File size: 14,395 Bytes
0c1061f c249bc2 d12a697 9b18f9e 32a0a89 c249bc2 32a0a89 c249bc2 32a0a89 d12a697 32a0a89 d12a697 32a0a89 82c08d2 32a0a89 c249bc2 32a0a89 c249bc2 32a0a89 c249bc2 32a0a89 c249bc2 9b18f9e 3acc498 32a0a89 9b18f9e 32a0a89 9b18f9e 32a0a89 c249bc2 32a0a89 c249bc2 32a0a89 3acc498 32a0a89 3acc498 32a0a89 3acc498 32a0a89 3acc498 c249bc2 82c08d2 32a0a89 3acc498 d12a697 32a0a89 c249bc2 32a0a89 3acc498 32a0a89 3acc498 32a0a89 c249bc2 32a0a89 d12a697 32a0a89 d12a697 3acc498 32a0a89 d12a697 3acc498 d12a697 32a0a89 c249bc2 32a0a89 c249bc2 d12a697 3acc498 32a0a89 3acc498 32a0a89 3acc498 d12a697 32a0a89 d12a697 f8d1d4f 32a0a89 d12a697 32a0a89 d12a697 3acc498 d12a697 3acc498 d12a697 3acc498 84d6f52 32a0a89 3acc498 32a0a89 d12a697 3acc498 c249bc2 f8d1d4f c249bc2 d12a697 c249bc2 3acc498 c249bc2 32a0a89 d12a697 c249bc2 32a0a89 c249bc2 d12a697 3acc498 f8d1d4f d12a697 3acc498 32a0a89 d12a697 32a0a89 c249bc2 d12a697 241fa27 32a0a89 241fa27 f8d1d4f 32a0a89 241fa27 32a0a89 241fa27 3acc498 241fa27 32a0a89 c249bc2 32a0a89 c249bc2 3acc498 241fa27 f8d1d4f 241fa27 32a0a89 241fa27 c249bc2 f8d1d4f c249bc2 32a0a89 241fa27 84d6f52 3acc498 84d6f52 c249bc2 3acc498 c249bc2 32a0a89 c249bc2 241fa27 f8d1d4f 241fa27 3acc498 32a0a89 241fa27 32a0a89 c249bc2 241fa27 32a0a89 241fa27 32a0a89 3acc498 32a0a89 241fa27 32a0a89 241fa27 3acc498 32a0a89 241fa27 32a0a89 241fa27 32a0a89 c249bc2 241fa27 3acc498 241fa27 d12a697 32a0a89 3acc498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
import gc
import numpy as np
import cv2
from PIL import Image, ImageEnhance
import logging
import base64
import io
import torch
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from flask import Flask, request, jsonify
from flask_cors import CORS
import warnings
warnings.filterwarnings('ignore')
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
CORS(app)
# Global variables for TrOCR
processor = None
model = None
models_loaded = False
device = "cuda" if torch.cuda.is_available() else "cpu"
def initialize_trocr():
"""Initialize TrOCR model - works on Hugging Face without system dependencies"""
global processor, model, models_loaded
if models_loaded:
return
try:
logger.info("Loading TrOCR model...")
# Use the smaller, faster model for free tier
model_name = "microsoft/trocr-base-printed"
# Initialize processor and model
processor = TrOCRProcessor.from_pretrained(model_name)
model = VisionEncoderDecoderModel.from_pretrained(model_name)
# Move to device
model = model.to(device)
model.eval() # Set to evaluation mode
models_loaded = True
logger.info(f"TrOCR model loaded successfully on {device}")
except Exception as e:
logger.error(f"Error loading TrOCR: {str(e)}")
models_loaded = False
raise e
def preprocess_image_simple(image):
"""Simple image preprocessing for TrOCR"""
try:
# Convert to PIL Image if needed
if isinstance(image, np.ndarray):
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize if too large (TrOCR works best with reasonable sizes)
max_size = 1024
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
# Enhance image quality
# Increase contrast slightly
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.2)
# Increase sharpness slightly
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.1)
return image
except Exception as e:
logger.error(f"Preprocessing error: {e}")
return image
def extract_text_trocr(image):
"""Extract text using TrOCR"""
try:
if not models_loaded:
initialize_trocr()
# Preprocess image
processed_image = preprocess_image_simple(image)
# Prepare inputs
pixel_values = processor(processed_image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# Generate text
with torch.no_grad():
generated_ids = model.generate(
pixel_values,
max_length=512,
num_beams=4,
early_stopping=True
)
# Decode the generated text
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Clean up text
cleaned_text = generated_text.strip()
# Calculate a confidence score based on text length and quality
confidence = min(0.9, len(cleaned_text) / 100) if cleaned_text else 0.0
return {
'text': cleaned_text,
'confidence': confidence,
'word_count': len(cleaned_text.split()) if cleaned_text else 0
}
except Exception as e:
logger.error(f"TrOCR error: {e}")
return {'text': '', 'confidence': 0.0, 'word_count': 0}
def process_image_with_enhancement(image, enhancement_type="default"):
"""Process image with different enhancement levels"""
try:
# Convert to PIL if needed
if isinstance(image, np.ndarray):
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
if enhancement_type == "enhance":
# More aggressive enhancement for poor quality images
# Increase contrast more
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.5)
# Increase brightness slightly
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.1)
# Increase sharpness more
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.3)
elif enhancement_type == "binary":
# Convert to grayscale and apply threshold
gray = image.convert('L')
# Simple threshold
threshold = 128
binary = gray.point(lambda x: 255 if x > threshold else 0, mode='1')
image = binary.convert('RGB')
# Extract text using TrOCR
result = extract_text_trocr(image)
result['enhancement'] = enhancement_type
return result
except Exception as e:
logger.error(f"Enhancement processing error: {e}")
return {'text': '', 'confidence': 0.0, 'word_count': 0, 'enhancement': enhancement_type}
@app.route('/')
def home():
"""Root endpoint"""
return jsonify({
"service": "TrOCR OCR Service",
"status": "running",
"version": "1.0.0",
"engine": "TrOCR (Transformers)",
"model": "microsoft/trocr-base-printed",
"device": device,
"description": "Hugging Face compatible OCR service using TrOCR",
"endpoints": {
"health": "/health",
"ocr": "/ocr (POST)",
"batch_ocr": "/ocr/batch (POST)"
},
"supported_formats": ["PNG", "JPEG", "JPG", "BMP", "TIFF"],
"enhancement_types": ["default", "enhance", "binary"],
"features": [
"No system dependencies required",
"Transformer-based OCR",
"Works on Hugging Face Spaces",
"GPU acceleration when available",
"Memory efficient"
]
})
@app.route('/health', methods=['GET'])
def health_check():
"""Health check endpoint"""
try:
return jsonify({
"status": "healthy",
"models_loaded": models_loaded,
"device": device,
"torch_version": torch.__version__,
"service": "TrOCR OCR Service"
})
except Exception as e:
return jsonify({
"status": "error",
"error": str(e)
}), 500
@app.route('/ocr', methods=['POST'])
def ocr_endpoint():
"""Main OCR endpoint using TrOCR"""
try:
logger.info("OCR request received")
# Ensure models are loaded
if not models_loaded:
initialize_trocr()
# Check if image is provided
if 'image' not in request.files and not request.is_json:
return jsonify({"error": "No image provided"}), 400
# Get parameters
if request.is_json:
enhancement = request.json.get('enhancement', 'default')
else:
enhancement = request.form.get('enhancement', 'default')
# Validate enhancement type
valid_enhancements = ['default', 'enhance', 'binary']
if enhancement not in valid_enhancements:
return jsonify({"error": f"Invalid enhancement. Use: {', '.join(valid_enhancements)}"}), 400
# Load image
try:
if 'image' in request.files:
image_file = request.files['image']
if image_file.filename == '':
return jsonify({"error": "No file selected"}), 400
image_data = image_file.read()
image = Image.open(io.BytesIO(image_data))
else:
image_data = request.json['image_base64']
if image_data.startswith('data:image'):
image_data = image_data.split(',')[1]
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes))
except Exception as e:
return jsonify({"error": f"Invalid image: {str(e)}"}), 400
# Process image
logger.info("Starting TrOCR processing")
result = process_image_with_enhancement(image, enhancement)
# Clean up
del image
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logger.info(f"OCR completed. Text length: {len(result['text'])}, Confidence: {result['confidence']:.2f}")
response = {
"success": True,
"text": result['text'],
"confidence": round(result['confidence'], 3),
"character_count": len(result['text']),
"word_count": result.get('word_count', 0),
"enhancement_used": result.get('enhancement', 'unknown'),
"engine": "TrOCR",
"model": "microsoft/trocr-base-printed",
"device": device
}
return jsonify(response)
except Exception as e:
logger.error(f"OCR processing error: {str(e)}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return jsonify({"error": str(e), "success": False}), 500
@app.route('/ocr/batch', methods=['POST'])
def batch_ocr_endpoint():
"""Batch OCR endpoint"""
try:
logger.info("Batch OCR request received")
if not models_loaded:
initialize_trocr()
if 'images' not in request.files:
return jsonify({"error": "No images provided"}), 400
images = request.files.getlist('images')
if not images:
return jsonify({"error": "No images found"}), 400
# Limit batch size for free tier
max_batch_size = 3
if len(images) > max_batch_size:
return jsonify({"error": f"Maximum {max_batch_size} images allowed"}), 400
enhancement = request.form.get('enhancement', 'default')
results = []
for i, image_file in enumerate(images):
try:
logger.info(f"Processing image {i+1}/{len(images)}")
if image_file.filename == '':
results.append({
"index": i,
"filename": "empty_file",
"error": "Empty filename",
"success": False
})
continue
image_data = image_file.read()
image = Image.open(io.BytesIO(image_data))
# Process with TrOCR
result = process_image_with_enhancement(image, enhancement)
results.append({
"index": i,
"filename": image_file.filename,
"text": result['text'],
"confidence": round(result['confidence'], 3),
"character_count": len(result['text']),
"word_count": result.get('word_count', 0),
"success": True
})
# Clean up
del image
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
logger.error(f"Error processing image {i}: {str(e)}")
results.append({
"index": i,
"filename": image_file.filename if hasattr(image_file, 'filename') else f"image_{i}",
"error": str(e),
"success": False
})
successful_count = sum(1 for r in results if r["success"])
return jsonify({
"success": True,
"results": results,
"total_processed": len(results),
"successful": successful_count,
"failed": len(results) - successful_count,
"enhancement_used": enhancement,
"engine": "TrOCR",
"device": device
})
except Exception as e:
logger.error(f"Batch OCR error: {str(e)}")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return jsonify({"error": str(e), "success": False}), 500
@app.route('/models/load', methods=['POST'])
def load_models():
"""Manually load TrOCR models"""
try:
if models_loaded:
return jsonify({"message": "TrOCR already loaded", "success": True})
initialize_trocr()
return jsonify({"message": "TrOCR loaded successfully", "success": True, "device": device})
except Exception as e:
return jsonify({"error": str(e), "success": False}), 500
@app.errorhandler(404)
def not_found(error):
return jsonify({
"error": "Endpoint not found",
"available_endpoints": {
"GET /": "Service information",
"GET /health": "Health check",
"POST /ocr": "Single image OCR",
"POST /ocr/batch": "Batch image OCR",
"POST /models/load": "Load models manually"
}
}), 404
@app.errorhandler(500)
def internal_error(error):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return jsonify({
"error": "Internal server error",
"message": "Please check server logs"
}), 500
if __name__ == '__main__':
logger.info("Starting TrOCR OCR service...")
port = int(os.environ.get('PORT', 7860)) # Hugging Face Spaces uses port 7860
app.run(host='0.0.0.0', port=port, debug=False, threaded=True) |