Upload advanced_rag_app.py
Browse files- advanced_rag_app.py +471 -0
advanced_rag_app.py
ADDED
|
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# ADVANCED RAG WITH GPT, LANGCHAIN, AND RAGAS EVALUATION
|
| 3 |
+
# ==============================================================================
|
| 4 |
+
# Enhanced RAG application with quality metrics using RAGAS framework
|
| 5 |
+
# Supports multiple PDF documents
|
| 6 |
+
# ==============================================================================
|
| 7 |
+
|
| 8 |
+
from langchain.retrievers import EnsembleRetriever
|
| 9 |
+
from langchain_community.retrievers import BM25Retriever
|
| 10 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 11 |
+
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 12 |
+
from sentence_transformers import CrossEncoder
|
| 13 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 14 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 15 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 16 |
+
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
| 17 |
+
from langchain_community.vectorstores import FAISS
|
| 18 |
+
from langchain.schema import Document
|
| 19 |
+
from langchain.prompts import PromptTemplate
|
| 20 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 21 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 22 |
+
from datasets import Dataset
|
| 23 |
+
from ragas import evaluate
|
| 24 |
+
from ragas.metrics import (
|
| 25 |
+
faithfulness,
|
| 26 |
+
answer_relevancy,
|
| 27 |
+
context_precision,
|
| 28 |
+
context_recall,
|
| 29 |
+
answer_correctness,
|
| 30 |
+
answer_similarity
|
| 31 |
+
)
|
| 32 |
+
import gradio as gr
|
| 33 |
+
import os
|
| 34 |
+
import pandas as pd
|
| 35 |
+
import json
|
| 36 |
+
|
| 37 |
+
# ==============================================================================
|
| 38 |
+
# GLOBAL VARIABLES
|
| 39 |
+
# ==============================================================================
|
| 40 |
+
rag_chain = None
|
| 41 |
+
current_documents = [] # Changed to list for multiple documents
|
| 42 |
+
openai_api_key = None
|
| 43 |
+
retriever = None
|
| 44 |
+
evaluation_data = []
|
| 45 |
+
|
| 46 |
+
# ==============================================================================
|
| 47 |
+
# HELPER FUNCTIONS
|
| 48 |
+
# ==============================================================================
|
| 49 |
+
|
| 50 |
+
def format_docs(docs):
|
| 51 |
+
"""Format retrieved documents with source citations"""
|
| 52 |
+
out = []
|
| 53 |
+
for d in docs:
|
| 54 |
+
src = d.metadata.get("source", "unknown")
|
| 55 |
+
# Extract just the filename from the full path
|
| 56 |
+
src = os.path.basename(src)
|
| 57 |
+
page = d.metadata.get("page", d.metadata.get("page_number", "?"))
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
page_display = int(page) + 1
|
| 61 |
+
except (ValueError, TypeError):
|
| 62 |
+
page_display = page
|
| 63 |
+
|
| 64 |
+
out.append(f"[{src}:{page_display}] {d.page_content}")
|
| 65 |
+
return "\n\n".join(out)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def validate_api_key(api_key):
|
| 69 |
+
"""Validate that API key is provided"""
|
| 70 |
+
if not api_key or not api_key.strip():
|
| 71 |
+
return False
|
| 72 |
+
return True
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def process_documents(pdf_files, api_key):
|
| 76 |
+
"""Process uploaded PDFs and create RAG chain"""
|
| 77 |
+
global rag_chain, current_documents, openai_api_key, retriever, evaluation_data
|
| 78 |
+
|
| 79 |
+
chatbot_clear = None
|
| 80 |
+
evaluation_data = [] # Reset evaluation data
|
| 81 |
+
|
| 82 |
+
if not validate_api_key(api_key):
|
| 83 |
+
return "β οΈ Please provide a valid OpenAI API key.", chatbot_clear, ""
|
| 84 |
+
|
| 85 |
+
if pdf_files is None or len(pdf_files) == 0:
|
| 86 |
+
return "β οΈ Please upload at least one PDF file.", chatbot_clear, ""
|
| 87 |
+
|
| 88 |
+
try:
|
| 89 |
+
openai_api_key = api_key.strip()
|
| 90 |
+
os.environ["OPENAI_API_KEY"] = openai_api_key
|
| 91 |
+
|
| 92 |
+
# Process all uploaded PDFs
|
| 93 |
+
all_docs = []
|
| 94 |
+
current_documents = []
|
| 95 |
+
total_pages = 0
|
| 96 |
+
|
| 97 |
+
for pdf_file in pdf_files:
|
| 98 |
+
loader = PyPDFLoader(pdf_file.name)
|
| 99 |
+
docs = loader.load()
|
| 100 |
+
all_docs.extend(docs)
|
| 101 |
+
current_documents.append(os.path.basename(pdf_file.name))
|
| 102 |
+
total_pages += len(docs)
|
| 103 |
+
|
| 104 |
+
# Split all documents
|
| 105 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 106 |
+
separators=["\n\n", "\n", ". ", " ", ""],
|
| 107 |
+
chunk_size=1000,
|
| 108 |
+
chunk_overlap=100
|
| 109 |
+
)
|
| 110 |
+
chunked_docs = splitter.split_documents(all_docs)
|
| 111 |
+
|
| 112 |
+
# Create embeddings and vector store
|
| 113 |
+
embeddings = OpenAIEmbeddings(
|
| 114 |
+
model="text-embedding-3-small",
|
| 115 |
+
openai_api_key=openai_api_key
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
db = FAISS.from_documents(chunked_docs, embeddings)
|
| 119 |
+
|
| 120 |
+
retriever_1 = db.as_retriever(search_type="similarity",search_kwargs={'k': 10})
|
| 121 |
+
|
| 122 |
+
retriever_2 = BM25Retriever.from_documents(chunked_docs, search_kwargs={"k": 10})
|
| 123 |
+
|
| 124 |
+
ensemble_retriever = EnsembleRetriever(retrievers=[retriever_1, retriever_2], weights=[0.7, 0.3])
|
| 125 |
+
|
| 126 |
+
cross_encoder_model = HuggingFaceCrossEncoder(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
|
| 127 |
+
|
| 128 |
+
reranker = CrossEncoderReranker(model=cross_encoder_model,top_n=10)
|
| 129 |
+
|
| 130 |
+
reranking_retriever = ContextualCompressionRetriever(base_compressor=reranker,base_retriever=ensemble_retriever)
|
| 131 |
+
|
| 132 |
+
retriever=reranking_retriever
|
| 133 |
+
|
| 134 |
+
# Create LLM and prompt
|
| 135 |
+
llm = ChatOpenAI(
|
| 136 |
+
model="gpt-5-mini",
|
| 137 |
+
temperature=0.2,
|
| 138 |
+
openai_api_key=openai_api_key
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
prompt_template = """You are a professional research scientist involved in document data analysis.
|
| 142 |
+
Use the following context to answer the question using information provided by the documents.
|
| 143 |
+
Answer using ONLY these passages. Cite sources as [filename:page] after each claim.
|
| 144 |
+
Provide an answer in bullet points.
|
| 145 |
+
If you can't find it, say you don't know.
|
| 146 |
+
|
| 147 |
+
Question:
|
| 148 |
+
{question}
|
| 149 |
+
|
| 150 |
+
Passages:
|
| 151 |
+
{context}
|
| 152 |
+
|
| 153 |
+
Answer:"""
|
| 154 |
+
|
| 155 |
+
prompt = PromptTemplate(
|
| 156 |
+
input_variables=["context", "question"],
|
| 157 |
+
template=prompt_template,
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
llm_chain = prompt | llm | StrOutputParser()
|
| 161 |
+
|
| 162 |
+
rag_chain = (
|
| 163 |
+
{"context": reranking_retriever | format_docs, "question": RunnablePassthrough()}
|
| 164 |
+
| llm_chain
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Create status message with document list
|
| 168 |
+
doc_list = "\n".join([f" β’ {doc}" for doc in current_documents])
|
| 169 |
+
status_msg = (
|
| 170 |
+
f"β
Documents processed successfully!\n\n"
|
| 171 |
+
f"π **Documents loaded ({len(current_documents)}):**\n{doc_list}\n\n"
|
| 172 |
+
f"π Total pages: {total_pages}\n"
|
| 173 |
+
f"π¦ Chunks created: {len(chunked_docs)}\n\n"
|
| 174 |
+
f"You can now ask questions and evaluate responses!"
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
return status_msg, chatbot_clear, ""
|
| 178 |
+
|
| 179 |
+
except Exception as e:
|
| 180 |
+
return f"β Error processing documents: {str(e)}", chatbot_clear, ""
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def chat_with_document(message, history):
|
| 184 |
+
"""Handle chat interactions with the documents"""
|
| 185 |
+
global rag_chain, current_documents, retriever, evaluation_data
|
| 186 |
+
|
| 187 |
+
history.append({"role": "user", "content": message})
|
| 188 |
+
|
| 189 |
+
if rag_chain is None:
|
| 190 |
+
history.append({
|
| 191 |
+
"role": "assistant",
|
| 192 |
+
"content": "β οΈ Please upload and process PDF documents first."
|
| 193 |
+
})
|
| 194 |
+
return history
|
| 195 |
+
|
| 196 |
+
if not message.strip():
|
| 197 |
+
history.append({
|
| 198 |
+
"role": "assistant",
|
| 199 |
+
"content": "β οΈ Please enter a question."
|
| 200 |
+
})
|
| 201 |
+
return history
|
| 202 |
+
|
| 203 |
+
try:
|
| 204 |
+
# Retrieve contexts for RAGAS evaluation
|
| 205 |
+
retrieved_docs = retriever.invoke(message)
|
| 206 |
+
contexts = [doc.page_content for doc in retrieved_docs]
|
| 207 |
+
|
| 208 |
+
# Get response from RAG chain
|
| 209 |
+
response = rag_chain.invoke(message)
|
| 210 |
+
|
| 211 |
+
if isinstance(response, dict):
|
| 212 |
+
res_text = response.get("answer", response.get("result", str(response)))
|
| 213 |
+
else:
|
| 214 |
+
res_text = str(response)
|
| 215 |
+
|
| 216 |
+
# Store data for RAGAS evaluation
|
| 217 |
+
evaluation_data.append({
|
| 218 |
+
"question": message,
|
| 219 |
+
"answer": res_text,
|
| 220 |
+
"contexts": contexts
|
| 221 |
+
})
|
| 222 |
+
|
| 223 |
+
history.append({"role": "assistant", "content": res_text})
|
| 224 |
+
return history
|
| 225 |
+
|
| 226 |
+
except Exception as e:
|
| 227 |
+
error_msg = f"β Error generating response: {str(e)}"
|
| 228 |
+
history.append({"role": "assistant", "content": error_msg})
|
| 229 |
+
return history
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def evaluate_rag_performance():
|
| 233 |
+
"""Evaluate RAG performance using RAGAS metrics"""
|
| 234 |
+
global evaluation_data, openai_api_key
|
| 235 |
+
|
| 236 |
+
if not evaluation_data:
|
| 237 |
+
return "β οΈ No evaluation data available. Please ask some questions first."
|
| 238 |
+
|
| 239 |
+
try:
|
| 240 |
+
# Prepare dataset for RAGAS
|
| 241 |
+
dataset_dict = {
|
| 242 |
+
"question": [item["question"] for item in evaluation_data],
|
| 243 |
+
"answer": [item["answer"] for item in evaluation_data],
|
| 244 |
+
"contexts": [item["contexts"] for item in evaluation_data],
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
dataset = Dataset.from_dict(dataset_dict)
|
| 248 |
+
|
| 249 |
+
# Run RAGAS evaluation
|
| 250 |
+
# Using only metrics that don't require ground truth (reference answers)
|
| 251 |
+
result = evaluate(
|
| 252 |
+
dataset,
|
| 253 |
+
metrics=[
|
| 254 |
+
faithfulness,
|
| 255 |
+
answer_relevancy,
|
| 256 |
+
],
|
| 257 |
+
llm=ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key),
|
| 258 |
+
embeddings=OpenAIEmbeddings(openai_api_key=openai_api_key),
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
# Convert to DataFrame for better display
|
| 262 |
+
df = result.to_pandas()
|
| 263 |
+
|
| 264 |
+
# Calculate average scores from the result directly
|
| 265 |
+
metrics_summary = "## π RAGAS Evaluation Results\n\n"
|
| 266 |
+
metrics_summary += "### Average Scores:\n"
|
| 267 |
+
|
| 268 |
+
# Get metric scores safely
|
| 269 |
+
metric_cols = ['faithfulness', 'answer_relevancy']
|
| 270 |
+
metric_scores = {}
|
| 271 |
+
|
| 272 |
+
for col in metric_cols:
|
| 273 |
+
if col in df.columns:
|
| 274 |
+
# Convert to numeric, handling any non-numeric values
|
| 275 |
+
numeric_values = pd.to_numeric(df[col], errors='coerce')
|
| 276 |
+
avg_score = numeric_values.mean()
|
| 277 |
+
if not pd.isna(avg_score):
|
| 278 |
+
metric_scores[col] = avg_score
|
| 279 |
+
metrics_summary += f"- **{col.replace('_', ' ').title()}**: {avg_score:.4f}\n"
|
| 280 |
+
|
| 281 |
+
metrics_summary += "\n### Metric Explanations:\n"
|
| 282 |
+
metrics_summary += "- **Faithfulness** (0-1): Measures if the answer is factually consistent with the retrieved context. Higher scores mean the answer doesn't hallucinate or contradict the source.\n"
|
| 283 |
+
metrics_summary += "- **Answer Relevancy** (0-1): Measures how relevant the answer is to the question asked. Higher scores mean better alignment with the user's query.\n"
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
metrics_summary += "\n### Interpretation Guide:\n"
|
| 287 |
+
metrics_summary += "- **0.9 - 1.0**: Excellent performance\n"
|
| 288 |
+
metrics_summary += "- **0.7 - 0.9**: Good performance\n"
|
| 289 |
+
metrics_summary += "- **0.5 - 0.7**: Moderate performance (needs improvement)\n"
|
| 290 |
+
metrics_summary += "- **< 0.5**: Poor performance (requires significant optimization)\n"
|
| 291 |
+
|
| 292 |
+
metrics_summary += f"\n### Total Questions Evaluated: {len(evaluation_data)}\n"
|
| 293 |
+
|
| 294 |
+
# Add document info
|
| 295 |
+
if current_documents:
|
| 296 |
+
metrics_summary += f"\n### Documents in Index: {len(current_documents)}\n"
|
| 297 |
+
|
| 298 |
+
return metrics_summary
|
| 299 |
+
|
| 300 |
+
except Exception as e:
|
| 301 |
+
return f"β Error during evaluation: {str(e)}"
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def export_evaluation_data():
|
| 305 |
+
"""Export evaluation data as JSON"""
|
| 306 |
+
global evaluation_data, current_documents
|
| 307 |
+
|
| 308 |
+
if not evaluation_data:
|
| 309 |
+
return None
|
| 310 |
+
|
| 311 |
+
try:
|
| 312 |
+
# Create a temporary file with metadata
|
| 313 |
+
output_data = {
|
| 314 |
+
"documents": current_documents,
|
| 315 |
+
"evaluation_data": evaluation_data,
|
| 316 |
+
"total_questions": len(evaluation_data)
|
| 317 |
+
}
|
| 318 |
+
|
| 319 |
+
output_path = "ragas_evaluation_data.json"
|
| 320 |
+
with open(output_path, 'w') as f:
|
| 321 |
+
json.dump(output_data, f, indent=2)
|
| 322 |
+
return output_path
|
| 323 |
+
except Exception as e:
|
| 324 |
+
print(f"Error exporting data: {str(e)}")
|
| 325 |
+
return None
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def clear_chat():
|
| 329 |
+
"""Clear the chat history and evaluation data"""
|
| 330 |
+
global evaluation_data
|
| 331 |
+
evaluation_data = [] # Reset evaluation data when clearing chat
|
| 332 |
+
return [], "" # Return empty chatbot and empty eval_summary
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
# ==============================================================================
|
| 337 |
+
# GRADIO INTERFACE
|
| 338 |
+
# ==============================================================================
|
| 339 |
+
|
| 340 |
+
with gr.Blocks(title="RAG with RAGAS Evaluation", theme=gr.themes.Soft()) as demo:
|
| 341 |
+
|
| 342 |
+
gr.Markdown(
|
| 343 |
+
"""
|
| 344 |
+
# π Multi-Document Q&A Analysis
|
| 345 |
+
### Advanced RAG System Powered by OpenAI GPT models, LangChain & RAGAS
|
| 346 |
+
|
| 347 |
+
Upload multiple PDFs, ask questions across all documents, and evaluate your RAG system's performance with industry-standard metrics.
|
| 348 |
+
"""
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
with gr.Row():
|
| 352 |
+
with gr.Column(scale=1):
|
| 353 |
+
gr.Markdown(
|
| 354 |
+
"""
|
| 355 |
+
### π How to Use
|
| 356 |
+
1. Enter your OpenAI API key
|
| 357 |
+
2. Upload one or more PDF documents
|
| 358 |
+
3. Process the documents
|
| 359 |
+
4. Ask questions in the chat
|
| 360 |
+
5. Click "Evaluate" to see performance metrics
|
| 361 |
+
|
| 362 |
+
---
|
| 363 |
+
|
| 364 |
+
π‘ **RAGAS Metrics**:
|
| 365 |
+
- Faithfulness: Factual accuracy
|
| 366 |
+
- Answer Relevancy: Question alignment
|
| 367 |
+
|
| 368 |
+
π **Multi-Document Support**:
|
| 369 |
+
- Upload multiple PDFs at once
|
| 370 |
+
- Search across all documents
|
| 371 |
+
- Get citations with document names
|
| 372 |
+
"""
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
gr.Markdown("### π API Configuration")
|
| 376 |
+
api_key_input = gr.Textbox(
|
| 377 |
+
label="OpenAI API Key",
|
| 378 |
+
type="password",
|
| 379 |
+
placeholder="sk-...",
|
| 380 |
+
info="Required for GPT models and RAGAS evaluation"
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
gr.Markdown("### π€ Upload Documents")
|
| 384 |
+
pdf_input = gr.File(
|
| 385 |
+
label="Upload PDF Documents",
|
| 386 |
+
file_types=[".pdf"],
|
| 387 |
+
type="filepath",
|
| 388 |
+
file_count="multiple" # Enable multiple file upload
|
| 389 |
+
)
|
| 390 |
+
process_btn = gr.Button("π Process Documents", variant="primary", size="lg")
|
| 391 |
+
|
| 392 |
+
status_output = gr.Textbox(
|
| 393 |
+
label="Status",
|
| 394 |
+
lines=8, # Increased to show multiple documents
|
| 395 |
+
interactive=False,
|
| 396 |
+
placeholder="Enter API key, upload PDFs, and click 'Process Documents'..."
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
gr.Markdown("### π Evaluation")
|
| 400 |
+
evaluate_btn = gr.Button("π Evaluate RAG Performance", variant="secondary", size="lg")
|
| 401 |
+
export_btn = gr.Button("πΎ Export Evaluation Data", size="sm")
|
| 402 |
+
export_file = gr.File(label="Download Evaluation Data", visible=True)
|
| 403 |
+
|
| 404 |
+
with gr.Column(scale=2):
|
| 405 |
+
gr.Markdown("### π¬ Chat with Your Documents")
|
| 406 |
+
chatbot = gr.Chatbot(
|
| 407 |
+
height=400,
|
| 408 |
+
placeholder="Upload and process documents to start...",
|
| 409 |
+
show_label=False,
|
| 410 |
+
type="messages"
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
msg = gr.Textbox(
|
| 414 |
+
label="Enter your question",
|
| 415 |
+
placeholder="Type your question here (searches across all uploaded documents)...",
|
| 416 |
+
lines=2
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
with gr.Row():
|
| 420 |
+
submit_btn = gr.Button("π€ Send", variant="primary", scale=4)
|
| 421 |
+
clear_btn = gr.Button("ποΈ Clear Chat", scale=1)
|
| 422 |
+
|
| 423 |
+
gr.Markdown("### π Evaluation Results")
|
| 424 |
+
eval_summary = gr.Markdown(value="")
|
| 425 |
+
|
| 426 |
+
# Event handlers
|
| 427 |
+
process_btn.click(
|
| 428 |
+
fn=process_documents, # Changed function name
|
| 429 |
+
inputs=[pdf_input, api_key_input],
|
| 430 |
+
outputs=[status_output, chatbot, eval_summary]
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
submit_btn.click(
|
| 434 |
+
fn=chat_with_document,
|
| 435 |
+
inputs=[msg, chatbot],
|
| 436 |
+
outputs=[chatbot]
|
| 437 |
+
).then(
|
| 438 |
+
lambda: "",
|
| 439 |
+
outputs=[msg]
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
msg.submit(
|
| 443 |
+
fn=chat_with_document,
|
| 444 |
+
inputs=[msg, chatbot],
|
| 445 |
+
outputs=[chatbot]
|
| 446 |
+
).then(
|
| 447 |
+
lambda: "",
|
| 448 |
+
outputs=[msg]
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
clear_btn.click(
|
| 452 |
+
fn=clear_chat,
|
| 453 |
+
outputs=[chatbot, eval_summary]
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
evaluate_btn.click(
|
| 457 |
+
fn=evaluate_rag_performance,
|
| 458 |
+
outputs=[eval_summary]
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
export_btn.click(
|
| 462 |
+
fn=export_evaluation_data,
|
| 463 |
+
outputs=[export_file]
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
# ==============================================================================
|
| 467 |
+
# LAUNCH APPLICATION
|
| 468 |
+
# ==============================================================================
|
| 469 |
+
|
| 470 |
+
if __name__ == "__main__":
|
| 471 |
+
demo.launch(share=False, debug=True)
|