Delete advanced_app.py
Browse files- advanced_app.py +0 -471
advanced_app.py
DELETED
|
@@ -1,471 +0,0 @@
|
|
| 1 |
-
# ==============================================================================
|
| 2 |
-
# ADVANCED RAG WITH GPT-4o, LANGCHAIN, AND RAGAS EVALUATION - MULTI-DOCUMENT VERSION
|
| 3 |
-
# ==============================================================================
|
| 4 |
-
# Enhanced RAG application with quality metrics using RAGAS framework
|
| 5 |
-
# Supports multiple PDF documents
|
| 6 |
-
# ==============================================================================
|
| 7 |
-
|
| 8 |
-
from langchain.retrievers import EnsembleRetriever
|
| 9 |
-
from langchain_community.retrievers import BM25Retriever
|
| 10 |
-
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 11 |
-
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 12 |
-
from sentence_transformers import CrossEncoder
|
| 13 |
-
from langchain.retrievers import ContextualCompressionRetriever
|
| 14 |
-
from langchain_community.document_loaders import PyPDFLoader
|
| 15 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 16 |
-
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
| 17 |
-
from langchain_community.vectorstores import FAISS
|
| 18 |
-
from langchain.schema import Document
|
| 19 |
-
from langchain.prompts import PromptTemplate
|
| 20 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 21 |
-
from langchain_core.runnables import RunnablePassthrough
|
| 22 |
-
from datasets import Dataset
|
| 23 |
-
from ragas import evaluate
|
| 24 |
-
from ragas.metrics import (
|
| 25 |
-
faithfulness,
|
| 26 |
-
answer_relevancy,
|
| 27 |
-
context_precision,
|
| 28 |
-
context_recall,
|
| 29 |
-
answer_correctness,
|
| 30 |
-
answer_similarity
|
| 31 |
-
)
|
| 32 |
-
import gradio as gr
|
| 33 |
-
import os
|
| 34 |
-
import pandas as pd
|
| 35 |
-
import json
|
| 36 |
-
|
| 37 |
-
# ==============================================================================
|
| 38 |
-
# GLOBAL VARIABLES
|
| 39 |
-
# ==============================================================================
|
| 40 |
-
rag_chain = None
|
| 41 |
-
current_documents = [] # Changed to list for multiple documents
|
| 42 |
-
openai_api_key = None
|
| 43 |
-
retriever = None
|
| 44 |
-
evaluation_data = []
|
| 45 |
-
|
| 46 |
-
# ==============================================================================
|
| 47 |
-
# HELPER FUNCTIONS
|
| 48 |
-
# ==============================================================================
|
| 49 |
-
|
| 50 |
-
def format_docs(docs):
|
| 51 |
-
"""Format retrieved documents with source citations"""
|
| 52 |
-
out = []
|
| 53 |
-
for d in docs:
|
| 54 |
-
src = d.metadata.get("source", "unknown")
|
| 55 |
-
# Extract just the filename from the full path
|
| 56 |
-
src = os.path.basename(src)
|
| 57 |
-
page = d.metadata.get("page", d.metadata.get("page_number", "?"))
|
| 58 |
-
|
| 59 |
-
try:
|
| 60 |
-
page_display = int(page) + 1
|
| 61 |
-
except (ValueError, TypeError):
|
| 62 |
-
page_display = page
|
| 63 |
-
|
| 64 |
-
out.append(f"[{src}:{page_display}] {d.page_content}")
|
| 65 |
-
return "\n\n".join(out)
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def validate_api_key(api_key):
|
| 69 |
-
"""Validate that API key is provided"""
|
| 70 |
-
if not api_key or not api_key.strip():
|
| 71 |
-
return False
|
| 72 |
-
return True
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def process_documents(pdf_files, api_key):
|
| 76 |
-
"""Process uploaded PDFs and create RAG chain"""
|
| 77 |
-
global rag_chain, current_documents, openai_api_key, retriever, evaluation_data
|
| 78 |
-
|
| 79 |
-
chatbot_clear = None
|
| 80 |
-
evaluation_data = [] # Reset evaluation data
|
| 81 |
-
|
| 82 |
-
if not validate_api_key(api_key):
|
| 83 |
-
return "⚠️ Please provide a valid OpenAI API key.", chatbot_clear, ""
|
| 84 |
-
|
| 85 |
-
if pdf_files is None or len(pdf_files) == 0:
|
| 86 |
-
return "⚠️ Please upload at least one PDF file.", chatbot_clear, ""
|
| 87 |
-
|
| 88 |
-
try:
|
| 89 |
-
openai_api_key = api_key.strip()
|
| 90 |
-
os.environ["OPENAI_API_KEY"] = openai_api_key
|
| 91 |
-
|
| 92 |
-
# Process all uploaded PDFs
|
| 93 |
-
all_docs = []
|
| 94 |
-
current_documents = []
|
| 95 |
-
total_pages = 0
|
| 96 |
-
|
| 97 |
-
for pdf_file in pdf_files:
|
| 98 |
-
loader = PyPDFLoader(pdf_file.name)
|
| 99 |
-
docs = loader.load()
|
| 100 |
-
all_docs.extend(docs)
|
| 101 |
-
current_documents.append(os.path.basename(pdf_file.name))
|
| 102 |
-
total_pages += len(docs)
|
| 103 |
-
|
| 104 |
-
# Split all documents
|
| 105 |
-
splitter = RecursiveCharacterTextSplitter(
|
| 106 |
-
separators=["\n\n", "\n", ". ", " ", ""],
|
| 107 |
-
chunk_size=1000,
|
| 108 |
-
chunk_overlap=100
|
| 109 |
-
)
|
| 110 |
-
chunked_docs = splitter.split_documents(all_docs)
|
| 111 |
-
|
| 112 |
-
# Create embeddings and vector store
|
| 113 |
-
embeddings = OpenAIEmbeddings(
|
| 114 |
-
model="text-embedding-3-small",
|
| 115 |
-
openai_api_key=openai_api_key
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
db = FAISS.from_documents(chunked_docs, embeddings)
|
| 119 |
-
|
| 120 |
-
retriever_1 = db.as_retriever(search_type="similarity",search_kwargs={'k': 10})
|
| 121 |
-
|
| 122 |
-
retriever_2 = BM25Retriever.from_documents(chunked_docs, search_kwargs={"k": 10})
|
| 123 |
-
|
| 124 |
-
ensemble_retriever = EnsembleRetriever(retrievers=[retriever_1, retriever_2], weights=[0.7, 0.3])
|
| 125 |
-
|
| 126 |
-
cross_encoder_model = HuggingFaceCrossEncoder(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")
|
| 127 |
-
|
| 128 |
-
reranker = CrossEncoderReranker(model=cross_encoder_model,top_n=10)
|
| 129 |
-
|
| 130 |
-
reranking_retriever = ContextualCompressionRetriever(base_compressor=reranker,base_retriever=ensemble_retriever)
|
| 131 |
-
|
| 132 |
-
retriever=reranking_retriever
|
| 133 |
-
|
| 134 |
-
# Create LLM and prompt
|
| 135 |
-
llm = ChatOpenAI(
|
| 136 |
-
model="gpt-4o-mini",
|
| 137 |
-
temperature=0.2,
|
| 138 |
-
openai_api_key=openai_api_key
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
prompt_template = """You are a professional research scientist involved in document data analysis.
|
| 142 |
-
Use the following context to answer the question using information provided by the documents.
|
| 143 |
-
Answer using ONLY these passages. Cite sources as [filename:page] after each claim.
|
| 144 |
-
Provide an answer in bullet points.
|
| 145 |
-
If you can't find it, say you don't know.
|
| 146 |
-
|
| 147 |
-
Question:
|
| 148 |
-
{question}
|
| 149 |
-
|
| 150 |
-
Passages:
|
| 151 |
-
{context}
|
| 152 |
-
|
| 153 |
-
Answer:"""
|
| 154 |
-
|
| 155 |
-
prompt = PromptTemplate(
|
| 156 |
-
input_variables=["context", "question"],
|
| 157 |
-
template=prompt_template,
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
llm_chain = prompt | llm | StrOutputParser()
|
| 161 |
-
|
| 162 |
-
rag_chain = (
|
| 163 |
-
{"context": reranking_retriever | format_docs, "question": RunnablePassthrough()}
|
| 164 |
-
| llm_chain
|
| 165 |
-
)
|
| 166 |
-
|
| 167 |
-
# Create status message with document list
|
| 168 |
-
doc_list = "\n".join([f" • {doc}" for doc in current_documents])
|
| 169 |
-
status_msg = (
|
| 170 |
-
f"✅ Documents processed successfully!\n\n"
|
| 171 |
-
f"📄 **Documents loaded ({len(current_documents)}):**\n{doc_list}\n\n"
|
| 172 |
-
f"📊 Total pages: {total_pages}\n"
|
| 173 |
-
f"📦 Chunks created: {len(chunked_docs)}\n\n"
|
| 174 |
-
f"You can now ask questions and evaluate responses!"
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
return status_msg, chatbot_clear, ""
|
| 178 |
-
|
| 179 |
-
except Exception as e:
|
| 180 |
-
return f"❌ Error processing documents: {str(e)}", chatbot_clear, ""
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
def chat_with_document(message, history):
|
| 184 |
-
"""Handle chat interactions with the documents"""
|
| 185 |
-
global rag_chain, current_documents, retriever, evaluation_data
|
| 186 |
-
|
| 187 |
-
history.append({"role": "user", "content": message})
|
| 188 |
-
|
| 189 |
-
if rag_chain is None:
|
| 190 |
-
history.append({
|
| 191 |
-
"role": "assistant",
|
| 192 |
-
"content": "⚠️ Please upload and process PDF documents first."
|
| 193 |
-
})
|
| 194 |
-
return history
|
| 195 |
-
|
| 196 |
-
if not message.strip():
|
| 197 |
-
history.append({
|
| 198 |
-
"role": "assistant",
|
| 199 |
-
"content": "⚠️ Please enter a question."
|
| 200 |
-
})
|
| 201 |
-
return history
|
| 202 |
-
|
| 203 |
-
try:
|
| 204 |
-
# Retrieve contexts for RAGAS evaluation
|
| 205 |
-
retrieved_docs = retriever.invoke(message)
|
| 206 |
-
contexts = [doc.page_content for doc in retrieved_docs]
|
| 207 |
-
|
| 208 |
-
# Get response from RAG chain
|
| 209 |
-
response = rag_chain.invoke(message)
|
| 210 |
-
|
| 211 |
-
if isinstance(response, dict):
|
| 212 |
-
res_text = response.get("answer", response.get("result", str(response)))
|
| 213 |
-
else:
|
| 214 |
-
res_text = str(response)
|
| 215 |
-
|
| 216 |
-
# Store data for RAGAS evaluation
|
| 217 |
-
evaluation_data.append({
|
| 218 |
-
"question": message,
|
| 219 |
-
"answer": res_text,
|
| 220 |
-
"contexts": contexts
|
| 221 |
-
})
|
| 222 |
-
|
| 223 |
-
history.append({"role": "assistant", "content": res_text})
|
| 224 |
-
return history
|
| 225 |
-
|
| 226 |
-
except Exception as e:
|
| 227 |
-
error_msg = f"❌ Error generating response: {str(e)}"
|
| 228 |
-
history.append({"role": "assistant", "content": error_msg})
|
| 229 |
-
return history
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
def evaluate_rag_performance():
|
| 233 |
-
"""Evaluate RAG performance using RAGAS metrics"""
|
| 234 |
-
global evaluation_data, openai_api_key
|
| 235 |
-
|
| 236 |
-
if not evaluation_data:
|
| 237 |
-
return "⚠️ No evaluation data available. Please ask some questions first."
|
| 238 |
-
|
| 239 |
-
try:
|
| 240 |
-
# Prepare dataset for RAGAS
|
| 241 |
-
dataset_dict = {
|
| 242 |
-
"question": [item["question"] for item in evaluation_data],
|
| 243 |
-
"answer": [item["answer"] for item in evaluation_data],
|
| 244 |
-
"contexts": [item["contexts"] for item in evaluation_data],
|
| 245 |
-
}
|
| 246 |
-
|
| 247 |
-
dataset = Dataset.from_dict(dataset_dict)
|
| 248 |
-
|
| 249 |
-
# Run RAGAS evaluation
|
| 250 |
-
# Using only metrics that don't require ground truth (reference answers)
|
| 251 |
-
result = evaluate(
|
| 252 |
-
dataset,
|
| 253 |
-
metrics=[
|
| 254 |
-
faithfulness,
|
| 255 |
-
answer_relevancy,
|
| 256 |
-
],
|
| 257 |
-
llm=ChatOpenAI(model="gpt-4o", openai_api_key=openai_api_key),
|
| 258 |
-
embeddings=OpenAIEmbeddings(openai_api_key=openai_api_key),
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
# Convert to DataFrame for better display
|
| 262 |
-
df = result.to_pandas()
|
| 263 |
-
|
| 264 |
-
# Calculate average scores from the result directly
|
| 265 |
-
metrics_summary = "## 📊 RAGAS Evaluation Results\n\n"
|
| 266 |
-
metrics_summary += "### Average Scores:\n"
|
| 267 |
-
|
| 268 |
-
# Get metric scores safely
|
| 269 |
-
metric_cols = ['faithfulness', 'answer_relevancy']
|
| 270 |
-
metric_scores = {}
|
| 271 |
-
|
| 272 |
-
for col in metric_cols:
|
| 273 |
-
if col in df.columns:
|
| 274 |
-
# Convert to numeric, handling any non-numeric values
|
| 275 |
-
numeric_values = pd.to_numeric(df[col], errors='coerce')
|
| 276 |
-
avg_score = numeric_values.mean()
|
| 277 |
-
if not pd.isna(avg_score):
|
| 278 |
-
metric_scores[col] = avg_score
|
| 279 |
-
metrics_summary += f"- **{col.replace('_', ' ').title()}**: {avg_score:.4f}\n"
|
| 280 |
-
|
| 281 |
-
metrics_summary += "\n### Metric Explanations:\n"
|
| 282 |
-
metrics_summary += "- **Faithfulness** (0-1): Measures if the answer is factually consistent with the retrieved context. Higher scores mean the answer doesn't hallucinate or contradict the source.\n"
|
| 283 |
-
metrics_summary += "- **Answer Relevancy** (0-1): Measures how relevant the answer is to the question asked. Higher scores mean better alignment with the user's query.\n"
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
metrics_summary += "\n### Interpretation Guide:\n"
|
| 287 |
-
metrics_summary += "- **0.9 - 1.0**: Excellent performance\n"
|
| 288 |
-
metrics_summary += "- **0.7 - 0.9**: Good performance\n"
|
| 289 |
-
metrics_summary += "- **0.5 - 0.7**: Moderate performance (needs improvement)\n"
|
| 290 |
-
metrics_summary += "- **< 0.5**: Poor performance (requires significant optimization)\n"
|
| 291 |
-
|
| 292 |
-
metrics_summary += f"\n### Total Questions Evaluated: {len(evaluation_data)}\n"
|
| 293 |
-
|
| 294 |
-
# Add document info
|
| 295 |
-
if current_documents:
|
| 296 |
-
metrics_summary += f"\n### Documents in Index: {len(current_documents)}\n"
|
| 297 |
-
|
| 298 |
-
return metrics_summary
|
| 299 |
-
|
| 300 |
-
except Exception as e:
|
| 301 |
-
return f"❌ Error during evaluation: {str(e)}"
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
def export_evaluation_data():
|
| 305 |
-
"""Export evaluation data as JSON"""
|
| 306 |
-
global evaluation_data, current_documents
|
| 307 |
-
|
| 308 |
-
if not evaluation_data:
|
| 309 |
-
return None
|
| 310 |
-
|
| 311 |
-
try:
|
| 312 |
-
# Create a temporary file with metadata
|
| 313 |
-
output_data = {
|
| 314 |
-
"documents": current_documents,
|
| 315 |
-
"evaluation_data": evaluation_data,
|
| 316 |
-
"total_questions": len(evaluation_data)
|
| 317 |
-
}
|
| 318 |
-
|
| 319 |
-
output_path = "ragas_evaluation_data.json"
|
| 320 |
-
with open(output_path, 'w') as f:
|
| 321 |
-
json.dump(output_data, f, indent=2)
|
| 322 |
-
return output_path
|
| 323 |
-
except Exception as e:
|
| 324 |
-
print(f"Error exporting data: {str(e)}")
|
| 325 |
-
return None
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
def clear_chat():
|
| 329 |
-
"""Clear the chat history and evaluation data"""
|
| 330 |
-
global evaluation_data
|
| 331 |
-
evaluation_data = [] # Reset evaluation data when clearing chat
|
| 332 |
-
return [], "" # Return empty chatbot and empty eval_summary
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
# ==============================================================================
|
| 337 |
-
# GRADIO INTERFACE
|
| 338 |
-
# ==============================================================================
|
| 339 |
-
|
| 340 |
-
with gr.Blocks(title="RAG with RAGAS Evaluation", theme=gr.themes.Soft()) as demo:
|
| 341 |
-
|
| 342 |
-
gr.Markdown(
|
| 343 |
-
"""
|
| 344 |
-
# 📚 Multi-Document Q&A Analysis
|
| 345 |
-
### Advanced RAG System Powered by OpenAI GPT models, LangChain & RAGAS
|
| 346 |
-
|
| 347 |
-
Upload multiple PDFs, ask questions across all documents, and evaluate your RAG system's performance with industry-standard metrics.
|
| 348 |
-
"""
|
| 349 |
-
)
|
| 350 |
-
|
| 351 |
-
with gr.Row():
|
| 352 |
-
with gr.Column(scale=1):
|
| 353 |
-
gr.Markdown(
|
| 354 |
-
"""
|
| 355 |
-
### 📋 How to Use
|
| 356 |
-
1. Enter your OpenAI API key
|
| 357 |
-
2. Upload one or more PDF documents
|
| 358 |
-
3. Process the documents
|
| 359 |
-
4. Ask questions in the chat
|
| 360 |
-
5. Click "Evaluate" to see performance metrics
|
| 361 |
-
|
| 362 |
-
---
|
| 363 |
-
|
| 364 |
-
💡 **RAGAS Metrics**:
|
| 365 |
-
- Faithfulness: Factual accuracy
|
| 366 |
-
- Answer Relevancy: Question alignment
|
| 367 |
-
|
| 368 |
-
📁 **Multi-Document Support**:
|
| 369 |
-
- Upload multiple PDFs at once
|
| 370 |
-
- Search across all documents
|
| 371 |
-
- Get citations with document names
|
| 372 |
-
"""
|
| 373 |
-
)
|
| 374 |
-
|
| 375 |
-
gr.Markdown("### 🔑 API Configuration")
|
| 376 |
-
api_key_input = gr.Textbox(
|
| 377 |
-
label="OpenAI API Key",
|
| 378 |
-
type="password",
|
| 379 |
-
placeholder="sk-...",
|
| 380 |
-
info="Required for GPT models and RAGAS evaluation"
|
| 381 |
-
)
|
| 382 |
-
|
| 383 |
-
gr.Markdown("### 📤 Upload Documents")
|
| 384 |
-
pdf_input = gr.File(
|
| 385 |
-
label="Upload PDF Documents",
|
| 386 |
-
file_types=[".pdf"],
|
| 387 |
-
type="filepath",
|
| 388 |
-
file_count="multiple" # Enable multiple file upload
|
| 389 |
-
)
|
| 390 |
-
process_btn = gr.Button("📄 Process Documents", variant="primary", size="lg")
|
| 391 |
-
|
| 392 |
-
status_output = gr.Textbox(
|
| 393 |
-
label="Status",
|
| 394 |
-
lines=8, # Increased to show multiple documents
|
| 395 |
-
interactive=False,
|
| 396 |
-
placeholder="Enter API key, upload PDFs, and click 'Process Documents'..."
|
| 397 |
-
)
|
| 398 |
-
|
| 399 |
-
gr.Markdown("### 📈 Evaluation")
|
| 400 |
-
evaluate_btn = gr.Button("🔍 Evaluate RAG Performance", variant="secondary", size="lg")
|
| 401 |
-
export_btn = gr.Button("💾 Export Evaluation Data", size="sm")
|
| 402 |
-
export_file = gr.File(label="Download Evaluation Data", visible=True)
|
| 403 |
-
|
| 404 |
-
with gr.Column(scale=2):
|
| 405 |
-
gr.Markdown("### 💬 Chat with Your Documents")
|
| 406 |
-
chatbot = gr.Chatbot(
|
| 407 |
-
height=400,
|
| 408 |
-
placeholder="Upload and process documents to start...",
|
| 409 |
-
show_label=False,
|
| 410 |
-
type="messages"
|
| 411 |
-
)
|
| 412 |
-
|
| 413 |
-
msg = gr.Textbox(
|
| 414 |
-
label="Enter your question",
|
| 415 |
-
placeholder="Type your question here (searches across all uploaded documents)...",
|
| 416 |
-
lines=2
|
| 417 |
-
)
|
| 418 |
-
|
| 419 |
-
with gr.Row():
|
| 420 |
-
submit_btn = gr.Button("📤 Send", variant="primary", scale=4)
|
| 421 |
-
clear_btn = gr.Button("🗑️ Clear Chat", scale=1)
|
| 422 |
-
|
| 423 |
-
gr.Markdown("### 📊 Evaluation Results")
|
| 424 |
-
eval_summary = gr.Markdown(value="")
|
| 425 |
-
|
| 426 |
-
# Event handlers
|
| 427 |
-
process_btn.click(
|
| 428 |
-
fn=process_documents, # Changed function name
|
| 429 |
-
inputs=[pdf_input, api_key_input],
|
| 430 |
-
outputs=[status_output, chatbot, eval_summary]
|
| 431 |
-
)
|
| 432 |
-
|
| 433 |
-
submit_btn.click(
|
| 434 |
-
fn=chat_with_document,
|
| 435 |
-
inputs=[msg, chatbot],
|
| 436 |
-
outputs=[chatbot]
|
| 437 |
-
).then(
|
| 438 |
-
lambda: "",
|
| 439 |
-
outputs=[msg]
|
| 440 |
-
)
|
| 441 |
-
|
| 442 |
-
msg.submit(
|
| 443 |
-
fn=chat_with_document,
|
| 444 |
-
inputs=[msg, chatbot],
|
| 445 |
-
outputs=[chatbot]
|
| 446 |
-
).then(
|
| 447 |
-
lambda: "",
|
| 448 |
-
outputs=[msg]
|
| 449 |
-
)
|
| 450 |
-
|
| 451 |
-
clear_btn.click(
|
| 452 |
-
fn=clear_chat,
|
| 453 |
-
outputs=[chatbot, eval_summary]
|
| 454 |
-
)
|
| 455 |
-
|
| 456 |
-
evaluate_btn.click(
|
| 457 |
-
fn=evaluate_rag_performance,
|
| 458 |
-
outputs=[eval_summary]
|
| 459 |
-
)
|
| 460 |
-
|
| 461 |
-
export_btn.click(
|
| 462 |
-
fn=export_evaluation_data,
|
| 463 |
-
outputs=[export_file]
|
| 464 |
-
)
|
| 465 |
-
|
| 466 |
-
# ==============================================================================
|
| 467 |
-
# LAUNCH APPLICATION
|
| 468 |
-
# ==============================================================================
|
| 469 |
-
|
| 470 |
-
if __name__ == "__main__":
|
| 471 |
-
demo.launch(share=False, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|