""" High-level service for interacting with dados.gov.br API. This service provides business logic and data transformation for the Brazilian Open Data Portal integration. """ import logging from typing import Any, Dict, List, Optional, Tuple from src.core.exceptions import ValidationError from src.services.cache_service import CacheService, CacheTTL from src.tools.dados_gov_api import DadosGovAPIClient, DadosGovAPIError from src.tools.dados_gov_models import ( Dataset, DatasetSearchResult, Organization, Resource, ResourceSearchResult, ) logger = logging.getLogger(__name__) class DadosGovService: """ Service for accessing and analyzing data from dados.gov.br. This service provides high-level methods for searching datasets, analyzing data availability, and retrieving government open data. """ def __init__(self, api_key: Optional[str] = None): """ Initialize the dados.gov.br service. Args: api_key: Optional API key for authentication """ self.client = DadosGovAPIClient(api_key=api_key) self.cache = CacheService() async def close(self): """Close service connections""" await self.client.close() async def search_transparency_datasets( self, keywords: Optional[List[str]] = None, organization: Optional[str] = None, data_format: Optional[str] = None, limit: int = 20, ) -> DatasetSearchResult: """ Search for transparency-related datasets. Args: keywords: Keywords to search for (e.g., ["transparência", "gastos", "contratos"]) organization: Filter by specific organization data_format: Preferred data format (csv, json, xml) limit: Maximum number of results Returns: Search results with relevant datasets """ # Build search query query_parts = [] if keywords: query_parts.extend(keywords) else: # Default transparency-related keywords query_parts.extend([ "transparência", "gastos públicos", "contratos", "licitações", "servidores", ]) query = " OR ".join(query_parts) # Check cache cache_key = f"dados_gov:search:{query}:{organization}:{data_format}:{limit}" cached_result = await self.cache.get(cache_key) if cached_result: return DatasetSearchResult(**cached_result) try: # Search datasets result = await self.client.search_datasets( query=query, organization=organization, format=data_format, limit=limit, ) # Parse response search_result = DatasetSearchResult( count=result.get("count", 0), results=[Dataset(**ds) for ds in result.get("results", [])], facets=result.get("facets", {}), search_facets=result.get("search_facets", {}), ) # Cache result await self.cache.set( cache_key, search_result.model_dump(), ttl=CacheTTL.MEDIUM.value, ) return search_result except DadosGovAPIError as e: logger.error(f"Error searching datasets: {e}") raise async def get_dataset_with_resources(self, dataset_id: str) -> Dataset: """ Get complete dataset information including all resources. Args: dataset_id: Dataset identifier Returns: Complete dataset with resources """ # Check cache cache_key = f"dados_gov:dataset:{dataset_id}" cached_dataset = await self.cache.get(cache_key) if cached_dataset: return Dataset(**cached_dataset) try: # Get dataset details result = await self.client.get_dataset(dataset_id) dataset = Dataset(**result.get("result", {})) # Cache result await self.cache.set( cache_key, dataset.model_dump(), ttl=CacheTTL.LONG.value, ) return dataset except DadosGovAPIError as e: logger.error(f"Error getting dataset {dataset_id}: {e}") raise async def find_government_spending_data( self, year: Optional[int] = None, state: Optional[str] = None, city: Optional[str] = None, ) -> List[Dataset]: """ Find datasets related to government spending. Args: year: Filter by specific year state: Filter by state (e.g., "SP", "RJ") city: Filter by city name Returns: List of relevant datasets """ # Build search query query_parts = ["gastos", "despesas", "pagamentos", "execução orçamentária"] if year: query_parts.append(str(year)) if state: query_parts.append(state) if city: query_parts.append(city) query = " ".join(query_parts) # Search for datasets result = await self.search_transparency_datasets( keywords=[query], data_format="csv", # Prefer CSV for analysis limit=50, ) # Filter results by relevance relevant_datasets = [] for dataset in result.results: # Check if dataset is relevant based on title and description title_lower = dataset.title.lower() notes_lower = (dataset.notes or "").lower() if any(term in title_lower or term in notes_lower for term in ["gasto", "despesa", "pagamento", "execução"]): relevant_datasets.append(dataset) return relevant_datasets async def find_procurement_data( self, organization: Optional[str] = None, modality: Optional[str] = None, ) -> List[Dataset]: """ Find datasets related to public procurement and contracts. Args: organization: Filter by organization modality: Procurement modality (e.g., "pregão", "concorrência") Returns: List of procurement-related datasets """ keywords = ["licitação", "contratos", "pregão", "compras públicas"] if modality: keywords.append(modality) result = await self.search_transparency_datasets( keywords=keywords, organization=organization, limit=30, ) return result.results async def analyze_data_availability( self, topic: str, ) -> Dict[str, Any]: """ Analyze what data is available for a specific topic. Args: topic: Topic to analyze (e.g., "educação", "saúde", "segurança") Returns: Analysis of available data including formats, organizations, and coverage """ # Search for topic-related datasets result = await self.search_transparency_datasets( keywords=[topic], limit=100, ) # Analyze results analysis = { "topic": topic, "total_datasets": result.count, "analyzed_datasets": len(result.results), "organizations": {}, "formats": {}, "years_covered": set(), "geographic_coverage": { "federal": 0, "state": 0, "municipal": 0, }, "update_frequency": { "daily": 0, "monthly": 0, "yearly": 0, "unknown": 0, }, } # Process each dataset for dataset in result.results: # Count by organization if dataset.organization: org_name = dataset.organization.title analysis["organizations"][org_name] = ( analysis["organizations"].get(org_name, 0) + 1 ) # Count by format for resource in dataset.resources: if resource.format: fmt = resource.format.upper() analysis["formats"][fmt] = analysis["formats"].get(fmt, 0) + 1 # Extract years from title/description import re text = f"{dataset.title} {dataset.notes or ''}" years = re.findall(r'\b(19|20)\d{2}\b', text) analysis["years_covered"].update(years) # Detect geographic coverage text_lower = text.lower() if any(term in text_lower for term in ["federal", "brasil", "nacional"]): analysis["geographic_coverage"]["federal"] += 1 elif any(term in text_lower for term in ["estado", "estadual", "uf"]): analysis["geographic_coverage"]["state"] += 1 elif any(term in text_lower for term in ["município", "municipal", "cidade"]): analysis["geographic_coverage"]["municipal"] += 1 # Detect update frequency if any(term in text_lower for term in ["diário", "diariamente"]): analysis["update_frequency"]["daily"] += 1 elif any(term in text_lower for term in ["mensal", "mensalmente"]): analysis["update_frequency"]["monthly"] += 1 elif any(term in text_lower for term in ["anual", "anualmente"]): analysis["update_frequency"]["yearly"] += 1 else: analysis["update_frequency"]["unknown"] += 1 # Convert years set to sorted list analysis["years_covered"] = sorted(list(analysis["years_covered"])) # Sort organizations by dataset count analysis["organizations"] = dict( sorted( analysis["organizations"].items(), key=lambda x: x[1], reverse=True, )[:10] # Top 10 organizations ) return analysis async def get_resource_download_url(self, resource_id: str) -> str: """ Get the download URL for a specific resource. Args: resource_id: Resource identifier Returns: Direct download URL """ try: result = await self.client.get_resource(resource_id) resource = Resource(**result.get("result", {})) return resource.url except DadosGovAPIError as e: logger.error(f"Error getting resource {resource_id}: {e}") raise async def list_government_organizations(self) -> List[Organization]: """ List all government organizations that publish open data. Returns: List of organizations sorted by dataset count """ # Check cache cache_key = "dados_gov:organizations" cached_orgs = await self.cache.get(cache_key) if cached_orgs: return [Organization(**org) for org in cached_orgs] try: # Get organizations result = await self.client.list_organizations() organizations = [ Organization(**org) for org in result.get("result", []) ] # Sort by package count organizations.sort( key=lambda x: x.package_count or 0, reverse=True, ) # Cache result await self.cache.set( cache_key, [org.model_dump() for org in organizations], ttl=CacheTTL.LONG.value, ) return organizations except DadosGovAPIError as e: logger.error(f"Error listing organizations: {e}") raise