Spaces:
Running
Running
File size: 28,359 Bytes
9516502 ee7c9b5 58a6962 5dab296 4cbb6fb 6f59419 4f360c0 07702a8 0d5905a 087fabb 4cbb6fb 642df0a 30c6847 28b6955 642df0a 61ea8f3 ac54bd6 4cbb6fb be78693 4cbb6fb ac54bd6 0a344a0 ac54bd6 d0fc432 0a344a0 30c6847 61ea8f3 642df0a 9516502 4a8a22f b64c623 79e22d1 087fabb 20eeed2 0d5905a 20eeed2 2830902 087fabb 65744b5 087fabb 65744b5 b64c623 65744b5 dbf9bfa 61ea8f3 28b6955 09f42d1 28b6955 09f42d1 80fd15b 28b6955 09f42d1 28b6955 80fd15b 09f42d1 28b6955 80fd15b 09f42d1 28b6955 e360bd0 d0fc432 fbc219d d0fc432 0a344a0 d0fc432 0a344a0 d0fc432 0a344a0 d0fc432 bbcda01 d0fc432 0a344a0 bbcda01 0a344a0 d0fc432 0a344a0 bbcda01 0a344a0 bbcda01 0a344a0 bbcda01 0a344a0 d0fc432 889a04c 73923ff 889a04c 0a344a0 d0fc432 0a344a0 19c1ba7 81cadad 0a344a0 bbcda01 0a344a0 bbcda01 d0fc432 0a344a0 bbcda01 d0fc432 a1a920b f340b44 36170f3 a1a920b f340b44 29bc350 f340b44 29bc350 f340b44 29bc350 1b6f17f 29bc350 1b6f17f f340b44 29bc350 f340b44 a1a920b 29bc350 f340b44 090c022 29bc350 090c022 f340b44 29bc350 f340b44 a1a920b 29bc350 62bef3c a1a920b 642df0a 36170f3 89dfeeb 781555a efe354b 781555a 36170f3 ec932c5 781555a 6f60f39 36170f3 89dfeeb ec932c5 de50eeb 36170f3 ec932c5 36170f3 781555a ec932c5 781555a 6f60f39 36170f3 6f60f39 642df0a 136e795 62e2b6a 2072646 136e795 2072646 781555a 136e795 2072646 07702a8 61d3c77 136e795 c8d1e56 6f60f39 136e795 69b711b defc7f7 69b711b defc7f7 69b711b 781555a 69b711b de50eeb 69b711b defc7f7 69b711b 781555a defc7f7 781555a 6f60f39 781555a defc7f7 69b711b defc7f7 781555a 69b711b 781555a 69b711b 6f60f39 ac54bd6 642df0a 6f60f39 4a8a22f 642df0a 49bc66d 845c084 6f60f39 49bc66d d8d9346 642df0a 09f42d1 d8d9346 09f42d1 d8d9346 09f42d1 28b6955 09f42d1 28b6955 642df0a 6f60f39 d0fc432 0a344a0 d0fc432 bbcda01 e360bd0 bbcda01 e360bd0 c156316 bbcda01 d7165ee d0fc432 ac54bd6 79e22d1 d0fc432 28b6955 09f42d1 4a8a22f 1c8f4d0 4a8a22f d0fc432 4a8a22f 0540fe6 bbcda01 09f42d1 9c45e61 4dda9c3 d3909f8 62bef3c 09f42d1 62bef3c d3909f8 09f42d1 c91707e 4a8a22f 09f42d1 62bef3c defc7f7 5dab296 6e312f5 5dab296 6e312f5 5dab296 6e312f5 5dab296 f340b44 5dab296 f340b44 5dab296 f340b44 5dab296 f340b44 5dab296 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
import gradio as gr
import numpy as np
from pyewts import pyewts
import bophono
from fastapi import FastAPI
from fastapi.responses import FileResponse
from pydub import AudioSegment
from botok import WordTokenizer
from mlotsawa.translator import Translator
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import MBart50TokenizerFast, MBartForConditionalGeneration
import datetime
import tempfile
import soundfile as sf
import os
import re
# --- Initiation ---
# --- Initialization: Ensure the converters are instantiated ---
# Initialize the Wylie Converter class object
# This makes the Wylie Converter available for use in functions.
# We initialize the converter object once per function call or globally if preferred,
# but defining the class is necessary here:
WYLIE_CONVERTER_HANDLE = pyewts()
# Initialize Botok
wt = WordTokenizer()
HF_TOKEN = os.getenv("HF_TOKEN")
# --- Bophono Initialization ---
# Initialize the MST (Manual of Standard Tibetan) converter globally
# The 'options' can be adjusted based on desired pronunciation rules.
BOPHONO_MST_OPTIONS = {
'aspirateLowTones': True
}
# Initialize the converter instance (MST is the standard scheme)
bophono_mst_converter = bophono.UnicodeToApi(
schema="MST",
options=BOPHONO_MST_OPTIONS
)
# 2. KVP Converter (for English-readable phonetic spelling)
# Note: KVP requires different options for its specific ruleset.
BOPHONO_KVP_OPTIONS = {
'aspirateLowTones': False,
'vowelLengthInFinals': True, # Example: Adjust as per the KVP scheme rules
}
bophono_kvp_converter = bophono.UnicodeToApi(
schema="KVP", # Use the KVP schema identifier
options=BOPHONO_KVP_OPTIONS
)
# --- Translation Quotas ---
GOOGLE_QUOTA = 500_000 # free tier characters/month
MS_QUOTA = 2_000_000 # free tier characters/month
usage = {"google": 0, "microsoft": 0}
last_reset = datetime.date.today().replace(day=1)
def translate_with_quota(text, src_lang="bo", tgt_lang="en"):
global usage, last_reset
# Reset counters on the 1st of each month
today = datetime.date.today()
if today.month != last_reset.month or today.year != last_reset.year:
usage = {"google": 0, "microsoft": 0}
last_reset = today.replace(day=1)
char_count = len(text)
# Try Google first
if usage["google"] + char_count <= GOOGLE_QUOTA:
usage["google"] += char_count
return call_google_translate(text, src_lang, tgt_lang)
# Fallback to Microsoft
elif usage["microsoft"] + char_count <= MS_QUOTA:
usage["microsoft"] += char_count
return call_microsoft_translate(text, src_lang, tgt_lang)
# If both exceeded
else:
return "Translation quota exceeded for this month. Please try again next month."
# --- Load TTS pipelines ---
tts_tibetan = pipeline("text-to-speech", model="facebook/mms-tts-bod")
#tts_sanskrit = pipeline("text-to-speech", model="facebook/mms-tts-san")
# Load MBART-50
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", use_fast=False)
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# Use the slow tokenizer to avoid the bug
translation_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt",use_fast=False)
#translation_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
#translation_model = AutoModel.from_pretrained("xlm-roberta-base")
# Public multilingual translation model
#translation_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
#translation_tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# Translation model
#translation_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B")
#translation_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B")
#AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", use_auth_token=os.environ["HF_TOKEN"])
def call_google_translate(text, src_lang, tgt_lang):
# TODO: implement Google API call
return "Google translated text"
def call_microsoft_translate(text, src_lang, tgt_lang):
# TODO: implement Microsoft API call
return "Microsoft translated text"
def safe_tokenize_sanskrit(text):
"""
Return both machine tokens (subwords) and human-readable word tokens for Sanskrit.
"""
machine_tokens = None
# 1) Try IndicTrans2 tokenizer
try:
machine_tokens = indictrans_tokenizer.tokenize(text)
except Exception:
pass
# 2) Try MBART-50 tokenizer
if machine_tokens is None:
try:
machine_tokens = tokenizer.tokenize(text)
except Exception:
pass
# 3) Try XLM-R tokenizer
if machine_tokens is None:
try:
machine_tokens = xlm_tokenizer.tokenize(text)
except Exception:
pass
# 4) Regex fallback for human-readable tokens
human_tokens = [tok for tok in re.split(r"(\s+|[।॥,.;:!?])", text) if tok.strip()]
return machine_tokens, human_tokens
# --- Define this helper function outside run_task ---
def format_word_by_word_output(schemes_data):
"""
Formats the structured scheme data back into the multi-line,
word-by-word analysis format for learning.
"""
output_lines = []
# Define headers for the output
HEADER_UNICODE = "Unicode:"
HEADER_WYLIE = " Wylie (Morphological):"
HEADER_MST = " MST (IPA):"
HEADER_KVP = " KVP (Phonetic):"
# Iterate through the lists of tokens (they should all have the same length)
for i in range(len(schemes_data['unicode'])):
unicode_str = schemes_data['unicode'][i]
wylie_str = schemes_data['wylie'][i]
mst_ipa = schemes_data['mst_ipa'][i]
kvp_phonetic = schemes_data['kvp_phonetic'][i]
# Check if the token is a separator (empty string placeholder)
if not unicode_str.strip():
output_lines.append("\n") # Add a vertical break for spacing
continue
# Format the output block for one word
output = (
f"{HEADER_UNICODE} {unicode_str}\n"
f"{HEADER_WYLIE} {wylie_str}\n"
f"{HEADER_MST} {mst_ipa}\n"
f"{HEADER_KVP} {kvp_phonetic}\n"
)
output_lines.append(output)
return "\n".join(output_lines)
def get_all_phonetics_schemes(text):
"""
Converts Tibetan text into parallel Unicode, MST (IPA), and KVP (Romanization) output,
formatted clearly by segmented word.
"""
global bophono_mst_converter, bophono_kvp_converter
# 1. Segment the text first, as bophono works word-by-word
# Botok tokens include words, punctuation, and whitespace elements.
tokens = [t.text for t in wt.tokenize(text)]
#output_lines = []
# Dictionaries to store the results by token
results = {
"unicode": [],
"wylie": [],
"mst_ipa": [],
"kvp_phonetic": []
}
# Define headers for the output
#HEADER_UNICODE = "Unicode:"
#HEADER_WYLIE = " Wylie (Morphological):"
#HEADER_MST = " MST (IPA):"
#HEADER_KVP = " KVP (Phonetic):"
# 2. Process each token (word, punctuation, or space)
for tok in tokens:
# Skip empty strings
if not tok:
continue
# Punctuation/Whitespace Handling: Pass through for spacing
#if not tok.strip() or len(tok) == 1 and tok in '།།.':
# Add a vertical space to clearly separate output by word/phrase
# output_lines.append("\n")
# continue
# Punctuation/Whitespace Handling: Use a consistent placeholder for spacing
is_separator = not tok.strip() or len(tok) == 1 and tok in '།།.'
if is_separator:
# Use a placeholder that will be converted to a break later
results["unicode"].append("")
results["wylie"].append("")
results["mst_ipa"].append("")
results["kvp_phonetic"].append("")
continue
unicode_str = tok
#wylie_str = "" # Initialized to prevent UnboundLocalError
#mst_ipa = ""
#kvp_phonetic = ""
# Initialize to avoid UnboundLocalError during failure
wylie_str, mst_ipa, kvp_phonetic = "(Failed)", "(Failed)", "(Failed)"
try:
# Calculate Wylie first (always needed)
wylie_str = WYLIE_CONVERTER_HANDLE.toWylie(tok)
# Only try conversion if the token is a meaningful Tibetan word
mst_ipa = bophono_mst_converter.get_api(tok)
kvp_phonetic = bophono_kvp_converter.get_api(tok)
except Exception:
# If conversion fails (e.g., non-Tibetan or complex characters),
# flag the output.
print(f"Conversion failed for token '{tok}': {e}")
wylie_str = "(Conversion Failed)"
mst_ipa = "(Conversion Failed)"
kvp_phonetic = "(Conversion Failed)"
# 3. Format the output for one word
#output = (
# f"{HEADER_UNICODE} {unicode_str}\n"
# f"{HEADER_WYLIE} {wylie_str}\n"
# f"{HEADER_MST} {mst_ipa}\n"
# f"{HEADER_KVP} {kvp_phonetic}\n"
#)
#output_lines.append(output)
# Store results
results["unicode"].append(tok)
results["wylie"].append(wylie_str)
results["mst_ipa"].append(mst_ipa)
results["kvp_phonetic"].append(kvp_phonetic)
# 4. Join all formatted outputs into a single string
#return "\n".join(output_lines)
return results
# Tibetan TTS function
#def run_task_tts(text):
# Always return: [audio_numpy, audio_filepath, text_output]
# 1) Generate speech via MMS-TTS
# speech = tts_tibetan(text)
# 2) Clip, cast, flatten for Gradio (browser playback expects float32 in [-1, 1])
# audio = speech["audio"]
# sr = int(speech["sampling_rate"])
# audio = np.clip(audio.astype(np.float32), -1.0, 1.0).flatten()
# 3) Write a WAV file for download/Flutter using PCM_16 to avoid pydub header errors
# tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
# sf.write(tmpfile.name, audio, sr, subtype="PCM_16")
# 4) Return both audio forms + a status message
# return (sr, audio), tmpfile.name, "Tibetan audio generated successfully!"
########
def run_task_tts(text: str):
# Ensure input is a string and strip whitespace
if not isinstance(text, str):
text = str(text)
text = text.strip()
# 1. Segment Text and Filter Empty Chunks
# Use the primary phrase marker (།) to split the long text into manageable segments.
# The regex re.split(r'[།\n]', text) is safer for finding both tsheg and newlines
# Use the primary phrase marker (།) and newlines (\n) to split the text.
# The 're' module must be imported at the top of your script (which it is).
segments = [s.strip() for s in re.split(r'[།\n]', text) if s.strip()]
if not segments:
return (None, ""), "", "⚠️ Error: No valid Tibetan text found after cleaning/segmentation."
# List to hold all generated audio segments (numpy arrays)
audio_segments = []
# Get sampling rate once, will be the same for all segments
sr = 0
try:
# 2. Process each segment
for segment in segments:
# Re-add the closing tsheg/shes (།) for better phrasing,
# and an extra space to prevent cut endings. If the segment already
# ends in a །, this is harmless as it's trimmed later.
segment_with_tsheg = segment + " །"
# Generate speech for the short segment
speech = tts_tibetan(segment_with_tsheg)
# Clip and flatten the audio for the segment
audio_data = speech["audio"]
sr = int(speech["sampling_rate"]) # Capture the sampling rate
# Convert to float32 and normalize
segment_audio = np.clip(audio_data.astype(np.float32), -1.0, 1.0).flatten()
audio_segments.append(segment_audio)
# Add a small silence gap between segments for clarity (e.g., 0.25s)
silence_duration = 0.25 # seconds
silence_samples = int(sr * silence_duration)
silence = np.zeros(silence_samples, dtype=np.float32)
audio_segments.append(silence)
# 3. Concatenate all audio segments into the final array
final_audio = np.concatenate(audio_segments)
# 4. Write a WAV file for download/Flutter using PCM_16
tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
# We must have a valid sampling rate 'sr' here
if sr == 0:
raise ValueError("Sampling rate was not determined during TTS generation.")
sf.write(tmpfile.name, final_audio, sr, subtype="PCM_16")
# 5. Return both audio forms + a status message
return (sr, final_audio), tmpfile.name, "Tibetan audio generated successfully via segmentation!"
except Exception as e:
# Catch any failure during TTS or concatenation
error_message = f"TTS processing failed for a long text segment: {e}. The segmenting process may have failed or the model encountered an unpronounceable character. Try shorter text."
print(f"TTS Error during segmentation: {e}")
return (None, ""), "", error_message # Return empty data on failure
########
# def run_task_tts(text: str):
# Ensure input is a string
# if not isinstance(text, str):
# text = str(text)
# Add extra space to prevent cut endings
# text = text.strip() #+ " །";
# 1) Generate speech via MMS-TTS
# speech = tts_tibetan(text) # pipeline expects plain string
# 2) Clip, cast, flatten for Gradio (browser playback expects float32 in [-1, 1])
# audio = speech["audio"]
# sr = int(speech["sampling_rate"])
# audio = np.clip(audio.astype(np.float32), -1.0, 1.0).flatten()
# 🔥 Add 1 second of silence padding
# silence_duration = 1.0 # seconds
# silence_samples = int(sr * silence_duration)
# silence = np.zeros(silence_samples, dtype=np.float32)
# padded_audio = np.concatenate([audio, silence])
# 3) Write a WAV file for download/Flutter using PCM_16
# tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
# sf.write(tmpfile.name, audio, sr, subtype="PCM_16")
# 4) Return both audio forms + a status message
# return (sr, audio), tmpfile.name, "Tibetan audio generated successfully!"
# Translate/Tokenize function
def run_task(text, language, task):
if task == "Translate":
if language == "Sanskrit":
# Prefer IndicTrans2 for Sanskrit -> English (gated): indic-en model
try:
# Lazy-load IndicTrans only when Sanskrit translation is requested
indictrans_tokenizer = AutoTokenizer.from_pretrained(
"ai4bharat/IndicTrans2-en-indic-1B",
token=HF_TOKEN,
trust_remote_code=True
)
indictrans_model = AutoModelForSeq2SeqLM.from_pretrained(
"ai4bharat/IndicTrans2-en-indic-1B",
token=HF_TOKEN,
trust_remote_code=True
)
# IndicTrans2 expects a target language prefix token
prefix = "<2en> " # English target
inputs = indictrans_tokenizer(prefix + text, return_tensors="pt")
#inputs = indictrans_tokenizer(text, return_tensors="pt", src_lang="san", tgt_lang="en")
outputs = indictrans_model.generate(**inputs, max_new_tokens=256)
translated = indictrans_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# Detect nonsense outputs (repeated single word)
if translated and len(set(translated.split())) == 1:
translated = f"⚠️ Translation returned nonsense (repeated '{translated.split()[0]}')."
print("✅ Sanskrit translation using IndicTrans2:", translated)
return translated
except Exception as e:
print("⚠️ IndicTrans2 failed, falling back to MBART:", e)
#indictrans_tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
#indictrans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# Fallback to MBART with correct language codes
try:
# MBART-50 requires src_lang and forced_bos_token_id
translation_tokenizer.src_lang = "sa_IN" # Sanskrit input
forced_bos = translation_tokenizer.lang_code_to_id.get("en_XX", None)
inputs = translation_tokenizer(text, return_tensors="pt")
outputs = translation_model.generate(
**inputs,
max_new_tokens=256,
forced_bos_token_id=forced_bos
)
translated = translation_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
if translated and len(set(translated.split())) == 1:
translated = f"⚠️ Translation returned nonsense (repeated '{translated.split()[0]}')."
print("✅ Sanskrit translation using MBART fallback:", translated)
return translated
except Exception as e2:
return f"Translation error: {e2}"
elif language == "Tibetan":
try:
# Load Monlam AI Tibetan→English model
#tib_tokenizer = AutoTokenizer.from_pretrained("monlam-ai/mt-bod-eng", token=HF_TOKEN)
#tib_model = AutoModelForSeq2SeqLM.from_pretrained("monlam-ai/mt-bod-eng", token=HF_TOKEN)
tib_tokenizer = AutoTokenizer.from_pretrained("billingsmoore/prototype-tibetan-to-english-translation-v1")
tib_model = AutoModelForSeq2SeqLM.from_pretrained("billingsmoore/prototype-tibetan-to-english-translation-v1")
# Encode Tibetan input
inputs = tib_tokenizer(text, return_tensors="pt")
# Generate translation
outputs = tib_model.generate(**inputs, max_new_tokens=256)
translated = tib_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
translator = Translator()
translated = translator.translate(text)
print("Translated Text with mlotsawa:", translated)
# Handle nonsense or empty outputs
if not translated or translated.isspace():
translated = "⚠️ Translation failed or returned empty output."
elif len(set(translated.split())) == 1:
translated = f"⚠️ Translation returned nonsense (repeated '{translated.split()[0]}')."
print("✅ Tibetan translation using mlotsawa:", translated)
return translated
except Exception as e:
print("⚠️ Monlam AI failed, falling back to MBART:", e)
try:
# Optionally skip segmentation
# 1) Segment Tibetan text with Botok
#tokens = [t.text for t in wt.tokenize(text)]
#segmented_text = " ".join(tokens)
#print("Segmented Tibetan:", segmented_text)
# 2) Set source and target languages
# MBART-50 requires src_lang and forced_bos_token_id
tokenizer.src_lang = "bo_CN"
forced_bos = tokenizer.lang_code_to_id["en_XX"] # ✅ correct
# 3) Translate using MBART-50
inputs = tokenizer(text, return_tensors="pt") # try raw input
#inputs = tokenizer(segmented_text, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=256,
forced_bos_token_id=forced_bos
)
translated = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# New Decode Output
english_text = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# Handle nonsense or empty outputs
if not translated or translated.isspace():
translated = "⚠️ Translation failed or returned empty output."
elif len(set(translated.split())) == 1:
translated = f"⚠️ Translation returned nonsense (repeated '{translated.split()[0]}')."
print("✅ Tibetan translation using MBART:", translated)
return translated
#if not english_text or english_text.isspace():
# return None, None, "⚠️ Translation failed or returned empty output."
# 4) Decode output
#english_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
#print("Translation output:", english_text)
#return None, None, english_text
except Exception as e:
return f"Tibetan translation error: {e}"
#translated_text = translate_with_quota(text, src_lang="bo", tgt_lang="en")
#return None, None, translated_text
else:
return "Unsupported language"
elif task == "Tokenize":
if language == "Tibetan":
# 1) Segment Tibetan text with Botok
tokens = [t.text for t in wt.tokenize(text)]
segmented_text = " ".join(tokens)
return segmented_text
#return None, None, xlm_tokenizer.tokenize(text)
elif language == "Sanskrit":
machine_tokens, human_tokens = safe_tokenize_sanskrit(text)
# Format machine tokens
raw_machine = " ".join(machine_tokens) if machine_tokens else "None"
clean_machine = " ".join([t.replace("▁", "") for t in machine_tokens]) if machine_tokens else "None"
# Format human tokens
human_str = " ".join(human_tokens) if human_tokens else "None"
return (
f"Raw machine tokens:\n{raw_machine}\n\n"
f"Cleaned machine tokens:\n{clean_machine}\n\n"
f"Human-readable tokens:\n{human_str}"
)
#raw_tokens = safe_tokenize_sanskrit(text)
# Return a human-readable string; if you prefer list, wrap with str(tokens)
#tokens = normalize_sp_tokens(raw_tokens)
#return None, None, " ".join(tokens)
#return None, None, indictrans_tokenizer.tokenize(text)
else:
return "Unsupported language"
elif task == "Phonetics":
if language == "Tibetan":
# The get_all_phonetics function now returns the formatted multi-line string
#formatted_output = get_all_phonetics(text)
#return formatted_output
# 1. Get all schemes data
schemes_data = get_all_phonetics_schemes(text)
# 2. Use the formatter to create the detailed, word-by-word output
formatted_output = format_word_by_word_output(schemes_data)
# 2. Format the three outputs in parallel (Unicode + Wylie + Phonetic)
unicode_output = " ".join([t for t in schemes_data['unicode'] if t.strip()]) # Cleaned up display
wylie_output = " ".join([t for t in schemes_data['wylie'] if t.strip()])
mst_output = " ".join([t for t in schemes_data['mst_ipa'] if t.strip()])
kvp_output = " ".join([t for t in schemes_data['kvp_phonetic'] if t.strip()])
# 3. Present all outputs in a single, formatted string for the Textbox
# You can copy and paste from this single box now.
output = (
f"--- Tibetan Phonetic Analysis ---\n\n"
#f"Unicode Text (Input):\n{unicode_output}\n\n"
f"KVP (Phonetic):\n{kvp_output}\n\n"
f"Wylie (Morphological):\n{wylie_output}\n\n"
f"MST (IPA):\n{mst_output}\n\n\n"
f"--- Detailed Word-by-Word ---\n\n{formatted_output}"
)
return output
elif language == "Sanskrit":
return "Phonetics conversion for Sanskrit is not supported by the current Bophono scheme."
else:
return "Unsupported language for Phonetics task."
def normalize_sp_tokens(tokens):
# Remove SentencePiece underscores and collapse spaces
return [t.replace("▁", "") for t in tokens]
# --- Build interface ---
iface_text = gr.Interface(
fn=run_task,
inputs=[
gr.Textbox(label="Input Text", lines=10),
gr.Dropdown(choices=["Tibetan", "Sanskrit"], label="Language"),
gr.Radio(choices=["Translate", "Tokenize", "Phonetics"], label="Task")
],
outputs=gr.Textbox(label="Text Output", lines=20),
title="Translation & Tokenization & Phonetics"
)
iface_tts = gr.Interface(
fn=run_task_tts, # your existing TTS function
inputs=gr.Textbox(label="Tibetan Input Text", lines=20),
outputs=[
gr.Audio(label="Play in Browser", type="numpy"),
gr.Audio(label="Download/URL for Flutter", type="filepath"),
gr.Textbox(label="Status")
],
title="Tibetan TTS"
)
demo = gr.TabbedInterface([iface_tts, iface_text], tab_names=["TTS", "Translate/Tokenize"])
if __name__ == "__main__":
demo.launch()
#############################################
# 🔥 Add a real API endpoint for Flutter
#############################################
from fastapi import FastAPI
from fastapi.responses import FileResponse
import gradio as gr
api = FastAPI()
# --- Wrap your real TTS function ---
# You MUST replace "run_task_tts" below
# with the actual TTS function you already defined.
#def generate_tts_file(text):
# """
# Wrapper to your internal TTS function.
# This should return a path to a WAV/MP3 file.
# """
# output_path = run_task_tts(text) # <-- keep your original function
# return output_path
def generate_tts_file(text: str) -> str:
"""
Wrapper to your internal TTS function.
Returns the path to the generated WAV file.
"""
_, file_path, _ = run_task_tts(text) # unpack tuple
return file_path
#@api.post("/api/tts")
#async def api_tts(request: gr.Request):
# body = await request.json()
# text = body.get("text", "")
# if not text:
# return {"error": "No text provided"}
# output_path = generate_tts_file(text)
# return FileResponse(
# output_path,
# media_type="audio/wav",
# filename="tts.wav"
# )
@api.post("/api/tts")
async def api_tts(request: gr.Request):
body = await request.json()
text = body.get("text", "")
# ✅ Ensure text is always a string
if not isinstance(text, str):
text = str(text)
if not text.strip():
return {"error": "No text provided"}
# Call your wrapper
_, output_path, status = run_task_tts(text)
return FileResponse(
output_path,
media_type="audio/wav",
filename="tts.wav"
)
#############################################
# 🔥 Attach your existing Gradio UI
#############################################
# Replace "demo" with your real Blocks variable.
# Example:
# with gr.Blocks() as demo:
# ... your UI ...
app = gr.mount_gradio_app(api, demo, path="/")
|