Tibetan-tts / app.py
tsuching's picture
Update app.py
29bc350 verified
import gradio as gr
import numpy as np
from pyewts import pyewts
import bophono
from fastapi import FastAPI
from fastapi.responses import FileResponse
from pydub import AudioSegment
from botok import WordTokenizer
from mlotsawa.translator import Translator
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import MBart50TokenizerFast, MBartForConditionalGeneration
import datetime
import tempfile
import soundfile as sf
import os
import re
# --- Initiation ---
# --- Initialization: Ensure the converters are instantiated ---
# Initialize the Wylie Converter class object
# This makes the Wylie Converter available for use in functions.
# We initialize the converter object once per function call or globally if preferred,
# but defining the class is necessary here:
WYLIE_CONVERTER_HANDLE = pyewts()
# Initialize Botok
wt = WordTokenizer()
HF_TOKEN = os.getenv("HF_TOKEN")
# --- Bophono Initialization ---
# Initialize the MST (Manual of Standard Tibetan) converter globally
# The 'options' can be adjusted based on desired pronunciation rules.
BOPHONO_MST_OPTIONS = {
'aspirateLowTones': True
}
# Initialize the converter instance (MST is the standard scheme)
bophono_mst_converter = bophono.UnicodeToApi(
schema="MST",
options=BOPHONO_MST_OPTIONS
)
# 2. KVP Converter (for English-readable phonetic spelling)
# Note: KVP requires different options for its specific ruleset.
BOPHONO_KVP_OPTIONS = {
'aspirateLowTones': False,
'vowelLengthInFinals': True, # Example: Adjust as per the KVP scheme rules
}
bophono_kvp_converter = bophono.UnicodeToApi(
schema="KVP", # Use the KVP schema identifier
options=BOPHONO_KVP_OPTIONS
)
# --- Translation Quotas ---
GOOGLE_QUOTA = 500_000 # free tier characters/month
MS_QUOTA = 2_000_000 # free tier characters/month
usage = {"google": 0, "microsoft": 0}
last_reset = datetime.date.today().replace(day=1)
def translate_with_quota(text, src_lang="bo", tgt_lang="en"):
global usage, last_reset
# Reset counters on the 1st of each month
today = datetime.date.today()
if today.month != last_reset.month or today.year != last_reset.year:
usage = {"google": 0, "microsoft": 0}
last_reset = today.replace(day=1)
char_count = len(text)
# Try Google first
if usage["google"] + char_count <= GOOGLE_QUOTA:
usage["google"] += char_count
return call_google_translate(text, src_lang, tgt_lang)
# Fallback to Microsoft
elif usage["microsoft"] + char_count <= MS_QUOTA:
usage["microsoft"] += char_count
return call_microsoft_translate(text, src_lang, tgt_lang)
# If both exceeded
else:
return "Translation quota exceeded for this month. Please try again next month."
# --- Load TTS pipelines ---
tts_tibetan = pipeline("text-to-speech", model="facebook/mms-tts-bod")
#tts_sanskrit = pipeline("text-to-speech", model="facebook/mms-tts-san")
# Load MBART-50
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", use_fast=False)
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# Use the slow tokenizer to avoid the bug
translation_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt",use_fast=False)
#translation_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
#translation_model = AutoModel.from_pretrained("xlm-roberta-base")
# Public multilingual translation model
#translation_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
#translation_tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# Translation model
#translation_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B")
#translation_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B")
#AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", use_auth_token=os.environ["HF_TOKEN"])
def call_google_translate(text, src_lang, tgt_lang):
# TODO: implement Google API call
return "Google translated text"
def call_microsoft_translate(text, src_lang, tgt_lang):
# TODO: implement Microsoft API call
return "Microsoft translated text"
def safe_tokenize_sanskrit(text):
"""
Return both machine tokens (subwords) and human-readable word tokens for Sanskrit.
"""
machine_tokens = None
# 1) Try IndicTrans2 tokenizer
try:
machine_tokens = indictrans_tokenizer.tokenize(text)
except Exception:
pass
# 2) Try MBART-50 tokenizer
if machine_tokens is None:
try:
machine_tokens = tokenizer.tokenize(text)
except Exception:
pass
# 3) Try XLM-R tokenizer
if machine_tokens is None:
try:
machine_tokens = xlm_tokenizer.tokenize(text)
except Exception:
pass
# 4) Regex fallback for human-readable tokens
human_tokens = [tok for tok in re.split(r"(\s+|[ΰ₯€ΰ₯₯,.;:!?])", text) if tok.strip()]
return machine_tokens, human_tokens
# --- Define this helper function outside run_task ---
def format_word_by_word_output(schemes_data):
"""
Formats the structured scheme data back into the multi-line,
word-by-word analysis format for learning.
"""
output_lines = []
# Define headers for the output
HEADER_UNICODE = "Unicode:"
HEADER_WYLIE = " Wylie (Morphological):"
HEADER_MST = " MST (IPA):"
HEADER_KVP = " KVP (Phonetic):"
# Iterate through the lists of tokens (they should all have the same length)
for i in range(len(schemes_data['unicode'])):
unicode_str = schemes_data['unicode'][i]
wylie_str = schemes_data['wylie'][i]
mst_ipa = schemes_data['mst_ipa'][i]
kvp_phonetic = schemes_data['kvp_phonetic'][i]
# Check if the token is a separator (empty string placeholder)
if not unicode_str.strip():
output_lines.append("\n") # Add a vertical break for spacing
continue
# Format the output block for one word
output = (
f"{HEADER_UNICODE} {unicode_str}\n"
f"{HEADER_WYLIE} {wylie_str}\n"
f"{HEADER_MST} {mst_ipa}\n"
f"{HEADER_KVP} {kvp_phonetic}\n"
)
output_lines.append(output)
return "\n".join(output_lines)
def get_all_phonetics_schemes(text):
"""
Converts Tibetan text into parallel Unicode, MST (IPA), and KVP (Romanization) output,
formatted clearly by segmented word.
"""
global bophono_mst_converter, bophono_kvp_converter
# 1. Segment the text first, as bophono works word-by-word
# Botok tokens include words, punctuation, and whitespace elements.
tokens = [t.text for t in wt.tokenize(text)]
#output_lines = []
# Dictionaries to store the results by token
results = {
"unicode": [],
"wylie": [],
"mst_ipa": [],
"kvp_phonetic": []
}
# Define headers for the output
#HEADER_UNICODE = "Unicode:"
#HEADER_WYLIE = " Wylie (Morphological):"
#HEADER_MST = " MST (IPA):"
#HEADER_KVP = " KVP (Phonetic):"
# 2. Process each token (word, punctuation, or space)
for tok in tokens:
# Skip empty strings
if not tok:
continue
# Punctuation/Whitespace Handling: Pass through for spacing
#if not tok.strip() or len(tok) == 1 and tok in '།།.':
# Add a vertical space to clearly separate output by word/phrase
# output_lines.append("\n")
# continue
# Punctuation/Whitespace Handling: Use a consistent placeholder for spacing
is_separator = not tok.strip() or len(tok) == 1 and tok in '།།.'
if is_separator:
# Use a placeholder that will be converted to a break later
results["unicode"].append("")
results["wylie"].append("")
results["mst_ipa"].append("")
results["kvp_phonetic"].append("")
continue
unicode_str = tok
#wylie_str = "" # Initialized to prevent UnboundLocalError
#mst_ipa = ""
#kvp_phonetic = ""
# Initialize to avoid UnboundLocalError during failure
wylie_str, mst_ipa, kvp_phonetic = "(Failed)", "(Failed)", "(Failed)"
try:
# Calculate Wylie first (always needed)
wylie_str = WYLIE_CONVERTER_HANDLE.toWylie(tok)
# Only try conversion if the token is a meaningful Tibetan word
mst_ipa = bophono_mst_converter.get_api(tok)
kvp_phonetic = bophono_kvp_converter.get_api(tok)
except Exception:
# If conversion fails (e.g., non-Tibetan or complex characters),
# flag the output.
print(f"Conversion failed for token '{tok}': {e}")
wylie_str = "(Conversion Failed)"
mst_ipa = "(Conversion Failed)"
kvp_phonetic = "(Conversion Failed)"
# 3. Format the output for one word
#output = (
# f"{HEADER_UNICODE} {unicode_str}\n"
# f"{HEADER_WYLIE} {wylie_str}\n"
# f"{HEADER_MST} {mst_ipa}\n"
# f"{HEADER_KVP} {kvp_phonetic}\n"
#)
#output_lines.append(output)
# Store results
results["unicode"].append(tok)
results["wylie"].append(wylie_str)
results["mst_ipa"].append(mst_ipa)
results["kvp_phonetic"].append(kvp_phonetic)
# 4. Join all formatted outputs into a single string
#return "\n".join(output_lines)
return results
# Tibetan TTS function
#def run_task_tts(text):
# Always return: [audio_numpy, audio_filepath, text_output]
# 1) Generate speech via MMS-TTS
# speech = tts_tibetan(text)
# 2) Clip, cast, flatten for Gradio (browser playback expects float32 in [-1, 1])
# audio = speech["audio"]
# sr = int(speech["sampling_rate"])
# audio = np.clip(audio.astype(np.float32), -1.0, 1.0).flatten()
# 3) Write a WAV file for download/Flutter using PCM_16 to avoid pydub header errors
# tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
# sf.write(tmpfile.name, audio, sr, subtype="PCM_16")
# 4) Return both audio forms + a status message
# return (sr, audio), tmpfile.name, "Tibetan audio generated successfully!"
########
def run_task_tts(text: str):
# Ensure input is a string and strip whitespace
if not isinstance(text, str):
text = str(text)
text = text.strip()
# 1. Segment Text and Filter Empty Chunks
# Use the primary phrase marker (།) to split the long text into manageable segments.
# The regex re.split(r'[།\n]', text) is safer for finding both tsheg and newlines
# Use the primary phrase marker (།) and newlines (\n) to split the text.
# The 're' module must be imported at the top of your script (which it is).
segments = [s.strip() for s in re.split(r'[།\n]', text) if s.strip()]
if not segments:
return (None, ""), "", "⚠️ Error: No valid Tibetan text found after cleaning/segmentation."
# List to hold all generated audio segments (numpy arrays)
audio_segments = []
# Get sampling rate once, will be the same for all segments
sr = 0
try:
# 2. Process each segment
for segment in segments:
# Re-add the closing tsheg/shes (།) for better phrasing,
# and an extra space to prevent cut endings. If the segment already
# ends in a །, this is harmless as it's trimmed later.
segment_with_tsheg = segment + " །"
# Generate speech for the short segment
speech = tts_tibetan(segment_with_tsheg)
# Clip and flatten the audio for the segment
audio_data = speech["audio"]
sr = int(speech["sampling_rate"]) # Capture the sampling rate
# Convert to float32 and normalize
segment_audio = np.clip(audio_data.astype(np.float32), -1.0, 1.0).flatten()
audio_segments.append(segment_audio)
# Add a small silence gap between segments for clarity (e.g., 0.25s)
silence_duration = 0.25 # seconds
silence_samples = int(sr * silence_duration)
silence = np.zeros(silence_samples, dtype=np.float32)
audio_segments.append(silence)
# 3. Concatenate all audio segments into the final array
final_audio = np.concatenate(audio_segments)
# 4. Write a WAV file for download/Flutter using PCM_16
tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
# We must have a valid sampling rate 'sr' here
if sr == 0:
raise ValueError("Sampling rate was not determined during TTS generation.")
sf.write(tmpfile.name, final_audio, sr, subtype="PCM_16")
# 5. Return both audio forms + a status message
return (sr, final_audio), tmpfile.name, "Tibetan audio generated successfully via segmentation!"
except Exception as e:
# Catch any failure during TTS or concatenation
error_message = f"TTS processing failed for a long text segment: {e}. The segmenting process may have failed or the model encountered an unpronounceable character. Try shorter text."
print(f"TTS Error during segmentation: {e}")
return (None, ""), "", error_message # Return empty data on failure
########
# def run_task_tts(text: str):
# Ensure input is a string
# if not isinstance(text, str):
# text = str(text)
# Add extra space to prevent cut endings
# text = text.strip() #+ " །";
# 1) Generate speech via MMS-TTS
# speech = tts_tibetan(text) # pipeline expects plain string
# 2) Clip, cast, flatten for Gradio (browser playback expects float32 in [-1, 1])
# audio = speech["audio"]
# sr = int(speech["sampling_rate"])
# audio = np.clip(audio.astype(np.float32), -1.0, 1.0).flatten()
# πŸ”₯ Add 1 second of silence padding
# silence_duration = 1.0 # seconds
# silence_samples = int(sr * silence_duration)
# silence = np.zeros(silence_samples, dtype=np.float32)
# padded_audio = np.concatenate([audio, silence])
# 3) Write a WAV file for download/Flutter using PCM_16
# tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
# sf.write(tmpfile.name, audio, sr, subtype="PCM_16")
# 4) Return both audio forms + a status message
# return (sr, audio), tmpfile.name, "Tibetan audio generated successfully!"
# Translate/Tokenize function
def run_task(text, language, task):
if task == "Translate":
if language == "Sanskrit":
# Prefer IndicTrans2 for Sanskrit -> English (gated): indic-en model
try:
# Lazy-load IndicTrans only when Sanskrit translation is requested
indictrans_tokenizer = AutoTokenizer.from_pretrained(
"ai4bharat/IndicTrans2-en-indic-1B",
token=HF_TOKEN,
trust_remote_code=True
)
indictrans_model = AutoModelForSeq2SeqLM.from_pretrained(
"ai4bharat/IndicTrans2-en-indic-1B",
token=HF_TOKEN,
trust_remote_code=True
)
# IndicTrans2 expects a target language prefix token
prefix = "<2en> " # English target
inputs = indictrans_tokenizer(prefix + text, return_tensors="pt")
#inputs = indictrans_tokenizer(text, return_tensors="pt", src_lang="san", tgt_lang="en")
outputs = indictrans_model.generate(**inputs, max_new_tokens=256)
translated = indictrans_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# Detect nonsense outputs (repeated single word)
if translated and len(set(translated.split())) == 1:
translated = f"⚠️ Translation returned nonsense (repeated '{translated.split()[0]}')."
print("βœ… Sanskrit translation using IndicTrans2:", translated)
return translated
except Exception as e:
print("⚠️ IndicTrans2 failed, falling back to MBART:", e)
#indictrans_tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
#indictrans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# Fallback to MBART with correct language codes
try:
# MBART-50 requires src_lang and forced_bos_token_id
translation_tokenizer.src_lang = "sa_IN" # Sanskrit input
forced_bos = translation_tokenizer.lang_code_to_id.get("en_XX", None)
inputs = translation_tokenizer(text, return_tensors="pt")
outputs = translation_model.generate(
**inputs,
max_new_tokens=256,
forced_bos_token_id=forced_bos
)
translated = translation_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
if translated and len(set(translated.split())) == 1:
translated = f"⚠️ Translation returned nonsense (repeated '{translated.split()[0]}')."
print("βœ… Sanskrit translation using MBART fallback:", translated)
return translated
except Exception as e2:
return f"Translation error: {e2}"
elif language == "Tibetan":
try:
# Load Monlam AI Tibetan→English model
#tib_tokenizer = AutoTokenizer.from_pretrained("monlam-ai/mt-bod-eng", token=HF_TOKEN)
#tib_model = AutoModelForSeq2SeqLM.from_pretrained("monlam-ai/mt-bod-eng", token=HF_TOKEN)
tib_tokenizer = AutoTokenizer.from_pretrained("billingsmoore/prototype-tibetan-to-english-translation-v1")
tib_model = AutoModelForSeq2SeqLM.from_pretrained("billingsmoore/prototype-tibetan-to-english-translation-v1")
# Encode Tibetan input
inputs = tib_tokenizer(text, return_tensors="pt")
# Generate translation
outputs = tib_model.generate(**inputs, max_new_tokens=256)
translated = tib_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
translator = Translator()
translated = translator.translate(text)
print("Translated Text with mlotsawa:", translated)
# Handle nonsense or empty outputs
if not translated or translated.isspace():
translated = "⚠️ Translation failed or returned empty output."
elif len(set(translated.split())) == 1:
translated = f"⚠️ Translation returned nonsense (repeated '{translated.split()[0]}')."
print("βœ… Tibetan translation using mlotsawa:", translated)
return translated
except Exception as e:
print("⚠️ Monlam AI failed, falling back to MBART:", e)
try:
# Optionally skip segmentation
# 1) Segment Tibetan text with Botok
#tokens = [t.text for t in wt.tokenize(text)]
#segmented_text = " ".join(tokens)
#print("Segmented Tibetan:", segmented_text)
# 2) Set source and target languages
# MBART-50 requires src_lang and forced_bos_token_id
tokenizer.src_lang = "bo_CN"
forced_bos = tokenizer.lang_code_to_id["en_XX"] # βœ… correct
# 3) Translate using MBART-50
inputs = tokenizer(text, return_tensors="pt") # try raw input
#inputs = tokenizer(segmented_text, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=256,
forced_bos_token_id=forced_bos
)
translated = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# New Decode Output
english_text = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# Handle nonsense or empty outputs
if not translated or translated.isspace():
translated = "⚠️ Translation failed or returned empty output."
elif len(set(translated.split())) == 1:
translated = f"⚠️ Translation returned nonsense (repeated '{translated.split()[0]}')."
print("βœ… Tibetan translation using MBART:", translated)
return translated
#if not english_text or english_text.isspace():
# return None, None, "⚠️ Translation failed or returned empty output."
# 4) Decode output
#english_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
#print("Translation output:", english_text)
#return None, None, english_text
except Exception as e:
return f"Tibetan translation error: {e}"
#translated_text = translate_with_quota(text, src_lang="bo", tgt_lang="en")
#return None, None, translated_text
else:
return "Unsupported language"
elif task == "Tokenize":
if language == "Tibetan":
# 1) Segment Tibetan text with Botok
tokens = [t.text for t in wt.tokenize(text)]
segmented_text = " ".join(tokens)
return segmented_text
#return None, None, xlm_tokenizer.tokenize(text)
elif language == "Sanskrit":
machine_tokens, human_tokens = safe_tokenize_sanskrit(text)
# Format machine tokens
raw_machine = " ".join(machine_tokens) if machine_tokens else "None"
clean_machine = " ".join([t.replace("▁", "") for t in machine_tokens]) if machine_tokens else "None"
# Format human tokens
human_str = " ".join(human_tokens) if human_tokens else "None"
return (
f"Raw machine tokens:\n{raw_machine}\n\n"
f"Cleaned machine tokens:\n{clean_machine}\n\n"
f"Human-readable tokens:\n{human_str}"
)
#raw_tokens = safe_tokenize_sanskrit(text)
# Return a human-readable string; if you prefer list, wrap with str(tokens)
#tokens = normalize_sp_tokens(raw_tokens)
#return None, None, " ".join(tokens)
#return None, None, indictrans_tokenizer.tokenize(text)
else:
return "Unsupported language"
elif task == "Phonetics":
if language == "Tibetan":
# The get_all_phonetics function now returns the formatted multi-line string
#formatted_output = get_all_phonetics(text)
#return formatted_output
# 1. Get all schemes data
schemes_data = get_all_phonetics_schemes(text)
# 2. Use the formatter to create the detailed, word-by-word output
formatted_output = format_word_by_word_output(schemes_data)
# 2. Format the three outputs in parallel (Unicode + Wylie + Phonetic)
unicode_output = " ".join([t for t in schemes_data['unicode'] if t.strip()]) # Cleaned up display
wylie_output = " ".join([t for t in schemes_data['wylie'] if t.strip()])
mst_output = " ".join([t for t in schemes_data['mst_ipa'] if t.strip()])
kvp_output = " ".join([t for t in schemes_data['kvp_phonetic'] if t.strip()])
# 3. Present all outputs in a single, formatted string for the Textbox
# You can copy and paste from this single box now.
output = (
f"--- Tibetan Phonetic Analysis ---\n\n"
#f"Unicode Text (Input):\n{unicode_output}\n\n"
f"KVP (Phonetic):\n{kvp_output}\n\n"
f"Wylie (Morphological):\n{wylie_output}\n\n"
f"MST (IPA):\n{mst_output}\n\n\n"
f"--- Detailed Word-by-Word ---\n\n{formatted_output}"
)
return output
elif language == "Sanskrit":
return "Phonetics conversion for Sanskrit is not supported by the current Bophono scheme."
else:
return "Unsupported language for Phonetics task."
def normalize_sp_tokens(tokens):
# Remove SentencePiece underscores and collapse spaces
return [t.replace("▁", "") for t in tokens]
# --- Build interface ---
iface_text = gr.Interface(
fn=run_task,
inputs=[
gr.Textbox(label="Input Text", lines=10),
gr.Dropdown(choices=["Tibetan", "Sanskrit"], label="Language"),
gr.Radio(choices=["Translate", "Tokenize", "Phonetics"], label="Task")
],
outputs=gr.Textbox(label="Text Output", lines=20),
title="Translation & Tokenization & Phonetics"
)
iface_tts = gr.Interface(
fn=run_task_tts, # your existing TTS function
inputs=gr.Textbox(label="Tibetan Input Text", lines=20),
outputs=[
gr.Audio(label="Play in Browser", type="numpy"),
gr.Audio(label="Download/URL for Flutter", type="filepath"),
gr.Textbox(label="Status")
],
title="Tibetan TTS"
)
demo = gr.TabbedInterface([iface_tts, iface_text], tab_names=["TTS", "Translate/Tokenize"])
if __name__ == "__main__":
demo.launch()
#############################################
# πŸ”₯ Add a real API endpoint for Flutter
#############################################
from fastapi import FastAPI
from fastapi.responses import FileResponse
import gradio as gr
api = FastAPI()
# --- Wrap your real TTS function ---
# You MUST replace "run_task_tts" below
# with the actual TTS function you already defined.
#def generate_tts_file(text):
# """
# Wrapper to your internal TTS function.
# This should return a path to a WAV/MP3 file.
# """
# output_path = run_task_tts(text) # <-- keep your original function
# return output_path
def generate_tts_file(text: str) -> str:
"""
Wrapper to your internal TTS function.
Returns the path to the generated WAV file.
"""
_, file_path, _ = run_task_tts(text) # unpack tuple
return file_path
#@api.post("/api/tts")
#async def api_tts(request: gr.Request):
# body = await request.json()
# text = body.get("text", "")
# if not text:
# return {"error": "No text provided"}
# output_path = generate_tts_file(text)
# return FileResponse(
# output_path,
# media_type="audio/wav",
# filename="tts.wav"
# )
@api.post("/api/tts")
async def api_tts(request: gr.Request):
body = await request.json()
text = body.get("text", "")
# βœ… Ensure text is always a string
if not isinstance(text, str):
text = str(text)
if not text.strip():
return {"error": "No text provided"}
# Call your wrapper
_, output_path, status = run_task_tts(text)
return FileResponse(
output_path,
media_type="audio/wav",
filename="tts.wav"
)
#############################################
# πŸ”₯ Attach your existing Gradio UI
#############################################
# Replace "demo" with your real Blocks variable.
# Example:
# with gr.Blocks() as demo:
# ... your UI ...
app = gr.mount_gradio_app(api, demo, path="/")