h = self.norm1(x)
|
| 47 |
h = F.silu(h)
|
|
|
|
| 69 |
if mode == "conv":
|
| 70 |
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2)
|
| 71 |
elif mode == "avgpool":
|
| 72 |
+
assert (
|
| 73 |
+
in_channels == out_channels
|
| 74 |
+
), "Pooling mode requires in_channels to be equal to out_channels"
|
| 75 |
|
| 76 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 77 |
if hasattr(self, "conv"):
|
|
|
|
| 94 |
self.out_channels = out_channels
|
| 95 |
|
| 96 |
if mode == "conv":
|
| 97 |
+
self.conv = nn.Conv3d(in_channels, out_channels * 8, 3, padding=1)
|
| 98 |
elif mode == "nearest":
|
| 99 |
+
assert (
|
| 100 |
+
in_channels == out_channels
|
| 101 |
+
), "Nearest mode requires in_channels to be equal to out_channels"
|
| 102 |
|
| 103 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 104 |
if hasattr(self, "conv"):
|
|
|
|
| 106 |
return pixel_shuffle_3d(x, 2)
|
| 107 |
else:
|
| 108 |
return F.interpolate(x, scale_factor=2, mode="nearest")
|
| 109 |
+
|
| 110 |
|
| 111 |
class SparseStructureEncoder(nn.Module):
|
| 112 |
"""
|
| 113 |
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3).
|
| 114 |
+
|
| 115 |
Args:
|
| 116 |
in_channels (int): Channels of the input.
|
| 117 |
latent_channels (int): Channels of the latent representation.
|
|
|
|
| 121 |
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
| 122 |
use_fp16 (bool): Whether to use FP16.
|
| 123 |
"""
|
| 124 |
+
|
| 125 |
def __init__(
|
| 126 |
self,
|
| 127 |
in_channels: int,
|
|
|
|
| 146 |
|
| 147 |
self.blocks = nn.ModuleList([])
|
| 148 |
for i, ch in enumerate(channels):
|
| 149 |
+
self.blocks.extend([ResBlock3d(ch, ch) for _ in range(num_res_blocks)])
|
|
|
|
|
|
|
|
|
|
| 150 |
if i < len(channels) - 1:
|
| 151 |
+
self.blocks.append(DownsampleBlock3d(ch, channels[i + 1]))
|
| 152 |
+
|
| 153 |
+
self.middle_block = nn.Sequential(
|
| 154 |
+
*[
|
| 155 |
+
ResBlock3d(channels[-1], channels[-1])
|
| 156 |
+
for _ in range(num_res_blocks_middle)
|
| 157 |
+
]
|
| 158 |
+
)
|
| 159 |
|
| 160 |
self.out_layer = nn.Sequential(
|
| 161 |
norm_layer(norm_type, channels[-1]),
|
| 162 |
nn.SiLU(),
|
| 163 |
+
nn.Conv3d(channels[-1], latent_channels * 2, 3, padding=1),
|
| 164 |
)
|
| 165 |
|
| 166 |
if use_fp16:
|
|
|
|
| 191 |
self.blocks.apply(convert_module_to_f32)
|
| 192 |
self.middle_block.apply(convert_module_to_f32)
|
| 193 |
|
| 194 |
+
def forward(
|
| 195 |
+
self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False
|
| 196 |
+
) -> torch.Tensor:
|
| 197 |
h = self.input_layer(x)
|
| 198 |
h = h.type(self.dtype)
|
| 199 |
|
|
|
|
| 211 |
z = mean + std * torch.randn_like(std)
|
| 212 |
else:
|
| 213 |
z = mean
|
| 214 |
+
|
| 215 |
if return_raw:
|
| 216 |
return z, mean, logvar
|
| 217 |
return z
|
| 218 |
+
|
| 219 |
|
| 220 |
class SparseStructureDecoder(nn.Module):
|
| 221 |
"""
|
| 222 |
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3).
|
| 223 |
+
|
| 224 |
Args:
|
| 225 |
out_channels (int): Channels of the output.
|
| 226 |
latent_channels (int): Channels of the latent representation.
|
|
|
|
| 229 |
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
| 230 |
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
| 231 |
use_fp16 (bool): Whether to use FP16.
|
| 232 |
+
"""
|
| 233 |
+
|
| 234 |
def __init__(
|
| 235 |
self,
|
| 236 |
out_channels: int,
|
|
|
|
| 253 |
|
| 254 |
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1)
|
| 255 |
|
| 256 |
+
self.middle_block = nn.Sequential(
|
| 257 |
+
*[
|
| 258 |
+
ResBlock3d(channels[0], channels[0])
|
| 259 |
+
for _ in range(num_res_blocks_middle)
|
| 260 |
+
]
|
| 261 |
+
)
|
| 262 |
|
| 263 |
self.blocks = nn.ModuleList([])
|
| 264 |
for i, ch in enumerate(channels):
|
| 265 |
+
self.blocks.extend([ResBlock3d(ch, ch) for _ in range(num_res_blocks)])
|
|
|
|
|
|
|
|
|
|
| 266 |
if i < len(channels) - 1:
|
| 267 |
+
self.blocks.append(UpsampleBlock3d(ch, channels[i + 1]))
|
|
|
|
|
|
|
| 268 |
|
| 269 |
self.out_layer = nn.Sequential(
|
| 270 |
norm_layer(norm_type, channels[-1]),
|
| 271 |
nn.SiLU(),
|
| 272 |
+
nn.Conv3d(channels[-1], out_channels, 3, padding=1),
|
| 273 |
)
|
| 274 |
|
| 275 |
if use_fp16:
|
|
|
|
| 281 |
Return the device of the model.
|
| 282 |
"""
|
| 283 |
return next(self.parameters()).device
|
| 284 |
+
|
| 285 |
def convert_to_fp16(self) -> None:
|
| 286 |
"""
|
| 287 |
Convert the torso of the model to float16.
|
|
|
|
| 299 |
self.dtype = torch.float32
|
| 300 |
self.blocks.apply(convert_module_to_f32)
|
| 301 |
self.middle_block.apply(convert_module_to_f32)
|
| 302 |
+
|
| 303 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 304 |
h = self.input_layer(x)
|
| 305 |
+
|
| 306 |
h = h.type(self.dtype)
|
| 307 |
+
|
| 308 |
h = self.middle_block(h)
|
| 309 |
for block in self.blocks:
|
| 310 |
h = block(h)
|
trellis/models/structured_latent_flow.py
CHANGED
|
@@ -26,18 +26,26 @@ class SparseResBlock3d(nn.Module):
|
|
| 26 |
self.out_channels = out_channels or channels
|
| 27 |
self.downsample = downsample
|
| 28 |
self.upsample = upsample
|
| 29 |
-
|
| 30 |
-
assert not (
|
|
|
|
|
|
|
| 31 |
|
| 32 |
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
| 33 |
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
|
| 34 |
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
|
| 35 |
-
self.conv2 = zero_module(
|
|
|
|
|
|
|
| 36 |
self.emb_layers = nn.Sequential(
|
| 37 |
nn.SiLU(),
|
| 38 |
nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
|
| 39 |
)
|
| 40 |
-
self.skip_connection =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
self.updown = None
|
| 42 |
if self.downsample:
|
| 43 |
self.updown = sp.SparseDownsample(2)
|
|
@@ -63,7 +71,7 @@ class SparseResBlock3d(nn.Module):
|
|
| 63 |
h = h + self.skip_connection(x)
|
| 64 |
|
| 65 |
return h
|
| 66 |
-
|
| 67 |
|
| 68 |
class SLatFlowModel(nn.Module):
|
| 69 |
def __init__(
|
|
@@ -109,14 +117,17 @@ class SLatFlowModel(nn.Module):
|
|
| 109 |
self.qk_rms_norm_cross = qk_rms_norm_cross
|
| 110 |
self.dtype = torch.float16 if use_fp16 else torch.float32
|
| 111 |
|
| 112 |
-
assert int(np.log2(patch_size)) == np.log2(
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
self.t_embedder = TimestepEmbedder(model_channels)
|
| 116 |
if share_mod:
|
| 117 |
self.adaLN_modulation = nn.Sequential(
|
| 118 |
-
nn.SiLU(),
|
| 119 |
-
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
| 120 |
)
|
| 121 |
|
| 122 |
if pe_mode == "ape":
|
|
@@ -124,15 +135,19 @@ class SLatFlowModel(nn.Module):
|
|
| 124 |
|
| 125 |
self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0])
|
| 126 |
self.input_blocks = nn.ModuleList([])
|
| 127 |
-
for chs, next_chs in zip(
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
self.input_blocks.append(
|
| 137 |
SparseResBlock3d(
|
| 138 |
chs,
|
|
@@ -141,25 +156,30 @@ class SLatFlowModel(nn.Module):
|
|
| 141 |
downsample=True,
|
| 142 |
)
|
| 143 |
)
|
| 144 |
-
|
| 145 |
-
self.blocks = nn.ModuleList(
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
| 160 |
|
| 161 |
self.out_blocks = nn.ModuleList([])
|
| 162 |
-
for chs, prev_chs in zip(
|
|
|
|
|
|
|
|
|
|
| 163 |
self.out_blocks.append(
|
| 164 |
SparseResBlock3d(
|
| 165 |
prev_chs * 2 if self.use_skip_connection else prev_chs,
|
|
@@ -168,14 +188,16 @@ class SLatFlowModel(nn.Module):
|
|
| 168 |
upsample=True,
|
| 169 |
)
|
| 170 |
)
|
| 171 |
-
self.out_blocks.extend(
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
| 179 |
self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels)
|
| 180 |
|
| 181 |
self.initialize_weights()
|
|
@@ -212,6 +234,7 @@ class SLatFlowModel(nn.Module):
|
|
| 212 |
torch.nn.init.xavier_uniform_(module.weight)
|
| 213 |
if module.bias is not None:
|
| 214 |
nn.init.constant_(module.bias, 0)
|
|
|
|
| 215 |
self.apply(_basic_init)
|
| 216 |
|
| 217 |
# Initialize timestep embedding MLP:
|
|
@@ -231,7 +254,9 @@ class SLatFlowModel(nn.Module):
|
|
| 231 |
nn.init.constant_(self.out_layer.weight, 0)
|
| 232 |
nn.init.constant_(self.out_layer.bias, 0)
|
| 233 |
|
| 234 |
-
def forward(
|
|
|
|
|
|
|
| 235 |
h = self.input_layer(x).type(self.dtype)
|
| 236 |
t_emb = self.t_embedder(t)
|
| 237 |
if self.share_mod:
|
|
@@ -244,7 +269,7 @@ class SLatFlowModel(nn.Module):
|
|
| 244 |
for block in self.input_blocks:
|
| 245 |
h = block(h, t_emb)
|
| 246 |
skips.append(h.feats)
|
| 247 |
-
|
| 248 |
if self.pe_mode == "ape":
|
| 249 |
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
|
| 250 |
for block in self.blocks:
|
|
|
|
| 26 |
self.out_channels = out_channels or channels
|
| 27 |
self.downsample = downsample
|
| 28 |
self.upsample = upsample
|
| 29 |
+
|
| 30 |
+
assert not (
|
| 31 |
+
downsample and upsample
|
| 32 |
+
), "Cannot downsample and upsample at the same time"
|
| 33 |
|
| 34 |
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
| 35 |
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
|
| 36 |
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
|
| 37 |
+
self.conv2 = zero_module(
|
| 38 |
+
sp.SparseConv3d(self.out_channels, self.out_channels, 3)
|
| 39 |
+
)
|
| 40 |
self.emb_layers = nn.Sequential(
|
| 41 |
nn.SiLU(),
|
| 42 |
nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
|
| 43 |
)
|
| 44 |
+
self.skip_connection = (
|
| 45 |
+
sp.SparseLinear(channels, self.out_channels)
|
| 46 |
+
if channels != self.out_channels
|
| 47 |
+
else nn.Identity()
|
| 48 |
+
)
|
| 49 |
self.updown = None
|
| 50 |
if self.downsample:
|
| 51 |
self.updown = sp.SparseDownsample(2)
|
|
|
|
| 71 |
h = h + self.skip_connection(x)
|
| 72 |
|
| 73 |
return h
|
| 74 |
+
|
| 75 |
|
| 76 |
class SLatFlowModel(nn.Module):
|
| 77 |
def __init__(
|
|
|
|
| 117 |
self.qk_rms_norm_cross = qk_rms_norm_cross
|
| 118 |
self.dtype = torch.float16 if use_fp16 else torch.float32
|
| 119 |
|
| 120 |
+
assert int(np.log2(patch_size)) == np.log2(
|
| 121 |
+
patch_size
|
| 122 |
+
), "Patch size must be a power of 2"
|
| 123 |
+
assert np.log2(patch_size) == len(
|
| 124 |
+
io_block_channels
|
| 125 |
+
), "Number of IO ResBlocks must match the number of stages"
|
| 126 |
|
| 127 |
self.t_embedder = TimestepEmbedder(model_channels)
|
| 128 |
if share_mod:
|
| 129 |
self.adaLN_modulation = nn.Sequential(
|
| 130 |
+
nn.SiLU(), nn.Linear(model_channels, 6 * model_channels, bias=True)
|
|
|
|
| 131 |
)
|
| 132 |
|
| 133 |
if pe_mode == "ape":
|
|
|
|
| 135 |
|
| 136 |
self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0])
|
| 137 |
self.input_blocks = nn.ModuleList([])
|
| 138 |
+
for chs, next_chs in zip(
|
| 139 |
+
io_block_channels, io_block_channels[1:] + [model_channels]
|
| 140 |
+
):
|
| 141 |
+
self.input_blocks.extend(
|
| 142 |
+
[
|
| 143 |
+
SparseResBlock3d(
|
| 144 |
+
chs,
|
| 145 |
+
model_channels,
|
| 146 |
+
out_channels=chs,
|
| 147 |
+
)
|
| 148 |
+
for _ in range(num_io_res_blocks - 1)
|
| 149 |
+
]
|
| 150 |
+
)
|
| 151 |
self.input_blocks.append(
|
| 152 |
SparseResBlock3d(
|
| 153 |
chs,
|
|
|
|
| 156 |
downsample=True,
|
| 157 |
)
|
| 158 |
)
|
| 159 |
+
|
| 160 |
+
self.blocks = nn.ModuleList(
|
| 161 |
+
[
|
| 162 |
+
ModulatedSparseTransformerCrossBlock(
|
| 163 |
+
model_channels,
|
| 164 |
+
cond_channels,
|
| 165 |
+
num_heads=self.num_heads,
|
| 166 |
+
mlp_ratio=self.mlp_ratio,
|
| 167 |
+
attn_mode="full",
|
| 168 |
+
use_checkpoint=self.use_checkpoint,
|
| 169 |
+
use_rope=(pe_mode == "rope"),
|
| 170 |
+
share_mod=self.share_mod,
|
| 171 |
+
qk_rms_norm=self.qk_rms_norm,
|
| 172 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
| 173 |
+
)
|
| 174 |
+
for _ in range(num_blocks)
|
| 175 |
+
]
|
| 176 |
+
)
|
| 177 |
|
| 178 |
self.out_blocks = nn.ModuleList([])
|
| 179 |
+
for chs, prev_chs in zip(
|
| 180 |
+
reversed(io_block_channels),
|
| 181 |
+
[model_channels] + list(reversed(io_block_channels[1:])),
|
| 182 |
+
):
|
| 183 |
self.out_blocks.append(
|
| 184 |
SparseResBlock3d(
|
| 185 |
prev_chs * 2 if self.use_skip_connection else prev_chs,
|
|
|
|
| 188 |
upsample=True,
|
| 189 |
)
|
| 190 |
)
|
| 191 |
+
self.out_blocks.extend(
|
| 192 |
+
[
|
| 193 |
+
SparseResBlock3d(
|
| 194 |
+
chs * 2 if self.use_skip_connection else chs,
|
| 195 |
+
model_channels,
|
| 196 |
+
out_channels=chs,
|
| 197 |
+
)
|
| 198 |
+
for _ in range(num_io_res_blocks - 1)
|
| 199 |
+
]
|
| 200 |
+
)
|
| 201 |
self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels)
|
| 202 |
|
| 203 |
self.initialize_weights()
|
|
|
|
| 234 |
torch.nn.init.xavier_uniform_(module.weight)
|
| 235 |
if module.bias is not None:
|
| 236 |
nn.init.constant_(module.bias, 0)
|
| 237 |
+
|
| 238 |
self.apply(_basic_init)
|
| 239 |
|
| 240 |
# Initialize timestep embedding MLP:
|
|
|
|
| 254 |
nn.init.constant_(self.out_layer.weight, 0)
|
| 255 |
nn.init.constant_(self.out_layer.bias, 0)
|
| 256 |
|
| 257 |
+
def forward(
|
| 258 |
+
self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor
|
| 259 |
+
) -> sp.SparseTensor:
|
| 260 |
h = self.input_layer(x).type(self.dtype)
|
| 261 |
t_emb = self.t_embedder(t)
|
| 262 |
if self.share_mod:
|
|
|
|
| 269 |
for block in self.input_blocks:
|
| 270 |
h = block(h, t_emb)
|
| 271 |
skips.append(h.feats)
|
| 272 |
+
|
| 273 |
if self.pe_mode == "ape":
|
| 274 |
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
|
| 275 |
for block in self.blocks:
|
trellis/models/structured_latent_vae/base.py
CHANGED
|
@@ -13,15 +13,23 @@ def block_attn_config(self):
|
|
| 13 |
"""
|
| 14 |
for i in range(self.num_blocks):
|
| 15 |
if self.attn_mode == "shift_window":
|
| 16 |
-
yield "serialized", self.window_size, 0, (
|
|
|
|
|
|
|
| 17 |
elif self.attn_mode == "shift_sequence":
|
| 18 |
-
yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
elif self.attn_mode == "shift_order":
|
| 20 |
yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
|
| 21 |
elif self.attn_mode == "full":
|
| 22 |
yield "full", None, None, None, None
|
| 23 |
elif self.attn_mode == "swin":
|
| 24 |
-
yield "windowed", self.window_size, None, self.window_size // 2 * (
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
class SparseTransformerBase(nn.Module):
|
|
@@ -29,6 +37,7 @@ class SparseTransformerBase(nn.Module):
|
|
| 29 |
Sparse Transformer without output layers.
|
| 30 |
Serve as the base class for encoder and decoder.
|
| 31 |
"""
|
|
|
|
| 32 |
def __init__(
|
| 33 |
self,
|
| 34 |
in_channels: int,
|
|
@@ -37,7 +46,9 @@ class SparseTransformerBase(nn.Module):
|
|
| 37 |
num_heads: Optional[int] = None,
|
| 38 |
num_head_channels: Optional[int] = 64,
|
| 39 |
mlp_ratio: float = 4.0,
|
| 40 |
-
attn_mode: Literal[
|
|
|
|
|
|
|
| 41 |
window_size: Optional[int] = None,
|
| 42 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 43 |
use_fp16: bool = False,
|
|
@@ -62,22 +73,26 @@ class SparseTransformerBase(nn.Module):
|
|
| 62 |
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
| 63 |
|
| 64 |
self.input_layer = sp.SparseLinear(in_channels, model_channels)
|
| 65 |
-
self.blocks = nn.ModuleList(
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
@property
|
| 83 |
def device(self) -> torch.device:
|
|
@@ -105,6 +120,7 @@ class SparseTransformerBase(nn.Module):
|
|
| 105 |
torch.nn.init.xavier_uniform_(module.weight)
|
| 106 |
if module.bias is not None:
|
| 107 |
nn.init.constant_(module.bias, 0)
|
|
|
|
| 108 |
self.apply(_basic_init)
|
| 109 |
|
| 110 |
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
|
|
|
| 13 |
"""
|
| 14 |
for i in range(self.num_blocks):
|
| 15 |
if self.attn_mode == "shift_window":
|
| 16 |
+
yield "serialized", self.window_size, 0, (
|
| 17 |
+
16 * (i % 2),
|
| 18 |
+
) * 3, sp.SerializeMode.Z_ORDER
|
| 19 |
elif self.attn_mode == "shift_sequence":
|
| 20 |
+
yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (
|
| 21 |
+
0,
|
| 22 |
+
0,
|
| 23 |
+
0,
|
| 24 |
+
), sp.SerializeMode.Z_ORDER
|
| 25 |
elif self.attn_mode == "shift_order":
|
| 26 |
yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
|
| 27 |
elif self.attn_mode == "full":
|
| 28 |
yield "full", None, None, None, None
|
| 29 |
elif self.attn_mode == "swin":
|
| 30 |
+
yield "windowed", self.window_size, None, self.window_size // 2 * (
|
| 31 |
+
i % 2
|
| 32 |
+
), None
|
| 33 |
|
| 34 |
|
| 35 |
class SparseTransformerBase(nn.Module):
|
|
|
|
| 37 |
Sparse Transformer without output layers.
|
| 38 |
Serve as the base class for encoder and decoder.
|
| 39 |
"""
|
| 40 |
+
|
| 41 |
def __init__(
|
| 42 |
self,
|
| 43 |
in_channels: int,
|
|
|
|
| 46 |
num_heads: Optional[int] = None,
|
| 47 |
num_head_channels: Optional[int] = 64,
|
| 48 |
mlp_ratio: float = 4.0,
|
| 49 |
+
attn_mode: Literal[
|
| 50 |
+
"full", "shift_window", "shift_sequence", "shift_order", "swin"
|
| 51 |
+
] = "full",
|
| 52 |
window_size: Optional[int] = None,
|
| 53 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 54 |
use_fp16: bool = False,
|
|
|
|
| 73 |
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
| 74 |
|
| 75 |
self.input_layer = sp.SparseLinear(in_channels, model_channels)
|
| 76 |
+
self.blocks = nn.ModuleList(
|
| 77 |
+
[
|
| 78 |
+
SparseTransformerBlock(
|
| 79 |
+
model_channels,
|
| 80 |
+
num_heads=self.num_heads,
|
| 81 |
+
mlp_ratio=self.mlp_ratio,
|
| 82 |
+
attn_mode=attn_mode,
|
| 83 |
+
window_size=window_size,
|
| 84 |
+
shift_sequence=shift_sequence,
|
| 85 |
+
shift_window=shift_window,
|
| 86 |
+
serialize_mode=serialize_mode,
|
| 87 |
+
use_checkpoint=self.use_checkpoint,
|
| 88 |
+
use_rope=(pe_mode == "rope"),
|
| 89 |
+
qk_rms_norm=self.qk_rms_norm,
|
| 90 |
+
)
|
| 91 |
+
for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(
|
| 92 |
+
self
|
| 93 |
+
)
|
| 94 |
+
]
|
| 95 |
+
)
|
| 96 |
|
| 97 |
@property
|
| 98 |
def device(self) -> torch.device:
|
|
|
|
| 120 |
torch.nn.init.xavier_uniform_(module.weight)
|
| 121 |
if module.bias is not None:
|
| 122 |
nn.init.constant_(module.bias, 0)
|
| 123 |
+
|
| 124 |
self.apply(_basic_init)
|
| 125 |
|
| 126 |
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
trellis/models/structured_latent_vae/decoder_gs.py
CHANGED
|
@@ -18,7 +18,9 @@ class SLatGaussianDecoder(SparseTransformerBase):
|
|
| 18 |
num_heads: Optional[int] = None,
|
| 19 |
num_head_channels: Optional[int] = 64,
|
| 20 |
mlp_ratio: float = 4,
|
| 21 |
-
attn_mode: Literal[
|
|
|
|
|
|
|
| 22 |
window_size: int = 8,
|
| 23 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 24 |
use_fp16: bool = False,
|
|
@@ -57,26 +59,44 @@ class SLatGaussianDecoder(SparseTransformerBase):
|
|
| 57 |
nn.init.constant_(self.out_layer.bias, 0)
|
| 58 |
|
| 59 |
def _build_perturbation(self) -> None:
|
| 60 |
-
perturbation = [
|
|
|
|
|
|
|
|
|
|
| 61 |
perturbation = torch.tensor(perturbation).float() * 2 - 1
|
| 62 |
-
perturbation = perturbation / self.rep_config[
|
| 63 |
perturbation = torch.atanh(perturbation).to(self.device)
|
| 64 |
-
self.register_buffer(
|
| 65 |
|
| 66 |
def _calc_layout(self) -> None:
|
| 67 |
self.layout = {
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
}
|
| 74 |
start = 0
|
| 75 |
for k, v in self.layout.items():
|
| 76 |
-
v[
|
| 77 |
-
start += v[
|
| 78 |
self.out_channels = start
|
| 79 |
-
|
| 80 |
def to_representation(self, x: sp.SparseTensor) -> List[Gaussian]:
|
| 81 |
"""
|
| 82 |
Convert a batch of network outputs to 3D representations.
|
|
@@ -92,24 +112,35 @@ class SLatGaussianDecoder(SparseTransformerBase):
|
|
| 92 |
representation = Gaussian(
|
| 93 |
sh_degree=0,
|
| 94 |
aabb=[-0.5, -0.5, -0.5, 1.0, 1.0, 1.0],
|
| 95 |
-
mininum_kernel_size
|
| 96 |
-
scaling_bias
|
| 97 |
-
opacity_bias
|
| 98 |
-
scaling_activation
|
| 99 |
)
|
| 100 |
xyz = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
|
| 101 |
for k, v in self.layout.items():
|
| 102 |
-
if k ==
|
| 103 |
-
offset = x.feats[x.layout[i]][
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
| 106 |
offset = offset + self.offset_perturbation
|
| 107 |
-
offset =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
_xyz = xyz.unsqueeze(1) + offset
|
| 109 |
setattr(representation, k, _xyz.flatten(0, 1))
|
| 110 |
else:
|
| 111 |
-
feats =
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
setattr(representation, k, feats)
|
| 114 |
ret.append(representation)
|
| 115 |
return ret
|
|
|
|
| 18 |
num_heads: Optional[int] = None,
|
| 19 |
num_head_channels: Optional[int] = 64,
|
| 20 |
mlp_ratio: float = 4,
|
| 21 |
+
attn_mode: Literal[
|
| 22 |
+
"full", "shift_window", "shift_sequence", "shift_order", "swin"
|
| 23 |
+
] = "swin",
|
| 24 |
window_size: int = 8,
|
| 25 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 26 |
use_fp16: bool = False,
|
|
|
|
| 59 |
nn.init.constant_(self.out_layer.bias, 0)
|
| 60 |
|
| 61 |
def _build_perturbation(self) -> None:
|
| 62 |
+
perturbation = [
|
| 63 |
+
hammersley_sequence(3, i, self.rep_config["num_gaussians"])
|
| 64 |
+
for i in range(self.rep_config["num_gaussians"])
|
| 65 |
+
]
|
| 66 |
perturbation = torch.tensor(perturbation).float() * 2 - 1
|
| 67 |
+
perturbation = perturbation / self.rep_config["voxel_size"]
|
| 68 |
perturbation = torch.atanh(perturbation).to(self.device)
|
| 69 |
+
self.register_buffer("offset_perturbation", perturbation)
|
| 70 |
|
| 71 |
def _calc_layout(self) -> None:
|
| 72 |
self.layout = {
|
| 73 |
+
"_xyz": {
|
| 74 |
+
"shape": (self.rep_config["num_gaussians"], 3),
|
| 75 |
+
"size": self.rep_config["num_gaussians"] * 3,
|
| 76 |
+
},
|
| 77 |
+
"_features_dc": {
|
| 78 |
+
"shape": (self.rep_config["num_gaussians"], 1, 3),
|
| 79 |
+
"size": self.rep_config["num_gaussians"] * 3,
|
| 80 |
+
},
|
| 81 |
+
"_scaling": {
|
| 82 |
+
"shape": (self.rep_config["num_gaussians"], 3),
|
| 83 |
+
"size": self.rep_config["num_gaussians"] * 3,
|
| 84 |
+
},
|
| 85 |
+
"_rotation": {
|
| 86 |
+
"shape": (self.rep_config["num_gaussians"], 4),
|
| 87 |
+
"size": self.rep_config["num_gaussians"] * 4,
|
| 88 |
+
},
|
| 89 |
+
"_opacity": {
|
| 90 |
+
"shape": (self.rep_config["num_gaussians"], 1),
|
| 91 |
+
"size": self.rep_config["num_gaussians"],
|
| 92 |
+
},
|
| 93 |
}
|
| 94 |
start = 0
|
| 95 |
for k, v in self.layout.items():
|
| 96 |
+
v["range"] = (start, start + v["size"])
|
| 97 |
+
start += v["size"]
|
| 98 |
self.out_channels = start
|
| 99 |
+
|
| 100 |
def to_representation(self, x: sp.SparseTensor) -> List[Gaussian]:
|
| 101 |
"""
|
| 102 |
Convert a batch of network outputs to 3D representations.
|
|
|
|
| 112 |
representation = Gaussian(
|
| 113 |
sh_degree=0,
|
| 114 |
aabb=[-0.5, -0.5, -0.5, 1.0, 1.0, 1.0],
|
| 115 |
+
mininum_kernel_size=self.rep_config["3d_filter_kernel_size"],
|
| 116 |
+
scaling_bias=self.rep_config["scaling_bias"],
|
| 117 |
+
opacity_bias=self.rep_config["opacity_bias"],
|
| 118 |
+
scaling_activation=self.rep_config["scaling_activation"],
|
| 119 |
)
|
| 120 |
xyz = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
|
| 121 |
for k, v in self.layout.items():
|
| 122 |
+
if k == "_xyz":
|
| 123 |
+
offset = x.feats[x.layout[i]][
|
| 124 |
+
:, v["range"][0] : v["range"][1]
|
| 125 |
+
].reshape(-1, *v["shape"])
|
| 126 |
+
offset = offset * self.rep_config["lr"][k]
|
| 127 |
+
if self.rep_config["perturb_offset"]:
|
| 128 |
offset = offset + self.offset_perturbation
|
| 129 |
+
offset = (
|
| 130 |
+
torch.tanh(offset)
|
| 131 |
+
/ self.resolution
|
| 132 |
+
* 0.5
|
| 133 |
+
* self.rep_config["voxel_size"]
|
| 134 |
+
)
|
| 135 |
_xyz = xyz.unsqueeze(1) + offset
|
| 136 |
setattr(representation, k, _xyz.flatten(0, 1))
|
| 137 |
else:
|
| 138 |
+
feats = (
|
| 139 |
+
x.feats[x.layout[i]][:, v["range"][0] : v["range"][1]]
|
| 140 |
+
.reshape(-1, *v["shape"])
|
| 141 |
+
.flatten(0, 1)
|
| 142 |
+
)
|
| 143 |
+
feats = feats * self.rep_config["lr"][k]
|
| 144 |
setattr(representation, k, feats)
|
| 145 |
ret.append(representation)
|
| 146 |
return ret
|
trellis/models/structured_latent_vae/decoder_mesh.py
CHANGED
|
@@ -19,12 +19,13 @@ class SparseSubdivideBlock3d(nn.Module):
|
|
| 19 |
out_channels: if specified, the number of output channels.
|
| 20 |
num_groups: the number of groups for the group norm.
|
| 21 |
"""
|
|
|
|
| 22 |
def __init__(
|
| 23 |
self,
|
| 24 |
channels: int,
|
| 25 |
resolution: int,
|
| 26 |
out_channels: Optional[int] = None,
|
| 27 |
-
num_groups: int = 32
|
| 28 |
):
|
| 29 |
super().__init__()
|
| 30 |
self.channels = channels
|
|
@@ -33,24 +34,34 @@ class SparseSubdivideBlock3d(nn.Module):
|
|
| 33 |
self.out_channels = out_channels or channels
|
| 34 |
|
| 35 |
self.act_layers = nn.Sequential(
|
| 36 |
-
sp.SparseGroupNorm32(num_groups, channels),
|
| 37 |
-
sp.SparseSiLU()
|
| 38 |
)
|
| 39 |
-
|
| 40 |
self.sub = sp.SparseSubdivide()
|
| 41 |
-
|
| 42 |
self.out_layers = nn.Sequential(
|
| 43 |
-
sp.SparseConv3d(
|
|
|
|
|
|
|
| 44 |
sp.SparseGroupNorm32(num_groups, self.out_channels),
|
| 45 |
sp.SparseSiLU(),
|
| 46 |
-
zero_module(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
-
|
| 49 |
if self.out_channels == channels:
|
| 50 |
self.skip_connection = nn.Identity()
|
| 51 |
else:
|
| 52 |
-
self.skip_connection = sp.SparseConv3d(
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
| 55 |
"""
|
| 56 |
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
@@ -78,7 +89,9 @@ class SLatMeshDecoder(SparseTransformerBase):
|
|
| 78 |
num_heads: Optional[int] = None,
|
| 79 |
num_head_channels: Optional[int] = 64,
|
| 80 |
mlp_ratio: float = 4,
|
| 81 |
-
attn_mode: Literal[
|
|
|
|
|
|
|
| 82 |
window_size: int = 8,
|
| 83 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 84 |
use_fp16: bool = False,
|
|
@@ -102,20 +115,24 @@ class SLatMeshDecoder(SparseTransformerBase):
|
|
| 102 |
)
|
| 103 |
self.resolution = resolution
|
| 104 |
self.rep_config = representation_config
|
| 105 |
-
self.mesh_extractor = SparseFeatures2Mesh(
|
|
|
|
|
|
|
| 106 |
self.out_channels = self.mesh_extractor.feats_channels
|
| 107 |
-
self.upsample = nn.ModuleList(
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels)
|
| 120 |
|
| 121 |
self.initialize_weights()
|
|
@@ -140,8 +157,8 @@ class SLatMeshDecoder(SparseTransformerBase):
|
|
| 140 |
Convert the torso of the model to float32.
|
| 141 |
"""
|
| 142 |
super().convert_to_fp32()
|
| 143 |
-
self.upsample.apply(convert_module_to_f32)
|
| 144 |
-
|
| 145 |
def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
|
| 146 |
"""
|
| 147 |
Convert a batch of network outputs to 3D representations.
|
|
|
|
| 19 |
out_channels: if specified, the number of output channels.
|
| 20 |
num_groups: the number of groups for the group norm.
|
| 21 |
"""
|
| 22 |
+
|
| 23 |
def __init__(
|
| 24 |
self,
|
| 25 |
channels: int,
|
| 26 |
resolution: int,
|
| 27 |
out_channels: Optional[int] = None,
|
| 28 |
+
num_groups: int = 32,
|
| 29 |
):
|
| 30 |
super().__init__()
|
| 31 |
self.channels = channels
|
|
|
|
| 34 |
self.out_channels = out_channels or channels
|
| 35 |
|
| 36 |
self.act_layers = nn.Sequential(
|
| 37 |
+
sp.SparseGroupNorm32(num_groups, channels), sp.SparseSiLU()
|
|
|
|
| 38 |
)
|
| 39 |
+
|
| 40 |
self.sub = sp.SparseSubdivide()
|
| 41 |
+
|
| 42 |
self.out_layers = nn.Sequential(
|
| 43 |
+
sp.SparseConv3d(
|
| 44 |
+
channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}"
|
| 45 |
+
),
|
| 46 |
sp.SparseGroupNorm32(num_groups, self.out_channels),
|
| 47 |
sp.SparseSiLU(),
|
| 48 |
+
zero_module(
|
| 49 |
+
sp.SparseConv3d(
|
| 50 |
+
self.out_channels,
|
| 51 |
+
self.out_channels,
|
| 52 |
+
3,
|
| 53 |
+
indice_key=f"res_{self.out_resolution}",
|
| 54 |
+
)
|
| 55 |
+
),
|
| 56 |
)
|
| 57 |
+
|
| 58 |
if self.out_channels == channels:
|
| 59 |
self.skip_connection = nn.Identity()
|
| 60 |
else:
|
| 61 |
+
self.skip_connection = sp.SparseConv3d(
|
| 62 |
+
channels, self.out_channels, 1, indice_key=f"res_{self.out_resolution}"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
| 66 |
"""
|
| 67 |
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
|
|
| 89 |
num_heads: Optional[int] = None,
|
| 90 |
num_head_channels: Optional[int] = 64,
|
| 91 |
mlp_ratio: float = 4,
|
| 92 |
+
attn_mode: Literal[
|
| 93 |
+
"full", "shift_window", "shift_sequence", "shift_order", "swin"
|
| 94 |
+
] = "swin",
|
| 95 |
window_size: int = 8,
|
| 96 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 97 |
use_fp16: bool = False,
|
|
|
|
| 115 |
)
|
| 116 |
self.resolution = resolution
|
| 117 |
self.rep_config = representation_config
|
| 118 |
+
self.mesh_extractor = SparseFeatures2Mesh(
|
| 119 |
+
res=self.resolution * 4, use_color=self.rep_config.get("use_color", False)
|
| 120 |
+
)
|
| 121 |
self.out_channels = self.mesh_extractor.feats_channels
|
| 122 |
+
self.upsample = nn.ModuleList(
|
| 123 |
+
[
|
| 124 |
+
SparseSubdivideBlock3d(
|
| 125 |
+
channels=model_channels,
|
| 126 |
+
resolution=resolution,
|
| 127 |
+
out_channels=model_channels // 4,
|
| 128 |
+
),
|
| 129 |
+
SparseSubdivideBlock3d(
|
| 130 |
+
channels=model_channels // 4,
|
| 131 |
+
resolution=resolution * 2,
|
| 132 |
+
out_channels=model_channels // 8,
|
| 133 |
+
),
|
| 134 |
+
]
|
| 135 |
+
)
|
| 136 |
self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels)
|
| 137 |
|
| 138 |
self.initialize_weights()
|
|
|
|
| 157 |
Convert the torso of the model to float32.
|
| 158 |
"""
|
| 159 |
super().convert_to_fp32()
|
| 160 |
+
self.upsample.apply(convert_module_to_f32)
|
| 161 |
+
|
| 162 |
def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
|
| 163 |
"""
|
| 164 |
Convert a batch of network outputs to 3D representations.
|
trellis/models/structured_latent_vae/decoder_rf.py
CHANGED
|
@@ -18,7 +18,9 @@ class SLatRadianceFieldDecoder(SparseTransformerBase):
|
|
| 18 |
num_heads: Optional[int] = None,
|
| 19 |
num_head_channels: Optional[int] = 64,
|
| 20 |
mlp_ratio: float = 4,
|
| 21 |
-
attn_mode: Literal[
|
|
|
|
|
|
|
| 22 |
window_size: int = 8,
|
| 23 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 24 |
use_fp16: bool = False,
|
|
@@ -57,16 +59,25 @@ class SLatRadianceFieldDecoder(SparseTransformerBase):
|
|
| 57 |
|
| 58 |
def _calc_layout(self) -> None:
|
| 59 |
self.layout = {
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
}
|
| 64 |
start = 0
|
| 65 |
for k, v in self.layout.items():
|
| 66 |
-
v[
|
| 67 |
-
start += v[
|
| 68 |
-
self.out_channels = start
|
| 69 |
-
|
| 70 |
def to_representation(self, x: sp.SparseTensor) -> List[Strivec]:
|
| 71 |
"""
|
| 72 |
Convert a batch of network outputs to 3D representations.
|
|
@@ -83,15 +94,28 @@ class SLatRadianceFieldDecoder(SparseTransformerBase):
|
|
| 83 |
sh_degree=0,
|
| 84 |
resolution=self.resolution,
|
| 85 |
aabb=[-0.5, -0.5, -0.5, 1, 1, 1],
|
| 86 |
-
rank=self.rep_config[
|
| 87 |
-
dim=self.rep_config[
|
| 88 |
-
device=
|
| 89 |
)
|
| 90 |
representation.density_shift = 0.0
|
| 91 |
-
representation.position = (
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
for k, v in self.layout.items():
|
| 94 |
-
setattr(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
representation.trivec = representation.trivec + 1
|
| 96 |
ret.append(representation)
|
| 97 |
return ret
|
|
|
|
| 18 |
num_heads: Optional[int] = None,
|
| 19 |
num_head_channels: Optional[int] = 64,
|
| 20 |
mlp_ratio: float = 4,
|
| 21 |
+
attn_mode: Literal[
|
| 22 |
+
"full", "shift_window", "shift_sequence", "shift_order", "swin"
|
| 23 |
+
] = "swin",
|
| 24 |
window_size: int = 8,
|
| 25 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 26 |
use_fp16: bool = False,
|
|
|
|
| 59 |
|
| 60 |
def _calc_layout(self) -> None:
|
| 61 |
self.layout = {
|
| 62 |
+
"trivec": {
|
| 63 |
+
"shape": (self.rep_config["rank"], 3, self.rep_config["dim"]),
|
| 64 |
+
"size": self.rep_config["rank"] * 3 * self.rep_config["dim"],
|
| 65 |
+
},
|
| 66 |
+
"density": {
|
| 67 |
+
"shape": (self.rep_config["rank"],),
|
| 68 |
+
"size": self.rep_config["rank"],
|
| 69 |
+
},
|
| 70 |
+
"features_dc": {
|
| 71 |
+
"shape": (self.rep_config["rank"], 1, 3),
|
| 72 |
+
"size": self.rep_config["rank"] * 3,
|
| 73 |
+
},
|
| 74 |
}
|
| 75 |
start = 0
|
| 76 |
for k, v in self.layout.items():
|
| 77 |
+
v["range"] = (start, start + v["size"])
|
| 78 |
+
start += v["size"]
|
| 79 |
+
self.out_channels = start
|
| 80 |
+
|
| 81 |
def to_representation(self, x: sp.SparseTensor) -> List[Strivec]:
|
| 82 |
"""
|
| 83 |
Convert a batch of network outputs to 3D representations.
|
|
|
|
| 94 |
sh_degree=0,
|
| 95 |
resolution=self.resolution,
|
| 96 |
aabb=[-0.5, -0.5, -0.5, 1, 1, 1],
|
| 97 |
+
rank=self.rep_config["rank"],
|
| 98 |
+
dim=self.rep_config["dim"],
|
| 99 |
+
device="cuda",
|
| 100 |
)
|
| 101 |
representation.density_shift = 0.0
|
| 102 |
+
representation.position = (
|
| 103 |
+
x.coords[x.layout[i]][:, 1:].float() + 0.5
|
| 104 |
+
) / self.resolution
|
| 105 |
+
representation.depth = torch.full(
|
| 106 |
+
(representation.position.shape[0], 1),
|
| 107 |
+
int(np.log2(self.resolution)),
|
| 108 |
+
dtype=torch.uint8,
|
| 109 |
+
device="cuda",
|
| 110 |
+
)
|
| 111 |
for k, v in self.layout.items():
|
| 112 |
+
setattr(
|
| 113 |
+
representation,
|
| 114 |
+
k,
|
| 115 |
+
x.feats[x.layout[i]][:, v["range"][0] : v["range"][1]].reshape(
|
| 116 |
+
-1, *v["shape"]
|
| 117 |
+
),
|
| 118 |
+
)
|
| 119 |
representation.trivec = representation.trivec + 1
|
| 120 |
ret.append(representation)
|
| 121 |
return ret
|
trellis/models/structured_latent_vae/encoder.py
CHANGED
|
@@ -17,7 +17,9 @@ class SLatEncoder(SparseTransformerBase):
|
|
| 17 |
num_heads: Optional[int] = None,
|
| 18 |
num_head_channels: Optional[int] = 64,
|
| 19 |
mlp_ratio: float = 4,
|
| 20 |
-
attn_mode: Literal[
|
|
|
|
|
|
|
| 21 |
window_size: int = 8,
|
| 22 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 23 |
use_fp16: bool = False,
|
|
@@ -56,7 +58,7 @@ class SLatEncoder(SparseTransformerBase):
|
|
| 56 |
h = h.type(x.dtype)
|
| 57 |
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
| 58 |
h = self.out_layer(h)
|
| 59 |
-
|
| 60 |
# Sample from the posterior distribution
|
| 61 |
mean, logvar = h.feats.chunk(2, dim=-1)
|
| 62 |
if sample_posterior:
|
|
@@ -65,7 +67,7 @@ class SLatEncoder(SparseTransformerBase):
|
|
| 65 |
else:
|
| 66 |
z = mean
|
| 67 |
z = h.replace(z)
|
| 68 |
-
|
| 69 |
if return_raw:
|
| 70 |
return z, mean, logvar
|
| 71 |
else:
|
|
|
|
| 17 |
num_heads: Optional[int] = None,
|
| 18 |
num_head_channels: Optional[int] = 64,
|
| 19 |
mlp_ratio: float = 4,
|
| 20 |
+
attn_mode: Literal[
|
| 21 |
+
"full", "shift_window", "shift_sequence", "shift_order", "swin"
|
| 22 |
+
] = "swin",
|
| 23 |
window_size: int = 8,
|
| 24 |
pe_mode: Literal["ape", "rope"] = "ape",
|
| 25 |
use_fp16: bool = False,
|
|
|
|
| 58 |
h = h.type(x.dtype)
|
| 59 |
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
| 60 |
h = self.out_layer(h)
|
| 61 |
+
|
| 62 |
# Sample from the posterior distribution
|
| 63 |
mean, logvar = h.feats.chunk(2, dim=-1)
|
| 64 |
if sample_posterior:
|
|
|
|
| 67 |
else:
|
| 68 |
z = mean
|
| 69 |
z = h.replace(z)
|
| 70 |
+
|
| 71 |
if return_raw:
|
| 72 |
return z, mean, logvar
|
| 73 |
else:
|
trellis/modules/attention/__init__.py
CHANGED
|
@@ -1,32 +1,39 @@
|
|
| 1 |
from typing import *
|
| 2 |
|
| 3 |
-
BACKEND =
|
| 4 |
DEBUG = False
|
| 5 |
|
|
|
|
| 6 |
def __from_env():
|
| 7 |
import os
|
| 8 |
-
|
| 9 |
global BACKEND
|
| 10 |
global DEBUG
|
| 11 |
-
|
| 12 |
-
env_attn_backend = os.environ.get(
|
| 13 |
-
env_sttn_debug = os.environ.get(
|
| 14 |
-
|
| 15 |
-
if env_attn_backend is not None and env_attn_backend in [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
BACKEND = env_attn_backend
|
| 17 |
if env_sttn_debug is not None:
|
| 18 |
-
DEBUG = env_sttn_debug ==
|
| 19 |
|
| 20 |
print(f"[ATTENTION] Using backend: {BACKEND}")
|
| 21 |
-
|
| 22 |
|
| 23 |
__from_env()
|
| 24 |
-
|
| 25 |
|
| 26 |
-
|
|
|
|
| 27 |
global BACKEND
|
| 28 |
BACKEND = backend
|
| 29 |
|
|
|
|
| 30 |
def set_debug(debug: bool):
|
| 31 |
global DEBUG
|
| 32 |
DEBUG = debug
|
|
|
|
| 1 |
from typing import *
|
| 2 |
|
| 3 |
+
BACKEND = "flash_attn"
|
| 4 |
DEBUG = False
|
| 5 |
|
| 6 |
+
|
| 7 |
def __from_env():
|
| 8 |
import os
|
| 9 |
+
|
| 10 |
global BACKEND
|
| 11 |
global DEBUG
|
| 12 |
+
|
| 13 |
+
env_attn_backend = os.environ.get("ATTN_BACKEND")
|
| 14 |
+
env_sttn_debug = os.environ.get("ATTN_DEBUG")
|
| 15 |
+
|
| 16 |
+
if env_attn_backend is not None and env_attn_backend in [
|
| 17 |
+
"xformers",
|
| 18 |
+
"flash_attn",
|
| 19 |
+
"sdpa",
|
| 20 |
+
"naive",
|
| 21 |
+
]:
|
| 22 |
BACKEND = env_attn_backend
|
| 23 |
if env_sttn_debug is not None:
|
| 24 |
+
DEBUG = env_sttn_debug == "1"
|
| 25 |
|
| 26 |
print(f"[ATTENTION] Using backend: {BACKEND}")
|
| 27 |
+
|
| 28 |
|
| 29 |
__from_env()
|
|
|
|
| 30 |
|
| 31 |
+
|
| 32 |
+
def set_backend(backend: Literal["xformers", "flash_attn"]):
|
| 33 |
global BACKEND
|
| 34 |
BACKEND = backend
|
| 35 |
|
| 36 |
+
|
| 37 |
def set_debug(debug: bool):
|
| 38 |
global DEBUG
|
| 39 |
DEBUG = debug
|
trellis/modules/attention/full_attn.py
CHANGED
|
@@ -3,20 +3,20 @@ import torch
|
|
| 3 |
import math
|
| 4 |
from . import DEBUG, BACKEND
|
| 5 |
|
| 6 |
-
if BACKEND ==
|
| 7 |
import xformers.ops as xops
|
| 8 |
-
elif BACKEND ==
|
| 9 |
import flash_attn
|
| 10 |
-
elif BACKEND ==
|
| 11 |
from torch.nn.functional import scaled_dot_product_attention as sdpa
|
| 12 |
-
elif BACKEND ==
|
| 13 |
pass
|
| 14 |
else:
|
| 15 |
raise ValueError(f"Unknown attention backend: {BACKEND}")
|
| 16 |
|
| 17 |
|
| 18 |
__all__ = [
|
| 19 |
-
|
| 20 |
]
|
| 21 |
|
| 22 |
|
|
@@ -24,14 +24,14 @@ def _naive_sdpa(q, k, v):
|
|
| 24 |
"""
|
| 25 |
Naive implementation of scaled dot product attention.
|
| 26 |
"""
|
| 27 |
-
q = q.permute(0, 2, 1, 3)
|
| 28 |
-
k = k.permute(0, 2, 1, 3)
|
| 29 |
-
v = v.permute(0, 2, 1, 3)
|
| 30 |
scale_factor = 1 / math.sqrt(q.size(-1))
|
| 31 |
attn_weight = q @ k.transpose(-2, -1) * scale_factor
|
| 32 |
attn_weight = torch.softmax(attn_weight, dim=-1)
|
| 33 |
out = attn_weight @ v
|
| 34 |
-
out = out.permute(0, 2, 1, 3)
|
| 35 |
return out
|
| 36 |
|
| 37 |
|
|
@@ -45,6 +45,7 @@ def scaled_dot_product_attention(qkv: torch.Tensor) -> torch.Tensor:
|
|
| 45 |
"""
|
| 46 |
...
|
| 47 |
|
|
|
|
| 48 |
@overload
|
| 49 |
def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Tensor:
|
| 50 |
"""
|
|
@@ -56,8 +57,11 @@ def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Ten
|
|
| 56 |
"""
|
| 57 |
...
|
| 58 |
|
|
|
|
| 59 |
@overload
|
| 60 |
-
def scaled_dot_product_attention(
|
|
|
|
|
|
|
| 61 |
"""
|
| 62 |
Apply scaled dot product attention.
|
| 63 |
|
|
@@ -71,64 +75,79 @@ def scaled_dot_product_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tens
|
|
| 71 |
"""
|
| 72 |
...
|
| 73 |
|
|
|
|
| 74 |
def scaled_dot_product_attention(*args, **kwargs):
|
| 75 |
-
arg_names_dict = {
|
| 76 |
-
1: ['qkv'],
|
| 77 |
-
2: ['q', 'kv'],
|
| 78 |
-
3: ['q', 'k', 'v']
|
| 79 |
-
}
|
| 80 |
num_all_args = len(args) + len(kwargs)
|
| 81 |
-
assert
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
assert key in kwargs, f"Missing argument {key}"
|
| 84 |
|
| 85 |
if num_all_args == 1:
|
| 86 |
-
qkv = args[0] if len(args) > 0 else kwargs[
|
| 87 |
-
assert
|
|
|
|
|
|
|
| 88 |
device = qkv.device
|
| 89 |
|
| 90 |
elif num_all_args == 2:
|
| 91 |
-
q = args[0] if len(args) > 0 else kwargs[
|
| 92 |
-
kv = args[1] if len(args) > 1 else kwargs[
|
| 93 |
-
assert
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
device = q.device
|
| 97 |
|
| 98 |
elif num_all_args == 3:
|
| 99 |
-
q = args[0] if len(args) > 0 else kwargs[
|
| 100 |
-
k = args[1] if len(args) > 1 else kwargs[
|
| 101 |
-
v = args[2] if len(args) > 2 else kwargs[
|
| 102 |
-
assert
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
assert
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
if num_all_args == 1:
|
| 110 |
q, k, v = qkv.unbind(dim=2)
|
| 111 |
elif num_all_args == 2:
|
| 112 |
k, v = kv.unbind(dim=2)
|
| 113 |
out = xops.memory_efficient_attention(q, k, v)
|
| 114 |
-
elif BACKEND ==
|
| 115 |
if num_all_args == 1:
|
| 116 |
out = flash_attn.flash_attn_qkvpacked_func(qkv)
|
| 117 |
elif num_all_args == 2:
|
| 118 |
out = flash_attn.flash_attn_kvpacked_func(q, kv)
|
| 119 |
elif num_all_args == 3:
|
| 120 |
out = flash_attn.flash_attn_func(q, k, v)
|
| 121 |
-
elif BACKEND ==
|
| 122 |
if num_all_args == 1:
|
| 123 |
q, k, v = qkv.unbind(dim=2)
|
| 124 |
elif num_all_args == 2:
|
| 125 |
k, v = kv.unbind(dim=2)
|
| 126 |
-
q = q.permute(0, 2, 1, 3)
|
| 127 |
-
k = k.permute(0, 2, 1, 3)
|
| 128 |
-
v = v.permute(0, 2, 1, 3)
|
| 129 |
-
out = sdpa(q, k, v)
|
| 130 |
-
out = out.permute(0, 2, 1, 3)
|
| 131 |
-
elif BACKEND ==
|
| 132 |
if num_all_args == 1:
|
| 133 |
q, k, v = qkv.unbind(dim=2)
|
| 134 |
elif num_all_args == 2:
|
|
@@ -136,5 +155,5 @@ def scaled_dot_product_attention(*args, **kwargs):
|
|
| 136 |
out = _naive_sdpa(q, k, v)
|
| 137 |
else:
|
| 138 |
raise ValueError(f"Unknown attention module: {BACKEND}")
|
| 139 |
-
|
| 140 |
return out
|
|
|
|
| 3 |
import math
|
| 4 |
from . import DEBUG, BACKEND
|
| 5 |
|
| 6 |
+
if BACKEND == "xformers":
|
| 7 |
import xformers.ops as xops
|
| 8 |
+
elif BACKEND == "flash_attn":
|
| 9 |
import flash_attn
|
| 10 |
+
elif BACKEND == "sdpa":
|
| 11 |
from torch.nn.functional import scaled_dot_product_attention as sdpa
|
| 12 |
+
elif BACKEND == "naive":
|
| 13 |
pass
|
| 14 |
else:
|
| 15 |
raise ValueError(f"Unknown attention backend: {BACKEND}")
|
| 16 |
|
| 17 |
|
| 18 |
__all__ = [
|
| 19 |
+
"scaled_dot_product_attention",
|
| 20 |
]
|
| 21 |
|
| 22 |
|
|
|
|
| 24 |
"""
|
| 25 |
Naive implementation of scaled dot product attention.
|
| 26 |
"""
|
| 27 |
+
q = q.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 28 |
+
k = k.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 29 |
+
v = v.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 30 |
scale_factor = 1 / math.sqrt(q.size(-1))
|
| 31 |
attn_weight = q @ k.transpose(-2, -1) * scale_factor
|
| 32 |
attn_weight = torch.softmax(attn_weight, dim=-1)
|
| 33 |
out = attn_weight @ v
|
| 34 |
+
out = out.permute(0, 2, 1, 3) # [N, L, H, C]
|
| 35 |
return out
|
| 36 |
|
| 37 |
|
|
|
|
| 45 |
"""
|
| 46 |
...
|
| 47 |
|
| 48 |
+
|
| 49 |
@overload
|
| 50 |
def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Tensor:
|
| 51 |
"""
|
|
|
|
| 57 |
"""
|
| 58 |
...
|
| 59 |
|
| 60 |
+
|
| 61 |
@overload
|
| 62 |
+
def scaled_dot_product_attention(
|
| 63 |
+
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor
|
| 64 |
+
) -> torch.Tensor:
|
| 65 |
"""
|
| 66 |
Apply scaled dot product attention.
|
| 67 |
|
|
|
|
| 75 |
"""
|
| 76 |
...
|
| 77 |
|
| 78 |
+
|
| 79 |
def scaled_dot_product_attention(*args, **kwargs):
|
| 80 |
+
arg_names_dict = {1: ["qkv"], 2: ["q", "kv"], 3: ["q", "k", "v"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
num_all_args = len(args) + len(kwargs)
|
| 82 |
+
assert (
|
| 83 |
+
num_all_args in arg_names_dict
|
| 84 |
+
), f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
|
| 85 |
+
for key in arg_names_dict[num_all_args][len(args) :]:
|
| 86 |
assert key in kwargs, f"Missing argument {key}"
|
| 87 |
|
| 88 |
if num_all_args == 1:
|
| 89 |
+
qkv = args[0] if len(args) > 0 else kwargs["qkv"]
|
| 90 |
+
assert (
|
| 91 |
+
len(qkv.shape) == 5 and qkv.shape[2] == 3
|
| 92 |
+
), f"Invalid shape for qkv, got {qkv.shape}, expected [N, L, 3, H, C]"
|
| 93 |
device = qkv.device
|
| 94 |
|
| 95 |
elif num_all_args == 2:
|
| 96 |
+
q = args[0] if len(args) > 0 else kwargs["q"]
|
| 97 |
+
kv = args[1] if len(args) > 1 else kwargs["kv"]
|
| 98 |
+
assert (
|
| 99 |
+
q.shape[0] == kv.shape[0]
|
| 100 |
+
), f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
|
| 101 |
+
assert (
|
| 102 |
+
len(q.shape) == 4
|
| 103 |
+
), f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
|
| 104 |
+
assert (
|
| 105 |
+
len(kv.shape) == 5
|
| 106 |
+
), f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
|
| 107 |
device = q.device
|
| 108 |
|
| 109 |
elif num_all_args == 3:
|
| 110 |
+
q = args[0] if len(args) > 0 else kwargs["q"]
|
| 111 |
+
k = args[1] if len(args) > 1 else kwargs["k"]
|
| 112 |
+
v = args[2] if len(args) > 2 else kwargs["v"]
|
| 113 |
+
assert (
|
| 114 |
+
q.shape[0] == k.shape[0] == v.shape[0]
|
| 115 |
+
), f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
|
| 116 |
+
assert (
|
| 117 |
+
len(q.shape) == 4
|
| 118 |
+
), f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
|
| 119 |
+
assert (
|
| 120 |
+
len(k.shape) == 4
|
| 121 |
+
), f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
|
| 122 |
+
assert (
|
| 123 |
+
len(v.shape) == 4
|
| 124 |
+
), f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
|
| 125 |
+
device = q.device
|
| 126 |
+
|
| 127 |
+
if BACKEND == "xformers":
|
| 128 |
if num_all_args == 1:
|
| 129 |
q, k, v = qkv.unbind(dim=2)
|
| 130 |
elif num_all_args == 2:
|
| 131 |
k, v = kv.unbind(dim=2)
|
| 132 |
out = xops.memory_efficient_attention(q, k, v)
|
| 133 |
+
elif BACKEND == "flash_attn":
|
| 134 |
if num_all_args == 1:
|
| 135 |
out = flash_attn.flash_attn_qkvpacked_func(qkv)
|
| 136 |
elif num_all_args == 2:
|
| 137 |
out = flash_attn.flash_attn_kvpacked_func(q, kv)
|
| 138 |
elif num_all_args == 3:
|
| 139 |
out = flash_attn.flash_attn_func(q, k, v)
|
| 140 |
+
elif BACKEND == "sdpa":
|
| 141 |
if num_all_args == 1:
|
| 142 |
q, k, v = qkv.unbind(dim=2)
|
| 143 |
elif num_all_args == 2:
|
| 144 |
k, v = kv.unbind(dim=2)
|
| 145 |
+
q = q.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 146 |
+
k = k.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 147 |
+
v = v.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 148 |
+
out = sdpa(q, k, v) # [N, H, L, C]
|
| 149 |
+
out = out.permute(0, 2, 1, 3) # [N, L, H, C]
|
| 150 |
+
elif BACKEND == "naive":
|
| 151 |
if num_all_args == 1:
|
| 152 |
q, k, v = qkv.unbind(dim=2)
|
| 153 |
elif num_all_args == 2:
|
|
|
|
| 155 |
out = _naive_sdpa(q, k, v)
|
| 156 |
else:
|
| 157 |
raise ValueError(f"Unknown attention module: {BACKEND}")
|
| 158 |
+
|
| 159 |
return out
|
trellis/modules/attention/modules.py
CHANGED
|
@@ -8,11 +8,11 @@ from .full_attn import scaled_dot_product_attention
|
|
| 8 |
class MultiHeadRMSNorm(nn.Module):
|
| 9 |
def __init__(self, dim: int, heads: int):
|
| 10 |
super().__init__()
|
| 11 |
-
self.scale = dim
|
| 12 |
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
| 13 |
|
| 14 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 15 |
-
return (F.normalize(x.float(), dim
|
| 16 |
|
| 17 |
|
| 18 |
class RotaryPositionEmbedder(nn.Module):
|
|
@@ -23,21 +23,25 @@ class RotaryPositionEmbedder(nn.Module):
|
|
| 23 |
self.in_channels = in_channels
|
| 24 |
self.freq_dim = hidden_size // in_channels // 2
|
| 25 |
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
| 26 |
-
self.freqs = 1.0 / (10000
|
| 27 |
-
|
| 28 |
def _get_phases(self, indices: torch.Tensor) -> torch.Tensor:
|
| 29 |
self.freqs = self.freqs.to(indices.device)
|
| 30 |
phases = torch.outer(indices, self.freqs)
|
| 31 |
phases = torch.polar(torch.ones_like(phases), phases)
|
| 32 |
return phases
|
| 33 |
-
|
| 34 |
def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor:
|
| 35 |
x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
| 36 |
x_rotated = x_complex * phases
|
| 37 |
-
x_embed =
|
|
|
|
|
|
|
| 38 |
return x_embed
|
| 39 |
-
|
| 40 |
-
def forward(
|
|
|
|
|
|
|
| 41 |
"""
|
| 42 |
Args:
|
| 43 |
q (sp.SparseTensor): [..., N, D] tensor of queries
|
|
@@ -48,24 +52,38 @@ class RotaryPositionEmbedder(nn.Module):
|
|
| 48 |
indices = torch.arange(q.shape[-2], device=q.device)
|
| 49 |
if len(q.shape) > 2:
|
| 50 |
indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,))
|
| 51 |
-
|
| 52 |
phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1)
|
| 53 |
if phases.shape[1] < self.hidden_size // 2:
|
| 54 |
-
phases = torch.cat(
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
q_embed = self._rotary_embedding(q, phases)
|
| 59 |
k_embed = self._rotary_embedding(k, phases)
|
| 60 |
return q_embed, k_embed
|
| 61 |
-
|
| 62 |
|
| 63 |
class MultiHeadAttention(nn.Module):
|
| 64 |
def __init__(
|
| 65 |
self,
|
| 66 |
channels: int,
|
| 67 |
num_heads: int,
|
| 68 |
-
ctx_channels: Optional[int]=None,
|
| 69 |
type: Literal["self", "cross"] = "self",
|
| 70 |
attn_mode: Literal["full", "windowed"] = "full",
|
| 71 |
window_size: Optional[int] = None,
|
|
@@ -78,11 +96,13 @@ class MultiHeadAttention(nn.Module):
|
|
| 78 |
assert channels % num_heads == 0
|
| 79 |
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
| 80 |
assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}"
|
| 81 |
-
assert
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
if attn_mode == "windowed":
|
| 84 |
raise NotImplementedError("Windowed attention is not yet implemented")
|
| 85 |
-
|
| 86 |
self.channels = channels
|
| 87 |
self.head_dim = channels // num_heads
|
| 88 |
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
|
@@ -99,17 +119,22 @@ class MultiHeadAttention(nn.Module):
|
|
| 99 |
else:
|
| 100 |
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
| 101 |
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
| 102 |
-
|
| 103 |
if self.qk_rms_norm:
|
| 104 |
self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
| 105 |
self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
| 106 |
-
|
| 107 |
self.to_out = nn.Linear(channels, channels)
|
| 108 |
|
| 109 |
if use_rope:
|
| 110 |
self.rope = RotaryPositionEmbedder(channels)
|
| 111 |
-
|
| 112 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
B, L, C = x.shape
|
| 114 |
if self._type == "self":
|
| 115 |
qkv = self.to_qkv(x)
|
|
|
|
| 8 |
class MultiHeadRMSNorm(nn.Module):
|
| 9 |
def __init__(self, dim: int, heads: int):
|
| 10 |
super().__init__()
|
| 11 |
+
self.scale = dim**0.5
|
| 12 |
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
| 13 |
|
| 14 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 15 |
+
return (F.normalize(x.float(), dim=-1) * self.gamma * self.scale).to(x.dtype)
|
| 16 |
|
| 17 |
|
| 18 |
class RotaryPositionEmbedder(nn.Module):
|
|
|
|
| 23 |
self.in_channels = in_channels
|
| 24 |
self.freq_dim = hidden_size // in_channels // 2
|
| 25 |
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
| 26 |
+
self.freqs = 1.0 / (10000**self.freqs)
|
| 27 |
+
|
| 28 |
def _get_phases(self, indices: torch.Tensor) -> torch.Tensor:
|
| 29 |
self.freqs = self.freqs.to(indices.device)
|
| 30 |
phases = torch.outer(indices, self.freqs)
|
| 31 |
phases = torch.polar(torch.ones_like(phases), phases)
|
| 32 |
return phases
|
| 33 |
+
|
| 34 |
def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor:
|
| 35 |
x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
| 36 |
x_rotated = x_complex * phases
|
| 37 |
+
x_embed = (
|
| 38 |
+
torch.view_as_real(x_rotated).reshape(*x_rotated.shape[:-1], -1).to(x.dtype)
|
| 39 |
+
)
|
| 40 |
return x_embed
|
| 41 |
+
|
| 42 |
+
def forward(
|
| 43 |
+
self, q: torch.Tensor, k: torch.Tensor, indices: Optional[torch.Tensor] = None
|
| 44 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 45 |
"""
|
| 46 |
Args:
|
| 47 |
q (sp.SparseTensor): [..., N, D] tensor of queries
|
|
|
|
| 52 |
indices = torch.arange(q.shape[-2], device=q.device)
|
| 53 |
if len(q.shape) > 2:
|
| 54 |
indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,))
|
| 55 |
+
|
| 56 |
phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1)
|
| 57 |
if phases.shape[1] < self.hidden_size // 2:
|
| 58 |
+
phases = torch.cat(
|
| 59 |
+
[
|
| 60 |
+
phases,
|
| 61 |
+
torch.polar(
|
| 62 |
+
torch.ones(
|
| 63 |
+
*phases.shape[:-1],
|
| 64 |
+
self.hidden_size // 2 - phases.shape[1],
|
| 65 |
+
device=phases.device,
|
| 66 |
+
),
|
| 67 |
+
torch.zeros(
|
| 68 |
+
*phases.shape[:-1],
|
| 69 |
+
self.hidden_size // 2 - phases.shape[1],
|
| 70 |
+
device=phases.device,
|
| 71 |
+
),
|
| 72 |
+
),
|
| 73 |
+
],
|
| 74 |
+
dim=-1,
|
| 75 |
+
)
|
| 76 |
q_embed = self._rotary_embedding(q, phases)
|
| 77 |
k_embed = self._rotary_embedding(k, phases)
|
| 78 |
return q_embed, k_embed
|
| 79 |
+
|
| 80 |
|
| 81 |
class MultiHeadAttention(nn.Module):
|
| 82 |
def __init__(
|
| 83 |
self,
|
| 84 |
channels: int,
|
| 85 |
num_heads: int,
|
| 86 |
+
ctx_channels: Optional[int] = None,
|
| 87 |
type: Literal["self", "cross"] = "self",
|
| 88 |
attn_mode: Literal["full", "windowed"] = "full",
|
| 89 |
window_size: Optional[int] = None,
|
|
|
|
| 96 |
assert channels % num_heads == 0
|
| 97 |
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
| 98 |
assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}"
|
| 99 |
+
assert (
|
| 100 |
+
type == "self" or attn_mode == "full"
|
| 101 |
+
), "Cross-attention only supports full attention"
|
| 102 |
+
|
| 103 |
if attn_mode == "windowed":
|
| 104 |
raise NotImplementedError("Windowed attention is not yet implemented")
|
| 105 |
+
|
| 106 |
self.channels = channels
|
| 107 |
self.head_dim = channels // num_heads
|
| 108 |
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
|
|
|
| 119 |
else:
|
| 120 |
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
| 121 |
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
| 122 |
+
|
| 123 |
if self.qk_rms_norm:
|
| 124 |
self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
| 125 |
self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
| 126 |
+
|
| 127 |
self.to_out = nn.Linear(channels, channels)
|
| 128 |
|
| 129 |
if use_rope:
|
| 130 |
self.rope = RotaryPositionEmbedder(channels)
|
| 131 |
+
|
| 132 |
+
def forward(
|
| 133 |
+
self,
|
| 134 |
+
x: torch.Tensor,
|
| 135 |
+
context: Optional[torch.Tensor] = None,
|
| 136 |
+
indices: Optional[torch.Tensor] = None,
|
| 137 |
+
) -> torch.Tensor:
|
| 138 |
B, L, C = x.shape
|
| 139 |
if self._type == "self":
|
| 140 |
qkv = self.to_qkv(x)
|
trellis/modules/norm.py
CHANGED
|
@@ -5,21 +5,21 @@ import torch.nn as nn
|
|
| 5 |
class LayerNorm32(nn.LayerNorm):
|
| 6 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 7 |
return super().forward(x.float()).type(x.dtype)
|
| 8 |
-
|
| 9 |
|
| 10 |
class GroupNorm32(nn.GroupNorm):
|
| 11 |
"""
|
| 12 |
A GroupNorm layer that converts to float32 before the forward pass.
|
| 13 |
"""
|
|
|
|
| 14 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 15 |
return super().forward(x.float()).type(x.dtype)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
class ChannelLayerNorm32(LayerNorm32):
|
| 19 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 20 |
DIM = x.dim()
|
| 21 |
x = x.permute(0, *range(2, DIM), 1).contiguous()
|
| 22 |
x = super().forward(x)
|
| 23 |
-
x = x.permute(0, DIM-1, *range(1, DIM-1)).contiguous()
|
| 24 |
return x
|
| 25 |
-
|
|
|
|
| 5 |
class LayerNorm32(nn.LayerNorm):
|
| 6 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 7 |
return super().forward(x.float()).type(x.dtype)
|
| 8 |
+
|
| 9 |
|
| 10 |
class GroupNorm32(nn.GroupNorm):
|
| 11 |
"""
|
| 12 |
A GroupNorm layer that converts to float32 before the forward pass.
|
| 13 |
"""
|
| 14 |
+
|
| 15 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 16 |
return super().forward(x.float()).type(x.dtype)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
class ChannelLayerNorm32(LayerNorm32):
|
| 20 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 21 |
DIM = x.dim()
|
| 22 |
x = x.permute(0, *range(2, DIM), 1).contiguous()
|
| 23 |
x = super().forward(x)
|
| 24 |
+
x = x.permute(0, DIM - 1, *range(1, DIM - 1)).contiguous()
|
| 25 |
return x
|
|
|
trellis/modules/sparse/__init__.py
CHANGED
|
@@ -1,81 +1,88 @@
|
|
| 1 |
from typing import *
|
| 2 |
|
| 3 |
-
BACKEND =
|
| 4 |
DEBUG = False
|
| 5 |
-
ATTN =
|
|
|
|
| 6 |
|
| 7 |
def __from_env():
|
| 8 |
import os
|
| 9 |
-
|
| 10 |
global BACKEND
|
| 11 |
global DEBUG
|
| 12 |
global ATTN
|
| 13 |
-
|
| 14 |
-
env_sparse_backend = os.environ.get(
|
| 15 |
-
env_sparse_debug = os.environ.get(
|
| 16 |
-
env_sparse_attn = os.environ.get(
|
| 17 |
if env_sparse_attn is None:
|
| 18 |
-
env_sparse_attn = os.environ.get(
|
| 19 |
|
| 20 |
-
if env_sparse_backend is not None and env_sparse_backend in [
|
|
|
|
|
|
|
|
|
|
| 21 |
BACKEND = env_sparse_backend
|
| 22 |
if env_sparse_debug is not None:
|
| 23 |
-
DEBUG = env_sparse_debug ==
|
| 24 |
-
if env_sparse_attn is not None and env_sparse_attn in [
|
| 25 |
ATTN = env_sparse_attn
|
| 26 |
-
|
| 27 |
print(f"[SPARSE] Backend: {BACKEND}, Attention: {ATTN}")
|
| 28 |
-
|
| 29 |
|
| 30 |
__from_env()
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
|
|
|
| 34 |
global BACKEND
|
| 35 |
BACKEND = backend
|
| 36 |
|
|
|
|
| 37 |
def set_debug(debug: bool):
|
| 38 |
global DEBUG
|
| 39 |
DEBUG = debug
|
| 40 |
|
| 41 |
-
|
|
|
|
| 42 |
global ATTN
|
| 43 |
ATTN = attn
|
| 44 |
-
|
| 45 |
-
|
| 46 |
import importlib
|
| 47 |
|
| 48 |
__attributes = {
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
}
|
| 74 |
|
| 75 |
-
__submodules = [
|
| 76 |
|
| 77 |
__all__ = list(__attributes.keys()) + __submodules
|
| 78 |
|
|
|
|
| 79 |
def __getattr__(name):
|
| 80 |
if name not in globals():
|
| 81 |
if name in __attributes:
|
|
@@ -91,7 +98,7 @@ def __getattr__(name):
|
|
| 91 |
|
| 92 |
|
| 93 |
# For Pylance
|
| 94 |
-
if __name__ ==
|
| 95 |
from .basic import *
|
| 96 |
from .norm import *
|
| 97 |
from .nonlinearity import *
|
|
|
|
| 1 |
from typing import *
|
| 2 |
|
| 3 |
+
BACKEND = "spconv"
|
| 4 |
DEBUG = False
|
| 5 |
+
ATTN = "flash_attn"
|
| 6 |
+
|
| 7 |
|
| 8 |
def __from_env():
|
| 9 |
import os
|
| 10 |
+
|
| 11 |
global BACKEND
|
| 12 |
global DEBUG
|
| 13 |
global ATTN
|
| 14 |
+
|
| 15 |
+
env_sparse_backend = os.environ.get("SPARSE_BACKEND")
|
| 16 |
+
env_sparse_debug = os.environ.get("SPARSE_DEBUG")
|
| 17 |
+
env_sparse_attn = os.environ.get("SPARSE_ATTN_BACKEND")
|
| 18 |
if env_sparse_attn is None:
|
| 19 |
+
env_sparse_attn = os.environ.get("ATTN_BACKEND")
|
| 20 |
|
| 21 |
+
if env_sparse_backend is not None and env_sparse_backend in [
|
| 22 |
+
"spconv",
|
| 23 |
+
"torchsparse",
|
| 24 |
+
]:
|
| 25 |
BACKEND = env_sparse_backend
|
| 26 |
if env_sparse_debug is not None:
|
| 27 |
+
DEBUG = env_sparse_debug == "1"
|
| 28 |
+
if env_sparse_attn is not None and env_sparse_attn in ["xformers", "flash_attn"]:
|
| 29 |
ATTN = env_sparse_attn
|
| 30 |
+
|
| 31 |
print(f"[SPARSE] Backend: {BACKEND}, Attention: {ATTN}")
|
| 32 |
+
|
| 33 |
|
| 34 |
__from_env()
|
|
|
|
| 35 |
|
| 36 |
+
|
| 37 |
+
def set_backend(backend: Literal["spconv", "torchsparse"]):
|
| 38 |
global BACKEND
|
| 39 |
BACKEND = backend
|
| 40 |
|
| 41 |
+
|
| 42 |
def set_debug(debug: bool):
|
| 43 |
global DEBUG
|
| 44 |
DEBUG = debug
|
| 45 |
|
| 46 |
+
|
| 47 |
+
def set_attn(attn: Literal["xformers", "flash_attn"]):
|
| 48 |
global ATTN
|
| 49 |
ATTN = attn
|
| 50 |
+
|
| 51 |
+
|
| 52 |
import importlib
|
| 53 |
|
| 54 |
__attributes = {
|
| 55 |
+
"SparseTensor": "basic",
|
| 56 |
+
"sparse_batch_broadcast": "basic",
|
| 57 |
+
"sparse_batch_op": "basic",
|
| 58 |
+
"sparse_cat": "basic",
|
| 59 |
+
"sparse_unbind": "basic",
|
| 60 |
+
"SparseGroupNorm": "norm",
|
| 61 |
+
"SparseLayerNorm": "norm",
|
| 62 |
+
"SparseGroupNorm32": "norm",
|
| 63 |
+
"SparseLayerNorm32": "norm",
|
| 64 |
+
"SparseReLU": "nonlinearity",
|
| 65 |
+
"SparseSiLU": "nonlinearity",
|
| 66 |
+
"SparseGELU": "nonlinearity",
|
| 67 |
+
"SparseActivation": "nonlinearity",
|
| 68 |
+
"SparseLinear": "linear",
|
| 69 |
+
"sparse_scaled_dot_product_attention": "attention",
|
| 70 |
+
"SerializeMode": "attention",
|
| 71 |
+
"sparse_serialized_scaled_dot_product_self_attention": "attention",
|
| 72 |
+
"sparse_windowed_scaled_dot_product_self_attention": "attention",
|
| 73 |
+
"SparseMultiHeadAttention": "attention",
|
| 74 |
+
"SparseConv3d": "conv",
|
| 75 |
+
"SparseInverseConv3d": "conv",
|
| 76 |
+
"SparseDownsample": "spatial",
|
| 77 |
+
"SparseUpsample": "spatial",
|
| 78 |
+
"SparseSubdivide": "spatial",
|
| 79 |
}
|
| 80 |
|
| 81 |
+
__submodules = ["transformer"]
|
| 82 |
|
| 83 |
__all__ = list(__attributes.keys()) + __submodules
|
| 84 |
|
| 85 |
+
|
| 86 |
def __getattr__(name):
|
| 87 |
if name not in globals():
|
| 88 |
if name in __attributes:
|
|
|
|
| 98 |
|
| 99 |
|
| 100 |
# For Pylance
|
| 101 |
+
if __name__ == "__main__":
|
| 102 |
from .basic import *
|
| 103 |
from .norm import *
|
| 104 |
from .nonlinearity import *
|
trellis/modules/sparse/attention/full_attn.py
CHANGED
|
@@ -3,16 +3,16 @@ import torch
|
|
| 3 |
from .. import SparseTensor
|
| 4 |
from .. import DEBUG, ATTN
|
| 5 |
|
| 6 |
-
if ATTN ==
|
| 7 |
import xformers.ops as xops
|
| 8 |
-
elif ATTN ==
|
| 9 |
import flash_attn
|
| 10 |
else:
|
| 11 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 12 |
|
| 13 |
|
| 14 |
__all__ = [
|
| 15 |
-
|
| 16 |
]
|
| 17 |
|
| 18 |
|
|
@@ -26,8 +26,11 @@ def sparse_scaled_dot_product_attention(qkv: SparseTensor) -> SparseTensor:
|
|
| 26 |
"""
|
| 27 |
...
|
| 28 |
|
|
|
|
| 29 |
@overload
|
| 30 |
-
def sparse_scaled_dot_product_attention(
|
|
|
|
|
|
|
| 31 |
"""
|
| 32 |
Apply scaled dot product attention to a sparse tensor.
|
| 33 |
|
|
@@ -37,8 +40,11 @@ def sparse_scaled_dot_product_attention(q: SparseTensor, kv: Union[SparseTensor,
|
|
| 37 |
"""
|
| 38 |
...
|
| 39 |
|
|
|
|
| 40 |
@overload
|
| 41 |
-
def sparse_scaled_dot_product_attention(
|
|
|
|
|
|
|
| 42 |
"""
|
| 43 |
Apply scaled dot product attention to a sparse tensor.
|
| 44 |
|
|
@@ -48,8 +54,11 @@ def sparse_scaled_dot_product_attention(q: torch.Tensor, kv: SparseTensor) -> to
|
|
| 48 |
"""
|
| 49 |
...
|
| 50 |
|
|
|
|
| 51 |
@overload
|
| 52 |
-
def sparse_scaled_dot_product_attention(
|
|
|
|
|
|
|
| 53 |
"""
|
| 54 |
Apply scaled dot product attention to a sparse tensor.
|
| 55 |
|
|
@@ -63,8 +72,11 @@ def sparse_scaled_dot_product_attention(q: SparseTensor, k: SparseTensor, v: Spa
|
|
| 63 |
"""
|
| 64 |
...
|
| 65 |
|
|
|
|
| 66 |
@overload
|
| 67 |
-
def sparse_scaled_dot_product_attention(
|
|
|
|
|
|
|
| 68 |
"""
|
| 69 |
Apply scaled dot product attention to a sparse tensor.
|
| 70 |
|
|
@@ -75,8 +87,11 @@ def sparse_scaled_dot_product_attention(q: SparseTensor, k: torch.Tensor, v: tor
|
|
| 75 |
"""
|
| 76 |
...
|
| 77 |
|
|
|
|
| 78 |
@overload
|
| 79 |
-
def sparse_scaled_dot_product_attention(
|
|
|
|
|
|
|
| 80 |
"""
|
| 81 |
Apply scaled dot product attention to a sparse tensor.
|
| 82 |
|
|
@@ -87,106 +102,158 @@ def sparse_scaled_dot_product_attention(q: torch.Tensor, k: SparseTensor, v: Spa
|
|
| 87 |
"""
|
| 88 |
...
|
| 89 |
|
|
|
|
| 90 |
def sparse_scaled_dot_product_attention(*args, **kwargs):
|
| 91 |
-
arg_names_dict = {
|
| 92 |
-
1: ['qkv'],
|
| 93 |
-
2: ['q', 'kv'],
|
| 94 |
-
3: ['q', 'k', 'v']
|
| 95 |
-
}
|
| 96 |
num_all_args = len(args) + len(kwargs)
|
| 97 |
-
assert
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
assert key in kwargs, f"Missing argument {key}"
|
| 100 |
|
| 101 |
if num_all_args == 1:
|
| 102 |
-
qkv = args[0] if len(args) > 0 else kwargs[
|
| 103 |
-
assert isinstance(
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
device = qkv.device
|
| 106 |
|
| 107 |
s = qkv
|
| 108 |
-
q_seqlen = [
|
|
|
|
|
|
|
| 109 |
kv_seqlen = q_seqlen
|
| 110 |
-
qkv = qkv.feats
|
| 111 |
|
| 112 |
elif num_all_args == 2:
|
| 113 |
-
q = args[0] if len(args) > 0 else kwargs[
|
| 114 |
-
kv = args[1] if len(args) > 1 else kwargs[
|
| 115 |
-
assert
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
device = q.device
|
| 120 |
|
| 121 |
if isinstance(q, SparseTensor):
|
| 122 |
-
assert
|
|
|
|
|
|
|
| 123 |
s = q
|
| 124 |
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
| 125 |
-
q = q.feats
|
| 126 |
else:
|
| 127 |
-
assert
|
|
|
|
|
|
|
| 128 |
s = None
|
| 129 |
N, L, H, C = q.shape
|
| 130 |
q_seqlen = [L] * N
|
| 131 |
-
q = q.reshape(N * L, H, C)
|
| 132 |
|
| 133 |
if isinstance(kv, SparseTensor):
|
| 134 |
-
assert
|
| 135 |
-
|
| 136 |
-
kv
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
else:
|
| 138 |
-
assert
|
|
|
|
|
|
|
| 139 |
N, L, _, H, C = kv.shape
|
| 140 |
kv_seqlen = [L] * N
|
| 141 |
-
kv = kv.reshape(N * L, 2, H, C)
|
| 142 |
|
| 143 |
elif num_all_args == 3:
|
| 144 |
-
q = args[0] if len(args) > 0 else kwargs[
|
| 145 |
-
k = args[1] if len(args) > 1 else kwargs[
|
| 146 |
-
v = args[2] if len(args) > 2 else kwargs[
|
| 147 |
-
assert
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
device = q.device
|
| 152 |
|
| 153 |
if isinstance(q, SparseTensor):
|
| 154 |
-
assert
|
|
|
|
|
|
|
| 155 |
s = q
|
| 156 |
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
| 157 |
-
q = q.feats
|
| 158 |
else:
|
| 159 |
-
assert
|
|
|
|
|
|
|
| 160 |
s = None
|
| 161 |
N, L, H, CI = q.shape
|
| 162 |
q_seqlen = [L] * N
|
| 163 |
q = q.reshape(N * L, H, CI) # [T_Q, H, Ci]
|
| 164 |
|
| 165 |
if isinstance(k, SparseTensor):
|
| 166 |
-
assert
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
else:
|
| 172 |
-
assert
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
N, L, H, CI, CO = *k.shape, v.shape[-1]
|
| 175 |
kv_seqlen = [L] * N
|
| 176 |
-
k = k.reshape(N * L, H, CI)
|
| 177 |
-
v = v.reshape(N * L, H, CO)
|
| 178 |
|
| 179 |
if DEBUG:
|
| 180 |
if s is not None:
|
| 181 |
for i in range(s.shape[0]):
|
| 182 |
-
assert (
|
|
|
|
|
|
|
| 183 |
if num_all_args in [2, 3]:
|
| 184 |
-
assert q.shape[:2] == [
|
|
|
|
|
|
|
|
|
|
| 185 |
if num_all_args == 3:
|
| 186 |
-
assert k.shape[:2] == [
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
if ATTN ==
|
| 190 |
if num_all_args == 1:
|
| 191 |
q, k, v = qkv.unbind(dim=1)
|
| 192 |
elif num_all_args == 2:
|
|
@@ -196,19 +263,35 @@ def sparse_scaled_dot_product_attention(*args, **kwargs):
|
|
| 196 |
v = v.unsqueeze(0)
|
| 197 |
mask = xops.fmha.BlockDiagonalMask.from_seqlens(q_seqlen, kv_seqlen)
|
| 198 |
out = xops.memory_efficient_attention(q, k, v, mask)[0]
|
| 199 |
-
elif ATTN ==
|
| 200 |
-
cu_seqlens_q =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
if num_all_args in [2, 3]:
|
| 202 |
-
cu_seqlens_kv =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
if num_all_args == 1:
|
| 204 |
-
out = flash_attn.flash_attn_varlen_qkvpacked_func(
|
|
|
|
|
|
|
| 205 |
elif num_all_args == 2:
|
| 206 |
-
out = flash_attn.flash_attn_varlen_kvpacked_func(
|
|
|
|
|
|
|
| 207 |
elif num_all_args == 3:
|
| 208 |
-
out = flash_attn.flash_attn_varlen_func(
|
|
|
|
|
|
|
| 209 |
else:
|
| 210 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 211 |
-
|
| 212 |
if s is not None:
|
| 213 |
return s.replace(out)
|
| 214 |
else:
|
|
|
|
| 3 |
from .. import SparseTensor
|
| 4 |
from .. import DEBUG, ATTN
|
| 5 |
|
| 6 |
+
if ATTN == "xformers":
|
| 7 |
import xformers.ops as xops
|
| 8 |
+
elif ATTN == "flash_attn":
|
| 9 |
import flash_attn
|
| 10 |
else:
|
| 11 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 12 |
|
| 13 |
|
| 14 |
__all__ = [
|
| 15 |
+
"sparse_scaled_dot_product_attention",
|
| 16 |
]
|
| 17 |
|
| 18 |
|
|
|
|
| 26 |
"""
|
| 27 |
...
|
| 28 |
|
| 29 |
+
|
| 30 |
@overload
|
| 31 |
+
def sparse_scaled_dot_product_attention(
|
| 32 |
+
q: SparseTensor, kv: Union[SparseTensor, torch.Tensor]
|
| 33 |
+
) -> SparseTensor:
|
| 34 |
"""
|
| 35 |
Apply scaled dot product attention to a sparse tensor.
|
| 36 |
|
|
|
|
| 40 |
"""
|
| 41 |
...
|
| 42 |
|
| 43 |
+
|
| 44 |
@overload
|
| 45 |
+
def sparse_scaled_dot_product_attention(
|
| 46 |
+
q: torch.Tensor, kv: SparseTensor
|
| 47 |
+
) -> torch.Tensor:
|
| 48 |
"""
|
| 49 |
Apply scaled dot product attention to a sparse tensor.
|
| 50 |
|
|
|
|
| 54 |
"""
|
| 55 |
...
|
| 56 |
|
| 57 |
+
|
| 58 |
@overload
|
| 59 |
+
def sparse_scaled_dot_product_attention(
|
| 60 |
+
q: SparseTensor, k: SparseTensor, v: SparseTensor
|
| 61 |
+
) -> SparseTensor:
|
| 62 |
"""
|
| 63 |
Apply scaled dot product attention to a sparse tensor.
|
| 64 |
|
|
|
|
| 72 |
"""
|
| 73 |
...
|
| 74 |
|
| 75 |
+
|
| 76 |
@overload
|
| 77 |
+
def sparse_scaled_dot_product_attention(
|
| 78 |
+
q: SparseTensor, k: torch.Tensor, v: torch.Tensor
|
| 79 |
+
) -> SparseTensor:
|
| 80 |
"""
|
| 81 |
Apply scaled dot product attention to a sparse tensor.
|
| 82 |
|
|
|
|
| 87 |
"""
|
| 88 |
...
|
| 89 |
|
| 90 |
+
|
| 91 |
@overload
|
| 92 |
+
def sparse_scaled_dot_product_attention(
|
| 93 |
+
q: torch.Tensor, k: SparseTensor, v: SparseTensor
|
| 94 |
+
) -> torch.Tensor:
|
| 95 |
"""
|
| 96 |
Apply scaled dot product attention to a sparse tensor.
|
| 97 |
|
|
|
|
| 102 |
"""
|
| 103 |
...
|
| 104 |
|
| 105 |
+
|
| 106 |
def sparse_scaled_dot_product_attention(*args, **kwargs):
|
| 107 |
+
arg_names_dict = {1: ["qkv"], 2: ["q", "kv"], 3: ["q", "k", "v"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
num_all_args = len(args) + len(kwargs)
|
| 109 |
+
assert (
|
| 110 |
+
num_all_args in arg_names_dict
|
| 111 |
+
), f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
|
| 112 |
+
for key in arg_names_dict[num_all_args][len(args) :]:
|
| 113 |
assert key in kwargs, f"Missing argument {key}"
|
| 114 |
|
| 115 |
if num_all_args == 1:
|
| 116 |
+
qkv = args[0] if len(args) > 0 else kwargs["qkv"]
|
| 117 |
+
assert isinstance(
|
| 118 |
+
qkv, SparseTensor
|
| 119 |
+
), f"qkv must be a SparseTensor, got {type(qkv)}"
|
| 120 |
+
assert (
|
| 121 |
+
len(qkv.shape) == 4 and qkv.shape[1] == 3
|
| 122 |
+
), f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
| 123 |
device = qkv.device
|
| 124 |
|
| 125 |
s = qkv
|
| 126 |
+
q_seqlen = [
|
| 127 |
+
qkv.layout[i].stop - qkv.layout[i].start for i in range(qkv.shape[0])
|
| 128 |
+
]
|
| 129 |
kv_seqlen = q_seqlen
|
| 130 |
+
qkv = qkv.feats # [T, 3, H, C]
|
| 131 |
|
| 132 |
elif num_all_args == 2:
|
| 133 |
+
q = args[0] if len(args) > 0 else kwargs["q"]
|
| 134 |
+
kv = args[1] if len(args) > 1 else kwargs["kv"]
|
| 135 |
+
assert (
|
| 136 |
+
isinstance(q, SparseTensor)
|
| 137 |
+
and isinstance(kv, (SparseTensor, torch.Tensor))
|
| 138 |
+
or isinstance(q, torch.Tensor)
|
| 139 |
+
and isinstance(kv, SparseTensor)
|
| 140 |
+
), f"Invalid types, got {type(q)} and {type(kv)}"
|
| 141 |
+
assert (
|
| 142 |
+
q.shape[0] == kv.shape[0]
|
| 143 |
+
), f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
|
| 144 |
device = q.device
|
| 145 |
|
| 146 |
if isinstance(q, SparseTensor):
|
| 147 |
+
assert (
|
| 148 |
+
len(q.shape) == 3
|
| 149 |
+
), f"Invalid shape for q, got {q.shape}, expected [N, *, H, C]"
|
| 150 |
s = q
|
| 151 |
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
| 152 |
+
q = q.feats # [T_Q, H, C]
|
| 153 |
else:
|
| 154 |
+
assert (
|
| 155 |
+
len(q.shape) == 4
|
| 156 |
+
), f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
|
| 157 |
s = None
|
| 158 |
N, L, H, C = q.shape
|
| 159 |
q_seqlen = [L] * N
|
| 160 |
+
q = q.reshape(N * L, H, C) # [T_Q, H, C]
|
| 161 |
|
| 162 |
if isinstance(kv, SparseTensor):
|
| 163 |
+
assert (
|
| 164 |
+
len(kv.shape) == 4 and kv.shape[1] == 2
|
| 165 |
+
), f"Invalid shape for kv, got {kv.shape}, expected [N, *, 2, H, C]"
|
| 166 |
+
kv_seqlen = [
|
| 167 |
+
kv.layout[i].stop - kv.layout[i].start for i in range(kv.shape[0])
|
| 168 |
+
]
|
| 169 |
+
kv = kv.feats # [T_KV, 2, H, C]
|
| 170 |
else:
|
| 171 |
+
assert (
|
| 172 |
+
len(kv.shape) == 5
|
| 173 |
+
), f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
|
| 174 |
N, L, _, H, C = kv.shape
|
| 175 |
kv_seqlen = [L] * N
|
| 176 |
+
kv = kv.reshape(N * L, 2, H, C) # [T_KV, 2, H, C]
|
| 177 |
|
| 178 |
elif num_all_args == 3:
|
| 179 |
+
q = args[0] if len(args) > 0 else kwargs["q"]
|
| 180 |
+
k = args[1] if len(args) > 1 else kwargs["k"]
|
| 181 |
+
v = args[2] if len(args) > 2 else kwargs["v"]
|
| 182 |
+
assert (
|
| 183 |
+
isinstance(q, SparseTensor)
|
| 184 |
+
and isinstance(k, (SparseTensor, torch.Tensor))
|
| 185 |
+
and type(k) == type(v)
|
| 186 |
+
or isinstance(q, torch.Tensor)
|
| 187 |
+
and isinstance(k, SparseTensor)
|
| 188 |
+
and isinstance(v, SparseTensor)
|
| 189 |
+
), f"Invalid types, got {type(q)}, {type(k)}, and {type(v)}"
|
| 190 |
+
assert (
|
| 191 |
+
q.shape[0] == k.shape[0] == v.shape[0]
|
| 192 |
+
), f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
|
| 193 |
device = q.device
|
| 194 |
|
| 195 |
if isinstance(q, SparseTensor):
|
| 196 |
+
assert (
|
| 197 |
+
len(q.shape) == 3
|
| 198 |
+
), f"Invalid shape for q, got {q.shape}, expected [N, *, H, Ci]"
|
| 199 |
s = q
|
| 200 |
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
| 201 |
+
q = q.feats # [T_Q, H, Ci]
|
| 202 |
else:
|
| 203 |
+
assert (
|
| 204 |
+
len(q.shape) == 4
|
| 205 |
+
), f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
|
| 206 |
s = None
|
| 207 |
N, L, H, CI = q.shape
|
| 208 |
q_seqlen = [L] * N
|
| 209 |
q = q.reshape(N * L, H, CI) # [T_Q, H, Ci]
|
| 210 |
|
| 211 |
if isinstance(k, SparseTensor):
|
| 212 |
+
assert (
|
| 213 |
+
len(k.shape) == 3
|
| 214 |
+
), f"Invalid shape for k, got {k.shape}, expected [N, *, H, Ci]"
|
| 215 |
+
assert (
|
| 216 |
+
len(v.shape) == 3
|
| 217 |
+
), f"Invalid shape for v, got {v.shape}, expected [N, *, H, Co]"
|
| 218 |
+
kv_seqlen = [
|
| 219 |
+
k.layout[i].stop - k.layout[i].start for i in range(k.shape[0])
|
| 220 |
+
]
|
| 221 |
+
k = k.feats # [T_KV, H, Ci]
|
| 222 |
+
v = v.feats # [T_KV, H, Co]
|
| 223 |
else:
|
| 224 |
+
assert (
|
| 225 |
+
len(k.shape) == 4
|
| 226 |
+
), f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
|
| 227 |
+
assert (
|
| 228 |
+
len(v.shape) == 4
|
| 229 |
+
), f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
|
| 230 |
N, L, H, CI, CO = *k.shape, v.shape[-1]
|
| 231 |
kv_seqlen = [L] * N
|
| 232 |
+
k = k.reshape(N * L, H, CI) # [T_KV, H, Ci]
|
| 233 |
+
v = v.reshape(N * L, H, CO) # [T_KV, H, Co]
|
| 234 |
|
| 235 |
if DEBUG:
|
| 236 |
if s is not None:
|
| 237 |
for i in range(s.shape[0]):
|
| 238 |
+
assert (
|
| 239 |
+
s.coords[s.layout[i]] == i
|
| 240 |
+
).all(), f"SparseScaledDotProductSelfAttention: batch index mismatch"
|
| 241 |
if num_all_args in [2, 3]:
|
| 242 |
+
assert q.shape[:2] == [
|
| 243 |
+
1,
|
| 244 |
+
sum(q_seqlen),
|
| 245 |
+
], f"SparseScaledDotProductSelfAttention: q shape mismatch"
|
| 246 |
if num_all_args == 3:
|
| 247 |
+
assert k.shape[:2] == [
|
| 248 |
+
1,
|
| 249 |
+
sum(kv_seqlen),
|
| 250 |
+
], f"SparseScaledDotProductSelfAttention: k shape mismatch"
|
| 251 |
+
assert v.shape[:2] == [
|
| 252 |
+
1,
|
| 253 |
+
sum(kv_seqlen),
|
| 254 |
+
], f"SparseScaledDotProductSelfAttention: v shape mismatch"
|
| 255 |
|
| 256 |
+
if ATTN == "xformers":
|
| 257 |
if num_all_args == 1:
|
| 258 |
q, k, v = qkv.unbind(dim=1)
|
| 259 |
elif num_all_args == 2:
|
|
|
|
| 263 |
v = v.unsqueeze(0)
|
| 264 |
mask = xops.fmha.BlockDiagonalMask.from_seqlens(q_seqlen, kv_seqlen)
|
| 265 |
out = xops.memory_efficient_attention(q, k, v, mask)[0]
|
| 266 |
+
elif ATTN == "flash_attn":
|
| 267 |
+
cu_seqlens_q = (
|
| 268 |
+
torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(q_seqlen), dim=0)])
|
| 269 |
+
.int()
|
| 270 |
+
.to(device)
|
| 271 |
+
)
|
| 272 |
if num_all_args in [2, 3]:
|
| 273 |
+
cu_seqlens_kv = (
|
| 274 |
+
torch.cat(
|
| 275 |
+
[torch.tensor([0]), torch.cumsum(torch.tensor(kv_seqlen), dim=0)]
|
| 276 |
+
)
|
| 277 |
+
.int()
|
| 278 |
+
.to(device)
|
| 279 |
+
)
|
| 280 |
if num_all_args == 1:
|
| 281 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(
|
| 282 |
+
qkv, cu_seqlens_q, max(q_seqlen)
|
| 283 |
+
)
|
| 284 |
elif num_all_args == 2:
|
| 285 |
+
out = flash_attn.flash_attn_varlen_kvpacked_func(
|
| 286 |
+
q, kv, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen)
|
| 287 |
+
)
|
| 288 |
elif num_all_args == 3:
|
| 289 |
+
out = flash_attn.flash_attn_varlen_func(
|
| 290 |
+
q, k, v, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen)
|
| 291 |
+
)
|
| 292 |
else:
|
| 293 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 294 |
+
|
| 295 |
if s is not None:
|
| 296 |
return s.replace(out)
|
| 297 |
else:
|
trellis/modules/sparse/attention/modules.py
CHANGED
|
@@ -4,7 +4,10 @@ import torch.nn as nn
|
|
| 4 |
import torch.nn.functional as F
|
| 5 |
from .. import SparseTensor
|
| 6 |
from .full_attn import sparse_scaled_dot_product_attention
|
| 7 |
-
from .serialized_attn import
|
|
|
|
|
|
|
|
|
|
| 8 |
from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention
|
| 9 |
from ...attention import RotaryPositionEmbedder
|
| 10 |
|
|
@@ -12,16 +15,18 @@ from ...attention import RotaryPositionEmbedder
|
|
| 12 |
class SparseMultiHeadRMSNorm(nn.Module):
|
| 13 |
def __init__(self, dim: int, heads: int):
|
| 14 |
super().__init__()
|
| 15 |
-
self.scale = dim
|
| 16 |
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
| 17 |
|
| 18 |
-
def forward(
|
|
|
|
|
|
|
| 19 |
x_type = x.dtype
|
| 20 |
x = x.float()
|
| 21 |
if isinstance(x, SparseTensor):
|
| 22 |
x = x.replace(F.normalize(x.feats, dim=-1))
|
| 23 |
else:
|
| 24 |
-
x = F.normalize(x, dim=-1)
|
| 25 |
return (x * self.gamma * self.scale).to(x_type)
|
| 26 |
|
| 27 |
|
|
@@ -44,9 +49,17 @@ class SparseMultiHeadAttention(nn.Module):
|
|
| 44 |
super().__init__()
|
| 45 |
assert channels % num_heads == 0
|
| 46 |
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
| 47 |
-
assert attn_mode in [
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
self.channels = channels
|
| 51 |
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
| 52 |
self.num_heads = num_heads
|
|
@@ -64,31 +77,37 @@ class SparseMultiHeadAttention(nn.Module):
|
|
| 64 |
else:
|
| 65 |
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
| 66 |
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
| 67 |
-
|
| 68 |
if self.qk_rms_norm:
|
| 69 |
self.q_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
| 70 |
self.k_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
| 71 |
-
|
| 72 |
self.to_out = nn.Linear(channels, channels)
|
| 73 |
|
| 74 |
if use_rope:
|
| 75 |
self.rope = RotaryPositionEmbedder(channels)
|
| 76 |
|
| 77 |
@staticmethod
|
| 78 |
-
def _linear(
|
|
|
|
|
|
|
| 79 |
if isinstance(x, SparseTensor):
|
| 80 |
return x.replace(module(x.feats))
|
| 81 |
else:
|
| 82 |
return module(x)
|
| 83 |
|
| 84 |
@staticmethod
|
| 85 |
-
def _reshape_chs(
|
|
|
|
|
|
|
| 86 |
if isinstance(x, SparseTensor):
|
| 87 |
return x.reshape(*shape)
|
| 88 |
else:
|
| 89 |
return x.reshape(*x.shape[:2], *shape)
|
| 90 |
|
| 91 |
-
def _fused_pre(
|
|
|
|
|
|
|
| 92 |
if isinstance(x, SparseTensor):
|
| 93 |
x_feats = x.feats.unsqueeze(0)
|
| 94 |
else:
|
|
@@ -97,12 +116,16 @@ class SparseMultiHeadAttention(nn.Module):
|
|
| 97 |
return x.replace(x_feats.squeeze(0)) if isinstance(x, SparseTensor) else x_feats
|
| 98 |
|
| 99 |
def _rope(self, qkv: SparseTensor) -> SparseTensor:
|
| 100 |
-
q, k, v = qkv.feats.unbind(dim=1)
|
| 101 |
q, k = self.rope(q, k, qkv.coords[:, 1:])
|
| 102 |
-
qkv = qkv.replace(torch.stack([q, k, v], dim=1))
|
| 103 |
return qkv
|
| 104 |
-
|
| 105 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
if self._type == "self":
|
| 107 |
qkv = self._linear(self.to_qkv, x)
|
| 108 |
qkv = self._fused_pre(qkv, num_fused=3)
|
|
@@ -117,7 +140,11 @@ class SparseMultiHeadAttention(nn.Module):
|
|
| 117 |
h = sparse_scaled_dot_product_attention(qkv)
|
| 118 |
elif self.attn_mode == "serialized":
|
| 119 |
h = sparse_serialized_scaled_dot_product_self_attention(
|
| 120 |
-
qkv,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
)
|
| 122 |
elif self.attn_mode == "windowed":
|
| 123 |
h = sparse_windowed_scaled_dot_product_self_attention(
|
|
|
|
| 4 |
import torch.nn.functional as F
|
| 5 |
from .. import SparseTensor
|
| 6 |
from .full_attn import sparse_scaled_dot_product_attention
|
| 7 |
+
from .serialized_attn import (
|
| 8 |
+
SerializeMode,
|
| 9 |
+
sparse_serialized_scaled_dot_product_self_attention,
|
| 10 |
+
)
|
| 11 |
from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention
|
| 12 |
from ...attention import RotaryPositionEmbedder
|
| 13 |
|
|
|
|
| 15 |
class SparseMultiHeadRMSNorm(nn.Module):
|
| 16 |
def __init__(self, dim: int, heads: int):
|
| 17 |
super().__init__()
|
| 18 |
+
self.scale = dim**0.5
|
| 19 |
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
| 20 |
|
| 21 |
+
def forward(
|
| 22 |
+
self, x: Union[SparseTensor, torch.Tensor]
|
| 23 |
+
) -> Union[SparseTensor, torch.Tensor]:
|
| 24 |
x_type = x.dtype
|
| 25 |
x = x.float()
|
| 26 |
if isinstance(x, SparseTensor):
|
| 27 |
x = x.replace(F.normalize(x.feats, dim=-1))
|
| 28 |
else:
|
| 29 |
+
x = F.normalize(x, dim=-1)
|
| 30 |
return (x * self.gamma * self.scale).to(x_type)
|
| 31 |
|
| 32 |
|
|
|
|
| 49 |
super().__init__()
|
| 50 |
assert channels % num_heads == 0
|
| 51 |
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
| 52 |
+
assert attn_mode in [
|
| 53 |
+
"full",
|
| 54 |
+
"serialized",
|
| 55 |
+
"windowed",
|
| 56 |
+
], f"Invalid attention mode: {attn_mode}"
|
| 57 |
+
assert (
|
| 58 |
+
type == "self" or attn_mode == "full"
|
| 59 |
+
), "Cross-attention only supports full attention"
|
| 60 |
+
assert (
|
| 61 |
+
type == "self" or use_rope is False
|
| 62 |
+
), "Rotary position embeddings only supported for self-attention"
|
| 63 |
self.channels = channels
|
| 64 |
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
| 65 |
self.num_heads = num_heads
|
|
|
|
| 77 |
else:
|
| 78 |
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
| 79 |
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
| 80 |
+
|
| 81 |
if self.qk_rms_norm:
|
| 82 |
self.q_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
| 83 |
self.k_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
| 84 |
+
|
| 85 |
self.to_out = nn.Linear(channels, channels)
|
| 86 |
|
| 87 |
if use_rope:
|
| 88 |
self.rope = RotaryPositionEmbedder(channels)
|
| 89 |
|
| 90 |
@staticmethod
|
| 91 |
+
def _linear(
|
| 92 |
+
module: nn.Linear, x: Union[SparseTensor, torch.Tensor]
|
| 93 |
+
) -> Union[SparseTensor, torch.Tensor]:
|
| 94 |
if isinstance(x, SparseTensor):
|
| 95 |
return x.replace(module(x.feats))
|
| 96 |
else:
|
| 97 |
return module(x)
|
| 98 |
|
| 99 |
@staticmethod
|
| 100 |
+
def _reshape_chs(
|
| 101 |
+
x: Union[SparseTensor, torch.Tensor], shape: Tuple[int, ...]
|
| 102 |
+
) -> Union[SparseTensor, torch.Tensor]:
|
| 103 |
if isinstance(x, SparseTensor):
|
| 104 |
return x.reshape(*shape)
|
| 105 |
else:
|
| 106 |
return x.reshape(*x.shape[:2], *shape)
|
| 107 |
|
| 108 |
+
def _fused_pre(
|
| 109 |
+
self, x: Union[SparseTensor, torch.Tensor], num_fused: int
|
| 110 |
+
) -> Union[SparseTensor, torch.Tensor]:
|
| 111 |
if isinstance(x, SparseTensor):
|
| 112 |
x_feats = x.feats.unsqueeze(0)
|
| 113 |
else:
|
|
|
|
| 116 |
return x.replace(x_feats.squeeze(0)) if isinstance(x, SparseTensor) else x_feats
|
| 117 |
|
| 118 |
def _rope(self, qkv: SparseTensor) -> SparseTensor:
|
| 119 |
+
q, k, v = qkv.feats.unbind(dim=1) # [T, H, C]
|
| 120 |
q, k = self.rope(q, k, qkv.coords[:, 1:])
|
| 121 |
+
qkv = qkv.replace(torch.stack([q, k, v], dim=1))
|
| 122 |
return qkv
|
| 123 |
+
|
| 124 |
+
def forward(
|
| 125 |
+
self,
|
| 126 |
+
x: Union[SparseTensor, torch.Tensor],
|
| 127 |
+
context: Optional[Union[SparseTensor, torch.Tensor]] = None,
|
| 128 |
+
) -> Union[SparseTensor, torch.Tensor]:
|
| 129 |
if self._type == "self":
|
| 130 |
qkv = self._linear(self.to_qkv, x)
|
| 131 |
qkv = self._fused_pre(qkv, num_fused=3)
|
|
|
|
| 140 |
h = sparse_scaled_dot_product_attention(qkv)
|
| 141 |
elif self.attn_mode == "serialized":
|
| 142 |
h = sparse_serialized_scaled_dot_product_self_attention(
|
| 143 |
+
qkv,
|
| 144 |
+
self.window_size,
|
| 145 |
+
serialize_mode=self.serialize_mode,
|
| 146 |
+
shift_sequence=self.shift_sequence,
|
| 147 |
+
shift_window=self.shift_window,
|
| 148 |
)
|
| 149 |
elif self.attn_mode == "windowed":
|
| 150 |
h = sparse_windowed_scaled_dot_product_self_attention(
|
trellis/modules/sparse/attention/serialized_attn.py
CHANGED
|
@@ -5,16 +5,16 @@ import math
|
|
| 5 |
from .. import SparseTensor
|
| 6 |
from .. import DEBUG, ATTN
|
| 7 |
|
| 8 |
-
if ATTN ==
|
| 9 |
import xformers.ops as xops
|
| 10 |
-
elif ATTN ==
|
| 11 |
import flash_attn
|
| 12 |
else:
|
| 13 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 14 |
|
| 15 |
|
| 16 |
__all__ = [
|
| 17 |
-
|
| 18 |
]
|
| 19 |
|
| 20 |
|
|
@@ -29,7 +29,7 @@ SerializeModes = [
|
|
| 29 |
SerializeMode.Z_ORDER,
|
| 30 |
SerializeMode.Z_ORDER_TRANSPOSED,
|
| 31 |
SerializeMode.HILBERT,
|
| 32 |
-
SerializeMode.HILBERT_TRANSPOSED
|
| 33 |
]
|
| 34 |
|
| 35 |
|
|
@@ -38,7 +38,7 @@ def calc_serialization(
|
|
| 38 |
window_size: int,
|
| 39 |
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
| 40 |
shift_sequence: int = 0,
|
| 41 |
-
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
| 42 |
) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
| 43 |
"""
|
| 44 |
Calculate serialization and partitioning for a set of coordinates.
|
|
@@ -58,32 +58,38 @@ def calc_serialization(
|
|
| 58 |
seq_lens = []
|
| 59 |
seq_batch_indices = []
|
| 60 |
offsets = [0]
|
| 61 |
-
|
| 62 |
-
if
|
| 63 |
import vox2seq
|
| 64 |
|
| 65 |
# Serialize the input
|
| 66 |
serialize_coords = tensor.coords[:, 1:].clone()
|
| 67 |
-
serialize_coords += torch.tensor(
|
|
|
|
|
|
|
| 68 |
if serialize_mode == SerializeMode.Z_ORDER:
|
| 69 |
-
code = vox2seq.encode(serialize_coords, mode=
|
| 70 |
elif serialize_mode == SerializeMode.Z_ORDER_TRANSPOSED:
|
| 71 |
-
code = vox2seq.encode(serialize_coords, mode=
|
| 72 |
elif serialize_mode == SerializeMode.HILBERT:
|
| 73 |
-
code = vox2seq.encode(serialize_coords, mode=
|
| 74 |
elif serialize_mode == SerializeMode.HILBERT_TRANSPOSED:
|
| 75 |
-
code = vox2seq.encode(serialize_coords, mode=
|
| 76 |
else:
|
| 77 |
raise ValueError(f"Unknown serialize mode: {serialize_mode}")
|
| 78 |
-
|
| 79 |
for bi, s in enumerate(tensor.layout):
|
| 80 |
num_points = s.stop - s.start
|
| 81 |
num_windows = (num_points + window_size - 1) // window_size
|
| 82 |
valid_window_size = num_points / num_windows
|
| 83 |
-
to_ordered = torch.argsort(code[s.start:s.stop])
|
| 84 |
if num_windows == 1:
|
| 85 |
fwd_indices.append(to_ordered)
|
| 86 |
-
bwd_indices.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
fwd_indices[-1] += s.start
|
| 88 |
bwd_indices[-1] += offsets[-1]
|
| 89 |
seq_lens.append(num_points)
|
|
@@ -92,18 +98,39 @@ def calc_serialization(
|
|
| 92 |
else:
|
| 93 |
# Partition the input
|
| 94 |
offset = 0
|
| 95 |
-
mids = [
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
for i in range(num_windows):
|
| 99 |
mid = mids[i]
|
| 100 |
valid_start = split[i]
|
| 101 |
valid_end = split[i + 1]
|
| 102 |
padded_start = math.floor(mid - 0.5 * window_size)
|
| 103 |
padded_end = padded_start + window_size
|
| 104 |
-
fwd_indices.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
offset += valid_start - padded_start
|
| 106 |
-
bwd_index.scatter_(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
offset += padded_end - valid_start
|
| 108 |
fwd_indices[-1] += s.start
|
| 109 |
seq_lens.extend([window_size] * num_windows)
|
|
@@ -115,14 +142,14 @@ def calc_serialization(
|
|
| 115 |
bwd_indices = torch.cat(bwd_indices)
|
| 116 |
|
| 117 |
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
| 118 |
-
|
| 119 |
|
| 120 |
def sparse_serialized_scaled_dot_product_self_attention(
|
| 121 |
qkv: SparseTensor,
|
| 122 |
window_size: int,
|
| 123 |
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
| 124 |
shift_sequence: int = 0,
|
| 125 |
-
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
| 126 |
) -> SparseTensor:
|
| 127 |
"""
|
| 128 |
Apply serialized scaled dot product self attention to a sparse tensor.
|
|
@@ -135,59 +162,86 @@ def sparse_serialized_scaled_dot_product_self_attention(
|
|
| 135 |
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
| 136 |
shift (int): The shift to use.
|
| 137 |
"""
|
| 138 |
-
assert
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
if serialization_spatial_cache is None:
|
| 143 |
-
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_serialization(
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
else:
|
| 146 |
-
fwd_indices, bwd_indices, seq_lens, seq_batch_indices =
|
|
|
|
|
|
|
| 147 |
|
| 148 |
M = fwd_indices.shape[0]
|
| 149 |
T = qkv.feats.shape[0]
|
| 150 |
H = qkv.feats.shape[2]
|
| 151 |
C = qkv.feats.shape[3]
|
| 152 |
-
|
| 153 |
-
qkv_feats = qkv.feats[fwd_indices]
|
| 154 |
|
| 155 |
if DEBUG:
|
| 156 |
start = 0
|
| 157 |
qkv_coords = qkv.coords[fwd_indices]
|
| 158 |
for i in range(len(seq_lens)):
|
| 159 |
-
assert (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
start += seq_lens[i]
|
| 161 |
|
| 162 |
if all([seq_len == window_size for seq_len in seq_lens]):
|
| 163 |
B = len(seq_lens)
|
| 164 |
N = window_size
|
| 165 |
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
| 166 |
-
if ATTN ==
|
| 167 |
-
q, k, v = qkv_feats.unbind(dim=2)
|
| 168 |
-
out = xops.memory_efficient_attention(q, k, v)
|
| 169 |
-
elif ATTN ==
|
| 170 |
-
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats)
|
| 171 |
else:
|
| 172 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 173 |
-
out = out.reshape(B * N, H, C)
|
| 174 |
else:
|
| 175 |
-
if ATTN ==
|
| 176 |
-
q, k, v = qkv_feats.unbind(dim=1)
|
| 177 |
-
q = q.unsqueeze(0)
|
| 178 |
-
k = k.unsqueeze(0)
|
| 179 |
-
v = v.unsqueeze(0)
|
| 180 |
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
| 181 |
-
out = xops.memory_efficient_attention(q, k, v, mask)[0]
|
| 182 |
-
elif ATTN ==
|
| 183 |
-
cu_seqlens =
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
if DEBUG:
|
| 190 |
qkv_coords = qkv_coords[bwd_indices]
|
| 191 |
-
assert torch.equal(
|
|
|
|
|
|
|
| 192 |
|
| 193 |
return qkv.replace(out)
|
|
|
|
| 5 |
from .. import SparseTensor
|
| 6 |
from .. import DEBUG, ATTN
|
| 7 |
|
| 8 |
+
if ATTN == "xformers":
|
| 9 |
import xformers.ops as xops
|
| 10 |
+
elif ATTN == "flash_attn":
|
| 11 |
import flash_attn
|
| 12 |
else:
|
| 13 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 14 |
|
| 15 |
|
| 16 |
__all__ = [
|
| 17 |
+
"sparse_serialized_scaled_dot_product_self_attention",
|
| 18 |
]
|
| 19 |
|
| 20 |
|
|
|
|
| 29 |
SerializeMode.Z_ORDER,
|
| 30 |
SerializeMode.Z_ORDER_TRANSPOSED,
|
| 31 |
SerializeMode.HILBERT,
|
| 32 |
+
SerializeMode.HILBERT_TRANSPOSED,
|
| 33 |
]
|
| 34 |
|
| 35 |
|
|
|
|
| 38 |
window_size: int,
|
| 39 |
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
| 40 |
shift_sequence: int = 0,
|
| 41 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0),
|
| 42 |
) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
| 43 |
"""
|
| 44 |
Calculate serialization and partitioning for a set of coordinates.
|
|
|
|
| 58 |
seq_lens = []
|
| 59 |
seq_batch_indices = []
|
| 60 |
offsets = [0]
|
| 61 |
+
|
| 62 |
+
if "vox2seq" not in globals():
|
| 63 |
import vox2seq
|
| 64 |
|
| 65 |
# Serialize the input
|
| 66 |
serialize_coords = tensor.coords[:, 1:].clone()
|
| 67 |
+
serialize_coords += torch.tensor(
|
| 68 |
+
shift_window, dtype=torch.int32, device=tensor.device
|
| 69 |
+
).reshape(1, 3)
|
| 70 |
if serialize_mode == SerializeMode.Z_ORDER:
|
| 71 |
+
code = vox2seq.encode(serialize_coords, mode="z_order", permute=[0, 1, 2])
|
| 72 |
elif serialize_mode == SerializeMode.Z_ORDER_TRANSPOSED:
|
| 73 |
+
code = vox2seq.encode(serialize_coords, mode="z_order", permute=[1, 0, 2])
|
| 74 |
elif serialize_mode == SerializeMode.HILBERT:
|
| 75 |
+
code = vox2seq.encode(serialize_coords, mode="hilbert", permute=[0, 1, 2])
|
| 76 |
elif serialize_mode == SerializeMode.HILBERT_TRANSPOSED:
|
| 77 |
+
code = vox2seq.encode(serialize_coords, mode="hilbert", permute=[1, 0, 2])
|
| 78 |
else:
|
| 79 |
raise ValueError(f"Unknown serialize mode: {serialize_mode}")
|
| 80 |
+
|
| 81 |
for bi, s in enumerate(tensor.layout):
|
| 82 |
num_points = s.stop - s.start
|
| 83 |
num_windows = (num_points + window_size - 1) // window_size
|
| 84 |
valid_window_size = num_points / num_windows
|
| 85 |
+
to_ordered = torch.argsort(code[s.start : s.stop])
|
| 86 |
if num_windows == 1:
|
| 87 |
fwd_indices.append(to_ordered)
|
| 88 |
+
bwd_indices.append(
|
| 89 |
+
torch.zeros_like(to_ordered).scatter_(
|
| 90 |
+
0, to_ordered, torch.arange(num_points, device=tensor.device)
|
| 91 |
+
)
|
| 92 |
+
)
|
| 93 |
fwd_indices[-1] += s.start
|
| 94 |
bwd_indices[-1] += offsets[-1]
|
| 95 |
seq_lens.append(num_points)
|
|
|
|
| 98 |
else:
|
| 99 |
# Partition the input
|
| 100 |
offset = 0
|
| 101 |
+
mids = [
|
| 102 |
+
(i + 0.5) * valid_window_size + shift_sequence
|
| 103 |
+
for i in range(num_windows)
|
| 104 |
+
]
|
| 105 |
+
split = [
|
| 106 |
+
math.floor(i * valid_window_size + shift_sequence)
|
| 107 |
+
for i in range(num_windows + 1)
|
| 108 |
+
]
|
| 109 |
+
bwd_index = torch.zeros(
|
| 110 |
+
(num_points,), dtype=torch.int64, device=tensor.device
|
| 111 |
+
)
|
| 112 |
for i in range(num_windows):
|
| 113 |
mid = mids[i]
|
| 114 |
valid_start = split[i]
|
| 115 |
valid_end = split[i + 1]
|
| 116 |
padded_start = math.floor(mid - 0.5 * window_size)
|
| 117 |
padded_end = padded_start + window_size
|
| 118 |
+
fwd_indices.append(
|
| 119 |
+
to_ordered[
|
| 120 |
+
torch.arange(padded_start, padded_end, device=tensor.device)
|
| 121 |
+
% num_points
|
| 122 |
+
]
|
| 123 |
+
)
|
| 124 |
offset += valid_start - padded_start
|
| 125 |
+
bwd_index.scatter_(
|
| 126 |
+
0,
|
| 127 |
+
fwd_indices[-1][
|
| 128 |
+
valid_start - padded_start : valid_end - padded_start
|
| 129 |
+
],
|
| 130 |
+
torch.arange(
|
| 131 |
+
offset, offset + valid_end - valid_start, device=tensor.device
|
| 132 |
+
),
|
| 133 |
+
)
|
| 134 |
offset += padded_end - valid_start
|
| 135 |
fwd_indices[-1] += s.start
|
| 136 |
seq_lens.extend([window_size] * num_windows)
|
|
|
|
| 142 |
bwd_indices = torch.cat(bwd_indices)
|
| 143 |
|
| 144 |
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
| 145 |
+
|
| 146 |
|
| 147 |
def sparse_serialized_scaled_dot_product_self_attention(
|
| 148 |
qkv: SparseTensor,
|
| 149 |
window_size: int,
|
| 150 |
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
| 151 |
shift_sequence: int = 0,
|
| 152 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0),
|
| 153 |
) -> SparseTensor:
|
| 154 |
"""
|
| 155 |
Apply serialized scaled dot product self attention to a sparse tensor.
|
|
|
|
| 162 |
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
| 163 |
shift (int): The shift to use.
|
| 164 |
"""
|
| 165 |
+
assert (
|
| 166 |
+
len(qkv.shape) == 4 and qkv.shape[1] == 3
|
| 167 |
+
), f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
| 168 |
+
|
| 169 |
+
serialization_spatial_cache_name = (
|
| 170 |
+
f"serialization_{serialize_mode}_{window_size}_{shift_sequence}_{shift_window}"
|
| 171 |
+
)
|
| 172 |
+
serialization_spatial_cache = qkv.get_spatial_cache(
|
| 173 |
+
serialization_spatial_cache_name
|
| 174 |
+
)
|
| 175 |
if serialization_spatial_cache is None:
|
| 176 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_serialization(
|
| 177 |
+
qkv, window_size, serialize_mode, shift_sequence, shift_window
|
| 178 |
+
)
|
| 179 |
+
qkv.register_spatial_cache(
|
| 180 |
+
serialization_spatial_cache_name,
|
| 181 |
+
(fwd_indices, bwd_indices, seq_lens, seq_batch_indices),
|
| 182 |
+
)
|
| 183 |
else:
|
| 184 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = (
|
| 185 |
+
serialization_spatial_cache
|
| 186 |
+
)
|
| 187 |
|
| 188 |
M = fwd_indices.shape[0]
|
| 189 |
T = qkv.feats.shape[0]
|
| 190 |
H = qkv.feats.shape[2]
|
| 191 |
C = qkv.feats.shape[3]
|
| 192 |
+
|
| 193 |
+
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
|
| 194 |
|
| 195 |
if DEBUG:
|
| 196 |
start = 0
|
| 197 |
qkv_coords = qkv.coords[fwd_indices]
|
| 198 |
for i in range(len(seq_lens)):
|
| 199 |
+
assert (
|
| 200 |
+
qkv_coords[start : start + seq_lens[i], 0] == seq_batch_indices[i]
|
| 201 |
+
).all(), (
|
| 202 |
+
f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
|
| 203 |
+
)
|
| 204 |
start += seq_lens[i]
|
| 205 |
|
| 206 |
if all([seq_len == window_size for seq_len in seq_lens]):
|
| 207 |
B = len(seq_lens)
|
| 208 |
N = window_size
|
| 209 |
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
| 210 |
+
if ATTN == "xformers":
|
| 211 |
+
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
|
| 212 |
+
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
|
| 213 |
+
elif ATTN == "flash_attn":
|
| 214 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
|
| 215 |
else:
|
| 216 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 217 |
+
out = out.reshape(B * N, H, C) # [M, H, C]
|
| 218 |
else:
|
| 219 |
+
if ATTN == "xformers":
|
| 220 |
+
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
|
| 221 |
+
q = q.unsqueeze(0) # [1, M, H, C]
|
| 222 |
+
k = k.unsqueeze(0) # [1, M, H, C]
|
| 223 |
+
v = v.unsqueeze(0) # [1, M, H, C]
|
| 224 |
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
| 225 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
|
| 226 |
+
elif ATTN == "flash_attn":
|
| 227 |
+
cu_seqlens = (
|
| 228 |
+
torch.cat(
|
| 229 |
+
[torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)],
|
| 230 |
+
dim=0,
|
| 231 |
+
)
|
| 232 |
+
.to(qkv.device)
|
| 233 |
+
.int()
|
| 234 |
+
)
|
| 235 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(
|
| 236 |
+
qkv_feats, cu_seqlens, max(seq_lens)
|
| 237 |
+
) # [M, H, C]
|
| 238 |
+
|
| 239 |
+
out = out[bwd_indices] # [T, H, C]
|
| 240 |
|
| 241 |
if DEBUG:
|
| 242 |
qkv_coords = qkv_coords[bwd_indices]
|
| 243 |
+
assert torch.equal(
|
| 244 |
+
qkv_coords, qkv.coords
|
| 245 |
+
), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
|
| 246 |
|
| 247 |
return qkv.replace(out)
|
trellis/modules/sparse/attention/windowed_attn.py
CHANGED
|
@@ -4,23 +4,23 @@ import math
|
|
| 4 |
from .. import SparseTensor
|
| 5 |
from .. import DEBUG, ATTN
|
| 6 |
|
| 7 |
-
if ATTN ==
|
| 8 |
import xformers.ops as xops
|
| 9 |
-
elif ATTN ==
|
| 10 |
import flash_attn
|
| 11 |
else:
|
| 12 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 13 |
|
| 14 |
|
| 15 |
__all__ = [
|
| 16 |
-
|
| 17 |
]
|
| 18 |
|
| 19 |
|
| 20 |
def calc_window_partition(
|
| 21 |
tensor: SparseTensor,
|
| 22 |
window_size: Union[int, Tuple[int, ...]],
|
| 23 |
-
shift_window: Union[int, Tuple[int, ...]] = 0
|
| 24 |
) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]:
|
| 25 |
"""
|
| 26 |
Calculate serialization and partitioning for a set of coordinates.
|
|
@@ -37,33 +37,43 @@ def calc_window_partition(
|
|
| 37 |
(List[int]): Sequence batch indices.
|
| 38 |
"""
|
| 39 |
DIM = tensor.coords.shape[1] - 1
|
| 40 |
-
shift_window = (
|
|
|
|
|
|
|
| 41 |
window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size
|
| 42 |
shifted_coords = tensor.coords.clone().detach()
|
| 43 |
-
shifted_coords[:, 1:] += torch.tensor(
|
|
|
|
|
|
|
| 44 |
|
| 45 |
MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist()
|
| 46 |
NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)]
|
| 47 |
OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1]
|
| 48 |
|
| 49 |
-
shifted_coords[:, 1:] //= torch.tensor(
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
fwd_indices = torch.argsort(shifted_indices)
|
| 52 |
bwd_indices = torch.empty_like(fwd_indices)
|
| 53 |
bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device)
|
| 54 |
seq_lens = torch.bincount(shifted_indices)
|
| 55 |
-
seq_batch_indices =
|
|
|
|
|
|
|
|
|
|
| 56 |
mask = seq_lens != 0
|
| 57 |
seq_lens = seq_lens[mask].tolist()
|
| 58 |
seq_batch_indices = seq_batch_indices[mask].tolist()
|
| 59 |
|
| 60 |
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
| 61 |
-
|
| 62 |
|
| 63 |
def sparse_windowed_scaled_dot_product_self_attention(
|
| 64 |
-
qkv: SparseTensor,
|
| 65 |
-
window_size: int,
|
| 66 |
-
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
| 67 |
) -> SparseTensor:
|
| 68 |
"""
|
| 69 |
Apply windowed scaled dot product self attention to a sparse tensor.
|
|
@@ -74,62 +84,92 @@ def sparse_windowed_scaled_dot_product_self_attention(
|
|
| 74 |
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
| 75 |
shift (int): The shift to use.
|
| 76 |
"""
|
| 77 |
-
assert
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
if serialization_spatial_cache is None:
|
| 82 |
-
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
else:
|
| 85 |
-
fwd_indices, bwd_indices, seq_lens, seq_batch_indices =
|
|
|
|
|
|
|
| 86 |
|
| 87 |
M = fwd_indices.shape[0]
|
| 88 |
T = qkv.feats.shape[0]
|
| 89 |
H = qkv.feats.shape[2]
|
| 90 |
C = qkv.feats.shape[3]
|
| 91 |
-
|
| 92 |
-
qkv_feats = qkv.feats[fwd_indices]
|
| 93 |
|
| 94 |
if DEBUG:
|
| 95 |
start = 0
|
| 96 |
qkv_coords = qkv.coords[fwd_indices]
|
| 97 |
for i in range(len(seq_lens)):
|
| 98 |
-
seq_coords = qkv_coords[start:start+seq_lens[i]]
|
| 99 |
-
assert (
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
start += seq_lens[i]
|
| 103 |
|
| 104 |
if all([seq_len == window_size for seq_len in seq_lens]):
|
| 105 |
B = len(seq_lens)
|
| 106 |
N = window_size
|
| 107 |
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
| 108 |
-
if ATTN ==
|
| 109 |
-
q, k, v = qkv_feats.unbind(dim=2)
|
| 110 |
-
out = xops.memory_efficient_attention(q, k, v)
|
| 111 |
-
elif ATTN ==
|
| 112 |
-
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats)
|
| 113 |
else:
|
| 114 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 115 |
-
out = out.reshape(B * N, H, C)
|
| 116 |
else:
|
| 117 |
-
if ATTN ==
|
| 118 |
-
q, k, v = qkv_feats.unbind(dim=1)
|
| 119 |
-
q = q.unsqueeze(0)
|
| 120 |
-
k = k.unsqueeze(0)
|
| 121 |
-
v = v.unsqueeze(0)
|
| 122 |
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
| 123 |
-
out = xops.memory_efficient_attention(q, k, v, mask)[0]
|
| 124 |
-
elif ATTN ==
|
| 125 |
-
cu_seqlens =
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
if DEBUG:
|
| 132 |
qkv_coords = qkv_coords[bwd_indices]
|
| 133 |
-
assert torch.equal(
|
|
|
|
|
|
|
| 134 |
|
| 135 |
return qkv.replace(out)
|
|
|
|
| 4 |
from .. import SparseTensor
|
| 5 |
from .. import DEBUG, ATTN
|
| 6 |
|
| 7 |
+
if ATTN == "xformers":
|
| 8 |
import xformers.ops as xops
|
| 9 |
+
elif ATTN == "flash_attn":
|
| 10 |
import flash_attn
|
| 11 |
else:
|
| 12 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 13 |
|
| 14 |
|
| 15 |
__all__ = [
|
| 16 |
+
"sparse_windowed_scaled_dot_product_self_attention",
|
| 17 |
]
|
| 18 |
|
| 19 |
|
| 20 |
def calc_window_partition(
|
| 21 |
tensor: SparseTensor,
|
| 22 |
window_size: Union[int, Tuple[int, ...]],
|
| 23 |
+
shift_window: Union[int, Tuple[int, ...]] = 0,
|
| 24 |
) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]:
|
| 25 |
"""
|
| 26 |
Calculate serialization and partitioning for a set of coordinates.
|
|
|
|
| 37 |
(List[int]): Sequence batch indices.
|
| 38 |
"""
|
| 39 |
DIM = tensor.coords.shape[1] - 1
|
| 40 |
+
shift_window = (
|
| 41 |
+
(shift_window,) * DIM if isinstance(shift_window, int) else shift_window
|
| 42 |
+
)
|
| 43 |
window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size
|
| 44 |
shifted_coords = tensor.coords.clone().detach()
|
| 45 |
+
shifted_coords[:, 1:] += torch.tensor(
|
| 46 |
+
shift_window, device=tensor.device, dtype=torch.int32
|
| 47 |
+
).unsqueeze(0)
|
| 48 |
|
| 49 |
MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist()
|
| 50 |
NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)]
|
| 51 |
OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1]
|
| 52 |
|
| 53 |
+
shifted_coords[:, 1:] //= torch.tensor(
|
| 54 |
+
window_size, device=tensor.device, dtype=torch.int32
|
| 55 |
+
).unsqueeze(0)
|
| 56 |
+
shifted_indices = (
|
| 57 |
+
shifted_coords
|
| 58 |
+
* torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)
|
| 59 |
+
).sum(dim=1)
|
| 60 |
fwd_indices = torch.argsort(shifted_indices)
|
| 61 |
bwd_indices = torch.empty_like(fwd_indices)
|
| 62 |
bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device)
|
| 63 |
seq_lens = torch.bincount(shifted_indices)
|
| 64 |
+
seq_batch_indices = (
|
| 65 |
+
torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32)
|
| 66 |
+
// OFFSET[0]
|
| 67 |
+
)
|
| 68 |
mask = seq_lens != 0
|
| 69 |
seq_lens = seq_lens[mask].tolist()
|
| 70 |
seq_batch_indices = seq_batch_indices[mask].tolist()
|
| 71 |
|
| 72 |
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
| 73 |
+
|
| 74 |
|
| 75 |
def sparse_windowed_scaled_dot_product_self_attention(
|
| 76 |
+
qkv: SparseTensor, window_size: int, shift_window: Tuple[int, int, int] = (0, 0, 0)
|
|
|
|
|
|
|
| 77 |
) -> SparseTensor:
|
| 78 |
"""
|
| 79 |
Apply windowed scaled dot product self attention to a sparse tensor.
|
|
|
|
| 84 |
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
| 85 |
shift (int): The shift to use.
|
| 86 |
"""
|
| 87 |
+
assert (
|
| 88 |
+
len(qkv.shape) == 4 and qkv.shape[1] == 3
|
| 89 |
+
), f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
| 90 |
+
|
| 91 |
+
serialization_spatial_cache_name = f"window_partition_{window_size}_{shift_window}"
|
| 92 |
+
serialization_spatial_cache = qkv.get_spatial_cache(
|
| 93 |
+
serialization_spatial_cache_name
|
| 94 |
+
)
|
| 95 |
if serialization_spatial_cache is None:
|
| 96 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(
|
| 97 |
+
qkv, window_size, shift_window
|
| 98 |
+
)
|
| 99 |
+
qkv.register_spatial_cache(
|
| 100 |
+
serialization_spatial_cache_name,
|
| 101 |
+
(fwd_indices, bwd_indices, seq_lens, seq_batch_indices),
|
| 102 |
+
)
|
| 103 |
else:
|
| 104 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = (
|
| 105 |
+
serialization_spatial_cache
|
| 106 |
+
)
|
| 107 |
|
| 108 |
M = fwd_indices.shape[0]
|
| 109 |
T = qkv.feats.shape[0]
|
| 110 |
H = qkv.feats.shape[2]
|
| 111 |
C = qkv.feats.shape[3]
|
| 112 |
+
|
| 113 |
+
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
|
| 114 |
|
| 115 |
if DEBUG:
|
| 116 |
start = 0
|
| 117 |
qkv_coords = qkv.coords[fwd_indices]
|
| 118 |
for i in range(len(seq_lens)):
|
| 119 |
+
seq_coords = qkv_coords[start : start + seq_lens[i]]
|
| 120 |
+
assert (
|
| 121 |
+
seq_coords[:, 0] == seq_batch_indices[i]
|
| 122 |
+
).all(), (
|
| 123 |
+
f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
|
| 124 |
+
)
|
| 125 |
+
assert (
|
| 126 |
+
seq_coords[:, 1:].max(dim=0).values
|
| 127 |
+
- seq_coords[:, 1:].min(dim=0).values
|
| 128 |
+
< window_size
|
| 129 |
+
).all(), (
|
| 130 |
+
f"SparseWindowedScaledDotProductSelfAttention: window size exceeded"
|
| 131 |
+
)
|
| 132 |
start += seq_lens[i]
|
| 133 |
|
| 134 |
if all([seq_len == window_size for seq_len in seq_lens]):
|
| 135 |
B = len(seq_lens)
|
| 136 |
N = window_size
|
| 137 |
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
| 138 |
+
if ATTN == "xformers":
|
| 139 |
+
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
|
| 140 |
+
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
|
| 141 |
+
elif ATTN == "flash_attn":
|
| 142 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
|
| 143 |
else:
|
| 144 |
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 145 |
+
out = out.reshape(B * N, H, C) # [M, H, C]
|
| 146 |
else:
|
| 147 |
+
if ATTN == "xformers":
|
| 148 |
+
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
|
| 149 |
+
q = q.unsqueeze(0) # [1, M, H, C]
|
| 150 |
+
k = k.unsqueeze(0) # [1, M, H, C]
|
| 151 |
+
v = v.unsqueeze(0) # [1, M, H, C]
|
| 152 |
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
| 153 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
|
| 154 |
+
elif ATTN == "flash_attn":
|
| 155 |
+
cu_seqlens = (
|
| 156 |
+
torch.cat(
|
| 157 |
+
[torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)],
|
| 158 |
+
dim=0,
|
| 159 |
+
)
|
| 160 |
+
.to(qkv.device)
|
| 161 |
+
.int()
|
| 162 |
+
)
|
| 163 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(
|
| 164 |
+
qkv_feats, cu_seqlens, max(seq_lens)
|
| 165 |
+
) # [M, H, C]
|
| 166 |
+
|
| 167 |
+
out = out[bwd_indices] # [T, H, C]
|
| 168 |
|
| 169 |
if DEBUG:
|
| 170 |
qkv_coords = qkv_coords[bwd_indices]
|
| 171 |
+
assert torch.equal(
|
| 172 |
+
qkv_coords, qkv.coords
|
| 173 |
+
), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
|
| 174 |
|
| 175 |
return qkv.replace(out)
|
trellis/modules/sparse/basic.py
CHANGED
|
@@ -2,22 +2,23 @@ from typing import *
|
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
from . import BACKEND, DEBUG
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
__all__ = [
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
]
|
| 15 |
|
| 16 |
|
| 17 |
class SparseTensor:
|
| 18 |
"""
|
| 19 |
Sparse tensor with support for both torchsparse and spconv backends.
|
| 20 |
-
|
| 21 |
Parameters:
|
| 22 |
- feats (torch.Tensor): Features of the sparse tensor.
|
| 23 |
- coords (torch.Tensor): Coordinates of the sparse tensor.
|
|
@@ -29,64 +30,87 @@ class SparseTensor:
|
|
| 29 |
- Data corresponding to a same batch should be contiguous.
|
| 30 |
- Coords should be in [0, 1023]
|
| 31 |
"""
|
|
|
|
| 32 |
@overload
|
| 33 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
@overload
|
| 36 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def __init__(self, *args, **kwargs):
|
| 39 |
# Lazy import of sparse tensor backend
|
| 40 |
global SparseTensorData
|
| 41 |
if SparseTensorData is None:
|
| 42 |
import importlib
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
method_id = 0
|
| 49 |
if len(args) != 0:
|
| 50 |
method_id = 0 if isinstance(args[0], torch.Tensor) else 1
|
| 51 |
else:
|
| 52 |
-
method_id = 1 if
|
| 53 |
|
| 54 |
if method_id == 0:
|
| 55 |
feats, coords, shape, layout = args + (None,) * (4 - len(args))
|
| 56 |
-
if
|
| 57 |
-
feats = kwargs[
|
| 58 |
-
del kwargs[
|
| 59 |
-
if
|
| 60 |
-
coords = kwargs[
|
| 61 |
-
del kwargs[
|
| 62 |
-
if
|
| 63 |
-
shape = kwargs[
|
| 64 |
-
del kwargs[
|
| 65 |
-
if
|
| 66 |
-
layout = kwargs[
|
| 67 |
-
del kwargs[
|
| 68 |
|
| 69 |
if shape is None:
|
| 70 |
shape = self.__cal_shape(feats, coords)
|
| 71 |
if layout is None:
|
| 72 |
layout = self.__cal_layout(coords, shape[0])
|
| 73 |
-
if BACKEND ==
|
| 74 |
self.data = SparseTensorData(feats, coords, **kwargs)
|
| 75 |
-
elif BACKEND ==
|
| 76 |
spatial_shape = list(coords.max(0)[0] + 1)[1:]
|
| 77 |
-
self.data = SparseTensorData(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
self.data._features = feats
|
| 79 |
elif method_id == 1:
|
| 80 |
data, shape, layout = args + (None,) * (3 - len(args))
|
| 81 |
-
if
|
| 82 |
-
data = kwargs[
|
| 83 |
-
del kwargs[
|
| 84 |
-
if
|
| 85 |
-
shape = kwargs[
|
| 86 |
-
del kwargs[
|
| 87 |
-
if
|
| 88 |
-
layout = kwargs[
|
| 89 |
-
del kwargs[
|
| 90 |
|
| 91 |
self.data = data
|
| 92 |
if shape is None:
|
|
@@ -96,73 +120,84 @@ class SparseTensor:
|
|
| 96 |
|
| 97 |
self._shape = shape
|
| 98 |
self._layout = layout
|
| 99 |
-
self._scale = kwargs.get(
|
| 100 |
-
self._spatial_cache = kwargs.get(
|
| 101 |
|
| 102 |
if DEBUG:
|
| 103 |
try:
|
| 104 |
-
assert
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
for i in range(self.shape[0]):
|
| 108 |
-
assert torch.all(
|
|
|
|
|
|
|
| 109 |
except Exception as e:
|
| 110 |
-
print(
|
| 111 |
print(f"- Shape: {self.shape}")
|
| 112 |
print(f"- Layout: {self.layout}")
|
| 113 |
print(f"- Scale: {self._scale}")
|
| 114 |
print(f"- Coords: {self.coords}")
|
| 115 |
raise e
|
| 116 |
-
|
| 117 |
def __cal_shape(self, feats, coords):
|
| 118 |
shape = []
|
| 119 |
shape.append(coords[:, 0].max().item() + 1)
|
| 120 |
shape.extend([*feats.shape[1:]])
|
| 121 |
return torch.Size(shape)
|
| 122 |
-
|
| 123 |
def __cal_layout(self, coords, batch_size):
|
| 124 |
seq_len = torch.bincount(coords[:, 0], minlength=batch_size)
|
| 125 |
-
offset = torch.cumsum(seq_len, dim=0)
|
| 126 |
-
layout = [
|
|
|
|
|
|
|
|
|
|
| 127 |
return layout
|
| 128 |
-
|
| 129 |
@property
|
| 130 |
def shape(self) -> torch.Size:
|
| 131 |
return self._shape
|
| 132 |
-
|
| 133 |
def dim(self) -> int:
|
| 134 |
return len(self.shape)
|
| 135 |
-
|
| 136 |
@property
|
| 137 |
def layout(self) -> List[slice]:
|
| 138 |
return self._layout
|
| 139 |
|
| 140 |
@property
|
| 141 |
def feats(self) -> torch.Tensor:
|
| 142 |
-
if BACKEND ==
|
| 143 |
return self.data.F
|
| 144 |
-
elif BACKEND ==
|
| 145 |
return self.data.features
|
| 146 |
-
|
| 147 |
@feats.setter
|
| 148 |
def feats(self, value: torch.Tensor):
|
| 149 |
-
if BACKEND ==
|
| 150 |
self.data.F = value
|
| 151 |
-
elif BACKEND ==
|
| 152 |
self.data.features = value
|
| 153 |
|
| 154 |
@property
|
| 155 |
def coords(self) -> torch.Tensor:
|
| 156 |
-
if BACKEND ==
|
| 157 |
return self.data.C
|
| 158 |
-
elif BACKEND ==
|
| 159 |
return self.data.indices
|
| 160 |
-
|
| 161 |
@coords.setter
|
| 162 |
def coords(self, value: torch.Tensor):
|
| 163 |
-
if BACKEND ==
|
| 164 |
self.data.C = value
|
| 165 |
-
elif BACKEND ==
|
| 166 |
self.data.indices = value
|
| 167 |
|
| 168 |
@property
|
|
@@ -174,12 +209,16 @@ class SparseTensor:
|
|
| 174 |
return self.feats.device
|
| 175 |
|
| 176 |
@overload
|
| 177 |
-
def to(self, dtype: torch.dtype) ->
|
| 178 |
|
| 179 |
@overload
|
| 180 |
-
def to(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
-
def to(self, *args, **kwargs) ->
|
| 183 |
device = None
|
| 184 |
dtype = None
|
| 185 |
if len(args) == 2:
|
|
@@ -189,13 +228,13 @@ class SparseTensor:
|
|
| 189 |
dtype = args[0]
|
| 190 |
else:
|
| 191 |
device = args[0]
|
| 192 |
-
if
|
| 193 |
assert dtype is None, "to() received multiple values for argument 'dtype'"
|
| 194 |
-
dtype = kwargs[
|
| 195 |
-
if
|
| 196 |
assert device is None, "to() received multiple values for argument 'device'"
|
| 197 |
-
device = kwargs[
|
| 198 |
-
|
| 199 |
new_feats = self.feats.to(device=device, dtype=dtype)
|
| 200 |
new_coords = self.coords.to(device=device)
|
| 201 |
return self.replace(new_feats, new_coords)
|
|
@@ -204,46 +243,48 @@ class SparseTensor:
|
|
| 204 |
new_feats = self.feats.type(dtype)
|
| 205 |
return self.replace(new_feats)
|
| 206 |
|
| 207 |
-
def cpu(self) ->
|
| 208 |
new_feats = self.feats.cpu()
|
| 209 |
new_coords = self.coords.cpu()
|
| 210 |
return self.replace(new_feats, new_coords)
|
| 211 |
-
|
| 212 |
-
def cuda(self) ->
|
| 213 |
new_feats = self.feats.cuda()
|
| 214 |
new_coords = self.coords.cuda()
|
| 215 |
return self.replace(new_feats, new_coords)
|
| 216 |
|
| 217 |
-
def half(self) ->
|
| 218 |
new_feats = self.feats.half()
|
| 219 |
return self.replace(new_feats)
|
| 220 |
-
|
| 221 |
-
def float(self) ->
|
| 222 |
new_feats = self.feats.float()
|
| 223 |
return self.replace(new_feats)
|
| 224 |
-
|
| 225 |
-
def detach(self) ->
|
| 226 |
new_coords = self.coords.detach()
|
| 227 |
new_feats = self.feats.detach()
|
| 228 |
return self.replace(new_feats, new_coords)
|
| 229 |
|
| 230 |
def dense(self) -> torch.Tensor:
|
| 231 |
-
if BACKEND ==
|
| 232 |
return self.data.dense()
|
| 233 |
-
elif BACKEND ==
|
| 234 |
return self.data.dense()
|
| 235 |
|
| 236 |
-
def reshape(self, *shape) ->
|
| 237 |
new_feats = self.feats.reshape(self.feats.shape[0], *shape)
|
| 238 |
return self.replace(new_feats)
|
| 239 |
-
|
| 240 |
-
def unbind(self, dim: int) -> List[
|
| 241 |
return sparse_unbind(self, dim)
|
| 242 |
|
| 243 |
-
def replace(
|
|
|
|
|
|
|
| 244 |
new_shape = [self.shape[0]]
|
| 245 |
new_shape.extend(feats.shape[1:])
|
| 246 |
-
if BACKEND ==
|
| 247 |
new_data = SparseTensorData(
|
| 248 |
feats=feats,
|
| 249 |
coords=self.data.coords if coords is None else coords,
|
|
@@ -251,7 +292,7 @@ class SparseTensor:
|
|
| 251 |
spatial_range=self.data.spatial_range,
|
| 252 |
)
|
| 253 |
new_data._caches = self.data._caches
|
| 254 |
-
elif BACKEND ==
|
| 255 |
new_data = SparseTensorData(
|
| 256 |
self.data.features.reshape(self.data.features.shape[0], -1),
|
| 257 |
self.data.indices,
|
|
@@ -259,7 +300,7 @@ class SparseTensor:
|
|
| 259 |
self.data.batch_size,
|
| 260 |
self.data.grid,
|
| 261 |
self.data.voxel_num,
|
| 262 |
-
self.data.indice_dict
|
| 263 |
)
|
| 264 |
new_data._features = feats
|
| 265 |
new_data.benchmark = self.data.benchmark
|
|
@@ -270,26 +311,39 @@ class SparseTensor:
|
|
| 270 |
new_data.int8_scale = self.data.int8_scale
|
| 271 |
if coords is not None:
|
| 272 |
new_data.indices = coords
|
| 273 |
-
new_tensor = SparseTensor(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
return new_tensor
|
| 275 |
|
| 276 |
@staticmethod
|
| 277 |
-
def full(aabb, dim, value, dtype=torch.float32, device=None) ->
|
| 278 |
N, C = dim
|
| 279 |
x = torch.arange(aabb[0], aabb[3] + 1)
|
| 280 |
y = torch.arange(aabb[1], aabb[4] + 1)
|
| 281 |
z = torch.arange(aabb[2], aabb[5] + 1)
|
| 282 |
-
coords = torch.stack(torch.meshgrid(x, y, z, indexing=
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device)
|
| 288 |
return SparseTensor(feats=feats, coords=coords)
|
| 289 |
|
| 290 |
-
def __merge_sparse_cache(self, other:
|
| 291 |
new_cache = {}
|
| 292 |
-
for k in set(
|
|
|
|
|
|
|
| 293 |
if k in self._spatial_cache:
|
| 294 |
new_cache[k] = self._spatial_cache[k]
|
| 295 |
if k in other._spatial_cache:
|
|
@@ -299,10 +353,12 @@ class SparseTensor:
|
|
| 299 |
new_cache[k].update(other._spatial_cache[k])
|
| 300 |
return new_cache
|
| 301 |
|
| 302 |
-
def __neg__(self) ->
|
| 303 |
return self.replace(-self.feats)
|
| 304 |
-
|
| 305 |
-
def __elemwise__(
|
|
|
|
|
|
|
| 306 |
if isinstance(other, torch.Tensor):
|
| 307 |
try:
|
| 308 |
other = torch.broadcast_to(other, self.shape)
|
|
@@ -317,28 +373,44 @@ class SparseTensor:
|
|
| 317 |
new_tensor._spatial_cache = self.__merge_sparse_cache(other)
|
| 318 |
return new_tensor
|
| 319 |
|
| 320 |
-
def __add__(
|
|
|
|
|
|
|
| 321 |
return self.__elemwise__(other, torch.add)
|
| 322 |
|
| 323 |
-
def __radd__(
|
|
|
|
|
|
|
| 324 |
return self.__elemwise__(other, torch.add)
|
| 325 |
-
|
| 326 |
-
def __sub__(
|
|
|
|
|
|
|
| 327 |
return self.__elemwise__(other, torch.sub)
|
| 328 |
-
|
| 329 |
-
def __rsub__(
|
|
|
|
|
|
|
| 330 |
return self.__elemwise__(other, lambda x, y: torch.sub(y, x))
|
| 331 |
|
| 332 |
-
def __mul__(
|
|
|
|
|
|
|
| 333 |
return self.__elemwise__(other, torch.mul)
|
| 334 |
|
| 335 |
-
def __rmul__(
|
|
|
|
|
|
|
| 336 |
return self.__elemwise__(other, torch.mul)
|
| 337 |
|
| 338 |
-
def __truediv__(
|
|
|
|
|
|
|
| 339 |
return self.__elemwise__(other, torch.div)
|
| 340 |
|
| 341 |
-
def __rtruediv__(
|
|
|
|
|
|
|
| 342 |
return self.__elemwise__(other, lambda x, y: torch.div(y, x))
|
| 343 |
|
| 344 |
def __getitem__(self, idx):
|
|
@@ -348,7 +420,9 @@ class SparseTensor:
|
|
| 348 |
idx = range(*idx.indices(self.shape[0]))
|
| 349 |
elif isinstance(idx, torch.Tensor):
|
| 350 |
if idx.dtype == torch.bool:
|
| 351 |
-
assert idx.shape == (
|
|
|
|
|
|
|
| 352 |
idx = idx.nonzero().squeeze(1)
|
| 353 |
elif idx.dtype in [torch.int32, torch.int64]:
|
| 354 |
assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
|
|
@@ -356,7 +430,7 @@ class SparseTensor:
|
|
| 356 |
raise ValueError(f"Unknown index type: {idx.dtype}")
|
| 357 |
else:
|
| 358 |
raise ValueError(f"Unknown index type: {type(idx)}")
|
| 359 |
-
|
| 360 |
coords = []
|
| 361 |
feats = []
|
| 362 |
for new_idx, old_idx in enumerate(idx):
|
|
@@ -392,7 +466,7 @@ class SparseTensor:
|
|
| 392 |
def sparse_batch_broadcast(input: SparseTensor, other: torch.Tensor) -> torch.Tensor:
|
| 393 |
"""
|
| 394 |
Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
|
| 395 |
-
|
| 396 |
Args:
|
| 397 |
input (torch.Tensor): 1D tensor to broadcast.
|
| 398 |
target (SparseTensor): Sparse tensor to broadcast to.
|
|
@@ -405,10 +479,12 @@ def sparse_batch_broadcast(input: SparseTensor, other: torch.Tensor) -> torch.Te
|
|
| 405 |
return broadcasted
|
| 406 |
|
| 407 |
|
| 408 |
-
def sparse_batch_op(
|
|
|
|
|
|
|
| 409 |
"""
|
| 410 |
Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
|
| 411 |
-
|
| 412 |
Args:
|
| 413 |
input (torch.Tensor): 1D tensor to broadcast.
|
| 414 |
target (SparseTensor): Sparse tensor to broadcast to.
|
|
@@ -420,7 +496,7 @@ def sparse_batch_op(input: SparseTensor, other: torch.Tensor, op: callable = tor
|
|
| 420 |
def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
|
| 421 |
"""
|
| 422 |
Concatenate a list of sparse tensors.
|
| 423 |
-
|
| 424 |
Args:
|
| 425 |
inputs (List[SparseTensor]): List of sparse tensors to concatenate.
|
| 426 |
"""
|
|
@@ -447,7 +523,7 @@ def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
|
|
| 447 |
def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]:
|
| 448 |
"""
|
| 449 |
Unbind a sparse tensor along a dimension.
|
| 450 |
-
|
| 451 |
Args:
|
| 452 |
input (SparseTensor): Sparse tensor to unbind.
|
| 453 |
dim (int): Dimension to unbind.
|
|
|
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
from . import BACKEND, DEBUG
|
| 5 |
+
|
| 6 |
+
SparseTensorData = None # Lazy import
|
| 7 |
|
| 8 |
|
| 9 |
__all__ = [
|
| 10 |
+
"SparseTensor",
|
| 11 |
+
"sparse_batch_broadcast",
|
| 12 |
+
"sparse_batch_op",
|
| 13 |
+
"sparse_cat",
|
| 14 |
+
"sparse_unbind",
|
| 15 |
]
|
| 16 |
|
| 17 |
|
| 18 |
class SparseTensor:
|
| 19 |
"""
|
| 20 |
Sparse tensor with support for both torchsparse and spconv backends.
|
| 21 |
+
|
| 22 |
Parameters:
|
| 23 |
- feats (torch.Tensor): Features of the sparse tensor.
|
| 24 |
- coords (torch.Tensor): Coordinates of the sparse tensor.
|
|
|
|
| 30 |
- Data corresponding to a same batch should be contiguous.
|
| 31 |
- Coords should be in [0, 1023]
|
| 32 |
"""
|
| 33 |
+
|
| 34 |
@overload
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
feats: torch.Tensor,
|
| 38 |
+
coords: torch.Tensor,
|
| 39 |
+
shape: Optional[torch.Size] = None,
|
| 40 |
+
layout: Optional[List[slice]] = None,
|
| 41 |
+
**kwargs,
|
| 42 |
+
): ...
|
| 43 |
|
| 44 |
@overload
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
data,
|
| 48 |
+
shape: Optional[torch.Size] = None,
|
| 49 |
+
layout: Optional[List[slice]] = None,
|
| 50 |
+
**kwargs,
|
| 51 |
+
): ...
|
| 52 |
|
| 53 |
def __init__(self, *args, **kwargs):
|
| 54 |
# Lazy import of sparse tensor backend
|
| 55 |
global SparseTensorData
|
| 56 |
if SparseTensorData is None:
|
| 57 |
import importlib
|
| 58 |
+
|
| 59 |
+
if BACKEND == "torchsparse":
|
| 60 |
+
SparseTensorData = importlib.import_module("torchsparse").SparseTensor
|
| 61 |
+
elif BACKEND == "spconv":
|
| 62 |
+
SparseTensorData = importlib.import_module(
|
| 63 |
+
"spconv.pytorch"
|
| 64 |
+
).SparseConvTensor
|
| 65 |
+
|
| 66 |
method_id = 0
|
| 67 |
if len(args) != 0:
|
| 68 |
method_id = 0 if isinstance(args[0], torch.Tensor) else 1
|
| 69 |
else:
|
| 70 |
+
method_id = 1 if "data" in kwargs else 0
|
| 71 |
|
| 72 |
if method_id == 0:
|
| 73 |
feats, coords, shape, layout = args + (None,) * (4 - len(args))
|
| 74 |
+
if "feats" in kwargs:
|
| 75 |
+
feats = kwargs["feats"]
|
| 76 |
+
del kwargs["feats"]
|
| 77 |
+
if "coords" in kwargs:
|
| 78 |
+
coords = kwargs["coords"]
|
| 79 |
+
del kwargs["coords"]
|
| 80 |
+
if "shape" in kwargs:
|
| 81 |
+
shape = kwargs["shape"]
|
| 82 |
+
del kwargs["shape"]
|
| 83 |
+
if "layout" in kwargs:
|
| 84 |
+
layout = kwargs["layout"]
|
| 85 |
+
del kwargs["layout"]
|
| 86 |
|
| 87 |
if shape is None:
|
| 88 |
shape = self.__cal_shape(feats, coords)
|
| 89 |
if layout is None:
|
| 90 |
layout = self.__cal_layout(coords, shape[0])
|
| 91 |
+
if BACKEND == "torchsparse":
|
| 92 |
self.data = SparseTensorData(feats, coords, **kwargs)
|
| 93 |
+
elif BACKEND == "spconv":
|
| 94 |
spatial_shape = list(coords.max(0)[0] + 1)[1:]
|
| 95 |
+
self.data = SparseTensorData(
|
| 96 |
+
feats.reshape(feats.shape[0], -1),
|
| 97 |
+
coords,
|
| 98 |
+
spatial_shape,
|
| 99 |
+
shape[0],
|
| 100 |
+
**kwargs,
|
| 101 |
+
)
|
| 102 |
self.data._features = feats
|
| 103 |
elif method_id == 1:
|
| 104 |
data, shape, layout = args + (None,) * (3 - len(args))
|
| 105 |
+
if "data" in kwargs:
|
| 106 |
+
data = kwargs["data"]
|
| 107 |
+
del kwargs["data"]
|
| 108 |
+
if "shape" in kwargs:
|
| 109 |
+
shape = kwargs["shape"]
|
| 110 |
+
del kwargs["shape"]
|
| 111 |
+
if "layout" in kwargs:
|
| 112 |
+
layout = kwargs["layout"]
|
| 113 |
+
del kwargs["layout"]
|
| 114 |
|
| 115 |
self.data = data
|
| 116 |
if shape is None:
|
|
|
|
| 120 |
|
| 121 |
self._shape = shape
|
| 122 |
self._layout = layout
|
| 123 |
+
self._scale = kwargs.get("scale", (1, 1, 1))
|
| 124 |
+
self._spatial_cache = kwargs.get("spatial_cache", {})
|
| 125 |
|
| 126 |
if DEBUG:
|
| 127 |
try:
|
| 128 |
+
assert (
|
| 129 |
+
self.feats.shape[0] == self.coords.shape[0]
|
| 130 |
+
), f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}"
|
| 131 |
+
assert self.shape == self.__cal_shape(
|
| 132 |
+
self.feats, self.coords
|
| 133 |
+
), f"Invalid shape: {self.shape}"
|
| 134 |
+
assert self.layout == self.__cal_layout(
|
| 135 |
+
self.coords, self.shape[0]
|
| 136 |
+
), f"Invalid layout: {self.layout}"
|
| 137 |
for i in range(self.shape[0]):
|
| 138 |
+
assert torch.all(
|
| 139 |
+
self.coords[self.layout[i], 0] == i
|
| 140 |
+
), f"The data of batch {i} is not contiguous"
|
| 141 |
except Exception as e:
|
| 142 |
+
print("Debugging information:")
|
| 143 |
print(f"- Shape: {self.shape}")
|
| 144 |
print(f"- Layout: {self.layout}")
|
| 145 |
print(f"- Scale: {self._scale}")
|
| 146 |
print(f"- Coords: {self.coords}")
|
| 147 |
raise e
|
| 148 |
+
|
| 149 |
def __cal_shape(self, feats, coords):
|
| 150 |
shape = []
|
| 151 |
shape.append(coords[:, 0].max().item() + 1)
|
| 152 |
shape.extend([*feats.shape[1:]])
|
| 153 |
return torch.Size(shape)
|
| 154 |
+
|
| 155 |
def __cal_layout(self, coords, batch_size):
|
| 156 |
seq_len = torch.bincount(coords[:, 0], minlength=batch_size)
|
| 157 |
+
offset = torch.cumsum(seq_len, dim=0)
|
| 158 |
+
layout = [
|
| 159 |
+
slice((offset[i] - seq_len[i]).item(), offset[i].item())
|
| 160 |
+
for i in range(batch_size)
|
| 161 |
+
]
|
| 162 |
return layout
|
| 163 |
+
|
| 164 |
@property
|
| 165 |
def shape(self) -> torch.Size:
|
| 166 |
return self._shape
|
| 167 |
+
|
| 168 |
def dim(self) -> int:
|
| 169 |
return len(self.shape)
|
| 170 |
+
|
| 171 |
@property
|
| 172 |
def layout(self) -> List[slice]:
|
| 173 |
return self._layout
|
| 174 |
|
| 175 |
@property
|
| 176 |
def feats(self) -> torch.Tensor:
|
| 177 |
+
if BACKEND == "torchsparse":
|
| 178 |
return self.data.F
|
| 179 |
+
elif BACKEND == "spconv":
|
| 180 |
return self.data.features
|
| 181 |
+
|
| 182 |
@feats.setter
|
| 183 |
def feats(self, value: torch.Tensor):
|
| 184 |
+
if BACKEND == "torchsparse":
|
| 185 |
self.data.F = value
|
| 186 |
+
elif BACKEND == "spconv":
|
| 187 |
self.data.features = value
|
| 188 |
|
| 189 |
@property
|
| 190 |
def coords(self) -> torch.Tensor:
|
| 191 |
+
if BACKEND == "torchsparse":
|
| 192 |
return self.data.C
|
| 193 |
+
elif BACKEND == "spconv":
|
| 194 |
return self.data.indices
|
| 195 |
+
|
| 196 |
@coords.setter
|
| 197 |
def coords(self, value: torch.Tensor):
|
| 198 |
+
if BACKEND == "torchsparse":
|
| 199 |
self.data.C = value
|
| 200 |
+
elif BACKEND == "spconv":
|
| 201 |
self.data.indices = value
|
| 202 |
|
| 203 |
@property
|
|
|
|
| 209 |
return self.feats.device
|
| 210 |
|
| 211 |
@overload
|
| 212 |
+
def to(self, dtype: torch.dtype) -> "SparseTensor": ...
|
| 213 |
|
| 214 |
@overload
|
| 215 |
+
def to(
|
| 216 |
+
self,
|
| 217 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 218 |
+
dtype: Optional[torch.dtype] = None,
|
| 219 |
+
) -> "SparseTensor": ...
|
| 220 |
|
| 221 |
+
def to(self, *args, **kwargs) -> "SparseTensor":
|
| 222 |
device = None
|
| 223 |
dtype = None
|
| 224 |
if len(args) == 2:
|
|
|
|
| 228 |
dtype = args[0]
|
| 229 |
else:
|
| 230 |
device = args[0]
|
| 231 |
+
if "dtype" in kwargs:
|
| 232 |
assert dtype is None, "to() received multiple values for argument 'dtype'"
|
| 233 |
+
dtype = kwargs["dtype"]
|
| 234 |
+
if "device" in kwargs:
|
| 235 |
assert device is None, "to() received multiple values for argument 'device'"
|
| 236 |
+
device = kwargs["device"]
|
| 237 |
+
|
| 238 |
new_feats = self.feats.to(device=device, dtype=dtype)
|
| 239 |
new_coords = self.coords.to(device=device)
|
| 240 |
return self.replace(new_feats, new_coords)
|
|
|
|
| 243 |
new_feats = self.feats.type(dtype)
|
| 244 |
return self.replace(new_feats)
|
| 245 |
|
| 246 |
+
def cpu(self) -> "SparseTensor":
|
| 247 |
new_feats = self.feats.cpu()
|
| 248 |
new_coords = self.coords.cpu()
|
| 249 |
return self.replace(new_feats, new_coords)
|
| 250 |
+
|
| 251 |
+
def cuda(self) -> "SparseTensor":
|
| 252 |
new_feats = self.feats.cuda()
|
| 253 |
new_coords = self.coords.cuda()
|
| 254 |
return self.replace(new_feats, new_coords)
|
| 255 |
|
| 256 |
+
def half(self) -> "SparseTensor":
|
| 257 |
new_feats = self.feats.half()
|
| 258 |
return self.replace(new_feats)
|
| 259 |
+
|
| 260 |
+
def float(self) -> "SparseTensor":
|
| 261 |
new_feats = self.feats.float()
|
| 262 |
return self.replace(new_feats)
|
| 263 |
+
|
| 264 |
+
def detach(self) -> "SparseTensor":
|
| 265 |
new_coords = self.coords.detach()
|
| 266 |
new_feats = self.feats.detach()
|
| 267 |
return self.replace(new_feats, new_coords)
|
| 268 |
|
| 269 |
def dense(self) -> torch.Tensor:
|
| 270 |
+
if BACKEND == "torchsparse":
|
| 271 |
return self.data.dense()
|
| 272 |
+
elif BACKEND == "spconv":
|
| 273 |
return self.data.dense()
|
| 274 |
|
| 275 |
+
def reshape(self, *shape) -> "SparseTensor":
|
| 276 |
new_feats = self.feats.reshape(self.feats.shape[0], *shape)
|
| 277 |
return self.replace(new_feats)
|
| 278 |
+
|
| 279 |
+
def unbind(self, dim: int) -> List["SparseTensor"]:
|
| 280 |
return sparse_unbind(self, dim)
|
| 281 |
|
| 282 |
+
def replace(
|
| 283 |
+
self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None
|
| 284 |
+
) -> "SparseTensor":
|
| 285 |
new_shape = [self.shape[0]]
|
| 286 |
new_shape.extend(feats.shape[1:])
|
| 287 |
+
if BACKEND == "torchsparse":
|
| 288 |
new_data = SparseTensorData(
|
| 289 |
feats=feats,
|
| 290 |
coords=self.data.coords if coords is None else coords,
|
|
|
|
| 292 |
spatial_range=self.data.spatial_range,
|
| 293 |
)
|
| 294 |
new_data._caches = self.data._caches
|
| 295 |
+
elif BACKEND == "spconv":
|
| 296 |
new_data = SparseTensorData(
|
| 297 |
self.data.features.reshape(self.data.features.shape[0], -1),
|
| 298 |
self.data.indices,
|
|
|
|
| 300 |
self.data.batch_size,
|
| 301 |
self.data.grid,
|
| 302 |
self.data.voxel_num,
|
| 303 |
+
self.data.indice_dict,
|
| 304 |
)
|
| 305 |
new_data._features = feats
|
| 306 |
new_data.benchmark = self.data.benchmark
|
|
|
|
| 311 |
new_data.int8_scale = self.data.int8_scale
|
| 312 |
if coords is not None:
|
| 313 |
new_data.indices = coords
|
| 314 |
+
new_tensor = SparseTensor(
|
| 315 |
+
new_data,
|
| 316 |
+
shape=torch.Size(new_shape),
|
| 317 |
+
layout=self.layout,
|
| 318 |
+
scale=self._scale,
|
| 319 |
+
spatial_cache=self._spatial_cache,
|
| 320 |
+
)
|
| 321 |
return new_tensor
|
| 322 |
|
| 323 |
@staticmethod
|
| 324 |
+
def full(aabb, dim, value, dtype=torch.float32, device=None) -> "SparseTensor":
|
| 325 |
N, C = dim
|
| 326 |
x = torch.arange(aabb[0], aabb[3] + 1)
|
| 327 |
y = torch.arange(aabb[1], aabb[4] + 1)
|
| 328 |
z = torch.arange(aabb[2], aabb[5] + 1)
|
| 329 |
+
coords = torch.stack(torch.meshgrid(x, y, z, indexing="ij"), dim=-1).reshape(
|
| 330 |
+
-1, 3
|
| 331 |
+
)
|
| 332 |
+
coords = torch.cat(
|
| 333 |
+
[
|
| 334 |
+
torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1),
|
| 335 |
+
coords.repeat(N, 1),
|
| 336 |
+
],
|
| 337 |
+
dim=1,
|
| 338 |
+
).to(dtype=torch.int32, device=device)
|
| 339 |
feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device)
|
| 340 |
return SparseTensor(feats=feats, coords=coords)
|
| 341 |
|
| 342 |
+
def __merge_sparse_cache(self, other: "SparseTensor") -> dict:
|
| 343 |
new_cache = {}
|
| 344 |
+
for k in set(
|
| 345 |
+
list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())
|
| 346 |
+
):
|
| 347 |
if k in self._spatial_cache:
|
| 348 |
new_cache[k] = self._spatial_cache[k]
|
| 349 |
if k in other._spatial_cache:
|
|
|
|
| 353 |
new_cache[k].update(other._spatial_cache[k])
|
| 354 |
return new_cache
|
| 355 |
|
| 356 |
+
def __neg__(self) -> "SparseTensor":
|
| 357 |
return self.replace(-self.feats)
|
| 358 |
+
|
| 359 |
+
def __elemwise__(
|
| 360 |
+
self, other: Union[torch.Tensor, "SparseTensor"], op: callable
|
| 361 |
+
) -> "SparseTensor":
|
| 362 |
if isinstance(other, torch.Tensor):
|
| 363 |
try:
|
| 364 |
other = torch.broadcast_to(other, self.shape)
|
|
|
|
| 373 |
new_tensor._spatial_cache = self.__merge_sparse_cache(other)
|
| 374 |
return new_tensor
|
| 375 |
|
| 376 |
+
def __add__(
|
| 377 |
+
self, other: Union[torch.Tensor, "SparseTensor", float]
|
| 378 |
+
) -> "SparseTensor":
|
| 379 |
return self.__elemwise__(other, torch.add)
|
| 380 |
|
| 381 |
+
def __radd__(
|
| 382 |
+
self, other: Union[torch.Tensor, "SparseTensor", float]
|
| 383 |
+
) -> "SparseTensor":
|
| 384 |
return self.__elemwise__(other, torch.add)
|
| 385 |
+
|
| 386 |
+
def __sub__(
|
| 387 |
+
self, other: Union[torch.Tensor, "SparseTensor", float]
|
| 388 |
+
) -> "SparseTensor":
|
| 389 |
return self.__elemwise__(other, torch.sub)
|
| 390 |
+
|
| 391 |
+
def __rsub__(
|
| 392 |
+
self, other: Union[torch.Tensor, "SparseTensor", float]
|
| 393 |
+
) -> "SparseTensor":
|
| 394 |
return self.__elemwise__(other, lambda x, y: torch.sub(y, x))
|
| 395 |
|
| 396 |
+
def __mul__(
|
| 397 |
+
self, other: Union[torch.Tensor, "SparseTensor", float]
|
| 398 |
+
) -> "SparseTensor":
|
| 399 |
return self.__elemwise__(other, torch.mul)
|
| 400 |
|
| 401 |
+
def __rmul__(
|
| 402 |
+
self, other: Union[torch.Tensor, "SparseTensor", float]
|
| 403 |
+
) -> "SparseTensor":
|
| 404 |
return self.__elemwise__(other, torch.mul)
|
| 405 |
|
| 406 |
+
def __truediv__(
|
| 407 |
+
self, other: Union[torch.Tensor, "SparseTensor", float]
|
| 408 |
+
) -> "SparseTensor":
|
| 409 |
return self.__elemwise__(other, torch.div)
|
| 410 |
|
| 411 |
+
def __rtruediv__(
|
| 412 |
+
self, other: Union[torch.Tensor, "SparseTensor", float]
|
| 413 |
+
) -> "SparseTensor":
|
| 414 |
return self.__elemwise__(other, lambda x, y: torch.div(y, x))
|
| 415 |
|
| 416 |
def __getitem__(self, idx):
|
|
|
|
| 420 |
idx = range(*idx.indices(self.shape[0]))
|
| 421 |
elif isinstance(idx, torch.Tensor):
|
| 422 |
if idx.dtype == torch.bool:
|
| 423 |
+
assert idx.shape == (
|
| 424 |
+
self.shape[0],
|
| 425 |
+
), f"Invalid index shape: {idx.shape}"
|
| 426 |
idx = idx.nonzero().squeeze(1)
|
| 427 |
elif idx.dtype in [torch.int32, torch.int64]:
|
| 428 |
assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
|
|
|
|
| 430 |
raise ValueError(f"Unknown index type: {idx.dtype}")
|
| 431 |
else:
|
| 432 |
raise ValueError(f"Unknown index type: {type(idx)}")
|
| 433 |
+
|
| 434 |
coords = []
|
| 435 |
feats = []
|
| 436 |
for new_idx, old_idx in enumerate(idx):
|
|
|
|
| 466 |
def sparse_batch_broadcast(input: SparseTensor, other: torch.Tensor) -> torch.Tensor:
|
| 467 |
"""
|
| 468 |
Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
|
| 469 |
+
|
| 470 |
Args:
|
| 471 |
input (torch.Tensor): 1D tensor to broadcast.
|
| 472 |
target (SparseTensor): Sparse tensor to broadcast to.
|
|
|
|
| 479 |
return broadcasted
|
| 480 |
|
| 481 |
|
| 482 |
+
def sparse_batch_op(
|
| 483 |
+
input: SparseTensor, other: torch.Tensor, op: callable = torch.add
|
| 484 |
+
) -> SparseTensor:
|
| 485 |
"""
|
| 486 |
Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
|
| 487 |
+
|
| 488 |
Args:
|
| 489 |
input (torch.Tensor): 1D tensor to broadcast.
|
| 490 |
target (SparseTensor): Sparse tensor to broadcast to.
|
|
|
|
| 496 |
def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
|
| 497 |
"""
|
| 498 |
Concatenate a list of sparse tensors.
|
| 499 |
+
|
| 500 |
Args:
|
| 501 |
inputs (List[SparseTensor]): List of sparse tensors to concatenate.
|
| 502 |
"""
|
|
|
|
| 523 |
def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]:
|
| 524 |
"""
|
| 525 |
Unbind a sparse tensor along a dimension.
|
| 526 |
+
|
| 527 |
Args:
|
| 528 |
input (SparseTensor): Sparse tensor to unbind.
|
| 529 |
dim (int): Dimension to unbind.
|
trellis/modules/sparse/conv/__init__.py
CHANGED
|
@@ -1,21 +1,26 @@
|
|
| 1 |
from .. import BACKEND
|
| 2 |
|
| 3 |
|
| 4 |
-
SPCONV_ALGO =
|
|
|
|
| 5 |
|
| 6 |
def __from_env():
|
| 7 |
import os
|
| 8 |
-
|
| 9 |
global SPCONV_ALGO
|
| 10 |
-
env_spconv_algo = os.environ.get(
|
| 11 |
-
if env_spconv_algo is not None and env_spconv_algo in [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
SPCONV_ALGO = env_spconv_algo
|
| 13 |
print(f"[SPARSE][CONV] spconv algo: {SPCONV_ALGO}")
|
| 14 |
-
|
| 15 |
|
| 16 |
__from_env()
|
| 17 |
|
| 18 |
-
if BACKEND ==
|
| 19 |
from .conv_torchsparse import *
|
| 20 |
-
elif BACKEND ==
|
| 21 |
from .conv_spconv import *
|
|
|
|
| 1 |
from .. import BACKEND
|
| 2 |
|
| 3 |
|
| 4 |
+
SPCONV_ALGO = "auto" # 'auto', 'implicit_gemm', 'native'
|
| 5 |
+
|
| 6 |
|
| 7 |
def __from_env():
|
| 8 |
import os
|
| 9 |
+
|
| 10 |
global SPCONV_ALGO
|
| 11 |
+
env_spconv_algo = os.environ.get("SPCONV_ALGO")
|
| 12 |
+
if env_spconv_algo is not None and env_spconv_algo in [
|
| 13 |
+
"auto",
|
| 14 |
+
"implicit_gemm",
|
| 15 |
+
"native",
|
| 16 |
+
]:
|
| 17 |
SPCONV_ALGO = env_spconv_algo
|
| 18 |
print(f"[SPARSE][CONV] spconv algo: {SPCONV_ALGO}")
|
| 19 |
+
|
| 20 |
|
| 21 |
__from_env()
|
| 22 |
|
| 23 |
+
if BACKEND == "torchsparse":
|
| 24 |
from .conv_torchsparse import *
|
| 25 |
+
elif BACKEND == "spconv":
|
| 26 |
from .conv_spconv import *
|
trellis/modules/sparse/conv/conv_spconv.py
CHANGED
|
@@ -4,21 +4,54 @@ from .. import SparseTensor
|
|
| 4 |
from .. import DEBUG
|
| 5 |
from . import SPCONV_ALGO
|
| 6 |
|
|
|
|
| 7 |
class SparseConv3d(nn.Module):
|
| 8 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
super(SparseConv3d, self).__init__()
|
| 10 |
-
if
|
| 11 |
import spconv.pytorch as spconv
|
| 12 |
algo = None
|
| 13 |
-
if SPCONV_ALGO ==
|
| 14 |
algo = spconv.ConvAlgo.Native
|
| 15 |
-
elif SPCONV_ALGO ==
|
| 16 |
algo = spconv.ConvAlgo.MaskImplicitGemm
|
| 17 |
if stride == 1 and (padding is None):
|
| 18 |
-
self.conv = spconv.SubMConv3d(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
else:
|
| 20 |
-
self.conv = spconv.SparseConv3d(
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
self.padding = padding
|
| 23 |
|
| 24 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
|
@@ -30,42 +63,65 @@ class SparseConv3d(nn.Module):
|
|
| 30 |
if spatial_changed and (x.shape[0] != 1):
|
| 31 |
# spconv was non-1 stride will break the contiguous of the output tensor, sort by the coords
|
| 32 |
fwd = new_data.indices[:, 0].argsort()
|
| 33 |
-
bwd = torch.zeros_like(fwd).scatter_(
|
|
|
|
|
|
|
| 34 |
sorted_feats = new_data.features[fwd]
|
| 35 |
sorted_coords = new_data.indices[fwd]
|
| 36 |
unsorted_data = new_data
|
| 37 |
new_data = spconv.SparseConvTensor(sorted_feats, sorted_coords, unsorted_data.spatial_shape, unsorted_data.batch_size) # type: ignore
|
| 38 |
|
| 39 |
out = SparseTensor(
|
| 40 |
-
new_data,
|
|
|
|
|
|
|
| 41 |
scale=tuple([s * stride for s, stride in zip(x._scale, self.stride)]),
|
| 42 |
spatial_cache=x._spatial_cache,
|
| 43 |
)
|
| 44 |
|
| 45 |
if spatial_changed and (x.shape[0] != 1):
|
| 46 |
-
out.register_spatial_cache(
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
return out
|
| 50 |
|
| 51 |
|
| 52 |
class SparseInverseConv3d(nn.Module):
|
| 53 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
super(SparseInverseConv3d, self).__init__()
|
| 55 |
-
if
|
| 56 |
import spconv.pytorch as spconv
|
| 57 |
-
self.conv = spconv.SparseInverseConv3d(
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 61 |
spatial_changed = any(s != 1 for s in self.stride)
|
| 62 |
if spatial_changed:
|
| 63 |
# recover the original spconv order
|
| 64 |
-
data = x.get_spatial_cache(f
|
| 65 |
-
bwd = x.get_spatial_cache(f
|
| 66 |
data = data.replace_feature(x.feats[bwd])
|
| 67 |
if DEBUG:
|
| 68 |
-
assert torch.equal(
|
|
|
|
|
|
|
| 69 |
else:
|
| 70 |
data = x.data
|
| 71 |
|
|
@@ -73,7 +129,9 @@ class SparseInverseConv3d(nn.Module):
|
|
| 73 |
new_shape = [x.shape[0], self.conv.out_channels]
|
| 74 |
new_layout = None if spatial_changed else x.layout
|
| 75 |
out = SparseTensor(
|
| 76 |
-
new_data,
|
|
|
|
|
|
|
| 77 |
scale=tuple([s // stride for s, stride in zip(x._scale, self.stride)]),
|
| 78 |
spatial_cache=x._spatial_cache,
|
| 79 |
)
|
|
|
|
| 4 |
from .. import DEBUG
|
| 5 |
from . import SPCONV_ALGO
|
| 6 |
|
| 7 |
+
|
| 8 |
class SparseConv3d(nn.Module):
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
in_channels,
|
| 12 |
+
out_channels,
|
| 13 |
+
kernel_size,
|
| 14 |
+
stride=1,
|
| 15 |
+
dilation=1,
|
| 16 |
+
padding=None,
|
| 17 |
+
bias=True,
|
| 18 |
+
indice_key=None,
|
| 19 |
+
):
|
| 20 |
super(SparseConv3d, self).__init__()
|
| 21 |
+
if "spconv" not in globals():
|
| 22 |
import spconv.pytorch as spconv
|
| 23 |
algo = None
|
| 24 |
+
if SPCONV_ALGO == "native":
|
| 25 |
algo = spconv.ConvAlgo.Native
|
| 26 |
+
elif SPCONV_ALGO == "implicit_gemm":
|
| 27 |
algo = spconv.ConvAlgo.MaskImplicitGemm
|
| 28 |
if stride == 1 and (padding is None):
|
| 29 |
+
self.conv = spconv.SubMConv3d(
|
| 30 |
+
in_channels,
|
| 31 |
+
out_channels,
|
| 32 |
+
kernel_size,
|
| 33 |
+
dilation=dilation,
|
| 34 |
+
bias=bias,
|
| 35 |
+
indice_key=indice_key,
|
| 36 |
+
algo=algo,
|
| 37 |
+
)
|
| 38 |
else:
|
| 39 |
+
self.conv = spconv.SparseConv3d(
|
| 40 |
+
in_channels,
|
| 41 |
+
out_channels,
|
| 42 |
+
kernel_size,
|
| 43 |
+
stride=stride,
|
| 44 |
+
dilation=dilation,
|
| 45 |
+
padding=padding,
|
| 46 |
+
bias=bias,
|
| 47 |
+
indice_key=indice_key,
|
| 48 |
+
algo=algo,
|
| 49 |
+
)
|
| 50 |
+
self.stride = (
|
| 51 |
+
tuple(stride)
|
| 52 |
+
if isinstance(stride, (list, tuple))
|
| 53 |
+
else (stride, stride, stride)
|
| 54 |
+
)
|
| 55 |
self.padding = padding
|
| 56 |
|
| 57 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
|
|
|
| 63 |
if spatial_changed and (x.shape[0] != 1):
|
| 64 |
# spconv was non-1 stride will break the contiguous of the output tensor, sort by the coords
|
| 65 |
fwd = new_data.indices[:, 0].argsort()
|
| 66 |
+
bwd = torch.zeros_like(fwd).scatter_(
|
| 67 |
+
0, fwd, torch.arange(fwd.shape[0], device=fwd.device)
|
| 68 |
+
)
|
| 69 |
sorted_feats = new_data.features[fwd]
|
| 70 |
sorted_coords = new_data.indices[fwd]
|
| 71 |
unsorted_data = new_data
|
| 72 |
new_data = spconv.SparseConvTensor(sorted_feats, sorted_coords, unsorted_data.spatial_shape, unsorted_data.batch_size) # type: ignore
|
| 73 |
|
| 74 |
out = SparseTensor(
|
| 75 |
+
new_data,
|
| 76 |
+
shape=torch.Size(new_shape),
|
| 77 |
+
layout=new_layout,
|
| 78 |
scale=tuple([s * stride for s, stride in zip(x._scale, self.stride)]),
|
| 79 |
spatial_cache=x._spatial_cache,
|
| 80 |
)
|
| 81 |
|
| 82 |
if spatial_changed and (x.shape[0] != 1):
|
| 83 |
+
out.register_spatial_cache(
|
| 84 |
+
f"conv_{self.stride}_unsorted_data", unsorted_data
|
| 85 |
+
)
|
| 86 |
+
out.register_spatial_cache(f"conv_{self.stride}_sort_bwd", bwd)
|
| 87 |
+
|
| 88 |
return out
|
| 89 |
|
| 90 |
|
| 91 |
class SparseInverseConv3d(nn.Module):
|
| 92 |
+
def __init__(
|
| 93 |
+
self,
|
| 94 |
+
in_channels,
|
| 95 |
+
out_channels,
|
| 96 |
+
kernel_size,
|
| 97 |
+
stride=1,
|
| 98 |
+
dilation=1,
|
| 99 |
+
bias=True,
|
| 100 |
+
indice_key=None,
|
| 101 |
+
):
|
| 102 |
super(SparseInverseConv3d, self).__init__()
|
| 103 |
+
if "spconv" not in globals():
|
| 104 |
import spconv.pytorch as spconv
|
| 105 |
+
self.conv = spconv.SparseInverseConv3d(
|
| 106 |
+
in_channels, out_channels, kernel_size, bias=bias, indice_key=indice_key
|
| 107 |
+
)
|
| 108 |
+
self.stride = (
|
| 109 |
+
tuple(stride)
|
| 110 |
+
if isinstance(stride, (list, tuple))
|
| 111 |
+
else (stride, stride, stride)
|
| 112 |
+
)
|
| 113 |
|
| 114 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 115 |
spatial_changed = any(s != 1 for s in self.stride)
|
| 116 |
if spatial_changed:
|
| 117 |
# recover the original spconv order
|
| 118 |
+
data = x.get_spatial_cache(f"conv_{self.stride}_unsorted_data")
|
| 119 |
+
bwd = x.get_spatial_cache(f"conv_{self.stride}_sort_bwd")
|
| 120 |
data = data.replace_feature(x.feats[bwd])
|
| 121 |
if DEBUG:
|
| 122 |
+
assert torch.equal(
|
| 123 |
+
data.indices, x.coords[bwd]
|
| 124 |
+
), "Recover the original order failed"
|
| 125 |
else:
|
| 126 |
data = x.data
|
| 127 |
|
|
|
|
| 129 |
new_shape = [x.shape[0], self.conv.out_channels]
|
| 130 |
new_layout = None if spatial_changed else x.layout
|
| 131 |
out = SparseTensor(
|
| 132 |
+
new_data,
|
| 133 |
+
shape=torch.Size(new_shape),
|
| 134 |
+
layout=new_layout,
|
| 135 |
scale=tuple([s // stride for s, stride in zip(x._scale, self.stride)]),
|
| 136 |
spatial_cache=x._spatial_cache,
|
| 137 |
)
|
trellis/modules/sparse/conv/conv_torchsparse.py
CHANGED
|
@@ -4,35 +4,73 @@ from .. import SparseTensor
|
|
| 4 |
|
| 5 |
|
| 6 |
class SparseConv3d(nn.Module):
|
| 7 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
super(SparseConv3d, self).__init__()
|
| 9 |
-
if
|
| 10 |
import torchsparse
|
| 11 |
-
self.conv = torchsparse.nn.Conv3d(
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 14 |
out = self.conv(x.data)
|
| 15 |
new_shape = [x.shape[0], self.conv.out_channels]
|
| 16 |
-
out = SparseTensor(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
out._spatial_cache = x._spatial_cache
|
| 18 |
-
out._scale = tuple(
|
|
|
|
|
|
|
| 19 |
return out
|
| 20 |
|
| 21 |
|
| 22 |
class SparseInverseConv3d(nn.Module):
|
| 23 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
super(SparseInverseConv3d, self).__init__()
|
| 25 |
-
if
|
| 26 |
import torchsparse
|
| 27 |
-
self.conv = torchsparse.nn.Conv3d(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 30 |
-
out = self.conv(x.data)
|
| 31 |
new_shape = [x.shape[0], self.conv.out_channels]
|
| 32 |
-
out = SparseTensor(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
out._spatial_cache = x._spatial_cache
|
| 34 |
-
out._scale = tuple(
|
|
|
|
|
|
|
| 35 |
return out
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
class SparseConv3d(nn.Module):
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
in_channels,
|
| 10 |
+
out_channels,
|
| 11 |
+
kernel_size,
|
| 12 |
+
stride=1,
|
| 13 |
+
dilation=1,
|
| 14 |
+
bias=True,
|
| 15 |
+
indice_key=None,
|
| 16 |
+
):
|
| 17 |
super(SparseConv3d, self).__init__()
|
| 18 |
+
if "torchsparse" not in globals():
|
| 19 |
import torchsparse
|
| 20 |
+
self.conv = torchsparse.nn.Conv3d(
|
| 21 |
+
in_channels, out_channels, kernel_size, stride, 0, dilation, bias
|
| 22 |
+
)
|
| 23 |
|
| 24 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 25 |
out = self.conv(x.data)
|
| 26 |
new_shape = [x.shape[0], self.conv.out_channels]
|
| 27 |
+
out = SparseTensor(
|
| 28 |
+
out,
|
| 29 |
+
shape=torch.Size(new_shape),
|
| 30 |
+
layout=x.layout if all(s == 1 for s in self.conv.stride) else None,
|
| 31 |
+
)
|
| 32 |
out._spatial_cache = x._spatial_cache
|
| 33 |
+
out._scale = tuple(
|
| 34 |
+
[s * stride for s, stride in zip(x._scale, self.conv.stride)]
|
| 35 |
+
)
|
| 36 |
return out
|
| 37 |
|
| 38 |
|
| 39 |
class SparseInverseConv3d(nn.Module):
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
in_channels,
|
| 43 |
+
out_channels,
|
| 44 |
+
kernel_size,
|
| 45 |
+
stride=1,
|
| 46 |
+
dilation=1,
|
| 47 |
+
bias=True,
|
| 48 |
+
indice_key=None,
|
| 49 |
+
):
|
| 50 |
super(SparseInverseConv3d, self).__init__()
|
| 51 |
+
if "torchsparse" not in globals():
|
| 52 |
import torchsparse
|
| 53 |
+
self.conv = torchsparse.nn.Conv3d(
|
| 54 |
+
in_channels,
|
| 55 |
+
out_channels,
|
| 56 |
+
kernel_size,
|
| 57 |
+
stride,
|
| 58 |
+
0,
|
| 59 |
+
dilation,
|
| 60 |
+
bias,
|
| 61 |
+
transposed=True,
|
| 62 |
+
)
|
| 63 |
|
| 64 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 65 |
+
out = self.conv(x.data)
|
| 66 |
new_shape = [x.shape[0], self.conv.out_channels]
|
| 67 |
+
out = SparseTensor(
|
| 68 |
+
out,
|
| 69 |
+
shape=torch.Size(new_shape),
|
| 70 |
+
layout=x.layout if all(s == 1 for s in self.conv.stride) else None,
|
| 71 |
+
)
|
| 72 |
out._spatial_cache = x._spatial_cache
|
| 73 |
+
out._scale = tuple(
|
| 74 |
+
[s // stride for s, stride in zip(x._scale, self.conv.stride)]
|
| 75 |
+
)
|
| 76 |
return out
|
|
|
|
|
|
|
|
|
trellis/modules/sparse/linear.py
CHANGED
|
@@ -2,9 +2,7 @@ import torch
|
|
| 2 |
import torch.nn as nn
|
| 3 |
from . import SparseTensor
|
| 4 |
|
| 5 |
-
__all__ = [
|
| 6 |
-
'SparseLinear'
|
| 7 |
-
]
|
| 8 |
|
| 9 |
|
| 10 |
class SparseLinear(nn.Linear):
|
|
|
|
| 2 |
import torch.nn as nn
|
| 3 |
from . import SparseTensor
|
| 4 |
|
| 5 |
+
__all__ = ["SparseLinear"]
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class SparseLinear(nn.Linear):
|
trellis/modules/sparse/nonlinearity.py
CHANGED
|
@@ -2,18 +2,13 @@ import torch
|
|
| 2 |
import torch.nn as nn
|
| 3 |
from . import SparseTensor
|
| 4 |
|
| 5 |
-
__all__ = [
|
| 6 |
-
'SparseReLU',
|
| 7 |
-
'SparseSiLU',
|
| 8 |
-
'SparseGELU',
|
| 9 |
-
'SparseActivation'
|
| 10 |
-
]
|
| 11 |
|
| 12 |
|
| 13 |
class SparseReLU(nn.ReLU):
|
| 14 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 15 |
return input.replace(super().forward(input.feats))
|
| 16 |
-
|
| 17 |
|
| 18 |
class SparseSiLU(nn.SiLU):
|
| 19 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
|
@@ -32,4 +27,3 @@ class SparseActivation(nn.Module):
|
|
| 32 |
|
| 33 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 34 |
return input.replace(self.activation(input.feats))
|
| 35 |
-
|
|
|
|
| 2 |
import torch.nn as nn
|
| 3 |
from . import SparseTensor
|
| 4 |
|
| 5 |
+
__all__ = ["SparseReLU", "SparseSiLU", "SparseGELU", "SparseActivation"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class SparseReLU(nn.ReLU):
|
| 9 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 10 |
return input.replace(super().forward(input.feats))
|
| 11 |
+
|
| 12 |
|
| 13 |
class SparseSiLU(nn.SiLU):
|
| 14 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
|
|
|
| 27 |
|
| 28 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 29 |
return input.replace(self.activation(input.feats))
|
|
|
trellis/modules/sparse/norm.py
CHANGED
|
@@ -4,10 +4,10 @@ from . import SparseTensor
|
|
| 4 |
from . import DEBUG
|
| 5 |
|
| 6 |
__all__ = [
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
]
|
| 12 |
|
| 13 |
|
|
@@ -19,7 +19,9 @@ class SparseGroupNorm(nn.GroupNorm):
|
|
| 19 |
nfeats = torch.zeros_like(input.feats)
|
| 20 |
for k in range(input.shape[0]):
|
| 21 |
if DEBUG:
|
| 22 |
-
assert (
|
|
|
|
|
|
|
| 23 |
bfeats = input.feats[input.layout[k]]
|
| 24 |
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
|
| 25 |
bfeats = super().forward(bfeats)
|
|
@@ -47,12 +49,15 @@ class SparseGroupNorm32(SparseGroupNorm):
|
|
| 47 |
"""
|
| 48 |
A GroupNorm layer that converts to float32 before the forward pass.
|
| 49 |
"""
|
|
|
|
| 50 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 51 |
return super().forward(x.float()).type(x.dtype)
|
| 52 |
|
|
|
|
| 53 |
class SparseLayerNorm32(SparseLayerNorm):
|
| 54 |
"""
|
| 55 |
A LayerNorm layer that converts to float32 before the forward pass.
|
| 56 |
"""
|
|
|
|
| 57 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 58 |
return super().forward(x.float()).type(x.dtype)
|
|
|
|
| 4 |
from . import DEBUG
|
| 5 |
|
| 6 |
__all__ = [
|
| 7 |
+
"SparseGroupNorm",
|
| 8 |
+
"SparseLayerNorm",
|
| 9 |
+
"SparseGroupNorm32",
|
| 10 |
+
"SparseLayerNorm32",
|
| 11 |
]
|
| 12 |
|
| 13 |
|
|
|
|
| 19 |
nfeats = torch.zeros_like(input.feats)
|
| 20 |
for k in range(input.shape[0]):
|
| 21 |
if DEBUG:
|
| 22 |
+
assert (
|
| 23 |
+
input.coords[input.layout[k], 0] == k
|
| 24 |
+
).all(), f"SparseGroupNorm: batch index mismatch"
|
| 25 |
bfeats = input.feats[input.layout[k]]
|
| 26 |
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
|
| 27 |
bfeats = super().forward(bfeats)
|
|
|
|
| 49 |
"""
|
| 50 |
A GroupNorm layer that converts to float32 before the forward pass.
|
| 51 |
"""
|
| 52 |
+
|
| 53 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 54 |
return super().forward(x.float()).type(x.dtype)
|
| 55 |
|
| 56 |
+
|
| 57 |
class SparseLayerNorm32(SparseLayerNorm):
|
| 58 |
"""
|
| 59 |
A LayerNorm layer that converts to float32 before the forward pass.
|
| 60 |
"""
|
| 61 |
+
|
| 62 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 63 |
return super().forward(x.float()).type(x.dtype)
|
trellis/modules/sparse/spatial.py
CHANGED
|
@@ -3,11 +3,7 @@ import torch
|
|
| 3 |
import torch.nn as nn
|
| 4 |
from . import SparseTensor
|
| 5 |
|
| 6 |
-
__all__ = [
|
| 7 |
-
'SparseDownsample',
|
| 8 |
-
'SparseUpsample',
|
| 9 |
-
'SparseSubdivide'
|
| 10 |
-
]
|
| 11 |
|
| 12 |
|
| 13 |
class SparseDownsample(nn.Module):
|
|
@@ -15,6 +11,7 @@ class SparseDownsample(nn.Module):
|
|
| 15 |
Downsample a sparse tensor by a factor of `factor`.
|
| 16 |
Implemented as average pooling.
|
| 17 |
"""
|
|
|
|
| 18 |
def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
|
| 19 |
super(SparseDownsample, self).__init__()
|
| 20 |
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
|
|
@@ -22,36 +19,47 @@ class SparseDownsample(nn.Module):
|
|
| 22 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 23 |
DIM = input.coords.shape[-1] - 1
|
| 24 |
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
|
| 25 |
-
assert DIM == len(
|
|
|
|
|
|
|
| 26 |
|
| 27 |
coord = list(input.coords.unbind(dim=-1))
|
| 28 |
for i, f in enumerate(factor):
|
| 29 |
-
coord[i+1] = coord[i+1] // f
|
| 30 |
|
| 31 |
-
MAX = [coord[i+1].max().item() + 1 for i in range(DIM)]
|
| 32 |
OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
|
| 33 |
code = sum([c * o for c, o in zip(coord, OFFSET)])
|
| 34 |
code, idx = code.unique(return_inverse=True)
|
| 35 |
|
| 36 |
new_feats = torch.scatter_reduce(
|
| 37 |
-
torch.zeros(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
dim=0,
|
| 39 |
index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
|
| 40 |
src=input.feats,
|
| 41 |
-
reduce=
|
| 42 |
)
|
| 43 |
new_coords = torch.stack(
|
| 44 |
-
[code // OFFSET[0]]
|
| 45 |
-
[(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)],
|
| 46 |
-
dim=-1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
-
out = SparseTensor(new_feats, new_coords, input.shape,)
|
| 49 |
out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
|
| 50 |
out._spatial_cache = input._spatial_cache
|
| 51 |
|
| 52 |
-
out.register_spatial_cache(f
|
| 53 |
-
out.register_spatial_cache(f
|
| 54 |
-
out.register_spatial_cache(f
|
| 55 |
|
| 56 |
return out
|
| 57 |
|
|
@@ -61,6 +69,7 @@ class SparseUpsample(nn.Module):
|
|
| 61 |
Upsample a sparse tensor by a factor of `factor`.
|
| 62 |
Implemented as nearest neighbor interpolation.
|
| 63 |
"""
|
|
|
|
| 64 |
def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
|
| 65 |
super(SparseUpsample, self).__init__()
|
| 66 |
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
|
|
@@ -68,24 +77,30 @@ class SparseUpsample(nn.Module):
|
|
| 68 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 69 |
DIM = input.coords.shape[-1] - 1
|
| 70 |
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
|
| 71 |
-
assert DIM == len(
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
new_coords = input.get_spatial_cache(f
|
| 74 |
-
new_layout = input.get_spatial_cache(f
|
| 75 |
-
idx = input.get_spatial_cache(f
|
| 76 |
if any([x is None for x in [new_coords, new_layout, idx]]):
|
| 77 |
-
raise ValueError(
|
|
|
|
|
|
|
| 78 |
new_feats = input.feats[idx]
|
| 79 |
out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
|
| 80 |
out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
|
| 81 |
out._spatial_cache = input._spatial_cache
|
| 82 |
return out
|
| 83 |
-
|
|
|
|
| 84 |
class SparseSubdivide(nn.Module):
|
| 85 |
"""
|
| 86 |
Upsample a sparse tensor by a factor of `factor`.
|
| 87 |
Implemented as nearest neighbor interpolation.
|
| 88 |
"""
|
|
|
|
| 89 |
def __init__(self):
|
| 90 |
super(SparseSubdivide, self).__init__()
|
| 91 |
|
|
@@ -96,15 +111,20 @@ class SparseSubdivide(nn.Module):
|
|
| 96 |
n_coords = torch.nonzero(n_cube)
|
| 97 |
n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
|
| 98 |
factor = n_coords.shape[0]
|
| 99 |
-
assert factor == 2
|
| 100 |
# print(n_coords.shape)
|
| 101 |
new_coords = input.coords.clone()
|
| 102 |
new_coords[:, 1:] *= 2
|
| 103 |
-
new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
out._scale = input._scale * 2
|
| 108 |
out._spatial_cache = input._spatial_cache
|
| 109 |
return out
|
| 110 |
-
|
|
|
|
| 3 |
import torch.nn as nn
|
| 4 |
from . import SparseTensor
|
| 5 |
|
| 6 |
+
__all__ = ["SparseDownsample", "SparseUpsample", "SparseSubdivide"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
class SparseDownsample(nn.Module):
|
|
|
|
| 11 |
Downsample a sparse tensor by a factor of `factor`.
|
| 12 |
Implemented as average pooling.
|
| 13 |
"""
|
| 14 |
+
|
| 15 |
def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
|
| 16 |
super(SparseDownsample, self).__init__()
|
| 17 |
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
|
|
|
|
| 19 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 20 |
DIM = input.coords.shape[-1] - 1
|
| 21 |
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
|
| 22 |
+
assert DIM == len(
|
| 23 |
+
factor
|
| 24 |
+
), "Input coordinates must have the same dimension as the downsample factor."
|
| 25 |
|
| 26 |
coord = list(input.coords.unbind(dim=-1))
|
| 27 |
for i, f in enumerate(factor):
|
| 28 |
+
coord[i + 1] = coord[i + 1] // f
|
| 29 |
|
| 30 |
+
MAX = [coord[i + 1].max().item() + 1 for i in range(DIM)]
|
| 31 |
OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
|
| 32 |
code = sum([c * o for c, o in zip(coord, OFFSET)])
|
| 33 |
code, idx = code.unique(return_inverse=True)
|
| 34 |
|
| 35 |
new_feats = torch.scatter_reduce(
|
| 36 |
+
torch.zeros(
|
| 37 |
+
code.shape[0],
|
| 38 |
+
input.feats.shape[1],
|
| 39 |
+
device=input.feats.device,
|
| 40 |
+
dtype=input.feats.dtype,
|
| 41 |
+
),
|
| 42 |
dim=0,
|
| 43 |
index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
|
| 44 |
src=input.feats,
|
| 45 |
+
reduce="mean",
|
| 46 |
)
|
| 47 |
new_coords = torch.stack(
|
| 48 |
+
[code // OFFSET[0]]
|
| 49 |
+
+ [(code // OFFSET[i + 1]) % MAX[i] for i in range(DIM)],
|
| 50 |
+
dim=-1,
|
| 51 |
+
)
|
| 52 |
+
out = SparseTensor(
|
| 53 |
+
new_feats,
|
| 54 |
+
new_coords,
|
| 55 |
+
input.shape,
|
| 56 |
)
|
|
|
|
| 57 |
out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
|
| 58 |
out._spatial_cache = input._spatial_cache
|
| 59 |
|
| 60 |
+
out.register_spatial_cache(f"upsample_{factor}_coords", input.coords)
|
| 61 |
+
out.register_spatial_cache(f"upsample_{factor}_layout", input.layout)
|
| 62 |
+
out.register_spatial_cache(f"upsample_{factor}_idx", idx)
|
| 63 |
|
| 64 |
return out
|
| 65 |
|
|
|
|
| 69 |
Upsample a sparse tensor by a factor of `factor`.
|
| 70 |
Implemented as nearest neighbor interpolation.
|
| 71 |
"""
|
| 72 |
+
|
| 73 |
def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
|
| 74 |
super(SparseUpsample, self).__init__()
|
| 75 |
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
|
|
|
|
| 77 |
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 78 |
DIM = input.coords.shape[-1] - 1
|
| 79 |
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
|
| 80 |
+
assert DIM == len(
|
| 81 |
+
factor
|
| 82 |
+
), "Input coordinates must have the same dimension as the upsample factor."
|
| 83 |
|
| 84 |
+
new_coords = input.get_spatial_cache(f"upsample_{factor}_coords")
|
| 85 |
+
new_layout = input.get_spatial_cache(f"upsample_{factor}_layout")
|
| 86 |
+
idx = input.get_spatial_cache(f"upsample_{factor}_idx")
|
| 87 |
if any([x is None for x in [new_coords, new_layout, idx]]):
|
| 88 |
+
raise ValueError(
|
| 89 |
+
"Upsample cache not found. SparseUpsample must be paired with SparseDownsample."
|
| 90 |
+
)
|
| 91 |
new_feats = input.feats[idx]
|
| 92 |
out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
|
| 93 |
out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
|
| 94 |
out._spatial_cache = input._spatial_cache
|
| 95 |
return out
|
| 96 |
+
|
| 97 |
+
|
| 98 |
class SparseSubdivide(nn.Module):
|
| 99 |
"""
|
| 100 |
Upsample a sparse tensor by a factor of `factor`.
|
| 101 |
Implemented as nearest neighbor interpolation.
|
| 102 |
"""
|
| 103 |
+
|
| 104 |
def __init__(self):
|
| 105 |
super(SparseSubdivide, self).__init__()
|
| 106 |
|
|
|
|
| 111 |
n_coords = torch.nonzero(n_cube)
|
| 112 |
n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
|
| 113 |
factor = n_coords.shape[0]
|
| 114 |
+
assert factor == 2**DIM
|
| 115 |
# print(n_coords.shape)
|
| 116 |
new_coords = input.coords.clone()
|
| 117 |
new_coords[:, 1:] *= 2
|
| 118 |
+
new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(
|
| 119 |
+
new_coords.dtype
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
new_feats = input.feats.unsqueeze(1).expand(
|
| 123 |
+
input.feats.shape[0], factor, *input.feats.shape[1:]
|
| 124 |
+
)
|
| 125 |
+
out = SparseTensor(
|
| 126 |
+
new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape
|
| 127 |
+
)
|
| 128 |
out._scale = input._scale * 2
|
| 129 |
out._spatial_cache = input._spatial_cache
|
| 130 |
return out
|
|
|
trellis/modules/sparse/transformer/__init__.py
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
from .blocks import *
|
| 2 |
-
from .modulated import *
|
|
|
|
| 1 |
from .blocks import *
|
| 2 |
+
from .modulated import *
|
trellis/modules/sparse/transformer/blocks.py
CHANGED
|
@@ -25,12 +25,15 @@ class SparseTransformerBlock(nn.Module):
|
|
| 25 |
"""
|
| 26 |
Sparse Transformer block (MSA + FFN).
|
| 27 |
"""
|
|
|
|
| 28 |
def __init__(
|
| 29 |
self,
|
| 30 |
channels: int,
|
| 31 |
num_heads: int,
|
| 32 |
mlp_ratio: float = 4.0,
|
| 33 |
-
attn_mode: Literal[
|
|
|
|
|
|
|
| 34 |
window_size: Optional[int] = None,
|
| 35 |
shift_sequence: Optional[int] = None,
|
| 36 |
shift_window: Optional[Tuple[int, int, int]] = None,
|
|
@@ -73,7 +76,9 @@ class SparseTransformerBlock(nn.Module):
|
|
| 73 |
|
| 74 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 75 |
if self.use_checkpoint:
|
| 76 |
-
return torch.utils.checkpoint.checkpoint(
|
|
|
|
|
|
|
| 77 |
else:
|
| 78 |
return self._forward(x)
|
| 79 |
|
|
@@ -82,13 +87,16 @@ class SparseTransformerCrossBlock(nn.Module):
|
|
| 82 |
"""
|
| 83 |
Sparse Transformer cross-attention block (MSA + MCA + FFN).
|
| 84 |
"""
|
|
|
|
| 85 |
def __init__(
|
| 86 |
self,
|
| 87 |
channels: int,
|
| 88 |
ctx_channels: int,
|
| 89 |
num_heads: int,
|
| 90 |
mlp_ratio: float = 4.0,
|
| 91 |
-
attn_mode: Literal[
|
|
|
|
|
|
|
| 92 |
window_size: Optional[int] = None,
|
| 93 |
shift_sequence: Optional[int] = None,
|
| 94 |
shift_window: Optional[Tuple[int, int, int]] = None,
|
|
@@ -146,6 +154,8 @@ class SparseTransformerCrossBlock(nn.Module):
|
|
| 146 |
|
| 147 |
def forward(self, x: SparseTensor, context: torch.Tensor):
|
| 148 |
if self.use_checkpoint:
|
| 149 |
-
return torch.utils.checkpoint.checkpoint(
|
|
|
|
|
|
|
| 150 |
else:
|
| 151 |
return self._forward(x, context)
|
|
|
|
| 25 |
"""
|
| 26 |
Sparse Transformer block (MSA + FFN).
|
| 27 |
"""
|
| 28 |
+
|
| 29 |
def __init__(
|
| 30 |
self,
|
| 31 |
channels: int,
|
| 32 |
num_heads: int,
|
| 33 |
mlp_ratio: float = 4.0,
|
| 34 |
+
attn_mode: Literal[
|
| 35 |
+
"full", "shift_window", "shift_sequence", "shift_order", "swin"
|
| 36 |
+
] = "full",
|
| 37 |
window_size: Optional[int] = None,
|
| 38 |
shift_sequence: Optional[int] = None,
|
| 39 |
shift_window: Optional[Tuple[int, int, int]] = None,
|
|
|
|
| 76 |
|
| 77 |
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 78 |
if self.use_checkpoint:
|
| 79 |
+
return torch.utils.checkpoint.checkpoint(
|
| 80 |
+
self._forward, x, use_reentrant=False
|
| 81 |
+
)
|
| 82 |
else:
|
| 83 |
return self._forward(x)
|
| 84 |
|
|
|
|
| 87 |
"""
|
| 88 |
Sparse Transformer cross-attention block (MSA + MCA + FFN).
|
| 89 |
"""
|
| 90 |
+
|
| 91 |
def __init__(
|
| 92 |
self,
|
| 93 |
channels: int,
|
| 94 |
ctx_channels: int,
|
| 95 |
num_heads: int,
|
| 96 |
mlp_ratio: float = 4.0,
|
| 97 |
+
attn_mode: Literal[
|
| 98 |
+
"full", "shift_window", "shift_sequence", "shift_order", "swin"
|
| 99 |
+
] = "full",
|
| 100 |
window_size: Optional[int] = None,
|
| 101 |
shift_sequence: Optional[int] = None,
|
| 102 |
shift_window: Optional[Tuple[int, int, int]] = None,
|
|
|
|
| 154 |
|
| 155 |
def forward(self, x: SparseTensor, context: torch.Tensor):
|
| 156 |
if self.use_checkpoint:
|
| 157 |
+
return torch.utils.checkpoint.checkpoint(
|
| 158 |
+
self._forward, x, context, use_reentrant=False
|
| 159 |
+
)
|
| 160 |
else:
|
| 161 |
return self._forward(x, context)
|
trellis/modules/sparse/transformer/modulated.py
CHANGED
|
@@ -11,12 +11,15 @@ class ModulatedSparseTransformerBlock(nn.Module):
|
|
| 11 |
"""
|
| 12 |
Sparse Transformer block (MSA + FFN) with adaptive layer norm conditioning.
|
| 13 |
"""
|
|
|
|
| 14 |
def __init__(
|
| 15 |
self,
|
| 16 |
channels: int,
|
| 17 |
num_heads: int,
|
| 18 |
mlp_ratio: float = 4.0,
|
| 19 |
-
attn_mode: Literal[
|
|
|
|
|
|
|
| 20 |
window_size: Optional[int] = None,
|
| 21 |
shift_sequence: Optional[int] = None,
|
| 22 |
shift_window: Optional[Tuple[int, int, int]] = None,
|
|
@@ -50,15 +53,18 @@ class ModulatedSparseTransformerBlock(nn.Module):
|
|
| 50 |
)
|
| 51 |
if not share_mod:
|
| 52 |
self.adaLN_modulation = nn.Sequential(
|
| 53 |
-
nn.SiLU(),
|
| 54 |
-
nn.Linear(channels, 6 * channels, bias=True)
|
| 55 |
)
|
| 56 |
|
| 57 |
def _forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
|
| 58 |
if self.share_mod:
|
| 59 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(
|
|
|
|
|
|
|
| 60 |
else:
|
| 61 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp =
|
|
|
|
|
|
|
| 62 |
h = x.replace(self.norm1(x.feats))
|
| 63 |
h = h * (1 + scale_msa) + shift_msa
|
| 64 |
h = self.attn(h)
|
|
@@ -73,7 +79,9 @@ class ModulatedSparseTransformerBlock(nn.Module):
|
|
| 73 |
|
| 74 |
def forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
|
| 75 |
if self.use_checkpoint:
|
| 76 |
-
return torch.utils.checkpoint.checkpoint(
|
|
|
|
|
|
|
| 77 |
else:
|
| 78 |
return self._forward(x, mod)
|
| 79 |
|
|
@@ -82,13 +90,16 @@ class ModulatedSparseTransformerCrossBlock(nn.Module):
|
|
| 82 |
"""
|
| 83 |
Sparse Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
|
| 84 |
"""
|
|
|
|
| 85 |
def __init__(
|
| 86 |
self,
|
| 87 |
channels: int,
|
| 88 |
ctx_channels: int,
|
| 89 |
num_heads: int,
|
| 90 |
mlp_ratio: float = 4.0,
|
| 91 |
-
attn_mode: Literal[
|
|
|
|
|
|
|
| 92 |
window_size: Optional[int] = None,
|
| 93 |
shift_sequence: Optional[int] = None,
|
| 94 |
shift_window: Optional[Tuple[int, int, int]] = None,
|
|
@@ -99,7 +110,6 @@ class ModulatedSparseTransformerCrossBlock(nn.Module):
|
|
| 99 |
qk_rms_norm_cross: bool = False,
|
| 100 |
qkv_bias: bool = True,
|
| 101 |
share_mod: bool = False,
|
| 102 |
-
|
| 103 |
):
|
| 104 |
super().__init__()
|
| 105 |
self.use_checkpoint = use_checkpoint
|
|
@@ -135,15 +145,20 @@ class ModulatedSparseTransformerCrossBlock(nn.Module):
|
|
| 135 |
)
|
| 136 |
if not share_mod:
|
| 137 |
self.adaLN_modulation = nn.Sequential(
|
| 138 |
-
nn.SiLU(),
|
| 139 |
-
nn.Linear(channels, 6 * channels, bias=True)
|
| 140 |
)
|
| 141 |
|
| 142 |
-
def _forward(
|
|
|
|
|
|
|
| 143 |
if self.share_mod:
|
| 144 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(
|
|
|
|
|
|
|
| 145 |
else:
|
| 146 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp =
|
|
|
|
|
|
|
| 147 |
h = x.replace(self.norm1(x.feats))
|
| 148 |
h = h * (1 + scale_msa) + shift_msa
|
| 149 |
h = self.self_attn(h)
|
|
@@ -159,8 +174,12 @@ class ModulatedSparseTransformerCrossBlock(nn.Module):
|
|
| 159 |
x = x + h
|
| 160 |
return x
|
| 161 |
|
| 162 |
-
def forward(
|
|
|
|
|
|
|
| 163 |
if self.use_checkpoint:
|
| 164 |
-
return torch.utils.checkpoint.checkpoint(
|
|
|
|
|
|
|
| 165 |
else:
|
| 166 |
return self._forward(x, mod, context)
|
|
|
|
| 11 |
"""
|
| 12 |
Sparse Transformer block (MSA + FFN) with adaptive layer norm conditioning.
|
| 13 |
"""
|
| 14 |
+
|
| 15 |
def __init__(
|
| 16 |
self,
|
| 17 |
channels: int,
|
| 18 |
num_heads: int,
|
| 19 |
mlp_ratio: float = 4.0,
|
| 20 |
+
attn_mode: Literal[
|
| 21 |
+
"full", "shift_window", "shift_sequence", "shift_order", "swin"
|
| 22 |
+
] = "full",
|
| 23 |
window_size: Optional[int] = None,
|
| 24 |
shift_sequence: Optional[int] = None,
|
| 25 |
shift_window: Optional[Tuple[int, int, int]] = None,
|
|
|
|
| 53 |
)
|
| 54 |
if not share_mod:
|
| 55 |
self.adaLN_modulation = nn.Sequential(
|
| 56 |
+
nn.SiLU(), nn.Linear(channels, 6 * channels, bias=True)
|
|
|
|
| 57 |
)
|
| 58 |
|
| 59 |
def _forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
|
| 60 |
if self.share_mod:
|
| 61 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(
|
| 62 |
+
6, dim=1
|
| 63 |
+
)
|
| 64 |
else:
|
| 65 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 66 |
+
self.adaLN_modulation(mod).chunk(6, dim=1)
|
| 67 |
+
)
|
| 68 |
h = x.replace(self.norm1(x.feats))
|
| 69 |
h = h * (1 + scale_msa) + shift_msa
|
| 70 |
h = self.attn(h)
|
|
|
|
| 79 |
|
| 80 |
def forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
|
| 81 |
if self.use_checkpoint:
|
| 82 |
+
return torch.utils.checkpoint.checkpoint(
|
| 83 |
+
self._forward, x, mod, use_reentrant=False
|
| 84 |
+
)
|
| 85 |
else:
|
| 86 |
return self._forward(x, mod)
|
| 87 |
|
|
|
|
| 90 |
"""
|
| 91 |
Sparse Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
|
| 92 |
"""
|
| 93 |
+
|
| 94 |
def __init__(
|
| 95 |
self,
|
| 96 |
channels: int,
|
| 97 |
ctx_channels: int,
|
| 98 |
num_heads: int,
|
| 99 |
mlp_ratio: float = 4.0,
|
| 100 |
+
attn_mode: Literal[
|
| 101 |
+
"full", "shift_window", "shift_sequence", "shift_order", "swin"
|
| 102 |
+
] = "full",
|
| 103 |
window_size: Optional[int] = None,
|
| 104 |
shift_sequence: Optional[int] = None,
|
| 105 |
shift_window: Optional[Tuple[int, int, int]] = None,
|
|
|
|
| 110 |
qk_rms_norm_cross: bool = False,
|
| 111 |
qkv_bias: bool = True,
|
| 112 |
share_mod: bool = False,
|
|
|
|
| 113 |
):
|
| 114 |
super().__init__()
|
| 115 |
self.use_checkpoint = use_checkpoint
|
|
|
|
| 145 |
)
|
| 146 |
if not share_mod:
|
| 147 |
self.adaLN_modulation = nn.Sequential(
|
| 148 |
+
nn.SiLU(), nn.Linear(channels, 6 * channels, bias=True)
|
|
|
|
| 149 |
)
|
| 150 |
|
| 151 |
+
def _forward(
|
| 152 |
+
self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor
|
| 153 |
+
) -> SparseTensor:
|
| 154 |
if self.share_mod:
|
| 155 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(
|
| 156 |
+
6, dim=1
|
| 157 |
+
)
|
| 158 |
else:
|
| 159 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 160 |
+
self.adaLN_modulation(mod).chunk(6, dim=1)
|
| 161 |
+
)
|
| 162 |
h = x.replace(self.norm1(x.feats))
|
| 163 |
h = h * (1 + scale_msa) + shift_msa
|
| 164 |
h = self.self_attn(h)
|
|
|
|
| 174 |
x = x + h
|
| 175 |
return x
|
| 176 |
|
| 177 |
+
def forward(
|
| 178 |
+
self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor
|
| 179 |
+
) -> SparseTensor:
|
| 180 |
if self.use_checkpoint:
|
| 181 |
+
return torch.utils.checkpoint.checkpoint(
|
| 182 |
+
self._forward, x, mod, context, use_reentrant=False
|
| 183 |
+
)
|
| 184 |
else:
|
| 185 |
return self._forward(x, mod, context)
|
trellis/modules/spatial.py
CHANGED
|
@@ -9,7 +9,7 @@ def pixel_shuffle_3d(x: torch.Tensor, scale_factor: int) -> torch.Tensor:
|
|
| 9 |
C_ = C // scale_factor**3
|
| 10 |
x = x.reshape(B, C_, scale_factor, scale_factor, scale_factor, H, W, D)
|
| 11 |
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4)
|
| 12 |
-
x = x.reshape(B, C_, H*scale_factor, W*scale_factor, D*scale_factor)
|
| 13 |
return x
|
| 14 |
|
| 15 |
|
|
@@ -23,11 +23,18 @@ def patchify(x: torch.Tensor, patch_size: int):
|
|
| 23 |
"""
|
| 24 |
DIM = x.dim() - 2
|
| 25 |
for d in range(2, DIM + 2):
|
| 26 |
-
assert
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
x = x.reshape(
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
return x
|
| 32 |
|
| 33 |
|
|
@@ -40,9 +47,18 @@ def unpatchify(x: torch.Tensor, patch_size: int):
|
|
| 40 |
patch_size (int): Patch size
|
| 41 |
"""
|
| 42 |
DIM = x.dim() - 2
|
| 43 |
-
assert
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
x = x.reshape(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
x = x.permute(0, 1, *(sum([[2 + DIM + i, 2 + i] for i in range(DIM)], [])))
|
| 47 |
-
x = x.reshape(
|
|
|
|
|
|
|
| 48 |
return x
|
|
|
|
| 9 |
C_ = C // scale_factor**3
|
| 10 |
x = x.reshape(B, C_, scale_factor, scale_factor, scale_factor, H, W, D)
|
| 11 |
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4)
|
| 12 |
+
x = x.reshape(B, C_, H * scale_factor, W * scale_factor, D * scale_factor)
|
| 13 |
return x
|
| 14 |
|
| 15 |
|
|
|
|
| 23 |
"""
|
| 24 |
DIM = x.dim() - 2
|
| 25 |
for d in range(2, DIM + 2):
|
| 26 |
+
assert (
|
| 27 |
+
x.shape[d] % patch_size == 0
|
| 28 |
+
), f"Dimension {d} of input tensor must be divisible by patch size, got {x.shape[d]} and {patch_size}"
|
| 29 |
|
| 30 |
+
x = x.reshape(
|
| 31 |
+
*x.shape[:2],
|
| 32 |
+
*sum([[x.shape[d] // patch_size, patch_size] for d in range(2, DIM + 2)], []),
|
| 33 |
+
)
|
| 34 |
+
x = x.permute(
|
| 35 |
+
0, 1, *([2 * i + 3 for i in range(DIM)] + [2 * i + 2 for i in range(DIM)])
|
| 36 |
+
)
|
| 37 |
+
x = x.reshape(x.shape[0], x.shape[1] * (patch_size**DIM), *(x.shape[-DIM:]))
|
| 38 |
return x
|
| 39 |
|
| 40 |
|
|
|
|
| 47 |
patch_size (int): Patch size
|
| 48 |
"""
|
| 49 |
DIM = x.dim() - 2
|
| 50 |
+
assert (
|
| 51 |
+
x.shape[1] % (patch_size**DIM) == 0
|
| 52 |
+
), f"Second dimension of input tensor must be divisible by patch size to unpatchify, got {x.shape[1]} and {patch_size ** DIM}"
|
| 53 |
|
| 54 |
+
x = x.reshape(
|
| 55 |
+
x.shape[0],
|
| 56 |
+
x.shape[1] // (patch_size**DIM),
|
| 57 |
+
*([patch_size] * DIM),
|
| 58 |
+
*(x.shape[-DIM:]),
|
| 59 |
+
)
|
| 60 |
x = x.permute(0, 1, *(sum([[2 + DIM + i, 2 + i] for i in range(DIM)], [])))
|
| 61 |
+
x = x.reshape(
|
| 62 |
+
x.shape[0], x.shape[1], *[x.shape[2 + 2 * i] * patch_size for i in range(DIM)]
|
| 63 |
+
)
|
| 64 |
return x
|
trellis/modules/transformer/__init__.py
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
from .blocks import *
|
| 2 |
-
from .modulated import *
|
|
|
|
| 1 |
from .blocks import *
|
| 2 |
+
from .modulated import *
|
trellis/modules/transformer/blocks.py
CHANGED
|
@@ -9,14 +9,15 @@ class AbsolutePositionEmbedder(nn.Module):
|
|
| 9 |
"""
|
| 10 |
Embeds spatial positions into vector representations.
|
| 11 |
"""
|
|
|
|
| 12 |
def __init__(self, channels: int, in_channels: int = 3):
|
| 13 |
super().__init__()
|
| 14 |
self.channels = channels
|
| 15 |
self.in_channels = in_channels
|
| 16 |
self.freq_dim = channels // in_channels // 2
|
| 17 |
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
| 18 |
-
self.freqs = 1.0 / (10000
|
| 19 |
-
|
| 20 |
def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor:
|
| 21 |
"""
|
| 22 |
Create sinusoidal position embeddings.
|
|
@@ -38,11 +39,19 @@ class AbsolutePositionEmbedder(nn.Module):
|
|
| 38 |
x (torch.Tensor): (N, D) tensor of spatial positions
|
| 39 |
"""
|
| 40 |
N, D = x.shape
|
| 41 |
-
assert
|
|
|
|
|
|
|
| 42 |
embed = self._sin_cos_embedding(x.reshape(-1))
|
| 43 |
embed = embed.reshape(N, -1)
|
| 44 |
if embed.shape[1] < self.channels:
|
| 45 |
-
embed = torch.cat(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
return embed
|
| 47 |
|
| 48 |
|
|
@@ -63,6 +72,7 @@ class TransformerBlock(nn.Module):
|
|
| 63 |
"""
|
| 64 |
Transformer block (MSA + FFN).
|
| 65 |
"""
|
|
|
|
| 66 |
def __init__(
|
| 67 |
self,
|
| 68 |
channels: int,
|
|
@@ -107,7 +117,9 @@ class TransformerBlock(nn.Module):
|
|
| 107 |
|
| 108 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 109 |
if self.use_checkpoint:
|
| 110 |
-
return torch.utils.checkpoint.checkpoint(
|
|
|
|
|
|
|
| 111 |
else:
|
| 112 |
return self._forward(x)
|
| 113 |
|
|
@@ -116,6 +128,7 @@ class TransformerCrossBlock(nn.Module):
|
|
| 116 |
"""
|
| 117 |
Transformer cross-attention block (MSA + MCA + FFN).
|
| 118 |
"""
|
|
|
|
| 119 |
def __init__(
|
| 120 |
self,
|
| 121 |
channels: int,
|
|
@@ -176,7 +189,8 @@ class TransformerCrossBlock(nn.Module):
|
|
| 176 |
|
| 177 |
def forward(self, x: torch.Tensor, context: torch.Tensor):
|
| 178 |
if self.use_checkpoint:
|
| 179 |
-
return torch.utils.checkpoint.checkpoint(
|
|
|
|
|
|
|
| 180 |
else:
|
| 181 |
return self._forward(x, context)
|
| 182 |
-
|
|
|
|
| 9 |
"""
|
| 10 |
Embeds spatial positions into vector representations.
|
| 11 |
"""
|
| 12 |
+
|
| 13 |
def __init__(self, channels: int, in_channels: int = 3):
|
| 14 |
super().__init__()
|
| 15 |
self.channels = channels
|
| 16 |
self.in_channels = in_channels
|
| 17 |
self.freq_dim = channels // in_channels // 2
|
| 18 |
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
| 19 |
+
self.freqs = 1.0 / (10000**self.freqs)
|
| 20 |
+
|
| 21 |
def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor:
|
| 22 |
"""
|
| 23 |
Create sinusoidal position embeddings.
|
|
|
|
| 39 |
x (torch.Tensor): (N, D) tensor of spatial positions
|
| 40 |
"""
|
| 41 |
N, D = x.shape
|
| 42 |
+
assert (
|
| 43 |
+
D == self.in_channels
|
| 44 |
+
), "Input dimension must match number of input channels"
|
| 45 |
embed = self._sin_cos_embedding(x.reshape(-1))
|
| 46 |
embed = embed.reshape(N, -1)
|
| 47 |
if embed.shape[1] < self.channels:
|
| 48 |
+
embed = torch.cat(
|
| 49 |
+
[
|
| 50 |
+
embed,
|
| 51 |
+
torch.zeros(N, self.channels - embed.shape[1], device=embed.device),
|
| 52 |
+
],
|
| 53 |
+
dim=-1,
|
| 54 |
+
)
|
| 55 |
return embed
|
| 56 |
|
| 57 |
|
|
|
|
| 72 |
"""
|
| 73 |
Transformer block (MSA + FFN).
|
| 74 |
"""
|
| 75 |
+
|
| 76 |
def __init__(
|
| 77 |
self,
|
| 78 |
channels: int,
|
|
|
|
| 117 |
|
| 118 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 119 |
if self.use_checkpoint:
|
| 120 |
+
return torch.utils.checkpoint.checkpoint(
|
| 121 |
+
self._forward, x, use_reentrant=False
|
| 122 |
+
)
|
| 123 |
else:
|
| 124 |
return self._forward(x)
|
| 125 |
|
|
|
|
| 128 |
"""
|
| 129 |
Transformer cross-attention block (MSA + MCA + FFN).
|
| 130 |
"""
|
| 131 |
+
|
| 132 |
def __init__(
|
| 133 |
self,
|
| 134 |
channels: int,
|
|
|
|
| 189 |
|
| 190 |
def forward(self, x: torch.Tensor, context: torch.Tensor):
|
| 191 |
if self.use_checkpoint:
|
| 192 |
+
return torch.utils.checkpoint.checkpoint(
|
| 193 |
+
self._forward, x, context, use_reentrant=False
|
| 194 |
+
)
|
| 195 |
else:
|
| 196 |
return self._forward(x, context)
|
|
|
trellis/modules/transformer/modulated.py
CHANGED
|
@@ -10,6 +10,7 @@ class ModulatedTransformerBlock(nn.Module):
|
|
| 10 |
"""
|
| 11 |
Transformer block (MSA + FFN) with adaptive layer norm conditioning.
|
| 12 |
"""
|
|
|
|
| 13 |
def __init__(
|
| 14 |
self,
|
| 15 |
channels: int,
|
|
@@ -45,15 +46,18 @@ class ModulatedTransformerBlock(nn.Module):
|
|
| 45 |
)
|
| 46 |
if not share_mod:
|
| 47 |
self.adaLN_modulation = nn.Sequential(
|
| 48 |
-
nn.SiLU(),
|
| 49 |
-
nn.Linear(channels, 6 * channels, bias=True)
|
| 50 |
)
|
| 51 |
|
| 52 |
def _forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
|
| 53 |
if self.share_mod:
|
| 54 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(
|
|
|
|
|
|
|
| 55 |
else:
|
| 56 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp =
|
|
|
|
|
|
|
| 57 |
h = self.norm1(x)
|
| 58 |
h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
|
| 59 |
h = self.attn(h)
|
|
@@ -68,7 +72,9 @@ class ModulatedTransformerBlock(nn.Module):
|
|
| 68 |
|
| 69 |
def forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
|
| 70 |
if self.use_checkpoint:
|
| 71 |
-
return torch.utils.checkpoint.checkpoint(
|
|
|
|
|
|
|
| 72 |
else:
|
| 73 |
return self._forward(x, mod)
|
| 74 |
|
|
@@ -77,6 +83,7 @@ class ModulatedTransformerCrossBlock(nn.Module):
|
|
| 77 |
"""
|
| 78 |
Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
|
| 79 |
"""
|
|
|
|
| 80 |
def __init__(
|
| 81 |
self,
|
| 82 |
channels: int,
|
|
@@ -125,15 +132,18 @@ class ModulatedTransformerCrossBlock(nn.Module):
|
|
| 125 |
)
|
| 126 |
if not share_mod:
|
| 127 |
self.adaLN_modulation = nn.Sequential(
|
| 128 |
-
nn.SiLU(),
|
| 129 |
-
nn.Linear(channels, 6 * channels, bias=True)
|
| 130 |
)
|
| 131 |
|
| 132 |
def _forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
|
| 133 |
if self.share_mod:
|
| 134 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(
|
|
|
|
|
|
|
| 135 |
else:
|
| 136 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp =
|
|
|
|
|
|
|
| 137 |
h = self.norm1(x)
|
| 138 |
h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
|
| 139 |
h = self.self_attn(h)
|
|
@@ -151,7 +161,8 @@ class ModulatedTransformerCrossBlock(nn.Module):
|
|
| 151 |
|
| 152 |
def forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
|
| 153 |
if self.use_checkpoint:
|
| 154 |
-
return torch.utils.checkpoint.checkpoint(
|
|
|
|
|
|
|
| 155 |
else:
|
| 156 |
return self._forward(x, mod, context)
|
| 157 |
-
|
|
|
|
| 10 |
"""
|
| 11 |
Transformer block (MSA + FFN) with adaptive layer norm conditioning.
|
| 12 |
"""
|
| 13 |
+
|
| 14 |
def __init__(
|
| 15 |
self,
|
| 16 |
channels: int,
|
|
|
|
| 46 |
)
|
| 47 |
if not share_mod:
|
| 48 |
self.adaLN_modulation = nn.Sequential(
|
| 49 |
+
nn.SiLU(), nn.Linear(channels, 6 * channels, bias=True)
|
|
|
|
| 50 |
)
|
| 51 |
|
| 52 |
def _forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
|
| 53 |
if self.share_mod:
|
| 54 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(
|
| 55 |
+
6, dim=1
|
| 56 |
+
)
|
| 57 |
else:
|
| 58 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 59 |
+
self.adaLN_modulation(mod).chunk(6, dim=1)
|
| 60 |
+
)
|
| 61 |
h = self.norm1(x)
|
| 62 |
h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
|
| 63 |
h = self.attn(h)
|
|
|
|
| 72 |
|
| 73 |
def forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
|
| 74 |
if self.use_checkpoint:
|
| 75 |
+
return torch.utils.checkpoint.checkpoint(
|
| 76 |
+
self._forward, x, mod, use_reentrant=False
|
| 77 |
+
)
|
| 78 |
else:
|
| 79 |
return self._forward(x, mod)
|
| 80 |
|
|
|
|
| 83 |
"""
|
| 84 |
Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
|
| 85 |
"""
|
| 86 |
+
|
| 87 |
def __init__(
|
| 88 |
self,
|
| 89 |
channels: int,
|
|
|
|
| 132 |
)
|
| 133 |
if not share_mod:
|
| 134 |
self.adaLN_modulation = nn.Sequential(
|
| 135 |
+
nn.SiLU(), nn.Linear(channels, 6 * channels, bias=True)
|
|
|
|
| 136 |
)
|
| 137 |
|
| 138 |
def _forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
|
| 139 |
if self.share_mod:
|
| 140 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(
|
| 141 |
+
6, dim=1
|
| 142 |
+
)
|
| 143 |
else:
|
| 144 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 145 |
+
self.adaLN_modulation(mod).chunk(6, dim=1)
|
| 146 |
+
)
|
| 147 |
h = self.norm1(x)
|
| 148 |
h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
|
| 149 |
h = self.self_attn(h)
|
|
|
|
| 161 |
|
| 162 |
def forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
|
| 163 |
if self.use_checkpoint:
|
| 164 |
+
return torch.utils.checkpoint.checkpoint(
|
| 165 |
+
self._forward, x, mod, context, use_reentrant=False
|
| 166 |
+
)
|
| 167 |
else:
|
| 168 |
return self._forward(x, mod, context)
|
|
|
trellis/modules/utils.py
CHANGED
|
@@ -14,6 +14,7 @@ FP16_MODULES = (
|
|
| 14 |
sp.SparseLinear,
|
| 15 |
)
|
| 16 |
|
|
|
|
| 17 |
def convert_module_to_f16(l):
|
| 18 |
"""
|
| 19 |
Convert primitive modules to float16.
|
|
|
|
| 14 |
sp.SparseLinear,
|
| 15 |
)
|
| 16 |
|
| 17 |
+
|
| 18 |
def convert_module_to_f16(l):
|
| 19 |
"""
|
| 20 |
Convert primitive modules to float16.
|
trellis/pipelines/__init__.py
CHANGED
|
@@ -11,14 +11,16 @@ def from_pretrained(path: str):
|
|
| 11 |
"""
|
| 12 |
import os
|
| 13 |
import json
|
|
|
|
| 14 |
is_local = os.path.exists(f"{path}/pipeline.json")
|
| 15 |
|
| 16 |
if is_local:
|
| 17 |
config_file = f"{path}/pipeline.json"
|
| 18 |
else:
|
| 19 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 20 |
config_file = hf_hub_download(path, "pipeline.json")
|
| 21 |
|
| 22 |
-
with open(config_file,
|
| 23 |
config = json.load(f)
|
| 24 |
-
return globals()[config[
|
|
|
|
| 11 |
"""
|
| 12 |
import os
|
| 13 |
import json
|
| 14 |
+
|
| 15 |
is_local = os.path.exists(f"{path}/pipeline.json")
|
| 16 |
|
| 17 |
if is_local:
|
| 18 |
config_file = f"{path}/pipeline.json"
|
| 19 |
else:
|
| 20 |
from huggingface_hub import hf_hub_download
|
| 21 |
+
|
| 22 |
config_file = hf_hub_download(path, "pipeline.json")
|
| 23 |
|
| 24 |
+
with open(config_file, "r") as f:
|
| 25 |
config = json.load(f)
|
| 26 |
+
return globals()[config["name"]].from_pretrained(path)
|
trellis/pipelines/base.py
CHANGED
|
@@ -8,6 +8,7 @@ class Pipeline:
|
|
| 8 |
"""
|
| 9 |
A base class for pipelines.
|
| 10 |
"""
|
|
|
|
| 11 |
def __init__(
|
| 12 |
self,
|
| 13 |
models: dict[str, nn.Module] = None,
|
|
@@ -25,20 +26,21 @@ class Pipeline:
|
|
| 25 |
"""
|
| 26 |
import os
|
| 27 |
import json
|
|
|
|
| 28 |
is_local = os.path.exists(f"{path}/pipeline.json")
|
| 29 |
|
| 30 |
if is_local:
|
| 31 |
config_file = f"{path}/pipeline.json"
|
| 32 |
else:
|
| 33 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 34 |
config_file = hf_hub_download(path, "pipeline.json")
|
| 35 |
|
| 36 |
-
with open(config_file,
|
| 37 |
-
args = json.load(f)[
|
| 38 |
|
| 39 |
_models = {
|
| 40 |
-
k: models.from_pretrained(f"{path}/{v}")
|
| 41 |
-
for k, v in args['models'].items()
|
| 42 |
}
|
| 43 |
|
| 44 |
new_pipeline = Pipeline(_models)
|
|
@@ -48,10 +50,10 @@ class Pipeline:
|
|
| 48 |
@property
|
| 49 |
def device(self) -> torch.device:
|
| 50 |
for model in self.models.values():
|
| 51 |
-
if hasattr(model,
|
| 52 |
return model.device
|
| 53 |
for model in self.models.values():
|
| 54 |
-
if hasattr(model,
|
| 55 |
return next(model.parameters()).device
|
| 56 |
raise RuntimeError("No device found.")
|
| 57 |
|
|
|
|
| 8 |
"""
|
| 9 |
A base class for pipelines.
|
| 10 |
"""
|
| 11 |
+
|
| 12 |
def __init__(
|
| 13 |
self,
|
| 14 |
models: dict[str, nn.Module] = None,
|
|
|
|
| 26 |
"""
|
| 27 |
import os
|
| 28 |
import json
|
| 29 |
+
|
| 30 |
is_local = os.path.exists(f"{path}/pipeline.json")
|
| 31 |
|
| 32 |
if is_local:
|
| 33 |
config_file = f"{path}/pipeline.json"
|
| 34 |
else:
|
| 35 |
from huggingface_hub import hf_hub_download
|
| 36 |
+
|
| 37 |
config_file = hf_hub_download(path, "pipeline.json")
|
| 38 |
|
| 39 |
+
with open(config_file, "r") as f:
|
| 40 |
+
args = json.load(f)["args"]
|
| 41 |
|
| 42 |
_models = {
|
| 43 |
+
k: models.from_pretrained(f"{path}/{v}") for k, v in args["models"].items()
|
|
|
|
| 44 |
}
|
| 45 |
|
| 46 |
new_pipeline = Pipeline(_models)
|
|
|
|
| 50 |
@property
|
| 51 |
def device(self) -> torch.device:
|
| 52 |
for model in self.models.values():
|
| 53 |
+
if hasattr(model, "device"):
|
| 54 |
return model.device
|
| 55 |
for model in self.models.values():
|
| 56 |
+
if hasattr(model, "parameters"):
|
| 57 |
return next(model.parameters()).device
|
| 58 |
raise RuntimeError("No device found.")
|
| 59 |
|
trellis/pipelines/samplers/__init__.py
CHANGED
|
@@ -1,2 +1,6 @@
|
|
| 1 |
from .base import Sampler
|
| 2 |
-
from .flow_euler import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from .base import Sampler
|
| 2 |
+
from .flow_euler import (
|
| 3 |
+
FlowEulerSampler,
|
| 4 |
+
FlowEulerCfgSampler,
|
| 5 |
+
FlowEulerGuidanceIntervalSampler,
|
| 6 |
+
)
|
trellis/pipelines/samplers/base.py
CHANGED
|
@@ -8,13 +8,8 @@ class Sampler(ABC):
|
|
| 8 |
"""
|
| 9 |
|
| 10 |
@abstractmethod
|
| 11 |
-
def sample(
|
| 12 |
-
self,
|
| 13 |
-
model,
|
| 14 |
-
**kwargs
|
| 15 |
-
):
|
| 16 |
"""
|
| 17 |
Sample from a model.
|
| 18 |
"""
|
| 19 |
pass
|
| 20 |
-
|
|
|
|
| 8 |
"""
|
| 9 |
|
| 10 |
@abstractmethod
|
| 11 |
+
def sample(self, model, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
"""
|
| 13 |
Sample from a model.
|
| 14 |
"""
|
| 15 |
pass
|
|
|
trellis/pipelines/samplers/flow_euler.py
CHANGED
|
@@ -15,6 +15,7 @@ class FlowEulerSampler(Sampler):
|
|
| 15 |
Args:
|
| 16 |
sigma_min: The minimum scale of noise in flow.
|
| 17 |
"""
|
|
|
|
| 18 |
def __init__(
|
| 19 |
self,
|
| 20 |
sigma_min: float,
|
|
@@ -32,11 +33,15 @@ class FlowEulerSampler(Sampler):
|
|
| 32 |
def _v_to_xstart_eps(self, x_t, t, v):
|
| 33 |
assert x_t.shape == v.shape
|
| 34 |
eps = (1 - t) * v + x_t
|
| 35 |
-
x_0 = (1 - self.sigma_min) * x_t - (
|
|
|
|
|
|
|
| 36 |
return x_0, eps
|
| 37 |
|
| 38 |
def _inference_model(self, model, x_t, t, cond=None, **kwargs):
|
| 39 |
-
t = torch.tensor(
|
|
|
|
|
|
|
| 40 |
return model(x_t, t, cond, **kwargs)
|
| 41 |
|
| 42 |
def _get_model_prediction(self, model, x_t, t, cond=None, **kwargs):
|
|
@@ -46,17 +51,11 @@ class FlowEulerSampler(Sampler):
|
|
| 46 |
|
| 47 |
@torch.no_grad()
|
| 48 |
def sample_once(
|
| 49 |
-
self,
|
| 50 |
-
model,
|
| 51 |
-
x_t,
|
| 52 |
-
t: float,
|
| 53 |
-
t_prev: float,
|
| 54 |
-
cond: Optional[Any] = None,
|
| 55 |
-
**kwargs
|
| 56 |
):
|
| 57 |
"""
|
| 58 |
Sample x_{t-1} from the model using Euler method.
|
| 59 |
-
|
| 60 |
Args:
|
| 61 |
model: The model to sample from.
|
| 62 |
x_t: The [N x C x ...] tensor of noisy inputs at time t.
|
|
@@ -70,7 +69,9 @@ class FlowEulerSampler(Sampler):
|
|
| 70 |
- 'pred_x_prev': x_{t-1}.
|
| 71 |
- 'pred_x_0': a prediction of x_0.
|
| 72 |
"""
|
| 73 |
-
pred_x_0, pred_eps, pred_v = self._get_model_prediction(
|
|
|
|
|
|
|
| 74 |
pred_x_prev = x_t - (t - t_prev) * pred_v
|
| 75 |
return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0})
|
| 76 |
|
|
@@ -87,7 +88,7 @@ class FlowEulerSampler(Sampler):
|
|
| 87 |
):
|
| 88 |
"""
|
| 89 |
Generate samples from the model using Euler method.
|
| 90 |
-
|
| 91 |
Args:
|
| 92 |
model: The model to sample from.
|
| 93 |
noise: The initial noise tensor.
|
|
@@ -121,6 +122,7 @@ class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
|
|
| 121 |
"""
|
| 122 |
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance.
|
| 123 |
"""
|
|
|
|
| 124 |
@torch.no_grad()
|
| 125 |
def sample(
|
| 126 |
self,
|
|
@@ -136,7 +138,7 @@ class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
|
|
| 136 |
):
|
| 137 |
"""
|
| 138 |
Generate samples from the model using Euler method.
|
| 139 |
-
|
| 140 |
Args:
|
| 141 |
model: The model to sample from.
|
| 142 |
noise: The initial noise tensor.
|
|
@@ -154,13 +156,24 @@ class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
|
|
| 154 |
- 'pred_x_t': a list of prediction of x_t.
|
| 155 |
- 'pred_x_0': a list of prediction of x_0.
|
| 156 |
"""
|
| 157 |
-
return super().sample(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
|
| 160 |
class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSampler):
|
| 161 |
"""
|
| 162 |
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
|
| 163 |
"""
|
|
|
|
| 164 |
@torch.no_grad()
|
| 165 |
def sample(
|
| 166 |
self,
|
|
@@ -177,7 +190,7 @@ class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSa
|
|
| 177 |
):
|
| 178 |
"""
|
| 179 |
Generate samples from the model using Euler method.
|
| 180 |
-
|
| 181 |
Args:
|
| 182 |
model: The model to sample from.
|
| 183 |
noise: The initial noise tensor.
|
|
@@ -196,4 +209,15 @@ class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSa
|
|
| 196 |
- 'pred_x_t': a list of prediction of x_t.
|
| 197 |
- 'pred_x_0': a list of prediction of x_0.
|
| 198 |
"""
|
| 199 |
-
return super().sample(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
Args:
|
| 16 |
sigma_min: The minimum scale of noise in flow.
|
| 17 |
"""
|
| 18 |
+
|
| 19 |
def __init__(
|
| 20 |
self,
|
| 21 |
sigma_min: float,
|
|
|
|
| 33 |
def _v_to_xstart_eps(self, x_t, t, v):
|
| 34 |
assert x_t.shape == v.shape
|
| 35 |
eps = (1 - t) * v + x_t
|
| 36 |
+
x_0 = (1 - self.sigma_min) * x_t - (
|
| 37 |
+
self.sigma_min + (1 - self.sigma_min) * t
|
| 38 |
+
) * v
|
| 39 |
return x_0, eps
|
| 40 |
|
| 41 |
def _inference_model(self, model, x_t, t, cond=None, **kwargs):
|
| 42 |
+
t = torch.tensor(
|
| 43 |
+
[1000 * t] * x_t.shape[0], device=x_t.device, dtype=torch.float32
|
| 44 |
+
)
|
| 45 |
return model(x_t, t, cond, **kwargs)
|
| 46 |
|
| 47 |
def _get_model_prediction(self, model, x_t, t, cond=None, **kwargs):
|
|
|
|
| 51 |
|
| 52 |
@torch.no_grad()
|
| 53 |
def sample_once(
|
| 54 |
+
self, model, x_t, t: float, t_prev: float, cond: Optional[Any] = None, **kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
):
|
| 56 |
"""
|
| 57 |
Sample x_{t-1} from the model using Euler method.
|
| 58 |
+
|
| 59 |
Args:
|
| 60 |
model: The model to sample from.
|
| 61 |
x_t: The [N x C x ...] tensor of noisy inputs at time t.
|
|
|
|
| 69 |
- 'pred_x_prev': x_{t-1}.
|
| 70 |
- 'pred_x_0': a prediction of x_0.
|
| 71 |
"""
|
| 72 |
+
pred_x_0, pred_eps, pred_v = self._get_model_prediction(
|
| 73 |
+
model, x_t, t, cond, **kwargs
|
| 74 |
+
)
|
| 75 |
pred_x_prev = x_t - (t - t_prev) * pred_v
|
| 76 |
return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0})
|
| 77 |
|
|
|
|
| 88 |
):
|
| 89 |
"""
|
| 90 |
Generate samples from the model using Euler method.
|
| 91 |
+
|
| 92 |
Args:
|
| 93 |
model: The model to sample from.
|
| 94 |
noise: The initial noise tensor.
|
|
|
|
| 122 |
"""
|
| 123 |
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance.
|
| 124 |
"""
|
| 125 |
+
|
| 126 |
@torch.no_grad()
|
| 127 |
def sample(
|
| 128 |
self,
|
|
|
|
| 138 |
):
|
| 139 |
"""
|
| 140 |
Generate samples from the model using Euler method.
|
| 141 |
+
|
| 142 |
Args:
|
| 143 |
model: The model to sample from.
|
| 144 |
noise: The initial noise tensor.
|
|
|
|
| 156 |
- 'pred_x_t': a list of prediction of x_t.
|
| 157 |
- 'pred_x_0': a list of prediction of x_0.
|
| 158 |
"""
|
| 159 |
+
return super().sample(
|
| 160 |
+
model,
|
| 161 |
+
noise,
|
| 162 |
+
cond,
|
| 163 |
+
steps,
|
| 164 |
+
rescale_t,
|
| 165 |
+
verbose,
|
| 166 |
+
neg_cond=neg_cond,
|
| 167 |
+
cfg_strength=cfg_strength,
|
| 168 |
+
**kwargs
|
| 169 |
+
)
|
| 170 |
|
| 171 |
|
| 172 |
class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSampler):
|
| 173 |
"""
|
| 174 |
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
|
| 175 |
"""
|
| 176 |
+
|
| 177 |
@torch.no_grad()
|
| 178 |
def sample(
|
| 179 |
self,
|
|
|
|
| 190 |
):
|
| 191 |
"""
|
| 192 |
Generate samples from the model using Euler method.
|
| 193 |
+
|
| 194 |
Args:
|
| 195 |
model: The model to sample from.
|
| 196 |
noise: The initial noise tensor.
|
|
|
|
| 209 |
- 'pred_x_t': a list of prediction of x_t.
|
| 210 |
- 'pred_x_0': a list of prediction of x_0.
|
| 211 |
"""
|
| 212 |
+
return super().sample(
|
| 213 |
+
model,
|
| 214 |
+
noise,
|
| 215 |
+
cond,
|
| 216 |
+
steps,
|
| 217 |
+
rescale_t,
|
| 218 |
+
verbose,
|
| 219 |
+
neg_cond=neg_cond,
|
| 220 |
+
cfg_strength=cfg_strength,
|
| 221 |
+
cfg_interval=cfg_interval,
|
| 222 |
+
**kwargs
|
| 223 |
+
)
|
trellis/pipelines/samplers/guidance_interval_mixin.py
CHANGED
|
@@ -6,7 +6,9 @@ class GuidanceIntervalSamplerMixin:
|
|
| 6 |
A mixin class for samplers that apply classifier-free guidance with interval.
|
| 7 |
"""
|
| 8 |
|
| 9 |
-
def _inference_model(
|
|
|
|
|
|
|
| 10 |
if cfg_interval[0] <= t <= cfg_interval[1]:
|
| 11 |
pred = super()._inference_model(model, x_t, t, cond, **kwargs)
|
| 12 |
neg_pred = super()._inference_model(model, x_t, t, neg_cond, **kwargs)
|
|
|
|
| 6 |
A mixin class for samplers that apply classifier-free guidance with interval.
|
| 7 |
"""
|
| 8 |
|
| 9 |
+
def _inference_model(
|
| 10 |
+
self, model, x_t, t, cond, neg_cond, cfg_strength, cfg_interval, **kwargs
|
| 11 |
+
):
|
| 12 |
if cfg_interval[0] <= t <= cfg_interval[1]:
|
| 13 |
pred = super()._inference_model(model, x_t, t, cond, **kwargs)
|
| 14 |
neg_pred = super()._inference_model(model, x_t, t, neg_cond, **kwargs)
|
trellis/pipelines/trellis_image_to_3d.py
CHANGED
|
@@ -26,6 +26,7 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 26 |
slat_normalization (dict): The normalization parameters for the structured latent.
|
| 27 |
image_cond_model (str): The name of the image conditioning model.
|
| 28 |
"""
|
|
|
|
| 29 |
def __init__(
|
| 30 |
self,
|
| 31 |
models: dict[str, nn.Module] = None,
|
|
@@ -53,33 +54,45 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 53 |
Args:
|
| 54 |
path (str): The path to the model. Can be either local path or a Hugging Face repository.
|
| 55 |
"""
|
| 56 |
-
pipeline = super(
|
|
|
|
|
|
|
| 57 |
new_pipeline = TrellisImageTo3DPipeline()
|
| 58 |
new_pipeline.__dict__ = pipeline.__dict__
|
| 59 |
args = pipeline._pretrained_args
|
| 60 |
|
| 61 |
-
new_pipeline.sparse_structure_sampler = getattr(
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
new_pipeline.slat_sampler = getattr(samplers, args[
|
| 65 |
-
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
new_pipeline.slat_normalization = args[
|
| 68 |
|
| 69 |
-
new_pipeline._init_image_cond_model(args[
|
| 70 |
|
| 71 |
return new_pipeline
|
| 72 |
-
|
| 73 |
def _init_image_cond_model(self, name: str):
|
| 74 |
"""
|
| 75 |
Initialize the image conditioning model.
|
| 76 |
"""
|
| 77 |
-
dinov2_model = torch.hub.load(
|
| 78 |
dinov2_model.eval()
|
| 79 |
-
self.models[
|
| 80 |
-
transform = transforms.Compose(
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
self.image_cond_model_transform = transform
|
| 84 |
|
| 85 |
def preprocess_image(self, input: Image.Image) -> Image.Image:
|
|
@@ -88,29 +101,42 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 88 |
"""
|
| 89 |
# if has alpha channel, use it directly; otherwise, remove background
|
| 90 |
has_alpha = False
|
| 91 |
-
if input.mode ==
|
| 92 |
alpha = np.array(input)[:, :, 3]
|
| 93 |
if not np.all(alpha == 255):
|
| 94 |
has_alpha = True
|
| 95 |
if has_alpha:
|
| 96 |
output = input
|
| 97 |
else:
|
| 98 |
-
input = input.convert(
|
| 99 |
max_size = max(input.size)
|
| 100 |
scale = min(1, 1024 / max_size)
|
| 101 |
if scale < 1:
|
| 102 |
-
input = input.resize(
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
| 105 |
output = rembg.remove(input, session=self.rembg_session)
|
| 106 |
output_np = np.array(output)
|
| 107 |
alpha = output_np[:, :, 3]
|
| 108 |
bbox = np.argwhere(alpha > 0.8 * 255)
|
| 109 |
-
bbox =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
|
| 111 |
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
|
| 112 |
size = int(size * 1.2)
|
| 113 |
-
bbox =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
output = output.crop(bbox) # type: ignore
|
| 115 |
output = output.resize((518, 518), Image.Resampling.LANCZOS)
|
| 116 |
output = np.array(output).astype(np.float32) / 255
|
|
@@ -119,7 +145,9 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 119 |
return output
|
| 120 |
|
| 121 |
@torch.no_grad()
|
| 122 |
-
def encode_image(
|
|
|
|
|
|
|
| 123 |
"""
|
| 124 |
Encode the image.
|
| 125 |
|
|
@@ -132,19 +160,21 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 132 |
if isinstance(image, torch.Tensor):
|
| 133 |
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
|
| 134 |
elif isinstance(image, list):
|
| 135 |
-
assert all(
|
|
|
|
|
|
|
| 136 |
image = [i.resize((518, 518), Image.LANCZOS) for i in image]
|
| 137 |
-
image = [np.array(i.convert(
|
| 138 |
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
|
| 139 |
image = torch.stack(image).to(self.device)
|
| 140 |
else:
|
| 141 |
raise ValueError(f"Unsupported type of image: {type(image)}")
|
| 142 |
-
|
| 143 |
image = self.image_cond_model_transform(image).to(self.device)
|
| 144 |
-
features = self.models[
|
| 145 |
patchtokens = F.layer_norm(features, features.shape[-1:])
|
| 146 |
return patchtokens
|
| 147 |
-
|
| 148 |
def get_cond(self, image: Union[torch.Tensor, list[Image.Image]]) -> dict:
|
| 149 |
"""
|
| 150 |
Get the conditioning information for the model.
|
|
@@ -158,8 +188,8 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 158 |
cond = self.encode_image(image)
|
| 159 |
neg_cond = torch.zeros_like(cond)
|
| 160 |
return {
|
| 161 |
-
|
| 162 |
-
|
| 163 |
}
|
| 164 |
|
| 165 |
def sample_sparse_structure(
|
|
@@ -170,35 +200,33 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 170 |
) -> torch.Tensor:
|
| 171 |
"""
|
| 172 |
Sample sparse structures with the given conditioning.
|
| 173 |
-
|
| 174 |
Args:
|
| 175 |
cond (dict): The conditioning information.
|
| 176 |
num_samples (int): The number of samples to generate.
|
| 177 |
sampler_params (dict): Additional parameters for the sampler.
|
| 178 |
"""
|
| 179 |
# Sample occupancy latent
|
| 180 |
-
flow_model = self.models[
|
| 181 |
reso = flow_model.resolution
|
| 182 |
-
noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(
|
|
|
|
|
|
|
| 183 |
sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
|
| 184 |
z_s = self.sparse_structure_sampler.sample(
|
| 185 |
-
flow_model,
|
| 186 |
-
noise,
|
| 187 |
-
**cond,
|
| 188 |
-
**sampler_params,
|
| 189 |
-
verbose=True
|
| 190 |
).samples
|
| 191 |
-
|
| 192 |
# Decode occupancy latent
|
| 193 |
-
decoder = self.models[
|
| 194 |
-
coords = torch.argwhere(decoder(z_s)>0)[:, [0, 2, 3, 4]].int()
|
| 195 |
|
| 196 |
return coords
|
| 197 |
|
| 198 |
def decode_slat(
|
| 199 |
self,
|
| 200 |
slat: sp.SparseTensor,
|
| 201 |
-
formats: List[str] = [
|
| 202 |
) -> dict:
|
| 203 |
"""
|
| 204 |
Decode the structured latent.
|
|
@@ -211,14 +239,14 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 211 |
dict: The decoded structured latent.
|
| 212 |
"""
|
| 213 |
ret = {}
|
| 214 |
-
if
|
| 215 |
-
ret[
|
| 216 |
-
if
|
| 217 |
-
ret[
|
| 218 |
-
if
|
| 219 |
-
ret[
|
| 220 |
return ret
|
| 221 |
-
|
| 222 |
def sample_slat(
|
| 223 |
self,
|
| 224 |
cond: dict,
|
|
@@ -227,31 +255,27 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 227 |
) -> sp.SparseTensor:
|
| 228 |
"""
|
| 229 |
Sample structured latent with the given conditioning.
|
| 230 |
-
|
| 231 |
Args:
|
| 232 |
cond (dict): The conditioning information.
|
| 233 |
coords (torch.Tensor): The coordinates of the sparse structure.
|
| 234 |
sampler_params (dict): Additional parameters for the sampler.
|
| 235 |
"""
|
| 236 |
# Sample structured latent
|
| 237 |
-
flow_model = self.models[
|
| 238 |
noise = sp.SparseTensor(
|
| 239 |
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
|
| 240 |
coords=coords,
|
| 241 |
)
|
| 242 |
sampler_params = {**self.slat_sampler_params, **sampler_params}
|
| 243 |
slat = self.slat_sampler.sample(
|
| 244 |
-
flow_model,
|
| 245 |
-
noise,
|
| 246 |
-
**cond,
|
| 247 |
-
**sampler_params,
|
| 248 |
-
verbose=True
|
| 249 |
).samples
|
| 250 |
|
| 251 |
-
std = torch.tensor(self.slat_normalization[
|
| 252 |
-
mean = torch.tensor(self.slat_normalization[
|
| 253 |
slat = slat * std + mean
|
| 254 |
-
|
| 255 |
return slat
|
| 256 |
|
| 257 |
@torch.no_grad()
|
|
@@ -262,7 +286,7 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 262 |
seed: int = 42,
|
| 263 |
sparse_structure_sampler_params: dict = {},
|
| 264 |
slat_sampler_params: dict = {},
|
| 265 |
-
formats: List[str] = [
|
| 266 |
preprocess_image: bool = True,
|
| 267 |
) -> dict:
|
| 268 |
"""
|
|
@@ -279,7 +303,9 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 279 |
image = self.preprocess_image(image)
|
| 280 |
cond = self.get_cond([image])
|
| 281 |
torch.manual_seed(seed)
|
| 282 |
-
coords = self.sample_sparse_structure(
|
|
|
|
|
|
|
| 283 |
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
| 284 |
return self.decode_slat(slat, formats)
|
| 285 |
|
|
@@ -289,56 +315,80 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 289 |
sampler_name: str,
|
| 290 |
num_images: int,
|
| 291 |
num_steps: int,
|
| 292 |
-
mode: Literal[
|
| 293 |
):
|
| 294 |
"""
|
| 295 |
Inject a sampler with multiple images as condition.
|
| 296 |
-
|
| 297 |
Args:
|
| 298 |
sampler_name (str): The name of the sampler to inject.
|
| 299 |
num_images (int): The number of images to condition on.
|
| 300 |
num_steps (int): The number of steps to run the sampler for.
|
| 301 |
"""
|
| 302 |
sampler = getattr(self, sampler_name)
|
| 303 |
-
setattr(sampler, f
|
| 304 |
|
| 305 |
-
if mode ==
|
| 306 |
if num_images > num_steps:
|
| 307 |
-
print(
|
| 308 |
-
"
|
|
|
|
|
|
|
| 309 |
|
| 310 |
cond_indices = (np.arange(num_steps) % num_images).tolist()
|
|
|
|
| 311 |
def _new_inference_model(self, model, x_t, t, cond, **kwargs):
|
| 312 |
cond_idx = cond_indices.pop(0)
|
| 313 |
-
cond_i = cond[cond_idx:cond_idx+1]
|
| 314 |
return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
|
| 315 |
-
|
| 316 |
-
elif mode ==
|
| 317 |
from .samplers import FlowEulerSampler
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
if cfg_interval[0] <= t <= cfg_interval[1]:
|
| 320 |
preds = []
|
| 321 |
for i in range(len(cond)):
|
| 322 |
-
preds.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
pred = sum(preds) / len(preds)
|
| 324 |
-
neg_pred = FlowEulerSampler._inference_model(
|
|
|
|
|
|
|
| 325 |
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
|
| 326 |
else:
|
| 327 |
preds = []
|
| 328 |
for i in range(len(cond)):
|
| 329 |
-
preds.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
pred = sum(preds) / len(preds)
|
| 331 |
return pred
|
| 332 |
-
|
| 333 |
else:
|
| 334 |
raise ValueError(f"Unsupported mode: {mode}")
|
| 335 |
-
|
| 336 |
sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))
|
| 337 |
|
| 338 |
yield
|
| 339 |
|
| 340 |
sampler._inference_model = sampler._old_inference_model
|
| 341 |
-
delattr(sampler, f
|
| 342 |
|
| 343 |
@torch.no_grad()
|
| 344 |
def run_multi_image(
|
|
@@ -348,9 +398,9 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 348 |
seed: int = 42,
|
| 349 |
sparse_structure_sampler_params: dict = {},
|
| 350 |
slat_sampler_params: dict = {},
|
| 351 |
-
formats: List[str] = [
|
| 352 |
preprocess_image: bool = True,
|
| 353 |
-
mode: Literal[
|
| 354 |
) -> dict:
|
| 355 |
"""
|
| 356 |
Run the pipeline with multiple images as condition
|
|
@@ -365,12 +415,21 @@ class TrellisImageTo3DPipeline(Pipeline):
|
|
| 365 |
if preprocess_image:
|
| 366 |
images = [self.preprocess_image(image) for image in images]
|
| 367 |
cond = self.get_cond(images)
|
| 368 |
-
cond[
|
| 369 |
torch.manual_seed(seed)
|
| 370 |
-
ss_steps = {
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
with self.inject_sampler_multi_image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
| 376 |
return self.decode_slat(slat, formats)
|
|
|
|
| 26 |
slat_normalization (dict): The normalization parameters for the structured latent.
|
| 27 |
image_cond_model (str): The name of the image conditioning model.
|
| 28 |
"""
|
| 29 |
+
|
| 30 |
def __init__(
|
| 31 |
self,
|
| 32 |
models: dict[str, nn.Module] = None,
|
|
|
|
| 54 |
Args:
|
| 55 |
path (str): The path to the model. Can be either local path or a Hugging Face repository.
|
| 56 |
"""
|
| 57 |
+
pipeline = super(
|
| 58 |
+
TrellisImageTo3DPipeline, TrellisImageTo3DPipeline
|
| 59 |
+
).from_pretrained(path)
|
| 60 |
new_pipeline = TrellisImageTo3DPipeline()
|
| 61 |
new_pipeline.__dict__ = pipeline.__dict__
|
| 62 |
args = pipeline._pretrained_args
|
| 63 |
|
| 64 |
+
new_pipeline.sparse_structure_sampler = getattr(
|
| 65 |
+
samplers, args["sparse_structure_sampler"]["name"]
|
| 66 |
+
)(**args["sparse_structure_sampler"]["args"])
|
| 67 |
+
new_pipeline.sparse_structure_sampler_params = args["sparse_structure_sampler"][
|
| 68 |
+
"params"
|
| 69 |
+
]
|
| 70 |
|
| 71 |
+
new_pipeline.slat_sampler = getattr(samplers, args["slat_sampler"]["name"])(
|
| 72 |
+
**args["slat_sampler"]["args"]
|
| 73 |
+
)
|
| 74 |
+
new_pipeline.slat_sampler_params = args["slat_sampler"]["params"]
|
| 75 |
|
| 76 |
+
new_pipeline.slat_normalization = args["slat_normalization"]
|
| 77 |
|
| 78 |
+
new_pipeline._init_image_cond_model(args["image_cond_model"])
|
| 79 |
|
| 80 |
return new_pipeline
|
| 81 |
+
|
| 82 |
def _init_image_cond_model(self, name: str):
|
| 83 |
"""
|
| 84 |
Initialize the image conditioning model.
|
| 85 |
"""
|
| 86 |
+
dinov2_model = torch.hub.load("facebookresearch/dinov2", name, pretrained=True)
|
| 87 |
dinov2_model.eval()
|
| 88 |
+
self.models["image_cond_model"] = dinov2_model
|
| 89 |
+
transform = transforms.Compose(
|
| 90 |
+
[
|
| 91 |
+
transforms.Normalize(
|
| 92 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 93 |
+
),
|
| 94 |
+
]
|
| 95 |
+
)
|
| 96 |
self.image_cond_model_transform = transform
|
| 97 |
|
| 98 |
def preprocess_image(self, input: Image.Image) -> Image.Image:
|
|
|
|
| 101 |
"""
|
| 102 |
# if has alpha channel, use it directly; otherwise, remove background
|
| 103 |
has_alpha = False
|
| 104 |
+
if input.mode == "RGBA":
|
| 105 |
alpha = np.array(input)[:, :, 3]
|
| 106 |
if not np.all(alpha == 255):
|
| 107 |
has_alpha = True
|
| 108 |
if has_alpha:
|
| 109 |
output = input
|
| 110 |
else:
|
| 111 |
+
input = input.convert("RGB")
|
| 112 |
max_size = max(input.size)
|
| 113 |
scale = min(1, 1024 / max_size)
|
| 114 |
if scale < 1:
|
| 115 |
+
input = input.resize(
|
| 116 |
+
(int(input.width * scale), int(input.height * scale)),
|
| 117 |
+
Image.Resampling.LANCZOS,
|
| 118 |
+
)
|
| 119 |
+
if getattr(self, "rembg_session", None) is None:
|
| 120 |
+
self.rembg_session = rembg.new_session("u2net")
|
| 121 |
output = rembg.remove(input, session=self.rembg_session)
|
| 122 |
output_np = np.array(output)
|
| 123 |
alpha = output_np[:, :, 3]
|
| 124 |
bbox = np.argwhere(alpha > 0.8 * 255)
|
| 125 |
+
bbox = (
|
| 126 |
+
np.min(bbox[:, 1]),
|
| 127 |
+
np.min(bbox[:, 0]),
|
| 128 |
+
np.max(bbox[:, 1]),
|
| 129 |
+
np.max(bbox[:, 0]),
|
| 130 |
+
)
|
| 131 |
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
|
| 132 |
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
|
| 133 |
size = int(size * 1.2)
|
| 134 |
+
bbox = (
|
| 135 |
+
center[0] - size // 2,
|
| 136 |
+
center[1] - size // 2,
|
| 137 |
+
center[0] + size // 2,
|
| 138 |
+
center[1] + size // 2,
|
| 139 |
+
)
|
| 140 |
output = output.crop(bbox) # type: ignore
|
| 141 |
output = output.resize((518, 518), Image.Resampling.LANCZOS)
|
| 142 |
output = np.array(output).astype(np.float32) / 255
|
|
|
|
| 145 |
return output
|
| 146 |
|
| 147 |
@torch.no_grad()
|
| 148 |
+
def encode_image(
|
| 149 |
+
self, image: Union[torch.Tensor, list[Image.Image]]
|
| 150 |
+
) -> torch.Tensor:
|
| 151 |
"""
|
| 152 |
Encode the image.
|
| 153 |
|
|
|
|
| 160 |
if isinstance(image, torch.Tensor):
|
| 161 |
assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)"
|
| 162 |
elif isinstance(image, list):
|
| 163 |
+
assert all(
|
| 164 |
+
isinstance(i, Image.Image) for i in image
|
| 165 |
+
), "Image list should be list of PIL images"
|
| 166 |
image = [i.resize((518, 518), Image.LANCZOS) for i in image]
|
| 167 |
+
image = [np.array(i.convert("RGB")).astype(np.float32) / 255 for i in image]
|
| 168 |
image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image]
|
| 169 |
image = torch.stack(image).to(self.device)
|
| 170 |
else:
|
| 171 |
raise ValueError(f"Unsupported type of image: {type(image)}")
|
| 172 |
+
|
| 173 |
image = self.image_cond_model_transform(image).to(self.device)
|
| 174 |
+
features = self.models["image_cond_model"](image, is_training=True)["x_prenorm"]
|
| 175 |
patchtokens = F.layer_norm(features, features.shape[-1:])
|
| 176 |
return patchtokens
|
| 177 |
+
|
| 178 |
def get_cond(self, image: Union[torch.Tensor, list[Image.Image]]) -> dict:
|
| 179 |
"""
|
| 180 |
Get the conditioning information for the model.
|
|
|
|
| 188 |
cond = self.encode_image(image)
|
| 189 |
neg_cond = torch.zeros_like(cond)
|
| 190 |
return {
|
| 191 |
+
"cond": cond,
|
| 192 |
+
"neg_cond": neg_cond,
|
| 193 |
}
|
| 194 |
|
| 195 |
def sample_sparse_structure(
|
|
|
|
| 200 |
) -> torch.Tensor:
|
| 201 |
"""
|
| 202 |
Sample sparse structures with the given conditioning.
|
| 203 |
+
|
| 204 |
Args:
|
| 205 |
cond (dict): The conditioning information.
|
| 206 |
num_samples (int): The number of samples to generate.
|
| 207 |
sampler_params (dict): Additional parameters for the sampler.
|
| 208 |
"""
|
| 209 |
# Sample occupancy latent
|
| 210 |
+
flow_model = self.models["sparse_structure_flow_model"]
|
| 211 |
reso = flow_model.resolution
|
| 212 |
+
noise = torch.randn(num_samples, flow_model.in_channels, reso, reso, reso).to(
|
| 213 |
+
self.device
|
| 214 |
+
)
|
| 215 |
sampler_params = {**self.sparse_structure_sampler_params, **sampler_params}
|
| 216 |
z_s = self.sparse_structure_sampler.sample(
|
| 217 |
+
flow_model, noise, **cond, **sampler_params, verbose=True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
).samples
|
| 219 |
+
|
| 220 |
# Decode occupancy latent
|
| 221 |
+
decoder = self.models["sparse_structure_decoder"]
|
| 222 |
+
coords = torch.argwhere(decoder(z_s) > 0)[:, [0, 2, 3, 4]].int()
|
| 223 |
|
| 224 |
return coords
|
| 225 |
|
| 226 |
def decode_slat(
|
| 227 |
self,
|
| 228 |
slat: sp.SparseTensor,
|
| 229 |
+
formats: List[str] = ["mesh", "gaussian", "radiance_field"],
|
| 230 |
) -> dict:
|
| 231 |
"""
|
| 232 |
Decode the structured latent.
|
|
|
|
| 239 |
dict: The decoded structured latent.
|
| 240 |
"""
|
| 241 |
ret = {}
|
| 242 |
+
if "mesh" in formats:
|
| 243 |
+
ret["mesh"] = self.models["slat_decoder_mesh"](slat)
|
| 244 |
+
if "gaussian" in formats:
|
| 245 |
+
ret["gaussian"] = self.models["slat_decoder_gs"](slat)
|
| 246 |
+
if "radiance_field" in formats:
|
| 247 |
+
ret["radiance_field"] = self.models["slat_decoder_rf"](slat)
|
| 248 |
return ret
|
| 249 |
+
|
| 250 |
def sample_slat(
|
| 251 |
self,
|
| 252 |
cond: dict,
|
|
|
|
| 255 |
) -> sp.SparseTensor:
|
| 256 |
"""
|
| 257 |
Sample structured latent with the given conditioning.
|
| 258 |
+
|
| 259 |
Args:
|
| 260 |
cond (dict): The conditioning information.
|
| 261 |
coords (torch.Tensor): The coordinates of the sparse structure.
|
| 262 |
sampler_params (dict): Additional parameters for the sampler.
|
| 263 |
"""
|
| 264 |
# Sample structured latent
|
| 265 |
+
flow_model = self.models["slat_flow_model"]
|
| 266 |
noise = sp.SparseTensor(
|
| 267 |
feats=torch.randn(coords.shape[0], flow_model.in_channels).to(self.device),
|
| 268 |
coords=coords,
|
| 269 |
)
|
| 270 |
sampler_params = {**self.slat_sampler_params, **sampler_params}
|
| 271 |
slat = self.slat_sampler.sample(
|
| 272 |
+
flow_model, noise, **cond, **sampler_params, verbose=True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
).samples
|
| 274 |
|
| 275 |
+
std = torch.tensor(self.slat_normalization["std"])[None].to(slat.device)
|
| 276 |
+
mean = torch.tensor(self.slat_normalization["mean"])[None].to(slat.device)
|
| 277 |
slat = slat * std + mean
|
| 278 |
+
|
| 279 |
return slat
|
| 280 |
|
| 281 |
@torch.no_grad()
|
|
|
|
| 286 |
seed: int = 42,
|
| 287 |
sparse_structure_sampler_params: dict = {},
|
| 288 |
slat_sampler_params: dict = {},
|
| 289 |
+
formats: List[str] = ["mesh", "gaussian", "radiance_field"],
|
| 290 |
preprocess_image: bool = True,
|
| 291 |
) -> dict:
|
| 292 |
"""
|
|
|
|
| 303 |
image = self.preprocess_image(image)
|
| 304 |
cond = self.get_cond([image])
|
| 305 |
torch.manual_seed(seed)
|
| 306 |
+
coords = self.sample_sparse_structure(
|
| 307 |
+
cond, num_samples, sparse_structure_sampler_params
|
| 308 |
+
)
|
| 309 |
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
| 310 |
return self.decode_slat(slat, formats)
|
| 311 |
|
|
|
|
| 315 |
sampler_name: str,
|
| 316 |
num_images: int,
|
| 317 |
num_steps: int,
|
| 318 |
+
mode: Literal["stochastic", "multidiffusion"] = "stochastic",
|
| 319 |
):
|
| 320 |
"""
|
| 321 |
Inject a sampler with multiple images as condition.
|
| 322 |
+
|
| 323 |
Args:
|
| 324 |
sampler_name (str): The name of the sampler to inject.
|
| 325 |
num_images (int): The number of images to condition on.
|
| 326 |
num_steps (int): The number of steps to run the sampler for.
|
| 327 |
"""
|
| 328 |
sampler = getattr(self, sampler_name)
|
| 329 |
+
setattr(sampler, f"_old_inference_model", sampler._inference_model)
|
| 330 |
|
| 331 |
+
if mode == "stochastic":
|
| 332 |
if num_images > num_steps:
|
| 333 |
+
print(
|
| 334 |
+
f"\033[93mWarning: number of conditioning images is greater than number of steps for {sampler_name}. "
|
| 335 |
+
"This may lead to performance degradation.\033[0m"
|
| 336 |
+
)
|
| 337 |
|
| 338 |
cond_indices = (np.arange(num_steps) % num_images).tolist()
|
| 339 |
+
|
| 340 |
def _new_inference_model(self, model, x_t, t, cond, **kwargs):
|
| 341 |
cond_idx = cond_indices.pop(0)
|
| 342 |
+
cond_i = cond[cond_idx : cond_idx + 1]
|
| 343 |
return self._old_inference_model(model, x_t, t, cond=cond_i, **kwargs)
|
| 344 |
+
|
| 345 |
+
elif mode == "multidiffusion":
|
| 346 |
from .samplers import FlowEulerSampler
|
| 347 |
+
|
| 348 |
+
def _new_inference_model(
|
| 349 |
+
self,
|
| 350 |
+
model,
|
| 351 |
+
x_t,
|
| 352 |
+
t,
|
| 353 |
+
cond,
|
| 354 |
+
neg_cond,
|
| 355 |
+
cfg_strength,
|
| 356 |
+
cfg_interval,
|
| 357 |
+
**kwargs,
|
| 358 |
+
):
|
| 359 |
if cfg_interval[0] <= t <= cfg_interval[1]:
|
| 360 |
preds = []
|
| 361 |
for i in range(len(cond)):
|
| 362 |
+
preds.append(
|
| 363 |
+
FlowEulerSampler._inference_model(
|
| 364 |
+
self, model, x_t, t, cond[i : i + 1], **kwargs
|
| 365 |
+
)
|
| 366 |
+
)
|
| 367 |
pred = sum(preds) / len(preds)
|
| 368 |
+
neg_pred = FlowEulerSampler._inference_model(
|
| 369 |
+
self, model, x_t, t, neg_cond, **kwargs
|
| 370 |
+
)
|
| 371 |
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
|
| 372 |
else:
|
| 373 |
preds = []
|
| 374 |
for i in range(len(cond)):
|
| 375 |
+
preds.append(
|
| 376 |
+
FlowEulerSampler._inference_model(
|
| 377 |
+
self, model, x_t, t, cond[i : i + 1], **kwargs
|
| 378 |
+
)
|
| 379 |
+
)
|
| 380 |
pred = sum(preds) / len(preds)
|
| 381 |
return pred
|
| 382 |
+
|
| 383 |
else:
|
| 384 |
raise ValueError(f"Unsupported mode: {mode}")
|
| 385 |
+
|
| 386 |
sampler._inference_model = _new_inference_model.__get__(sampler, type(sampler))
|
| 387 |
|
| 388 |
yield
|
| 389 |
|
| 390 |
sampler._inference_model = sampler._old_inference_model
|
| 391 |
+
delattr(sampler, f"_old_inference_model")
|
| 392 |
|
| 393 |
@torch.no_grad()
|
| 394 |
def run_multi_image(
|
|
|
|
| 398 |
seed: int = 42,
|
| 399 |
sparse_structure_sampler_params: dict = {},
|
| 400 |
slat_sampler_params: dict = {},
|
| 401 |
+
formats: List[str] = ["mesh", "gaussian", "radiance_field"],
|
| 402 |
preprocess_image: bool = True,
|
| 403 |
+
mode: Literal["stochastic", "multidiffusion"] = "stochastic",
|
| 404 |
) -> dict:
|
| 405 |
"""
|
| 406 |
Run the pipeline with multiple images as condition
|
|
|
|
| 415 |
if preprocess_image:
|
| 416 |
images = [self.preprocess_image(image) for image in images]
|
| 417 |
cond = self.get_cond(images)
|
| 418 |
+
cond["neg_cond"] = cond["neg_cond"][:1]
|
| 419 |
torch.manual_seed(seed)
|
| 420 |
+
ss_steps = {
|
| 421 |
+
**self.sparse_structure_sampler_params,
|
| 422 |
+
**sparse_structure_sampler_params,
|
| 423 |
+
}.get("steps")
|
| 424 |
+
with self.inject_sampler_multi_image(
|
| 425 |
+
"sparse_structure_sampler", len(images), ss_steps, mode=mode
|
| 426 |
+
):
|
| 427 |
+
coords = self.sample_sparse_structure(
|
| 428 |
+
cond, num_samples, sparse_structure_sampler_params
|
| 429 |
+
)
|
| 430 |
+
slat_steps = {**self.slat_sampler_params, **slat_sampler_params}.get("steps")
|
| 431 |
+
with self.inject_sampler_multi_image(
|
| 432 |
+
"slat_sampler", len(images), slat_steps, mode=mode
|
| 433 |
+
):
|
| 434 |
slat = self.sample_slat(cond, coords, slat_sampler_params)
|
| 435 |
return self.decode_slat(slat, formats)
|
trellis/renderers/__init__.py
CHANGED
|
@@ -1,15 +1,16 @@
|
|
| 1 |
import importlib
|
| 2 |
|
| 3 |
__attributes = {
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
}
|
| 8 |
|
| 9 |
__submodules = []
|
| 10 |
|
| 11 |
__all__ = list(__attributes.keys()) + __submodules
|
| 12 |
|
|
|
|
| 13 |
def __getattr__(name):
|
| 14 |
if name not in globals():
|
| 15 |
if name in __attributes:
|
|
@@ -25,7 +26,7 @@ def __getattr__(name):
|
|
| 25 |
|
| 26 |
|
| 27 |
# For Pylance
|
| 28 |
-
if __name__ ==
|
| 29 |
from .octree_renderer import OctreeRenderer
|
| 30 |
from .gaussian_render import GaussianRenderer
|
| 31 |
-
from .mesh_renderer import MeshRenderer
|
|
|
|
| 1 |
import importlib
|
| 2 |
|
| 3 |
__attributes = {
|
| 4 |
+
"OctreeRenderer": "octree_renderer",
|
| 5 |
+
"GaussianRenderer": "gaussian_render",
|
| 6 |
+
"MeshRenderer": "mesh_renderer",
|
| 7 |
}
|
| 8 |
|
| 9 |
__submodules = []
|
| 10 |
|
| 11 |
__all__ = list(__attributes.keys()) + __submodules
|
| 12 |
|
| 13 |
+
|
| 14 |
def __getattr__(name):
|
| 15 |
if name not in globals():
|
| 16 |
if name in __attributes:
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
# For Pylance
|
| 29 |
+
if __name__ == "__main__":
|
| 30 |
from .octree_renderer import OctreeRenderer
|
| 31 |
from .gaussian_render import GaussianRenderer
|
| 32 |
+
from .mesh_renderer import MeshRenderer
|
trellis/renderers/gaussian_render.py
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
# All rights reserved.
|
| 5 |
#
|
| 6 |
-
# This software is free for non-commercial, research and evaluation use
|
| 7 |
# under the terms of the LICENSE.md file.
|
| 8 |
#
|
| 9 |
# For inquiries contact [email protected]
|
|
@@ -20,10 +20,10 @@ from easydict import EasyDict as edict
|
|
| 20 |
|
| 21 |
|
| 22 |
def intrinsics_to_projection(
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
"""
|
| 28 |
OpenCV intrinsics to OpenGL perspective matrix
|
| 29 |
|
|
@@ -40,25 +40,40 @@ def intrinsics_to_projection(
|
|
| 40 |
ret[0, 0] = 2 * fx
|
| 41 |
ret[1, 1] = 2 * fy
|
| 42 |
ret[0, 2] = 2 * cx - 1
|
| 43 |
-
ret[1, 2] = -
|
| 44 |
ret[2, 2] = far / (far - near)
|
| 45 |
ret[2, 3] = near * far / (near - far)
|
| 46 |
-
ret[3, 2] = 1.
|
| 47 |
return ret
|
| 48 |
|
| 49 |
|
| 50 |
-
def render(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
"""
|
| 52 |
-
Render the scene.
|
| 53 |
-
|
| 54 |
Background tensor (bg_color) must be on GPU!
|
| 55 |
"""
|
| 56 |
# lazy import
|
| 57 |
-
if
|
| 58 |
-
from diff_gaussian_rasterization import
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
| 61 |
-
screenspace_points =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
try:
|
| 63 |
screenspace_points.retain_grad()
|
| 64 |
except:
|
|
@@ -66,9 +81,13 @@ def render(viewpoint_camera, pc : Gaussian, pipe, bg_color : torch.Tensor, scali
|
|
| 66 |
# Set up rasterization configuration
|
| 67 |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
| 68 |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
| 69 |
-
|
| 70 |
kernel_size = pipe.kernel_size
|
| 71 |
-
subpixel_offset = torch.zeros(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
raster_settings = GaussianRasterizationSettings(
|
| 74 |
image_height=int(viewpoint_camera.image_height),
|
|
@@ -84,9 +103,9 @@ def render(viewpoint_camera, pc : Gaussian, pipe, bg_color : torch.Tensor, scali
|
|
| 84 |
sh_degree=pc.active_sh_degree,
|
| 85 |
campos=viewpoint_camera.camera_center,
|
| 86 |
prefiltered=False,
|
| 87 |
-
debug=pipe.debug
|
| 88 |
)
|
| 89 |
-
|
| 90 |
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
| 91 |
|
| 92 |
means3D = pc.get_xyz
|
|
@@ -110,9 +129,13 @@ def render(viewpoint_camera, pc : Gaussian, pipe, bg_color : torch.Tensor, scali
|
|
| 110 |
colors_precomp = None
|
| 111 |
if override_color is None:
|
| 112 |
if pipe.convert_SHs_python:
|
| 113 |
-
shs_view = pc.get_features.transpose(1, 2).view(
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
| 117 |
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
| 118 |
else:
|
|
@@ -120,24 +143,28 @@ def render(viewpoint_camera, pc : Gaussian, pipe, bg_color : torch.Tensor, scali
|
|
| 120 |
else:
|
| 121 |
colors_precomp = override_color
|
| 122 |
|
| 123 |
-
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
| 124 |
rendered_image, radii = rasterizer(
|
| 125 |
-
means3D
|
| 126 |
-
means2D
|
| 127 |
-
shs
|
| 128 |
-
colors_precomp
|
| 129 |
-
opacities
|
| 130 |
-
scales
|
| 131 |
-
rotations
|
| 132 |
-
cov3D_precomp
|
| 133 |
)
|
| 134 |
|
| 135 |
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
| 136 |
# They will be excluded from value updates used in the splitting criteria.
|
| 137 |
-
return edict(
|
|
|
|
|
|
|
| 138 |
"viewspace_points": screenspace_points,
|
| 139 |
-
"visibility_filter"
|
| 140 |
-
"radii": radii
|
|
|
|
|
|
|
| 141 |
|
| 142 |
|
| 143 |
class GaussianRenderer:
|
|
@@ -149,30 +176,34 @@ class GaussianRenderer:
|
|
| 149 |
"""
|
| 150 |
|
| 151 |
def __init__(self, rendering_options={}) -> None:
|
| 152 |
-
self.pipe = edict(
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
self.rendering_options.update(rendering_options)
|
| 167 |
self.bg_color = None
|
| 168 |
-
|
| 169 |
def render(
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
"""
|
| 177 |
Render the gausssian.
|
| 178 |
|
|
@@ -190,13 +221,15 @@ class GaussianRenderer:
|
|
| 190 |
near = self.rendering_options["near"]
|
| 191 |
far = self.rendering_options["far"]
|
| 192 |
ssaa = self.rendering_options["ssaa"]
|
| 193 |
-
|
| 194 |
-
if self.rendering_options["bg_color"] ==
|
| 195 |
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
|
| 196 |
if np.random.rand() < 0.5:
|
| 197 |
self.bg_color += 1
|
| 198 |
else:
|
| 199 |
-
self.bg_color = torch.tensor(
|
|
|
|
|
|
|
| 200 |
|
| 201 |
view = extrinsics
|
| 202 |
perspective = intrinsics_to_projection(intrinsics, near, far)
|
|
@@ -205,27 +238,40 @@ class GaussianRenderer:
|
|
| 205 |
focaly = intrinsics[1, 1]
|
| 206 |
fovx = 2 * torch.atan(0.5 / focalx)
|
| 207 |
fovy = 2 * torch.atan(0.5 / focaly)
|
| 208 |
-
|
| 209 |
-
camera_dict = edict(
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
| 221 |
|
| 222 |
# Render
|
| 223 |
-
render_ret = render(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
if ssaa > 1:
|
| 226 |
-
render_ret.render = F.interpolate(
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
return ret
|
|
|
|
| 3 |
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
# All rights reserved.
|
| 5 |
#
|
| 6 |
+
# This software is free for non-commercial, research and evaluation use
|
| 7 |
# under the terms of the LICENSE.md file.
|
| 8 |
#
|
| 9 |
# For inquiries contact [email protected]
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
def intrinsics_to_projection(
|
| 23 |
+
intrinsics: torch.Tensor,
|
| 24 |
+
near: float,
|
| 25 |
+
far: float,
|
| 26 |
+
) -> torch.Tensor:
|
| 27 |
"""
|
| 28 |
OpenCV intrinsics to OpenGL perspective matrix
|
| 29 |
|
|
|
|
| 40 |
ret[0, 0] = 2 * fx
|
| 41 |
ret[1, 1] = 2 * fy
|
| 42 |
ret[0, 2] = 2 * cx - 1
|
| 43 |
+
ret[1, 2] = -2 * cy + 1
|
| 44 |
ret[2, 2] = far / (far - near)
|
| 45 |
ret[2, 3] = near * far / (near - far)
|
| 46 |
+
ret[3, 2] = 1.0
|
| 47 |
return ret
|
| 48 |
|
| 49 |
|
| 50 |
+
def render(
|
| 51 |
+
viewpoint_camera,
|
| 52 |
+
pc: Gaussian,
|
| 53 |
+
pipe,
|
| 54 |
+
bg_color: torch.Tensor,
|
| 55 |
+
scaling_modifier=1.0,
|
| 56 |
+
override_color=None,
|
| 57 |
+
):
|
| 58 |
"""
|
| 59 |
+
Render the scene.
|
| 60 |
+
|
| 61 |
Background tensor (bg_color) must be on GPU!
|
| 62 |
"""
|
| 63 |
# lazy import
|
| 64 |
+
if "GaussianRasterizer" not in globals():
|
| 65 |
+
from diff_gaussian_rasterization import (
|
| 66 |
+
GaussianRasterizer,
|
| 67 |
+
GaussianRasterizationSettings,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
| 71 |
+
screenspace_points = (
|
| 72 |
+
torch.zeros_like(
|
| 73 |
+
pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda"
|
| 74 |
+
)
|
| 75 |
+
+ 0
|
| 76 |
+
)
|
| 77 |
try:
|
| 78 |
screenspace_points.retain_grad()
|
| 79 |
except:
|
|
|
|
| 81 |
# Set up rasterization configuration
|
| 82 |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
| 83 |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
| 84 |
+
|
| 85 |
kernel_size = pipe.kernel_size
|
| 86 |
+
subpixel_offset = torch.zeros(
|
| 87 |
+
(int(viewpoint_camera.image_height), int(viewpoint_camera.image_width), 2),
|
| 88 |
+
dtype=torch.float32,
|
| 89 |
+
device="cuda",
|
| 90 |
+
)
|
| 91 |
|
| 92 |
raster_settings = GaussianRasterizationSettings(
|
| 93 |
image_height=int(viewpoint_camera.image_height),
|
|
|
|
| 103 |
sh_degree=pc.active_sh_degree,
|
| 104 |
campos=viewpoint_camera.camera_center,
|
| 105 |
prefiltered=False,
|
| 106 |
+
debug=pipe.debug,
|
| 107 |
)
|
| 108 |
+
|
| 109 |
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
| 110 |
|
| 111 |
means3D = pc.get_xyz
|
|
|
|
| 129 |
colors_precomp = None
|
| 130 |
if override_color is None:
|
| 131 |
if pipe.convert_SHs_python:
|
| 132 |
+
shs_view = pc.get_features.transpose(1, 2).view(
|
| 133 |
+
-1, 3, (pc.max_sh_degree + 1) ** 2
|
| 134 |
+
)
|
| 135 |
+
dir_pp = pc.get_xyz - viewpoint_camera.camera_center.repeat(
|
| 136 |
+
pc.get_features.shape[0], 1
|
| 137 |
+
)
|
| 138 |
+
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True)
|
| 139 |
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
| 140 |
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
| 141 |
else:
|
|
|
|
| 143 |
else:
|
| 144 |
colors_precomp = override_color
|
| 145 |
|
| 146 |
+
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
| 147 |
rendered_image, radii = rasterizer(
|
| 148 |
+
means3D=means3D,
|
| 149 |
+
means2D=means2D,
|
| 150 |
+
shs=shs,
|
| 151 |
+
colors_precomp=colors_precomp,
|
| 152 |
+
opacities=opacity,
|
| 153 |
+
scales=scales,
|
| 154 |
+
rotations=rotations,
|
| 155 |
+
cov3D_precomp=cov3D_precomp,
|
| 156 |
)
|
| 157 |
|
| 158 |
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
| 159 |
# They will be excluded from value updates used in the splitting criteria.
|
| 160 |
+
return edict(
|
| 161 |
+
{
|
| 162 |
+
"render": rendered_image,
|
| 163 |
"viewspace_points": screenspace_points,
|
| 164 |
+
"visibility_filter": radii > 0,
|
| 165 |
+
"radii": radii,
|
| 166 |
+
}
|
| 167 |
+
)
|
| 168 |
|
| 169 |
|
| 170 |
class GaussianRenderer:
|
|
|
|
| 176 |
"""
|
| 177 |
|
| 178 |
def __init__(self, rendering_options={}) -> None:
|
| 179 |
+
self.pipe = edict(
|
| 180 |
+
{
|
| 181 |
+
"kernel_size": 0.1,
|
| 182 |
+
"convert_SHs_python": False,
|
| 183 |
+
"compute_cov3D_python": False,
|
| 184 |
+
"scale_modifier": 1.0,
|
| 185 |
+
"debug": False,
|
| 186 |
+
}
|
| 187 |
+
)
|
| 188 |
+
self.rendering_options = edict(
|
| 189 |
+
{
|
| 190 |
+
"resolution": None,
|
| 191 |
+
"near": None,
|
| 192 |
+
"far": None,
|
| 193 |
+
"ssaa": 1,
|
| 194 |
+
"bg_color": "random",
|
| 195 |
+
}
|
| 196 |
+
)
|
| 197 |
self.rendering_options.update(rendering_options)
|
| 198 |
self.bg_color = None
|
| 199 |
+
|
| 200 |
def render(
|
| 201 |
+
self,
|
| 202 |
+
gausssian: Gaussian,
|
| 203 |
+
extrinsics: torch.Tensor,
|
| 204 |
+
intrinsics: torch.Tensor,
|
| 205 |
+
colors_overwrite: torch.Tensor = None,
|
| 206 |
+
) -> edict:
|
| 207 |
"""
|
| 208 |
Render the gausssian.
|
| 209 |
|
|
|
|
| 221 |
near = self.rendering_options["near"]
|
| 222 |
far = self.rendering_options["far"]
|
| 223 |
ssaa = self.rendering_options["ssaa"]
|
| 224 |
+
|
| 225 |
+
if self.rendering_options["bg_color"] == "random":
|
| 226 |
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
|
| 227 |
if np.random.rand() < 0.5:
|
| 228 |
self.bg_color += 1
|
| 229 |
else:
|
| 230 |
+
self.bg_color = torch.tensor(
|
| 231 |
+
self.rendering_options["bg_color"], dtype=torch.float32, device="cuda"
|
| 232 |
+
)
|
| 233 |
|
| 234 |
view = extrinsics
|
| 235 |
perspective = intrinsics_to_projection(intrinsics, near, far)
|
|
|
|
| 238 |
focaly = intrinsics[1, 1]
|
| 239 |
fovx = 2 * torch.atan(0.5 / focalx)
|
| 240 |
fovy = 2 * torch.atan(0.5 / focaly)
|
| 241 |
+
|
| 242 |
+
camera_dict = edict(
|
| 243 |
+
{
|
| 244 |
+
"image_height": resolution * ssaa,
|
| 245 |
+
"image_width": resolution * ssaa,
|
| 246 |
+
"FoVx": fovx,
|
| 247 |
+
"FoVy": fovy,
|
| 248 |
+
"znear": near,
|
| 249 |
+
"zfar": far,
|
| 250 |
+
"world_view_transform": view.T.contiguous(),
|
| 251 |
+
"projection_matrix": perspective.T.contiguous(),
|
| 252 |
+
"full_proj_transform": (perspective @ view).T.contiguous(),
|
| 253 |
+
"camera_center": camera,
|
| 254 |
+
}
|
| 255 |
+
)
|
| 256 |
|
| 257 |
# Render
|
| 258 |
+
render_ret = render(
|
| 259 |
+
camera_dict,
|
| 260 |
+
gausssian,
|
| 261 |
+
self.pipe,
|
| 262 |
+
self.bg_color,
|
| 263 |
+
override_color=colors_overwrite,
|
| 264 |
+
scaling_modifier=self.pipe.scale_modifier,
|
| 265 |
+
)
|
| 266 |
|
| 267 |
if ssaa > 1:
|
| 268 |
+
render_ret.render = F.interpolate(
|
| 269 |
+
render_ret.render[None],
|
| 270 |
+
size=(resolution, resolution),
|
| 271 |
+
mode="bilinear",
|
| 272 |
+
align_corners=False,
|
| 273 |
+
antialias=True,
|
| 274 |
+
).squeeze()
|
| 275 |
+
|
| 276 |
+
ret = edict({"color": render_ret["render"]})
|
| 277 |
return ret
|
trellis/renderers/mesh_renderer.py
CHANGED
|
@@ -13,10 +13,10 @@ import torch.nn.functional as F
|
|
| 13 |
|
| 14 |
|
| 15 |
def intrinsics_to_projection(
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
"""
|
| 21 |
OpenCV intrinsics to OpenGL perspective matrix
|
| 22 |
|
|
@@ -33,10 +33,10 @@ def intrinsics_to_projection(
|
|
| 33 |
ret[0, 0] = 2 * fx
|
| 34 |
ret[1, 1] = 2 * fy
|
| 35 |
ret[0, 2] = 2 * cx - 1
|
| 36 |
-
ret[1, 2] = -
|
| 37 |
ret[2, 2] = far / (far - near)
|
| 38 |
ret[2, 3] = near * far / (near - far)
|
| 39 |
-
ret[3, 2] = 1.
|
| 40 |
return ret
|
| 41 |
|
| 42 |
|
|
@@ -47,25 +47,23 @@ class MeshRenderer:
|
|
| 47 |
Args:
|
| 48 |
rendering_options (dict): Rendering options.
|
| 49 |
glctx (nvdiffrast.torch.RasterizeGLContext): RasterizeGLContext object for CUDA/OpenGL interop.
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
"near": None,
|
| 55 |
-
|
| 56 |
-
"ssaa": 1
|
| 57 |
-
})
|
| 58 |
self.rendering_options.update(rendering_options)
|
| 59 |
self.glctx = dr.RasterizeCudaContext(device=device)
|
| 60 |
-
self.device=device
|
| 61 |
-
|
| 62 |
def render(
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
"""
|
| 70 |
Render the mesh.
|
| 71 |
|
|
@@ -87,51 +85,80 @@ class MeshRenderer:
|
|
| 87 |
near = self.rendering_options["near"]
|
| 88 |
far = self.rendering_options["far"]
|
| 89 |
ssaa = self.rendering_options["ssaa"]
|
| 90 |
-
|
| 91 |
if mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
| 92 |
-
default_img = torch.zeros(
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
return ret_dict
|
| 95 |
-
|
| 96 |
perspective = intrinsics_to_projection(intrinsics, near, far)
|
| 97 |
-
|
| 98 |
RT = extrinsics.unsqueeze(0)
|
| 99 |
full_proj = (perspective @ extrinsics).unsqueeze(0)
|
| 100 |
-
|
| 101 |
vertices = mesh.vertices.unsqueeze(0)
|
| 102 |
|
| 103 |
-
vertices_homo = torch.cat(
|
|
|
|
|
|
|
| 104 |
vertices_camera = torch.bmm(vertices_homo, RT.transpose(-1, -2))
|
| 105 |
vertices_clip = torch.bmm(vertices_homo, full_proj.transpose(-1, -2))
|
| 106 |
faces_int = mesh.faces.int()
|
| 107 |
rast, _ = dr.rasterize(
|
| 108 |
-
self.glctx, vertices_clip, faces_int, (resolution * ssaa, resolution * ssaa)
|
| 109 |
-
|
|
|
|
| 110 |
out_dict = edict()
|
| 111 |
for type in return_types:
|
| 112 |
img = None
|
| 113 |
-
if type == "mask"
|
| 114 |
-
img = dr.antialias(
|
|
|
|
|
|
|
| 115 |
elif type == "depth":
|
| 116 |
-
img = dr.interpolate(
|
|
|
|
|
|
|
| 117 |
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
| 118 |
-
elif type == "normal"
|
| 119 |
img = dr.interpolate(
|
| 120 |
-
mesh.face_normal.reshape(1, -1, 3),
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
| 122 |
)[0]
|
| 123 |
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
| 124 |
# normalize norm pictures
|
| 125 |
img = (img + 1) / 2
|
| 126 |
-
elif type == "normal_map"
|
| 127 |
-
img = dr.interpolate(
|
|
|
|
|
|
|
| 128 |
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
| 129 |
-
elif type == "color"
|
| 130 |
-
img = dr.interpolate(
|
|
|
|
|
|
|
| 131 |
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
| 132 |
|
| 133 |
if ssaa > 1:
|
| 134 |
-
img = F.interpolate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
img = img.squeeze()
|
| 136 |
else:
|
| 137 |
img = img.permute(0, 3, 1, 2).squeeze()
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def intrinsics_to_projection(
|
| 16 |
+
intrinsics: torch.Tensor,
|
| 17 |
+
near: float,
|
| 18 |
+
far: float,
|
| 19 |
+
) -> torch.Tensor:
|
| 20 |
"""
|
| 21 |
OpenCV intrinsics to OpenGL perspective matrix
|
| 22 |
|
|
|
|
| 33 |
ret[0, 0] = 2 * fx
|
| 34 |
ret[1, 1] = 2 * fy
|
| 35 |
ret[0, 2] = 2 * cx - 1
|
| 36 |
+
ret[1, 2] = -2 * cy + 1
|
| 37 |
ret[2, 2] = far / (far - near)
|
| 38 |
ret[2, 3] = near * far / (near - far)
|
| 39 |
+
ret[3, 2] = 1.0
|
| 40 |
return ret
|
| 41 |
|
| 42 |
|
|
|
|
| 47 |
Args:
|
| 48 |
rendering_options (dict): Rendering options.
|
| 49 |
glctx (nvdiffrast.torch.RasterizeGLContext): RasterizeGLContext object for CUDA/OpenGL interop.
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def __init__(self, rendering_options={}, device="cuda"):
|
| 53 |
+
self.rendering_options = edict(
|
| 54 |
+
{"resolution": None, "near": None, "far": None, "ssaa": 1}
|
| 55 |
+
)
|
|
|
|
|
|
|
| 56 |
self.rendering_options.update(rendering_options)
|
| 57 |
self.glctx = dr.RasterizeCudaContext(device=device)
|
| 58 |
+
self.device = device
|
| 59 |
+
|
| 60 |
def render(
|
| 61 |
+
self,
|
| 62 |
+
mesh: MeshExtractResult,
|
| 63 |
+
extrinsics: torch.Tensor,
|
| 64 |
+
intrinsics: torch.Tensor,
|
| 65 |
+
return_types=["mask", "normal", "depth"],
|
| 66 |
+
) -> edict:
|
| 67 |
"""
|
| 68 |
Render the mesh.
|
| 69 |
|
|
|
|
| 85 |
near = self.rendering_options["near"]
|
| 86 |
far = self.rendering_options["far"]
|
| 87 |
ssaa = self.rendering_options["ssaa"]
|
| 88 |
+
|
| 89 |
if mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
| 90 |
+
default_img = torch.zeros(
|
| 91 |
+
(1, resolution, resolution, 3), dtype=torch.float32, device=self.device
|
| 92 |
+
)
|
| 93 |
+
ret_dict = {
|
| 94 |
+
k: (
|
| 95 |
+
default_img
|
| 96 |
+
if k in ["normal", "normal_map", "color"]
|
| 97 |
+
else default_img[..., :1]
|
| 98 |
+
)
|
| 99 |
+
for k in return_types
|
| 100 |
+
}
|
| 101 |
return ret_dict
|
| 102 |
+
|
| 103 |
perspective = intrinsics_to_projection(intrinsics, near, far)
|
| 104 |
+
|
| 105 |
RT = extrinsics.unsqueeze(0)
|
| 106 |
full_proj = (perspective @ extrinsics).unsqueeze(0)
|
| 107 |
+
|
| 108 |
vertices = mesh.vertices.unsqueeze(0)
|
| 109 |
|
| 110 |
+
vertices_homo = torch.cat(
|
| 111 |
+
[vertices, torch.ones_like(vertices[..., :1])], dim=-1
|
| 112 |
+
)
|
| 113 |
vertices_camera = torch.bmm(vertices_homo, RT.transpose(-1, -2))
|
| 114 |
vertices_clip = torch.bmm(vertices_homo, full_proj.transpose(-1, -2))
|
| 115 |
faces_int = mesh.faces.int()
|
| 116 |
rast, _ = dr.rasterize(
|
| 117 |
+
self.glctx, vertices_clip, faces_int, (resolution * ssaa, resolution * ssaa)
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
out_dict = edict()
|
| 121 |
for type in return_types:
|
| 122 |
img = None
|
| 123 |
+
if type == "mask":
|
| 124 |
+
img = dr.antialias(
|
| 125 |
+
(rast[..., -1:] > 0).float(), rast, vertices_clip, faces_int
|
| 126 |
+
)
|
| 127 |
elif type == "depth":
|
| 128 |
+
img = dr.interpolate(
|
| 129 |
+
vertices_camera[..., 2:3].contiguous(), rast, faces_int
|
| 130 |
+
)[0]
|
| 131 |
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
| 132 |
+
elif type == "normal":
|
| 133 |
img = dr.interpolate(
|
| 134 |
+
mesh.face_normal.reshape(1, -1, 3),
|
| 135 |
+
rast,
|
| 136 |
+
torch.arange(
|
| 137 |
+
mesh.faces.shape[0] * 3, device=self.device, dtype=torch.int
|
| 138 |
+
).reshape(-1, 3),
|
| 139 |
)[0]
|
| 140 |
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
| 141 |
# normalize norm pictures
|
| 142 |
img = (img + 1) / 2
|
| 143 |
+
elif type == "normal_map":
|
| 144 |
+
img = dr.interpolate(
|
| 145 |
+
mesh.vertex_attrs[:, 3:].contiguous(), rast, faces_int
|
| 146 |
+
)[0]
|
| 147 |
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
| 148 |
+
elif type == "color":
|
| 149 |
+
img = dr.interpolate(
|
| 150 |
+
mesh.vertex_attrs[:, :3].contiguous(), rast, faces_int
|
| 151 |
+
)[0]
|
| 152 |
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
| 153 |
|
| 154 |
if ssaa > 1:
|
| 155 |
+
img = F.interpolate(
|
| 156 |
+
img.permute(0, 3, 1, 2),
|
| 157 |
+
(resolution, resolution),
|
| 158 |
+
mode="bilinear",
|
| 159 |
+
align_corners=False,
|
| 160 |
+
antialias=True,
|
| 161 |
+
)
|
| 162 |
img = img.squeeze()
|
| 163 |
else:
|
| 164 |
img = img.permute(0, 3, 1, 2).squeeze()
|
trellis/renderers/octree_renderer.py
CHANGED
|
@@ -9,10 +9,10 @@ from ..representations.octree import DfsOctree
|
|
| 9 |
|
| 10 |
|
| 11 |
def intrinsics_to_projection(
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
"""
|
| 17 |
OpenCV intrinsics to OpenGL perspective matrix
|
| 18 |
|
|
@@ -29,23 +29,38 @@ def intrinsics_to_projection(
|
|
| 29 |
ret[0, 0] = 2 * fx
|
| 30 |
ret[1, 1] = 2 * fy
|
| 31 |
ret[0, 2] = 2 * cx - 1
|
| 32 |
-
ret[1, 2] = -
|
| 33 |
ret[2, 2] = far / (far - near)
|
| 34 |
ret[2, 3] = near * far / (near - far)
|
| 35 |
-
ret[3, 2] = 1.
|
| 36 |
return ret
|
| 37 |
|
| 38 |
|
| 39 |
-
def render(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
"""
|
| 41 |
-
Render the scene.
|
| 42 |
-
|
| 43 |
Background tensor (bg_color) must be on GPU!
|
| 44 |
"""
|
| 45 |
# lazy import
|
| 46 |
-
if
|
| 47 |
-
from diffoctreerast import
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# Set up rasterization configuration
|
| 50 |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
| 51 |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
|
@@ -96,69 +111,73 @@ def render(viewpoint_camera, octree : DfsOctree, pipe, bg_color : torch.Tensor,
|
|
| 96 |
if octree.primitive == "voxel":
|
| 97 |
renderer = OctreeVoxelRasterizer(raster_settings=raster_settings)
|
| 98 |
rgb, depth, alpha, distloss = renderer(
|
| 99 |
-
positions
|
| 100 |
-
densities
|
| 101 |
-
shs
|
| 102 |
-
colors_precomp
|
| 103 |
-
depths
|
| 104 |
-
aabb
|
| 105 |
-
aux
|
| 106 |
)
|
| 107 |
-
ret[
|
| 108 |
-
ret[
|
| 109 |
-
ret[
|
| 110 |
-
ret[
|
| 111 |
elif octree.primitive == "gaussian":
|
| 112 |
renderer = OctreeGaussianRasterizer(raster_settings=raster_settings)
|
| 113 |
rgb, depth, alpha = renderer(
|
| 114 |
-
positions
|
| 115 |
-
opacities
|
| 116 |
-
shs
|
| 117 |
-
colors_precomp
|
| 118 |
-
depths
|
| 119 |
-
aabb
|
| 120 |
-
aux
|
| 121 |
)
|
| 122 |
-
ret[
|
| 123 |
-
ret[
|
| 124 |
-
ret[
|
| 125 |
elif octree.primitive == "trivec":
|
| 126 |
-
raster_settings.used_rank =
|
|
|
|
|
|
|
| 127 |
renderer = OctreeTrivecRasterizer(raster_settings=raster_settings)
|
| 128 |
rgb, depth, alpha, percent_depth = renderer(
|
| 129 |
-
positions
|
| 130 |
-
trivecs
|
| 131 |
-
densities
|
| 132 |
-
shs
|
| 133 |
-
colors_precomp
|
| 134 |
-
colors_overwrite
|
| 135 |
-
depths
|
| 136 |
-
aabb
|
| 137 |
-
aux
|
| 138 |
-
halton_sampler
|
| 139 |
)
|
| 140 |
-
ret[
|
| 141 |
-
ret[
|
| 142 |
-
ret[
|
| 143 |
-
ret[
|
| 144 |
elif octree.primitive == "decoupoly":
|
| 145 |
-
raster_settings.used_rank =
|
|
|
|
|
|
|
| 146 |
renderer = OctreeDecoupolyRasterizer(raster_settings=raster_settings)
|
| 147 |
rgb, depth, alpha = renderer(
|
| 148 |
-
positions
|
| 149 |
-
decoupolys_V
|
| 150 |
-
decoupolys_g
|
| 151 |
-
densities
|
| 152 |
-
shs
|
| 153 |
-
colors_precomp
|
| 154 |
-
depths
|
| 155 |
-
aabb
|
| 156 |
-
aux
|
| 157 |
)
|
| 158 |
-
ret[
|
| 159 |
-
ret[
|
| 160 |
-
ret[
|
| 161 |
-
|
| 162 |
return ret
|
| 163 |
|
| 164 |
|
|
@@ -174,37 +193,43 @@ class OctreeRenderer:
|
|
| 174 |
try:
|
| 175 |
import diffoctreerast
|
| 176 |
except ImportError:
|
| 177 |
-
print(
|
|
|
|
|
|
|
| 178 |
self.unsupported = True
|
| 179 |
else:
|
| 180 |
self.unsupported = False
|
| 181 |
-
|
| 182 |
-
self.pipe = edict(
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
self.halton_sampler = qmc.Halton(2, scramble=False)
|
| 198 |
self.rendering_options.update(rendering_options)
|
| 199 |
self.bg_color = None
|
| 200 |
-
|
| 201 |
def render(
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
"""
|
| 209 |
Render the octree.
|
| 210 |
|
|
@@ -227,27 +252,53 @@ class OctreeRenderer:
|
|
| 227 |
near = self.rendering_options["near"]
|
| 228 |
far = self.rendering_options["far"]
|
| 229 |
ssaa = self.rendering_options["ssaa"]
|
| 230 |
-
|
| 231 |
if self.unsupported:
|
| 232 |
image = np.zeros((512, 512, 3), dtype=np.uint8)
|
| 233 |
-
text_bbox = cv2.getTextSize("Unsupported", cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[
|
|
|
|
|
|
|
| 234 |
origin = (512 - text_bbox[0]) // 2, (512 - text_bbox[1]) // 2
|
| 235 |
-
image = cv2.putText(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
return {
|
| 237 |
-
|
|
|
|
| 238 |
}
|
| 239 |
-
|
| 240 |
-
if self.rendering_options["bg_color"] ==
|
| 241 |
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
|
| 242 |
if np.random.rand() < 0.5:
|
| 243 |
self.bg_color += 1
|
| 244 |
else:
|
| 245 |
-
self.bg_color = torch.tensor(
|
|
|
|
|
|
|
| 246 |
|
| 247 |
if self.pipe["with_aux"]:
|
| 248 |
aux = {
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
}
|
| 252 |
for k in aux.keys():
|
| 253 |
aux[k].requires_grad_()
|
|
@@ -262,39 +313,77 @@ class OctreeRenderer:
|
|
| 262 |
focaly = intrinsics[1, 1]
|
| 263 |
fovx = 2 * torch.atan(0.5 / focalx)
|
| 264 |
fovy = 2 * torch.atan(0.5 / focaly)
|
| 265 |
-
|
| 266 |
-
camera_dict = edict(
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
| 278 |
|
| 279 |
# Render
|
| 280 |
-
render_ret = render(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
if ssaa > 1:
|
| 283 |
-
render_ret.rgb = F.interpolate(
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
ret = edict(
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
| 296 |
if self.pipe["with_aux"]:
|
| 297 |
-
ret[
|
| 298 |
-
if hasattr(render_ret,
|
| 299 |
-
ret[
|
| 300 |
return ret
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
def intrinsics_to_projection(
|
| 12 |
+
intrinsics: torch.Tensor,
|
| 13 |
+
near: float,
|
| 14 |
+
far: float,
|
| 15 |
+
) -> torch.Tensor:
|
| 16 |
"""
|
| 17 |
OpenCV intrinsics to OpenGL perspective matrix
|
| 18 |
|
|
|
|
| 29 |
ret[0, 0] = 2 * fx
|
| 30 |
ret[1, 1] = 2 * fy
|
| 31 |
ret[0, 2] = 2 * cx - 1
|
| 32 |
+
ret[1, 2] = -2 * cy + 1
|
| 33 |
ret[2, 2] = far / (far - near)
|
| 34 |
ret[2, 3] = near * far / (near - far)
|
| 35 |
+
ret[3, 2] = 1.0
|
| 36 |
return ret
|
| 37 |
|
| 38 |
|
| 39 |
+
def render(
|
| 40 |
+
viewpoint_camera,
|
| 41 |
+
octree: DfsOctree,
|
| 42 |
+
pipe,
|
| 43 |
+
bg_color: torch.Tensor,
|
| 44 |
+
scaling_modifier=1.0,
|
| 45 |
+
used_rank=None,
|
| 46 |
+
colors_overwrite=None,
|
| 47 |
+
aux=None,
|
| 48 |
+
halton_sampler=None,
|
| 49 |
+
):
|
| 50 |
"""
|
| 51 |
+
Render the scene.
|
| 52 |
+
|
| 53 |
Background tensor (bg_color) must be on GPU!
|
| 54 |
"""
|
| 55 |
# lazy import
|
| 56 |
+
if "OctreeTrivecRasterizer" not in globals():
|
| 57 |
+
from diffoctreerast import (
|
| 58 |
+
OctreeVoxelRasterizer,
|
| 59 |
+
OctreeGaussianRasterizer,
|
| 60 |
+
OctreeTrivecRasterizer,
|
| 61 |
+
OctreeDecoupolyRasterizer,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
# Set up rasterization configuration
|
| 65 |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
| 66 |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
|
|
|
| 111 |
if octree.primitive == "voxel":
|
| 112 |
renderer = OctreeVoxelRasterizer(raster_settings=raster_settings)
|
| 113 |
rgb, depth, alpha, distloss = renderer(
|
| 114 |
+
positions=positions,
|
| 115 |
+
densities=densities,
|
| 116 |
+
shs=shs,
|
| 117 |
+
colors_precomp=colors_precomp,
|
| 118 |
+
depths=depths,
|
| 119 |
+
aabb=octree.aabb,
|
| 120 |
+
aux=aux,
|
| 121 |
)
|
| 122 |
+
ret["rgb"] = rgb
|
| 123 |
+
ret["depth"] = depth
|
| 124 |
+
ret["alpha"] = alpha
|
| 125 |
+
ret["distloss"] = distloss
|
| 126 |
elif octree.primitive == "gaussian":
|
| 127 |
renderer = OctreeGaussianRasterizer(raster_settings=raster_settings)
|
| 128 |
rgb, depth, alpha = renderer(
|
| 129 |
+
positions=positions,
|
| 130 |
+
opacities=opacities,
|
| 131 |
+
shs=shs,
|
| 132 |
+
colors_precomp=colors_precomp,
|
| 133 |
+
depths=depths,
|
| 134 |
+
aabb=octree.aabb,
|
| 135 |
+
aux=aux,
|
| 136 |
)
|
| 137 |
+
ret["rgb"] = rgb
|
| 138 |
+
ret["depth"] = depth
|
| 139 |
+
ret["alpha"] = alpha
|
| 140 |
elif octree.primitive == "trivec":
|
| 141 |
+
raster_settings.used_rank = (
|
| 142 |
+
used_rank if used_rank is not None else trivecs.shape[1]
|
| 143 |
+
)
|
| 144 |
renderer = OctreeTrivecRasterizer(raster_settings=raster_settings)
|
| 145 |
rgb, depth, alpha, percent_depth = renderer(
|
| 146 |
+
positions=positions,
|
| 147 |
+
trivecs=trivecs,
|
| 148 |
+
densities=densities,
|
| 149 |
+
shs=shs,
|
| 150 |
+
colors_precomp=colors_precomp,
|
| 151 |
+
colors_overwrite=colors_overwrite,
|
| 152 |
+
depths=depths,
|
| 153 |
+
aabb=octree.aabb,
|
| 154 |
+
aux=aux,
|
| 155 |
+
halton_sampler=halton_sampler,
|
| 156 |
)
|
| 157 |
+
ret["percent_depth"] = percent_depth
|
| 158 |
+
ret["rgb"] = rgb
|
| 159 |
+
ret["depth"] = depth
|
| 160 |
+
ret["alpha"] = alpha
|
| 161 |
elif octree.primitive == "decoupoly":
|
| 162 |
+
raster_settings.used_rank = (
|
| 163 |
+
used_rank if used_rank is not None else decoupolys_V.shape[1]
|
| 164 |
+
)
|
| 165 |
renderer = OctreeDecoupolyRasterizer(raster_settings=raster_settings)
|
| 166 |
rgb, depth, alpha = renderer(
|
| 167 |
+
positions=positions,
|
| 168 |
+
decoupolys_V=decoupolys_V,
|
| 169 |
+
decoupolys_g=decoupolys_g,
|
| 170 |
+
densities=densities,
|
| 171 |
+
shs=shs,
|
| 172 |
+
colors_precomp=colors_precomp,
|
| 173 |
+
depths=depths,
|
| 174 |
+
aabb=octree.aabb,
|
| 175 |
+
aux=aux,
|
| 176 |
)
|
| 177 |
+
ret["rgb"] = rgb
|
| 178 |
+
ret["depth"] = depth
|
| 179 |
+
ret["alpha"] = alpha
|
| 180 |
+
|
| 181 |
return ret
|
| 182 |
|
| 183 |
|
|
|
|
| 193 |
try:
|
| 194 |
import diffoctreerast
|
| 195 |
except ImportError:
|
| 196 |
+
print(
|
| 197 |
+
"\033[93m[WARNING] diffoctreerast is not installed. The renderer will be disabled.\033[0m"
|
| 198 |
+
)
|
| 199 |
self.unsupported = True
|
| 200 |
else:
|
| 201 |
self.unsupported = False
|
| 202 |
+
|
| 203 |
+
self.pipe = edict(
|
| 204 |
+
{
|
| 205 |
+
"with_distloss": False,
|
| 206 |
+
"with_aux": False,
|
| 207 |
+
"scale_modifier": 1.0,
|
| 208 |
+
"used_rank": None,
|
| 209 |
+
"jitter": False,
|
| 210 |
+
"debug": False,
|
| 211 |
+
}
|
| 212 |
+
)
|
| 213 |
+
self.rendering_options = edict(
|
| 214 |
+
{
|
| 215 |
+
"resolution": None,
|
| 216 |
+
"near": None,
|
| 217 |
+
"far": None,
|
| 218 |
+
"ssaa": 1,
|
| 219 |
+
"bg_color": "random",
|
| 220 |
+
}
|
| 221 |
+
)
|
| 222 |
self.halton_sampler = qmc.Halton(2, scramble=False)
|
| 223 |
self.rendering_options.update(rendering_options)
|
| 224 |
self.bg_color = None
|
| 225 |
+
|
| 226 |
def render(
|
| 227 |
+
self,
|
| 228 |
+
octree: DfsOctree,
|
| 229 |
+
extrinsics: torch.Tensor,
|
| 230 |
+
intrinsics: torch.Tensor,
|
| 231 |
+
colors_overwrite: torch.Tensor = None,
|
| 232 |
+
) -> edict:
|
| 233 |
"""
|
| 234 |
Render the octree.
|
| 235 |
|
|
|
|
| 252 |
near = self.rendering_options["near"]
|
| 253 |
far = self.rendering_options["far"]
|
| 254 |
ssaa = self.rendering_options["ssaa"]
|
| 255 |
+
|
| 256 |
if self.unsupported:
|
| 257 |
image = np.zeros((512, 512, 3), dtype=np.uint8)
|
| 258 |
+
text_bbox = cv2.getTextSize("Unsupported", cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[
|
| 259 |
+
0
|
| 260 |
+
]
|
| 261 |
origin = (512 - text_bbox[0]) // 2, (512 - text_bbox[1]) // 2
|
| 262 |
+
image = cv2.putText(
|
| 263 |
+
image,
|
| 264 |
+
"Unsupported",
|
| 265 |
+
origin,
|
| 266 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 267 |
+
2,
|
| 268 |
+
(255, 255, 255),
|
| 269 |
+
3,
|
| 270 |
+
cv2.LINE_AA,
|
| 271 |
+
)
|
| 272 |
return {
|
| 273 |
+
"color": torch.tensor(image, dtype=torch.float32).permute(2, 0, 1)
|
| 274 |
+
/ 255,
|
| 275 |
}
|
| 276 |
+
|
| 277 |
+
if self.rendering_options["bg_color"] == "random":
|
| 278 |
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
|
| 279 |
if np.random.rand() < 0.5:
|
| 280 |
self.bg_color += 1
|
| 281 |
else:
|
| 282 |
+
self.bg_color = torch.tensor(
|
| 283 |
+
self.rendering_options["bg_color"], dtype=torch.float32, device="cuda"
|
| 284 |
+
)
|
| 285 |
|
| 286 |
if self.pipe["with_aux"]:
|
| 287 |
aux = {
|
| 288 |
+
"grad_color2": torch.zeros(
|
| 289 |
+
(octree.num_leaf_nodes, 3),
|
| 290 |
+
dtype=torch.float32,
|
| 291 |
+
requires_grad=True,
|
| 292 |
+
device="cuda",
|
| 293 |
+
)
|
| 294 |
+
+ 0,
|
| 295 |
+
"contributions": torch.zeros(
|
| 296 |
+
(octree.num_leaf_nodes, 1),
|
| 297 |
+
dtype=torch.float32,
|
| 298 |
+
requires_grad=True,
|
| 299 |
+
device="cuda",
|
| 300 |
+
)
|
| 301 |
+
+ 0,
|
| 302 |
}
|
| 303 |
for k in aux.keys():
|
| 304 |
aux[k].requires_grad_()
|
|
|
|
| 313 |
focaly = intrinsics[1, 1]
|
| 314 |
fovx = 2 * torch.atan(0.5 / focalx)
|
| 315 |
fovy = 2 * torch.atan(0.5 / focaly)
|
| 316 |
+
|
| 317 |
+
camera_dict = edict(
|
| 318 |
+
{
|
| 319 |
+
"image_height": resolution * ssaa,
|
| 320 |
+
"image_width": resolution * ssaa,
|
| 321 |
+
"FoVx": fovx,
|
| 322 |
+
"FoVy": fovy,
|
| 323 |
+
"znear": near,
|
| 324 |
+
"zfar": far,
|
| 325 |
+
"world_view_transform": view.T.contiguous(),
|
| 326 |
+
"projection_matrix": perspective.T.contiguous(),
|
| 327 |
+
"full_proj_transform": (perspective @ view).T.contiguous(),
|
| 328 |
+
"camera_center": camera,
|
| 329 |
+
}
|
| 330 |
+
)
|
| 331 |
|
| 332 |
# Render
|
| 333 |
+
render_ret = render(
|
| 334 |
+
camera_dict,
|
| 335 |
+
octree,
|
| 336 |
+
self.pipe,
|
| 337 |
+
self.bg_color,
|
| 338 |
+
aux=aux,
|
| 339 |
+
colors_overwrite=colors_overwrite,
|
| 340 |
+
scaling_modifier=self.pipe.scale_modifier,
|
| 341 |
+
used_rank=self.pipe.used_rank,
|
| 342 |
+
halton_sampler=self.halton_sampler,
|
| 343 |
+
)
|
| 344 |
|
| 345 |
if ssaa > 1:
|
| 346 |
+
render_ret.rgb = F.interpolate(
|
| 347 |
+
render_ret.rgb[None],
|
| 348 |
+
size=(resolution, resolution),
|
| 349 |
+
mode="bilinear",
|
| 350 |
+
align_corners=False,
|
| 351 |
+
antialias=True,
|
| 352 |
+
).squeeze()
|
| 353 |
+
render_ret.depth = F.interpolate(
|
| 354 |
+
render_ret.depth[None, None],
|
| 355 |
+
size=(resolution, resolution),
|
| 356 |
+
mode="bilinear",
|
| 357 |
+
align_corners=False,
|
| 358 |
+
antialias=True,
|
| 359 |
+
).squeeze()
|
| 360 |
+
render_ret.alpha = F.interpolate(
|
| 361 |
+
render_ret.alpha[None, None],
|
| 362 |
+
size=(resolution, resolution),
|
| 363 |
+
mode="bilinear",
|
| 364 |
+
align_corners=False,
|
| 365 |
+
antialias=True,
|
| 366 |
+
).squeeze()
|
| 367 |
+
if hasattr(render_ret, "percent_depth"):
|
| 368 |
+
render_ret.percent_depth = F.interpolate(
|
| 369 |
+
render_ret.percent_depth[None, None],
|
| 370 |
+
size=(resolution, resolution),
|
| 371 |
+
mode="bilinear",
|
| 372 |
+
align_corners=False,
|
| 373 |
+
antialias=True,
|
| 374 |
+
).squeeze()
|
| 375 |
|
| 376 |
+
ret = edict(
|
| 377 |
+
{
|
| 378 |
+
"color": render_ret.rgb,
|
| 379 |
+
"depth": render_ret.depth,
|
| 380 |
+
"alpha": render_ret.alpha,
|
| 381 |
+
}
|
| 382 |
+
)
|
| 383 |
+
if self.pipe["with_distloss"] and "distloss" in render_ret:
|
| 384 |
+
ret["distloss"] = render_ret.distloss
|
| 385 |
if self.pipe["with_aux"]:
|
| 386 |
+
ret["aux"] = aux
|
| 387 |
+
if hasattr(render_ret, "percent_depth"):
|
| 388 |
+
ret["percent_depth"] = render_ret.percent_depth
|
| 389 |
return ret
|
trellis/renderers/sh_utils.py
CHANGED
|
@@ -30,7 +30,7 @@ C2 = [
|
|
| 30 |
-1.0925484305920792,
|
| 31 |
0.31539156525252005,
|
| 32 |
-1.0925484305920792,
|
| 33 |
-
0.5462742152960396
|
| 34 |
]
|
| 35 |
C3 = [
|
| 36 |
-0.5900435899266435,
|
|
@@ -39,7 +39,7 @@ C3 = [
|
|
| 39 |
0.3731763325901154,
|
| 40 |
-0.4570457994644658,
|
| 41 |
1.445305721320277,
|
| 42 |
-
-0.5900435899266435
|
| 43 |
]
|
| 44 |
C4 = [
|
| 45 |
2.5033429417967046,
|
|
@@ -51,7 +51,7 @@ C4 = [
|
|
| 51 |
0.47308734787878004,
|
| 52 |
-1.7701307697799304,
|
| 53 |
0.6258357354491761,
|
| 54 |
-
]
|
| 55 |
|
| 56 |
|
| 57 |
def eval_sh(deg, sh, dirs):
|
|
@@ -74,45 +74,55 @@ def eval_sh(deg, sh, dirs):
|
|
| 74 |
result = C0 * sh[..., 0]
|
| 75 |
if deg > 0:
|
| 76 |
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
|
| 77 |
-
result = (
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
C1 * x * sh[..., 3])
|
| 81 |
|
| 82 |
if deg > 1:
|
| 83 |
xx, yy, zz = x * x, y * y, z * z
|
| 84 |
xy, yz, xz = x * y, y * z, x * z
|
| 85 |
-
result = (
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
|
| 92 |
if deg > 2:
|
| 93 |
-
result = (
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
| 101 |
|
| 102 |
if deg > 3:
|
| 103 |
-
result = (
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
return result
|
| 113 |
|
|
|
|
| 114 |
def RGB2SH(rgb):
|
| 115 |
return (rgb - 0.5) / C0
|
| 116 |
|
|
|
|
| 117 |
def SH2RGB(sh):
|
| 118 |
-
return sh * C0 + 0.5
|
|
|
|
| 30 |
-1.0925484305920792,
|
| 31 |
0.31539156525252005,
|
| 32 |
-1.0925484305920792,
|
| 33 |
+
0.5462742152960396,
|
| 34 |
]
|
| 35 |
C3 = [
|
| 36 |
-0.5900435899266435,
|
|
|
|
| 39 |
0.3731763325901154,
|
| 40 |
-0.4570457994644658,
|
| 41 |
1.445305721320277,
|
| 42 |
+
-0.5900435899266435,
|
| 43 |
]
|
| 44 |
C4 = [
|
| 45 |
2.5033429417967046,
|
|
|
|
| 51 |
0.47308734787878004,
|
| 52 |
-1.7701307697799304,
|
| 53 |
0.6258357354491761,
|
| 54 |
+
]
|
| 55 |
|
| 56 |
|
| 57 |
def eval_sh(deg, sh, dirs):
|
|
|
|
| 74 |
result = C0 * sh[..., 0]
|
| 75 |
if deg > 0:
|
| 76 |
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
|
| 77 |
+
result = (
|
| 78 |
+
result - C1 * y * sh[..., 1] + C1 * z * sh[..., 2] - C1 * x * sh[..., 3]
|
| 79 |
+
)
|
|
|
|
| 80 |
|
| 81 |
if deg > 1:
|
| 82 |
xx, yy, zz = x * x, y * y, z * z
|
| 83 |
xy, yz, xz = x * y, y * z, x * z
|
| 84 |
+
result = (
|
| 85 |
+
result
|
| 86 |
+
+ C2[0] * xy * sh[..., 4]
|
| 87 |
+
+ C2[1] * yz * sh[..., 5]
|
| 88 |
+
+ C2[2] * (2.0 * zz - xx - yy) * sh[..., 6]
|
| 89 |
+
+ C2[3] * xz * sh[..., 7]
|
| 90 |
+
+ C2[4] * (xx - yy) * sh[..., 8]
|
| 91 |
+
)
|
| 92 |
|
| 93 |
if deg > 2:
|
| 94 |
+
result = (
|
| 95 |
+
result
|
| 96 |
+
+ C3[0] * y * (3 * xx - yy) * sh[..., 9]
|
| 97 |
+
+ C3[1] * xy * z * sh[..., 10]
|
| 98 |
+
+ C3[2] * y * (4 * zz - xx - yy) * sh[..., 11]
|
| 99 |
+
+ C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12]
|
| 100 |
+
+ C3[4] * x * (4 * zz - xx - yy) * sh[..., 13]
|
| 101 |
+
+ C3[5] * z * (xx - yy) * sh[..., 14]
|
| 102 |
+
+ C3[6] * x * (xx - 3 * yy) * sh[..., 15]
|
| 103 |
+
)
|
| 104 |
|
| 105 |
if deg > 3:
|
| 106 |
+
result = (
|
| 107 |
+
result
|
| 108 |
+
+ C4[0] * xy * (xx - yy) * sh[..., 16]
|
| 109 |
+
+ C4[1] * yz * (3 * xx - yy) * sh[..., 17]
|
| 110 |
+
+ C4[2] * xy * (7 * zz - 1) * sh[..., 18]
|
| 111 |
+
+ C4[3] * yz * (7 * zz - 3) * sh[..., 19]
|
| 112 |
+
+ C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20]
|
| 113 |
+
+ C4[5] * xz * (7 * zz - 3) * sh[..., 21]
|
| 114 |
+
+ C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22]
|
| 115 |
+
+ C4[7] * xz * (xx - 3 * yy) * sh[..., 23]
|
| 116 |
+
+ C4[8]
|
| 117 |
+
* (xx * (xx - 3 * yy) - yy * (3 * xx - yy))
|
| 118 |
+
* sh[..., 24]
|
| 119 |
+
)
|
| 120 |
return result
|
| 121 |
|
| 122 |
+
|
| 123 |
def RGB2SH(rgb):
|
| 124 |
return (rgb - 0.5) / C0
|
| 125 |
|
| 126 |
+
|
| 127 |
def SH2RGB(sh):
|
| 128 |
+
return sh * C0 + 0.5
|
trellis/representations/gaussian/__init__.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
from .gaussian_model import Gaussian
|
|
|
|
| 1 |
+
from .gaussian_model import Gaussian
|
trellis/representations/gaussian/gaussian_model.py
CHANGED
|
@@ -7,27 +7,27 @@ import utils3d
|
|
| 7 |
|
| 8 |
class Gaussian:
|
| 9 |
def __init__(
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
self.init_params = {
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
}
|
| 27 |
-
|
| 28 |
self.sh_degree = sh_degree
|
| 29 |
self.active_sh_degree = sh_degree
|
| 30 |
-
self.mininum_kernel_size = mininum_kernel_size
|
| 31 |
self.scaling_bias = scaling_bias
|
| 32 |
self.opacity_bias = opacity_bias
|
| 33 |
self.scaling_activation_type = scaling_activation
|
|
@@ -48,7 +48,7 @@ class Gaussian:
|
|
| 48 |
actual_covariance = L @ L.transpose(1, 2)
|
| 49 |
symm = strip_symmetric(actual_covariance)
|
| 50 |
return symm
|
| 51 |
-
|
| 52 |
if self.scaling_activation_type == "exp":
|
| 53 |
self.scaling_activation = torch.exp
|
| 54 |
self.inverse_scaling_activation = torch.log
|
|
@@ -62,74 +62,91 @@ class Gaussian:
|
|
| 62 |
self.inverse_opacity_activation = inverse_sigmoid
|
| 63 |
|
| 64 |
self.rotation_activation = torch.nn.functional.normalize
|
| 65 |
-
|
| 66 |
-
self.scale_bias = self.inverse_scaling_activation(
|
|
|
|
|
|
|
| 67 |
self.rots_bias = torch.zeros((4)).cuda()
|
| 68 |
self.rots_bias[0] = 1
|
| 69 |
-
self.opacity_bias = self.inverse_opacity_activation(
|
|
|
|
|
|
|
| 70 |
|
| 71 |
@property
|
| 72 |
def get_scaling(self):
|
| 73 |
scales = self.scaling_activation(self._scaling + self.scale_bias)
|
| 74 |
-
scales = torch.square(scales) + self.mininum_kernel_size
|
| 75 |
scales = torch.sqrt(scales)
|
| 76 |
return scales
|
| 77 |
-
|
| 78 |
@property
|
| 79 |
def get_rotation(self):
|
| 80 |
return self.rotation_activation(self._rotation + self.rots_bias[None, :])
|
| 81 |
-
|
| 82 |
@property
|
| 83 |
def get_xyz(self):
|
| 84 |
return self._xyz * self.aabb[None, 3:] + self.aabb[None, :3]
|
| 85 |
-
|
| 86 |
@property
|
| 87 |
def get_features(self):
|
| 88 |
-
return
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
@property
|
| 91 |
def get_opacity(self):
|
| 92 |
return self.opacity_activation(self._opacity + self.opacity_bias)
|
| 93 |
-
|
| 94 |
-
def get_covariance(self, scaling_modifier
|
| 95 |
-
return self.covariance_activation(
|
| 96 |
-
|
|
|
|
|
|
|
| 97 |
def from_scaling(self, scales):
|
| 98 |
-
scales = torch.sqrt(torch.square(scales) - self.mininum_kernel_size
|
| 99 |
self._scaling = self.inverse_scaling_activation(scales) - self.scale_bias
|
| 100 |
-
|
| 101 |
def from_rotation(self, rots):
|
| 102 |
self._rotation = rots - self.rots_bias[None, :]
|
| 103 |
-
|
| 104 |
def from_xyz(self, xyz):
|
| 105 |
self._xyz = (xyz - self.aabb[None, :3]) / self.aabb[None, 3:]
|
| 106 |
-
|
| 107 |
def from_features(self, features):
|
| 108 |
self._features_dc = features
|
| 109 |
-
|
| 110 |
def from_opacity(self, opacities):
|
| 111 |
self._opacity = self.inverse_opacity_activation(opacities) - self.opacity_bias
|
| 112 |
|
| 113 |
def construct_list_of_attributes(self):
|
| 114 |
-
l = [
|
| 115 |
# All channels except the 3 DC
|
| 116 |
-
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
|
| 117 |
-
l.append(
|
| 118 |
-
l.append(
|
| 119 |
for i in range(self._scaling.shape[1]):
|
| 120 |
-
l.append(
|
| 121 |
for i in range(self._rotation.shape[1]):
|
| 122 |
-
l.append(
|
| 123 |
return l
|
| 124 |
-
|
| 125 |
def save_ply(self, path, transform=[[1, 0, 0], [0, 0, -1], [0, 1, 0]]):
|
| 126 |
xyz = self.get_xyz.detach().cpu().numpy()
|
| 127 |
normals = np.zeros_like(xyz)
|
| 128 |
-
f_dc =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
opacities = inverse_sigmoid(self.get_opacity).detach().cpu().numpy()
|
| 130 |
scale = torch.log(self.get_scaling).detach().cpu().numpy()
|
| 131 |
rotation = (self._rotation + self.rots_bias[None, :]).detach().cpu().numpy()
|
| 132 |
-
|
| 133 |
if transform is not None:
|
| 134 |
transform = np.array(transform)
|
| 135 |
xyz = np.matmul(xyz, transform.T)
|
|
@@ -137,20 +154,29 @@ class Gaussian:
|
|
| 137 |
rotation = np.matmul(transform, rotation)
|
| 138 |
rotation = utils3d.numpy.matrix_to_quaternion(rotation)
|
| 139 |
|
| 140 |
-
dtype_full = [
|
|
|
|
|
|
|
| 141 |
|
| 142 |
elements = np.empty(xyz.shape[0], dtype=dtype_full)
|
| 143 |
-
attributes = np.concatenate(
|
|
|
|
|
|
|
| 144 |
elements[:] = list(map(tuple, attributes))
|
| 145 |
-
el = PlyElement.describe(elements,
|
| 146 |
PlyData([el]).write(path)
|
| 147 |
|
| 148 |
def load_ply(self, path, transform=[[1, 0, 0], [0, 0, -1], [0, 1, 0]]):
|
| 149 |
plydata = PlyData.read(path)
|
| 150 |
|
| 151 |
-
xyz = np.stack(
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
|
| 155 |
|
| 156 |
features_dc = np.zeros((xyz.shape[0], 3, 1))
|
|
@@ -159,43 +185,65 @@ class Gaussian:
|
|
| 159 |
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
|
| 160 |
|
| 161 |
if self.sh_degree > 0:
|
| 162 |
-
extra_f_names = [
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
|
| 166 |
for idx, attr_name in enumerate(extra_f_names):
|
| 167 |
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 168 |
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
|
| 169 |
-
features_extra = features_extra.reshape(
|
|
|
|
|
|
|
| 170 |
|
| 171 |
-
scale_names = [
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
scales = np.zeros((xyz.shape[0], len(scale_names)))
|
| 174 |
for idx, attr_name in enumerate(scale_names):
|
| 175 |
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 176 |
|
| 177 |
-
rot_names = [
|
| 178 |
-
|
|
|
|
|
|
|
| 179 |
rots = np.zeros((xyz.shape[0], len(rot_names)))
|
| 180 |
for idx, attr_name in enumerate(rot_names):
|
| 181 |
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 182 |
-
|
| 183 |
if transform is not None:
|
| 184 |
transform = np.array(transform)
|
| 185 |
xyz = np.matmul(xyz, transform)
|
| 186 |
rotation = utils3d.numpy.quaternion_to_matrix(rotation)
|
| 187 |
rotation = np.matmul(rotation, transform)
|
| 188 |
rotation = utils3d.numpy.matrix_to_quaternion(rotation)
|
| 189 |
-
|
| 190 |
# convert to actual gaussian attributes
|
| 191 |
xyz = torch.tensor(xyz, dtype=torch.float, device=self.device)
|
| 192 |
-
features_dc =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
if self.sh_degree > 0:
|
| 194 |
-
features_extra =
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
scales = torch.exp(torch.tensor(scales, dtype=torch.float, device=self.device))
|
| 197 |
rots = torch.tensor(rots, dtype=torch.float, device=self.device)
|
| 198 |
-
|
| 199 |
# convert to _hidden attributes
|
| 200 |
self._xyz = (xyz - self.aabb[None, :3]) / self.aabb[None, 3:]
|
| 201 |
self._features_dc = features_dc
|
|
@@ -204,6 +252,10 @@ class Gaussian:
|
|
| 204 |
else:
|
| 205 |
self._features_rest = None
|
| 206 |
self._opacity = self.inverse_opacity_activation(opacities) - self.opacity_bias
|
| 207 |
-
self._scaling =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
self._rotation = rots - self.rots_bias[None, :]
|
| 209 |
-
|
|
|
|
| 7 |
|
| 8 |
class Gaussian:
|
| 9 |
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
aabb: list,
|
| 12 |
+
sh_degree: int = 0,
|
| 13 |
+
mininum_kernel_size: float = 0.0,
|
| 14 |
+
scaling_bias: float = 0.01,
|
| 15 |
+
opacity_bias: float = 0.1,
|
| 16 |
+
scaling_activation: str = "exp",
|
| 17 |
+
device="cuda",
|
| 18 |
+
):
|
| 19 |
self.init_params = {
|
| 20 |
+
"aabb": aabb,
|
| 21 |
+
"sh_degree": sh_degree,
|
| 22 |
+
"mininum_kernel_size": mininum_kernel_size,
|
| 23 |
+
"scaling_bias": scaling_bias,
|
| 24 |
+
"opacity_bias": opacity_bias,
|
| 25 |
+
"scaling_activation": scaling_activation,
|
| 26 |
}
|
| 27 |
+
|
| 28 |
self.sh_degree = sh_degree
|
| 29 |
self.active_sh_degree = sh_degree
|
| 30 |
+
self.mininum_kernel_size = mininum_kernel_size
|
| 31 |
self.scaling_bias = scaling_bias
|
| 32 |
self.opacity_bias = opacity_bias
|
| 33 |
self.scaling_activation_type = scaling_activation
|
|
|
|
| 48 |
actual_covariance = L @ L.transpose(1, 2)
|
| 49 |
symm = strip_symmetric(actual_covariance)
|
| 50 |
return symm
|
| 51 |
+
|
| 52 |
if self.scaling_activation_type == "exp":
|
| 53 |
self.scaling_activation = torch.exp
|
| 54 |
self.inverse_scaling_activation = torch.log
|
|
|
|
| 62 |
self.inverse_opacity_activation = inverse_sigmoid
|
| 63 |
|
| 64 |
self.rotation_activation = torch.nn.functional.normalize
|
| 65 |
+
|
| 66 |
+
self.scale_bias = self.inverse_scaling_activation(
|
| 67 |
+
torch.tensor(self.scaling_bias)
|
| 68 |
+
).cuda()
|
| 69 |
self.rots_bias = torch.zeros((4)).cuda()
|
| 70 |
self.rots_bias[0] = 1
|
| 71 |
+
self.opacity_bias = self.inverse_opacity_activation(
|
| 72 |
+
torch.tensor(self.opacity_bias)
|
| 73 |
+
).cuda()
|
| 74 |
|
| 75 |
@property
|
| 76 |
def get_scaling(self):
|
| 77 |
scales = self.scaling_activation(self._scaling + self.scale_bias)
|
| 78 |
+
scales = torch.square(scales) + self.mininum_kernel_size**2
|
| 79 |
scales = torch.sqrt(scales)
|
| 80 |
return scales
|
| 81 |
+
|
| 82 |
@property
|
| 83 |
def get_rotation(self):
|
| 84 |
return self.rotation_activation(self._rotation + self.rots_bias[None, :])
|
| 85 |
+
|
| 86 |
@property
|
| 87 |
def get_xyz(self):
|
| 88 |
return self._xyz * self.aabb[None, 3:] + self.aabb[None, :3]
|
| 89 |
+
|
| 90 |
@property
|
| 91 |
def get_features(self):
|
| 92 |
+
return (
|
| 93 |
+
torch.cat((self._features_dc, self._features_rest), dim=2)
|
| 94 |
+
if self._features_rest is not None
|
| 95 |
+
else self._features_dc
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
@property
|
| 99 |
def get_opacity(self):
|
| 100 |
return self.opacity_activation(self._opacity + self.opacity_bias)
|
| 101 |
+
|
| 102 |
+
def get_covariance(self, scaling_modifier=1):
|
| 103 |
+
return self.covariance_activation(
|
| 104 |
+
self.get_scaling, scaling_modifier, self._rotation + self.rots_bias[None, :]
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
def from_scaling(self, scales):
|
| 108 |
+
scales = torch.sqrt(torch.square(scales) - self.mininum_kernel_size**2)
|
| 109 |
self._scaling = self.inverse_scaling_activation(scales) - self.scale_bias
|
| 110 |
+
|
| 111 |
def from_rotation(self, rots):
|
| 112 |
self._rotation = rots - self.rots_bias[None, :]
|
| 113 |
+
|
| 114 |
def from_xyz(self, xyz):
|
| 115 |
self._xyz = (xyz - self.aabb[None, :3]) / self.aabb[None, 3:]
|
| 116 |
+
|
| 117 |
def from_features(self, features):
|
| 118 |
self._features_dc = features
|
| 119 |
+
|
| 120 |
def from_opacity(self, opacities):
|
| 121 |
self._opacity = self.inverse_opacity_activation(opacities) - self.opacity_bias
|
| 122 |
|
| 123 |
def construct_list_of_attributes(self):
|
| 124 |
+
l = ["x", "y", "z", "nx", "ny", "nz"]
|
| 125 |
# All channels except the 3 DC
|
| 126 |
+
for i in range(self._features_dc.shape[1] * self._features_dc.shape[2]):
|
| 127 |
+
l.append("f_dc_{}".format(i))
|
| 128 |
+
l.append("opacity")
|
| 129 |
for i in range(self._scaling.shape[1]):
|
| 130 |
+
l.append("scale_{}".format(i))
|
| 131 |
for i in range(self._rotation.shape[1]):
|
| 132 |
+
l.append("rot_{}".format(i))
|
| 133 |
return l
|
| 134 |
+
|
| 135 |
def save_ply(self, path, transform=[[1, 0, 0], [0, 0, -1], [0, 1, 0]]):
|
| 136 |
xyz = self.get_xyz.detach().cpu().numpy()
|
| 137 |
normals = np.zeros_like(xyz)
|
| 138 |
+
f_dc = (
|
| 139 |
+
self._features_dc.detach()
|
| 140 |
+
.transpose(1, 2)
|
| 141 |
+
.flatten(start_dim=1)
|
| 142 |
+
.contiguous()
|
| 143 |
+
.cpu()
|
| 144 |
+
.numpy()
|
| 145 |
+
)
|
| 146 |
opacities = inverse_sigmoid(self.get_opacity).detach().cpu().numpy()
|
| 147 |
scale = torch.log(self.get_scaling).detach().cpu().numpy()
|
| 148 |
rotation = (self._rotation + self.rots_bias[None, :]).detach().cpu().numpy()
|
| 149 |
+
|
| 150 |
if transform is not None:
|
| 151 |
transform = np.array(transform)
|
| 152 |
xyz = np.matmul(xyz, transform.T)
|
|
|
|
| 154 |
rotation = np.matmul(transform, rotation)
|
| 155 |
rotation = utils3d.numpy.matrix_to_quaternion(rotation)
|
| 156 |
|
| 157 |
+
dtype_full = [
|
| 158 |
+
(attribute, "f4") for attribute in self.construct_list_of_attributes()
|
| 159 |
+
]
|
| 160 |
|
| 161 |
elements = np.empty(xyz.shape[0], dtype=dtype_full)
|
| 162 |
+
attributes = np.concatenate(
|
| 163 |
+
(xyz, normals, f_dc, opacities, scale, rotation), axis=1
|
| 164 |
+
)
|
| 165 |
elements[:] = list(map(tuple, attributes))
|
| 166 |
+
el = PlyElement.describe(elements, "vertex")
|
| 167 |
PlyData([el]).write(path)
|
| 168 |
|
| 169 |
def load_ply(self, path, transform=[[1, 0, 0], [0, 0, -1], [0, 1, 0]]):
|
| 170 |
plydata = PlyData.read(path)
|
| 171 |
|
| 172 |
+
xyz = np.stack(
|
| 173 |
+
(
|
| 174 |
+
np.asarray(plydata.elements[0]["x"]),
|
| 175 |
+
np.asarray(plydata.elements[0]["y"]),
|
| 176 |
+
np.asarray(plydata.elements[0]["z"]),
|
| 177 |
+
),
|
| 178 |
+
axis=1,
|
| 179 |
+
)
|
| 180 |
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
|
| 181 |
|
| 182 |
features_dc = np.zeros((xyz.shape[0], 3, 1))
|
|
|
|
| 185 |
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
|
| 186 |
|
| 187 |
if self.sh_degree > 0:
|
| 188 |
+
extra_f_names = [
|
| 189 |
+
p.name
|
| 190 |
+
for p in plydata.elements[0].properties
|
| 191 |
+
if p.name.startswith("f_rest_")
|
| 192 |
+
]
|
| 193 |
+
extra_f_names = sorted(extra_f_names, key=lambda x: int(x.split("_")[-1]))
|
| 194 |
+
assert len(extra_f_names) == 3 * (self.sh_degree + 1) ** 2 - 3
|
| 195 |
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
|
| 196 |
for idx, attr_name in enumerate(extra_f_names):
|
| 197 |
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 198 |
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
|
| 199 |
+
features_extra = features_extra.reshape(
|
| 200 |
+
(features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1)
|
| 201 |
+
)
|
| 202 |
|
| 203 |
+
scale_names = [
|
| 204 |
+
p.name
|
| 205 |
+
for p in plydata.elements[0].properties
|
| 206 |
+
if p.name.startswith("scale_")
|
| 207 |
+
]
|
| 208 |
+
scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1]))
|
| 209 |
scales = np.zeros((xyz.shape[0], len(scale_names)))
|
| 210 |
for idx, attr_name in enumerate(scale_names):
|
| 211 |
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 212 |
|
| 213 |
+
rot_names = [
|
| 214 |
+
p.name for p in plydata.elements[0].properties if p.name.startswith("rot")
|
| 215 |
+
]
|
| 216 |
+
rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1]))
|
| 217 |
rots = np.zeros((xyz.shape[0], len(rot_names)))
|
| 218 |
for idx, attr_name in enumerate(rot_names):
|
| 219 |
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
|
| 220 |
+
|
| 221 |
if transform is not None:
|
| 222 |
transform = np.array(transform)
|
| 223 |
xyz = np.matmul(xyz, transform)
|
| 224 |
rotation = utils3d.numpy.quaternion_to_matrix(rotation)
|
| 225 |
rotation = np.matmul(rotation, transform)
|
| 226 |
rotation = utils3d.numpy.matrix_to_quaternion(rotation)
|
| 227 |
+
|
| 228 |
# convert to actual gaussian attributes
|
| 229 |
xyz = torch.tensor(xyz, dtype=torch.float, device=self.device)
|
| 230 |
+
features_dc = (
|
| 231 |
+
torch.tensor(features_dc, dtype=torch.float, device=self.device)
|
| 232 |
+
.transpose(1, 2)
|
| 233 |
+
.contiguous()
|
| 234 |
+
)
|
| 235 |
if self.sh_degree > 0:
|
| 236 |
+
features_extra = (
|
| 237 |
+
torch.tensor(features_extra, dtype=torch.float, device=self.device)
|
| 238 |
+
.transpose(1, 2)
|
| 239 |
+
.contiguous()
|
| 240 |
+
)
|
| 241 |
+
opacities = torch.sigmoid(
|
| 242 |
+
torch.tensor(opacities, dtype=torch.float, device=self.device)
|
| 243 |
+
)
|
| 244 |
scales = torch.exp(torch.tensor(scales, dtype=torch.float, device=self.device))
|
| 245 |
rots = torch.tensor(rots, dtype=torch.float, device=self.device)
|
| 246 |
+
|
| 247 |
# convert to _hidden attributes
|
| 248 |
self._xyz = (xyz - self.aabb[None, :3]) / self.aabb[None, 3:]
|
| 249 |
self._features_dc = features_dc
|
|
|
|
| 252 |
else:
|
| 253 |
self._features_rest = None
|
| 254 |
self._opacity = self.inverse_opacity_activation(opacities) - self.opacity_bias
|
| 255 |
+
self._scaling = (
|
| 256 |
+
self.inverse_scaling_activation(
|
| 257 |
+
torch.sqrt(torch.square(scales) - self.mininum_kernel_size**2)
|
| 258 |
+
)
|
| 259 |
+
- self.scale_bias
|
| 260 |
+
)
|
| 261 |
self._rotation = rots - self.rots_bias[None, :]
|
|
|
trellis/representations/gaussian/general_utils.py
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
# All rights reserved.
|
| 5 |
#
|
| 6 |
-
# This software is free for non-commercial, research and evaluation use
|
| 7 |
# under the terms of the LICENSE.md file.
|
| 8 |
#
|
| 9 |
# For inquiries contact [email protected]
|
|
@@ -15,8 +15,10 @@ from datetime import datetime
|
|
| 15 |
import numpy as np
|
| 16 |
import random
|
| 17 |
|
|
|
|
| 18 |
def inverse_sigmoid(x):
|
| 19 |
-
return torch.log(x/(1-x))
|
|
|
|
| 20 |
|
| 21 |
def PILtoTorch(pil_image, resolution):
|
| 22 |
resized_image_PIL = pil_image.resize(resolution)
|
|
@@ -26,6 +28,7 @@ def PILtoTorch(pil_image, resolution):
|
|
| 26 |
else:
|
| 27 |
return resized_image.unsqueeze(dim=-1).permute(2, 0, 1)
|
| 28 |
|
|
|
|
| 29 |
def get_expon_lr_func(
|
| 30 |
lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
|
| 31 |
):
|
|
@@ -61,6 +64,7 @@ def get_expon_lr_func(
|
|
| 61 |
|
| 62 |
return helper
|
| 63 |
|
|
|
|
| 64 |
def strip_lowerdiag(L):
|
| 65 |
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")
|
| 66 |
|
|
@@ -72,45 +76,52 @@ def strip_lowerdiag(L):
|
|
| 72 |
uncertainty[:, 5] = L[:, 2, 2]
|
| 73 |
return uncertainty
|
| 74 |
|
|
|
|
| 75 |
def strip_symmetric(sym):
|
| 76 |
return strip_lowerdiag(sym)
|
| 77 |
|
|
|
|
| 78 |
def build_rotation(r):
|
| 79 |
-
norm = torch.sqrt(
|
|
|
|
|
|
|
| 80 |
|
| 81 |
q = r / norm[:, None]
|
| 82 |
|
| 83 |
-
R = torch.zeros((q.size(0), 3, 3), device=
|
| 84 |
|
| 85 |
r = q[:, 0]
|
| 86 |
x = q[:, 1]
|
| 87 |
y = q[:, 2]
|
| 88 |
z = q[:, 3]
|
| 89 |
|
| 90 |
-
R[:, 0, 0] = 1 - 2 * (y*y + z*z)
|
| 91 |
-
R[:, 0, 1] = 2 * (x*y - r*z)
|
| 92 |
-
R[:, 0, 2] = 2 * (x*z + r*y)
|
| 93 |
-
R[:, 1, 0] = 2 * (x*y + r*z)
|
| 94 |
-
R[:, 1, 1] = 1 - 2 * (x*x + z*z)
|
| 95 |
-
R[:, 1, 2] = 2 * (y*z - r*x)
|
| 96 |
-
R[:, 2, 0] = 2 * (x*z - r*y)
|
| 97 |
-
R[:, 2, 1] = 2 * (y*z + r*x)
|
| 98 |
-
R[:, 2, 2] = 1 - 2 * (x*x + y*y)
|
| 99 |
return R
|
| 100 |
|
|
|
|
| 101 |
def build_scaling_rotation(s, r):
|
| 102 |
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
|
| 103 |
R = build_rotation(r)
|
| 104 |
|
| 105 |
-
L[:,0,0] = s[:,0]
|
| 106 |
-
L[:,1,1] = s[:,1]
|
| 107 |
-
L[:,2,2] = s[:,2]
|
| 108 |
|
| 109 |
L = R @ L
|
| 110 |
return L
|
| 111 |
|
|
|
|
| 112 |
def safe_state(silent):
|
| 113 |
old_f = sys.stdout
|
|
|
|
| 114 |
class F:
|
| 115 |
def __init__(self, silent):
|
| 116 |
self.silent = silent
|
|
@@ -118,7 +129,14 @@ def safe_state(silent):
|
|
| 118 |
def write(self, x):
|
| 119 |
if not self.silent:
|
| 120 |
if x.endswith("\n"):
|
| 121 |
-
old_f.write(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
else:
|
| 123 |
old_f.write(x)
|
| 124 |
|
|
|
|
| 3 |
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
| 4 |
# All rights reserved.
|
| 5 |
#
|
| 6 |
+
# This software is free for non-commercial, research and evaluation use
|
| 7 |
# under the terms of the LICENSE.md file.
|
| 8 |
#
|
| 9 |
# For inquiries contact [email protected]
|
|
|
|
| 15 |
import numpy as np
|
| 16 |
import random
|
| 17 |
|
| 18 |
+
|
| 19 |
def inverse_sigmoid(x):
|
| 20 |
+
return torch.log(x / (1 - x))
|
| 21 |
+
|
| 22 |
|
| 23 |
def PILtoTorch(pil_image, resolution):
|
| 24 |
resized_image_PIL = pil_image.resize(resolution)
|
|
|
|
| 28 |
else:
|
| 29 |
return resized_image.unsqueeze(dim=-1).permute(2, 0, 1)
|
| 30 |
|
| 31 |
+
|
| 32 |
def get_expon_lr_func(
|
| 33 |
lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
|
| 34 |
):
|
|
|
|
| 64 |
|
| 65 |
return helper
|
| 66 |
|
| 67 |
+
|
| 68 |
def strip_lowerdiag(L):
|
| 69 |
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")
|
| 70 |
|
|
|
|
| 76 |
uncertainty[:, 5] = L[:, 2, 2]
|
| 77 |
return uncertainty
|
| 78 |
|
| 79 |
+
|
| 80 |
def strip_symmetric(sym):
|
| 81 |
return strip_lowerdiag(sym)
|
| 82 |
|
| 83 |
+
|
| 84 |
def build_rotation(r):
|
| 85 |
+
norm = torch.sqrt(
|
| 86 |
+
r[:, 0] * r[:, 0] + r[:, 1] * r[:, 1] + r[:, 2] * r[:, 2] + r[:, 3] * r[:, 3]
|
| 87 |
+
)
|
| 88 |
|
| 89 |
q = r / norm[:, None]
|
| 90 |
|
| 91 |
+
R = torch.zeros((q.size(0), 3, 3), device="cuda")
|
| 92 |
|
| 93 |
r = q[:, 0]
|
| 94 |
x = q[:, 1]
|
| 95 |
y = q[:, 2]
|
| 96 |
z = q[:, 3]
|
| 97 |
|
| 98 |
+
R[:, 0, 0] = 1 - 2 * (y * y + z * z)
|
| 99 |
+
R[:, 0, 1] = 2 * (x * y - r * z)
|
| 100 |
+
R[:, 0, 2] = 2 * (x * z + r * y)
|
| 101 |
+
R[:, 1, 0] = 2 * (x * y + r * z)
|
| 102 |
+
R[:, 1, 1] = 1 - 2 * (x * x + z * z)
|
| 103 |
+
R[:, 1, 2] = 2 * (y * z - r * x)
|
| 104 |
+
R[:, 2, 0] = 2 * (x * z - r * y)
|
| 105 |
+
R[:, 2, 1] = 2 * (y * z + r * x)
|
| 106 |
+
R[:, 2, 2] = 1 - 2 * (x * x + y * y)
|
| 107 |
return R
|
| 108 |
|
| 109 |
+
|
| 110 |
def build_scaling_rotation(s, r):
|
| 111 |
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
|
| 112 |
R = build_rotation(r)
|
| 113 |
|
| 114 |
+
L[:, 0, 0] = s[:, 0]
|
| 115 |
+
L[:, 1, 1] = s[:, 1]
|
| 116 |
+
L[:, 2, 2] = s[:, 2]
|
| 117 |
|
| 118 |
L = R @ L
|
| 119 |
return L
|
| 120 |
|
| 121 |
+
|
| 122 |
def safe_state(silent):
|
| 123 |
old_f = sys.stdout
|
| 124 |
+
|
| 125 |
class F:
|
| 126 |
def __init__(self, silent):
|
| 127 |
self.silent = silent
|
|
|
|
| 129 |
def write(self, x):
|
| 130 |
if not self.silent:
|
| 131 |
if x.endswith("\n"):
|
| 132 |
+
old_f.write(
|
| 133 |
+
x.replace(
|
| 134 |
+
"\n",
|
| 135 |
+
" [{}]\n".format(
|
| 136 |
+
str(datetime.now().strftime("%d/%m %H:%M:%S"))
|
| 137 |
+
),
|
| 138 |
+
)
|
| 139 |
+
)
|
| 140 |
else:
|
| 141 |
old_f.write(x)
|
| 142 |
|