Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from flask_cors import CORS
|
| 3 |
+
import base64
|
| 4 |
+
import io
|
| 5 |
+
import os
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import logging
|
| 8 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 9 |
+
import torch
|
| 10 |
+
import easyocr
|
| 11 |
+
import numpy as np
|
| 12 |
+
import threading
|
| 13 |
+
|
| 14 |
+
# Set up logging
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
app = Flask(__name__)
|
| 19 |
+
CORS(app)
|
| 20 |
+
|
| 21 |
+
# Global variables for models
|
| 22 |
+
trocr_processor = None
|
| 23 |
+
trocr_model = None
|
| 24 |
+
easyocr_reader = None
|
| 25 |
+
models_loaded = False
|
| 26 |
+
loading_lock = threading.Lock()
|
| 27 |
+
|
| 28 |
+
def initialize_models():
|
| 29 |
+
"""Initialize OCR models"""
|
| 30 |
+
global trocr_processor, trocr_model, easyocr_reader, models_loaded
|
| 31 |
+
|
| 32 |
+
if models_loaded:
|
| 33 |
+
return
|
| 34 |
+
|
| 35 |
+
with loading_lock:
|
| 36 |
+
if models_loaded: # Double-check after acquiring lock
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
logger.info("Starting model initialization...")
|
| 41 |
+
|
| 42 |
+
# Set cache directory
|
| 43 |
+
cache_dir = os.environ.get('TRANSFORMERS_CACHE', '/app/.cache/huggingface')
|
| 44 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 45 |
+
|
| 46 |
+
# Initialize TrOCR for handwritten text (Microsoft's model)
|
| 47 |
+
logger.info("Loading TrOCR model for handwritten text...")
|
| 48 |
+
trocr_processor = TrOCRProcessor.from_pretrained(
|
| 49 |
+
"microsoft/trocr-base-handwritten",
|
| 50 |
+
cache_dir=cache_dir
|
| 51 |
+
)
|
| 52 |
+
trocr_model = VisionEncoderDecoderModel.from_pretrained(
|
| 53 |
+
"microsoft/trocr-base-handwritten",
|
| 54 |
+
cache_dir=cache_dir
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Initialize EasyOCR for printed text
|
| 58 |
+
logger.info("Loading EasyOCR for printed text...")
|
| 59 |
+
easyocr_reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
|
| 60 |
+
|
| 61 |
+
models_loaded = True
|
| 62 |
+
logger.info("All models loaded successfully!")
|
| 63 |
+
|
| 64 |
+
except Exception as e:
|
| 65 |
+
logger.error(f"Error loading models: {str(e)}")
|
| 66 |
+
models_loaded = False
|
| 67 |
+
raise e
|
| 68 |
+
|
| 69 |
+
def ensure_models_loaded():
|
| 70 |
+
"""Ensure models are loaded before processing"""
|
| 71 |
+
if not models_loaded:
|
| 72 |
+
initialize_models()
|
| 73 |
+
|
| 74 |
+
def preprocess_image(image):
|
| 75 |
+
"""Preprocess image for better OCR results"""
|
| 76 |
+
# Convert to RGB if needed
|
| 77 |
+
if image.mode != 'RGB':
|
| 78 |
+
image = image.convert('RGB')
|
| 79 |
+
|
| 80 |
+
# Resize if image is too large
|
| 81 |
+
max_size = 1024
|
| 82 |
+
if max(image.size) > max_size:
|
| 83 |
+
ratio = max_size / max(image.size)
|
| 84 |
+
new_size = tuple(int(dim * ratio) for dim in image.size)
|
| 85 |
+
image = image.resize(new_size, Image.Resampling.LANCZOS)
|
| 86 |
+
|
| 87 |
+
return image
|
| 88 |
+
|
| 89 |
+
def extract_text_trocr(image):
|
| 90 |
+
"""Extract text using TrOCR (good for handwritten text)"""
|
| 91 |
+
try:
|
| 92 |
+
ensure_models_loaded()
|
| 93 |
+
if not trocr_processor or not trocr_model:
|
| 94 |
+
return ""
|
| 95 |
+
|
| 96 |
+
# Preprocess image
|
| 97 |
+
image = preprocess_image(image)
|
| 98 |
+
|
| 99 |
+
# Generate pixel values
|
| 100 |
+
pixel_values = trocr_processor(image, return_tensors="pt").pixel_values
|
| 101 |
+
|
| 102 |
+
# Generate text
|
| 103 |
+
generated_ids = trocr_model.generate(pixel_values)
|
| 104 |
+
generated_text = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 105 |
+
|
| 106 |
+
return generated_text.strip()
|
| 107 |
+
except Exception as e:
|
| 108 |
+
logger.error(f"TrOCR error: {str(e)}")
|
| 109 |
+
return ""
|
| 110 |
+
|
| 111 |
+
def extract_text_easyocr(image):
|
| 112 |
+
"""Extract text using EasyOCR (good for printed text)"""
|
| 113 |
+
try:
|
| 114 |
+
ensure_models_loaded()
|
| 115 |
+
if not easyocr_reader:
|
| 116 |
+
return ""
|
| 117 |
+
|
| 118 |
+
# Convert PIL image to numpy array
|
| 119 |
+
image_np = np.array(preprocess_image(image))
|
| 120 |
+
|
| 121 |
+
# Extract text
|
| 122 |
+
results = easyocr_reader.readtext(image_np, detail=0)
|
| 123 |
+
|
| 124 |
+
# Join all detected text
|
| 125 |
+
extracted_text = ' '.join(results)
|
| 126 |
+
return extracted_text.strip()
|
| 127 |
+
except Exception as e:
|
| 128 |
+
logger.error(f"EasyOCR error: {str(e)}")
|
| 129 |
+
return ""
|
| 130 |
+
|
| 131 |
+
def process_image_ocr(image, ocr_type="auto"):
|
| 132 |
+
"""Process image with specified OCR method"""
|
| 133 |
+
results = {}
|
| 134 |
+
|
| 135 |
+
if ocr_type in ["auto", "handwritten", "trocr"]:
|
| 136 |
+
trocr_text = extract_text_trocr(image)
|
| 137 |
+
results["trocr"] = trocr_text
|
| 138 |
+
|
| 139 |
+
if ocr_type in ["auto", "printed", "easyocr"]:
|
| 140 |
+
easyocr_text = extract_text_easyocr(image)
|
| 141 |
+
results["easyocr"] = easyocr_text
|
| 142 |
+
|
| 143 |
+
# For auto mode, return the longer result or combine both
|
| 144 |
+
if ocr_type == "auto":
|
| 145 |
+
trocr_len = len(results.get("trocr", ""))
|
| 146 |
+
easyocr_len = len(results.get("easyocr", ""))
|
| 147 |
+
|
| 148 |
+
if trocr_len > 0 and easyocr_len > 0:
|
| 149 |
+
# If both have results, combine them intelligently
|
| 150 |
+
if abs(trocr_len - easyocr_len) / max(trocr_len, easyocr_len) < 0.3:
|
| 151 |
+
# If lengths are similar, prefer EasyOCR for printed text
|
| 152 |
+
results["final"] = results["easyocr"]
|
| 153 |
+
else:
|
| 154 |
+
# Use the longer result
|
| 155 |
+
results["final"] = results["trocr"] if trocr_len > easyocr_len else results["easyocr"]
|
| 156 |
+
elif trocr_len > 0:
|
| 157 |
+
results["final"] = results["trocr"]
|
| 158 |
+
elif easyocr_len > 0:
|
| 159 |
+
results["final"] = results["easyocr"]
|
| 160 |
+
else:
|
| 161 |
+
results["final"] = ""
|
| 162 |
+
else:
|
| 163 |
+
# Return the specific model result
|
| 164 |
+
results["final"] = results.get(ocr_type.replace("handwritten", "trocr").replace("printed", "easyocr"), "")
|
| 165 |
+
|
| 166 |
+
return results
|
| 167 |
+
|
| 168 |
+
@app.route('/')
|
| 169 |
+
def home():
|
| 170 |
+
"""Root endpoint"""
|
| 171 |
+
return jsonify({
|
| 172 |
+
"service": "OCR Backend",
|
| 173 |
+
"status": "running",
|
| 174 |
+
"version": "1.0.0",
|
| 175 |
+
"models_loaded": models_loaded,
|
| 176 |
+
"endpoints": {
|
| 177 |
+
"health": "/health",
|
| 178 |
+
"ocr": "/ocr (POST)",
|
| 179 |
+
"batch_ocr": "/ocr/batch (POST)",
|
| 180 |
+
"models_info": "/models/info (GET)"
|
| 181 |
+
},
|
| 182 |
+
"supported_formats": ["PNG", "JPEG", "JPG", "BMP", "TIFF"],
|
| 183 |
+
"ocr_types": ["auto", "handwritten", "printed"]
|
| 184 |
+
})
|
| 185 |
+
|
| 186 |
+
@app.route('/health', methods=['GET'])
|
| 187 |
+
def health_check():
|
| 188 |
+
"""Health check endpoint"""
|
| 189 |
+
return jsonify({
|
| 190 |
+
"status": "healthy",
|
| 191 |
+
"models_loaded": models_loaded,
|
| 192 |
+
"service": "OCR Backend"
|
| 193 |
+
})
|
| 194 |
+
|
| 195 |
+
@app.route('/ocr', methods=['POST'])
|
| 196 |
+
def ocr_endpoint():
|
| 197 |
+
"""Main OCR endpoint"""
|
| 198 |
+
try:
|
| 199 |
+
# Ensure models are loaded
|
| 200 |
+
ensure_models_loaded()
|
| 201 |
+
|
| 202 |
+
# Check if image is provided
|
| 203 |
+
if 'image' not in request.files and not request.is_json:
|
| 204 |
+
return jsonify({"error": "No image provided. Use 'image' field for file upload or JSON with 'image_base64'"}), 400
|
| 205 |
+
|
| 206 |
+
if request.is_json and 'image_base64' not in request.json:
|
| 207 |
+
return jsonify({"error": "No 'image_base64' field found in JSON"}), 400
|
| 208 |
+
|
| 209 |
+
# Get OCR type preference
|
| 210 |
+
if request.is_json:
|
| 211 |
+
ocr_type = request.json.get('type', 'auto')
|
| 212 |
+
else:
|
| 213 |
+
ocr_type = request.form.get('type', 'auto')
|
| 214 |
+
|
| 215 |
+
# Validate ocr_type
|
| 216 |
+
if ocr_type not in ['auto', 'handwritten', 'printed', 'trocr', 'easyocr']:
|
| 217 |
+
return jsonify({"error": "Invalid OCR type. Use: auto, handwritten, printed"}), 400
|
| 218 |
+
|
| 219 |
+
# Load image
|
| 220 |
+
if 'image' in request.files:
|
| 221 |
+
# File upload
|
| 222 |
+
image_file = request.files['image']
|
| 223 |
+
if image_file.filename == '':
|
| 224 |
+
return jsonify({"error": "No file selected"}), 400
|
| 225 |
+
image = Image.open(image_file.stream)
|
| 226 |
+
else:
|
| 227 |
+
# Base64 image
|
| 228 |
+
image_data = request.json['image_base64']
|
| 229 |
+
if image_data.startswith('data:image'):
|
| 230 |
+
# Remove data URL prefix
|
| 231 |
+
image_data = image_data.split(',')[1]
|
| 232 |
+
|
| 233 |
+
try:
|
| 234 |
+
# Decode base64
|
| 235 |
+
image_bytes = base64.b64decode(image_data)
|
| 236 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 237 |
+
except Exception as e:
|
| 238 |
+
return jsonify({"error": f"Invalid base64 image data: {str(e)}"}), 400
|
| 239 |
+
|
| 240 |
+
# Process image
|
| 241 |
+
results = process_image_ocr(image, ocr_type)
|
| 242 |
+
|
| 243 |
+
response = {
|
| 244 |
+
"success": True,
|
| 245 |
+
"text": results["final"],
|
| 246 |
+
"type_used": ocr_type,
|
| 247 |
+
"character_count": len(results["final"]),
|
| 248 |
+
"details": {
|
| 249 |
+
"trocr_result": results.get("trocr", ""),
|
| 250 |
+
"easyocr_result": results.get("easyocr", "")
|
| 251 |
+
} if ocr_type == "auto" else {}
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
return jsonify(response)
|
| 255 |
+
|
| 256 |
+
except Exception as e:
|
| 257 |
+
logger.error(f"OCR processing error: {str(e)}")
|
| 258 |
+
return jsonify({"error": str(e), "success": False}), 500
|
| 259 |
+
|
| 260 |
+
@app.route('/ocr/batch', methods=['POST'])
|
| 261 |
+
def batch_ocr_endpoint():
|
| 262 |
+
"""Batch OCR endpoint for multiple images"""
|
| 263 |
+
try:
|
| 264 |
+
# Ensure models are loaded
|
| 265 |
+
ensure_models_loaded()
|
| 266 |
+
|
| 267 |
+
if 'images' not in request.files:
|
| 268 |
+
return jsonify({"error": "No images provided. Use 'images' field for multiple file upload"}), 400
|
| 269 |
+
|
| 270 |
+
images = request.files.getlist('images')
|
| 271 |
+
if not images or len(images) == 0:
|
| 272 |
+
return jsonify({"error": "No images found in request"}), 400
|
| 273 |
+
|
| 274 |
+
ocr_type = request.form.get('type', 'auto')
|
| 275 |
+
|
| 276 |
+
# Validate ocr_type
|
| 277 |
+
if ocr_type not in ['auto', 'handwritten', 'printed', 'trocr', 'easyocr']:
|
| 278 |
+
return jsonify({"error": "Invalid OCR type. Use: auto, handwritten, printed"}), 400
|
| 279 |
+
|
| 280 |
+
results = []
|
| 281 |
+
for i, image_file in enumerate(images):
|
| 282 |
+
try:
|
| 283 |
+
if image_file.filename == '':
|
| 284 |
+
results.append({
|
| 285 |
+
"index": i,
|
| 286 |
+
"filename": "empty_file",
|
| 287 |
+
"error": "Empty filename",
|
| 288 |
+
"success": False
|
| 289 |
+
})
|
| 290 |
+
continue
|
| 291 |
+
|
| 292 |
+
image = Image.open(image_file.stream)
|
| 293 |
+
ocr_results = process_image_ocr(image, ocr_type)
|
| 294 |
+
|
| 295 |
+
results.append({
|
| 296 |
+
"index": i,
|
| 297 |
+
"filename": image_file.filename,
|
| 298 |
+
"text": ocr_results["final"],
|
| 299 |
+
"character_count": len(ocr_results["final"]),
|
| 300 |
+
"success": True
|
| 301 |
+
})
|
| 302 |
+
except Exception as e:
|
| 303 |
+
results.append({
|
| 304 |
+
"index": i,
|
| 305 |
+
"filename": image_file.filename if hasattr(image_file, 'filename') else f"image_{i}",
|
| 306 |
+
"error": str(e),
|
| 307 |
+
"success": False
|
| 308 |
+
})
|
| 309 |
+
|
| 310 |
+
successful_count = sum(1 for r in results if r["success"])
|
| 311 |
+
|
| 312 |
+
return jsonify({
|
| 313 |
+
"success": True,
|
| 314 |
+
"results": results,
|
| 315 |
+
"total_processed": len(results),
|
| 316 |
+
"successful": successful_count,
|
| 317 |
+
"failed": len(results) - successful_count,
|
| 318 |
+
"type_used": ocr_type
|
| 319 |
+
})
|
| 320 |
+
|
| 321 |
+
except Exception as e:
|
| 322 |
+
logger.error(f"Batch OCR error: {str(e)}")
|
| 323 |
+
return jsonify({"error": str(e), "success": False}), 500
|
| 324 |
+
|
| 325 |
+
@app.route('/models/info', methods=['GET'])
|
| 326 |
+
def models_info():
|
| 327 |
+
"""Get information about loaded models"""
|
| 328 |
+
return jsonify({
|
| 329 |
+
"models": {
|
| 330 |
+
"trocr": {
|
| 331 |
+
"name": "microsoft/trocr-base-handwritten",
|
| 332 |
+
"description": "Handwritten text recognition using Transformer-based OCR",
|
| 333 |
+
"loaded": trocr_model is not None and trocr_processor is not None,
|
| 334 |
+
"best_for": "Handwritten text, notes, forms"
|
| 335 |
+
},
|
| 336 |
+
"easyocr": {
|
| 337 |
+
"name": "EasyOCR",
|
| 338 |
+
"description": "Printed text recognition with CRAFT + CRNN",
|
| 339 |
+
"loaded": easyocr_reader is not None,
|
| 340 |
+
"best_for": "Printed text, documents, signs, books"
|
| 341 |
+
}
|
| 342 |
+
},
|
| 343 |
+
"supported_types": ["auto", "handwritten", "printed"],
|
| 344 |
+
"supported_formats": ["PNG", "JPEG", "JPG", "BMP", "TIFF"],
|
| 345 |
+
"cache_directory": os.environ.get('TRANSFORMERS_CACHE', '/app/.cache/huggingface'),
|
| 346 |
+
"gpu_available": torch.cuda.is_available(),
|
| 347 |
+
"models_loaded": models_loaded
|
| 348 |
+
})
|
| 349 |
+
|
| 350 |
+
@app.route('/models/load', methods=['POST'])
|
| 351 |
+
def load_models():
|
| 352 |
+
"""Manually trigger model loading"""
|
| 353 |
+
try:
|
| 354 |
+
if models_loaded:
|
| 355 |
+
return jsonify({"message": "Models already loaded", "success": True})
|
| 356 |
+
|
| 357 |
+
initialize_models()
|
| 358 |
+
return jsonify({"message": "Models loaded successfully", "success": True})
|
| 359 |
+
except Exception as e:
|
| 360 |
+
return jsonify({"error": str(e), "success": False}), 500
|
| 361 |
+
|
| 362 |
+
@app.errorhandler(404)
|
| 363 |
+
def not_found(error):
|
| 364 |
+
return jsonify({
|
| 365 |
+
"error": "Endpoint not found",
|
| 366 |
+
"available_endpoints": {
|
| 367 |
+
"GET /": "Service information",
|
| 368 |
+
"GET /health": "Health check",
|
| 369 |
+
"POST /ocr": "Single image OCR",
|
| 370 |
+
"POST /ocr/batch": "Batch image OCR",
|
| 371 |
+
"GET /models/info": "Model information",
|
| 372 |
+
"POST /models/load": "Load models manually"
|
| 373 |
+
}
|
| 374 |
+
}), 404
|
| 375 |
+
|
| 376 |
+
@app.errorhandler(500)
|
| 377 |
+
def internal_error(error):
|
| 378 |
+
return jsonify({
|
| 379 |
+
"error": "Internal server error",
|
| 380 |
+
"message": "Please check the server logs for more details"
|
| 381 |
+
}), 500
|
| 382 |
+
|
| 383 |
+
# Initialize models when running with gunicorn
|
| 384 |
+
if __name__ != '__main__':
|
| 385 |
+
logger.info("Starting OCR service with gunicorn...")
|
| 386 |
+
# Don't initialize models here - let them load lazily on first request
|
| 387 |
+
# This prevents startup failures due to model loading issues
|
| 388 |
+
|
| 389 |
+
if __name__ == '__main__':
|
| 390 |
+
logger.info("Starting OCR service in development mode...")
|
| 391 |
+
try:
|
| 392 |
+
# Try to initialize models, but don't fail if it doesn't work
|
| 393 |
+
initialize_models()
|
| 394 |
+
except Exception as e:
|
| 395 |
+
logger.warning(f"Could not initialize models on startup: {e}")
|
| 396 |
+
logger.info("Models will be loaded on first request")
|
| 397 |
+
|
| 398 |
+
# Run the app
|
| 399 |
+
port = int(os.environ.get('PORT', 5000))
|
| 400 |
+
app.run(host='0.0.0.0', port=port, debug=False)
|