Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
e6dc4b9
1
Parent(s):
c044b0a
Set up Gradio app for Trellis
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- .gitignore +49 -0
- README.md +60 -2
- app.py +422 -4
- assets/images/gun1.webp +3 -0
- assets/images/gun2.webp +3 -0
- requirements.txt +28 -0
- trellis/__init__.py +6 -0
- trellis/models/__init__.py +70 -0
- trellis/models/sparse_structure_flow.py +200 -0
- trellis/models/sparse_structure_vae.py +306 -0
- trellis/models/structured_latent_flow.py +262 -0
- trellis/models/structured_latent_vae/__init__.py +4 -0
- trellis/models/structured_latent_vae/base.py +117 -0
- trellis/models/structured_latent_vae/decoder_gs.py +122 -0
- trellis/models/structured_latent_vae/decoder_mesh.py +167 -0
- trellis/models/structured_latent_vae/decoder_rf.py +104 -0
- trellis/models/structured_latent_vae/encoder.py +72 -0
- trellis/modules/attention/__init__.py +36 -0
- trellis/modules/attention/full_attn.py +140 -0
- trellis/modules/attention/modules.py +146 -0
- trellis/modules/norm.py +25 -0
- trellis/modules/sparse/__init__.py +102 -0
- trellis/modules/sparse/attention/__init__.py +4 -0
- trellis/modules/sparse/attention/full_attn.py +215 -0
- trellis/modules/sparse/attention/modules.py +139 -0
- trellis/modules/sparse/attention/serialized_attn.py +193 -0
- trellis/modules/sparse/attention/windowed_attn.py +135 -0
- trellis/modules/sparse/basic.py +459 -0
- trellis/modules/sparse/conv/__init__.py +21 -0
- trellis/modules/sparse/conv/conv_spconv.py +80 -0
- trellis/modules/sparse/conv/conv_torchsparse.py +38 -0
- trellis/modules/sparse/linear.py +15 -0
- trellis/modules/sparse/nonlinearity.py +35 -0
- trellis/modules/sparse/norm.py +58 -0
- trellis/modules/sparse/spatial.py +110 -0
- trellis/modules/sparse/transformer/__init__.py +2 -0
- trellis/modules/sparse/transformer/blocks.py +151 -0
- trellis/modules/sparse/transformer/modulated.py +166 -0
- trellis/modules/spatial.py +48 -0
- trellis/modules/transformer/__init__.py +2 -0
- trellis/modules/transformer/blocks.py +182 -0
- trellis/modules/transformer/modulated.py +157 -0
- trellis/modules/utils.py +54 -0
- trellis/pipelines/__init__.py +24 -0
- trellis/pipelines/base.py +66 -0
- trellis/pipelines/samplers/__init__.py +2 -0
- trellis/pipelines/samplers/base.py +20 -0
- trellis/pipelines/samplers/classifier_free_guidance_mixin.py +12 -0
- trellis/pipelines/samplers/flow_euler.py +199 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual environments
|
| 24 |
+
venv/
|
| 25 |
+
env/
|
| 26 |
+
ENV/
|
| 27 |
+
.venv
|
| 28 |
+
|
| 29 |
+
# IDE
|
| 30 |
+
.vscode/
|
| 31 |
+
.idea/
|
| 32 |
+
*.swp
|
| 33 |
+
*.swo
|
| 34 |
+
*~
|
| 35 |
+
.DS_Store
|
| 36 |
+
|
| 37 |
+
# Temporary files
|
| 38 |
+
tmp/
|
| 39 |
+
*.tmp
|
| 40 |
+
*.log
|
| 41 |
+
|
| 42 |
+
# Model cache (if any)
|
| 43 |
+
.cache/
|
| 44 |
+
*.pth
|
| 45 |
+
*.pt
|
| 46 |
+
*.ckpt
|
| 47 |
+
|
| 48 |
+
# Jupyter
|
| 49 |
+
.ipynb_checkpoints/
|
README.md
CHANGED
|
@@ -8,7 +8,65 @@ sdk_version: 6.1.0
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
-
short_description:
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
short_description: Convert image to high-quality 3D model via microsoft/TRELLIS
|
| 12 |
+
hardware: zero-gpu-t4
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# TRELLIS Image to 3D
|
| 16 |
+
|
| 17 |
+
Convert 2D images into high-quality 3D models using [TRELLIS](https://trellis3d.github.io/), Microsoft's scalable and versatile 3D generation model.
|
| 18 |
+
|
| 19 |
+
## 🚀 Features
|
| 20 |
+
|
| 21 |
+
- **Single Image to 3D**: Generate 3D models from a single input image
|
| 22 |
+
- **Multi-Image Support**: Use multiple views of an object for better reconstruction (experimental)
|
| 23 |
+
- **Multiple Output Formats**:
|
| 24 |
+
- GLB files for use in 3D applications and game engines
|
| 25 |
+
- Gaussian Splatting (.ply) files for advanced rendering
|
| 26 |
+
- **Interactive 3D Viewer**: Preview your generated models directly in the browser
|
| 27 |
+
- **Automatic Background Removal**: Uses alpha channel or automatic background removal
|
| 28 |
+
- **Configurable Generation**: Adjust sampling steps and guidance strength for fine-tuned results
|
| 29 |
+
|
| 30 |
+
## 📖 How to Use
|
| 31 |
+
|
| 32 |
+
1. **Upload an Image**: Click on the image input area and select an image, or choose from the example images below
|
| 33 |
+
2. **Configure Settings** (optional): Expand "Generation Settings" to adjust:
|
| 34 |
+
- Seed for reproducibility
|
| 35 |
+
- Sparse Structure Generation parameters (Stage 1)
|
| 36 |
+
- Structured Latent Generation parameters (Stage 2)
|
| 37 |
+
3. **Generate**: Click "Generate & Extract GLB" to create your 3D model
|
| 38 |
+
4. **Download**: Once generation is complete, download the GLB file or extract Gaussian splatting data
|
| 39 |
+
|
| 40 |
+
## 💡 Tips for Best Results
|
| 41 |
+
|
| 42 |
+
- **Image Quality**: Use clear, well-lit images with good contrast
|
| 43 |
+
- **Alpha Channel**: Images with transparent backgrounds (alpha channel) work best
|
| 44 |
+
- **Object Focus**: Ensure the main object is clearly visible and centered
|
| 45 |
+
- **Background**: The tool automatically removes backgrounds if no alpha channel is present
|
| 46 |
+
|
| 47 |
+
## 🔧 Technical Details
|
| 48 |
+
|
| 49 |
+
- **Model**: [microsoft/TRELLIS](https://huggingface.co/microsoft/TRELLIS)
|
| 50 |
+
- **Hardware**: ZeroGPU (T4) - GPU resources are allocated on-demand
|
| 51 |
+
- **Processing Time**: Typically 2-5 minutes depending on image complexity and GPU availability
|
| 52 |
+
|
| 53 |
+
## 📚 Resources
|
| 54 |
+
|
| 55 |
+
- [TRELLIS Project Page](https://trellis3d.github.io/)
|
| 56 |
+
- [Paper](https://huggingface.co/papers/2412.01506)
|
| 57 |
+
- [Model Card](https://huggingface.co/microsoft/TRELLIS)
|
| 58 |
+
|
| 59 |
+
## 📝 Output Formats
|
| 60 |
+
|
| 61 |
+
- **GLB**: Universal 3D format compatible with most 3D software, game engines, and web viewers
|
| 62 |
+
- **Gaussian Splatting (.ply)**: Advanced point-based representation for high-quality rendering
|
| 63 |
+
|
| 64 |
+
## ⚠️ Notes
|
| 65 |
+
|
| 66 |
+
- Multi-image mode is experimental and may not produce optimal results for all image sets
|
| 67 |
+
- Gaussian splatting files can be large (~50MB) and may take time to download
|
| 68 |
+
- Processing requires GPU resources - you may need to wait if all GPUs are in use
|
| 69 |
+
|
| 70 |
+
---
|
| 71 |
+
|
| 72 |
+
Built with [Gradio](https://gradio.app/) and powered by [Hugging Face Spaces](https://huggingface.co/spaces)
|
app.py
CHANGED
|
@@ -1,7 +1,425 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
from gradio_litmodel3d import LitModel3D
|
| 4 |
|
| 5 |
+
import os
|
| 6 |
+
import shutil
|
| 7 |
+
os.environ['SPCONV_ALGO'] = 'native'
|
| 8 |
+
from typing import *
|
| 9 |
+
import torch
|
| 10 |
+
import numpy as np
|
| 11 |
+
import imageio
|
| 12 |
+
from easydict import EasyDict as edict
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 15 |
+
from trellis.representations import Gaussian, MeshExtractResult
|
| 16 |
+
from trellis.utils import render_utils, postprocessing_utils
|
| 17 |
|
| 18 |
+
|
| 19 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 21 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def start_session(req: gr.Request):
|
| 25 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 26 |
+
os.makedirs(user_dir, exist_ok=True)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def end_session(req: gr.Request):
|
| 30 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 31 |
+
if os.path.exists(user_dir):
|
| 32 |
+
shutil.rmtree(user_dir)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 36 |
+
"""
|
| 37 |
+
Preprocess the input image for 3D generation.
|
| 38 |
+
|
| 39 |
+
This function is called when a user uploads an image or selects an example.
|
| 40 |
+
It applies background removal and other preprocessing steps necessary for
|
| 41 |
+
optimal 3D model generation.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
image (Image.Image): The input image from the user
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
Image.Image: The preprocessed image ready for 3D generation
|
| 48 |
+
"""
|
| 49 |
+
processed_image = pipeline.preprocess_image(image)
|
| 50 |
+
return processed_image
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
| 54 |
+
"""
|
| 55 |
+
Preprocess a list of input images for multi-image 3D generation.
|
| 56 |
+
|
| 57 |
+
This function is called when users upload multiple images in the gallery.
|
| 58 |
+
It processes each image to prepare them for the multi-image 3D generation pipeline.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
images (List[Tuple[Image.Image, str]]): The input images from the gallery
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
List[Image.Image]: The preprocessed images ready for 3D generation
|
| 65 |
+
"""
|
| 66 |
+
images = [image[0] for image in images]
|
| 67 |
+
processed_images = [pipeline.preprocess_image(image) for image in images]
|
| 68 |
+
return processed_images
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
| 72 |
+
return {
|
| 73 |
+
'gaussian': {
|
| 74 |
+
**gs.init_params,
|
| 75 |
+
'_xyz': gs._xyz.cpu().numpy(),
|
| 76 |
+
'_features_dc': gs._features_dc.cpu().numpy(),
|
| 77 |
+
'_scaling': gs._scaling.cpu().numpy(),
|
| 78 |
+
'_rotation': gs._rotation.cpu().numpy(),
|
| 79 |
+
'_opacity': gs._opacity.cpu().numpy(),
|
| 80 |
+
},
|
| 81 |
+
'mesh': {
|
| 82 |
+
'vertices': mesh.vertices.cpu().numpy(),
|
| 83 |
+
'faces': mesh.faces.cpu().numpy(),
|
| 84 |
+
},
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
| 89 |
+
gs = Gaussian(
|
| 90 |
+
aabb=state['gaussian']['aabb'],
|
| 91 |
+
sh_degree=state['gaussian']['sh_degree'],
|
| 92 |
+
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
| 93 |
+
scaling_bias=state['gaussian']['scaling_bias'],
|
| 94 |
+
opacity_bias=state['gaussian']['opacity_bias'],
|
| 95 |
+
scaling_activation=state['gaussian']['scaling_activation'],
|
| 96 |
+
)
|
| 97 |
+
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
| 98 |
+
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
| 99 |
+
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
| 100 |
+
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
| 101 |
+
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
| 102 |
+
|
| 103 |
+
mesh = edict(
|
| 104 |
+
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
| 105 |
+
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
return gs, mesh
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 112 |
+
"""
|
| 113 |
+
Get the random seed for generation.
|
| 114 |
+
|
| 115 |
+
This function is called by the generate button to determine whether to use
|
| 116 |
+
a random seed or the user-specified seed value.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
randomize_seed (bool): Whether to generate a random seed
|
| 120 |
+
seed (int): The user-specified seed value
|
| 121 |
+
|
| 122 |
+
Returns:
|
| 123 |
+
int: The seed to use for generation
|
| 124 |
+
"""
|
| 125 |
+
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
@spaces.GPU(duration=120)
|
| 129 |
+
def generate_and_extract_glb(
|
| 130 |
+
image: Image.Image,
|
| 131 |
+
multiimages: List[Tuple[Image.Image, str]],
|
| 132 |
+
is_multiimage: bool,
|
| 133 |
+
seed: int,
|
| 134 |
+
ss_guidance_strength: float,
|
| 135 |
+
ss_sampling_steps: int,
|
| 136 |
+
slat_guidance_strength: float,
|
| 137 |
+
slat_sampling_steps: int,
|
| 138 |
+
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
| 139 |
+
mesh_simplify: float,
|
| 140 |
+
texture_size: int,
|
| 141 |
+
req: gr.Request,
|
| 142 |
+
) -> Tuple[dict, str, str, str]:
|
| 143 |
+
"""
|
| 144 |
+
Convert an image to a 3D model and extract GLB file.
|
| 145 |
+
|
| 146 |
+
Args:
|
| 147 |
+
image (Image.Image): The input image.
|
| 148 |
+
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
| 149 |
+
is_multiimage (bool): Whether is in multi-image mode.
|
| 150 |
+
seed (int): The random seed.
|
| 151 |
+
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
| 152 |
+
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
| 153 |
+
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 154 |
+
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
| 155 |
+
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
| 156 |
+
mesh_simplify (float): The mesh simplification factor.
|
| 157 |
+
texture_size (int): The texture resolution.
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
dict: The information of the generated 3D model.
|
| 161 |
+
str: The path to the video of the 3D model.
|
| 162 |
+
str: The path to the extracted GLB file.
|
| 163 |
+
str: The path to the extracted GLB file (for download).
|
| 164 |
+
"""
|
| 165 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 166 |
+
|
| 167 |
+
# Generate 3D model
|
| 168 |
+
if not is_multiimage:
|
| 169 |
+
outputs = pipeline.run(
|
| 170 |
+
image,
|
| 171 |
+
seed=seed,
|
| 172 |
+
formats=["gaussian", "mesh"],
|
| 173 |
+
preprocess_image=False,
|
| 174 |
+
sparse_structure_sampler_params={
|
| 175 |
+
"steps": ss_sampling_steps,
|
| 176 |
+
"cfg_strength": ss_guidance_strength,
|
| 177 |
+
},
|
| 178 |
+
slat_sampler_params={
|
| 179 |
+
"steps": slat_sampling_steps,
|
| 180 |
+
"cfg_strength": slat_guidance_strength,
|
| 181 |
+
},
|
| 182 |
+
)
|
| 183 |
+
else:
|
| 184 |
+
outputs = pipeline.run_multi_image(
|
| 185 |
+
[image[0] for image in multiimages],
|
| 186 |
+
seed=seed,
|
| 187 |
+
formats=["gaussian", "mesh"],
|
| 188 |
+
preprocess_image=False,
|
| 189 |
+
sparse_structure_sampler_params={
|
| 190 |
+
"steps": ss_sampling_steps,
|
| 191 |
+
"cfg_strength": ss_guidance_strength,
|
| 192 |
+
},
|
| 193 |
+
slat_sampler_params={
|
| 194 |
+
"steps": slat_sampling_steps,
|
| 195 |
+
"cfg_strength": slat_guidance_strength,
|
| 196 |
+
},
|
| 197 |
+
mode=multiimage_algo,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# Render video
|
| 201 |
+
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 202 |
+
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 203 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 204 |
+
video_path = os.path.join(user_dir, 'sample.mp4')
|
| 205 |
+
imageio.mimsave(video_path, video, fps=15)
|
| 206 |
+
|
| 207 |
+
# Extract GLB
|
| 208 |
+
gs = outputs['gaussian'][0]
|
| 209 |
+
mesh = outputs['mesh'][0]
|
| 210 |
+
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 211 |
+
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 212 |
+
glb.export(glb_path)
|
| 213 |
+
|
| 214 |
+
# Pack state for optional Gaussian extraction
|
| 215 |
+
state = pack_state(gs, mesh)
|
| 216 |
+
|
| 217 |
+
torch.cuda.empty_cache()
|
| 218 |
+
return state, video_path, glb_path, glb_path
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
@spaces.GPU
|
| 222 |
+
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 223 |
+
"""
|
| 224 |
+
Extract a Gaussian splatting file from the generated 3D model.
|
| 225 |
+
|
| 226 |
+
This function is called when the user clicks "Extract Gaussian" button.
|
| 227 |
+
It converts the 3D model state into a .ply file format containing
|
| 228 |
+
Gaussian splatting data for advanced 3D applications.
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
state (dict): The state of the generated 3D model containing Gaussian data
|
| 232 |
+
req (gr.Request): Gradio request object for session management
|
| 233 |
+
|
| 234 |
+
Returns:
|
| 235 |
+
Tuple[str, str]: Paths to the extracted Gaussian file (for display and download)
|
| 236 |
+
"""
|
| 237 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 238 |
+
gs, _ = unpack_state(state)
|
| 239 |
+
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
| 240 |
+
gs.save_ply(gaussian_path)
|
| 241 |
+
torch.cuda.empty_cache()
|
| 242 |
+
return gaussian_path, gaussian_path
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def prepare_multi_example() -> List[Image.Image]:
|
| 246 |
+
# Multi-image examples removed - using only assets/images
|
| 247 |
+
return []
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def split_image(image: Image.Image) -> List[Image.Image]:
|
| 251 |
+
"""
|
| 252 |
+
Split a multi-view image into separate view images.
|
| 253 |
+
|
| 254 |
+
This function is called when users select multi-image examples that contain
|
| 255 |
+
multiple views in a single concatenated image. It automatically splits them
|
| 256 |
+
based on alpha channel boundaries and preprocesses each view.
|
| 257 |
+
|
| 258 |
+
Args:
|
| 259 |
+
image (Image.Image): A concatenated image containing multiple views
|
| 260 |
+
|
| 261 |
+
Returns:
|
| 262 |
+
List[Image.Image]: List of individual preprocessed view images
|
| 263 |
+
"""
|
| 264 |
+
image = np.array(image)
|
| 265 |
+
alpha = image[..., 3]
|
| 266 |
+
alpha = np.any(alpha>0, axis=0)
|
| 267 |
+
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
| 268 |
+
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
| 269 |
+
images = []
|
| 270 |
+
for s, e in zip(start_pos, end_pos):
|
| 271 |
+
images.append(Image.fromarray(image[:, s:e+1]))
|
| 272 |
+
return [preprocess_image(image) for image in images]
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 276 |
+
gr.Markdown("""
|
| 277 |
+
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 278 |
+
* Upload an image and click "Generate & Extract GLB" to create a 3D asset and automatically extract the GLB file.
|
| 279 |
+
* If you want the Gaussian file as well, click "Extract Gaussian" after generation.
|
| 280 |
+
* If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 281 |
+
|
| 282 |
+
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
| 283 |
+
""")
|
| 284 |
+
|
| 285 |
+
with gr.Row():
|
| 286 |
+
with gr.Column():
|
| 287 |
+
with gr.Tabs() as input_tabs:
|
| 288 |
+
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
| 289 |
+
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
| 290 |
+
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 291 |
+
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
| 292 |
+
gr.Markdown("""
|
| 293 |
+
Input different views of the object in separate images.
|
| 294 |
+
|
| 295 |
+
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
| 296 |
+
""")
|
| 297 |
+
|
| 298 |
+
with gr.Accordion(label="Generation Settings", open=False):
|
| 299 |
+
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 300 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 301 |
+
gr.Markdown("Stage 1: Sparse Structure Generation")
|
| 302 |
+
with gr.Row():
|
| 303 |
+
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
| 304 |
+
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 305 |
+
gr.Markdown("Stage 2: Structured Latent Generation")
|
| 306 |
+
with gr.Row():
|
| 307 |
+
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 308 |
+
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 309 |
+
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
| 310 |
+
|
| 311 |
+
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 312 |
+
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 313 |
+
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 314 |
+
|
| 315 |
+
generate_btn = gr.Button("Generate & Extract GLB", variant="primary")
|
| 316 |
+
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 317 |
+
gr.Markdown("""
|
| 318 |
+
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
| 319 |
+
""")
|
| 320 |
+
|
| 321 |
+
with gr.Column():
|
| 322 |
+
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
| 323 |
+
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
| 324 |
+
|
| 325 |
+
with gr.Row():
|
| 326 |
+
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 327 |
+
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
| 328 |
+
|
| 329 |
+
is_multiimage = gr.State(False)
|
| 330 |
+
output_buf = gr.State()
|
| 331 |
+
|
| 332 |
+
# Example images at the bottom of the page
|
| 333 |
+
with gr.Row() as single_image_example:
|
| 334 |
+
if os.path.exists("assets/images"):
|
| 335 |
+
examples = gr.Examples(
|
| 336 |
+
examples=[
|
| 337 |
+
f'assets/images/{image}'
|
| 338 |
+
for image in os.listdir("assets/images")
|
| 339 |
+
if image.endswith(('.png', '.jpg', '.jpeg', '.webp'))
|
| 340 |
+
],
|
| 341 |
+
inputs=[image_prompt],
|
| 342 |
+
fn=preprocess_image,
|
| 343 |
+
outputs=[image_prompt],
|
| 344 |
+
run_on_click=True,
|
| 345 |
+
examples_per_page=64,
|
| 346 |
+
)
|
| 347 |
+
else:
|
| 348 |
+
examples = gr.Examples(examples=[], inputs=[image_prompt])
|
| 349 |
+
|
| 350 |
+
with gr.Row(visible=False) as multiimage_example:
|
| 351 |
+
examples_multi = gr.Examples(
|
| 352 |
+
examples=prepare_multi_example(),
|
| 353 |
+
inputs=[image_prompt],
|
| 354 |
+
fn=split_image,
|
| 355 |
+
outputs=[multiimage_prompt],
|
| 356 |
+
run_on_click=True,
|
| 357 |
+
examples_per_page=8,
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
# Handlers
|
| 361 |
+
demo.load(start_session)
|
| 362 |
+
demo.unload(end_session)
|
| 363 |
+
|
| 364 |
+
single_image_input_tab.select(
|
| 365 |
+
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
| 366 |
+
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 367 |
+
)
|
| 368 |
+
multiimage_input_tab.select(
|
| 369 |
+
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
|
| 370 |
+
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
image_prompt.upload(
|
| 374 |
+
preprocess_image,
|
| 375 |
+
inputs=[image_prompt],
|
| 376 |
+
outputs=[image_prompt],
|
| 377 |
+
)
|
| 378 |
+
multiimage_prompt.upload(
|
| 379 |
+
preprocess_images,
|
| 380 |
+
inputs=[multiimage_prompt],
|
| 381 |
+
outputs=[multiimage_prompt],
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
generate_btn.click(
|
| 385 |
+
get_seed,
|
| 386 |
+
inputs=[randomize_seed, seed],
|
| 387 |
+
outputs=[seed],
|
| 388 |
+
).then(
|
| 389 |
+
generate_and_extract_glb,
|
| 390 |
+
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
|
| 391 |
+
outputs=[output_buf, video_output, model_output, download_glb],
|
| 392 |
+
).then(
|
| 393 |
+
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
| 394 |
+
outputs=[extract_gs_btn, download_glb],
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
video_output.clear(
|
| 398 |
+
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 399 |
+
outputs=[extract_gs_btn, download_glb, download_gs],
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
extract_gs_btn.click(
|
| 403 |
+
extract_gaussian,
|
| 404 |
+
inputs=[output_buf],
|
| 405 |
+
outputs=[model_output, download_gs],
|
| 406 |
+
).then(
|
| 407 |
+
lambda: gr.Button(interactive=True),
|
| 408 |
+
outputs=[download_gs],
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
model_output.clear(
|
| 412 |
+
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 413 |
+
outputs=[download_glb, download_gs],
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# Launch the Gradio app
|
| 418 |
+
if __name__ == "__main__":
|
| 419 |
+
pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS")
|
| 420 |
+
pipeline.cuda()
|
| 421 |
+
try:
|
| 422 |
+
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
| 423 |
+
except:
|
| 424 |
+
pass
|
| 425 |
+
demo.launch()
|
assets/images/gun1.webp
ADDED
|
Git LFS Details
|
assets/images/gun2.webp
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 2 |
+
|
| 3 |
+
torch==2.4.0
|
| 4 |
+
torchvision==0.19.0
|
| 5 |
+
pillow==10.4.0
|
| 6 |
+
imageio==2.36.1
|
| 7 |
+
imageio-ffmpeg==0.5.1
|
| 8 |
+
tqdm==4.67.1
|
| 9 |
+
easydict==1.13
|
| 10 |
+
opencv-python-headless==4.10.0.84
|
| 11 |
+
scipy==1.14.1
|
| 12 |
+
rembg==2.0.60
|
| 13 |
+
onnxruntime==1.20.1
|
| 14 |
+
trimesh==4.5.3
|
| 15 |
+
xatlas==0.0.9
|
| 16 |
+
pyvista==0.44.2
|
| 17 |
+
pymeshfix==0.17.0
|
| 18 |
+
igraph==0.11.8
|
| 19 |
+
git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
|
| 20 |
+
xformers==0.0.27.post2
|
| 21 |
+
spconv-cu120==2.3.6
|
| 22 |
+
transformers==4.46.3
|
| 23 |
+
gradio_litmodel3d==0.0.1
|
| 24 |
+
pydantic==2.10.6
|
| 25 |
+
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.0.post2/flash_attn-2.7.0.post2+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
| 26 |
+
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl?download=true
|
| 27 |
+
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl?download=true
|
| 28 |
+
|
trellis/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from . import models
|
| 2 |
+
from . import modules
|
| 3 |
+
from . import pipelines
|
| 4 |
+
from . import renderers
|
| 5 |
+
from . import representations
|
| 6 |
+
from . import utils
|
trellis/models/__init__.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
|
| 3 |
+
__attributes = {
|
| 4 |
+
'SparseStructureEncoder': 'sparse_structure_vae',
|
| 5 |
+
'SparseStructureDecoder': 'sparse_structure_vae',
|
| 6 |
+
'SparseStructureFlowModel': 'sparse_structure_flow',
|
| 7 |
+
'SLatEncoder': 'structured_latent_vae',
|
| 8 |
+
'SLatGaussianDecoder': 'structured_latent_vae',
|
| 9 |
+
'SLatRadianceFieldDecoder': 'structured_latent_vae',
|
| 10 |
+
'SLatMeshDecoder': 'structured_latent_vae',
|
| 11 |
+
'SLatFlowModel': 'structured_latent_flow',
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
__submodules = []
|
| 15 |
+
|
| 16 |
+
__all__ = list(__attributes.keys()) + __submodules
|
| 17 |
+
|
| 18 |
+
def __getattr__(name):
|
| 19 |
+
if name not in globals():
|
| 20 |
+
if name in __attributes:
|
| 21 |
+
module_name = __attributes[name]
|
| 22 |
+
module = importlib.import_module(f".{module_name}", __name__)
|
| 23 |
+
globals()[name] = getattr(module, name)
|
| 24 |
+
elif name in __submodules:
|
| 25 |
+
module = importlib.import_module(f".{name}", __name__)
|
| 26 |
+
globals()[name] = module
|
| 27 |
+
else:
|
| 28 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
| 29 |
+
return globals()[name]
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def from_pretrained(path: str, **kwargs):
|
| 33 |
+
"""
|
| 34 |
+
Load a model from a pretrained checkpoint.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
path: The path to the checkpoint. Can be either local path or a Hugging Face model name.
|
| 38 |
+
NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively.
|
| 39 |
+
**kwargs: Additional arguments for the model constructor.
|
| 40 |
+
"""
|
| 41 |
+
import os
|
| 42 |
+
import json
|
| 43 |
+
from safetensors.torch import load_file
|
| 44 |
+
is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors")
|
| 45 |
+
|
| 46 |
+
if is_local:
|
| 47 |
+
config_file = f"{path}.json"
|
| 48 |
+
model_file = f"{path}.safetensors"
|
| 49 |
+
else:
|
| 50 |
+
from huggingface_hub import hf_hub_download
|
| 51 |
+
path_parts = path.split('/')
|
| 52 |
+
repo_id = f'{path_parts[0]}/{path_parts[1]}'
|
| 53 |
+
model_name = '/'.join(path_parts[2:])
|
| 54 |
+
config_file = hf_hub_download(repo_id, f"{model_name}.json")
|
| 55 |
+
model_file = hf_hub_download(repo_id, f"{model_name}.safetensors")
|
| 56 |
+
|
| 57 |
+
with open(config_file, 'r') as f:
|
| 58 |
+
config = json.load(f)
|
| 59 |
+
model = __getattr__(config['name'])(**config['args'], **kwargs)
|
| 60 |
+
model.load_state_dict(load_file(model_file))
|
| 61 |
+
|
| 62 |
+
return model
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# For Pylance
|
| 66 |
+
if __name__ == '__main__':
|
| 67 |
+
from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder
|
| 68 |
+
from .sparse_structure_flow import SparseStructureFlowModel
|
| 69 |
+
from .structured_latent_vae import SLatEncoder, SLatGaussianDecoder, SLatRadianceFieldDecoder, SLatMeshDecoder
|
| 70 |
+
from .structured_latent_flow import SLatFlowModel
|
trellis/models/sparse_structure_flow.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
+
from ..modules.utils import convert_module_to_f16, convert_module_to_f32
|
| 7 |
+
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock
|
| 8 |
+
from ..modules.spatial import patchify, unpatchify
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TimestepEmbedder(nn.Module):
|
| 12 |
+
"""
|
| 13 |
+
Embeds scalar timesteps into vector representations.
|
| 14 |
+
"""
|
| 15 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.mlp = nn.Sequential(
|
| 18 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 19 |
+
nn.SiLU(),
|
| 20 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 21 |
+
)
|
| 22 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 23 |
+
|
| 24 |
+
@staticmethod
|
| 25 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 26 |
+
"""
|
| 27 |
+
Create sinusoidal timestep embeddings.
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
t: a 1-D Tensor of N indices, one per batch element.
|
| 31 |
+
These may be fractional.
|
| 32 |
+
dim: the dimension of the output.
|
| 33 |
+
max_period: controls the minimum frequency of the embeddings.
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
an (N, D) Tensor of positional embeddings.
|
| 37 |
+
"""
|
| 38 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 39 |
+
half = dim // 2
|
| 40 |
+
freqs = torch.exp(
|
| 41 |
+
-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 42 |
+
).to(device=t.device)
|
| 43 |
+
args = t[:, None].float() * freqs[None]
|
| 44 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 45 |
+
if dim % 2:
|
| 46 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 47 |
+
return embedding
|
| 48 |
+
|
| 49 |
+
def forward(self, t):
|
| 50 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 51 |
+
t_emb = self.mlp(t_freq)
|
| 52 |
+
return t_emb
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class SparseStructureFlowModel(nn.Module):
|
| 56 |
+
def __init__(
|
| 57 |
+
self,
|
| 58 |
+
resolution: int,
|
| 59 |
+
in_channels: int,
|
| 60 |
+
model_channels: int,
|
| 61 |
+
cond_channels: int,
|
| 62 |
+
out_channels: int,
|
| 63 |
+
num_blocks: int,
|
| 64 |
+
num_heads: Optional[int] = None,
|
| 65 |
+
num_head_channels: Optional[int] = 64,
|
| 66 |
+
mlp_ratio: float = 4,
|
| 67 |
+
patch_size: int = 2,
|
| 68 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
| 69 |
+
use_fp16: bool = False,
|
| 70 |
+
use_checkpoint: bool = False,
|
| 71 |
+
share_mod: bool = False,
|
| 72 |
+
qk_rms_norm: bool = False,
|
| 73 |
+
qk_rms_norm_cross: bool = False,
|
| 74 |
+
):
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.resolution = resolution
|
| 77 |
+
self.in_channels = in_channels
|
| 78 |
+
self.model_channels = model_channels
|
| 79 |
+
self.cond_channels = cond_channels
|
| 80 |
+
self.out_channels = out_channels
|
| 81 |
+
self.num_blocks = num_blocks
|
| 82 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
| 83 |
+
self.mlp_ratio = mlp_ratio
|
| 84 |
+
self.patch_size = patch_size
|
| 85 |
+
self.pe_mode = pe_mode
|
| 86 |
+
self.use_fp16 = use_fp16
|
| 87 |
+
self.use_checkpoint = use_checkpoint
|
| 88 |
+
self.share_mod = share_mod
|
| 89 |
+
self.qk_rms_norm = qk_rms_norm
|
| 90 |
+
self.qk_rms_norm_cross = qk_rms_norm_cross
|
| 91 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
| 92 |
+
|
| 93 |
+
self.t_embedder = TimestepEmbedder(model_channels)
|
| 94 |
+
if share_mod:
|
| 95 |
+
self.adaLN_modulation = nn.Sequential(
|
| 96 |
+
nn.SiLU(),
|
| 97 |
+
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
if pe_mode == "ape":
|
| 101 |
+
pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
|
| 102 |
+
coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij')
|
| 103 |
+
coords = torch.stack(coords, dim=-1).reshape(-1, 3)
|
| 104 |
+
pos_emb = pos_embedder(coords)
|
| 105 |
+
self.register_buffer("pos_emb", pos_emb)
|
| 106 |
+
|
| 107 |
+
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
|
| 108 |
+
|
| 109 |
+
self.blocks = nn.ModuleList([
|
| 110 |
+
ModulatedTransformerCrossBlock(
|
| 111 |
+
model_channels,
|
| 112 |
+
cond_channels,
|
| 113 |
+
num_heads=self.num_heads,
|
| 114 |
+
mlp_ratio=self.mlp_ratio,
|
| 115 |
+
attn_mode='full',
|
| 116 |
+
use_checkpoint=self.use_checkpoint,
|
| 117 |
+
use_rope=(pe_mode == "rope"),
|
| 118 |
+
share_mod=share_mod,
|
| 119 |
+
qk_rms_norm=self.qk_rms_norm,
|
| 120 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
| 121 |
+
)
|
| 122 |
+
for _ in range(num_blocks)
|
| 123 |
+
])
|
| 124 |
+
|
| 125 |
+
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)
|
| 126 |
+
|
| 127 |
+
self.initialize_weights()
|
| 128 |
+
if use_fp16:
|
| 129 |
+
self.convert_to_fp16()
|
| 130 |
+
|
| 131 |
+
@property
|
| 132 |
+
def device(self) -> torch.device:
|
| 133 |
+
"""
|
| 134 |
+
Return the device of the model.
|
| 135 |
+
"""
|
| 136 |
+
return next(self.parameters()).device
|
| 137 |
+
|
| 138 |
+
def convert_to_fp16(self) -> None:
|
| 139 |
+
"""
|
| 140 |
+
Convert the torso of the model to float16.
|
| 141 |
+
"""
|
| 142 |
+
self.blocks.apply(convert_module_to_f16)
|
| 143 |
+
|
| 144 |
+
def convert_to_fp32(self) -> None:
|
| 145 |
+
"""
|
| 146 |
+
Convert the torso of the model to float32.
|
| 147 |
+
"""
|
| 148 |
+
self.blocks.apply(convert_module_to_f32)
|
| 149 |
+
|
| 150 |
+
def initialize_weights(self) -> None:
|
| 151 |
+
# Initialize transformer layers:
|
| 152 |
+
def _basic_init(module):
|
| 153 |
+
if isinstance(module, nn.Linear):
|
| 154 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 155 |
+
if module.bias is not None:
|
| 156 |
+
nn.init.constant_(module.bias, 0)
|
| 157 |
+
self.apply(_basic_init)
|
| 158 |
+
|
| 159 |
+
# Initialize timestep embedding MLP:
|
| 160 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
| 161 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
| 162 |
+
|
| 163 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
| 164 |
+
if self.share_mod:
|
| 165 |
+
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
| 166 |
+
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
| 167 |
+
else:
|
| 168 |
+
for block in self.blocks:
|
| 169 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
| 170 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
| 171 |
+
|
| 172 |
+
# Zero-out output layers:
|
| 173 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
| 174 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
| 175 |
+
|
| 176 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
|
| 177 |
+
assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \
|
| 178 |
+
f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"
|
| 179 |
+
|
| 180 |
+
h = patchify(x, self.patch_size)
|
| 181 |
+
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()
|
| 182 |
+
|
| 183 |
+
h = self.input_layer(h)
|
| 184 |
+
h = h + self.pos_emb[None]
|
| 185 |
+
t_emb = self.t_embedder(t)
|
| 186 |
+
if self.share_mod:
|
| 187 |
+
t_emb = self.adaLN_modulation(t_emb)
|
| 188 |
+
t_emb = t_emb.type(self.dtype)
|
| 189 |
+
h = h.type(self.dtype)
|
| 190 |
+
cond = cond.type(self.dtype)
|
| 191 |
+
for block in self.blocks:
|
| 192 |
+
h = block(h, t_emb, cond)
|
| 193 |
+
h = h.type(x.dtype)
|
| 194 |
+
h = F.layer_norm(h, h.shape[-1:])
|
| 195 |
+
h = self.out_layer(h)
|
| 196 |
+
|
| 197 |
+
h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3)
|
| 198 |
+
h = unpatchify(h, self.patch_size).contiguous()
|
| 199 |
+
|
| 200 |
+
return h
|
trellis/models/sparse_structure_vae.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from ..modules.norm import GroupNorm32, ChannelLayerNorm32
|
| 6 |
+
from ..modules.spatial import pixel_shuffle_3d
|
| 7 |
+
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def norm_layer(norm_type: str, *args, **kwargs) -> nn.Module:
|
| 11 |
+
"""
|
| 12 |
+
Return a normalization layer.
|
| 13 |
+
"""
|
| 14 |
+
if norm_type == "group":
|
| 15 |
+
return GroupNorm32(32, *args, **kwargs)
|
| 16 |
+
elif norm_type == "layer":
|
| 17 |
+
return ChannelLayerNorm32(*args, **kwargs)
|
| 18 |
+
else:
|
| 19 |
+
raise ValueError(f"Invalid norm type {norm_type}")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class ResBlock3d(nn.Module):
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
channels: int,
|
| 26 |
+
out_channels: Optional[int] = None,
|
| 27 |
+
norm_type: Literal["group", "layer"] = "layer",
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.channels = channels
|
| 31 |
+
self.out_channels = out_channels or channels
|
| 32 |
+
|
| 33 |
+
self.norm1 = norm_layer(norm_type, channels)
|
| 34 |
+
self.norm2 = norm_layer(norm_type, self.out_channels)
|
| 35 |
+
self.conv1 = nn.Conv3d(channels, self.out_channels, 3, padding=1)
|
| 36 |
+
self.conv2 = zero_module(nn.Conv3d(self.out_channels, self.out_channels, 3, padding=1))
|
| 37 |
+
self.skip_connection = nn.Conv3d(channels, self.out_channels, 1) if channels != self.out_channels else nn.Identity()
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 40 |
+
h = self.norm1(x)
|
| 41 |
+
h = F.silu(h)
|
| 42 |
+
h = self.conv1(h)
|
| 43 |
+
h = self.norm2(h)
|
| 44 |
+
h = F.silu(h)
|
| 45 |
+
h = self.conv2(h)
|
| 46 |
+
h = h + self.skip_connection(x)
|
| 47 |
+
return h
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class DownsampleBlock3d(nn.Module):
|
| 51 |
+
def __init__(
|
| 52 |
+
self,
|
| 53 |
+
in_channels: int,
|
| 54 |
+
out_channels: int,
|
| 55 |
+
mode: Literal["conv", "avgpool"] = "conv",
|
| 56 |
+
):
|
| 57 |
+
assert mode in ["conv", "avgpool"], f"Invalid mode {mode}"
|
| 58 |
+
|
| 59 |
+
super().__init__()
|
| 60 |
+
self.in_channels = in_channels
|
| 61 |
+
self.out_channels = out_channels
|
| 62 |
+
|
| 63 |
+
if mode == "conv":
|
| 64 |
+
self.conv = nn.Conv3d(in_channels, out_channels, 2, stride=2)
|
| 65 |
+
elif mode == "avgpool":
|
| 66 |
+
assert in_channels == out_channels, "Pooling mode requires in_channels to be equal to out_channels"
|
| 67 |
+
|
| 68 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 69 |
+
if hasattr(self, "conv"):
|
| 70 |
+
return self.conv(x)
|
| 71 |
+
else:
|
| 72 |
+
return F.avg_pool3d(x, 2)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class UpsampleBlock3d(nn.Module):
|
| 76 |
+
def __init__(
|
| 77 |
+
self,
|
| 78 |
+
in_channels: int,
|
| 79 |
+
out_channels: int,
|
| 80 |
+
mode: Literal["conv", "nearest"] = "conv",
|
| 81 |
+
):
|
| 82 |
+
assert mode in ["conv", "nearest"], f"Invalid mode {mode}"
|
| 83 |
+
|
| 84 |
+
super().__init__()
|
| 85 |
+
self.in_channels = in_channels
|
| 86 |
+
self.out_channels = out_channels
|
| 87 |
+
|
| 88 |
+
if mode == "conv":
|
| 89 |
+
self.conv = nn.Conv3d(in_channels, out_channels*8, 3, padding=1)
|
| 90 |
+
elif mode == "nearest":
|
| 91 |
+
assert in_channels == out_channels, "Nearest mode requires in_channels to be equal to out_channels"
|
| 92 |
+
|
| 93 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 94 |
+
if hasattr(self, "conv"):
|
| 95 |
+
x = self.conv(x)
|
| 96 |
+
return pixel_shuffle_3d(x, 2)
|
| 97 |
+
else:
|
| 98 |
+
return F.interpolate(x, scale_factor=2, mode="nearest")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class SparseStructureEncoder(nn.Module):
|
| 102 |
+
"""
|
| 103 |
+
Encoder for Sparse Structure (\mathcal{E}_S in the paper Sec. 3.3).
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
in_channels (int): Channels of the input.
|
| 107 |
+
latent_channels (int): Channels of the latent representation.
|
| 108 |
+
num_res_blocks (int): Number of residual blocks at each resolution.
|
| 109 |
+
channels (List[int]): Channels of the encoder blocks.
|
| 110 |
+
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
| 111 |
+
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
| 112 |
+
use_fp16 (bool): Whether to use FP16.
|
| 113 |
+
"""
|
| 114 |
+
def __init__(
|
| 115 |
+
self,
|
| 116 |
+
in_channels: int,
|
| 117 |
+
latent_channels: int,
|
| 118 |
+
num_res_blocks: int,
|
| 119 |
+
channels: List[int],
|
| 120 |
+
num_res_blocks_middle: int = 2,
|
| 121 |
+
norm_type: Literal["group", "layer"] = "layer",
|
| 122 |
+
use_fp16: bool = False,
|
| 123 |
+
):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.in_channels = in_channels
|
| 126 |
+
self.latent_channels = latent_channels
|
| 127 |
+
self.num_res_blocks = num_res_blocks
|
| 128 |
+
self.channels = channels
|
| 129 |
+
self.num_res_blocks_middle = num_res_blocks_middle
|
| 130 |
+
self.norm_type = norm_type
|
| 131 |
+
self.use_fp16 = use_fp16
|
| 132 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
| 133 |
+
|
| 134 |
+
self.input_layer = nn.Conv3d(in_channels, channels[0], 3, padding=1)
|
| 135 |
+
|
| 136 |
+
self.blocks = nn.ModuleList([])
|
| 137 |
+
for i, ch in enumerate(channels):
|
| 138 |
+
self.blocks.extend([
|
| 139 |
+
ResBlock3d(ch, ch)
|
| 140 |
+
for _ in range(num_res_blocks)
|
| 141 |
+
])
|
| 142 |
+
if i < len(channels) - 1:
|
| 143 |
+
self.blocks.append(
|
| 144 |
+
DownsampleBlock3d(ch, channels[i+1])
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
self.middle_block = nn.Sequential(*[
|
| 148 |
+
ResBlock3d(channels[-1], channels[-1])
|
| 149 |
+
for _ in range(num_res_blocks_middle)
|
| 150 |
+
])
|
| 151 |
+
|
| 152 |
+
self.out_layer = nn.Sequential(
|
| 153 |
+
norm_layer(norm_type, channels[-1]),
|
| 154 |
+
nn.SiLU(),
|
| 155 |
+
nn.Conv3d(channels[-1], latent_channels*2, 3, padding=1)
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
if use_fp16:
|
| 159 |
+
self.convert_to_fp16()
|
| 160 |
+
|
| 161 |
+
@property
|
| 162 |
+
def device(self) -> torch.device:
|
| 163 |
+
"""
|
| 164 |
+
Return the device of the model.
|
| 165 |
+
"""
|
| 166 |
+
return next(self.parameters()).device
|
| 167 |
+
|
| 168 |
+
def convert_to_fp16(self) -> None:
|
| 169 |
+
"""
|
| 170 |
+
Convert the torso of the model to float16.
|
| 171 |
+
"""
|
| 172 |
+
self.use_fp16 = True
|
| 173 |
+
self.dtype = torch.float16
|
| 174 |
+
self.blocks.apply(convert_module_to_f16)
|
| 175 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 176 |
+
|
| 177 |
+
def convert_to_fp32(self) -> None:
|
| 178 |
+
"""
|
| 179 |
+
Convert the torso of the model to float32.
|
| 180 |
+
"""
|
| 181 |
+
self.use_fp16 = False
|
| 182 |
+
self.dtype = torch.float32
|
| 183 |
+
self.blocks.apply(convert_module_to_f32)
|
| 184 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 185 |
+
|
| 186 |
+
def forward(self, x: torch.Tensor, sample_posterior: bool = False, return_raw: bool = False) -> torch.Tensor:
|
| 187 |
+
h = self.input_layer(x)
|
| 188 |
+
h = h.type(self.dtype)
|
| 189 |
+
|
| 190 |
+
for block in self.blocks:
|
| 191 |
+
h = block(h)
|
| 192 |
+
h = self.middle_block(h)
|
| 193 |
+
|
| 194 |
+
h = h.type(x.dtype)
|
| 195 |
+
h = self.out_layer(h)
|
| 196 |
+
|
| 197 |
+
mean, logvar = h.chunk(2, dim=1)
|
| 198 |
+
|
| 199 |
+
if sample_posterior:
|
| 200 |
+
std = torch.exp(0.5 * logvar)
|
| 201 |
+
z = mean + std * torch.randn_like(std)
|
| 202 |
+
else:
|
| 203 |
+
z = mean
|
| 204 |
+
|
| 205 |
+
if return_raw:
|
| 206 |
+
return z, mean, logvar
|
| 207 |
+
return z
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class SparseStructureDecoder(nn.Module):
|
| 211 |
+
"""
|
| 212 |
+
Decoder for Sparse Structure (\mathcal{D}_S in the paper Sec. 3.3).
|
| 213 |
+
|
| 214 |
+
Args:
|
| 215 |
+
out_channels (int): Channels of the output.
|
| 216 |
+
latent_channels (int): Channels of the latent representation.
|
| 217 |
+
num_res_blocks (int): Number of residual blocks at each resolution.
|
| 218 |
+
channels (List[int]): Channels of the decoder blocks.
|
| 219 |
+
num_res_blocks_middle (int): Number of residual blocks in the middle.
|
| 220 |
+
norm_type (Literal["group", "layer"]): Type of normalization layer.
|
| 221 |
+
use_fp16 (bool): Whether to use FP16.
|
| 222 |
+
"""
|
| 223 |
+
def __init__(
|
| 224 |
+
self,
|
| 225 |
+
out_channels: int,
|
| 226 |
+
latent_channels: int,
|
| 227 |
+
num_res_blocks: int,
|
| 228 |
+
channels: List[int],
|
| 229 |
+
num_res_blocks_middle: int = 2,
|
| 230 |
+
norm_type: Literal["group", "layer"] = "layer",
|
| 231 |
+
use_fp16: bool = False,
|
| 232 |
+
):
|
| 233 |
+
super().__init__()
|
| 234 |
+
self.out_channels = out_channels
|
| 235 |
+
self.latent_channels = latent_channels
|
| 236 |
+
self.num_res_blocks = num_res_blocks
|
| 237 |
+
self.channels = channels
|
| 238 |
+
self.num_res_blocks_middle = num_res_blocks_middle
|
| 239 |
+
self.norm_type = norm_type
|
| 240 |
+
self.use_fp16 = use_fp16
|
| 241 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
| 242 |
+
|
| 243 |
+
self.input_layer = nn.Conv3d(latent_channels, channels[0], 3, padding=1)
|
| 244 |
+
|
| 245 |
+
self.middle_block = nn.Sequential(*[
|
| 246 |
+
ResBlock3d(channels[0], channels[0])
|
| 247 |
+
for _ in range(num_res_blocks_middle)
|
| 248 |
+
])
|
| 249 |
+
|
| 250 |
+
self.blocks = nn.ModuleList([])
|
| 251 |
+
for i, ch in enumerate(channels):
|
| 252 |
+
self.blocks.extend([
|
| 253 |
+
ResBlock3d(ch, ch)
|
| 254 |
+
for _ in range(num_res_blocks)
|
| 255 |
+
])
|
| 256 |
+
if i < len(channels) - 1:
|
| 257 |
+
self.blocks.append(
|
| 258 |
+
UpsampleBlock3d(ch, channels[i+1])
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
self.out_layer = nn.Sequential(
|
| 262 |
+
norm_layer(norm_type, channels[-1]),
|
| 263 |
+
nn.SiLU(),
|
| 264 |
+
nn.Conv3d(channels[-1], out_channels, 3, padding=1)
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
if use_fp16:
|
| 268 |
+
self.convert_to_fp16()
|
| 269 |
+
|
| 270 |
+
@property
|
| 271 |
+
def device(self) -> torch.device:
|
| 272 |
+
"""
|
| 273 |
+
Return the device of the model.
|
| 274 |
+
"""
|
| 275 |
+
return next(self.parameters()).device
|
| 276 |
+
|
| 277 |
+
def convert_to_fp16(self) -> None:
|
| 278 |
+
"""
|
| 279 |
+
Convert the torso of the model to float16.
|
| 280 |
+
"""
|
| 281 |
+
self.use_fp16 = True
|
| 282 |
+
self.dtype = torch.float16
|
| 283 |
+
self.blocks.apply(convert_module_to_f16)
|
| 284 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 285 |
+
|
| 286 |
+
def convert_to_fp32(self) -> None:
|
| 287 |
+
"""
|
| 288 |
+
Convert the torso of the model to float32.
|
| 289 |
+
"""
|
| 290 |
+
self.use_fp16 = False
|
| 291 |
+
self.dtype = torch.float32
|
| 292 |
+
self.blocks.apply(convert_module_to_f32)
|
| 293 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 294 |
+
|
| 295 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 296 |
+
h = self.input_layer(x)
|
| 297 |
+
|
| 298 |
+
h = h.type(self.dtype)
|
| 299 |
+
|
| 300 |
+
h = self.middle_block(h)
|
| 301 |
+
for block in self.blocks:
|
| 302 |
+
h = block(h)
|
| 303 |
+
|
| 304 |
+
h = h.type(x.dtype)
|
| 305 |
+
h = self.out_layer(h)
|
| 306 |
+
return h
|
trellis/models/structured_latent_flow.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
+
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
| 7 |
+
from ..modules.transformer import AbsolutePositionEmbedder
|
| 8 |
+
from ..modules.norm import LayerNorm32
|
| 9 |
+
from ..modules import sparse as sp
|
| 10 |
+
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock
|
| 11 |
+
from .sparse_structure_flow import TimestepEmbedder
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class SparseResBlock3d(nn.Module):
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
channels: int,
|
| 18 |
+
emb_channels: int,
|
| 19 |
+
out_channels: Optional[int] = None,
|
| 20 |
+
downsample: bool = False,
|
| 21 |
+
upsample: bool = False,
|
| 22 |
+
):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.channels = channels
|
| 25 |
+
self.emb_channels = emb_channels
|
| 26 |
+
self.out_channels = out_channels or channels
|
| 27 |
+
self.downsample = downsample
|
| 28 |
+
self.upsample = upsample
|
| 29 |
+
|
| 30 |
+
assert not (downsample and upsample), "Cannot downsample and upsample at the same time"
|
| 31 |
+
|
| 32 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
| 33 |
+
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
|
| 34 |
+
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
|
| 35 |
+
self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3))
|
| 36 |
+
self.emb_layers = nn.Sequential(
|
| 37 |
+
nn.SiLU(),
|
| 38 |
+
nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
|
| 39 |
+
)
|
| 40 |
+
self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity()
|
| 41 |
+
self.updown = None
|
| 42 |
+
if self.downsample:
|
| 43 |
+
self.updown = sp.SparseDownsample(2)
|
| 44 |
+
elif self.upsample:
|
| 45 |
+
self.updown = sp.SparseUpsample(2)
|
| 46 |
+
|
| 47 |
+
def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
| 48 |
+
if self.updown is not None:
|
| 49 |
+
x = self.updown(x)
|
| 50 |
+
return x
|
| 51 |
+
|
| 52 |
+
def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor:
|
| 53 |
+
emb_out = self.emb_layers(emb).type(x.dtype)
|
| 54 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
| 55 |
+
|
| 56 |
+
x = self._updown(x)
|
| 57 |
+
h = x.replace(self.norm1(x.feats))
|
| 58 |
+
h = h.replace(F.silu(h.feats))
|
| 59 |
+
h = self.conv1(h)
|
| 60 |
+
h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift
|
| 61 |
+
h = h.replace(F.silu(h.feats))
|
| 62 |
+
h = self.conv2(h)
|
| 63 |
+
h = h + self.skip_connection(x)
|
| 64 |
+
|
| 65 |
+
return h
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class SLatFlowModel(nn.Module):
|
| 69 |
+
def __init__(
|
| 70 |
+
self,
|
| 71 |
+
resolution: int,
|
| 72 |
+
in_channels: int,
|
| 73 |
+
model_channels: int,
|
| 74 |
+
cond_channels: int,
|
| 75 |
+
out_channels: int,
|
| 76 |
+
num_blocks: int,
|
| 77 |
+
num_heads: Optional[int] = None,
|
| 78 |
+
num_head_channels: Optional[int] = 64,
|
| 79 |
+
mlp_ratio: float = 4,
|
| 80 |
+
patch_size: int = 2,
|
| 81 |
+
num_io_res_blocks: int = 2,
|
| 82 |
+
io_block_channels: List[int] = None,
|
| 83 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
| 84 |
+
use_fp16: bool = False,
|
| 85 |
+
use_checkpoint: bool = False,
|
| 86 |
+
use_skip_connection: bool = True,
|
| 87 |
+
share_mod: bool = False,
|
| 88 |
+
qk_rms_norm: bool = False,
|
| 89 |
+
qk_rms_norm_cross: bool = False,
|
| 90 |
+
):
|
| 91 |
+
super().__init__()
|
| 92 |
+
self.resolution = resolution
|
| 93 |
+
self.in_channels = in_channels
|
| 94 |
+
self.model_channels = model_channels
|
| 95 |
+
self.cond_channels = cond_channels
|
| 96 |
+
self.out_channels = out_channels
|
| 97 |
+
self.num_blocks = num_blocks
|
| 98 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
| 99 |
+
self.mlp_ratio = mlp_ratio
|
| 100 |
+
self.patch_size = patch_size
|
| 101 |
+
self.num_io_res_blocks = num_io_res_blocks
|
| 102 |
+
self.io_block_channels = io_block_channels
|
| 103 |
+
self.pe_mode = pe_mode
|
| 104 |
+
self.use_fp16 = use_fp16
|
| 105 |
+
self.use_checkpoint = use_checkpoint
|
| 106 |
+
self.use_skip_connection = use_skip_connection
|
| 107 |
+
self.share_mod = share_mod
|
| 108 |
+
self.qk_rms_norm = qk_rms_norm
|
| 109 |
+
self.qk_rms_norm_cross = qk_rms_norm_cross
|
| 110 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
| 111 |
+
|
| 112 |
+
assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2"
|
| 113 |
+
assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages"
|
| 114 |
+
|
| 115 |
+
self.t_embedder = TimestepEmbedder(model_channels)
|
| 116 |
+
if share_mod:
|
| 117 |
+
self.adaLN_modulation = nn.Sequential(
|
| 118 |
+
nn.SiLU(),
|
| 119 |
+
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
if pe_mode == "ape":
|
| 123 |
+
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
| 124 |
+
|
| 125 |
+
self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0])
|
| 126 |
+
self.input_blocks = nn.ModuleList([])
|
| 127 |
+
for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]):
|
| 128 |
+
self.input_blocks.extend([
|
| 129 |
+
SparseResBlock3d(
|
| 130 |
+
chs,
|
| 131 |
+
model_channels,
|
| 132 |
+
out_channels=chs,
|
| 133 |
+
)
|
| 134 |
+
for _ in range(num_io_res_blocks-1)
|
| 135 |
+
])
|
| 136 |
+
self.input_blocks.append(
|
| 137 |
+
SparseResBlock3d(
|
| 138 |
+
chs,
|
| 139 |
+
model_channels,
|
| 140 |
+
out_channels=next_chs,
|
| 141 |
+
downsample=True,
|
| 142 |
+
)
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
self.blocks = nn.ModuleList([
|
| 146 |
+
ModulatedSparseTransformerCrossBlock(
|
| 147 |
+
model_channels,
|
| 148 |
+
cond_channels,
|
| 149 |
+
num_heads=self.num_heads,
|
| 150 |
+
mlp_ratio=self.mlp_ratio,
|
| 151 |
+
attn_mode='full',
|
| 152 |
+
use_checkpoint=self.use_checkpoint,
|
| 153 |
+
use_rope=(pe_mode == "rope"),
|
| 154 |
+
share_mod=self.share_mod,
|
| 155 |
+
qk_rms_norm=self.qk_rms_norm,
|
| 156 |
+
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
| 157 |
+
)
|
| 158 |
+
for _ in range(num_blocks)
|
| 159 |
+
])
|
| 160 |
+
|
| 161 |
+
self.out_blocks = nn.ModuleList([])
|
| 162 |
+
for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))):
|
| 163 |
+
self.out_blocks.append(
|
| 164 |
+
SparseResBlock3d(
|
| 165 |
+
prev_chs * 2 if self.use_skip_connection else prev_chs,
|
| 166 |
+
model_channels,
|
| 167 |
+
out_channels=chs,
|
| 168 |
+
upsample=True,
|
| 169 |
+
)
|
| 170 |
+
)
|
| 171 |
+
self.out_blocks.extend([
|
| 172 |
+
SparseResBlock3d(
|
| 173 |
+
chs * 2 if self.use_skip_connection else chs,
|
| 174 |
+
model_channels,
|
| 175 |
+
out_channels=chs,
|
| 176 |
+
)
|
| 177 |
+
for _ in range(num_io_res_blocks-1)
|
| 178 |
+
])
|
| 179 |
+
self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels)
|
| 180 |
+
|
| 181 |
+
self.initialize_weights()
|
| 182 |
+
if use_fp16:
|
| 183 |
+
self.convert_to_fp16()
|
| 184 |
+
|
| 185 |
+
@property
|
| 186 |
+
def device(self) -> torch.device:
|
| 187 |
+
"""
|
| 188 |
+
Return the device of the model.
|
| 189 |
+
"""
|
| 190 |
+
return next(self.parameters()).device
|
| 191 |
+
|
| 192 |
+
def convert_to_fp16(self) -> None:
|
| 193 |
+
"""
|
| 194 |
+
Convert the torso of the model to float16.
|
| 195 |
+
"""
|
| 196 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 197 |
+
self.blocks.apply(convert_module_to_f16)
|
| 198 |
+
self.out_blocks.apply(convert_module_to_f16)
|
| 199 |
+
|
| 200 |
+
def convert_to_fp32(self) -> None:
|
| 201 |
+
"""
|
| 202 |
+
Convert the torso of the model to float32.
|
| 203 |
+
"""
|
| 204 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 205 |
+
self.blocks.apply(convert_module_to_f32)
|
| 206 |
+
self.out_blocks.apply(convert_module_to_f32)
|
| 207 |
+
|
| 208 |
+
def initialize_weights(self) -> None:
|
| 209 |
+
# Initialize transformer layers:
|
| 210 |
+
def _basic_init(module):
|
| 211 |
+
if isinstance(module, nn.Linear):
|
| 212 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 213 |
+
if module.bias is not None:
|
| 214 |
+
nn.init.constant_(module.bias, 0)
|
| 215 |
+
self.apply(_basic_init)
|
| 216 |
+
|
| 217 |
+
# Initialize timestep embedding MLP:
|
| 218 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
| 219 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
| 220 |
+
|
| 221 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
| 222 |
+
if self.share_mod:
|
| 223 |
+
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
| 224 |
+
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
| 225 |
+
else:
|
| 226 |
+
for block in self.blocks:
|
| 227 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
| 228 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
| 229 |
+
|
| 230 |
+
# Zero-out output layers:
|
| 231 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
| 232 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
| 233 |
+
|
| 234 |
+
def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor) -> sp.SparseTensor:
|
| 235 |
+
h = self.input_layer(x).type(self.dtype)
|
| 236 |
+
t_emb = self.t_embedder(t)
|
| 237 |
+
if self.share_mod:
|
| 238 |
+
t_emb = self.adaLN_modulation(t_emb)
|
| 239 |
+
t_emb = t_emb.type(self.dtype)
|
| 240 |
+
cond = cond.type(self.dtype)
|
| 241 |
+
|
| 242 |
+
skips = []
|
| 243 |
+
# pack with input blocks
|
| 244 |
+
for block in self.input_blocks:
|
| 245 |
+
h = block(h, t_emb)
|
| 246 |
+
skips.append(h.feats)
|
| 247 |
+
|
| 248 |
+
if self.pe_mode == "ape":
|
| 249 |
+
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
|
| 250 |
+
for block in self.blocks:
|
| 251 |
+
h = block(h, t_emb, cond)
|
| 252 |
+
|
| 253 |
+
# unpack with output blocks
|
| 254 |
+
for block, skip in zip(self.out_blocks, reversed(skips)):
|
| 255 |
+
if self.use_skip_connection:
|
| 256 |
+
h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb)
|
| 257 |
+
else:
|
| 258 |
+
h = block(h, t_emb)
|
| 259 |
+
|
| 260 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
| 261 |
+
h = self.out_layer(h.type(x.dtype))
|
| 262 |
+
return h
|
trellis/models/structured_latent_vae/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .encoder import SLatEncoder
|
| 2 |
+
from .decoder_gs import SLatGaussianDecoder
|
| 3 |
+
from .decoder_rf import SLatRadianceFieldDecoder
|
| 4 |
+
from .decoder_mesh import SLatMeshDecoder
|
trellis/models/structured_latent_vae/base.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from ...modules.utils import convert_module_to_f16, convert_module_to_f32
|
| 5 |
+
from ...modules import sparse as sp
|
| 6 |
+
from ...modules.transformer import AbsolutePositionEmbedder
|
| 7 |
+
from ...modules.sparse.transformer import SparseTransformerBlock
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def block_attn_config(self):
|
| 11 |
+
"""
|
| 12 |
+
Return the attention configuration of the model.
|
| 13 |
+
"""
|
| 14 |
+
for i in range(self.num_blocks):
|
| 15 |
+
if self.attn_mode == "shift_window":
|
| 16 |
+
yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER
|
| 17 |
+
elif self.attn_mode == "shift_sequence":
|
| 18 |
+
yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER
|
| 19 |
+
elif self.attn_mode == "shift_order":
|
| 20 |
+
yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
|
| 21 |
+
elif self.attn_mode == "full":
|
| 22 |
+
yield "full", None, None, None, None
|
| 23 |
+
elif self.attn_mode == "swin":
|
| 24 |
+
yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class SparseTransformerBase(nn.Module):
|
| 28 |
+
"""
|
| 29 |
+
Sparse Transformer without output layers.
|
| 30 |
+
Serve as the base class for encoder and decoder.
|
| 31 |
+
"""
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
in_channels: int,
|
| 35 |
+
model_channels: int,
|
| 36 |
+
num_blocks: int,
|
| 37 |
+
num_heads: Optional[int] = None,
|
| 38 |
+
num_head_channels: Optional[int] = 64,
|
| 39 |
+
mlp_ratio: float = 4.0,
|
| 40 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
| 41 |
+
window_size: Optional[int] = None,
|
| 42 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
| 43 |
+
use_fp16: bool = False,
|
| 44 |
+
use_checkpoint: bool = False,
|
| 45 |
+
qk_rms_norm: bool = False,
|
| 46 |
+
):
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.in_channels = in_channels
|
| 49 |
+
self.model_channels = model_channels
|
| 50 |
+
self.num_blocks = num_blocks
|
| 51 |
+
self.window_size = window_size
|
| 52 |
+
self.num_heads = num_heads or model_channels // num_head_channels
|
| 53 |
+
self.mlp_ratio = mlp_ratio
|
| 54 |
+
self.attn_mode = attn_mode
|
| 55 |
+
self.pe_mode = pe_mode
|
| 56 |
+
self.use_fp16 = use_fp16
|
| 57 |
+
self.use_checkpoint = use_checkpoint
|
| 58 |
+
self.qk_rms_norm = qk_rms_norm
|
| 59 |
+
self.dtype = torch.float16 if use_fp16 else torch.float32
|
| 60 |
+
|
| 61 |
+
if pe_mode == "ape":
|
| 62 |
+
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
| 63 |
+
|
| 64 |
+
self.input_layer = sp.SparseLinear(in_channels, model_channels)
|
| 65 |
+
self.blocks = nn.ModuleList([
|
| 66 |
+
SparseTransformerBlock(
|
| 67 |
+
model_channels,
|
| 68 |
+
num_heads=self.num_heads,
|
| 69 |
+
mlp_ratio=self.mlp_ratio,
|
| 70 |
+
attn_mode=attn_mode,
|
| 71 |
+
window_size=window_size,
|
| 72 |
+
shift_sequence=shift_sequence,
|
| 73 |
+
shift_window=shift_window,
|
| 74 |
+
serialize_mode=serialize_mode,
|
| 75 |
+
use_checkpoint=self.use_checkpoint,
|
| 76 |
+
use_rope=(pe_mode == "rope"),
|
| 77 |
+
qk_rms_norm=self.qk_rms_norm,
|
| 78 |
+
)
|
| 79 |
+
for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self)
|
| 80 |
+
])
|
| 81 |
+
|
| 82 |
+
@property
|
| 83 |
+
def device(self) -> torch.device:
|
| 84 |
+
"""
|
| 85 |
+
Return the device of the model.
|
| 86 |
+
"""
|
| 87 |
+
return next(self.parameters()).device
|
| 88 |
+
|
| 89 |
+
def convert_to_fp16(self) -> None:
|
| 90 |
+
"""
|
| 91 |
+
Convert the torso of the model to float16.
|
| 92 |
+
"""
|
| 93 |
+
self.blocks.apply(convert_module_to_f16)
|
| 94 |
+
|
| 95 |
+
def convert_to_fp32(self) -> None:
|
| 96 |
+
"""
|
| 97 |
+
Convert the torso of the model to float32.
|
| 98 |
+
"""
|
| 99 |
+
self.blocks.apply(convert_module_to_f32)
|
| 100 |
+
|
| 101 |
+
def initialize_weights(self) -> None:
|
| 102 |
+
# Initialize transformer layers:
|
| 103 |
+
def _basic_init(module):
|
| 104 |
+
if isinstance(module, nn.Linear):
|
| 105 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 106 |
+
if module.bias is not None:
|
| 107 |
+
nn.init.constant_(module.bias, 0)
|
| 108 |
+
self.apply(_basic_init)
|
| 109 |
+
|
| 110 |
+
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
| 111 |
+
h = self.input_layer(x)
|
| 112 |
+
if self.pe_mode == "ape":
|
| 113 |
+
h = h + self.pos_embedder(x.coords[:, 1:])
|
| 114 |
+
h = h.type(self.dtype)
|
| 115 |
+
for block in self.blocks:
|
| 116 |
+
h = block(h)
|
| 117 |
+
return h
|
trellis/models/structured_latent_vae/decoder_gs.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from ...modules import sparse as sp
|
| 6 |
+
from ...utils.random_utils import hammersley_sequence
|
| 7 |
+
from .base import SparseTransformerBase
|
| 8 |
+
from ...representations import Gaussian
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class SLatGaussianDecoder(SparseTransformerBase):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
resolution: int,
|
| 15 |
+
model_channels: int,
|
| 16 |
+
latent_channels: int,
|
| 17 |
+
num_blocks: int,
|
| 18 |
+
num_heads: Optional[int] = None,
|
| 19 |
+
num_head_channels: Optional[int] = 64,
|
| 20 |
+
mlp_ratio: float = 4,
|
| 21 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
| 22 |
+
window_size: int = 8,
|
| 23 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
| 24 |
+
use_fp16: bool = False,
|
| 25 |
+
use_checkpoint: bool = False,
|
| 26 |
+
qk_rms_norm: bool = False,
|
| 27 |
+
representation_config: dict = None,
|
| 28 |
+
):
|
| 29 |
+
super().__init__(
|
| 30 |
+
in_channels=latent_channels,
|
| 31 |
+
model_channels=model_channels,
|
| 32 |
+
num_blocks=num_blocks,
|
| 33 |
+
num_heads=num_heads,
|
| 34 |
+
num_head_channels=num_head_channels,
|
| 35 |
+
mlp_ratio=mlp_ratio,
|
| 36 |
+
attn_mode=attn_mode,
|
| 37 |
+
window_size=window_size,
|
| 38 |
+
pe_mode=pe_mode,
|
| 39 |
+
use_fp16=use_fp16,
|
| 40 |
+
use_checkpoint=use_checkpoint,
|
| 41 |
+
qk_rms_norm=qk_rms_norm,
|
| 42 |
+
)
|
| 43 |
+
self.resolution = resolution
|
| 44 |
+
self.rep_config = representation_config
|
| 45 |
+
self._calc_layout()
|
| 46 |
+
self.out_layer = sp.SparseLinear(model_channels, self.out_channels)
|
| 47 |
+
self._build_perturbation()
|
| 48 |
+
|
| 49 |
+
self.initialize_weights()
|
| 50 |
+
if use_fp16:
|
| 51 |
+
self.convert_to_fp16()
|
| 52 |
+
|
| 53 |
+
def initialize_weights(self) -> None:
|
| 54 |
+
super().initialize_weights()
|
| 55 |
+
# Zero-out output layers:
|
| 56 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
| 57 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
| 58 |
+
|
| 59 |
+
def _build_perturbation(self) -> None:
|
| 60 |
+
perturbation = [hammersley_sequence(3, i, self.rep_config['num_gaussians']) for i in range(self.rep_config['num_gaussians'])]
|
| 61 |
+
perturbation = torch.tensor(perturbation).float() * 2 - 1
|
| 62 |
+
perturbation = perturbation / self.rep_config['voxel_size']
|
| 63 |
+
perturbation = torch.atanh(perturbation).to(self.device)
|
| 64 |
+
self.register_buffer('offset_perturbation', perturbation)
|
| 65 |
+
|
| 66 |
+
def _calc_layout(self) -> None:
|
| 67 |
+
self.layout = {
|
| 68 |
+
'_xyz' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3},
|
| 69 |
+
'_features_dc' : {'shape': (self.rep_config['num_gaussians'], 1, 3), 'size': self.rep_config['num_gaussians'] * 3},
|
| 70 |
+
'_scaling' : {'shape': (self.rep_config['num_gaussians'], 3), 'size': self.rep_config['num_gaussians'] * 3},
|
| 71 |
+
'_rotation' : {'shape': (self.rep_config['num_gaussians'], 4), 'size': self.rep_config['num_gaussians'] * 4},
|
| 72 |
+
'_opacity' : {'shape': (self.rep_config['num_gaussians'], 1), 'size': self.rep_config['num_gaussians']},
|
| 73 |
+
}
|
| 74 |
+
start = 0
|
| 75 |
+
for k, v in self.layout.items():
|
| 76 |
+
v['range'] = (start, start + v['size'])
|
| 77 |
+
start += v['size']
|
| 78 |
+
self.out_channels = start
|
| 79 |
+
|
| 80 |
+
def to_representation(self, x: sp.SparseTensor) -> List[Gaussian]:
|
| 81 |
+
"""
|
| 82 |
+
Convert a batch of network outputs to 3D representations.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
x: The [N x * x C] sparse tensor output by the network.
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
list of representations
|
| 89 |
+
"""
|
| 90 |
+
ret = []
|
| 91 |
+
for i in range(x.shape[0]):
|
| 92 |
+
representation = Gaussian(
|
| 93 |
+
sh_degree=0,
|
| 94 |
+
aabb=[-0.5, -0.5, -0.5, 1.0, 1.0, 1.0],
|
| 95 |
+
mininum_kernel_size = self.rep_config['3d_filter_kernel_size'],
|
| 96 |
+
scaling_bias = self.rep_config['scaling_bias'],
|
| 97 |
+
opacity_bias = self.rep_config['opacity_bias'],
|
| 98 |
+
scaling_activation = self.rep_config['scaling_activation']
|
| 99 |
+
)
|
| 100 |
+
xyz = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
|
| 101 |
+
for k, v in self.layout.items():
|
| 102 |
+
if k == '_xyz':
|
| 103 |
+
offset = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape'])
|
| 104 |
+
offset = offset * self.rep_config['lr'][k]
|
| 105 |
+
if self.rep_config['perturb_offset']:
|
| 106 |
+
offset = offset + self.offset_perturbation
|
| 107 |
+
offset = torch.tanh(offset) / self.resolution * 0.5 * self.rep_config['voxel_size']
|
| 108 |
+
_xyz = xyz.unsqueeze(1) + offset
|
| 109 |
+
setattr(representation, k, _xyz.flatten(0, 1))
|
| 110 |
+
else:
|
| 111 |
+
feats = x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']).flatten(0, 1)
|
| 112 |
+
feats = feats * self.rep_config['lr'][k]
|
| 113 |
+
setattr(representation, k, feats)
|
| 114 |
+
ret.append(representation)
|
| 115 |
+
return ret
|
| 116 |
+
|
| 117 |
+
def forward(self, x: sp.SparseTensor) -> List[Gaussian]:
|
| 118 |
+
h = super().forward(x)
|
| 119 |
+
h = h.type(x.dtype)
|
| 120 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
| 121 |
+
h = self.out_layer(h)
|
| 122 |
+
return self.to_representation(h)
|
trellis/models/structured_latent_vae/decoder_mesh.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
+
from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
| 7 |
+
from ...modules import sparse as sp
|
| 8 |
+
from .base import SparseTransformerBase
|
| 9 |
+
from ...representations import MeshExtractResult
|
| 10 |
+
from ...representations.mesh import SparseFeatures2Mesh
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SparseSubdivideBlock3d(nn.Module):
|
| 14 |
+
"""
|
| 15 |
+
A 3D subdivide block that can subdivide the sparse tensor.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
channels: channels in the inputs and outputs.
|
| 19 |
+
out_channels: if specified, the number of output channels.
|
| 20 |
+
num_groups: the number of groups for the group norm.
|
| 21 |
+
"""
|
| 22 |
+
def __init__(
|
| 23 |
+
self,
|
| 24 |
+
channels: int,
|
| 25 |
+
resolution: int,
|
| 26 |
+
out_channels: Optional[int] = None,
|
| 27 |
+
num_groups: int = 32
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.channels = channels
|
| 31 |
+
self.resolution = resolution
|
| 32 |
+
self.out_resolution = resolution * 2
|
| 33 |
+
self.out_channels = out_channels or channels
|
| 34 |
+
|
| 35 |
+
self.act_layers = nn.Sequential(
|
| 36 |
+
sp.SparseGroupNorm32(num_groups, channels),
|
| 37 |
+
sp.SparseSiLU()
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
self.sub = sp.SparseSubdivide()
|
| 41 |
+
|
| 42 |
+
self.out_layers = nn.Sequential(
|
| 43 |
+
sp.SparseConv3d(channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}"),
|
| 44 |
+
sp.SparseGroupNorm32(num_groups, self.out_channels),
|
| 45 |
+
sp.SparseSiLU(),
|
| 46 |
+
zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}")),
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
if self.out_channels == channels:
|
| 50 |
+
self.skip_connection = nn.Identity()
|
| 51 |
+
else:
|
| 52 |
+
self.skip_connection = sp.SparseConv3d(channels, self.out_channels, 1, indice_key=f"res_{self.out_resolution}")
|
| 53 |
+
|
| 54 |
+
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
| 55 |
+
"""
|
| 56 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
x: an [N x C x ...] Tensor of features.
|
| 60 |
+
Returns:
|
| 61 |
+
an [N x C x ...] Tensor of outputs.
|
| 62 |
+
"""
|
| 63 |
+
h = self.act_layers(x)
|
| 64 |
+
h = self.sub(h)
|
| 65 |
+
x = self.sub(x)
|
| 66 |
+
h = self.out_layers(h)
|
| 67 |
+
h = h + self.skip_connection(x)
|
| 68 |
+
return h
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class SLatMeshDecoder(SparseTransformerBase):
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
resolution: int,
|
| 75 |
+
model_channels: int,
|
| 76 |
+
latent_channels: int,
|
| 77 |
+
num_blocks: int,
|
| 78 |
+
num_heads: Optional[int] = None,
|
| 79 |
+
num_head_channels: Optional[int] = 64,
|
| 80 |
+
mlp_ratio: float = 4,
|
| 81 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
| 82 |
+
window_size: int = 8,
|
| 83 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
| 84 |
+
use_fp16: bool = False,
|
| 85 |
+
use_checkpoint: bool = False,
|
| 86 |
+
qk_rms_norm: bool = False,
|
| 87 |
+
representation_config: dict = None,
|
| 88 |
+
):
|
| 89 |
+
super().__init__(
|
| 90 |
+
in_channels=latent_channels,
|
| 91 |
+
model_channels=model_channels,
|
| 92 |
+
num_blocks=num_blocks,
|
| 93 |
+
num_heads=num_heads,
|
| 94 |
+
num_head_channels=num_head_channels,
|
| 95 |
+
mlp_ratio=mlp_ratio,
|
| 96 |
+
attn_mode=attn_mode,
|
| 97 |
+
window_size=window_size,
|
| 98 |
+
pe_mode=pe_mode,
|
| 99 |
+
use_fp16=use_fp16,
|
| 100 |
+
use_checkpoint=use_checkpoint,
|
| 101 |
+
qk_rms_norm=qk_rms_norm,
|
| 102 |
+
)
|
| 103 |
+
self.resolution = resolution
|
| 104 |
+
self.rep_config = representation_config
|
| 105 |
+
self.mesh_extractor = SparseFeatures2Mesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False))
|
| 106 |
+
self.out_channels = self.mesh_extractor.feats_channels
|
| 107 |
+
self.upsample = nn.ModuleList([
|
| 108 |
+
SparseSubdivideBlock3d(
|
| 109 |
+
channels=model_channels,
|
| 110 |
+
resolution=resolution,
|
| 111 |
+
out_channels=model_channels // 4
|
| 112 |
+
),
|
| 113 |
+
SparseSubdivideBlock3d(
|
| 114 |
+
channels=model_channels // 4,
|
| 115 |
+
resolution=resolution * 2,
|
| 116 |
+
out_channels=model_channels // 8
|
| 117 |
+
)
|
| 118 |
+
])
|
| 119 |
+
self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels)
|
| 120 |
+
|
| 121 |
+
self.initialize_weights()
|
| 122 |
+
if use_fp16:
|
| 123 |
+
self.convert_to_fp16()
|
| 124 |
+
|
| 125 |
+
def initialize_weights(self) -> None:
|
| 126 |
+
super().initialize_weights()
|
| 127 |
+
# Zero-out output layers:
|
| 128 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
| 129 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
| 130 |
+
|
| 131 |
+
def convert_to_fp16(self) -> None:
|
| 132 |
+
"""
|
| 133 |
+
Convert the torso of the model to float16.
|
| 134 |
+
"""
|
| 135 |
+
super().convert_to_fp16()
|
| 136 |
+
self.upsample.apply(convert_module_to_f16)
|
| 137 |
+
|
| 138 |
+
def convert_to_fp32(self) -> None:
|
| 139 |
+
"""
|
| 140 |
+
Convert the torso of the model to float32.
|
| 141 |
+
"""
|
| 142 |
+
super().convert_to_fp32()
|
| 143 |
+
self.upsample.apply(convert_module_to_f32)
|
| 144 |
+
|
| 145 |
+
def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
|
| 146 |
+
"""
|
| 147 |
+
Convert a batch of network outputs to 3D representations.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
x: The [N x * x C] sparse tensor output by the network.
|
| 151 |
+
|
| 152 |
+
Returns:
|
| 153 |
+
list of representations
|
| 154 |
+
"""
|
| 155 |
+
ret = []
|
| 156 |
+
for i in range(x.shape[0]):
|
| 157 |
+
mesh = self.mesh_extractor(x[i], training=self.training)
|
| 158 |
+
ret.append(mesh)
|
| 159 |
+
return ret
|
| 160 |
+
|
| 161 |
+
def forward(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
|
| 162 |
+
h = super().forward(x)
|
| 163 |
+
for block in self.upsample:
|
| 164 |
+
h = block(h)
|
| 165 |
+
h = h.type(x.dtype)
|
| 166 |
+
h = self.out_layer(h)
|
| 167 |
+
return self.to_representation(h)
|
trellis/models/structured_latent_vae/decoder_rf.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
+
from ...modules import sparse as sp
|
| 7 |
+
from .base import SparseTransformerBase
|
| 8 |
+
from ...representations import Strivec
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class SLatRadianceFieldDecoder(SparseTransformerBase):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
resolution: int,
|
| 15 |
+
model_channels: int,
|
| 16 |
+
latent_channels: int,
|
| 17 |
+
num_blocks: int,
|
| 18 |
+
num_heads: Optional[int] = None,
|
| 19 |
+
num_head_channels: Optional[int] = 64,
|
| 20 |
+
mlp_ratio: float = 4,
|
| 21 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
| 22 |
+
window_size: int = 8,
|
| 23 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
| 24 |
+
use_fp16: bool = False,
|
| 25 |
+
use_checkpoint: bool = False,
|
| 26 |
+
qk_rms_norm: bool = False,
|
| 27 |
+
representation_config: dict = None,
|
| 28 |
+
):
|
| 29 |
+
super().__init__(
|
| 30 |
+
in_channels=latent_channels,
|
| 31 |
+
model_channels=model_channels,
|
| 32 |
+
num_blocks=num_blocks,
|
| 33 |
+
num_heads=num_heads,
|
| 34 |
+
num_head_channels=num_head_channels,
|
| 35 |
+
mlp_ratio=mlp_ratio,
|
| 36 |
+
attn_mode=attn_mode,
|
| 37 |
+
window_size=window_size,
|
| 38 |
+
pe_mode=pe_mode,
|
| 39 |
+
use_fp16=use_fp16,
|
| 40 |
+
use_checkpoint=use_checkpoint,
|
| 41 |
+
qk_rms_norm=qk_rms_norm,
|
| 42 |
+
)
|
| 43 |
+
self.resolution = resolution
|
| 44 |
+
self.rep_config = representation_config
|
| 45 |
+
self._calc_layout()
|
| 46 |
+
self.out_layer = sp.SparseLinear(model_channels, self.out_channels)
|
| 47 |
+
|
| 48 |
+
self.initialize_weights()
|
| 49 |
+
if use_fp16:
|
| 50 |
+
self.convert_to_fp16()
|
| 51 |
+
|
| 52 |
+
def initialize_weights(self) -> None:
|
| 53 |
+
super().initialize_weights()
|
| 54 |
+
# Zero-out output layers:
|
| 55 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
| 56 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
| 57 |
+
|
| 58 |
+
def _calc_layout(self) -> None:
|
| 59 |
+
self.layout = {
|
| 60 |
+
'trivec': {'shape': (self.rep_config['rank'], 3, self.rep_config['dim']), 'size': self.rep_config['rank'] * 3 * self.rep_config['dim']},
|
| 61 |
+
'density': {'shape': (self.rep_config['rank'],), 'size': self.rep_config['rank']},
|
| 62 |
+
'features_dc': {'shape': (self.rep_config['rank'], 1, 3), 'size': self.rep_config['rank'] * 3},
|
| 63 |
+
}
|
| 64 |
+
start = 0
|
| 65 |
+
for k, v in self.layout.items():
|
| 66 |
+
v['range'] = (start, start + v['size'])
|
| 67 |
+
start += v['size']
|
| 68 |
+
self.out_channels = start
|
| 69 |
+
|
| 70 |
+
def to_representation(self, x: sp.SparseTensor) -> List[Strivec]:
|
| 71 |
+
"""
|
| 72 |
+
Convert a batch of network outputs to 3D representations.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
x: The [N x * x C] sparse tensor output by the network.
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
list of representations
|
| 79 |
+
"""
|
| 80 |
+
ret = []
|
| 81 |
+
for i in range(x.shape[0]):
|
| 82 |
+
representation = Strivec(
|
| 83 |
+
sh_degree=0,
|
| 84 |
+
resolution=self.resolution,
|
| 85 |
+
aabb=[-0.5, -0.5, -0.5, 1, 1, 1],
|
| 86 |
+
rank=self.rep_config['rank'],
|
| 87 |
+
dim=self.rep_config['dim'],
|
| 88 |
+
device='cuda',
|
| 89 |
+
)
|
| 90 |
+
representation.density_shift = 0.0
|
| 91 |
+
representation.position = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
|
| 92 |
+
representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device='cuda')
|
| 93 |
+
for k, v in self.layout.items():
|
| 94 |
+
setattr(representation, k, x.feats[x.layout[i]][:, v['range'][0]:v['range'][1]].reshape(-1, *v['shape']))
|
| 95 |
+
representation.trivec = representation.trivec + 1
|
| 96 |
+
ret.append(representation)
|
| 97 |
+
return ret
|
| 98 |
+
|
| 99 |
+
def forward(self, x: sp.SparseTensor) -> List[Strivec]:
|
| 100 |
+
h = super().forward(x)
|
| 101 |
+
h = h.type(x.dtype)
|
| 102 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
| 103 |
+
h = self.out_layer(h)
|
| 104 |
+
return self.to_representation(h)
|
trellis/models/structured_latent_vae/encoder.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from ...modules import sparse as sp
|
| 6 |
+
from .base import SparseTransformerBase
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class SLatEncoder(SparseTransformerBase):
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
resolution: int,
|
| 13 |
+
in_channels: int,
|
| 14 |
+
model_channels: int,
|
| 15 |
+
latent_channels: int,
|
| 16 |
+
num_blocks: int,
|
| 17 |
+
num_heads: Optional[int] = None,
|
| 18 |
+
num_head_channels: Optional[int] = 64,
|
| 19 |
+
mlp_ratio: float = 4,
|
| 20 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
|
| 21 |
+
window_size: int = 8,
|
| 22 |
+
pe_mode: Literal["ape", "rope"] = "ape",
|
| 23 |
+
use_fp16: bool = False,
|
| 24 |
+
use_checkpoint: bool = False,
|
| 25 |
+
qk_rms_norm: bool = False,
|
| 26 |
+
):
|
| 27 |
+
super().__init__(
|
| 28 |
+
in_channels=in_channels,
|
| 29 |
+
model_channels=model_channels,
|
| 30 |
+
num_blocks=num_blocks,
|
| 31 |
+
num_heads=num_heads,
|
| 32 |
+
num_head_channels=num_head_channels,
|
| 33 |
+
mlp_ratio=mlp_ratio,
|
| 34 |
+
attn_mode=attn_mode,
|
| 35 |
+
window_size=window_size,
|
| 36 |
+
pe_mode=pe_mode,
|
| 37 |
+
use_fp16=use_fp16,
|
| 38 |
+
use_checkpoint=use_checkpoint,
|
| 39 |
+
qk_rms_norm=qk_rms_norm,
|
| 40 |
+
)
|
| 41 |
+
self.resolution = resolution
|
| 42 |
+
self.out_layer = sp.SparseLinear(model_channels, 2 * latent_channels)
|
| 43 |
+
|
| 44 |
+
self.initialize_weights()
|
| 45 |
+
if use_fp16:
|
| 46 |
+
self.convert_to_fp16()
|
| 47 |
+
|
| 48 |
+
def initialize_weights(self) -> None:
|
| 49 |
+
super().initialize_weights()
|
| 50 |
+
# Zero-out output layers:
|
| 51 |
+
nn.init.constant_(self.out_layer.weight, 0)
|
| 52 |
+
nn.init.constant_(self.out_layer.bias, 0)
|
| 53 |
+
|
| 54 |
+
def forward(self, x: sp.SparseTensor, sample_posterior=True, return_raw=False):
|
| 55 |
+
h = super().forward(x)
|
| 56 |
+
h = h.type(x.dtype)
|
| 57 |
+
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
| 58 |
+
h = self.out_layer(h)
|
| 59 |
+
|
| 60 |
+
# Sample from the posterior distribution
|
| 61 |
+
mean, logvar = h.feats.chunk(2, dim=-1)
|
| 62 |
+
if sample_posterior:
|
| 63 |
+
std = torch.exp(0.5 * logvar)
|
| 64 |
+
z = mean + std * torch.randn_like(std)
|
| 65 |
+
else:
|
| 66 |
+
z = mean
|
| 67 |
+
z = h.replace(z)
|
| 68 |
+
|
| 69 |
+
if return_raw:
|
| 70 |
+
return z, mean, logvar
|
| 71 |
+
else:
|
| 72 |
+
return z
|
trellis/modules/attention/__init__.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
|
| 3 |
+
BACKEND = 'flash_attn'
|
| 4 |
+
DEBUG = False
|
| 5 |
+
|
| 6 |
+
def __from_env():
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
global BACKEND
|
| 10 |
+
global DEBUG
|
| 11 |
+
|
| 12 |
+
env_attn_backend = os.environ.get('ATTN_BACKEND')
|
| 13 |
+
env_sttn_debug = os.environ.get('ATTN_DEBUG')
|
| 14 |
+
|
| 15 |
+
if env_attn_backend is not None and env_attn_backend in ['xformers', 'flash_attn', 'sdpa', 'naive']:
|
| 16 |
+
BACKEND = env_attn_backend
|
| 17 |
+
if env_sttn_debug is not None:
|
| 18 |
+
DEBUG = env_sttn_debug == '1'
|
| 19 |
+
|
| 20 |
+
print(f"[ATTENTION] Using backend: {BACKEND}")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
__from_env()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def set_backend(backend: Literal['xformers', 'flash_attn']):
|
| 27 |
+
global BACKEND
|
| 28 |
+
BACKEND = backend
|
| 29 |
+
|
| 30 |
+
def set_debug(debug: bool):
|
| 31 |
+
global DEBUG
|
| 32 |
+
DEBUG = debug
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
from .full_attn import *
|
| 36 |
+
from .modules import *
|
trellis/modules/attention/full_attn.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import math
|
| 4 |
+
from . import DEBUG, BACKEND
|
| 5 |
+
|
| 6 |
+
if BACKEND == 'xformers':
|
| 7 |
+
import xformers.ops as xops
|
| 8 |
+
elif BACKEND == 'flash_attn':
|
| 9 |
+
import flash_attn
|
| 10 |
+
elif BACKEND == 'sdpa':
|
| 11 |
+
from torch.nn.functional import scaled_dot_product_attention as sdpa
|
| 12 |
+
elif BACKEND == 'naive':
|
| 13 |
+
pass
|
| 14 |
+
else:
|
| 15 |
+
raise ValueError(f"Unknown attention backend: {BACKEND}")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
__all__ = [
|
| 19 |
+
'scaled_dot_product_attention',
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def _naive_sdpa(q, k, v):
|
| 24 |
+
"""
|
| 25 |
+
Naive implementation of scaled dot product attention.
|
| 26 |
+
"""
|
| 27 |
+
q = q.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 28 |
+
k = k.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 29 |
+
v = v.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 30 |
+
scale_factor = 1 / math.sqrt(q.size(-1))
|
| 31 |
+
attn_weight = q @ k.transpose(-2, -1) * scale_factor
|
| 32 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
| 33 |
+
out = attn_weight @ v
|
| 34 |
+
out = out.permute(0, 2, 1, 3) # [N, L, H, C]
|
| 35 |
+
return out
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@overload
|
| 39 |
+
def scaled_dot_product_attention(qkv: torch.Tensor) -> torch.Tensor:
|
| 40 |
+
"""
|
| 41 |
+
Apply scaled dot product attention.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
qkv (torch.Tensor): A [N, L, 3, H, C] tensor containing Qs, Ks, and Vs.
|
| 45 |
+
"""
|
| 46 |
+
...
|
| 47 |
+
|
| 48 |
+
@overload
|
| 49 |
+
def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Tensor:
|
| 50 |
+
"""
|
| 51 |
+
Apply scaled dot product attention.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
q (torch.Tensor): A [N, L, H, C] tensor containing Qs.
|
| 55 |
+
kv (torch.Tensor): A [N, L, 2, H, C] tensor containing Ks and Vs.
|
| 56 |
+
"""
|
| 57 |
+
...
|
| 58 |
+
|
| 59 |
+
@overload
|
| 60 |
+
def scaled_dot_product_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
|
| 61 |
+
"""
|
| 62 |
+
Apply scaled dot product attention.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
q (torch.Tensor): A [N, L, H, Ci] tensor containing Qs.
|
| 66 |
+
k (torch.Tensor): A [N, L, H, Ci] tensor containing Ks.
|
| 67 |
+
v (torch.Tensor): A [N, L, H, Co] tensor containing Vs.
|
| 68 |
+
|
| 69 |
+
Note:
|
| 70 |
+
k and v are assumed to have the same coordinate map.
|
| 71 |
+
"""
|
| 72 |
+
...
|
| 73 |
+
|
| 74 |
+
def scaled_dot_product_attention(*args, **kwargs):
|
| 75 |
+
arg_names_dict = {
|
| 76 |
+
1: ['qkv'],
|
| 77 |
+
2: ['q', 'kv'],
|
| 78 |
+
3: ['q', 'k', 'v']
|
| 79 |
+
}
|
| 80 |
+
num_all_args = len(args) + len(kwargs)
|
| 81 |
+
assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
|
| 82 |
+
for key in arg_names_dict[num_all_args][len(args):]:
|
| 83 |
+
assert key in kwargs, f"Missing argument {key}"
|
| 84 |
+
|
| 85 |
+
if num_all_args == 1:
|
| 86 |
+
qkv = args[0] if len(args) > 0 else kwargs['qkv']
|
| 87 |
+
assert len(qkv.shape) == 5 and qkv.shape[2] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, L, 3, H, C]"
|
| 88 |
+
device = qkv.device
|
| 89 |
+
|
| 90 |
+
elif num_all_args == 2:
|
| 91 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
| 92 |
+
kv = args[1] if len(args) > 1 else kwargs['kv']
|
| 93 |
+
assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
|
| 94 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
|
| 95 |
+
assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
|
| 96 |
+
device = q.device
|
| 97 |
+
|
| 98 |
+
elif num_all_args == 3:
|
| 99 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
| 100 |
+
k = args[1] if len(args) > 1 else kwargs['k']
|
| 101 |
+
v = args[2] if len(args) > 2 else kwargs['v']
|
| 102 |
+
assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
|
| 103 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
|
| 104 |
+
assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
|
| 105 |
+
assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
|
| 106 |
+
device = q.device
|
| 107 |
+
|
| 108 |
+
if BACKEND == 'xformers':
|
| 109 |
+
if num_all_args == 1:
|
| 110 |
+
q, k, v = qkv.unbind(dim=2)
|
| 111 |
+
elif num_all_args == 2:
|
| 112 |
+
k, v = kv.unbind(dim=2)
|
| 113 |
+
out = xops.memory_efficient_attention(q, k, v)
|
| 114 |
+
elif BACKEND == 'flash_attn':
|
| 115 |
+
if num_all_args == 1:
|
| 116 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv)
|
| 117 |
+
elif num_all_args == 2:
|
| 118 |
+
out = flash_attn.flash_attn_kvpacked_func(q, kv)
|
| 119 |
+
elif num_all_args == 3:
|
| 120 |
+
out = flash_attn.flash_attn_func(q, k, v)
|
| 121 |
+
elif BACKEND == 'sdpa':
|
| 122 |
+
if num_all_args == 1:
|
| 123 |
+
q, k, v = qkv.unbind(dim=2)
|
| 124 |
+
elif num_all_args == 2:
|
| 125 |
+
k, v = kv.unbind(dim=2)
|
| 126 |
+
q = q.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 127 |
+
k = k.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 128 |
+
v = v.permute(0, 2, 1, 3) # [N, H, L, C]
|
| 129 |
+
out = sdpa(q, k, v) # [N, H, L, C]
|
| 130 |
+
out = out.permute(0, 2, 1, 3) # [N, L, H, C]
|
| 131 |
+
elif BACKEND == 'naive':
|
| 132 |
+
if num_all_args == 1:
|
| 133 |
+
q, k, v = qkv.unbind(dim=2)
|
| 134 |
+
elif num_all_args == 2:
|
| 135 |
+
k, v = kv.unbind(dim=2)
|
| 136 |
+
out = _naive_sdpa(q, k, v)
|
| 137 |
+
else:
|
| 138 |
+
raise ValueError(f"Unknown attention module: {BACKEND}")
|
| 139 |
+
|
| 140 |
+
return out
|
trellis/modules/attention/modules.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from .full_attn import scaled_dot_product_attention
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class MultiHeadRMSNorm(nn.Module):
|
| 9 |
+
def __init__(self, dim: int, heads: int):
|
| 10 |
+
super().__init__()
|
| 11 |
+
self.scale = dim ** 0.5
|
| 12 |
+
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
| 13 |
+
|
| 14 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 15 |
+
return (F.normalize(x.float(), dim = -1) * self.gamma * self.scale).to(x.dtype)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class RotaryPositionEmbedder(nn.Module):
|
| 19 |
+
def __init__(self, hidden_size: int, in_channels: int = 3):
|
| 20 |
+
super().__init__()
|
| 21 |
+
assert hidden_size % 2 == 0, "Hidden size must be divisible by 2"
|
| 22 |
+
self.hidden_size = hidden_size
|
| 23 |
+
self.in_channels = in_channels
|
| 24 |
+
self.freq_dim = hidden_size // in_channels // 2
|
| 25 |
+
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
| 26 |
+
self.freqs = 1.0 / (10000 ** self.freqs)
|
| 27 |
+
|
| 28 |
+
def _get_phases(self, indices: torch.Tensor) -> torch.Tensor:
|
| 29 |
+
self.freqs = self.freqs.to(indices.device)
|
| 30 |
+
phases = torch.outer(indices, self.freqs)
|
| 31 |
+
phases = torch.polar(torch.ones_like(phases), phases)
|
| 32 |
+
return phases
|
| 33 |
+
|
| 34 |
+
def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor:
|
| 35 |
+
x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
| 36 |
+
x_rotated = x_complex * phases
|
| 37 |
+
x_embed = torch.view_as_real(x_rotated).reshape(*x_rotated.shape[:-1], -1).to(x.dtype)
|
| 38 |
+
return x_embed
|
| 39 |
+
|
| 40 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor, indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 41 |
+
"""
|
| 42 |
+
Args:
|
| 43 |
+
q (sp.SparseTensor): [..., N, D] tensor of queries
|
| 44 |
+
k (sp.SparseTensor): [..., N, D] tensor of keys
|
| 45 |
+
indices (torch.Tensor): [..., N, C] tensor of spatial positions
|
| 46 |
+
"""
|
| 47 |
+
if indices is None:
|
| 48 |
+
indices = torch.arange(q.shape[-2], device=q.device)
|
| 49 |
+
if len(q.shape) > 2:
|
| 50 |
+
indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,))
|
| 51 |
+
|
| 52 |
+
phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1)
|
| 53 |
+
if phases.shape[1] < self.hidden_size // 2:
|
| 54 |
+
phases = torch.cat([phases, torch.polar(
|
| 55 |
+
torch.ones(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device),
|
| 56 |
+
torch.zeros(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device)
|
| 57 |
+
)], dim=-1)
|
| 58 |
+
q_embed = self._rotary_embedding(q, phases)
|
| 59 |
+
k_embed = self._rotary_embedding(k, phases)
|
| 60 |
+
return q_embed, k_embed
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class MultiHeadAttention(nn.Module):
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
channels: int,
|
| 67 |
+
num_heads: int,
|
| 68 |
+
ctx_channels: Optional[int]=None,
|
| 69 |
+
type: Literal["self", "cross"] = "self",
|
| 70 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
| 71 |
+
window_size: Optional[int] = None,
|
| 72 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
| 73 |
+
qkv_bias: bool = True,
|
| 74 |
+
use_rope: bool = False,
|
| 75 |
+
qk_rms_norm: bool = False,
|
| 76 |
+
):
|
| 77 |
+
super().__init__()
|
| 78 |
+
assert channels % num_heads == 0
|
| 79 |
+
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
| 80 |
+
assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}"
|
| 81 |
+
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
|
| 82 |
+
|
| 83 |
+
if attn_mode == "windowed":
|
| 84 |
+
raise NotImplementedError("Windowed attention is not yet implemented")
|
| 85 |
+
|
| 86 |
+
self.channels = channels
|
| 87 |
+
self.head_dim = channels // num_heads
|
| 88 |
+
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
| 89 |
+
self.num_heads = num_heads
|
| 90 |
+
self._type = type
|
| 91 |
+
self.attn_mode = attn_mode
|
| 92 |
+
self.window_size = window_size
|
| 93 |
+
self.shift_window = shift_window
|
| 94 |
+
self.use_rope = use_rope
|
| 95 |
+
self.qk_rms_norm = qk_rms_norm
|
| 96 |
+
|
| 97 |
+
if self._type == "self":
|
| 98 |
+
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
|
| 99 |
+
else:
|
| 100 |
+
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
| 101 |
+
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
| 102 |
+
|
| 103 |
+
if self.qk_rms_norm:
|
| 104 |
+
self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
| 105 |
+
self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
|
| 106 |
+
|
| 107 |
+
self.to_out = nn.Linear(channels, channels)
|
| 108 |
+
|
| 109 |
+
if use_rope:
|
| 110 |
+
self.rope = RotaryPositionEmbedder(channels)
|
| 111 |
+
|
| 112 |
+
def forward(self, x: torch.Tensor, context: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 113 |
+
B, L, C = x.shape
|
| 114 |
+
if self._type == "self":
|
| 115 |
+
qkv = self.to_qkv(x)
|
| 116 |
+
qkv = qkv.reshape(B, L, 3, self.num_heads, -1)
|
| 117 |
+
if self.use_rope:
|
| 118 |
+
q, k, v = qkv.unbind(dim=2)
|
| 119 |
+
q, k = self.rope(q, k, indices)
|
| 120 |
+
qkv = torch.stack([q, k, v], dim=2)
|
| 121 |
+
if self.attn_mode == "full":
|
| 122 |
+
if self.qk_rms_norm:
|
| 123 |
+
q, k, v = qkv.unbind(dim=2)
|
| 124 |
+
q = self.q_rms_norm(q)
|
| 125 |
+
k = self.k_rms_norm(k)
|
| 126 |
+
h = scaled_dot_product_attention(q, k, v)
|
| 127 |
+
else:
|
| 128 |
+
h = scaled_dot_product_attention(qkv)
|
| 129 |
+
elif self.attn_mode == "windowed":
|
| 130 |
+
raise NotImplementedError("Windowed attention is not yet implemented")
|
| 131 |
+
else:
|
| 132 |
+
Lkv = context.shape[1]
|
| 133 |
+
q = self.to_q(x)
|
| 134 |
+
kv = self.to_kv(context)
|
| 135 |
+
q = q.reshape(B, L, self.num_heads, -1)
|
| 136 |
+
kv = kv.reshape(B, Lkv, 2, self.num_heads, -1)
|
| 137 |
+
if self.qk_rms_norm:
|
| 138 |
+
q = self.q_rms_norm(q)
|
| 139 |
+
k, v = kv.unbind(dim=2)
|
| 140 |
+
k = self.k_rms_norm(k)
|
| 141 |
+
h = scaled_dot_product_attention(q, k, v)
|
| 142 |
+
else:
|
| 143 |
+
h = scaled_dot_product_attention(q, kv)
|
| 144 |
+
h = h.reshape(B, L, -1)
|
| 145 |
+
h = self.to_out(h)
|
| 146 |
+
return h
|
trellis/modules/norm.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class LayerNorm32(nn.LayerNorm):
|
| 6 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 7 |
+
return super().forward(x.float()).type(x.dtype)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class GroupNorm32(nn.GroupNorm):
|
| 11 |
+
"""
|
| 12 |
+
A GroupNorm layer that converts to float32 before the forward pass.
|
| 13 |
+
"""
|
| 14 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 15 |
+
return super().forward(x.float()).type(x.dtype)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class ChannelLayerNorm32(LayerNorm32):
|
| 19 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 20 |
+
DIM = x.dim()
|
| 21 |
+
x = x.permute(0, *range(2, DIM), 1).contiguous()
|
| 22 |
+
x = super().forward(x)
|
| 23 |
+
x = x.permute(0, DIM-1, *range(1, DIM-1)).contiguous()
|
| 24 |
+
return x
|
| 25 |
+
|
trellis/modules/sparse/__init__.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
|
| 3 |
+
BACKEND = 'spconv'
|
| 4 |
+
DEBUG = False
|
| 5 |
+
ATTN = 'flash_attn'
|
| 6 |
+
|
| 7 |
+
def __from_env():
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
global BACKEND
|
| 11 |
+
global DEBUG
|
| 12 |
+
global ATTN
|
| 13 |
+
|
| 14 |
+
env_sparse_backend = os.environ.get('SPARSE_BACKEND')
|
| 15 |
+
env_sparse_debug = os.environ.get('SPARSE_DEBUG')
|
| 16 |
+
env_sparse_attn = os.environ.get('SPARSE_ATTN_BACKEND')
|
| 17 |
+
if env_sparse_attn is None:
|
| 18 |
+
env_sparse_attn = os.environ.get('ATTN_BACKEND')
|
| 19 |
+
|
| 20 |
+
if env_sparse_backend is not None and env_sparse_backend in ['spconv', 'torchsparse']:
|
| 21 |
+
BACKEND = env_sparse_backend
|
| 22 |
+
if env_sparse_debug is not None:
|
| 23 |
+
DEBUG = env_sparse_debug == '1'
|
| 24 |
+
if env_sparse_attn is not None and env_sparse_attn in ['xformers', 'flash_attn']:
|
| 25 |
+
ATTN = env_sparse_attn
|
| 26 |
+
|
| 27 |
+
print(f"[SPARSE] Backend: {BACKEND}, Attention: {ATTN}")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
__from_env()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def set_backend(backend: Literal['spconv', 'torchsparse']):
|
| 34 |
+
global BACKEND
|
| 35 |
+
BACKEND = backend
|
| 36 |
+
|
| 37 |
+
def set_debug(debug: bool):
|
| 38 |
+
global DEBUG
|
| 39 |
+
DEBUG = debug
|
| 40 |
+
|
| 41 |
+
def set_attn(attn: Literal['xformers', 'flash_attn']):
|
| 42 |
+
global ATTN
|
| 43 |
+
ATTN = attn
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
import importlib
|
| 47 |
+
|
| 48 |
+
__attributes = {
|
| 49 |
+
'SparseTensor': 'basic',
|
| 50 |
+
'sparse_batch_broadcast': 'basic',
|
| 51 |
+
'sparse_batch_op': 'basic',
|
| 52 |
+
'sparse_cat': 'basic',
|
| 53 |
+
'sparse_unbind': 'basic',
|
| 54 |
+
'SparseGroupNorm': 'norm',
|
| 55 |
+
'SparseLayerNorm': 'norm',
|
| 56 |
+
'SparseGroupNorm32': 'norm',
|
| 57 |
+
'SparseLayerNorm32': 'norm',
|
| 58 |
+
'SparseReLU': 'nonlinearity',
|
| 59 |
+
'SparseSiLU': 'nonlinearity',
|
| 60 |
+
'SparseGELU': 'nonlinearity',
|
| 61 |
+
'SparseActivation': 'nonlinearity',
|
| 62 |
+
'SparseLinear': 'linear',
|
| 63 |
+
'sparse_scaled_dot_product_attention': 'attention',
|
| 64 |
+
'SerializeMode': 'attention',
|
| 65 |
+
'sparse_serialized_scaled_dot_product_self_attention': 'attention',
|
| 66 |
+
'sparse_windowed_scaled_dot_product_self_attention': 'attention',
|
| 67 |
+
'SparseMultiHeadAttention': 'attention',
|
| 68 |
+
'SparseConv3d': 'conv',
|
| 69 |
+
'SparseInverseConv3d': 'conv',
|
| 70 |
+
'SparseDownsample': 'spatial',
|
| 71 |
+
'SparseUpsample': 'spatial',
|
| 72 |
+
'SparseSubdivide' : 'spatial'
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
__submodules = ['transformer']
|
| 76 |
+
|
| 77 |
+
__all__ = list(__attributes.keys()) + __submodules
|
| 78 |
+
|
| 79 |
+
def __getattr__(name):
|
| 80 |
+
if name not in globals():
|
| 81 |
+
if name in __attributes:
|
| 82 |
+
module_name = __attributes[name]
|
| 83 |
+
module = importlib.import_module(f".{module_name}", __name__)
|
| 84 |
+
globals()[name] = getattr(module, name)
|
| 85 |
+
elif name in __submodules:
|
| 86 |
+
module = importlib.import_module(f".{name}", __name__)
|
| 87 |
+
globals()[name] = module
|
| 88 |
+
else:
|
| 89 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
| 90 |
+
return globals()[name]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# For Pylance
|
| 94 |
+
if __name__ == '__main__':
|
| 95 |
+
from .basic import *
|
| 96 |
+
from .norm import *
|
| 97 |
+
from .nonlinearity import *
|
| 98 |
+
from .linear import *
|
| 99 |
+
from .attention import *
|
| 100 |
+
from .conv import *
|
| 101 |
+
from .spatial import *
|
| 102 |
+
import transformer
|
trellis/modules/sparse/attention/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .full_attn import *
|
| 2 |
+
from .serialized_attn import *
|
| 3 |
+
from .windowed_attn import *
|
| 4 |
+
from .modules import *
|
trellis/modules/sparse/attention/full_attn.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
from .. import SparseTensor
|
| 4 |
+
from .. import DEBUG, ATTN
|
| 5 |
+
|
| 6 |
+
if ATTN == 'xformers':
|
| 7 |
+
import xformers.ops as xops
|
| 8 |
+
elif ATTN == 'flash_attn':
|
| 9 |
+
import flash_attn
|
| 10 |
+
else:
|
| 11 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
__all__ = [
|
| 15 |
+
'sparse_scaled_dot_product_attention',
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@overload
|
| 20 |
+
def sparse_scaled_dot_product_attention(qkv: SparseTensor) -> SparseTensor:
|
| 21 |
+
"""
|
| 22 |
+
Apply scaled dot product attention to a sparse tensor.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
qkv (SparseTensor): A [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
| 26 |
+
"""
|
| 27 |
+
...
|
| 28 |
+
|
| 29 |
+
@overload
|
| 30 |
+
def sparse_scaled_dot_product_attention(q: SparseTensor, kv: Union[SparseTensor, torch.Tensor]) -> SparseTensor:
|
| 31 |
+
"""
|
| 32 |
+
Apply scaled dot product attention to a sparse tensor.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
q (SparseTensor): A [N, *, H, C] sparse tensor containing Qs.
|
| 36 |
+
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor or a [N, L, 2, H, C] dense tensor containing Ks and Vs.
|
| 37 |
+
"""
|
| 38 |
+
...
|
| 39 |
+
|
| 40 |
+
@overload
|
| 41 |
+
def sparse_scaled_dot_product_attention(q: torch.Tensor, kv: SparseTensor) -> torch.Tensor:
|
| 42 |
+
"""
|
| 43 |
+
Apply scaled dot product attention to a sparse tensor.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
q (SparseTensor): A [N, L, H, C] dense tensor containing Qs.
|
| 47 |
+
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor containing Ks and Vs.
|
| 48 |
+
"""
|
| 49 |
+
...
|
| 50 |
+
|
| 51 |
+
@overload
|
| 52 |
+
def sparse_scaled_dot_product_attention(q: SparseTensor, k: SparseTensor, v: SparseTensor) -> SparseTensor:
|
| 53 |
+
"""
|
| 54 |
+
Apply scaled dot product attention to a sparse tensor.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
|
| 58 |
+
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
|
| 59 |
+
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
|
| 60 |
+
|
| 61 |
+
Note:
|
| 62 |
+
k and v are assumed to have the same coordinate map.
|
| 63 |
+
"""
|
| 64 |
+
...
|
| 65 |
+
|
| 66 |
+
@overload
|
| 67 |
+
def sparse_scaled_dot_product_attention(q: SparseTensor, k: torch.Tensor, v: torch.Tensor) -> SparseTensor:
|
| 68 |
+
"""
|
| 69 |
+
Apply scaled dot product attention to a sparse tensor.
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
|
| 73 |
+
k (torch.Tensor): A [N, L, H, Ci] dense tensor containing Ks.
|
| 74 |
+
v (torch.Tensor): A [N, L, H, Co] dense tensor containing Vs.
|
| 75 |
+
"""
|
| 76 |
+
...
|
| 77 |
+
|
| 78 |
+
@overload
|
| 79 |
+
def sparse_scaled_dot_product_attention(q: torch.Tensor, k: SparseTensor, v: SparseTensor) -> torch.Tensor:
|
| 80 |
+
"""
|
| 81 |
+
Apply scaled dot product attention to a sparse tensor.
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
q (torch.Tensor): A [N, L, H, Ci] dense tensor containing Qs.
|
| 85 |
+
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
|
| 86 |
+
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
|
| 87 |
+
"""
|
| 88 |
+
...
|
| 89 |
+
|
| 90 |
+
def sparse_scaled_dot_product_attention(*args, **kwargs):
|
| 91 |
+
arg_names_dict = {
|
| 92 |
+
1: ['qkv'],
|
| 93 |
+
2: ['q', 'kv'],
|
| 94 |
+
3: ['q', 'k', 'v']
|
| 95 |
+
}
|
| 96 |
+
num_all_args = len(args) + len(kwargs)
|
| 97 |
+
assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
|
| 98 |
+
for key in arg_names_dict[num_all_args][len(args):]:
|
| 99 |
+
assert key in kwargs, f"Missing argument {key}"
|
| 100 |
+
|
| 101 |
+
if num_all_args == 1:
|
| 102 |
+
qkv = args[0] if len(args) > 0 else kwargs['qkv']
|
| 103 |
+
assert isinstance(qkv, SparseTensor), f"qkv must be a SparseTensor, got {type(qkv)}"
|
| 104 |
+
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
| 105 |
+
device = qkv.device
|
| 106 |
+
|
| 107 |
+
s = qkv
|
| 108 |
+
q_seqlen = [qkv.layout[i].stop - qkv.layout[i].start for i in range(qkv.shape[0])]
|
| 109 |
+
kv_seqlen = q_seqlen
|
| 110 |
+
qkv = qkv.feats # [T, 3, H, C]
|
| 111 |
+
|
| 112 |
+
elif num_all_args == 2:
|
| 113 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
| 114 |
+
kv = args[1] if len(args) > 1 else kwargs['kv']
|
| 115 |
+
assert isinstance(q, SparseTensor) and isinstance(kv, (SparseTensor, torch.Tensor)) or \
|
| 116 |
+
isinstance(q, torch.Tensor) and isinstance(kv, SparseTensor), \
|
| 117 |
+
f"Invalid types, got {type(q)} and {type(kv)}"
|
| 118 |
+
assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
|
| 119 |
+
device = q.device
|
| 120 |
+
|
| 121 |
+
if isinstance(q, SparseTensor):
|
| 122 |
+
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, C]"
|
| 123 |
+
s = q
|
| 124 |
+
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
| 125 |
+
q = q.feats # [T_Q, H, C]
|
| 126 |
+
else:
|
| 127 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
|
| 128 |
+
s = None
|
| 129 |
+
N, L, H, C = q.shape
|
| 130 |
+
q_seqlen = [L] * N
|
| 131 |
+
q = q.reshape(N * L, H, C) # [T_Q, H, C]
|
| 132 |
+
|
| 133 |
+
if isinstance(kv, SparseTensor):
|
| 134 |
+
assert len(kv.shape) == 4 and kv.shape[1] == 2, f"Invalid shape for kv, got {kv.shape}, expected [N, *, 2, H, C]"
|
| 135 |
+
kv_seqlen = [kv.layout[i].stop - kv.layout[i].start for i in range(kv.shape[0])]
|
| 136 |
+
kv = kv.feats # [T_KV, 2, H, C]
|
| 137 |
+
else:
|
| 138 |
+
assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
|
| 139 |
+
N, L, _, H, C = kv.shape
|
| 140 |
+
kv_seqlen = [L] * N
|
| 141 |
+
kv = kv.reshape(N * L, 2, H, C) # [T_KV, 2, H, C]
|
| 142 |
+
|
| 143 |
+
elif num_all_args == 3:
|
| 144 |
+
q = args[0] if len(args) > 0 else kwargs['q']
|
| 145 |
+
k = args[1] if len(args) > 1 else kwargs['k']
|
| 146 |
+
v = args[2] if len(args) > 2 else kwargs['v']
|
| 147 |
+
assert isinstance(q, SparseTensor) and isinstance(k, (SparseTensor, torch.Tensor)) and type(k) == type(v) or \
|
| 148 |
+
isinstance(q, torch.Tensor) and isinstance(k, SparseTensor) and isinstance(v, SparseTensor), \
|
| 149 |
+
f"Invalid types, got {type(q)}, {type(k)}, and {type(v)}"
|
| 150 |
+
assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
|
| 151 |
+
device = q.device
|
| 152 |
+
|
| 153 |
+
if isinstance(q, SparseTensor):
|
| 154 |
+
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, Ci]"
|
| 155 |
+
s = q
|
| 156 |
+
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
| 157 |
+
q = q.feats # [T_Q, H, Ci]
|
| 158 |
+
else:
|
| 159 |
+
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
|
| 160 |
+
s = None
|
| 161 |
+
N, L, H, CI = q.shape
|
| 162 |
+
q_seqlen = [L] * N
|
| 163 |
+
q = q.reshape(N * L, H, CI) # [T_Q, H, Ci]
|
| 164 |
+
|
| 165 |
+
if isinstance(k, SparseTensor):
|
| 166 |
+
assert len(k.shape) == 3, f"Invalid shape for k, got {k.shape}, expected [N, *, H, Ci]"
|
| 167 |
+
assert len(v.shape) == 3, f"Invalid shape for v, got {v.shape}, expected [N, *, H, Co]"
|
| 168 |
+
kv_seqlen = [k.layout[i].stop - k.layout[i].start for i in range(k.shape[0])]
|
| 169 |
+
k = k.feats # [T_KV, H, Ci]
|
| 170 |
+
v = v.feats # [T_KV, H, Co]
|
| 171 |
+
else:
|
| 172 |
+
assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
|
| 173 |
+
assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
|
| 174 |
+
N, L, H, CI, CO = *k.shape, v.shape[-1]
|
| 175 |
+
kv_seqlen = [L] * N
|
| 176 |
+
k = k.reshape(N * L, H, CI) # [T_KV, H, Ci]
|
| 177 |
+
v = v.reshape(N * L, H, CO) # [T_KV, H, Co]
|
| 178 |
+
|
| 179 |
+
if DEBUG:
|
| 180 |
+
if s is not None:
|
| 181 |
+
for i in range(s.shape[0]):
|
| 182 |
+
assert (s.coords[s.layout[i]] == i).all(), f"SparseScaledDotProductSelfAttention: batch index mismatch"
|
| 183 |
+
if num_all_args in [2, 3]:
|
| 184 |
+
assert q.shape[:2] == [1, sum(q_seqlen)], f"SparseScaledDotProductSelfAttention: q shape mismatch"
|
| 185 |
+
if num_all_args == 3:
|
| 186 |
+
assert k.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: k shape mismatch"
|
| 187 |
+
assert v.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: v shape mismatch"
|
| 188 |
+
|
| 189 |
+
if ATTN == 'xformers':
|
| 190 |
+
if num_all_args == 1:
|
| 191 |
+
q, k, v = qkv.unbind(dim=1)
|
| 192 |
+
elif num_all_args == 2:
|
| 193 |
+
k, v = kv.unbind(dim=1)
|
| 194 |
+
q = q.unsqueeze(0)
|
| 195 |
+
k = k.unsqueeze(0)
|
| 196 |
+
v = v.unsqueeze(0)
|
| 197 |
+
mask = xops.fmha.BlockDiagonalMask.from_seqlens(q_seqlen, kv_seqlen)
|
| 198 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0]
|
| 199 |
+
elif ATTN == 'flash_attn':
|
| 200 |
+
cu_seqlens_q = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(q_seqlen), dim=0)]).int().to(device)
|
| 201 |
+
if num_all_args in [2, 3]:
|
| 202 |
+
cu_seqlens_kv = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(kv_seqlen), dim=0)]).int().to(device)
|
| 203 |
+
if num_all_args == 1:
|
| 204 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens_q, max(q_seqlen))
|
| 205 |
+
elif num_all_args == 2:
|
| 206 |
+
out = flash_attn.flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
|
| 207 |
+
elif num_all_args == 3:
|
| 208 |
+
out = flash_attn.flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
|
| 209 |
+
else:
|
| 210 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 211 |
+
|
| 212 |
+
if s is not None:
|
| 213 |
+
return s.replace(out)
|
| 214 |
+
else:
|
| 215 |
+
return out.reshape(N, L, H, -1)
|
trellis/modules/sparse/attention/modules.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from .. import SparseTensor
|
| 6 |
+
from .full_attn import sparse_scaled_dot_product_attention
|
| 7 |
+
from .serialized_attn import SerializeMode, sparse_serialized_scaled_dot_product_self_attention
|
| 8 |
+
from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention
|
| 9 |
+
from ...attention import RotaryPositionEmbedder
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class SparseMultiHeadRMSNorm(nn.Module):
|
| 13 |
+
def __init__(self, dim: int, heads: int):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.scale = dim ** 0.5
|
| 16 |
+
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
| 17 |
+
|
| 18 |
+
def forward(self, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
|
| 19 |
+
x_type = x.dtype
|
| 20 |
+
x = x.float()
|
| 21 |
+
if isinstance(x, SparseTensor):
|
| 22 |
+
x = x.replace(F.normalize(x.feats, dim=-1))
|
| 23 |
+
else:
|
| 24 |
+
x = F.normalize(x, dim=-1)
|
| 25 |
+
return (x * self.gamma * self.scale).to(x_type)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class SparseMultiHeadAttention(nn.Module):
|
| 29 |
+
def __init__(
|
| 30 |
+
self,
|
| 31 |
+
channels: int,
|
| 32 |
+
num_heads: int,
|
| 33 |
+
ctx_channels: Optional[int] = None,
|
| 34 |
+
type: Literal["self", "cross"] = "self",
|
| 35 |
+
attn_mode: Literal["full", "serialized", "windowed"] = "full",
|
| 36 |
+
window_size: Optional[int] = None,
|
| 37 |
+
shift_sequence: Optional[int] = None,
|
| 38 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
| 39 |
+
serialize_mode: Optional[SerializeMode] = None,
|
| 40 |
+
qkv_bias: bool = True,
|
| 41 |
+
use_rope: bool = False,
|
| 42 |
+
qk_rms_norm: bool = False,
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
assert channels % num_heads == 0
|
| 46 |
+
assert type in ["self", "cross"], f"Invalid attention type: {type}"
|
| 47 |
+
assert attn_mode in ["full", "serialized", "windowed"], f"Invalid attention mode: {attn_mode}"
|
| 48 |
+
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
|
| 49 |
+
assert type == "self" or use_rope is False, "Rotary position embeddings only supported for self-attention"
|
| 50 |
+
self.channels = channels
|
| 51 |
+
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
|
| 52 |
+
self.num_heads = num_heads
|
| 53 |
+
self._type = type
|
| 54 |
+
self.attn_mode = attn_mode
|
| 55 |
+
self.window_size = window_size
|
| 56 |
+
self.shift_sequence = shift_sequence
|
| 57 |
+
self.shift_window = shift_window
|
| 58 |
+
self.serialize_mode = serialize_mode
|
| 59 |
+
self.use_rope = use_rope
|
| 60 |
+
self.qk_rms_norm = qk_rms_norm
|
| 61 |
+
|
| 62 |
+
if self._type == "self":
|
| 63 |
+
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
|
| 64 |
+
else:
|
| 65 |
+
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
|
| 66 |
+
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
|
| 67 |
+
|
| 68 |
+
if self.qk_rms_norm:
|
| 69 |
+
self.q_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
| 70 |
+
self.k_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads)
|
| 71 |
+
|
| 72 |
+
self.to_out = nn.Linear(channels, channels)
|
| 73 |
+
|
| 74 |
+
if use_rope:
|
| 75 |
+
self.rope = RotaryPositionEmbedder(channels)
|
| 76 |
+
|
| 77 |
+
@staticmethod
|
| 78 |
+
def _linear(module: nn.Linear, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]:
|
| 79 |
+
if isinstance(x, SparseTensor):
|
| 80 |
+
return x.replace(module(x.feats))
|
| 81 |
+
else:
|
| 82 |
+
return module(x)
|
| 83 |
+
|
| 84 |
+
@staticmethod
|
| 85 |
+
def _reshape_chs(x: Union[SparseTensor, torch.Tensor], shape: Tuple[int, ...]) -> Union[SparseTensor, torch.Tensor]:
|
| 86 |
+
if isinstance(x, SparseTensor):
|
| 87 |
+
return x.reshape(*shape)
|
| 88 |
+
else:
|
| 89 |
+
return x.reshape(*x.shape[:2], *shape)
|
| 90 |
+
|
| 91 |
+
def _fused_pre(self, x: Union[SparseTensor, torch.Tensor], num_fused: int) -> Union[SparseTensor, torch.Tensor]:
|
| 92 |
+
if isinstance(x, SparseTensor):
|
| 93 |
+
x_feats = x.feats.unsqueeze(0)
|
| 94 |
+
else:
|
| 95 |
+
x_feats = x
|
| 96 |
+
x_feats = x_feats.reshape(*x_feats.shape[:2], num_fused, self.num_heads, -1)
|
| 97 |
+
return x.replace(x_feats.squeeze(0)) if isinstance(x, SparseTensor) else x_feats
|
| 98 |
+
|
| 99 |
+
def _rope(self, qkv: SparseTensor) -> SparseTensor:
|
| 100 |
+
q, k, v = qkv.feats.unbind(dim=1) # [T, H, C]
|
| 101 |
+
q, k = self.rope(q, k, qkv.coords[:, 1:])
|
| 102 |
+
qkv = qkv.replace(torch.stack([q, k, v], dim=1))
|
| 103 |
+
return qkv
|
| 104 |
+
|
| 105 |
+
def forward(self, x: Union[SparseTensor, torch.Tensor], context: Optional[Union[SparseTensor, torch.Tensor]] = None) -> Union[SparseTensor, torch.Tensor]:
|
| 106 |
+
if self._type == "self":
|
| 107 |
+
qkv = self._linear(self.to_qkv, x)
|
| 108 |
+
qkv = self._fused_pre(qkv, num_fused=3)
|
| 109 |
+
if self.use_rope:
|
| 110 |
+
qkv = self._rope(qkv)
|
| 111 |
+
if self.qk_rms_norm:
|
| 112 |
+
q, k, v = qkv.unbind(dim=1)
|
| 113 |
+
q = self.q_rms_norm(q)
|
| 114 |
+
k = self.k_rms_norm(k)
|
| 115 |
+
qkv = qkv.replace(torch.stack([q.feats, k.feats, v.feats], dim=1))
|
| 116 |
+
if self.attn_mode == "full":
|
| 117 |
+
h = sparse_scaled_dot_product_attention(qkv)
|
| 118 |
+
elif self.attn_mode == "serialized":
|
| 119 |
+
h = sparse_serialized_scaled_dot_product_self_attention(
|
| 120 |
+
qkv, self.window_size, serialize_mode=self.serialize_mode, shift_sequence=self.shift_sequence, shift_window=self.shift_window
|
| 121 |
+
)
|
| 122 |
+
elif self.attn_mode == "windowed":
|
| 123 |
+
h = sparse_windowed_scaled_dot_product_self_attention(
|
| 124 |
+
qkv, self.window_size, shift_window=self.shift_window
|
| 125 |
+
)
|
| 126 |
+
else:
|
| 127 |
+
q = self._linear(self.to_q, x)
|
| 128 |
+
q = self._reshape_chs(q, (self.num_heads, -1))
|
| 129 |
+
kv = self._linear(self.to_kv, context)
|
| 130 |
+
kv = self._fused_pre(kv, num_fused=2)
|
| 131 |
+
if self.qk_rms_norm:
|
| 132 |
+
q = self.q_rms_norm(q)
|
| 133 |
+
k, v = kv.unbind(dim=1)
|
| 134 |
+
k = self.k_rms_norm(k)
|
| 135 |
+
kv = kv.replace(torch.stack([k.feats, v.feats], dim=1))
|
| 136 |
+
h = sparse_scaled_dot_product_attention(q, kv)
|
| 137 |
+
h = self._reshape_chs(h, (-1,))
|
| 138 |
+
h = self._linear(self.to_out, h)
|
| 139 |
+
return h
|
trellis/modules/sparse/attention/serialized_attn.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
from enum import Enum
|
| 3 |
+
import torch
|
| 4 |
+
import math
|
| 5 |
+
from .. import SparseTensor
|
| 6 |
+
from .. import DEBUG, ATTN
|
| 7 |
+
|
| 8 |
+
if ATTN == 'xformers':
|
| 9 |
+
import xformers.ops as xops
|
| 10 |
+
elif ATTN == 'flash_attn':
|
| 11 |
+
import flash_attn
|
| 12 |
+
else:
|
| 13 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
__all__ = [
|
| 17 |
+
'sparse_serialized_scaled_dot_product_self_attention',
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class SerializeMode(Enum):
|
| 22 |
+
Z_ORDER = 0
|
| 23 |
+
Z_ORDER_TRANSPOSED = 1
|
| 24 |
+
HILBERT = 2
|
| 25 |
+
HILBERT_TRANSPOSED = 3
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
SerializeModes = [
|
| 29 |
+
SerializeMode.Z_ORDER,
|
| 30 |
+
SerializeMode.Z_ORDER_TRANSPOSED,
|
| 31 |
+
SerializeMode.HILBERT,
|
| 32 |
+
SerializeMode.HILBERT_TRANSPOSED
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def calc_serialization(
|
| 37 |
+
tensor: SparseTensor,
|
| 38 |
+
window_size: int,
|
| 39 |
+
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
| 40 |
+
shift_sequence: int = 0,
|
| 41 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
| 42 |
+
) -> Tuple[torch.Tensor, torch.Tensor, List[int]]:
|
| 43 |
+
"""
|
| 44 |
+
Calculate serialization and partitioning for a set of coordinates.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
tensor (SparseTensor): The input tensor.
|
| 48 |
+
window_size (int): The window size to use.
|
| 49 |
+
serialize_mode (SerializeMode): The serialization mode to use.
|
| 50 |
+
shift_sequence (int): The shift of serialized sequence.
|
| 51 |
+
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
(torch.Tensor, torch.Tensor): Forwards and backwards indices.
|
| 55 |
+
"""
|
| 56 |
+
fwd_indices = []
|
| 57 |
+
bwd_indices = []
|
| 58 |
+
seq_lens = []
|
| 59 |
+
seq_batch_indices = []
|
| 60 |
+
offsets = [0]
|
| 61 |
+
|
| 62 |
+
if 'vox2seq' not in globals():
|
| 63 |
+
import vox2seq
|
| 64 |
+
|
| 65 |
+
# Serialize the input
|
| 66 |
+
serialize_coords = tensor.coords[:, 1:].clone()
|
| 67 |
+
serialize_coords += torch.tensor(shift_window, dtype=torch.int32, device=tensor.device).reshape(1, 3)
|
| 68 |
+
if serialize_mode == SerializeMode.Z_ORDER:
|
| 69 |
+
code = vox2seq.encode(serialize_coords, mode='z_order', permute=[0, 1, 2])
|
| 70 |
+
elif serialize_mode == SerializeMode.Z_ORDER_TRANSPOSED:
|
| 71 |
+
code = vox2seq.encode(serialize_coords, mode='z_order', permute=[1, 0, 2])
|
| 72 |
+
elif serialize_mode == SerializeMode.HILBERT:
|
| 73 |
+
code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[0, 1, 2])
|
| 74 |
+
elif serialize_mode == SerializeMode.HILBERT_TRANSPOSED:
|
| 75 |
+
code = vox2seq.encode(serialize_coords, mode='hilbert', permute=[1, 0, 2])
|
| 76 |
+
else:
|
| 77 |
+
raise ValueError(f"Unknown serialize mode: {serialize_mode}")
|
| 78 |
+
|
| 79 |
+
for bi, s in enumerate(tensor.layout):
|
| 80 |
+
num_points = s.stop - s.start
|
| 81 |
+
num_windows = (num_points + window_size - 1) // window_size
|
| 82 |
+
valid_window_size = num_points / num_windows
|
| 83 |
+
to_ordered = torch.argsort(code[s.start:s.stop])
|
| 84 |
+
if num_windows == 1:
|
| 85 |
+
fwd_indices.append(to_ordered)
|
| 86 |
+
bwd_indices.append(torch.zeros_like(to_ordered).scatter_(0, to_ordered, torch.arange(num_points, device=tensor.device)))
|
| 87 |
+
fwd_indices[-1] += s.start
|
| 88 |
+
bwd_indices[-1] += offsets[-1]
|
| 89 |
+
seq_lens.append(num_points)
|
| 90 |
+
seq_batch_indices.append(bi)
|
| 91 |
+
offsets.append(offsets[-1] + seq_lens[-1])
|
| 92 |
+
else:
|
| 93 |
+
# Partition the input
|
| 94 |
+
offset = 0
|
| 95 |
+
mids = [(i + 0.5) * valid_window_size + shift_sequence for i in range(num_windows)]
|
| 96 |
+
split = [math.floor(i * valid_window_size + shift_sequence) for i in range(num_windows + 1)]
|
| 97 |
+
bwd_index = torch.zeros((num_points,), dtype=torch.int64, device=tensor.device)
|
| 98 |
+
for i in range(num_windows):
|
| 99 |
+
mid = mids[i]
|
| 100 |
+
valid_start = split[i]
|
| 101 |
+
valid_end = split[i + 1]
|
| 102 |
+
padded_start = math.floor(mid - 0.5 * window_size)
|
| 103 |
+
padded_end = padded_start + window_size
|
| 104 |
+
fwd_indices.append(to_ordered[torch.arange(padded_start, padded_end, device=tensor.device) % num_points])
|
| 105 |
+
offset += valid_start - padded_start
|
| 106 |
+
bwd_index.scatter_(0, fwd_indices[-1][valid_start-padded_start:valid_end-padded_start], torch.arange(offset, offset + valid_end - valid_start, device=tensor.device))
|
| 107 |
+
offset += padded_end - valid_start
|
| 108 |
+
fwd_indices[-1] += s.start
|
| 109 |
+
seq_lens.extend([window_size] * num_windows)
|
| 110 |
+
seq_batch_indices.extend([bi] * num_windows)
|
| 111 |
+
bwd_indices.append(bwd_index + offsets[-1])
|
| 112 |
+
offsets.append(offsets[-1] + num_windows * window_size)
|
| 113 |
+
|
| 114 |
+
fwd_indices = torch.cat(fwd_indices)
|
| 115 |
+
bwd_indices = torch.cat(bwd_indices)
|
| 116 |
+
|
| 117 |
+
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def sparse_serialized_scaled_dot_product_self_attention(
|
| 121 |
+
qkv: SparseTensor,
|
| 122 |
+
window_size: int,
|
| 123 |
+
serialize_mode: SerializeMode = SerializeMode.Z_ORDER,
|
| 124 |
+
shift_sequence: int = 0,
|
| 125 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
| 126 |
+
) -> SparseTensor:
|
| 127 |
+
"""
|
| 128 |
+
Apply serialized scaled dot product self attention to a sparse tensor.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
| 132 |
+
window_size (int): The window size to use.
|
| 133 |
+
serialize_mode (SerializeMode): The serialization mode to use.
|
| 134 |
+
shift_sequence (int): The shift of serialized sequence.
|
| 135 |
+
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
| 136 |
+
shift (int): The shift to use.
|
| 137 |
+
"""
|
| 138 |
+
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
| 139 |
+
|
| 140 |
+
serialization_spatial_cache_name = f'serialization_{serialize_mode}_{window_size}_{shift_sequence}_{shift_window}'
|
| 141 |
+
serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
|
| 142 |
+
if serialization_spatial_cache is None:
|
| 143 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_serialization(qkv, window_size, serialize_mode, shift_sequence, shift_window)
|
| 144 |
+
qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
|
| 145 |
+
else:
|
| 146 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
|
| 147 |
+
|
| 148 |
+
M = fwd_indices.shape[0]
|
| 149 |
+
T = qkv.feats.shape[0]
|
| 150 |
+
H = qkv.feats.shape[2]
|
| 151 |
+
C = qkv.feats.shape[3]
|
| 152 |
+
|
| 153 |
+
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
|
| 154 |
+
|
| 155 |
+
if DEBUG:
|
| 156 |
+
start = 0
|
| 157 |
+
qkv_coords = qkv.coords[fwd_indices]
|
| 158 |
+
for i in range(len(seq_lens)):
|
| 159 |
+
assert (qkv_coords[start:start+seq_lens[i], 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
|
| 160 |
+
start += seq_lens[i]
|
| 161 |
+
|
| 162 |
+
if all([seq_len == window_size for seq_len in seq_lens]):
|
| 163 |
+
B = len(seq_lens)
|
| 164 |
+
N = window_size
|
| 165 |
+
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
| 166 |
+
if ATTN == 'xformers':
|
| 167 |
+
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
|
| 168 |
+
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
|
| 169 |
+
elif ATTN == 'flash_attn':
|
| 170 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
|
| 171 |
+
else:
|
| 172 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 173 |
+
out = out.reshape(B * N, H, C) # [M, H, C]
|
| 174 |
+
else:
|
| 175 |
+
if ATTN == 'xformers':
|
| 176 |
+
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
|
| 177 |
+
q = q.unsqueeze(0) # [1, M, H, C]
|
| 178 |
+
k = k.unsqueeze(0) # [1, M, H, C]
|
| 179 |
+
v = v.unsqueeze(0) # [1, M, H, C]
|
| 180 |
+
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
| 181 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
|
| 182 |
+
elif ATTN == 'flash_attn':
|
| 183 |
+
cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
|
| 184 |
+
.to(qkv.device).int()
|
| 185 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
|
| 186 |
+
|
| 187 |
+
out = out[bwd_indices] # [T, H, C]
|
| 188 |
+
|
| 189 |
+
if DEBUG:
|
| 190 |
+
qkv_coords = qkv_coords[bwd_indices]
|
| 191 |
+
assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
|
| 192 |
+
|
| 193 |
+
return qkv.replace(out)
|
trellis/modules/sparse/attention/windowed_attn.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import math
|
| 4 |
+
from .. import SparseTensor
|
| 5 |
+
from .. import DEBUG, ATTN
|
| 6 |
+
|
| 7 |
+
if ATTN == 'xformers':
|
| 8 |
+
import xformers.ops as xops
|
| 9 |
+
elif ATTN == 'flash_attn':
|
| 10 |
+
import flash_attn
|
| 11 |
+
else:
|
| 12 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
__all__ = [
|
| 16 |
+
'sparse_windowed_scaled_dot_product_self_attention',
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def calc_window_partition(
|
| 21 |
+
tensor: SparseTensor,
|
| 22 |
+
window_size: Union[int, Tuple[int, ...]],
|
| 23 |
+
shift_window: Union[int, Tuple[int, ...]] = 0
|
| 24 |
+
) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]:
|
| 25 |
+
"""
|
| 26 |
+
Calculate serialization and partitioning for a set of coordinates.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
tensor (SparseTensor): The input tensor.
|
| 30 |
+
window_size (int): The window size to use.
|
| 31 |
+
shift_window (Tuple[int, ...]): The shift of serialized coordinates.
|
| 32 |
+
|
| 33 |
+
Returns:
|
| 34 |
+
(torch.Tensor): Forwards indices.
|
| 35 |
+
(torch.Tensor): Backwards indices.
|
| 36 |
+
(List[int]): Sequence lengths.
|
| 37 |
+
(List[int]): Sequence batch indices.
|
| 38 |
+
"""
|
| 39 |
+
DIM = tensor.coords.shape[1] - 1
|
| 40 |
+
shift_window = (shift_window,) * DIM if isinstance(shift_window, int) else shift_window
|
| 41 |
+
window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size
|
| 42 |
+
shifted_coords = tensor.coords.clone().detach()
|
| 43 |
+
shifted_coords[:, 1:] += torch.tensor(shift_window, device=tensor.device, dtype=torch.int32).unsqueeze(0)
|
| 44 |
+
|
| 45 |
+
MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist()
|
| 46 |
+
NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)]
|
| 47 |
+
OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1]
|
| 48 |
+
|
| 49 |
+
shifted_coords[:, 1:] //= torch.tensor(window_size, device=tensor.device, dtype=torch.int32).unsqueeze(0)
|
| 50 |
+
shifted_indices = (shifted_coords * torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)).sum(dim=1)
|
| 51 |
+
fwd_indices = torch.argsort(shifted_indices)
|
| 52 |
+
bwd_indices = torch.empty_like(fwd_indices)
|
| 53 |
+
bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device)
|
| 54 |
+
seq_lens = torch.bincount(shifted_indices)
|
| 55 |
+
seq_batch_indices = torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) // OFFSET[0]
|
| 56 |
+
mask = seq_lens != 0
|
| 57 |
+
seq_lens = seq_lens[mask].tolist()
|
| 58 |
+
seq_batch_indices = seq_batch_indices[mask].tolist()
|
| 59 |
+
|
| 60 |
+
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def sparse_windowed_scaled_dot_product_self_attention(
|
| 64 |
+
qkv: SparseTensor,
|
| 65 |
+
window_size: int,
|
| 66 |
+
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
| 67 |
+
) -> SparseTensor:
|
| 68 |
+
"""
|
| 69 |
+
Apply windowed scaled dot product self attention to a sparse tensor.
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
| 73 |
+
window_size (int): The window size to use.
|
| 74 |
+
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
| 75 |
+
shift (int): The shift to use.
|
| 76 |
+
"""
|
| 77 |
+
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
| 78 |
+
|
| 79 |
+
serialization_spatial_cache_name = f'window_partition_{window_size}_{shift_window}'
|
| 80 |
+
serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
|
| 81 |
+
if serialization_spatial_cache is None:
|
| 82 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(qkv, window_size, shift_window)
|
| 83 |
+
qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
|
| 84 |
+
else:
|
| 85 |
+
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
|
| 86 |
+
|
| 87 |
+
M = fwd_indices.shape[0]
|
| 88 |
+
T = qkv.feats.shape[0]
|
| 89 |
+
H = qkv.feats.shape[2]
|
| 90 |
+
C = qkv.feats.shape[3]
|
| 91 |
+
|
| 92 |
+
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
|
| 93 |
+
|
| 94 |
+
if DEBUG:
|
| 95 |
+
start = 0
|
| 96 |
+
qkv_coords = qkv.coords[fwd_indices]
|
| 97 |
+
for i in range(len(seq_lens)):
|
| 98 |
+
seq_coords = qkv_coords[start:start+seq_lens[i]]
|
| 99 |
+
assert (seq_coords[:, 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
|
| 100 |
+
assert (seq_coords[:, 1:].max(dim=0).values - seq_coords[:, 1:].min(dim=0).values < window_size).all(), \
|
| 101 |
+
f"SparseWindowedScaledDotProductSelfAttention: window size exceeded"
|
| 102 |
+
start += seq_lens[i]
|
| 103 |
+
|
| 104 |
+
if all([seq_len == window_size for seq_len in seq_lens]):
|
| 105 |
+
B = len(seq_lens)
|
| 106 |
+
N = window_size
|
| 107 |
+
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
| 108 |
+
if ATTN == 'xformers':
|
| 109 |
+
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
|
| 110 |
+
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
|
| 111 |
+
elif ATTN == 'flash_attn':
|
| 112 |
+
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
|
| 113 |
+
else:
|
| 114 |
+
raise ValueError(f"Unknown attention module: {ATTN}")
|
| 115 |
+
out = out.reshape(B * N, H, C) # [M, H, C]
|
| 116 |
+
else:
|
| 117 |
+
if ATTN == 'xformers':
|
| 118 |
+
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
|
| 119 |
+
q = q.unsqueeze(0) # [1, M, H, C]
|
| 120 |
+
k = k.unsqueeze(0) # [1, M, H, C]
|
| 121 |
+
v = v.unsqueeze(0) # [1, M, H, C]
|
| 122 |
+
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
| 123 |
+
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
|
| 124 |
+
elif ATTN == 'flash_attn':
|
| 125 |
+
cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
|
| 126 |
+
.to(qkv.device).int()
|
| 127 |
+
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
|
| 128 |
+
|
| 129 |
+
out = out[bwd_indices] # [T, H, C]
|
| 130 |
+
|
| 131 |
+
if DEBUG:
|
| 132 |
+
qkv_coords = qkv_coords[bwd_indices]
|
| 133 |
+
assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
|
| 134 |
+
|
| 135 |
+
return qkv.replace(out)
|
trellis/modules/sparse/basic.py
ADDED
|
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from . import BACKEND, DEBUG
|
| 5 |
+
SparseTensorData = None # Lazy import
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
__all__ = [
|
| 9 |
+
'SparseTensor',
|
| 10 |
+
'sparse_batch_broadcast',
|
| 11 |
+
'sparse_batch_op',
|
| 12 |
+
'sparse_cat',
|
| 13 |
+
'sparse_unbind',
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class SparseTensor:
|
| 18 |
+
"""
|
| 19 |
+
Sparse tensor with support for both torchsparse and spconv backends.
|
| 20 |
+
|
| 21 |
+
Parameters:
|
| 22 |
+
- feats (torch.Tensor): Features of the sparse tensor.
|
| 23 |
+
- coords (torch.Tensor): Coordinates of the sparse tensor.
|
| 24 |
+
- shape (torch.Size): Shape of the sparse tensor.
|
| 25 |
+
- layout (List[slice]): Layout of the sparse tensor for each batch
|
| 26 |
+
- data (SparseTensorData): Sparse tensor data used for convolusion
|
| 27 |
+
|
| 28 |
+
NOTE:
|
| 29 |
+
- Data corresponding to a same batch should be contiguous.
|
| 30 |
+
- Coords should be in [0, 1023]
|
| 31 |
+
"""
|
| 32 |
+
@overload
|
| 33 |
+
def __init__(self, feats: torch.Tensor, coords: torch.Tensor, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...
|
| 34 |
+
|
| 35 |
+
@overload
|
| 36 |
+
def __init__(self, data, shape: Optional[torch.Size] = None, layout: Optional[List[slice]] = None, **kwargs): ...
|
| 37 |
+
|
| 38 |
+
def __init__(self, *args, **kwargs):
|
| 39 |
+
# Lazy import of sparse tensor backend
|
| 40 |
+
global SparseTensorData
|
| 41 |
+
if SparseTensorData is None:
|
| 42 |
+
import importlib
|
| 43 |
+
if BACKEND == 'torchsparse':
|
| 44 |
+
SparseTensorData = importlib.import_module('torchsparse').SparseTensor
|
| 45 |
+
elif BACKEND == 'spconv':
|
| 46 |
+
SparseTensorData = importlib.import_module('spconv.pytorch').SparseConvTensor
|
| 47 |
+
|
| 48 |
+
method_id = 0
|
| 49 |
+
if len(args) != 0:
|
| 50 |
+
method_id = 0 if isinstance(args[0], torch.Tensor) else 1
|
| 51 |
+
else:
|
| 52 |
+
method_id = 1 if 'data' in kwargs else 0
|
| 53 |
+
|
| 54 |
+
if method_id == 0:
|
| 55 |
+
feats, coords, shape, layout = args + (None,) * (4 - len(args))
|
| 56 |
+
if 'feats' in kwargs:
|
| 57 |
+
feats = kwargs['feats']
|
| 58 |
+
del kwargs['feats']
|
| 59 |
+
if 'coords' in kwargs:
|
| 60 |
+
coords = kwargs['coords']
|
| 61 |
+
del kwargs['coords']
|
| 62 |
+
if 'shape' in kwargs:
|
| 63 |
+
shape = kwargs['shape']
|
| 64 |
+
del kwargs['shape']
|
| 65 |
+
if 'layout' in kwargs:
|
| 66 |
+
layout = kwargs['layout']
|
| 67 |
+
del kwargs['layout']
|
| 68 |
+
|
| 69 |
+
if shape is None:
|
| 70 |
+
shape = self.__cal_shape(feats, coords)
|
| 71 |
+
if layout is None:
|
| 72 |
+
layout = self.__cal_layout(coords, shape[0])
|
| 73 |
+
if BACKEND == 'torchsparse':
|
| 74 |
+
self.data = SparseTensorData(feats, coords, **kwargs)
|
| 75 |
+
elif BACKEND == 'spconv':
|
| 76 |
+
spatial_shape = list(coords.max(0)[0] + 1)[1:]
|
| 77 |
+
self.data = SparseTensorData(feats.reshape(feats.shape[0], -1), coords, spatial_shape, shape[0], **kwargs)
|
| 78 |
+
self.data._features = feats
|
| 79 |
+
elif method_id == 1:
|
| 80 |
+
data, shape, layout = args + (None,) * (3 - len(args))
|
| 81 |
+
if 'data' in kwargs:
|
| 82 |
+
data = kwargs['data']
|
| 83 |
+
del kwargs['data']
|
| 84 |
+
if 'shape' in kwargs:
|
| 85 |
+
shape = kwargs['shape']
|
| 86 |
+
del kwargs['shape']
|
| 87 |
+
if 'layout' in kwargs:
|
| 88 |
+
layout = kwargs['layout']
|
| 89 |
+
del kwargs['layout']
|
| 90 |
+
|
| 91 |
+
self.data = data
|
| 92 |
+
if shape is None:
|
| 93 |
+
shape = self.__cal_shape(self.feats, self.coords)
|
| 94 |
+
if layout is None:
|
| 95 |
+
layout = self.__cal_layout(self.coords, shape[0])
|
| 96 |
+
|
| 97 |
+
self._shape = shape
|
| 98 |
+
self._layout = layout
|
| 99 |
+
self._scale = kwargs.get('scale', (1, 1, 1))
|
| 100 |
+
self._spatial_cache = kwargs.get('spatial_cache', {})
|
| 101 |
+
|
| 102 |
+
if DEBUG:
|
| 103 |
+
try:
|
| 104 |
+
assert self.feats.shape[0] == self.coords.shape[0], f"Invalid feats shape: {self.feats.shape}, coords shape: {self.coords.shape}"
|
| 105 |
+
assert self.shape == self.__cal_shape(self.feats, self.coords), f"Invalid shape: {self.shape}"
|
| 106 |
+
assert self.layout == self.__cal_layout(self.coords, self.shape[0]), f"Invalid layout: {self.layout}"
|
| 107 |
+
for i in range(self.shape[0]):
|
| 108 |
+
assert torch.all(self.coords[self.layout[i], 0] == i), f"The data of batch {i} is not contiguous"
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print('Debugging information:')
|
| 111 |
+
print(f"- Shape: {self.shape}")
|
| 112 |
+
print(f"- Layout: {self.layout}")
|
| 113 |
+
print(f"- Scale: {self._scale}")
|
| 114 |
+
print(f"- Coords: {self.coords}")
|
| 115 |
+
raise e
|
| 116 |
+
|
| 117 |
+
def __cal_shape(self, feats, coords):
|
| 118 |
+
shape = []
|
| 119 |
+
shape.append(coords[:, 0].max().item() + 1)
|
| 120 |
+
shape.extend([*feats.shape[1:]])
|
| 121 |
+
return torch.Size(shape)
|
| 122 |
+
|
| 123 |
+
def __cal_layout(self, coords, batch_size):
|
| 124 |
+
seq_len = torch.bincount(coords[:, 0], minlength=batch_size)
|
| 125 |
+
offset = torch.cumsum(seq_len, dim=0)
|
| 126 |
+
layout = [slice((offset[i] - seq_len[i]).item(), offset[i].item()) for i in range(batch_size)]
|
| 127 |
+
return layout
|
| 128 |
+
|
| 129 |
+
@property
|
| 130 |
+
def shape(self) -> torch.Size:
|
| 131 |
+
return self._shape
|
| 132 |
+
|
| 133 |
+
def dim(self) -> int:
|
| 134 |
+
return len(self.shape)
|
| 135 |
+
|
| 136 |
+
@property
|
| 137 |
+
def layout(self) -> List[slice]:
|
| 138 |
+
return self._layout
|
| 139 |
+
|
| 140 |
+
@property
|
| 141 |
+
def feats(self) -> torch.Tensor:
|
| 142 |
+
if BACKEND == 'torchsparse':
|
| 143 |
+
return self.data.F
|
| 144 |
+
elif BACKEND == 'spconv':
|
| 145 |
+
return self.data.features
|
| 146 |
+
|
| 147 |
+
@feats.setter
|
| 148 |
+
def feats(self, value: torch.Tensor):
|
| 149 |
+
if BACKEND == 'torchsparse':
|
| 150 |
+
self.data.F = value
|
| 151 |
+
elif BACKEND == 'spconv':
|
| 152 |
+
self.data.features = value
|
| 153 |
+
|
| 154 |
+
@property
|
| 155 |
+
def coords(self) -> torch.Tensor:
|
| 156 |
+
if BACKEND == 'torchsparse':
|
| 157 |
+
return self.data.C
|
| 158 |
+
elif BACKEND == 'spconv':
|
| 159 |
+
return self.data.indices
|
| 160 |
+
|
| 161 |
+
@coords.setter
|
| 162 |
+
def coords(self, value: torch.Tensor):
|
| 163 |
+
if BACKEND == 'torchsparse':
|
| 164 |
+
self.data.C = value
|
| 165 |
+
elif BACKEND == 'spconv':
|
| 166 |
+
self.data.indices = value
|
| 167 |
+
|
| 168 |
+
@property
|
| 169 |
+
def dtype(self):
|
| 170 |
+
return self.feats.dtype
|
| 171 |
+
|
| 172 |
+
@property
|
| 173 |
+
def device(self):
|
| 174 |
+
return self.feats.device
|
| 175 |
+
|
| 176 |
+
@overload
|
| 177 |
+
def to(self, dtype: torch.dtype) -> 'SparseTensor': ...
|
| 178 |
+
|
| 179 |
+
@overload
|
| 180 |
+
def to(self, device: Optional[Union[str, torch.device]] = None, dtype: Optional[torch.dtype] = None) -> 'SparseTensor': ...
|
| 181 |
+
|
| 182 |
+
def to(self, *args, **kwargs) -> 'SparseTensor':
|
| 183 |
+
device = None
|
| 184 |
+
dtype = None
|
| 185 |
+
if len(args) == 2:
|
| 186 |
+
device, dtype = args
|
| 187 |
+
elif len(args) == 1:
|
| 188 |
+
if isinstance(args[0], torch.dtype):
|
| 189 |
+
dtype = args[0]
|
| 190 |
+
else:
|
| 191 |
+
device = args[0]
|
| 192 |
+
if 'dtype' in kwargs:
|
| 193 |
+
assert dtype is None, "to() received multiple values for argument 'dtype'"
|
| 194 |
+
dtype = kwargs['dtype']
|
| 195 |
+
if 'device' in kwargs:
|
| 196 |
+
assert device is None, "to() received multiple values for argument 'device'"
|
| 197 |
+
device = kwargs['device']
|
| 198 |
+
|
| 199 |
+
new_feats = self.feats.to(device=device, dtype=dtype)
|
| 200 |
+
new_coords = self.coords.to(device=device)
|
| 201 |
+
return self.replace(new_feats, new_coords)
|
| 202 |
+
|
| 203 |
+
def type(self, dtype):
|
| 204 |
+
new_feats = self.feats.type(dtype)
|
| 205 |
+
return self.replace(new_feats)
|
| 206 |
+
|
| 207 |
+
def cpu(self) -> 'SparseTensor':
|
| 208 |
+
new_feats = self.feats.cpu()
|
| 209 |
+
new_coords = self.coords.cpu()
|
| 210 |
+
return self.replace(new_feats, new_coords)
|
| 211 |
+
|
| 212 |
+
def cuda(self) -> 'SparseTensor':
|
| 213 |
+
new_feats = self.feats.cuda()
|
| 214 |
+
new_coords = self.coords.cuda()
|
| 215 |
+
return self.replace(new_feats, new_coords)
|
| 216 |
+
|
| 217 |
+
def half(self) -> 'SparseTensor':
|
| 218 |
+
new_feats = self.feats.half()
|
| 219 |
+
return self.replace(new_feats)
|
| 220 |
+
|
| 221 |
+
def float(self) -> 'SparseTensor':
|
| 222 |
+
new_feats = self.feats.float()
|
| 223 |
+
return self.replace(new_feats)
|
| 224 |
+
|
| 225 |
+
def detach(self) -> 'SparseTensor':
|
| 226 |
+
new_coords = self.coords.detach()
|
| 227 |
+
new_feats = self.feats.detach()
|
| 228 |
+
return self.replace(new_feats, new_coords)
|
| 229 |
+
|
| 230 |
+
def dense(self) -> torch.Tensor:
|
| 231 |
+
if BACKEND == 'torchsparse':
|
| 232 |
+
return self.data.dense()
|
| 233 |
+
elif BACKEND == 'spconv':
|
| 234 |
+
return self.data.dense()
|
| 235 |
+
|
| 236 |
+
def reshape(self, *shape) -> 'SparseTensor':
|
| 237 |
+
new_feats = self.feats.reshape(self.feats.shape[0], *shape)
|
| 238 |
+
return self.replace(new_feats)
|
| 239 |
+
|
| 240 |
+
def unbind(self, dim: int) -> List['SparseTensor']:
|
| 241 |
+
return sparse_unbind(self, dim)
|
| 242 |
+
|
| 243 |
+
def replace(self, feats: torch.Tensor, coords: Optional[torch.Tensor] = None) -> 'SparseTensor':
|
| 244 |
+
new_shape = [self.shape[0]]
|
| 245 |
+
new_shape.extend(feats.shape[1:])
|
| 246 |
+
if BACKEND == 'torchsparse':
|
| 247 |
+
new_data = SparseTensorData(
|
| 248 |
+
feats=feats,
|
| 249 |
+
coords=self.data.coords if coords is None else coords,
|
| 250 |
+
stride=self.data.stride,
|
| 251 |
+
spatial_range=self.data.spatial_range,
|
| 252 |
+
)
|
| 253 |
+
new_data._caches = self.data._caches
|
| 254 |
+
elif BACKEND == 'spconv':
|
| 255 |
+
new_data = SparseTensorData(
|
| 256 |
+
self.data.features.reshape(self.data.features.shape[0], -1),
|
| 257 |
+
self.data.indices,
|
| 258 |
+
self.data.spatial_shape,
|
| 259 |
+
self.data.batch_size,
|
| 260 |
+
self.data.grid,
|
| 261 |
+
self.data.voxel_num,
|
| 262 |
+
self.data.indice_dict
|
| 263 |
+
)
|
| 264 |
+
new_data._features = feats
|
| 265 |
+
new_data.benchmark = self.data.benchmark
|
| 266 |
+
new_data.benchmark_record = self.data.benchmark_record
|
| 267 |
+
new_data.thrust_allocator = self.data.thrust_allocator
|
| 268 |
+
new_data._timer = self.data._timer
|
| 269 |
+
new_data.force_algo = self.data.force_algo
|
| 270 |
+
new_data.int8_scale = self.data.int8_scale
|
| 271 |
+
if coords is not None:
|
| 272 |
+
new_data.indices = coords
|
| 273 |
+
new_tensor = SparseTensor(new_data, shape=torch.Size(new_shape), layout=self.layout, scale=self._scale, spatial_cache=self._spatial_cache)
|
| 274 |
+
return new_tensor
|
| 275 |
+
|
| 276 |
+
@staticmethod
|
| 277 |
+
def full(aabb, dim, value, dtype=torch.float32, device=None) -> 'SparseTensor':
|
| 278 |
+
N, C = dim
|
| 279 |
+
x = torch.arange(aabb[0], aabb[3] + 1)
|
| 280 |
+
y = torch.arange(aabb[1], aabb[4] + 1)
|
| 281 |
+
z = torch.arange(aabb[2], aabb[5] + 1)
|
| 282 |
+
coords = torch.stack(torch.meshgrid(x, y, z, indexing='ij'), dim=-1).reshape(-1, 3)
|
| 283 |
+
coords = torch.cat([
|
| 284 |
+
torch.arange(N).view(-1, 1).repeat(1, coords.shape[0]).view(-1, 1),
|
| 285 |
+
coords.repeat(N, 1),
|
| 286 |
+
], dim=1).to(dtype=torch.int32, device=device)
|
| 287 |
+
feats = torch.full((coords.shape[0], C), value, dtype=dtype, device=device)
|
| 288 |
+
return SparseTensor(feats=feats, coords=coords)
|
| 289 |
+
|
| 290 |
+
def __merge_sparse_cache(self, other: 'SparseTensor') -> dict:
|
| 291 |
+
new_cache = {}
|
| 292 |
+
for k in set(list(self._spatial_cache.keys()) + list(other._spatial_cache.keys())):
|
| 293 |
+
if k in self._spatial_cache:
|
| 294 |
+
new_cache[k] = self._spatial_cache[k]
|
| 295 |
+
if k in other._spatial_cache:
|
| 296 |
+
if k not in new_cache:
|
| 297 |
+
new_cache[k] = other._spatial_cache[k]
|
| 298 |
+
else:
|
| 299 |
+
new_cache[k].update(other._spatial_cache[k])
|
| 300 |
+
return new_cache
|
| 301 |
+
|
| 302 |
+
def __neg__(self) -> 'SparseTensor':
|
| 303 |
+
return self.replace(-self.feats)
|
| 304 |
+
|
| 305 |
+
def __elemwise__(self, other: Union[torch.Tensor, 'SparseTensor'], op: callable) -> 'SparseTensor':
|
| 306 |
+
if isinstance(other, torch.Tensor):
|
| 307 |
+
try:
|
| 308 |
+
other = torch.broadcast_to(other, self.shape)
|
| 309 |
+
other = sparse_batch_broadcast(self, other)
|
| 310 |
+
except:
|
| 311 |
+
pass
|
| 312 |
+
if isinstance(other, SparseTensor):
|
| 313 |
+
other = other.feats
|
| 314 |
+
new_feats = op(self.feats, other)
|
| 315 |
+
new_tensor = self.replace(new_feats)
|
| 316 |
+
if isinstance(other, SparseTensor):
|
| 317 |
+
new_tensor._spatial_cache = self.__merge_sparse_cache(other)
|
| 318 |
+
return new_tensor
|
| 319 |
+
|
| 320 |
+
def __add__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
| 321 |
+
return self.__elemwise__(other, torch.add)
|
| 322 |
+
|
| 323 |
+
def __radd__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
| 324 |
+
return self.__elemwise__(other, torch.add)
|
| 325 |
+
|
| 326 |
+
def __sub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
| 327 |
+
return self.__elemwise__(other, torch.sub)
|
| 328 |
+
|
| 329 |
+
def __rsub__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
| 330 |
+
return self.__elemwise__(other, lambda x, y: torch.sub(y, x))
|
| 331 |
+
|
| 332 |
+
def __mul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
| 333 |
+
return self.__elemwise__(other, torch.mul)
|
| 334 |
+
|
| 335 |
+
def __rmul__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
| 336 |
+
return self.__elemwise__(other, torch.mul)
|
| 337 |
+
|
| 338 |
+
def __truediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
| 339 |
+
return self.__elemwise__(other, torch.div)
|
| 340 |
+
|
| 341 |
+
def __rtruediv__(self, other: Union[torch.Tensor, 'SparseTensor', float]) -> 'SparseTensor':
|
| 342 |
+
return self.__elemwise__(other, lambda x, y: torch.div(y, x))
|
| 343 |
+
|
| 344 |
+
def __getitem__(self, idx):
|
| 345 |
+
if isinstance(idx, int):
|
| 346 |
+
idx = [idx]
|
| 347 |
+
elif isinstance(idx, slice):
|
| 348 |
+
idx = range(*idx.indices(self.shape[0]))
|
| 349 |
+
elif isinstance(idx, torch.Tensor):
|
| 350 |
+
if idx.dtype == torch.bool:
|
| 351 |
+
assert idx.shape == (self.shape[0],), f"Invalid index shape: {idx.shape}"
|
| 352 |
+
idx = idx.nonzero().squeeze(1)
|
| 353 |
+
elif idx.dtype in [torch.int32, torch.int64]:
|
| 354 |
+
assert len(idx.shape) == 1, f"Invalid index shape: {idx.shape}"
|
| 355 |
+
else:
|
| 356 |
+
raise ValueError(f"Unknown index type: {idx.dtype}")
|
| 357 |
+
else:
|
| 358 |
+
raise ValueError(f"Unknown index type: {type(idx)}")
|
| 359 |
+
|
| 360 |
+
coords = []
|
| 361 |
+
feats = []
|
| 362 |
+
for new_idx, old_idx in enumerate(idx):
|
| 363 |
+
coords.append(self.coords[self.layout[old_idx]].clone())
|
| 364 |
+
coords[-1][:, 0] = new_idx
|
| 365 |
+
feats.append(self.feats[self.layout[old_idx]])
|
| 366 |
+
coords = torch.cat(coords, dim=0).contiguous()
|
| 367 |
+
feats = torch.cat(feats, dim=0).contiguous()
|
| 368 |
+
return SparseTensor(feats=feats, coords=coords)
|
| 369 |
+
|
| 370 |
+
def register_spatial_cache(self, key, value) -> None:
|
| 371 |
+
"""
|
| 372 |
+
Register a spatial cache.
|
| 373 |
+
The spatial cache can be any thing you want to cache.
|
| 374 |
+
The registery and retrieval of the cache is based on current scale.
|
| 375 |
+
"""
|
| 376 |
+
scale_key = str(self._scale)
|
| 377 |
+
if scale_key not in self._spatial_cache:
|
| 378 |
+
self._spatial_cache[scale_key] = {}
|
| 379 |
+
self._spatial_cache[scale_key][key] = value
|
| 380 |
+
|
| 381 |
+
def get_spatial_cache(self, key=None):
|
| 382 |
+
"""
|
| 383 |
+
Get a spatial cache.
|
| 384 |
+
"""
|
| 385 |
+
scale_key = str(self._scale)
|
| 386 |
+
cur_scale_cache = self._spatial_cache.get(scale_key, {})
|
| 387 |
+
if key is None:
|
| 388 |
+
return cur_scale_cache
|
| 389 |
+
return cur_scale_cache.get(key, None)
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
def sparse_batch_broadcast(input: SparseTensor, other: torch.Tensor) -> torch.Tensor:
|
| 393 |
+
"""
|
| 394 |
+
Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
|
| 395 |
+
|
| 396 |
+
Args:
|
| 397 |
+
input (torch.Tensor): 1D tensor to broadcast.
|
| 398 |
+
target (SparseTensor): Sparse tensor to broadcast to.
|
| 399 |
+
op (callable): Operation to perform after broadcasting. Defaults to torch.add.
|
| 400 |
+
"""
|
| 401 |
+
coords, feats = input.coords, input.feats
|
| 402 |
+
broadcasted = torch.zeros_like(feats)
|
| 403 |
+
for k in range(input.shape[0]):
|
| 404 |
+
broadcasted[input.layout[k]] = other[k]
|
| 405 |
+
return broadcasted
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
def sparse_batch_op(input: SparseTensor, other: torch.Tensor, op: callable = torch.add) -> SparseTensor:
|
| 409 |
+
"""
|
| 410 |
+
Broadcast a 1D tensor to a sparse tensor along the batch dimension then perform an operation.
|
| 411 |
+
|
| 412 |
+
Args:
|
| 413 |
+
input (torch.Tensor): 1D tensor to broadcast.
|
| 414 |
+
target (SparseTensor): Sparse tensor to broadcast to.
|
| 415 |
+
op (callable): Operation to perform after broadcasting. Defaults to torch.add.
|
| 416 |
+
"""
|
| 417 |
+
return input.replace(op(input.feats, sparse_batch_broadcast(input, other)))
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
def sparse_cat(inputs: List[SparseTensor], dim: int = 0) -> SparseTensor:
|
| 421 |
+
"""
|
| 422 |
+
Concatenate a list of sparse tensors.
|
| 423 |
+
|
| 424 |
+
Args:
|
| 425 |
+
inputs (List[SparseTensor]): List of sparse tensors to concatenate.
|
| 426 |
+
"""
|
| 427 |
+
if dim == 0:
|
| 428 |
+
start = 0
|
| 429 |
+
coords = []
|
| 430 |
+
for input in inputs:
|
| 431 |
+
coords.append(input.coords.clone())
|
| 432 |
+
coords[-1][:, 0] += start
|
| 433 |
+
start += input.shape[0]
|
| 434 |
+
coords = torch.cat(coords, dim=0)
|
| 435 |
+
feats = torch.cat([input.feats for input in inputs], dim=0)
|
| 436 |
+
output = SparseTensor(
|
| 437 |
+
coords=coords,
|
| 438 |
+
feats=feats,
|
| 439 |
+
)
|
| 440 |
+
else:
|
| 441 |
+
feats = torch.cat([input.feats for input in inputs], dim=dim)
|
| 442 |
+
output = inputs[0].replace(feats)
|
| 443 |
+
|
| 444 |
+
return output
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def sparse_unbind(input: SparseTensor, dim: int) -> List[SparseTensor]:
|
| 448 |
+
"""
|
| 449 |
+
Unbind a sparse tensor along a dimension.
|
| 450 |
+
|
| 451 |
+
Args:
|
| 452 |
+
input (SparseTensor): Sparse tensor to unbind.
|
| 453 |
+
dim (int): Dimension to unbind.
|
| 454 |
+
"""
|
| 455 |
+
if dim == 0:
|
| 456 |
+
return [input[i] for i in range(input.shape[0])]
|
| 457 |
+
else:
|
| 458 |
+
feats = input.feats.unbind(dim)
|
| 459 |
+
return [input.replace(f) for f in feats]
|
trellis/modules/sparse/conv/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .. import BACKEND
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
SPCONV_ALGO = 'auto' # 'auto', 'implicit_gemm', 'native'
|
| 5 |
+
|
| 6 |
+
def __from_env():
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
global SPCONV_ALGO
|
| 10 |
+
env_spconv_algo = os.environ.get('SPCONV_ALGO')
|
| 11 |
+
if env_spconv_algo is not None and env_spconv_algo in ['auto', 'implicit_gemm', 'native']:
|
| 12 |
+
SPCONV_ALGO = env_spconv_algo
|
| 13 |
+
print(f"[SPARSE][CONV] spconv algo: {SPCONV_ALGO}")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
__from_env()
|
| 17 |
+
|
| 18 |
+
if BACKEND == 'torchsparse':
|
| 19 |
+
from .conv_torchsparse import *
|
| 20 |
+
elif BACKEND == 'spconv':
|
| 21 |
+
from .conv_spconv import *
|
trellis/modules/sparse/conv/conv_spconv.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from .. import SparseTensor
|
| 4 |
+
from .. import DEBUG
|
| 5 |
+
from . import SPCONV_ALGO
|
| 6 |
+
|
| 7 |
+
class SparseConv3d(nn.Module):
|
| 8 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=None, bias=True, indice_key=None):
|
| 9 |
+
super(SparseConv3d, self).__init__()
|
| 10 |
+
if 'spconv' not in globals():
|
| 11 |
+
import spconv.pytorch as spconv
|
| 12 |
+
algo = None
|
| 13 |
+
if SPCONV_ALGO == 'native':
|
| 14 |
+
algo = spconv.ConvAlgo.Native
|
| 15 |
+
elif SPCONV_ALGO == 'implicit_gemm':
|
| 16 |
+
algo = spconv.ConvAlgo.MaskImplicitGemm
|
| 17 |
+
if stride == 1 and (padding is None):
|
| 18 |
+
self.conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, dilation=dilation, bias=bias, indice_key=indice_key, algo=algo)
|
| 19 |
+
else:
|
| 20 |
+
self.conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, indice_key=indice_key, algo=algo)
|
| 21 |
+
self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
|
| 22 |
+
self.padding = padding
|
| 23 |
+
|
| 24 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 25 |
+
spatial_changed = any(s != 1 for s in self.stride) or (self.padding is not None)
|
| 26 |
+
new_data = self.conv(x.data)
|
| 27 |
+
new_shape = [x.shape[0], self.conv.out_channels]
|
| 28 |
+
new_layout = None if spatial_changed else x.layout
|
| 29 |
+
|
| 30 |
+
if spatial_changed and (x.shape[0] != 1):
|
| 31 |
+
# spconv was non-1 stride will break the contiguous of the output tensor, sort by the coords
|
| 32 |
+
fwd = new_data.indices[:, 0].argsort()
|
| 33 |
+
bwd = torch.zeros_like(fwd).scatter_(0, fwd, torch.arange(fwd.shape[0], device=fwd.device))
|
| 34 |
+
sorted_feats = new_data.features[fwd]
|
| 35 |
+
sorted_coords = new_data.indices[fwd]
|
| 36 |
+
unsorted_data = new_data
|
| 37 |
+
new_data = spconv.SparseConvTensor(sorted_feats, sorted_coords, unsorted_data.spatial_shape, unsorted_data.batch_size) # type: ignore
|
| 38 |
+
|
| 39 |
+
out = SparseTensor(
|
| 40 |
+
new_data, shape=torch.Size(new_shape), layout=new_layout,
|
| 41 |
+
scale=tuple([s * stride for s, stride in zip(x._scale, self.stride)]),
|
| 42 |
+
spatial_cache=x._spatial_cache,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
if spatial_changed and (x.shape[0] != 1):
|
| 46 |
+
out.register_spatial_cache(f'conv_{self.stride}_unsorted_data', unsorted_data)
|
| 47 |
+
out.register_spatial_cache(f'conv_{self.stride}_sort_bwd', bwd)
|
| 48 |
+
|
| 49 |
+
return out
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class SparseInverseConv3d(nn.Module):
|
| 53 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
|
| 54 |
+
super(SparseInverseConv3d, self).__init__()
|
| 55 |
+
if 'spconv' not in globals():
|
| 56 |
+
import spconv.pytorch as spconv
|
| 57 |
+
self.conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, bias=bias, indice_key=indice_key)
|
| 58 |
+
self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
|
| 59 |
+
|
| 60 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 61 |
+
spatial_changed = any(s != 1 for s in self.stride)
|
| 62 |
+
if spatial_changed:
|
| 63 |
+
# recover the original spconv order
|
| 64 |
+
data = x.get_spatial_cache(f'conv_{self.stride}_unsorted_data')
|
| 65 |
+
bwd = x.get_spatial_cache(f'conv_{self.stride}_sort_bwd')
|
| 66 |
+
data = data.replace_feature(x.feats[bwd])
|
| 67 |
+
if DEBUG:
|
| 68 |
+
assert torch.equal(data.indices, x.coords[bwd]), 'Recover the original order failed'
|
| 69 |
+
else:
|
| 70 |
+
data = x.data
|
| 71 |
+
|
| 72 |
+
new_data = self.conv(data)
|
| 73 |
+
new_shape = [x.shape[0], self.conv.out_channels]
|
| 74 |
+
new_layout = None if spatial_changed else x.layout
|
| 75 |
+
out = SparseTensor(
|
| 76 |
+
new_data, shape=torch.Size(new_shape), layout=new_layout,
|
| 77 |
+
scale=tuple([s // stride for s, stride in zip(x._scale, self.stride)]),
|
| 78 |
+
spatial_cache=x._spatial_cache,
|
| 79 |
+
)
|
| 80 |
+
return out
|
trellis/modules/sparse/conv/conv_torchsparse.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from .. import SparseTensor
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class SparseConv3d(nn.Module):
|
| 7 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
|
| 8 |
+
super(SparseConv3d, self).__init__()
|
| 9 |
+
if 'torchsparse' not in globals():
|
| 10 |
+
import torchsparse
|
| 11 |
+
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias)
|
| 12 |
+
|
| 13 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 14 |
+
out = self.conv(x.data)
|
| 15 |
+
new_shape = [x.shape[0], self.conv.out_channels]
|
| 16 |
+
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
|
| 17 |
+
out._spatial_cache = x._spatial_cache
|
| 18 |
+
out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)])
|
| 19 |
+
return out
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class SparseInverseConv3d(nn.Module):
|
| 23 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
|
| 24 |
+
super(SparseInverseConv3d, self).__init__()
|
| 25 |
+
if 'torchsparse' not in globals():
|
| 26 |
+
import torchsparse
|
| 27 |
+
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True)
|
| 28 |
+
|
| 29 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 30 |
+
out = self.conv(x.data)
|
| 31 |
+
new_shape = [x.shape[0], self.conv.out_channels]
|
| 32 |
+
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
|
| 33 |
+
out._spatial_cache = x._spatial_cache
|
| 34 |
+
out._scale = tuple([s // stride for s, stride in zip(x._scale, self.conv.stride)])
|
| 35 |
+
return out
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
trellis/modules/sparse/linear.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from . import SparseTensor
|
| 4 |
+
|
| 5 |
+
__all__ = [
|
| 6 |
+
'SparseLinear'
|
| 7 |
+
]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class SparseLinear(nn.Linear):
|
| 11 |
+
def __init__(self, in_features, out_features, bias=True):
|
| 12 |
+
super(SparseLinear, self).__init__(in_features, out_features, bias)
|
| 13 |
+
|
| 14 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 15 |
+
return input.replace(super().forward(input.feats))
|
trellis/modules/sparse/nonlinearity.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from . import SparseTensor
|
| 4 |
+
|
| 5 |
+
__all__ = [
|
| 6 |
+
'SparseReLU',
|
| 7 |
+
'SparseSiLU',
|
| 8 |
+
'SparseGELU',
|
| 9 |
+
'SparseActivation'
|
| 10 |
+
]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SparseReLU(nn.ReLU):
|
| 14 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 15 |
+
return input.replace(super().forward(input.feats))
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class SparseSiLU(nn.SiLU):
|
| 19 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 20 |
+
return input.replace(super().forward(input.feats))
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class SparseGELU(nn.GELU):
|
| 24 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 25 |
+
return input.replace(super().forward(input.feats))
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class SparseActivation(nn.Module):
|
| 29 |
+
def __init__(self, activation: nn.Module):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.activation = activation
|
| 32 |
+
|
| 33 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 34 |
+
return input.replace(self.activation(input.feats))
|
| 35 |
+
|
trellis/modules/sparse/norm.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from . import SparseTensor
|
| 4 |
+
from . import DEBUG
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
'SparseGroupNorm',
|
| 8 |
+
'SparseLayerNorm',
|
| 9 |
+
'SparseGroupNorm32',
|
| 10 |
+
'SparseLayerNorm32',
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class SparseGroupNorm(nn.GroupNorm):
|
| 15 |
+
def __init__(self, num_groups, num_channels, eps=1e-5, affine=True):
|
| 16 |
+
super(SparseGroupNorm, self).__init__(num_groups, num_channels, eps, affine)
|
| 17 |
+
|
| 18 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 19 |
+
nfeats = torch.zeros_like(input.feats)
|
| 20 |
+
for k in range(input.shape[0]):
|
| 21 |
+
if DEBUG:
|
| 22 |
+
assert (input.coords[input.layout[k], 0] == k).all(), f"SparseGroupNorm: batch index mismatch"
|
| 23 |
+
bfeats = input.feats[input.layout[k]]
|
| 24 |
+
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
|
| 25 |
+
bfeats = super().forward(bfeats)
|
| 26 |
+
bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
|
| 27 |
+
nfeats[input.layout[k]] = bfeats
|
| 28 |
+
return input.replace(nfeats)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class SparseLayerNorm(nn.LayerNorm):
|
| 32 |
+
def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
|
| 33 |
+
super(SparseLayerNorm, self).__init__(normalized_shape, eps, elementwise_affine)
|
| 34 |
+
|
| 35 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 36 |
+
nfeats = torch.zeros_like(input.feats)
|
| 37 |
+
for k in range(input.shape[0]):
|
| 38 |
+
bfeats = input.feats[input.layout[k]]
|
| 39 |
+
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
|
| 40 |
+
bfeats = super().forward(bfeats)
|
| 41 |
+
bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
|
| 42 |
+
nfeats[input.layout[k]] = bfeats
|
| 43 |
+
return input.replace(nfeats)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class SparseGroupNorm32(SparseGroupNorm):
|
| 47 |
+
"""
|
| 48 |
+
A GroupNorm layer that converts to float32 before the forward pass.
|
| 49 |
+
"""
|
| 50 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 51 |
+
return super().forward(x.float()).type(x.dtype)
|
| 52 |
+
|
| 53 |
+
class SparseLayerNorm32(SparseLayerNorm):
|
| 54 |
+
"""
|
| 55 |
+
A LayerNorm layer that converts to float32 before the forward pass.
|
| 56 |
+
"""
|
| 57 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 58 |
+
return super().forward(x.float()).type(x.dtype)
|
trellis/modules/sparse/spatial.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from . import SparseTensor
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
'SparseDownsample',
|
| 8 |
+
'SparseUpsample',
|
| 9 |
+
'SparseSubdivide'
|
| 10 |
+
]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SparseDownsample(nn.Module):
|
| 14 |
+
"""
|
| 15 |
+
Downsample a sparse tensor by a factor of `factor`.
|
| 16 |
+
Implemented as average pooling.
|
| 17 |
+
"""
|
| 18 |
+
def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
|
| 19 |
+
super(SparseDownsample, self).__init__()
|
| 20 |
+
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
|
| 21 |
+
|
| 22 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 23 |
+
DIM = input.coords.shape[-1] - 1
|
| 24 |
+
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
|
| 25 |
+
assert DIM == len(factor), 'Input coordinates must have the same dimension as the downsample factor.'
|
| 26 |
+
|
| 27 |
+
coord = list(input.coords.unbind(dim=-1))
|
| 28 |
+
for i, f in enumerate(factor):
|
| 29 |
+
coord[i+1] = coord[i+1] // f
|
| 30 |
+
|
| 31 |
+
MAX = [coord[i+1].max().item() + 1 for i in range(DIM)]
|
| 32 |
+
OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
|
| 33 |
+
code = sum([c * o for c, o in zip(coord, OFFSET)])
|
| 34 |
+
code, idx = code.unique(return_inverse=True)
|
| 35 |
+
|
| 36 |
+
new_feats = torch.scatter_reduce(
|
| 37 |
+
torch.zeros(code.shape[0], input.feats.shape[1], device=input.feats.device, dtype=input.feats.dtype),
|
| 38 |
+
dim=0,
|
| 39 |
+
index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
|
| 40 |
+
src=input.feats,
|
| 41 |
+
reduce='mean'
|
| 42 |
+
)
|
| 43 |
+
new_coords = torch.stack(
|
| 44 |
+
[code // OFFSET[0]] +
|
| 45 |
+
[(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)],
|
| 46 |
+
dim=-1
|
| 47 |
+
)
|
| 48 |
+
out = SparseTensor(new_feats, new_coords, input.shape,)
|
| 49 |
+
out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
|
| 50 |
+
out._spatial_cache = input._spatial_cache
|
| 51 |
+
|
| 52 |
+
out.register_spatial_cache(f'upsample_{factor}_coords', input.coords)
|
| 53 |
+
out.register_spatial_cache(f'upsample_{factor}_layout', input.layout)
|
| 54 |
+
out.register_spatial_cache(f'upsample_{factor}_idx', idx)
|
| 55 |
+
|
| 56 |
+
return out
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class SparseUpsample(nn.Module):
|
| 60 |
+
"""
|
| 61 |
+
Upsample a sparse tensor by a factor of `factor`.
|
| 62 |
+
Implemented as nearest neighbor interpolation.
|
| 63 |
+
"""
|
| 64 |
+
def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
|
| 65 |
+
super(SparseUpsample, self).__init__()
|
| 66 |
+
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
|
| 67 |
+
|
| 68 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 69 |
+
DIM = input.coords.shape[-1] - 1
|
| 70 |
+
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
|
| 71 |
+
assert DIM == len(factor), 'Input coordinates must have the same dimension as the upsample factor.'
|
| 72 |
+
|
| 73 |
+
new_coords = input.get_spatial_cache(f'upsample_{factor}_coords')
|
| 74 |
+
new_layout = input.get_spatial_cache(f'upsample_{factor}_layout')
|
| 75 |
+
idx = input.get_spatial_cache(f'upsample_{factor}_idx')
|
| 76 |
+
if any([x is None for x in [new_coords, new_layout, idx]]):
|
| 77 |
+
raise ValueError('Upsample cache not found. SparseUpsample must be paired with SparseDownsample.')
|
| 78 |
+
new_feats = input.feats[idx]
|
| 79 |
+
out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
|
| 80 |
+
out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
|
| 81 |
+
out._spatial_cache = input._spatial_cache
|
| 82 |
+
return out
|
| 83 |
+
|
| 84 |
+
class SparseSubdivide(nn.Module):
|
| 85 |
+
"""
|
| 86 |
+
Upsample a sparse tensor by a factor of `factor`.
|
| 87 |
+
Implemented as nearest neighbor interpolation.
|
| 88 |
+
"""
|
| 89 |
+
def __init__(self):
|
| 90 |
+
super(SparseSubdivide, self).__init__()
|
| 91 |
+
|
| 92 |
+
def forward(self, input: SparseTensor) -> SparseTensor:
|
| 93 |
+
DIM = input.coords.shape[-1] - 1
|
| 94 |
+
# upsample scale=2^DIM
|
| 95 |
+
n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int)
|
| 96 |
+
n_coords = torch.nonzero(n_cube)
|
| 97 |
+
n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
|
| 98 |
+
factor = n_coords.shape[0]
|
| 99 |
+
assert factor == 2 ** DIM
|
| 100 |
+
# print(n_coords.shape)
|
| 101 |
+
new_coords = input.coords.clone()
|
| 102 |
+
new_coords[:, 1:] *= 2
|
| 103 |
+
new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(new_coords.dtype)
|
| 104 |
+
|
| 105 |
+
new_feats = input.feats.unsqueeze(1).expand(input.feats.shape[0], factor, *input.feats.shape[1:])
|
| 106 |
+
out = SparseTensor(new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape)
|
| 107 |
+
out._scale = input._scale * 2
|
| 108 |
+
out._spatial_cache = input._spatial_cache
|
| 109 |
+
return out
|
| 110 |
+
|
trellis/modules/sparse/transformer/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .blocks import *
|
| 2 |
+
from .modulated import *
|
trellis/modules/sparse/transformer/blocks.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from ..basic import SparseTensor
|
| 5 |
+
from ..linear import SparseLinear
|
| 6 |
+
from ..nonlinearity import SparseGELU
|
| 7 |
+
from ..attention import SparseMultiHeadAttention, SerializeMode
|
| 8 |
+
from ...norm import LayerNorm32
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class SparseFeedForwardNet(nn.Module):
|
| 12 |
+
def __init__(self, channels: int, mlp_ratio: float = 4.0):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.mlp = nn.Sequential(
|
| 15 |
+
SparseLinear(channels, int(channels * mlp_ratio)),
|
| 16 |
+
SparseGELU(approximate="tanh"),
|
| 17 |
+
SparseLinear(int(channels * mlp_ratio), channels),
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 21 |
+
return self.mlp(x)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class SparseTransformerBlock(nn.Module):
|
| 25 |
+
"""
|
| 26 |
+
Sparse Transformer block (MSA + FFN).
|
| 27 |
+
"""
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
channels: int,
|
| 31 |
+
num_heads: int,
|
| 32 |
+
mlp_ratio: float = 4.0,
|
| 33 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
| 34 |
+
window_size: Optional[int] = None,
|
| 35 |
+
shift_sequence: Optional[int] = None,
|
| 36 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
| 37 |
+
serialize_mode: Optional[SerializeMode] = None,
|
| 38 |
+
use_checkpoint: bool = False,
|
| 39 |
+
use_rope: bool = False,
|
| 40 |
+
qk_rms_norm: bool = False,
|
| 41 |
+
qkv_bias: bool = True,
|
| 42 |
+
ln_affine: bool = False,
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.use_checkpoint = use_checkpoint
|
| 46 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 47 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 48 |
+
self.attn = SparseMultiHeadAttention(
|
| 49 |
+
channels,
|
| 50 |
+
num_heads=num_heads,
|
| 51 |
+
attn_mode=attn_mode,
|
| 52 |
+
window_size=window_size,
|
| 53 |
+
shift_sequence=shift_sequence,
|
| 54 |
+
shift_window=shift_window,
|
| 55 |
+
serialize_mode=serialize_mode,
|
| 56 |
+
qkv_bias=qkv_bias,
|
| 57 |
+
use_rope=use_rope,
|
| 58 |
+
qk_rms_norm=qk_rms_norm,
|
| 59 |
+
)
|
| 60 |
+
self.mlp = SparseFeedForwardNet(
|
| 61 |
+
channels,
|
| 62 |
+
mlp_ratio=mlp_ratio,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
def _forward(self, x: SparseTensor) -> SparseTensor:
|
| 66 |
+
h = x.replace(self.norm1(x.feats))
|
| 67 |
+
h = self.attn(h)
|
| 68 |
+
x = x + h
|
| 69 |
+
h = x.replace(self.norm2(x.feats))
|
| 70 |
+
h = self.mlp(h)
|
| 71 |
+
x = x + h
|
| 72 |
+
return x
|
| 73 |
+
|
| 74 |
+
def forward(self, x: SparseTensor) -> SparseTensor:
|
| 75 |
+
if self.use_checkpoint:
|
| 76 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
|
| 77 |
+
else:
|
| 78 |
+
return self._forward(x)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class SparseTransformerCrossBlock(nn.Module):
|
| 82 |
+
"""
|
| 83 |
+
Sparse Transformer cross-attention block (MSA + MCA + FFN).
|
| 84 |
+
"""
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
channels: int,
|
| 88 |
+
ctx_channels: int,
|
| 89 |
+
num_heads: int,
|
| 90 |
+
mlp_ratio: float = 4.0,
|
| 91 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
| 92 |
+
window_size: Optional[int] = None,
|
| 93 |
+
shift_sequence: Optional[int] = None,
|
| 94 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
| 95 |
+
serialize_mode: Optional[SerializeMode] = None,
|
| 96 |
+
use_checkpoint: bool = False,
|
| 97 |
+
use_rope: bool = False,
|
| 98 |
+
qk_rms_norm: bool = False,
|
| 99 |
+
qk_rms_norm_cross: bool = False,
|
| 100 |
+
qkv_bias: bool = True,
|
| 101 |
+
ln_affine: bool = False,
|
| 102 |
+
):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.use_checkpoint = use_checkpoint
|
| 105 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 106 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 107 |
+
self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 108 |
+
self.self_attn = SparseMultiHeadAttention(
|
| 109 |
+
channels,
|
| 110 |
+
num_heads=num_heads,
|
| 111 |
+
type="self",
|
| 112 |
+
attn_mode=attn_mode,
|
| 113 |
+
window_size=window_size,
|
| 114 |
+
shift_sequence=shift_sequence,
|
| 115 |
+
shift_window=shift_window,
|
| 116 |
+
serialize_mode=serialize_mode,
|
| 117 |
+
qkv_bias=qkv_bias,
|
| 118 |
+
use_rope=use_rope,
|
| 119 |
+
qk_rms_norm=qk_rms_norm,
|
| 120 |
+
)
|
| 121 |
+
self.cross_attn = SparseMultiHeadAttention(
|
| 122 |
+
channels,
|
| 123 |
+
ctx_channels=ctx_channels,
|
| 124 |
+
num_heads=num_heads,
|
| 125 |
+
type="cross",
|
| 126 |
+
attn_mode="full",
|
| 127 |
+
qkv_bias=qkv_bias,
|
| 128 |
+
qk_rms_norm=qk_rms_norm_cross,
|
| 129 |
+
)
|
| 130 |
+
self.mlp = SparseFeedForwardNet(
|
| 131 |
+
channels,
|
| 132 |
+
mlp_ratio=mlp_ratio,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor):
|
| 136 |
+
h = x.replace(self.norm1(x.feats))
|
| 137 |
+
h = self.self_attn(h)
|
| 138 |
+
x = x + h
|
| 139 |
+
h = x.replace(self.norm2(x.feats))
|
| 140 |
+
h = self.cross_attn(h, context)
|
| 141 |
+
x = x + h
|
| 142 |
+
h = x.replace(self.norm3(x.feats))
|
| 143 |
+
h = self.mlp(h)
|
| 144 |
+
x = x + h
|
| 145 |
+
return x
|
| 146 |
+
|
| 147 |
+
def forward(self, x: SparseTensor, context: torch.Tensor):
|
| 148 |
+
if self.use_checkpoint:
|
| 149 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
|
| 150 |
+
else:
|
| 151 |
+
return self._forward(x, context)
|
trellis/modules/sparse/transformer/modulated.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from ..basic import SparseTensor
|
| 5 |
+
from ..attention import SparseMultiHeadAttention, SerializeMode
|
| 6 |
+
from ...norm import LayerNorm32
|
| 7 |
+
from .blocks import SparseFeedForwardNet
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class ModulatedSparseTransformerBlock(nn.Module):
|
| 11 |
+
"""
|
| 12 |
+
Sparse Transformer block (MSA + FFN) with adaptive layer norm conditioning.
|
| 13 |
+
"""
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
channels: int,
|
| 17 |
+
num_heads: int,
|
| 18 |
+
mlp_ratio: float = 4.0,
|
| 19 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
| 20 |
+
window_size: Optional[int] = None,
|
| 21 |
+
shift_sequence: Optional[int] = None,
|
| 22 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
| 23 |
+
serialize_mode: Optional[SerializeMode] = None,
|
| 24 |
+
use_checkpoint: bool = False,
|
| 25 |
+
use_rope: bool = False,
|
| 26 |
+
qk_rms_norm: bool = False,
|
| 27 |
+
qkv_bias: bool = True,
|
| 28 |
+
share_mod: bool = False,
|
| 29 |
+
):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.use_checkpoint = use_checkpoint
|
| 32 |
+
self.share_mod = share_mod
|
| 33 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
| 34 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
| 35 |
+
self.attn = SparseMultiHeadAttention(
|
| 36 |
+
channels,
|
| 37 |
+
num_heads=num_heads,
|
| 38 |
+
attn_mode=attn_mode,
|
| 39 |
+
window_size=window_size,
|
| 40 |
+
shift_sequence=shift_sequence,
|
| 41 |
+
shift_window=shift_window,
|
| 42 |
+
serialize_mode=serialize_mode,
|
| 43 |
+
qkv_bias=qkv_bias,
|
| 44 |
+
use_rope=use_rope,
|
| 45 |
+
qk_rms_norm=qk_rms_norm,
|
| 46 |
+
)
|
| 47 |
+
self.mlp = SparseFeedForwardNet(
|
| 48 |
+
channels,
|
| 49 |
+
mlp_ratio=mlp_ratio,
|
| 50 |
+
)
|
| 51 |
+
if not share_mod:
|
| 52 |
+
self.adaLN_modulation = nn.Sequential(
|
| 53 |
+
nn.SiLU(),
|
| 54 |
+
nn.Linear(channels, 6 * channels, bias=True)
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
def _forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
|
| 58 |
+
if self.share_mod:
|
| 59 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
|
| 60 |
+
else:
|
| 61 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
|
| 62 |
+
h = x.replace(self.norm1(x.feats))
|
| 63 |
+
h = h * (1 + scale_msa) + shift_msa
|
| 64 |
+
h = self.attn(h)
|
| 65 |
+
h = h * gate_msa
|
| 66 |
+
x = x + h
|
| 67 |
+
h = x.replace(self.norm2(x.feats))
|
| 68 |
+
h = h * (1 + scale_mlp) + shift_mlp
|
| 69 |
+
h = self.mlp(h)
|
| 70 |
+
h = h * gate_mlp
|
| 71 |
+
x = x + h
|
| 72 |
+
return x
|
| 73 |
+
|
| 74 |
+
def forward(self, x: SparseTensor, mod: torch.Tensor) -> SparseTensor:
|
| 75 |
+
if self.use_checkpoint:
|
| 76 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False)
|
| 77 |
+
else:
|
| 78 |
+
return self._forward(x, mod)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class ModulatedSparseTransformerCrossBlock(nn.Module):
|
| 82 |
+
"""
|
| 83 |
+
Sparse Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
|
| 84 |
+
"""
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
channels: int,
|
| 88 |
+
ctx_channels: int,
|
| 89 |
+
num_heads: int,
|
| 90 |
+
mlp_ratio: float = 4.0,
|
| 91 |
+
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
|
| 92 |
+
window_size: Optional[int] = None,
|
| 93 |
+
shift_sequence: Optional[int] = None,
|
| 94 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
| 95 |
+
serialize_mode: Optional[SerializeMode] = None,
|
| 96 |
+
use_checkpoint: bool = False,
|
| 97 |
+
use_rope: bool = False,
|
| 98 |
+
qk_rms_norm: bool = False,
|
| 99 |
+
qk_rms_norm_cross: bool = False,
|
| 100 |
+
qkv_bias: bool = True,
|
| 101 |
+
share_mod: bool = False,
|
| 102 |
+
|
| 103 |
+
):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.use_checkpoint = use_checkpoint
|
| 106 |
+
self.share_mod = share_mod
|
| 107 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
| 108 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
| 109 |
+
self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
| 110 |
+
self.self_attn = SparseMultiHeadAttention(
|
| 111 |
+
channels,
|
| 112 |
+
num_heads=num_heads,
|
| 113 |
+
type="self",
|
| 114 |
+
attn_mode=attn_mode,
|
| 115 |
+
window_size=window_size,
|
| 116 |
+
shift_sequence=shift_sequence,
|
| 117 |
+
shift_window=shift_window,
|
| 118 |
+
serialize_mode=serialize_mode,
|
| 119 |
+
qkv_bias=qkv_bias,
|
| 120 |
+
use_rope=use_rope,
|
| 121 |
+
qk_rms_norm=qk_rms_norm,
|
| 122 |
+
)
|
| 123 |
+
self.cross_attn = SparseMultiHeadAttention(
|
| 124 |
+
channels,
|
| 125 |
+
ctx_channels=ctx_channels,
|
| 126 |
+
num_heads=num_heads,
|
| 127 |
+
type="cross",
|
| 128 |
+
attn_mode="full",
|
| 129 |
+
qkv_bias=qkv_bias,
|
| 130 |
+
qk_rms_norm=qk_rms_norm_cross,
|
| 131 |
+
)
|
| 132 |
+
self.mlp = SparseFeedForwardNet(
|
| 133 |
+
channels,
|
| 134 |
+
mlp_ratio=mlp_ratio,
|
| 135 |
+
)
|
| 136 |
+
if not share_mod:
|
| 137 |
+
self.adaLN_modulation = nn.Sequential(
|
| 138 |
+
nn.SiLU(),
|
| 139 |
+
nn.Linear(channels, 6 * channels, bias=True)
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
|
| 143 |
+
if self.share_mod:
|
| 144 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
|
| 145 |
+
else:
|
| 146 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
|
| 147 |
+
h = x.replace(self.norm1(x.feats))
|
| 148 |
+
h = h * (1 + scale_msa) + shift_msa
|
| 149 |
+
h = self.self_attn(h)
|
| 150 |
+
h = h * gate_msa
|
| 151 |
+
x = x + h
|
| 152 |
+
h = x.replace(self.norm2(x.feats))
|
| 153 |
+
h = self.cross_attn(h, context)
|
| 154 |
+
x = x + h
|
| 155 |
+
h = x.replace(self.norm3(x.feats))
|
| 156 |
+
h = h * (1 + scale_mlp) + shift_mlp
|
| 157 |
+
h = self.mlp(h)
|
| 158 |
+
h = h * gate_mlp
|
| 159 |
+
x = x + h
|
| 160 |
+
return x
|
| 161 |
+
|
| 162 |
+
def forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor) -> SparseTensor:
|
| 163 |
+
if self.use_checkpoint:
|
| 164 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False)
|
| 165 |
+
else:
|
| 166 |
+
return self._forward(x, mod, context)
|
trellis/modules/spatial.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def pixel_shuffle_3d(x: torch.Tensor, scale_factor: int) -> torch.Tensor:
|
| 5 |
+
"""
|
| 6 |
+
3D pixel shuffle.
|
| 7 |
+
"""
|
| 8 |
+
B, C, H, W, D = x.shape
|
| 9 |
+
C_ = C // scale_factor**3
|
| 10 |
+
x = x.reshape(B, C_, scale_factor, scale_factor, scale_factor, H, W, D)
|
| 11 |
+
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4)
|
| 12 |
+
x = x.reshape(B, C_, H*scale_factor, W*scale_factor, D*scale_factor)
|
| 13 |
+
return x
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def patchify(x: torch.Tensor, patch_size: int):
|
| 17 |
+
"""
|
| 18 |
+
Patchify a tensor.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
x (torch.Tensor): (N, C, *spatial) tensor
|
| 22 |
+
patch_size (int): Patch size
|
| 23 |
+
"""
|
| 24 |
+
DIM = x.dim() - 2
|
| 25 |
+
for d in range(2, DIM + 2):
|
| 26 |
+
assert x.shape[d] % patch_size == 0, f"Dimension {d} of input tensor must be divisible by patch size, got {x.shape[d]} and {patch_size}"
|
| 27 |
+
|
| 28 |
+
x = x.reshape(*x.shape[:2], *sum([[x.shape[d] // patch_size, patch_size] for d in range(2, DIM + 2)], []))
|
| 29 |
+
x = x.permute(0, 1, *([2 * i + 3 for i in range(DIM)] + [2 * i + 2 for i in range(DIM)]))
|
| 30 |
+
x = x.reshape(x.shape[0], x.shape[1] * (patch_size ** DIM), *(x.shape[-DIM:]))
|
| 31 |
+
return x
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def unpatchify(x: torch.Tensor, patch_size: int):
|
| 35 |
+
"""
|
| 36 |
+
Unpatchify a tensor.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
x (torch.Tensor): (N, C, *spatial) tensor
|
| 40 |
+
patch_size (int): Patch size
|
| 41 |
+
"""
|
| 42 |
+
DIM = x.dim() - 2
|
| 43 |
+
assert x.shape[1] % (patch_size ** DIM) == 0, f"Second dimension of input tensor must be divisible by patch size to unpatchify, got {x.shape[1]} and {patch_size ** DIM}"
|
| 44 |
+
|
| 45 |
+
x = x.reshape(x.shape[0], x.shape[1] // (patch_size ** DIM), *([patch_size] * DIM), *(x.shape[-DIM:]))
|
| 46 |
+
x = x.permute(0, 1, *(sum([[2 + DIM + i, 2 + i] for i in range(DIM)], [])))
|
| 47 |
+
x = x.reshape(x.shape[0], x.shape[1], *[x.shape[2 + 2 * i] * patch_size for i in range(DIM)])
|
| 48 |
+
return x
|
trellis/modules/transformer/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .blocks import *
|
| 2 |
+
from .modulated import *
|
trellis/modules/transformer/blocks.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from ..attention import MultiHeadAttention
|
| 5 |
+
from ..norm import LayerNorm32
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class AbsolutePositionEmbedder(nn.Module):
|
| 9 |
+
"""
|
| 10 |
+
Embeds spatial positions into vector representations.
|
| 11 |
+
"""
|
| 12 |
+
def __init__(self, channels: int, in_channels: int = 3):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.channels = channels
|
| 15 |
+
self.in_channels = in_channels
|
| 16 |
+
self.freq_dim = channels // in_channels // 2
|
| 17 |
+
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
| 18 |
+
self.freqs = 1.0 / (10000 ** self.freqs)
|
| 19 |
+
|
| 20 |
+
def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor:
|
| 21 |
+
"""
|
| 22 |
+
Create sinusoidal position embeddings.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
x: a 1-D Tensor of N indices
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
an (N, D) Tensor of positional embeddings.
|
| 29 |
+
"""
|
| 30 |
+
self.freqs = self.freqs.to(x.device)
|
| 31 |
+
out = torch.outer(x, self.freqs)
|
| 32 |
+
out = torch.cat([torch.sin(out), torch.cos(out)], dim=-1)
|
| 33 |
+
return out
|
| 34 |
+
|
| 35 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 36 |
+
"""
|
| 37 |
+
Args:
|
| 38 |
+
x (torch.Tensor): (N, D) tensor of spatial positions
|
| 39 |
+
"""
|
| 40 |
+
N, D = x.shape
|
| 41 |
+
assert D == self.in_channels, "Input dimension must match number of input channels"
|
| 42 |
+
embed = self._sin_cos_embedding(x.reshape(-1))
|
| 43 |
+
embed = embed.reshape(N, -1)
|
| 44 |
+
if embed.shape[1] < self.channels:
|
| 45 |
+
embed = torch.cat([embed, torch.zeros(N, self.channels - embed.shape[1], device=embed.device)], dim=-1)
|
| 46 |
+
return embed
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class FeedForwardNet(nn.Module):
|
| 50 |
+
def __init__(self, channels: int, mlp_ratio: float = 4.0):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.mlp = nn.Sequential(
|
| 53 |
+
nn.Linear(channels, int(channels * mlp_ratio)),
|
| 54 |
+
nn.GELU(approximate="tanh"),
|
| 55 |
+
nn.Linear(int(channels * mlp_ratio), channels),
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 59 |
+
return self.mlp(x)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class TransformerBlock(nn.Module):
|
| 63 |
+
"""
|
| 64 |
+
Transformer block (MSA + FFN).
|
| 65 |
+
"""
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
channels: int,
|
| 69 |
+
num_heads: int,
|
| 70 |
+
mlp_ratio: float = 4.0,
|
| 71 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
| 72 |
+
window_size: Optional[int] = None,
|
| 73 |
+
shift_window: Optional[int] = None,
|
| 74 |
+
use_checkpoint: bool = False,
|
| 75 |
+
use_rope: bool = False,
|
| 76 |
+
qk_rms_norm: bool = False,
|
| 77 |
+
qkv_bias: bool = True,
|
| 78 |
+
ln_affine: bool = False,
|
| 79 |
+
):
|
| 80 |
+
super().__init__()
|
| 81 |
+
self.use_checkpoint = use_checkpoint
|
| 82 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 83 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 84 |
+
self.attn = MultiHeadAttention(
|
| 85 |
+
channels,
|
| 86 |
+
num_heads=num_heads,
|
| 87 |
+
attn_mode=attn_mode,
|
| 88 |
+
window_size=window_size,
|
| 89 |
+
shift_window=shift_window,
|
| 90 |
+
qkv_bias=qkv_bias,
|
| 91 |
+
use_rope=use_rope,
|
| 92 |
+
qk_rms_norm=qk_rms_norm,
|
| 93 |
+
)
|
| 94 |
+
self.mlp = FeedForwardNet(
|
| 95 |
+
channels,
|
| 96 |
+
mlp_ratio=mlp_ratio,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
def _forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 100 |
+
h = self.norm1(x)
|
| 101 |
+
h = self.attn(h)
|
| 102 |
+
x = x + h
|
| 103 |
+
h = self.norm2(x)
|
| 104 |
+
h = self.mlp(h)
|
| 105 |
+
x = x + h
|
| 106 |
+
return x
|
| 107 |
+
|
| 108 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 109 |
+
if self.use_checkpoint:
|
| 110 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
|
| 111 |
+
else:
|
| 112 |
+
return self._forward(x)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class TransformerCrossBlock(nn.Module):
|
| 116 |
+
"""
|
| 117 |
+
Transformer cross-attention block (MSA + MCA + FFN).
|
| 118 |
+
"""
|
| 119 |
+
def __init__(
|
| 120 |
+
self,
|
| 121 |
+
channels: int,
|
| 122 |
+
ctx_channels: int,
|
| 123 |
+
num_heads: int,
|
| 124 |
+
mlp_ratio: float = 4.0,
|
| 125 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
| 126 |
+
window_size: Optional[int] = None,
|
| 127 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
| 128 |
+
use_checkpoint: bool = False,
|
| 129 |
+
use_rope: bool = False,
|
| 130 |
+
qk_rms_norm: bool = False,
|
| 131 |
+
qk_rms_norm_cross: bool = False,
|
| 132 |
+
qkv_bias: bool = True,
|
| 133 |
+
ln_affine: bool = False,
|
| 134 |
+
):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.use_checkpoint = use_checkpoint
|
| 137 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 138 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 139 |
+
self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
| 140 |
+
self.self_attn = MultiHeadAttention(
|
| 141 |
+
channels,
|
| 142 |
+
num_heads=num_heads,
|
| 143 |
+
type="self",
|
| 144 |
+
attn_mode=attn_mode,
|
| 145 |
+
window_size=window_size,
|
| 146 |
+
shift_window=shift_window,
|
| 147 |
+
qkv_bias=qkv_bias,
|
| 148 |
+
use_rope=use_rope,
|
| 149 |
+
qk_rms_norm=qk_rms_norm,
|
| 150 |
+
)
|
| 151 |
+
self.cross_attn = MultiHeadAttention(
|
| 152 |
+
channels,
|
| 153 |
+
ctx_channels=ctx_channels,
|
| 154 |
+
num_heads=num_heads,
|
| 155 |
+
type="cross",
|
| 156 |
+
attn_mode="full",
|
| 157 |
+
qkv_bias=qkv_bias,
|
| 158 |
+
qk_rms_norm=qk_rms_norm_cross,
|
| 159 |
+
)
|
| 160 |
+
self.mlp = FeedForwardNet(
|
| 161 |
+
channels,
|
| 162 |
+
mlp_ratio=mlp_ratio,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
def _forward(self, x: torch.Tensor, context: torch.Tensor):
|
| 166 |
+
h = self.norm1(x)
|
| 167 |
+
h = self.self_attn(h)
|
| 168 |
+
x = x + h
|
| 169 |
+
h = self.norm2(x)
|
| 170 |
+
h = self.cross_attn(h, context)
|
| 171 |
+
x = x + h
|
| 172 |
+
h = self.norm3(x)
|
| 173 |
+
h = self.mlp(h)
|
| 174 |
+
x = x + h
|
| 175 |
+
return x
|
| 176 |
+
|
| 177 |
+
def forward(self, x: torch.Tensor, context: torch.Tensor):
|
| 178 |
+
if self.use_checkpoint:
|
| 179 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
|
| 180 |
+
else:
|
| 181 |
+
return self._forward(x, context)
|
| 182 |
+
|
trellis/modules/transformer/modulated.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from ..attention import MultiHeadAttention
|
| 5 |
+
from ..norm import LayerNorm32
|
| 6 |
+
from .blocks import FeedForwardNet
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ModulatedTransformerBlock(nn.Module):
|
| 10 |
+
"""
|
| 11 |
+
Transformer block (MSA + FFN) with adaptive layer norm conditioning.
|
| 12 |
+
"""
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
channels: int,
|
| 16 |
+
num_heads: int,
|
| 17 |
+
mlp_ratio: float = 4.0,
|
| 18 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
| 19 |
+
window_size: Optional[int] = None,
|
| 20 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
| 21 |
+
use_checkpoint: bool = False,
|
| 22 |
+
use_rope: bool = False,
|
| 23 |
+
qk_rms_norm: bool = False,
|
| 24 |
+
qkv_bias: bool = True,
|
| 25 |
+
share_mod: bool = False,
|
| 26 |
+
):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.use_checkpoint = use_checkpoint
|
| 29 |
+
self.share_mod = share_mod
|
| 30 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
| 31 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
| 32 |
+
self.attn = MultiHeadAttention(
|
| 33 |
+
channels,
|
| 34 |
+
num_heads=num_heads,
|
| 35 |
+
attn_mode=attn_mode,
|
| 36 |
+
window_size=window_size,
|
| 37 |
+
shift_window=shift_window,
|
| 38 |
+
qkv_bias=qkv_bias,
|
| 39 |
+
use_rope=use_rope,
|
| 40 |
+
qk_rms_norm=qk_rms_norm,
|
| 41 |
+
)
|
| 42 |
+
self.mlp = FeedForwardNet(
|
| 43 |
+
channels,
|
| 44 |
+
mlp_ratio=mlp_ratio,
|
| 45 |
+
)
|
| 46 |
+
if not share_mod:
|
| 47 |
+
self.adaLN_modulation = nn.Sequential(
|
| 48 |
+
nn.SiLU(),
|
| 49 |
+
nn.Linear(channels, 6 * channels, bias=True)
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def _forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
|
| 53 |
+
if self.share_mod:
|
| 54 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
|
| 55 |
+
else:
|
| 56 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
|
| 57 |
+
h = self.norm1(x)
|
| 58 |
+
h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
|
| 59 |
+
h = self.attn(h)
|
| 60 |
+
h = h * gate_msa.unsqueeze(1)
|
| 61 |
+
x = x + h
|
| 62 |
+
h = self.norm2(x)
|
| 63 |
+
h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
|
| 64 |
+
h = self.mlp(h)
|
| 65 |
+
h = h * gate_mlp.unsqueeze(1)
|
| 66 |
+
x = x + h
|
| 67 |
+
return x
|
| 68 |
+
|
| 69 |
+
def forward(self, x: torch.Tensor, mod: torch.Tensor) -> torch.Tensor:
|
| 70 |
+
if self.use_checkpoint:
|
| 71 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, use_reentrant=False)
|
| 72 |
+
else:
|
| 73 |
+
return self._forward(x, mod)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class ModulatedTransformerCrossBlock(nn.Module):
|
| 77 |
+
"""
|
| 78 |
+
Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
|
| 79 |
+
"""
|
| 80 |
+
def __init__(
|
| 81 |
+
self,
|
| 82 |
+
channels: int,
|
| 83 |
+
ctx_channels: int,
|
| 84 |
+
num_heads: int,
|
| 85 |
+
mlp_ratio: float = 4.0,
|
| 86 |
+
attn_mode: Literal["full", "windowed"] = "full",
|
| 87 |
+
window_size: Optional[int] = None,
|
| 88 |
+
shift_window: Optional[Tuple[int, int, int]] = None,
|
| 89 |
+
use_checkpoint: bool = False,
|
| 90 |
+
use_rope: bool = False,
|
| 91 |
+
qk_rms_norm: bool = False,
|
| 92 |
+
qk_rms_norm_cross: bool = False,
|
| 93 |
+
qkv_bias: bool = True,
|
| 94 |
+
share_mod: bool = False,
|
| 95 |
+
):
|
| 96 |
+
super().__init__()
|
| 97 |
+
self.use_checkpoint = use_checkpoint
|
| 98 |
+
self.share_mod = share_mod
|
| 99 |
+
self.norm1 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
| 100 |
+
self.norm2 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
| 101 |
+
self.norm3 = LayerNorm32(channels, elementwise_affine=False, eps=1e-6)
|
| 102 |
+
self.self_attn = MultiHeadAttention(
|
| 103 |
+
channels,
|
| 104 |
+
num_heads=num_heads,
|
| 105 |
+
type="self",
|
| 106 |
+
attn_mode=attn_mode,
|
| 107 |
+
window_size=window_size,
|
| 108 |
+
shift_window=shift_window,
|
| 109 |
+
qkv_bias=qkv_bias,
|
| 110 |
+
use_rope=use_rope,
|
| 111 |
+
qk_rms_norm=qk_rms_norm,
|
| 112 |
+
)
|
| 113 |
+
self.cross_attn = MultiHeadAttention(
|
| 114 |
+
channels,
|
| 115 |
+
ctx_channels=ctx_channels,
|
| 116 |
+
num_heads=num_heads,
|
| 117 |
+
type="cross",
|
| 118 |
+
attn_mode="full",
|
| 119 |
+
qkv_bias=qkv_bias,
|
| 120 |
+
qk_rms_norm=qk_rms_norm_cross,
|
| 121 |
+
)
|
| 122 |
+
self.mlp = FeedForwardNet(
|
| 123 |
+
channels,
|
| 124 |
+
mlp_ratio=mlp_ratio,
|
| 125 |
+
)
|
| 126 |
+
if not share_mod:
|
| 127 |
+
self.adaLN_modulation = nn.Sequential(
|
| 128 |
+
nn.SiLU(),
|
| 129 |
+
nn.Linear(channels, 6 * channels, bias=True)
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
def _forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
|
| 133 |
+
if self.share_mod:
|
| 134 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod.chunk(6, dim=1)
|
| 135 |
+
else:
|
| 136 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod).chunk(6, dim=1)
|
| 137 |
+
h = self.norm1(x)
|
| 138 |
+
h = h * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
|
| 139 |
+
h = self.self_attn(h)
|
| 140 |
+
h = h * gate_msa.unsqueeze(1)
|
| 141 |
+
x = x + h
|
| 142 |
+
h = self.norm2(x)
|
| 143 |
+
h = self.cross_attn(h, context)
|
| 144 |
+
x = x + h
|
| 145 |
+
h = self.norm3(x)
|
| 146 |
+
h = h * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
|
| 147 |
+
h = self.mlp(h)
|
| 148 |
+
h = h * gate_mlp.unsqueeze(1)
|
| 149 |
+
x = x + h
|
| 150 |
+
return x
|
| 151 |
+
|
| 152 |
+
def forward(self, x: torch.Tensor, mod: torch.Tensor, context: torch.Tensor):
|
| 153 |
+
if self.use_checkpoint:
|
| 154 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, mod, context, use_reentrant=False)
|
| 155 |
+
else:
|
| 156 |
+
return self._forward(x, mod, context)
|
| 157 |
+
|
trellis/modules/utils.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
from ..modules import sparse as sp
|
| 3 |
+
|
| 4 |
+
FP16_MODULES = (
|
| 5 |
+
nn.Conv1d,
|
| 6 |
+
nn.Conv2d,
|
| 7 |
+
nn.Conv3d,
|
| 8 |
+
nn.ConvTranspose1d,
|
| 9 |
+
nn.ConvTranspose2d,
|
| 10 |
+
nn.ConvTranspose3d,
|
| 11 |
+
nn.Linear,
|
| 12 |
+
sp.SparseConv3d,
|
| 13 |
+
sp.SparseInverseConv3d,
|
| 14 |
+
sp.SparseLinear,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def convert_module_to_f16(l):
|
| 18 |
+
"""
|
| 19 |
+
Convert primitive modules to float16.
|
| 20 |
+
"""
|
| 21 |
+
if isinstance(l, FP16_MODULES):
|
| 22 |
+
for p in l.parameters():
|
| 23 |
+
p.data = p.data.half()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def convert_module_to_f32(l):
|
| 27 |
+
"""
|
| 28 |
+
Convert primitive modules to float32, undoing convert_module_to_f16().
|
| 29 |
+
"""
|
| 30 |
+
if isinstance(l, FP16_MODULES):
|
| 31 |
+
for p in l.parameters():
|
| 32 |
+
p.data = p.data.float()
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def zero_module(module):
|
| 36 |
+
"""
|
| 37 |
+
Zero out the parameters of a module and return it.
|
| 38 |
+
"""
|
| 39 |
+
for p in module.parameters():
|
| 40 |
+
p.detach().zero_()
|
| 41 |
+
return module
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def scale_module(module, scale):
|
| 45 |
+
"""
|
| 46 |
+
Scale the parameters of a module and return it.
|
| 47 |
+
"""
|
| 48 |
+
for p in module.parameters():
|
| 49 |
+
p.detach().mul_(scale)
|
| 50 |
+
return module
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def modulate(x, shift, scale):
|
| 54 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
trellis/pipelines/__init__.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from . import samplers
|
| 2 |
+
from .trellis_image_to_3d import TrellisImageTo3DPipeline
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def from_pretrained(path: str):
|
| 6 |
+
"""
|
| 7 |
+
Load a pipeline from a model folder or a Hugging Face model hub.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
path: The path to the model. Can be either local path or a Hugging Face model name.
|
| 11 |
+
"""
|
| 12 |
+
import os
|
| 13 |
+
import json
|
| 14 |
+
is_local = os.path.exists(f"{path}/pipeline.json")
|
| 15 |
+
|
| 16 |
+
if is_local:
|
| 17 |
+
config_file = f"{path}/pipeline.json"
|
| 18 |
+
else:
|
| 19 |
+
from huggingface_hub import hf_hub_download
|
| 20 |
+
config_file = hf_hub_download(path, "pipeline.json")
|
| 21 |
+
|
| 22 |
+
with open(config_file, 'r') as f:
|
| 23 |
+
config = json.load(f)
|
| 24 |
+
return globals()[config['name']].from_pretrained(path)
|
trellis/pipelines/base.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from .. import models
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Pipeline:
|
| 8 |
+
"""
|
| 9 |
+
A base class for pipelines.
|
| 10 |
+
"""
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
models: dict[str, nn.Module] = None,
|
| 14 |
+
):
|
| 15 |
+
if models is None:
|
| 16 |
+
return
|
| 17 |
+
self.models = models
|
| 18 |
+
for model in self.models.values():
|
| 19 |
+
model.eval()
|
| 20 |
+
|
| 21 |
+
@staticmethod
|
| 22 |
+
def from_pretrained(path: str) -> "Pipeline":
|
| 23 |
+
"""
|
| 24 |
+
Load a pretrained model.
|
| 25 |
+
"""
|
| 26 |
+
import os
|
| 27 |
+
import json
|
| 28 |
+
is_local = os.path.exists(f"{path}/pipeline.json")
|
| 29 |
+
|
| 30 |
+
if is_local:
|
| 31 |
+
config_file = f"{path}/pipeline.json"
|
| 32 |
+
else:
|
| 33 |
+
from huggingface_hub import hf_hub_download
|
| 34 |
+
config_file = hf_hub_download(path, "pipeline.json")
|
| 35 |
+
|
| 36 |
+
with open(config_file, 'r') as f:
|
| 37 |
+
args = json.load(f)['args']
|
| 38 |
+
|
| 39 |
+
_models = {
|
| 40 |
+
k: models.from_pretrained(f"{path}/{v}")
|
| 41 |
+
for k, v in args['models'].items()
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
new_pipeline = Pipeline(_models)
|
| 45 |
+
new_pipeline._pretrained_args = args
|
| 46 |
+
return new_pipeline
|
| 47 |
+
|
| 48 |
+
@property
|
| 49 |
+
def device(self) -> torch.device:
|
| 50 |
+
for model in self.models.values():
|
| 51 |
+
if hasattr(model, 'device'):
|
| 52 |
+
return model.device
|
| 53 |
+
for model in self.models.values():
|
| 54 |
+
if hasattr(model, 'parameters'):
|
| 55 |
+
return next(model.parameters()).device
|
| 56 |
+
raise RuntimeError("No device found.")
|
| 57 |
+
|
| 58 |
+
def to(self, device: torch.device) -> None:
|
| 59 |
+
for model in self.models.values():
|
| 60 |
+
model.to(device)
|
| 61 |
+
|
| 62 |
+
def cuda(self) -> None:
|
| 63 |
+
self.to(torch.device("cuda"))
|
| 64 |
+
|
| 65 |
+
def cpu(self) -> None:
|
| 66 |
+
self.to(torch.device("cpu"))
|
trellis/pipelines/samplers/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .base import Sampler
|
| 2 |
+
from .flow_euler import FlowEulerSampler, FlowEulerCfgSampler, FlowEulerGuidanceIntervalSampler
|
trellis/pipelines/samplers/base.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
from abc import ABC, abstractmethod
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class Sampler(ABC):
|
| 6 |
+
"""
|
| 7 |
+
A base class for samplers.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
@abstractmethod
|
| 11 |
+
def sample(
|
| 12 |
+
self,
|
| 13 |
+
model,
|
| 14 |
+
**kwargs
|
| 15 |
+
):
|
| 16 |
+
"""
|
| 17 |
+
Sample from a model.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
trellis/pipelines/samplers/classifier_free_guidance_mixin.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class ClassifierFreeGuidanceSamplerMixin:
|
| 5 |
+
"""
|
| 6 |
+
A mixin class for samplers that apply classifier-free guidance.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
def _inference_model(self, model, x_t, t, cond, neg_cond, cfg_strength, **kwargs):
|
| 10 |
+
pred = super()._inference_model(model, x_t, t, cond, **kwargs)
|
| 11 |
+
neg_pred = super()._inference_model(model, x_t, t, neg_cond, **kwargs)
|
| 12 |
+
return (1 + cfg_strength) * pred - cfg_strength * neg_pred
|
trellis/pipelines/samplers/flow_euler.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import *
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from easydict import EasyDict as edict
|
| 6 |
+
from .base import Sampler
|
| 7 |
+
from .classifier_free_guidance_mixin import ClassifierFreeGuidanceSamplerMixin
|
| 8 |
+
from .guidance_interval_mixin import GuidanceIntervalSamplerMixin
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class FlowEulerSampler(Sampler):
|
| 12 |
+
"""
|
| 13 |
+
Generate samples from a flow-matching model using Euler sampling.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
sigma_min: The minimum scale of noise in flow.
|
| 17 |
+
"""
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
sigma_min: float,
|
| 21 |
+
):
|
| 22 |
+
self.sigma_min = sigma_min
|
| 23 |
+
|
| 24 |
+
def _eps_to_xstart(self, x_t, t, eps):
|
| 25 |
+
assert x_t.shape == eps.shape
|
| 26 |
+
return (x_t - (self.sigma_min + (1 - self.sigma_min) * t) * eps) / (1 - t)
|
| 27 |
+
|
| 28 |
+
def _xstart_to_eps(self, x_t, t, x_0):
|
| 29 |
+
assert x_t.shape == x_0.shape
|
| 30 |
+
return (x_t - (1 - t) * x_0) / (self.sigma_min + (1 - self.sigma_min) * t)
|
| 31 |
+
|
| 32 |
+
def _v_to_xstart_eps(self, x_t, t, v):
|
| 33 |
+
assert x_t.shape == v.shape
|
| 34 |
+
eps = (1 - t) * v + x_t
|
| 35 |
+
x_0 = (1 - self.sigma_min) * x_t - (self.sigma_min + (1 - self.sigma_min) * t) * v
|
| 36 |
+
return x_0, eps
|
| 37 |
+
|
| 38 |
+
def _inference_model(self, model, x_t, t, cond=None, **kwargs):
|
| 39 |
+
t = torch.tensor([1000 * t] * x_t.shape[0], device=x_t.device, dtype=torch.float32)
|
| 40 |
+
return model(x_t, t, cond, **kwargs)
|
| 41 |
+
|
| 42 |
+
def _get_model_prediction(self, model, x_t, t, cond=None, **kwargs):
|
| 43 |
+
pred_v = self._inference_model(model, x_t, t, cond, **kwargs)
|
| 44 |
+
pred_x_0, pred_eps = self._v_to_xstart_eps(x_t=x_t, t=t, v=pred_v)
|
| 45 |
+
return pred_x_0, pred_eps, pred_v
|
| 46 |
+
|
| 47 |
+
@torch.no_grad()
|
| 48 |
+
def sample_once(
|
| 49 |
+
self,
|
| 50 |
+
model,
|
| 51 |
+
x_t,
|
| 52 |
+
t: float,
|
| 53 |
+
t_prev: float,
|
| 54 |
+
cond: Optional[Any] = None,
|
| 55 |
+
**kwargs
|
| 56 |
+
):
|
| 57 |
+
"""
|
| 58 |
+
Sample x_{t-1} from the model using Euler method.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
model: The model to sample from.
|
| 62 |
+
x_t: The [N x C x ...] tensor of noisy inputs at time t.
|
| 63 |
+
t: The current timestep.
|
| 64 |
+
t_prev: The previous timestep.
|
| 65 |
+
cond: conditional information.
|
| 66 |
+
**kwargs: Additional arguments for model inference.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
a dict containing the following
|
| 70 |
+
- 'pred_x_prev': x_{t-1}.
|
| 71 |
+
- 'pred_x_0': a prediction of x_0.
|
| 72 |
+
"""
|
| 73 |
+
pred_x_0, pred_eps, pred_v = self._get_model_prediction(model, x_t, t, cond, **kwargs)
|
| 74 |
+
pred_x_prev = x_t - (t - t_prev) * pred_v
|
| 75 |
+
return edict({"pred_x_prev": pred_x_prev, "pred_x_0": pred_x_0})
|
| 76 |
+
|
| 77 |
+
@torch.no_grad()
|
| 78 |
+
def sample(
|
| 79 |
+
self,
|
| 80 |
+
model,
|
| 81 |
+
noise,
|
| 82 |
+
cond: Optional[Any] = None,
|
| 83 |
+
steps: int = 50,
|
| 84 |
+
rescale_t: float = 1.0,
|
| 85 |
+
verbose: bool = True,
|
| 86 |
+
**kwargs
|
| 87 |
+
):
|
| 88 |
+
"""
|
| 89 |
+
Generate samples from the model using Euler method.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
model: The model to sample from.
|
| 93 |
+
noise: The initial noise tensor.
|
| 94 |
+
cond: conditional information.
|
| 95 |
+
steps: The number of steps to sample.
|
| 96 |
+
rescale_t: The rescale factor for t.
|
| 97 |
+
verbose: If True, show a progress bar.
|
| 98 |
+
**kwargs: Additional arguments for model_inference.
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
a dict containing the following
|
| 102 |
+
- 'samples': the model samples.
|
| 103 |
+
- 'pred_x_t': a list of prediction of x_t.
|
| 104 |
+
- 'pred_x_0': a list of prediction of x_0.
|
| 105 |
+
"""
|
| 106 |
+
sample = noise
|
| 107 |
+
t_seq = np.linspace(1, 0, steps + 1)
|
| 108 |
+
t_seq = rescale_t * t_seq / (1 + (rescale_t - 1) * t_seq)
|
| 109 |
+
t_pairs = list((t_seq[i], t_seq[i + 1]) for i in range(steps))
|
| 110 |
+
ret = edict({"samples": None, "pred_x_t": [], "pred_x_0": []})
|
| 111 |
+
for t, t_prev in tqdm(t_pairs, desc="Sampling", disable=not verbose):
|
| 112 |
+
out = self.sample_once(model, sample, t, t_prev, cond, **kwargs)
|
| 113 |
+
sample = out.pred_x_prev
|
| 114 |
+
ret.pred_x_t.append(out.pred_x_prev)
|
| 115 |
+
ret.pred_x_0.append(out.pred_x_0)
|
| 116 |
+
ret.samples = sample
|
| 117 |
+
return ret
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class FlowEulerCfgSampler(ClassifierFreeGuidanceSamplerMixin, FlowEulerSampler):
|
| 121 |
+
"""
|
| 122 |
+
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance.
|
| 123 |
+
"""
|
| 124 |
+
@torch.no_grad()
|
| 125 |
+
def sample(
|
| 126 |
+
self,
|
| 127 |
+
model,
|
| 128 |
+
noise,
|
| 129 |
+
cond,
|
| 130 |
+
neg_cond,
|
| 131 |
+
steps: int = 50,
|
| 132 |
+
rescale_t: float = 1.0,
|
| 133 |
+
cfg_strength: float = 3.0,
|
| 134 |
+
verbose: bool = True,
|
| 135 |
+
**kwargs
|
| 136 |
+
):
|
| 137 |
+
"""
|
| 138 |
+
Generate samples from the model using Euler method.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
model: The model to sample from.
|
| 142 |
+
noise: The initial noise tensor.
|
| 143 |
+
cond: conditional information.
|
| 144 |
+
neg_cond: negative conditional information.
|
| 145 |
+
steps: The number of steps to sample.
|
| 146 |
+
rescale_t: The rescale factor for t.
|
| 147 |
+
cfg_strength: The strength of classifier-free guidance.
|
| 148 |
+
verbose: If True, show a progress bar.
|
| 149 |
+
**kwargs: Additional arguments for model_inference.
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
a dict containing the following
|
| 153 |
+
- 'samples': the model samples.
|
| 154 |
+
- 'pred_x_t': a list of prediction of x_t.
|
| 155 |
+
- 'pred_x_0': a list of prediction of x_0.
|
| 156 |
+
"""
|
| 157 |
+
return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, **kwargs)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class FlowEulerGuidanceIntervalSampler(GuidanceIntervalSamplerMixin, FlowEulerSampler):
|
| 161 |
+
"""
|
| 162 |
+
Generate samples from a flow-matching model using Euler sampling with classifier-free guidance and interval.
|
| 163 |
+
"""
|
| 164 |
+
@torch.no_grad()
|
| 165 |
+
def sample(
|
| 166 |
+
self,
|
| 167 |
+
model,
|
| 168 |
+
noise,
|
| 169 |
+
cond,
|
| 170 |
+
neg_cond,
|
| 171 |
+
steps: int = 50,
|
| 172 |
+
rescale_t: float = 1.0,
|
| 173 |
+
cfg_strength: float = 3.0,
|
| 174 |
+
cfg_interval: Tuple[float, float] = (0.0, 1.0),
|
| 175 |
+
verbose: bool = True,
|
| 176 |
+
**kwargs
|
| 177 |
+
):
|
| 178 |
+
"""
|
| 179 |
+
Generate samples from the model using Euler method.
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
model: The model to sample from.
|
| 183 |
+
noise: The initial noise tensor.
|
| 184 |
+
cond: conditional information.
|
| 185 |
+
neg_cond: negative conditional information.
|
| 186 |
+
steps: The number of steps to sample.
|
| 187 |
+
rescale_t: The rescale factor for t.
|
| 188 |
+
cfg_strength: The strength of classifier-free guidance.
|
| 189 |
+
cfg_interval: The interval for classifier-free guidance.
|
| 190 |
+
verbose: If True, show a progress bar.
|
| 191 |
+
**kwargs: Additional arguments for model_inference.
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
a dict containing the following
|
| 195 |
+
- 'samples': the model samples.
|
| 196 |
+
- 'pred_x_t': a list of prediction of x_t.
|
| 197 |
+
- 'pred_x_0': a list of prediction of x_0.
|
| 198 |
+
"""
|
| 199 |
+
return super().sample(model, noise, cond, steps, rescale_t, verbose, neg_cond=neg_cond, cfg_strength=cfg_strength, cfg_interval=cfg_interval, **kwargs)
|