Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,45 @@ import numpy as np
|
|
| 4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 5 |
from transformers import MBart50TokenizerFast, MBartForConditionalGeneration
|
| 6 |
#from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
# --- Load TTS pipelines ---
|
|
@@ -26,6 +65,7 @@ translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbar
|
|
| 26 |
#translation_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B")
|
| 27 |
#AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", use_auth_token=os.environ["HF_TOKEN"])
|
| 28 |
|
|
|
|
| 29 |
def run_task(text, language, task):
|
| 30 |
if task == "TTS" and language == "Tibetan":
|
| 31 |
speech = tts_tibetan(text) # pipeline output
|
|
@@ -35,18 +75,41 @@ def run_task(text, language, task):
|
|
| 35 |
sr = speech["sampling_rate"]
|
| 36 |
|
| 37 |
# Convert float32 [-1,1] → int16 PCM
|
| 38 |
-
audio_int16 = np.clip(audio * 32767, -32768, 32767).astype(np.int16)
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
elif task == "Translate":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
# MBART requires a language code token, e.g. "en_XX" for English
|
| 43 |
-
inputs = translation_tokenizer(text, return_tensors="pt")
|
| 44 |
-
outputs = translation_model.generate(**inputs)
|
| 45 |
-
return None, translation_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 46 |
elif task == "Tokenize":
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
else:
|
| 49 |
-
return None, "Unsupported task
|
|
|
|
| 50 |
|
| 51 |
#def run_task(text, language, task):
|
| 52 |
# if task == "TTS":
|
|
@@ -95,7 +158,8 @@ iface = gr.Interface(
|
|
| 95 |
gr.Radio(choices=["TTS", "Translate", "Tokenize"], label="Task")
|
| 96 |
],
|
| 97 |
outputs=[
|
| 98 |
-
gr.Audio(label="
|
|
|
|
| 99 |
#gr.File(label="Generated Speech"),
|
| 100 |
gr.Textbox(label="Text Output") # for text tasks
|
| 101 |
],
|
|
@@ -103,6 +167,7 @@ iface = gr.Interface(
|
|
| 103 |
description="Tibetan TTS available. Sanskrit supported for text processing only."
|
| 104 |
)
|
| 105 |
|
|
|
|
| 106 |
# Use gr.File for output
|
| 107 |
#iface = gr.Interface(
|
| 108 |
# fn=tts_tibetan,
|
|
|
|
| 4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 5 |
from transformers import MBart50TokenizerFast, MBartForConditionalGeneration
|
| 6 |
#from transformers import AutoTokenizer, AutoModel
|
| 7 |
+
import datetime
|
| 8 |
+
import tempfile
|
| 9 |
+
import soundfile as sf
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# --- Translation Quotas ---
|
| 14 |
+
GOOGLE_QUOTA = 500_000 # free tier characters/month
|
| 15 |
+
MS_QUOTA = 2_000_000 # free tier characters/month
|
| 16 |
+
|
| 17 |
+
usage = {"google": 0, "microsoft": 0}
|
| 18 |
+
last_reset = datetime.date.today().replace(day=1)
|
| 19 |
+
|
| 20 |
+
def translate_with_quota(text, src_lang="bo", tgt_lang="en"):
|
| 21 |
+
global usage, last_reset
|
| 22 |
+
|
| 23 |
+
# Reset counters on the 1st of each month
|
| 24 |
+
today = datetime.date.today()
|
| 25 |
+
if today.month != last_reset.month or today.year != last_reset.year:
|
| 26 |
+
usage = {"google": 0, "microsoft": 0}
|
| 27 |
+
last_reset = today.replace(day=1)
|
| 28 |
+
|
| 29 |
+
char_count = len(text)
|
| 30 |
+
|
| 31 |
+
# Try Google first
|
| 32 |
+
if usage["google"] + char_count <= GOOGLE_QUOTA:
|
| 33 |
+
usage["google"] += char_count
|
| 34 |
+
return call_google_translate(text, src_lang, tgt_lang)
|
| 35 |
+
|
| 36 |
+
# Fallback to Microsoft
|
| 37 |
+
elif usage["microsoft"] + char_count <= MS_QUOTA:
|
| 38 |
+
usage["microsoft"] += char_count
|
| 39 |
+
return call_microsoft_translate(text, src_lang, tgt_lang)
|
| 40 |
+
|
| 41 |
+
# If both exceeded
|
| 42 |
+
else:
|
| 43 |
+
return "Translation quota exceeded for this month. Please try again next month."
|
| 44 |
+
|
| 45 |
+
|
| 46 |
|
| 47 |
|
| 48 |
# --- Load TTS pipelines ---
|
|
|
|
| 65 |
#translation_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B")
|
| 66 |
#AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", use_auth_token=os.environ["HF_TOKEN"])
|
| 67 |
|
| 68 |
+
|
| 69 |
def run_task(text, language, task):
|
| 70 |
if task == "TTS" and language == "Tibetan":
|
| 71 |
speech = tts_tibetan(text) # pipeline output
|
|
|
|
| 75 |
sr = speech["sampling_rate"]
|
| 76 |
|
| 77 |
# Convert float32 [-1,1] → int16 PCM
|
| 78 |
+
#audio_int16 = np.clip(audio * 32767, -32768, 32767).astype(np.int16)
|
| 79 |
+
#return (sr, audio_int16), "" # <-- tuple (sampling_rate, numpy array)
|
| 80 |
+
|
| 81 |
+
# Save to temp WAV file
|
| 82 |
+
tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
| 83 |
+
sf.write(tmpfile.name, audio, sr)
|
| 84 |
+
|
| 85 |
+
# Return both: numpy waveform + file path
|
| 86 |
+
return (sr, audio.astype(np.float32)), tmpfile.name
|
| 87 |
+
|
| 88 |
elif task == "Translate":
|
| 89 |
+
if language == "Sanskrit":
|
| 90 |
+
inputs = indictrans_tokenizer(text, return_tensors="pt")
|
| 91 |
+
outputs = indictrans_model.generate(**inputs)
|
| 92 |
+
return None, indictrans_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 93 |
+
elif language == "Tibetan":
|
| 94 |
+
translated_text = translate_with_quota(text, src_lang="bo", tgt_lang="en")
|
| 95 |
+
return None, translated_text
|
| 96 |
+
else:
|
| 97 |
+
return None, "Unsupported language"
|
| 98 |
+
|
| 99 |
# MBART requires a language code token, e.g. "en_XX" for English
|
| 100 |
+
#inputs = translation_tokenizer(text, return_tensors="pt")
|
| 101 |
+
#outputs = translation_model.generate(**inputs)
|
| 102 |
+
#return None, translation_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 103 |
elif task == "Tokenize":
|
| 104 |
+
if language == "Tibetan":
|
| 105 |
+
return None, xlm_tokenizer.tokenize(text)
|
| 106 |
+
elif language == "Sanskrit":
|
| 107 |
+
return None, indictrans_tokenizer.tokenize(text)
|
| 108 |
+
else:
|
| 109 |
+
return None, "Unsupported language"
|
| 110 |
else:
|
| 111 |
+
return None, "Unsupported task"
|
| 112 |
+
|
| 113 |
|
| 114 |
#def run_task(text, language, task):
|
| 115 |
# if task == "TTS":
|
|
|
|
| 158 |
gr.Radio(choices=["TTS", "Translate", "Tokenize"], label="Task")
|
| 159 |
],
|
| 160 |
outputs=[
|
| 161 |
+
gr.Audio(label="Play in Browser", type="numpy"), # for Hugging Face demo
|
| 162 |
+
gr.Audio(label="Download/URL for Flutter", type="file") # for Flutter app
|
| 163 |
#gr.File(label="Generated Speech"),
|
| 164 |
gr.Textbox(label="Text Output") # for text tasks
|
| 165 |
],
|
|
|
|
| 167 |
description="Tibetan TTS available. Sanskrit supported for text processing only."
|
| 168 |
)
|
| 169 |
|
| 170 |
+
|
| 171 |
# Use gr.File for output
|
| 172 |
#iface = gr.Interface(
|
| 173 |
# fn=tts_tibetan,
|