Orc1 / app.py
mike23415's picture
Update app.py
32a0a89 verified
raw
history blame
14.4 kB
import os
import gc
import numpy as np
import cv2
from PIL import Image, ImageEnhance
import logging
import base64
import io
import torch
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from flask import Flask, request, jsonify
from flask_cors import CORS
import warnings
warnings.filterwarnings('ignore')
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
CORS(app)
# Global variables for TrOCR
processor = None
model = None
models_loaded = False
device = "cuda" if torch.cuda.is_available() else "cpu"
def initialize_trocr():
"""Initialize TrOCR model - works on Hugging Face without system dependencies"""
global processor, model, models_loaded
if models_loaded:
return
try:
logger.info("Loading TrOCR model...")
# Use the smaller, faster model for free tier
model_name = "microsoft/trocr-base-printed"
# Initialize processor and model
processor = TrOCRProcessor.from_pretrained(model_name)
model = VisionEncoderDecoderModel.from_pretrained(model_name)
# Move to device
model = model.to(device)
model.eval() # Set to evaluation mode
models_loaded = True
logger.info(f"TrOCR model loaded successfully on {device}")
except Exception as e:
logger.error(f"Error loading TrOCR: {str(e)}")
models_loaded = False
raise e
def preprocess_image_simple(image):
"""Simple image preprocessing for TrOCR"""
try:
# Convert to PIL Image if needed
if isinstance(image, np.ndarray):
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize if too large (TrOCR works best with reasonable sizes)
max_size = 1024
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
# Enhance image quality
# Increase contrast slightly
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.2)
# Increase sharpness slightly
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.1)
return image
except Exception as e:
logger.error(f"Preprocessing error: {e}")
return image
def extract_text_trocr(image):
"""Extract text using TrOCR"""
try:
if not models_loaded:
initialize_trocr()
# Preprocess image
processed_image = preprocess_image_simple(image)
# Prepare inputs
pixel_values = processor(processed_image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# Generate text
with torch.no_grad():
generated_ids = model.generate(
pixel_values,
max_length=512,
num_beams=4,
early_stopping=True
)
# Decode the generated text
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Clean up text
cleaned_text = generated_text.strip()
# Calculate a confidence score based on text length and quality
confidence = min(0.9, len(cleaned_text) / 100) if cleaned_text else 0.0
return {
'text': cleaned_text,
'confidence': confidence,
'word_count': len(cleaned_text.split()) if cleaned_text else 0
}
except Exception as e:
logger.error(f"TrOCR error: {e}")
return {'text': '', 'confidence': 0.0, 'word_count': 0}
def process_image_with_enhancement(image, enhancement_type="default"):
"""Process image with different enhancement levels"""
try:
# Convert to PIL if needed
if isinstance(image, np.ndarray):
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
if enhancement_type == "enhance":
# More aggressive enhancement for poor quality images
# Increase contrast more
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.5)
# Increase brightness slightly
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.1)
# Increase sharpness more
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.3)
elif enhancement_type == "binary":
# Convert to grayscale and apply threshold
gray = image.convert('L')
# Simple threshold
threshold = 128
binary = gray.point(lambda x: 255 if x > threshold else 0, mode='1')
image = binary.convert('RGB')
# Extract text using TrOCR
result = extract_text_trocr(image)
result['enhancement'] = enhancement_type
return result
except Exception as e:
logger.error(f"Enhancement processing error: {e}")
return {'text': '', 'confidence': 0.0, 'word_count': 0, 'enhancement': enhancement_type}
@app.route('/')
def home():
"""Root endpoint"""
return jsonify({
"service": "TrOCR OCR Service",
"status": "running",
"version": "1.0.0",
"engine": "TrOCR (Transformers)",
"model": "microsoft/trocr-base-printed",
"device": device,
"description": "Hugging Face compatible OCR service using TrOCR",
"endpoints": {
"health": "/health",
"ocr": "/ocr (POST)",
"batch_ocr": "/ocr/batch (POST)"
},
"supported_formats": ["PNG", "JPEG", "JPG", "BMP", "TIFF"],
"enhancement_types": ["default", "enhance", "binary"],
"features": [
"No system dependencies required",
"Transformer-based OCR",
"Works on Hugging Face Spaces",
"GPU acceleration when available",
"Memory efficient"
]
})
@app.route('/health', methods=['GET'])
def health_check():
"""Health check endpoint"""
try:
return jsonify({
"status": "healthy",
"models_loaded": models_loaded,
"device": device,
"torch_version": torch.__version__,
"service": "TrOCR OCR Service"
})
except Exception as e:
return jsonify({
"status": "error",
"error": str(e)
}), 500
@app.route('/ocr', methods=['POST'])
def ocr_endpoint():
"""Main OCR endpoint using TrOCR"""
try:
logger.info("OCR request received")
# Ensure models are loaded
if not models_loaded:
initialize_trocr()
# Check if image is provided
if 'image' not in request.files and not request.is_json:
return jsonify({"error": "No image provided"}), 400
# Get parameters
if request.is_json:
enhancement = request.json.get('enhancement', 'default')
else:
enhancement = request.form.get('enhancement', 'default')
# Validate enhancement type
valid_enhancements = ['default', 'enhance', 'binary']
if enhancement not in valid_enhancements:
return jsonify({"error": f"Invalid enhancement. Use: {', '.join(valid_enhancements)}"}), 400
# Load image
try:
if 'image' in request.files:
image_file = request.files['image']
if image_file.filename == '':
return jsonify({"error": "No file selected"}), 400
image_data = image_file.read()
image = Image.open(io.BytesIO(image_data))
else:
image_data = request.json['image_base64']
if image_data.startswith('data:image'):
image_data = image_data.split(',')[1]
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes))
except Exception as e:
return jsonify({"error": f"Invalid image: {str(e)}"}), 400
# Process image
logger.info("Starting TrOCR processing")
result = process_image_with_enhancement(image, enhancement)
# Clean up
del image
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logger.info(f"OCR completed. Text length: {len(result['text'])}, Confidence: {result['confidence']:.2f}")
response = {
"success": True,
"text": result['text'],
"confidence": round(result['confidence'], 3),
"character_count": len(result['text']),
"word_count": result.get('word_count', 0),
"enhancement_used": result.get('enhancement', 'unknown'),
"engine": "TrOCR",
"model": "microsoft/trocr-base-printed",
"device": device
}
return jsonify(response)
except Exception as e:
logger.error(f"OCR processing error: {str(e)}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return jsonify({"error": str(e), "success": False}), 500
@app.route('/ocr/batch', methods=['POST'])
def batch_ocr_endpoint():
"""Batch OCR endpoint"""
try:
logger.info("Batch OCR request received")
if not models_loaded:
initialize_trocr()
if 'images' not in request.files:
return jsonify({"error": "No images provided"}), 400
images = request.files.getlist('images')
if not images:
return jsonify({"error": "No images found"}), 400
# Limit batch size for free tier
max_batch_size = 3
if len(images) > max_batch_size:
return jsonify({"error": f"Maximum {max_batch_size} images allowed"}), 400
enhancement = request.form.get('enhancement', 'default')
results = []
for i, image_file in enumerate(images):
try:
logger.info(f"Processing image {i+1}/{len(images)}")
if image_file.filename == '':
results.append({
"index": i,
"filename": "empty_file",
"error": "Empty filename",
"success": False
})
continue
image_data = image_file.read()
image = Image.open(io.BytesIO(image_data))
# Process with TrOCR
result = process_image_with_enhancement(image, enhancement)
results.append({
"index": i,
"filename": image_file.filename,
"text": result['text'],
"confidence": round(result['confidence'], 3),
"character_count": len(result['text']),
"word_count": result.get('word_count', 0),
"success": True
})
# Clean up
del image
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
logger.error(f"Error processing image {i}: {str(e)}")
results.append({
"index": i,
"filename": image_file.filename if hasattr(image_file, 'filename') else f"image_{i}",
"error": str(e),
"success": False
})
successful_count = sum(1 for r in results if r["success"])
return jsonify({
"success": True,
"results": results,
"total_processed": len(results),
"successful": successful_count,
"failed": len(results) - successful_count,
"enhancement_used": enhancement,
"engine": "TrOCR",
"device": device
})
except Exception as e:
logger.error(f"Batch OCR error: {str(e)}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return jsonify({"error": str(e), "success": False}), 500
@app.route('/models/load', methods=['POST'])
def load_models():
"""Manually load TrOCR models"""
try:
if models_loaded:
return jsonify({"message": "TrOCR already loaded", "success": True})
initialize_trocr()
return jsonify({"message": "TrOCR loaded successfully", "success": True, "device": device})
except Exception as e:
return jsonify({"error": str(e), "success": False}), 500
@app.errorhandler(404)
def not_found(error):
return jsonify({
"error": "Endpoint not found",
"available_endpoints": {
"GET /": "Service information",
"GET /health": "Health check",
"POST /ocr": "Single image OCR",
"POST /ocr/batch": "Batch image OCR",
"POST /models/load": "Load models manually"
}
}), 404
@app.errorhandler(500)
def internal_error(error):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return jsonify({
"error": "Internal server error",
"message": "Please check server logs"
}), 500
if __name__ == '__main__':
logger.info("Starting TrOCR OCR service...")
port = int(os.environ.get('PORT', 7860)) # Hugging Face Spaces uses port 7860
app.run(host='0.0.0.0', port=port, debug=False, threaded=True)