cidadao.ai-backend / src /services /dados_gov_service.py
anderson-ufrj
fix(cache): add missing CacheTTL enum to resolve HuggingFace import error
b153ebd
"""
High-level service for interacting with dados.gov.br API.
This service provides business logic and data transformation
for the Brazilian Open Data Portal integration.
"""
import logging
from typing import Any, Dict, List, Optional, Tuple
from src.core.exceptions import ValidationError
from src.services.cache_service import CacheService, CacheTTL
from src.tools.dados_gov_api import DadosGovAPIClient, DadosGovAPIError
from src.tools.dados_gov_models import (
Dataset,
DatasetSearchResult,
Organization,
Resource,
ResourceSearchResult,
)
logger = logging.getLogger(__name__)
class DadosGovService:
"""
Service for accessing and analyzing data from dados.gov.br.
This service provides high-level methods for searching datasets,
analyzing data availability, and retrieving government open data.
"""
def __init__(self, api_key: Optional[str] = None):
"""
Initialize the dados.gov.br service.
Args:
api_key: Optional API key for authentication
"""
self.client = DadosGovAPIClient(api_key=api_key)
self.cache = CacheService()
async def close(self):
"""Close service connections"""
await self.client.close()
async def search_transparency_datasets(
self,
keywords: Optional[List[str]] = None,
organization: Optional[str] = None,
data_format: Optional[str] = None,
limit: int = 20,
) -> DatasetSearchResult:
"""
Search for transparency-related datasets.
Args:
keywords: Keywords to search for (e.g., ["transparência", "gastos", "contratos"])
organization: Filter by specific organization
data_format: Preferred data format (csv, json, xml)
limit: Maximum number of results
Returns:
Search results with relevant datasets
"""
# Build search query
query_parts = []
if keywords:
query_parts.extend(keywords)
else:
# Default transparency-related keywords
query_parts.extend([
"transparência",
"gastos públicos",
"contratos",
"licitações",
"servidores",
])
query = " OR ".join(query_parts)
# Check cache
cache_key = f"dados_gov:search:{query}:{organization}:{data_format}:{limit}"
cached_result = await self.cache.get(cache_key)
if cached_result:
return DatasetSearchResult(**cached_result)
try:
# Search datasets
result = await self.client.search_datasets(
query=query,
organization=organization,
format=data_format,
limit=limit,
)
# Parse response
search_result = DatasetSearchResult(
count=result.get("count", 0),
results=[Dataset(**ds) for ds in result.get("results", [])],
facets=result.get("facets", {}),
search_facets=result.get("search_facets", {}),
)
# Cache result
await self.cache.set(
cache_key,
search_result.model_dump(),
ttl=CacheTTL.MEDIUM.value,
)
return search_result
except DadosGovAPIError as e:
logger.error(f"Error searching datasets: {e}")
raise
async def get_dataset_with_resources(self, dataset_id: str) -> Dataset:
"""
Get complete dataset information including all resources.
Args:
dataset_id: Dataset identifier
Returns:
Complete dataset with resources
"""
# Check cache
cache_key = f"dados_gov:dataset:{dataset_id}"
cached_dataset = await self.cache.get(cache_key)
if cached_dataset:
return Dataset(**cached_dataset)
try:
# Get dataset details
result = await self.client.get_dataset(dataset_id)
dataset = Dataset(**result.get("result", {}))
# Cache result
await self.cache.set(
cache_key,
dataset.model_dump(),
ttl=CacheTTL.LONG.value,
)
return dataset
except DadosGovAPIError as e:
logger.error(f"Error getting dataset {dataset_id}: {e}")
raise
async def find_government_spending_data(
self,
year: Optional[int] = None,
state: Optional[str] = None,
city: Optional[str] = None,
) -> List[Dataset]:
"""
Find datasets related to government spending.
Args:
year: Filter by specific year
state: Filter by state (e.g., "SP", "RJ")
city: Filter by city name
Returns:
List of relevant datasets
"""
# Build search query
query_parts = ["gastos", "despesas", "pagamentos", "execução orçamentária"]
if year:
query_parts.append(str(year))
if state:
query_parts.append(state)
if city:
query_parts.append(city)
query = " ".join(query_parts)
# Search for datasets
result = await self.search_transparency_datasets(
keywords=[query],
data_format="csv", # Prefer CSV for analysis
limit=50,
)
# Filter results by relevance
relevant_datasets = []
for dataset in result.results:
# Check if dataset is relevant based on title and description
title_lower = dataset.title.lower()
notes_lower = (dataset.notes or "").lower()
if any(term in title_lower or term in notes_lower
for term in ["gasto", "despesa", "pagamento", "execução"]):
relevant_datasets.append(dataset)
return relevant_datasets
async def find_procurement_data(
self,
organization: Optional[str] = None,
modality: Optional[str] = None,
) -> List[Dataset]:
"""
Find datasets related to public procurement and contracts.
Args:
organization: Filter by organization
modality: Procurement modality (e.g., "pregão", "concorrência")
Returns:
List of procurement-related datasets
"""
keywords = ["licitação", "contratos", "pregão", "compras públicas"]
if modality:
keywords.append(modality)
result = await self.search_transparency_datasets(
keywords=keywords,
organization=organization,
limit=30,
)
return result.results
async def analyze_data_availability(
self,
topic: str,
) -> Dict[str, Any]:
"""
Analyze what data is available for a specific topic.
Args:
topic: Topic to analyze (e.g., "educação", "saúde", "segurança")
Returns:
Analysis of available data including formats, organizations, and coverage
"""
# Search for topic-related datasets
result = await self.search_transparency_datasets(
keywords=[topic],
limit=100,
)
# Analyze results
analysis = {
"topic": topic,
"total_datasets": result.count,
"analyzed_datasets": len(result.results),
"organizations": {},
"formats": {},
"years_covered": set(),
"geographic_coverage": {
"federal": 0,
"state": 0,
"municipal": 0,
},
"update_frequency": {
"daily": 0,
"monthly": 0,
"yearly": 0,
"unknown": 0,
},
}
# Process each dataset
for dataset in result.results:
# Count by organization
if dataset.organization:
org_name = dataset.organization.title
analysis["organizations"][org_name] = (
analysis["organizations"].get(org_name, 0) + 1
)
# Count by format
for resource in dataset.resources:
if resource.format:
fmt = resource.format.upper()
analysis["formats"][fmt] = analysis["formats"].get(fmt, 0) + 1
# Extract years from title/description
import re
text = f"{dataset.title} {dataset.notes or ''}"
years = re.findall(r'\b(19|20)\d{2}\b', text)
analysis["years_covered"].update(years)
# Detect geographic coverage
text_lower = text.lower()
if any(term in text_lower for term in ["federal", "brasil", "nacional"]):
analysis["geographic_coverage"]["federal"] += 1
elif any(term in text_lower for term in ["estado", "estadual", "uf"]):
analysis["geographic_coverage"]["state"] += 1
elif any(term in text_lower for term in ["município", "municipal", "cidade"]):
analysis["geographic_coverage"]["municipal"] += 1
# Detect update frequency
if any(term in text_lower for term in ["diário", "diariamente"]):
analysis["update_frequency"]["daily"] += 1
elif any(term in text_lower for term in ["mensal", "mensalmente"]):
analysis["update_frequency"]["monthly"] += 1
elif any(term in text_lower for term in ["anual", "anualmente"]):
analysis["update_frequency"]["yearly"] += 1
else:
analysis["update_frequency"]["unknown"] += 1
# Convert years set to sorted list
analysis["years_covered"] = sorted(list(analysis["years_covered"]))
# Sort organizations by dataset count
analysis["organizations"] = dict(
sorted(
analysis["organizations"].items(),
key=lambda x: x[1],
reverse=True,
)[:10] # Top 10 organizations
)
return analysis
async def get_resource_download_url(self, resource_id: str) -> str:
"""
Get the download URL for a specific resource.
Args:
resource_id: Resource identifier
Returns:
Direct download URL
"""
try:
result = await self.client.get_resource(resource_id)
resource = Resource(**result.get("result", {}))
return resource.url
except DadosGovAPIError as e:
logger.error(f"Error getting resource {resource_id}: {e}")
raise
async def list_government_organizations(self) -> List[Organization]:
"""
List all government organizations that publish open data.
Returns:
List of organizations sorted by dataset count
"""
# Check cache
cache_key = "dados_gov:organizations"
cached_orgs = await self.cache.get(cache_key)
if cached_orgs:
return [Organization(**org) for org in cached_orgs]
try:
# Get organizations
result = await self.client.list_organizations()
organizations = [
Organization(**org)
for org in result.get("result", [])
]
# Sort by package count
organizations.sort(
key=lambda x: x.package_count or 0,
reverse=True,
)
# Cache result
await self.cache.set(
cache_key,
[org.model_dump() for org in organizations],
ttl=CacheTTL.LONG.value,
)
return organizations
except DadosGovAPIError as e:
logger.error(f"Error listing organizations: {e}")
raise