vaibhavpandeyvpz commited on
Commit
75cf114
ยท
1 Parent(s): e6dc4b9

Fix model name

Browse files
Files changed (2) hide show
  1. README.md +2 -2
  2. app.py +1 -1
README.md CHANGED
@@ -46,7 +46,7 @@ Convert 2D images into high-quality 3D models using [TRELLIS](https://trellis3d.
46
 
47
  ## ๐Ÿ”ง Technical Details
48
 
49
- - **Model**: [microsoft/TRELLIS](https://huggingface.co/microsoft/TRELLIS)
50
  - **Hardware**: ZeroGPU (T4) - GPU resources are allocated on-demand
51
  - **Processing Time**: Typically 2-5 minutes depending on image complexity and GPU availability
52
 
@@ -54,7 +54,7 @@ Convert 2D images into high-quality 3D models using [TRELLIS](https://trellis3d.
54
 
55
  - [TRELLIS Project Page](https://trellis3d.github.io/)
56
  - [Paper](https://huggingface.co/papers/2412.01506)
57
- - [Model Card](https://huggingface.co/microsoft/TRELLIS)
58
 
59
  ## ๐Ÿ“ Output Formats
60
 
 
46
 
47
  ## ๐Ÿ”ง Technical Details
48
 
49
+ - **Model**: [microsoft/TRELLIS-image-large](https://huggingface.co/microsoft/TRELLIS-image-large)
50
  - **Hardware**: ZeroGPU (T4) - GPU resources are allocated on-demand
51
  - **Processing Time**: Typically 2-5 minutes depending on image complexity and GPU availability
52
 
 
54
 
55
  - [TRELLIS Project Page](https://trellis3d.github.io/)
56
  - [Paper](https://huggingface.co/papers/2412.01506)
57
+ - [Model Card](https://huggingface.co/microsoft/TRELLIS-image-large)
58
 
59
  ## ๐Ÿ“ Output Formats
60
 
app.py CHANGED
@@ -416,7 +416,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
416
 
417
  # Launch the Gradio app
418
  if __name__ == "__main__":
419
- pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS")
420
  pipeline.cuda()
421
  try:
422
  pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
 
416
 
417
  # Launch the Gradio app
418
  if __name__ == "__main__":
419
+ pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
420
  pipeline.cuda()
421
  try:
422
  pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg