HarshalGunjalOp
commited on
Commit
·
eccd289
1
Parent(s):
689c80d
Add notebooks and kaggle data for GitHub, configure HuggingFace ignore
Browse files- .gitignore +0 -8
- .huggingface-ignore +6 -0
- gradio_app.py +230 -0
- kaggle/input/2025-sep-dl-gen-ai-project/sample_submission.csv +1708 -0
- kaggle/input/2025-sep-dl-gen-ai-project/test.csv +0 -0
- kaggle/input/2025-sep-dl-gen-ai-project/train.csv +0 -0
- main.ipynb +621 -0
- main_code_explanation.md +812 -0
- submission_notebook.ipynb +314 -0
- training_notebook.ipynb +0 -0
.gitignore
CHANGED
|
@@ -9,12 +9,4 @@ __pycache__/
|
|
| 9 |
wandb/
|
| 10 |
.venv/
|
| 11 |
.env
|
| 12 |
-
kaggle/
|
| 13 |
-
main.ipynb
|
| 14 |
-
training_notebook.ipynb
|
| 15 |
-
submission_notebook.ipynb
|
| 16 |
-
submission_scratch_notebook.ipynb
|
| 17 |
-
training_scratch_notebook.ipynb
|
| 18 |
-
main_code_explanation.md
|
| 19 |
-
gradio_app.py
|
| 20 |
.env.example
|
|
|
|
| 9 |
wandb/
|
| 10 |
.venv/
|
| 11 |
.env
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
.env.example
|
.huggingface-ignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Exclude notebooks from HuggingFace Spaces
|
| 2 |
+
*.ipynb
|
| 3 |
+
main_code_explanation.md
|
| 4 |
+
|
| 5 |
+
# Exclude kaggle data
|
| 6 |
+
kaggle/
|
gradio_app.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio Deployment App for Emotion Classification Model
|
| 3 |
+
This app loads the trained model from HuggingFace Hub and creates an interactive interface.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 9 |
+
import numpy as np
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
|
| 12 |
+
# Configuration
|
| 13 |
+
HF_REPO_ID = "hrshlgunjal/emotion-classifier-deberta-v3" # UPDATE THIS!
|
| 14 |
+
LABELS = ["anger", "fear", "joy", "sadness", "surprise"]
|
| 15 |
+
MAX_LEN = 128
|
| 16 |
+
|
| 17 |
+
# Load model and tokenizer
|
| 18 |
+
print("Loading model from HuggingFace Hub...")
|
| 19 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 20 |
+
HF_REPO_ID,
|
| 21 |
+
num_labels=len(LABELS),
|
| 22 |
+
problem_type="multi_label_classification"
|
| 23 |
+
)
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(HF_REPO_ID)
|
| 25 |
+
model.eval()
|
| 26 |
+
print("✅ Model loaded successfully!")
|
| 27 |
+
|
| 28 |
+
# Load optimized thresholds
|
| 29 |
+
print("Loading optimized thresholds...")
|
| 30 |
+
try:
|
| 31 |
+
threshold_path = hf_hub_download(
|
| 32 |
+
repo_id=HF_REPO_ID,
|
| 33 |
+
filename="best_thresholds.npy"
|
| 34 |
+
)
|
| 35 |
+
thresholds = np.load(threshold_path)
|
| 36 |
+
print("✅ Optimized thresholds loaded!")
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"⚠️ Could not load thresholds: {e}")
|
| 39 |
+
print("Using default thresholds of 0.5")
|
| 40 |
+
thresholds = np.array([0.5] * len(LABELS))
|
| 41 |
+
|
| 42 |
+
# Prediction function
|
| 43 |
+
def predict_emotions(text):
|
| 44 |
+
"""
|
| 45 |
+
Predict emotions from input text.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
text (str): Input text to analyze
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
dict: Probability scores for each emotion
|
| 52 |
+
"""
|
| 53 |
+
if not text.strip():
|
| 54 |
+
return {label: 0.0 for label in LABELS}
|
| 55 |
+
|
| 56 |
+
# Tokenize
|
| 57 |
+
inputs = tokenizer(
|
| 58 |
+
text,
|
| 59 |
+
return_tensors="pt",
|
| 60 |
+
truncation=True,
|
| 61 |
+
max_length=MAX_LEN,
|
| 62 |
+
padding=True
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Predict
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
outputs = model(**inputs)
|
| 68 |
+
|
| 69 |
+
# Get probabilities
|
| 70 |
+
probs = torch.sigmoid(outputs.logits).cpu().numpy()[0]
|
| 71 |
+
|
| 72 |
+
# Apply thresholds for binary predictions
|
| 73 |
+
predictions = (probs >= thresholds).astype(int)
|
| 74 |
+
|
| 75 |
+
# Create result dictionary
|
| 76 |
+
result = {}
|
| 77 |
+
for i, label in enumerate(LABELS):
|
| 78 |
+
result[label] = float(probs[i])
|
| 79 |
+
|
| 80 |
+
return result
|
| 81 |
+
|
| 82 |
+
def predict_with_explanation(text):
|
| 83 |
+
"""
|
| 84 |
+
Predict emotions and provide detailed explanation.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
text (str): Input text to analyze
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
tuple: (emotion_scores, explanation_text)
|
| 91 |
+
"""
|
| 92 |
+
if not text.strip():
|
| 93 |
+
return {label: 0.0 for label in LABELS}, "Please enter some text to analyze."
|
| 94 |
+
|
| 95 |
+
# Get predictions
|
| 96 |
+
result = predict_emotions(text)
|
| 97 |
+
|
| 98 |
+
# Create explanation
|
| 99 |
+
detected_emotions = []
|
| 100 |
+
for label, score in result.items():
|
| 101 |
+
if score >= thresholds[LABELS.index(label)]:
|
| 102 |
+
detected_emotions.append(f"**{label.capitalize()}** ({score:.2%})")
|
| 103 |
+
|
| 104 |
+
if detected_emotions:
|
| 105 |
+
explanation = f"**Detected Emotions:** {', '.join(detected_emotions)}\n\n"
|
| 106 |
+
else:
|
| 107 |
+
explanation = "**No strong emotions detected.**\n\n"
|
| 108 |
+
|
| 109 |
+
explanation += "**All Emotion Scores:**\n"
|
| 110 |
+
for label, score in sorted(result.items(), key=lambda x: x[1], reverse=True):
|
| 111 |
+
bar = "█" * int(score * 20)
|
| 112 |
+
explanation += f"- {label.capitalize()}: {bar} {score:.2%}\n"
|
| 113 |
+
|
| 114 |
+
return result, explanation
|
| 115 |
+
|
| 116 |
+
# Example texts
|
| 117 |
+
examples = [
|
| 118 |
+
["I am so excited about this amazing opportunity!"],
|
| 119 |
+
["I can't believe you did this to me. I'm so angry!"],
|
| 120 |
+
["I'm terrified of what might happen next."],
|
| 121 |
+
["This is the saddest day of my life."],
|
| 122 |
+
["Wow! I didn't expect that at all!"],
|
| 123 |
+
["I'm feeling really happy and grateful today."],
|
| 124 |
+
["I'm so frustrated with this situation."],
|
| 125 |
+
["This news is shocking and scary."],
|
| 126 |
+
["I'm overjoyed and surprised by this wonderful gift!"],
|
| 127 |
+
["I'm deeply saddened and disappointed."],
|
| 128 |
+
]
|
| 129 |
+
|
| 130 |
+
# Create Gradio interface
|
| 131 |
+
with gr.Blocks(title="🎭 Emotion Classification") as demo:
|
| 132 |
+
gr.Markdown(
|
| 133 |
+
"""
|
| 134 |
+
# 🎭 Emotion Classification Model
|
| 135 |
+
|
| 136 |
+
This model analyzes text and identifies 5 emotions: **anger**, **fear**, **joy**, **sadness**, and **surprise**.
|
| 137 |
+
|
| 138 |
+
### Features:
|
| 139 |
+
- ✅ Multi-label classification (can detect multiple emotions)
|
| 140 |
+
- ✅ Based on DeBERTa-v3 transformer model
|
| 141 |
+
- ✅ Trained with 5-fold cross-validation
|
| 142 |
+
- ✅ Optimized thresholds for best performance
|
| 143 |
+
|
| 144 |
+
---
|
| 145 |
+
"""
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
with gr.Row():
|
| 149 |
+
with gr.Column(scale=2):
|
| 150 |
+
text_input = gr.Textbox(
|
| 151 |
+
label="Enter Text",
|
| 152 |
+
placeholder="Type or paste your text here...",
|
| 153 |
+
lines=5
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
with gr.Row():
|
| 157 |
+
submit_btn = gr.Button("Analyze Emotions 🔍", variant="primary")
|
| 158 |
+
clear_btn = gr.Button("Clear 🗑️")
|
| 159 |
+
|
| 160 |
+
with gr.Column(scale=1):
|
| 161 |
+
emotion_output = gr.Label(
|
| 162 |
+
label="Emotion Scores",
|
| 163 |
+
num_top_classes=5
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
explanation_output = gr.Markdown(label="Detailed Analysis")
|
| 167 |
+
|
| 168 |
+
# Example section
|
| 169 |
+
gr.Markdown("### 📝 Try These Examples:")
|
| 170 |
+
gr.Examples(
|
| 171 |
+
examples=examples,
|
| 172 |
+
inputs=text_input,
|
| 173 |
+
outputs=[emotion_output, explanation_output],
|
| 174 |
+
fn=predict_with_explanation,
|
| 175 |
+
cache_examples=False
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Info section
|
| 179 |
+
gr.Markdown(
|
| 180 |
+
"""
|
| 181 |
+
---
|
| 182 |
+
|
| 183 |
+
### ℹ️ About This Model
|
| 184 |
+
|
| 185 |
+
**Model:** microsoft/deberta-v3-base (fine-tuned)
|
| 186 |
+
|
| 187 |
+
**Training:**
|
| 188 |
+
- 5-fold stratified cross-validation
|
| 189 |
+
- Mixed precision training (FP16)
|
| 190 |
+
- Threshold optimization for each emotion
|
| 191 |
+
|
| 192 |
+
**Performance:**
|
| 193 |
+
- Macro F1 Score: [Your CV Score]
|
| 194 |
+
- Kaggle Score: 8.3+
|
| 195 |
+
|
| 196 |
+
**Labels:**
|
| 197 |
+
- 😠 **Anger:** Expressions of anger, frustration, or annoyance
|
| 198 |
+
- 😨 **Fear:** Expressions of fear, anxiety, or worry
|
| 199 |
+
- 😊 **Joy:** Expressions of happiness, pleasure, or satisfaction
|
| 200 |
+
- 😢 **Sadness:** Expressions of sadness, sorrow, or disappointment
|
| 201 |
+
- 😲 **Surprise:** Expressions of surprise, shock, or amazement
|
| 202 |
+
|
| 203 |
+
---
|
| 204 |
+
|
| 205 |
+
**Repository:** [HuggingFace Hub](https://huggingface.co/{})
|
| 206 |
+
|
| 207 |
+
**Created for:** Deep Learning & Gen AI Project 2025
|
| 208 |
+
""".format(HF_REPO_ID)
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
# Button actions
|
| 212 |
+
submit_btn.click(
|
| 213 |
+
fn=predict_with_explanation,
|
| 214 |
+
inputs=text_input,
|
| 215 |
+
outputs=[emotion_output, explanation_output]
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
clear_btn.click(
|
| 219 |
+
fn=lambda: ("", {label: 0.0 for label in LABELS}, ""),
|
| 220 |
+
inputs=None,
|
| 221 |
+
outputs=[text_input, emotion_output, explanation_output]
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# Launch the app
|
| 225 |
+
if __name__ == "__main__":
|
| 226 |
+
demo.launch(
|
| 227 |
+
share=False, # Set to True to create a public link
|
| 228 |
+
server_name="0.0.0.0",
|
| 229 |
+
server_port=7860
|
| 230 |
+
)
|
kaggle/input/2025-sep-dl-gen-ai-project/sample_submission.csv
ADDED
|
@@ -0,0 +1,1708 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
id,anger,fear,joy,sadness,surprise
|
| 2 |
+
0,1,0,0,0,1
|
| 3 |
+
1,0,1,1,1,0
|
| 4 |
+
2,1,1,0,0,1
|
| 5 |
+
3,0,0,0,0,1
|
| 6 |
+
4,1,1,1,0,0
|
| 7 |
+
5,1,0,0,0,1
|
| 8 |
+
6,0,0,0,1,0
|
| 9 |
+
7,0,0,0,1,1
|
| 10 |
+
8,0,0,1,1,1
|
| 11 |
+
9,0,1,0,1,1
|
| 12 |
+
10,1,1,1,0,0
|
| 13 |
+
11,1,1,1,1,0
|
| 14 |
+
12,0,1,0,1,0
|
| 15 |
+
13,0,0,0,1,1
|
| 16 |
+
14,0,1,1,0,1
|
| 17 |
+
15,0,1,0,0,0
|
| 18 |
+
16,0,1,0,1,0
|
| 19 |
+
17,1,0,0,0,0
|
| 20 |
+
18,0,1,0,0,1
|
| 21 |
+
19,0,1,1,0,0
|
| 22 |
+
20,1,0,0,1,0
|
| 23 |
+
21,1,1,1,0,1
|
| 24 |
+
22,0,0,1,0,1
|
| 25 |
+
23,1,0,1,0,1
|
| 26 |
+
24,1,1,0,1,0
|
| 27 |
+
25,0,1,1,1,1
|
| 28 |
+
26,0,0,0,0,1
|
| 29 |
+
27,0,1,0,0,1
|
| 30 |
+
28,0,1,1,1,1
|
| 31 |
+
29,1,0,1,0,1
|
| 32 |
+
30,0,1,1,1,0
|
| 33 |
+
31,1,1,1,1,1
|
| 34 |
+
32,0,0,1,0,0
|
| 35 |
+
33,0,1,0,1,1
|
| 36 |
+
34,0,0,0,0,1
|
| 37 |
+
35,1,1,1,0,0
|
| 38 |
+
36,1,1,0,0,0
|
| 39 |
+
37,0,0,0,1,1
|
| 40 |
+
38,1,0,0,0,0
|
| 41 |
+
39,0,1,0,0,0
|
| 42 |
+
40,0,0,1,1,0
|
| 43 |
+
41,1,1,0,0,1
|
| 44 |
+
42,1,1,0,0,1
|
| 45 |
+
43,1,0,0,1,0
|
| 46 |
+
44,1,0,1,0,0
|
| 47 |
+
45,0,0,0,1,0
|
| 48 |
+
46,1,0,1,0,1
|
| 49 |
+
47,1,0,0,1,0
|
| 50 |
+
48,1,0,1,1,1
|
| 51 |
+
49,1,1,1,0,0
|
| 52 |
+
50,0,0,0,1,1
|
| 53 |
+
51,1,1,1,1,0
|
| 54 |
+
52,1,1,0,0,1
|
| 55 |
+
53,0,0,1,1,0
|
| 56 |
+
54,0,0,0,0,0
|
| 57 |
+
55,0,0,0,1,0
|
| 58 |
+
56,0,0,0,1,0
|
| 59 |
+
57,0,1,0,0,0
|
| 60 |
+
58,1,0,0,0,0
|
| 61 |
+
59,0,0,0,1,1
|
| 62 |
+
60,0,0,1,0,0
|
| 63 |
+
61,1,0,0,0,1
|
| 64 |
+
62,1,1,1,0,1
|
| 65 |
+
63,0,0,0,0,0
|
| 66 |
+
64,0,0,0,1,0
|
| 67 |
+
65,0,1,1,0,0
|
| 68 |
+
66,1,1,0,1,0
|
| 69 |
+
67,1,0,0,0,0
|
| 70 |
+
68,1,0,0,1,1
|
| 71 |
+
69,1,1,0,1,1
|
| 72 |
+
70,0,0,1,1,1
|
| 73 |
+
71,0,1,1,0,0
|
| 74 |
+
72,1,1,0,1,1
|
| 75 |
+
73,1,1,1,1,1
|
| 76 |
+
74,1,1,1,0,1
|
| 77 |
+
75,1,1,0,0,1
|
| 78 |
+
76,0,1,0,1,1
|
| 79 |
+
77,1,1,0,1,0
|
| 80 |
+
78,0,1,1,1,1
|
| 81 |
+
79,0,1,0,0,1
|
| 82 |
+
80,0,0,1,0,1
|
| 83 |
+
81,1,0,1,1,1
|
| 84 |
+
82,1,0,1,0,1
|
| 85 |
+
83,0,1,0,0,1
|
| 86 |
+
84,0,1,0,1,0
|
| 87 |
+
85,0,0,0,1,0
|
| 88 |
+
86,1,1,1,1,1
|
| 89 |
+
87,1,0,1,1,0
|
| 90 |
+
88,0,1,0,1,0
|
| 91 |
+
89,1,1,1,1,1
|
| 92 |
+
90,1,1,0,1,1
|
| 93 |
+
91,0,1,0,0,0
|
| 94 |
+
92,1,0,0,0,1
|
| 95 |
+
93,1,0,0,1,1
|
| 96 |
+
94,1,1,0,1,0
|
| 97 |
+
95,0,1,1,0,1
|
| 98 |
+
96,0,1,0,0,1
|
| 99 |
+
97,1,0,0,0,0
|
| 100 |
+
98,1,1,1,1,1
|
| 101 |
+
99,0,0,0,0,0
|
| 102 |
+
100,0,1,1,1,0
|
| 103 |
+
101,0,1,1,1,1
|
| 104 |
+
102,1,1,1,1,0
|
| 105 |
+
103,1,0,0,1,1
|
| 106 |
+
104,0,0,0,1,0
|
| 107 |
+
105,0,0,0,1,0
|
| 108 |
+
106,0,1,1,0,0
|
| 109 |
+
107,0,1,1,0,1
|
| 110 |
+
108,1,1,0,1,1
|
| 111 |
+
109,1,0,0,0,0
|
| 112 |
+
110,0,1,1,1,1
|
| 113 |
+
111,1,1,1,1,0
|
| 114 |
+
112,0,0,1,1,0
|
| 115 |
+
113,1,0,0,0,1
|
| 116 |
+
114,1,0,0,0,0
|
| 117 |
+
115,0,1,1,0,1
|
| 118 |
+
116,0,0,0,0,0
|
| 119 |
+
117,0,0,0,0,1
|
| 120 |
+
118,1,1,0,0,0
|
| 121 |
+
119,1,1,0,1,1
|
| 122 |
+
120,0,1,1,1,1
|
| 123 |
+
121,0,0,0,1,1
|
| 124 |
+
122,0,1,0,0,0
|
| 125 |
+
123,1,1,0,1,0
|
| 126 |
+
124,1,1,0,0,0
|
| 127 |
+
125,1,0,0,0,0
|
| 128 |
+
126,0,1,0,1,0
|
| 129 |
+
127,1,0,1,0,0
|
| 130 |
+
128,1,0,0,0,1
|
| 131 |
+
129,0,0,0,1,0
|
| 132 |
+
130,1,1,0,0,1
|
| 133 |
+
131,0,1,0,0,1
|
| 134 |
+
132,0,1,0,1,1
|
| 135 |
+
133,1,0,1,0,1
|
| 136 |
+
134,1,1,0,0,0
|
| 137 |
+
135,1,1,0,0,0
|
| 138 |
+
136,1,1,1,1,0
|
| 139 |
+
137,1,1,0,1,0
|
| 140 |
+
138,0,1,0,1,0
|
| 141 |
+
139,0,1,1,1,1
|
| 142 |
+
140,0,0,1,0,0
|
| 143 |
+
141,0,0,1,1,0
|
| 144 |
+
142,0,1,1,0,1
|
| 145 |
+
143,1,0,0,0,0
|
| 146 |
+
144,0,0,1,1,1
|
| 147 |
+
145,0,0,0,0,1
|
| 148 |
+
146,0,1,0,0,0
|
| 149 |
+
147,1,1,0,0,1
|
| 150 |
+
148,1,0,0,0,0
|
| 151 |
+
149,1,1,1,1,0
|
| 152 |
+
150,1,1,0,1,1
|
| 153 |
+
151,0,1,1,0,0
|
| 154 |
+
152,1,1,1,1,0
|
| 155 |
+
153,1,1,1,1,0
|
| 156 |
+
154,1,1,0,1,0
|
| 157 |
+
155,1,1,1,0,1
|
| 158 |
+
156,0,1,0,1,1
|
| 159 |
+
157,1,0,0,1,1
|
| 160 |
+
158,1,1,1,0,0
|
| 161 |
+
159,1,0,1,1,0
|
| 162 |
+
160,1,1,0,1,0
|
| 163 |
+
161,0,1,0,0,1
|
| 164 |
+
162,1,1,1,0,1
|
| 165 |
+
163,1,0,0,0,1
|
| 166 |
+
164,0,1,1,1,1
|
| 167 |
+
165,0,0,1,1,0
|
| 168 |
+
166,0,0,0,0,1
|
| 169 |
+
167,1,0,0,0,1
|
| 170 |
+
168,0,0,0,1,0
|
| 171 |
+
169,0,0,1,1,1
|
| 172 |
+
170,0,1,0,1,1
|
| 173 |
+
171,0,1,1,1,1
|
| 174 |
+
172,0,0,1,1,0
|
| 175 |
+
173,0,1,1,0,0
|
| 176 |
+
174,1,0,1,1,1
|
| 177 |
+
175,0,1,1,1,1
|
| 178 |
+
176,0,1,0,0,0
|
| 179 |
+
177,1,0,1,1,1
|
| 180 |
+
178,0,0,1,1,0
|
| 181 |
+
179,0,0,1,1,0
|
| 182 |
+
180,0,1,0,1,0
|
| 183 |
+
181,1,0,0,0,0
|
| 184 |
+
182,1,0,1,1,1
|
| 185 |
+
183,1,1,0,0,0
|
| 186 |
+
184,0,0,0,1,0
|
| 187 |
+
185,0,0,0,0,1
|
| 188 |
+
186,1,0,1,0,1
|
| 189 |
+
187,0,0,0,1,0
|
| 190 |
+
188,0,1,0,0,0
|
| 191 |
+
189,1,0,0,0,0
|
| 192 |
+
190,0,0,0,1,1
|
| 193 |
+
191,0,1,0,1,0
|
| 194 |
+
192,0,1,0,0,0
|
| 195 |
+
193,0,0,0,0,0
|
| 196 |
+
194,1,0,0,0,1
|
| 197 |
+
195,1,1,1,1,1
|
| 198 |
+
196,0,0,0,1,1
|
| 199 |
+
197,0,1,0,0,0
|
| 200 |
+
198,0,1,0,1,1
|
| 201 |
+
199,1,1,1,1,1
|
| 202 |
+
200,1,1,0,0,1
|
| 203 |
+
201,0,0,1,1,0
|
| 204 |
+
202,0,0,1,1,1
|
| 205 |
+
203,0,0,1,0,1
|
| 206 |
+
204,1,1,0,0,1
|
| 207 |
+
205,0,1,1,0,0
|
| 208 |
+
206,0,1,0,1,0
|
| 209 |
+
207,0,0,1,0,0
|
| 210 |
+
208,0,1,0,0,1
|
| 211 |
+
209,1,1,1,1,1
|
| 212 |
+
210,1,0,1,1,0
|
| 213 |
+
211,1,0,1,1,0
|
| 214 |
+
212,1,1,1,1,1
|
| 215 |
+
213,1,0,1,1,1
|
| 216 |
+
214,0,1,0,1,1
|
| 217 |
+
215,0,1,1,1,1
|
| 218 |
+
216,1,0,0,0,0
|
| 219 |
+
217,1,0,0,0,0
|
| 220 |
+
218,0,1,0,1,0
|
| 221 |
+
219,0,0,0,0,1
|
| 222 |
+
220,0,0,1,1,0
|
| 223 |
+
221,0,0,1,1,0
|
| 224 |
+
222,1,1,0,0,0
|
| 225 |
+
223,0,0,1,1,1
|
| 226 |
+
224,1,0,0,0,1
|
| 227 |
+
225,1,1,0,0,1
|
| 228 |
+
226,0,0,1,0,1
|
| 229 |
+
227,0,0,1,0,0
|
| 230 |
+
228,1,1,1,0,1
|
| 231 |
+
229,1,1,1,1,1
|
| 232 |
+
230,1,1,0,1,1
|
| 233 |
+
231,0,0,1,0,0
|
| 234 |
+
232,0,0,1,1,1
|
| 235 |
+
233,0,1,0,1,0
|
| 236 |
+
234,0,0,0,1,0
|
| 237 |
+
235,1,0,0,0,0
|
| 238 |
+
236,0,1,0,0,1
|
| 239 |
+
237,1,1,1,1,0
|
| 240 |
+
238,0,0,1,0,1
|
| 241 |
+
239,1,0,1,1,0
|
| 242 |
+
240,1,1,0,0,0
|
| 243 |
+
241,0,1,1,1,1
|
| 244 |
+
242,1,0,0,0,1
|
| 245 |
+
243,1,1,0,1,1
|
| 246 |
+
244,0,1,1,1,1
|
| 247 |
+
245,0,0,1,0,1
|
| 248 |
+
246,1,1,1,1,1
|
| 249 |
+
247,1,1,0,0,1
|
| 250 |
+
248,1,0,0,0,1
|
| 251 |
+
249,0,1,0,1,1
|
| 252 |
+
250,1,1,0,1,1
|
| 253 |
+
251,0,0,0,1,0
|
| 254 |
+
252,0,1,0,0,0
|
| 255 |
+
253,1,0,1,1,1
|
| 256 |
+
254,1,1,1,1,1
|
| 257 |
+
255,0,1,1,0,1
|
| 258 |
+
256,1,0,0,0,0
|
| 259 |
+
257,1,0,0,0,0
|
| 260 |
+
258,1,1,1,1,0
|
| 261 |
+
259,0,0,0,0,1
|
| 262 |
+
260,1,1,0,1,1
|
| 263 |
+
261,0,1,0,0,1
|
| 264 |
+
262,1,0,0,1,1
|
| 265 |
+
263,0,0,0,1,0
|
| 266 |
+
264,0,1,0,1,0
|
| 267 |
+
265,0,1,0,0,0
|
| 268 |
+
266,1,0,1,0,0
|
| 269 |
+
267,0,0,0,1,0
|
| 270 |
+
268,1,1,0,0,0
|
| 271 |
+
269,1,0,1,0,0
|
| 272 |
+
270,0,0,0,0,0
|
| 273 |
+
271,1,0,0,1,1
|
| 274 |
+
272,1,0,0,0,1
|
| 275 |
+
273,1,1,0,0,1
|
| 276 |
+
274,1,0,1,0,1
|
| 277 |
+
275,0,0,1,1,0
|
| 278 |
+
276,1,1,0,1,0
|
| 279 |
+
277,1,1,0,1,0
|
| 280 |
+
278,0,1,1,1,1
|
| 281 |
+
279,1,0,0,1,0
|
| 282 |
+
280,1,1,1,1,0
|
| 283 |
+
281,0,0,1,0,0
|
| 284 |
+
282,0,0,1,1,1
|
| 285 |
+
283,1,0,1,1,1
|
| 286 |
+
284,1,1,0,1,1
|
| 287 |
+
285,0,1,1,1,1
|
| 288 |
+
286,0,0,0,0,1
|
| 289 |
+
287,0,1,1,0,0
|
| 290 |
+
288,1,1,0,1,1
|
| 291 |
+
289,0,0,0,0,0
|
| 292 |
+
290,0,1,0,0,0
|
| 293 |
+
291,1,1,0,0,0
|
| 294 |
+
292,0,0,1,0,0
|
| 295 |
+
293,0,1,1,1,1
|
| 296 |
+
294,1,1,0,1,1
|
| 297 |
+
295,0,0,1,0,0
|
| 298 |
+
296,1,0,0,1,0
|
| 299 |
+
297,0,1,1,1,1
|
| 300 |
+
298,1,0,0,1,1
|
| 301 |
+
299,1,1,0,0,1
|
| 302 |
+
300,0,1,1,0,1
|
| 303 |
+
301,1,1,1,1,1
|
| 304 |
+
302,0,0,1,1,1
|
| 305 |
+
303,1,1,1,0,0
|
| 306 |
+
304,1,0,0,0,1
|
| 307 |
+
305,0,1,0,1,0
|
| 308 |
+
306,0,1,1,1,1
|
| 309 |
+
307,0,0,0,1,0
|
| 310 |
+
308,0,1,0,1,0
|
| 311 |
+
309,0,1,1,1,0
|
| 312 |
+
310,0,1,0,0,1
|
| 313 |
+
311,0,1,0,1,0
|
| 314 |
+
312,1,0,0,1,0
|
| 315 |
+
313,1,0,0,0,1
|
| 316 |
+
314,0,0,0,1,0
|
| 317 |
+
315,0,1,0,0,1
|
| 318 |
+
316,0,0,0,0,0
|
| 319 |
+
317,0,1,0,0,1
|
| 320 |
+
318,1,1,1,1,0
|
| 321 |
+
319,1,0,0,1,1
|
| 322 |
+
320,1,0,0,1,0
|
| 323 |
+
321,1,0,1,0,1
|
| 324 |
+
322,1,1,0,1,0
|
| 325 |
+
323,0,0,0,0,1
|
| 326 |
+
324,1,1,1,0,0
|
| 327 |
+
325,0,0,1,0,1
|
| 328 |
+
326,0,1,1,0,0
|
| 329 |
+
327,0,0,1,0,0
|
| 330 |
+
328,0,0,0,1,0
|
| 331 |
+
329,0,0,1,1,1
|
| 332 |
+
330,1,1,1,0,1
|
| 333 |
+
331,0,0,1,1,0
|
| 334 |
+
332,0,1,0,1,0
|
| 335 |
+
333,0,0,1,0,1
|
| 336 |
+
334,1,1,1,0,0
|
| 337 |
+
335,0,0,0,1,1
|
| 338 |
+
336,1,0,0,0,1
|
| 339 |
+
337,0,0,0,1,0
|
| 340 |
+
338,0,1,1,0,0
|
| 341 |
+
339,1,0,1,0,1
|
| 342 |
+
340,1,1,1,0,0
|
| 343 |
+
341,0,1,0,0,0
|
| 344 |
+
342,1,0,1,0,0
|
| 345 |
+
343,1,1,1,1,0
|
| 346 |
+
344,0,1,0,1,1
|
| 347 |
+
345,0,1,1,0,0
|
| 348 |
+
346,1,1,0,1,1
|
| 349 |
+
347,1,0,0,0,0
|
| 350 |
+
348,1,0,0,1,1
|
| 351 |
+
349,0,1,1,0,1
|
| 352 |
+
350,0,1,0,1,1
|
| 353 |
+
351,1,0,1,1,1
|
| 354 |
+
352,0,1,0,0,1
|
| 355 |
+
353,0,0,1,0,0
|
| 356 |
+
354,1,0,1,0,1
|
| 357 |
+
355,0,0,1,0,1
|
| 358 |
+
356,1,0,1,1,0
|
| 359 |
+
357,1,1,0,1,0
|
| 360 |
+
358,0,0,0,1,1
|
| 361 |
+
359,1,0,1,1,0
|
| 362 |
+
360,0,0,1,1,1
|
| 363 |
+
361,0,0,1,1,1
|
| 364 |
+
362,0,1,0,1,0
|
| 365 |
+
363,0,0,1,0,0
|
| 366 |
+
364,0,1,1,0,1
|
| 367 |
+
365,1,1,1,1,0
|
| 368 |
+
366,0,0,1,1,1
|
| 369 |
+
367,0,1,1,0,0
|
| 370 |
+
368,0,1,1,0,1
|
| 371 |
+
369,1,1,0,0,1
|
| 372 |
+
370,0,0,0,0,1
|
| 373 |
+
371,1,0,1,0,1
|
| 374 |
+
372,1,1,1,1,0
|
| 375 |
+
373,1,1,1,1,0
|
| 376 |
+
374,0,0,0,0,0
|
| 377 |
+
375,0,0,0,1,0
|
| 378 |
+
376,1,0,0,0,1
|
| 379 |
+
377,0,0,0,1,1
|
| 380 |
+
378,0,1,1,0,1
|
| 381 |
+
379,0,1,1,0,0
|
| 382 |
+
380,1,1,1,1,0
|
| 383 |
+
381,1,1,0,1,0
|
| 384 |
+
382,1,0,0,1,0
|
| 385 |
+
383,1,0,1,0,0
|
| 386 |
+
384,1,1,1,0,1
|
| 387 |
+
385,0,0,0,1,1
|
| 388 |
+
386,1,1,0,0,1
|
| 389 |
+
387,0,1,0,1,1
|
| 390 |
+
388,0,1,1,1,0
|
| 391 |
+
389,0,1,0,0,0
|
| 392 |
+
390,1,0,1,1,0
|
| 393 |
+
391,1,0,1,1,0
|
| 394 |
+
392,0,1,0,1,1
|
| 395 |
+
393,0,1,0,1,1
|
| 396 |
+
394,0,0,1,1,1
|
| 397 |
+
395,1,0,0,0,1
|
| 398 |
+
396,0,1,0,0,0
|
| 399 |
+
397,1,0,1,0,1
|
| 400 |
+
398,1,0,0,1,0
|
| 401 |
+
399,1,1,0,0,0
|
| 402 |
+
400,0,0,1,0,1
|
| 403 |
+
401,1,1,1,1,0
|
| 404 |
+
402,1,0,1,1,0
|
| 405 |
+
403,1,1,0,1,0
|
| 406 |
+
404,1,1,0,0,1
|
| 407 |
+
405,1,1,1,1,0
|
| 408 |
+
406,1,0,0,0,0
|
| 409 |
+
407,1,0,0,0,0
|
| 410 |
+
408,1,0,1,1,0
|
| 411 |
+
409,0,1,1,0,0
|
| 412 |
+
410,1,1,0,0,0
|
| 413 |
+
411,1,0,1,1,0
|
| 414 |
+
412,0,1,1,0,0
|
| 415 |
+
413,1,0,1,1,1
|
| 416 |
+
414,1,1,0,0,0
|
| 417 |
+
415,1,1,0,0,0
|
| 418 |
+
416,0,1,1,0,1
|
| 419 |
+
417,0,0,1,0,1
|
| 420 |
+
418,0,0,1,1,0
|
| 421 |
+
419,0,1,0,0,1
|
| 422 |
+
420,1,1,1,1,1
|
| 423 |
+
421,1,1,0,1,0
|
| 424 |
+
422,0,0,1,1,1
|
| 425 |
+
423,0,1,1,0,0
|
| 426 |
+
424,1,0,0,0,0
|
| 427 |
+
425,0,1,0,0,0
|
| 428 |
+
426,1,0,0,1,1
|
| 429 |
+
427,1,0,0,0,1
|
| 430 |
+
428,1,0,1,1,0
|
| 431 |
+
429,1,1,0,0,1
|
| 432 |
+
430,0,1,1,0,0
|
| 433 |
+
431,0,1,0,0,1
|
| 434 |
+
432,1,0,1,0,0
|
| 435 |
+
433,1,1,0,1,0
|
| 436 |
+
434,0,1,0,0,0
|
| 437 |
+
435,1,1,1,1,1
|
| 438 |
+
436,1,0,0,0,0
|
| 439 |
+
437,0,1,0,1,1
|
| 440 |
+
438,0,1,0,0,0
|
| 441 |
+
439,0,0,0,1,1
|
| 442 |
+
440,0,1,1,0,1
|
| 443 |
+
441,0,0,1,0,0
|
| 444 |
+
442,0,1,0,1,1
|
| 445 |
+
443,1,1,0,0,0
|
| 446 |
+
444,1,1,0,0,1
|
| 447 |
+
445,0,0,0,0,1
|
| 448 |
+
446,0,0,1,0,1
|
| 449 |
+
447,0,0,1,1,1
|
| 450 |
+
448,1,0,0,0,0
|
| 451 |
+
449,0,1,0,1,1
|
| 452 |
+
450,0,0,1,1,1
|
| 453 |
+
451,0,1,1,0,0
|
| 454 |
+
452,0,1,0,1,0
|
| 455 |
+
453,1,1,1,0,1
|
| 456 |
+
454,1,1,1,0,0
|
| 457 |
+
455,1,1,1,0,0
|
| 458 |
+
456,1,1,1,0,0
|
| 459 |
+
457,1,0,0,0,0
|
| 460 |
+
458,0,0,0,1,0
|
| 461 |
+
459,1,1,0,0,0
|
| 462 |
+
460,0,0,0,1,0
|
| 463 |
+
461,1,1,1,1,0
|
| 464 |
+
462,0,0,1,1,1
|
| 465 |
+
463,0,0,1,0,0
|
| 466 |
+
464,0,1,1,1,1
|
| 467 |
+
465,0,1,0,1,1
|
| 468 |
+
466,0,0,0,1,1
|
| 469 |
+
467,1,1,1,1,1
|
| 470 |
+
468,1,1,1,1,1
|
| 471 |
+
469,0,0,1,1,0
|
| 472 |
+
470,1,1,0,1,1
|
| 473 |
+
471,0,1,1,1,0
|
| 474 |
+
472,0,1,0,0,1
|
| 475 |
+
473,1,1,0,0,1
|
| 476 |
+
474,1,0,1,0,1
|
| 477 |
+
475,1,0,1,0,0
|
| 478 |
+
476,1,1,1,0,1
|
| 479 |
+
477,1,0,1,1,1
|
| 480 |
+
478,1,0,0,1,0
|
| 481 |
+
479,0,1,0,0,0
|
| 482 |
+
480,1,0,0,1,0
|
| 483 |
+
481,1,0,1,0,1
|
| 484 |
+
482,1,0,0,0,0
|
| 485 |
+
483,0,1,1,0,1
|
| 486 |
+
484,1,1,1,1,0
|
| 487 |
+
485,0,0,0,0,0
|
| 488 |
+
486,1,1,1,0,0
|
| 489 |
+
487,0,1,1,1,0
|
| 490 |
+
488,1,1,1,0,0
|
| 491 |
+
489,1,1,1,1,0
|
| 492 |
+
490,0,0,0,0,1
|
| 493 |
+
491,0,0,1,0,0
|
| 494 |
+
492,0,1,0,1,0
|
| 495 |
+
493,1,0,1,0,0
|
| 496 |
+
494,1,0,0,1,0
|
| 497 |
+
495,0,0,1,1,1
|
| 498 |
+
496,1,0,0,0,0
|
| 499 |
+
497,0,1,1,1,1
|
| 500 |
+
498,1,1,1,1,0
|
| 501 |
+
499,1,0,1,1,1
|
| 502 |
+
500,1,1,1,0,1
|
| 503 |
+
501,0,0,0,1,0
|
| 504 |
+
502,0,0,0,0,0
|
| 505 |
+
503,1,1,0,0,0
|
| 506 |
+
504,1,1,1,1,0
|
| 507 |
+
505,1,1,1,0,0
|
| 508 |
+
506,0,1,0,1,0
|
| 509 |
+
507,0,1,0,1,0
|
| 510 |
+
508,1,0,0,1,1
|
| 511 |
+
509,1,0,0,1,0
|
| 512 |
+
510,0,1,0,1,1
|
| 513 |
+
511,0,0,0,1,1
|
| 514 |
+
512,0,1,1,1,0
|
| 515 |
+
513,1,1,0,1,0
|
| 516 |
+
514,1,1,1,0,0
|
| 517 |
+
515,1,0,0,0,0
|
| 518 |
+
516,0,1,1,0,0
|
| 519 |
+
517,0,0,0,1,0
|
| 520 |
+
518,1,1,0,1,1
|
| 521 |
+
519,0,1,0,0,0
|
| 522 |
+
520,0,0,0,0,1
|
| 523 |
+
521,1,0,1,0,1
|
| 524 |
+
522,1,1,0,1,1
|
| 525 |
+
523,1,0,0,0,0
|
| 526 |
+
524,0,0,1,1,0
|
| 527 |
+
525,1,0,1,0,1
|
| 528 |
+
526,1,1,0,0,0
|
| 529 |
+
527,1,0,1,0,0
|
| 530 |
+
528,1,0,1,1,1
|
| 531 |
+
529,0,1,0,0,0
|
| 532 |
+
530,0,0,0,0,1
|
| 533 |
+
531,0,1,1,0,0
|
| 534 |
+
532,0,1,1,0,1
|
| 535 |
+
533,1,0,1,1,0
|
| 536 |
+
534,1,1,1,1,0
|
| 537 |
+
535,1,0,0,1,1
|
| 538 |
+
536,1,1,1,0,1
|
| 539 |
+
537,1,1,0,0,1
|
| 540 |
+
538,0,1,0,1,1
|
| 541 |
+
539,0,1,0,1,1
|
| 542 |
+
540,0,1,0,1,1
|
| 543 |
+
541,1,1,1,1,0
|
| 544 |
+
542,1,1,0,1,1
|
| 545 |
+
543,0,0,1,0,0
|
| 546 |
+
544,0,1,0,1,0
|
| 547 |
+
545,1,1,1,0,1
|
| 548 |
+
546,0,1,1,0,0
|
| 549 |
+
547,0,1,0,0,1
|
| 550 |
+
548,1,1,0,1,0
|
| 551 |
+
549,1,0,1,1,0
|
| 552 |
+
550,0,1,0,0,0
|
| 553 |
+
551,1,0,1,0,0
|
| 554 |
+
552,0,0,0,1,1
|
| 555 |
+
553,0,0,1,1,1
|
| 556 |
+
554,0,0,1,1,0
|
| 557 |
+
555,0,0,0,0,0
|
| 558 |
+
556,0,0,1,0,1
|
| 559 |
+
557,0,1,0,0,0
|
| 560 |
+
558,1,1,1,0,1
|
| 561 |
+
559,1,1,0,1,1
|
| 562 |
+
560,1,0,0,1,1
|
| 563 |
+
561,0,0,1,0,0
|
| 564 |
+
562,0,1,1,0,1
|
| 565 |
+
563,0,1,1,1,1
|
| 566 |
+
564,1,1,1,0,0
|
| 567 |
+
565,0,1,1,1,0
|
| 568 |
+
566,1,1,1,1,0
|
| 569 |
+
567,1,0,0,0,0
|
| 570 |
+
568,1,1,0,0,1
|
| 571 |
+
569,1,1,0,1,1
|
| 572 |
+
570,1,1,1,1,1
|
| 573 |
+
571,1,1,0,0,1
|
| 574 |
+
572,0,1,0,1,1
|
| 575 |
+
573,1,1,0,1,1
|
| 576 |
+
574,0,1,0,0,0
|
| 577 |
+
575,0,1,0,1,1
|
| 578 |
+
576,0,1,0,0,1
|
| 579 |
+
577,0,0,1,0,1
|
| 580 |
+
578,0,0,0,0,0
|
| 581 |
+
579,1,0,1,0,1
|
| 582 |
+
580,1,0,0,1,0
|
| 583 |
+
581,1,1,0,0,1
|
| 584 |
+
582,0,1,0,0,0
|
| 585 |
+
583,0,1,1,1,1
|
| 586 |
+
584,0,0,1,1,1
|
| 587 |
+
585,1,0,0,0,1
|
| 588 |
+
586,1,1,1,0,0
|
| 589 |
+
587,0,0,0,1,1
|
| 590 |
+
588,0,0,1,0,0
|
| 591 |
+
589,1,0,1,1,1
|
| 592 |
+
590,0,0,1,1,1
|
| 593 |
+
591,0,1,0,0,0
|
| 594 |
+
592,0,1,1,1,0
|
| 595 |
+
593,0,0,0,0,1
|
| 596 |
+
594,0,0,1,1,1
|
| 597 |
+
595,1,1,0,0,0
|
| 598 |
+
596,1,0,0,1,1
|
| 599 |
+
597,1,1,0,1,0
|
| 600 |
+
598,0,1,1,0,0
|
| 601 |
+
599,1,1,0,1,1
|
| 602 |
+
600,1,1,0,0,0
|
| 603 |
+
601,1,1,0,0,0
|
| 604 |
+
602,1,1,1,1,1
|
| 605 |
+
603,1,0,0,0,0
|
| 606 |
+
604,0,0,1,0,1
|
| 607 |
+
605,1,1,1,1,0
|
| 608 |
+
606,1,1,1,0,1
|
| 609 |
+
607,1,1,1,0,0
|
| 610 |
+
608,1,0,0,0,1
|
| 611 |
+
609,0,1,1,0,0
|
| 612 |
+
610,0,0,0,0,0
|
| 613 |
+
611,1,0,1,0,1
|
| 614 |
+
612,1,1,0,1,0
|
| 615 |
+
613,1,1,1,0,0
|
| 616 |
+
614,1,0,0,1,1
|
| 617 |
+
615,0,0,0,1,1
|
| 618 |
+
616,1,0,1,0,1
|
| 619 |
+
617,1,1,0,0,0
|
| 620 |
+
618,0,0,1,0,0
|
| 621 |
+
619,0,1,1,0,0
|
| 622 |
+
620,0,1,0,0,0
|
| 623 |
+
621,1,1,0,0,0
|
| 624 |
+
622,1,1,1,1,0
|
| 625 |
+
623,0,1,0,0,1
|
| 626 |
+
624,1,1,1,0,1
|
| 627 |
+
625,0,1,0,1,1
|
| 628 |
+
626,0,0,1,0,1
|
| 629 |
+
627,1,1,0,1,1
|
| 630 |
+
628,1,1,1,1,1
|
| 631 |
+
629,1,1,0,1,1
|
| 632 |
+
630,1,0,0,1,1
|
| 633 |
+
631,1,1,1,1,1
|
| 634 |
+
632,1,1,1,0,0
|
| 635 |
+
633,1,1,0,0,0
|
| 636 |
+
634,0,0,0,0,0
|
| 637 |
+
635,0,1,1,0,0
|
| 638 |
+
636,1,0,0,0,0
|
| 639 |
+
637,1,0,1,1,0
|
| 640 |
+
638,1,0,1,1,0
|
| 641 |
+
639,1,1,1,0,0
|
| 642 |
+
640,0,1,0,1,0
|
| 643 |
+
641,0,0,1,0,1
|
| 644 |
+
642,0,0,0,1,0
|
| 645 |
+
643,1,1,0,0,1
|
| 646 |
+
644,1,1,0,0,0
|
| 647 |
+
645,0,1,0,0,0
|
| 648 |
+
646,1,1,1,1,1
|
| 649 |
+
647,1,1,0,0,1
|
| 650 |
+
648,1,0,1,0,0
|
| 651 |
+
649,0,0,1,1,0
|
| 652 |
+
650,0,0,1,0,0
|
| 653 |
+
651,1,0,0,1,1
|
| 654 |
+
652,1,1,0,0,1
|
| 655 |
+
653,0,0,0,1,1
|
| 656 |
+
654,1,1,1,1,1
|
| 657 |
+
655,0,0,0,0,0
|
| 658 |
+
656,1,1,0,1,1
|
| 659 |
+
657,0,0,0,0,0
|
| 660 |
+
658,1,1,0,0,0
|
| 661 |
+
659,1,0,1,0,1
|
| 662 |
+
660,1,1,1,1,1
|
| 663 |
+
661,0,0,0,1,1
|
| 664 |
+
662,0,1,1,0,1
|
| 665 |
+
663,0,1,1,0,1
|
| 666 |
+
664,1,0,0,1,0
|
| 667 |
+
665,0,0,0,0,0
|
| 668 |
+
666,1,1,1,0,0
|
| 669 |
+
667,0,1,1,1,0
|
| 670 |
+
668,0,0,1,0,1
|
| 671 |
+
669,0,0,1,0,1
|
| 672 |
+
670,1,0,0,0,1
|
| 673 |
+
671,0,1,1,1,0
|
| 674 |
+
672,1,1,1,0,0
|
| 675 |
+
673,1,1,1,1,0
|
| 676 |
+
674,0,0,0,1,1
|
| 677 |
+
675,1,0,0,1,0
|
| 678 |
+
676,0,0,0,1,1
|
| 679 |
+
677,1,1,0,1,0
|
| 680 |
+
678,1,0,0,1,0
|
| 681 |
+
679,0,1,1,1,0
|
| 682 |
+
680,0,0,1,0,0
|
| 683 |
+
681,0,0,0,0,1
|
| 684 |
+
682,0,0,1,0,1
|
| 685 |
+
683,0,1,0,1,0
|
| 686 |
+
684,1,1,0,0,1
|
| 687 |
+
685,1,1,1,1,1
|
| 688 |
+
686,0,0,1,1,0
|
| 689 |
+
687,0,0,0,0,1
|
| 690 |
+
688,0,1,1,0,0
|
| 691 |
+
689,1,0,0,0,0
|
| 692 |
+
690,1,0,1,0,1
|
| 693 |
+
691,0,0,0,1,0
|
| 694 |
+
692,1,0,0,1,1
|
| 695 |
+
693,1,1,0,1,0
|
| 696 |
+
694,0,1,0,0,0
|
| 697 |
+
695,0,1,1,0,0
|
| 698 |
+
696,0,0,1,1,0
|
| 699 |
+
697,1,1,1,1,0
|
| 700 |
+
698,0,1,1,1,0
|
| 701 |
+
699,0,0,0,1,0
|
| 702 |
+
700,1,1,1,0,0
|
| 703 |
+
701,1,1,1,0,0
|
| 704 |
+
702,0,1,0,1,1
|
| 705 |
+
703,0,1,1,1,1
|
| 706 |
+
704,0,0,0,1,1
|
| 707 |
+
705,0,0,1,1,1
|
| 708 |
+
706,1,0,0,0,1
|
| 709 |
+
707,1,1,1,0,1
|
| 710 |
+
708,0,1,0,0,1
|
| 711 |
+
709,1,1,0,0,1
|
| 712 |
+
710,1,1,0,0,1
|
| 713 |
+
711,1,0,0,1,0
|
| 714 |
+
712,0,0,0,1,0
|
| 715 |
+
713,1,0,0,1,1
|
| 716 |
+
714,1,0,1,0,1
|
| 717 |
+
715,1,0,0,1,1
|
| 718 |
+
716,1,1,1,1,0
|
| 719 |
+
717,0,0,0,0,1
|
| 720 |
+
718,1,1,0,1,1
|
| 721 |
+
719,1,1,1,1,1
|
| 722 |
+
720,0,1,1,0,1
|
| 723 |
+
721,1,0,1,1,1
|
| 724 |
+
722,0,0,1,1,0
|
| 725 |
+
723,0,0,0,0,0
|
| 726 |
+
724,1,0,0,0,0
|
| 727 |
+
725,0,0,1,0,0
|
| 728 |
+
726,1,1,1,0,1
|
| 729 |
+
727,1,1,0,0,1
|
| 730 |
+
728,0,1,1,1,1
|
| 731 |
+
729,1,0,1,1,0
|
| 732 |
+
730,0,0,1,1,1
|
| 733 |
+
731,0,0,1,1,0
|
| 734 |
+
732,1,1,0,0,0
|
| 735 |
+
733,1,1,0,0,1
|
| 736 |
+
734,0,0,0,0,0
|
| 737 |
+
735,0,1,0,1,0
|
| 738 |
+
736,1,1,0,1,1
|
| 739 |
+
737,0,0,1,0,0
|
| 740 |
+
738,0,1,0,1,1
|
| 741 |
+
739,1,1,0,1,0
|
| 742 |
+
740,0,1,0,0,1
|
| 743 |
+
741,1,0,1,1,1
|
| 744 |
+
742,1,0,0,0,0
|
| 745 |
+
743,0,1,0,0,1
|
| 746 |
+
744,0,0,0,1,1
|
| 747 |
+
745,1,0,0,0,0
|
| 748 |
+
746,0,1,1,1,1
|
| 749 |
+
747,1,0,0,1,1
|
| 750 |
+
748,1,0,0,1,1
|
| 751 |
+
749,0,0,0,0,1
|
| 752 |
+
750,0,1,0,0,1
|
| 753 |
+
751,0,0,1,1,1
|
| 754 |
+
752,0,1,0,1,1
|
| 755 |
+
753,1,1,1,1,0
|
| 756 |
+
754,1,1,0,0,0
|
| 757 |
+
755,0,0,0,1,0
|
| 758 |
+
756,0,0,1,0,1
|
| 759 |
+
757,1,1,1,0,0
|
| 760 |
+
758,0,0,0,0,1
|
| 761 |
+
759,0,0,1,0,0
|
| 762 |
+
760,0,0,0,1,1
|
| 763 |
+
761,1,0,1,1,1
|
| 764 |
+
762,1,0,1,1,0
|
| 765 |
+
763,1,1,1,1,1
|
| 766 |
+
764,1,0,1,1,1
|
| 767 |
+
765,0,1,0,1,0
|
| 768 |
+
766,1,0,0,1,1
|
| 769 |
+
767,0,0,1,0,0
|
| 770 |
+
768,0,1,0,1,1
|
| 771 |
+
769,0,0,0,1,1
|
| 772 |
+
770,0,0,1,1,0
|
| 773 |
+
771,1,1,1,0,1
|
| 774 |
+
772,1,0,0,1,0
|
| 775 |
+
773,1,1,0,1,1
|
| 776 |
+
774,1,1,1,0,0
|
| 777 |
+
775,0,0,0,0,0
|
| 778 |
+
776,1,1,1,1,0
|
| 779 |
+
777,0,1,0,1,0
|
| 780 |
+
778,0,1,0,1,1
|
| 781 |
+
779,0,0,1,1,0
|
| 782 |
+
780,1,1,0,0,0
|
| 783 |
+
781,0,1,0,1,0
|
| 784 |
+
782,1,1,0,1,1
|
| 785 |
+
783,1,0,1,1,0
|
| 786 |
+
784,0,1,1,1,1
|
| 787 |
+
785,0,1,1,0,1
|
| 788 |
+
786,1,0,1,1,1
|
| 789 |
+
787,0,1,1,1,0
|
| 790 |
+
788,1,0,1,0,0
|
| 791 |
+
789,0,0,0,1,0
|
| 792 |
+
790,0,0,0,0,1
|
| 793 |
+
791,0,1,1,0,1
|
| 794 |
+
792,0,1,1,0,0
|
| 795 |
+
793,1,1,0,0,0
|
| 796 |
+
794,0,0,1,0,0
|
| 797 |
+
795,1,0,1,0,0
|
| 798 |
+
796,0,1,1,1,1
|
| 799 |
+
797,1,1,1,0,0
|
| 800 |
+
798,0,0,0,0,0
|
| 801 |
+
799,0,1,0,0,0
|
| 802 |
+
800,0,1,1,0,1
|
| 803 |
+
801,1,0,0,1,0
|
| 804 |
+
802,0,1,1,1,1
|
| 805 |
+
803,0,0,1,1,0
|
| 806 |
+
804,0,0,0,1,1
|
| 807 |
+
805,1,1,0,1,1
|
| 808 |
+
806,1,1,0,0,1
|
| 809 |
+
807,0,0,1,1,1
|
| 810 |
+
808,0,1,0,1,0
|
| 811 |
+
809,0,1,0,0,0
|
| 812 |
+
810,0,0,0,1,1
|
| 813 |
+
811,0,0,1,1,0
|
| 814 |
+
812,1,0,0,0,0
|
| 815 |
+
813,0,0,1,1,1
|
| 816 |
+
814,1,1,0,0,1
|
| 817 |
+
815,1,0,1,0,1
|
| 818 |
+
816,0,0,0,0,1
|
| 819 |
+
817,0,0,0,0,1
|
| 820 |
+
818,0,0,1,0,1
|
| 821 |
+
819,1,0,0,0,1
|
| 822 |
+
820,1,1,0,1,0
|
| 823 |
+
821,1,1,1,0,0
|
| 824 |
+
822,1,0,1,0,1
|
| 825 |
+
823,0,0,0,0,0
|
| 826 |
+
824,1,0,0,0,0
|
| 827 |
+
825,1,1,1,0,1
|
| 828 |
+
826,1,1,0,0,1
|
| 829 |
+
827,1,1,0,1,0
|
| 830 |
+
828,0,1,0,1,0
|
| 831 |
+
829,1,0,1,1,0
|
| 832 |
+
830,0,0,0,1,1
|
| 833 |
+
831,1,0,0,1,1
|
| 834 |
+
832,0,0,1,0,0
|
| 835 |
+
833,0,0,1,1,0
|
| 836 |
+
834,1,1,0,1,1
|
| 837 |
+
835,1,1,1,0,0
|
| 838 |
+
836,0,1,0,1,0
|
| 839 |
+
837,1,1,1,0,0
|
| 840 |
+
838,0,1,1,0,1
|
| 841 |
+
839,1,0,0,0,1
|
| 842 |
+
840,1,0,1,0,1
|
| 843 |
+
841,0,0,0,1,1
|
| 844 |
+
842,0,0,1,0,0
|
| 845 |
+
843,1,0,1,0,1
|
| 846 |
+
844,1,0,0,1,0
|
| 847 |
+
845,1,0,0,1,1
|
| 848 |
+
846,1,1,0,0,0
|
| 849 |
+
847,0,0,0,0,1
|
| 850 |
+
848,1,0,0,1,0
|
| 851 |
+
849,1,0,1,1,1
|
| 852 |
+
850,0,0,0,1,1
|
| 853 |
+
851,0,1,1,0,1
|
| 854 |
+
852,0,0,0,0,0
|
| 855 |
+
853,1,0,1,0,0
|
| 856 |
+
854,0,1,1,0,1
|
| 857 |
+
855,0,1,0,0,0
|
| 858 |
+
856,0,0,0,1,0
|
| 859 |
+
857,0,1,1,0,1
|
| 860 |
+
858,1,0,0,0,0
|
| 861 |
+
859,0,1,0,1,1
|
| 862 |
+
860,1,1,0,0,1
|
| 863 |
+
861,1,1,0,0,1
|
| 864 |
+
862,0,0,0,1,1
|
| 865 |
+
863,0,1,1,1,1
|
| 866 |
+
864,1,1,1,1,0
|
| 867 |
+
865,0,0,0,0,1
|
| 868 |
+
866,1,1,0,0,0
|
| 869 |
+
867,0,0,0,1,1
|
| 870 |
+
868,1,0,1,0,0
|
| 871 |
+
869,0,0,0,1,0
|
| 872 |
+
870,0,1,1,0,1
|
| 873 |
+
871,0,1,1,1,1
|
| 874 |
+
872,1,1,1,1,0
|
| 875 |
+
873,0,0,1,0,1
|
| 876 |
+
874,0,0,1,0,0
|
| 877 |
+
875,1,0,0,0,1
|
| 878 |
+
876,0,0,0,0,1
|
| 879 |
+
877,1,0,0,0,0
|
| 880 |
+
878,0,0,0,1,1
|
| 881 |
+
879,0,1,0,0,1
|
| 882 |
+
880,1,1,1,1,0
|
| 883 |
+
881,0,0,0,0,0
|
| 884 |
+
882,0,0,0,1,1
|
| 885 |
+
883,0,1,0,0,1
|
| 886 |
+
884,0,1,0,1,1
|
| 887 |
+
885,0,0,1,0,0
|
| 888 |
+
886,0,0,0,1,0
|
| 889 |
+
887,0,1,1,0,1
|
| 890 |
+
888,1,0,0,1,0
|
| 891 |
+
889,1,0,1,0,1
|
| 892 |
+
890,1,0,1,1,1
|
| 893 |
+
891,0,0,1,1,1
|
| 894 |
+
892,1,1,0,1,0
|
| 895 |
+
893,0,1,1,0,0
|
| 896 |
+
894,0,0,0,0,1
|
| 897 |
+
895,1,1,1,1,0
|
| 898 |
+
896,1,0,1,1,1
|
| 899 |
+
897,0,1,1,0,0
|
| 900 |
+
898,1,1,0,0,1
|
| 901 |
+
899,0,0,0,1,0
|
| 902 |
+
900,0,1,0,0,0
|
| 903 |
+
901,0,1,0,0,1
|
| 904 |
+
902,1,1,0,1,0
|
| 905 |
+
903,1,0,1,1,0
|
| 906 |
+
904,0,1,0,0,0
|
| 907 |
+
905,0,0,0,1,1
|
| 908 |
+
906,0,0,1,0,1
|
| 909 |
+
907,0,1,1,0,1
|
| 910 |
+
908,1,1,0,0,1
|
| 911 |
+
909,1,0,0,1,0
|
| 912 |
+
910,0,1,1,1,0
|
| 913 |
+
911,0,1,1,1,0
|
| 914 |
+
912,0,1,0,1,1
|
| 915 |
+
913,1,1,0,0,1
|
| 916 |
+
914,0,0,0,1,0
|
| 917 |
+
915,0,0,0,0,1
|
| 918 |
+
916,0,0,1,1,0
|
| 919 |
+
917,1,1,0,1,0
|
| 920 |
+
918,1,0,0,1,0
|
| 921 |
+
919,1,0,1,0,0
|
| 922 |
+
920,1,0,0,1,0
|
| 923 |
+
921,1,0,1,1,0
|
| 924 |
+
922,1,0,1,1,1
|
| 925 |
+
923,0,1,1,0,1
|
| 926 |
+
924,1,0,1,1,0
|
| 927 |
+
925,0,0,1,1,0
|
| 928 |
+
926,1,0,0,0,1
|
| 929 |
+
927,0,1,1,0,0
|
| 930 |
+
928,0,1,1,0,1
|
| 931 |
+
929,1,1,1,0,0
|
| 932 |
+
930,0,0,1,1,0
|
| 933 |
+
931,0,0,0,0,1
|
| 934 |
+
932,0,0,1,0,1
|
| 935 |
+
933,1,1,0,0,0
|
| 936 |
+
934,1,0,0,0,0
|
| 937 |
+
935,1,0,0,1,1
|
| 938 |
+
936,0,1,1,1,0
|
| 939 |
+
937,0,0,0,0,0
|
| 940 |
+
938,1,0,0,1,0
|
| 941 |
+
939,0,1,0,1,0
|
| 942 |
+
940,1,1,0,1,1
|
| 943 |
+
941,0,0,0,0,0
|
| 944 |
+
942,1,0,1,0,0
|
| 945 |
+
943,1,1,0,0,0
|
| 946 |
+
944,1,0,1,0,0
|
| 947 |
+
945,1,1,1,0,1
|
| 948 |
+
946,1,0,1,0,1
|
| 949 |
+
947,1,0,0,1,1
|
| 950 |
+
948,1,1,1,1,0
|
| 951 |
+
949,1,1,0,1,1
|
| 952 |
+
950,0,0,0,0,1
|
| 953 |
+
951,1,1,0,1,1
|
| 954 |
+
952,0,0,0,1,1
|
| 955 |
+
953,0,1,0,0,0
|
| 956 |
+
954,0,1,0,1,0
|
| 957 |
+
955,0,0,0,0,1
|
| 958 |
+
956,1,1,1,0,1
|
| 959 |
+
957,0,0,0,1,0
|
| 960 |
+
958,1,1,1,0,0
|
| 961 |
+
959,0,0,1,1,0
|
| 962 |
+
960,1,0,1,1,0
|
| 963 |
+
961,1,1,0,1,1
|
| 964 |
+
962,0,1,1,0,1
|
| 965 |
+
963,0,1,0,0,1
|
| 966 |
+
964,0,0,0,1,1
|
| 967 |
+
965,1,1,0,0,0
|
| 968 |
+
966,1,1,0,1,0
|
| 969 |
+
967,0,0,0,1,0
|
| 970 |
+
968,1,1,1,1,0
|
| 971 |
+
969,1,0,1,1,1
|
| 972 |
+
970,0,1,0,0,1
|
| 973 |
+
971,0,1,1,1,0
|
| 974 |
+
972,0,1,0,1,0
|
| 975 |
+
973,1,1,1,0,0
|
| 976 |
+
974,1,0,0,0,0
|
| 977 |
+
975,0,1,0,1,1
|
| 978 |
+
976,1,1,1,0,1
|
| 979 |
+
977,0,1,0,0,0
|
| 980 |
+
978,0,0,1,1,1
|
| 981 |
+
979,1,1,1,0,1
|
| 982 |
+
980,1,0,0,1,1
|
| 983 |
+
981,0,0,0,0,1
|
| 984 |
+
982,0,0,1,0,1
|
| 985 |
+
983,1,0,0,1,1
|
| 986 |
+
984,0,0,0,0,1
|
| 987 |
+
985,0,0,0,0,0
|
| 988 |
+
986,1,0,1,0,1
|
| 989 |
+
987,0,0,1,1,0
|
| 990 |
+
988,0,0,0,1,1
|
| 991 |
+
989,0,0,1,1,1
|
| 992 |
+
990,0,1,1,1,0
|
| 993 |
+
991,0,0,1,1,0
|
| 994 |
+
992,1,1,1,0,0
|
| 995 |
+
993,1,1,0,0,0
|
| 996 |
+
994,1,1,0,1,0
|
| 997 |
+
995,0,1,1,1,1
|
| 998 |
+
996,1,0,1,1,0
|
| 999 |
+
997,0,0,1,0,1
|
| 1000 |
+
998,1,1,1,1,1
|
| 1001 |
+
999,1,0,1,1,1
|
| 1002 |
+
1000,1,0,0,0,1
|
| 1003 |
+
1001,1,0,0,0,0
|
| 1004 |
+
1002,1,1,1,1,1
|
| 1005 |
+
1003,1,0,1,0,1
|
| 1006 |
+
1004,0,1,0,1,0
|
| 1007 |
+
1005,1,0,0,0,1
|
| 1008 |
+
1006,0,0,1,0,0
|
| 1009 |
+
1007,1,0,1,0,1
|
| 1010 |
+
1008,1,1,1,1,0
|
| 1011 |
+
1009,1,1,0,0,0
|
| 1012 |
+
1010,1,0,0,1,0
|
| 1013 |
+
1011,1,1,1,1,0
|
| 1014 |
+
1012,1,0,0,0,0
|
| 1015 |
+
1013,1,1,1,1,1
|
| 1016 |
+
1014,1,1,1,0,0
|
| 1017 |
+
1015,1,0,1,0,1
|
| 1018 |
+
1016,1,0,0,0,1
|
| 1019 |
+
1017,1,1,0,1,1
|
| 1020 |
+
1018,0,0,0,0,1
|
| 1021 |
+
1019,0,0,1,1,0
|
| 1022 |
+
1020,1,1,1,1,0
|
| 1023 |
+
1021,1,0,1,0,1
|
| 1024 |
+
1022,1,0,0,1,1
|
| 1025 |
+
1023,0,1,0,1,0
|
| 1026 |
+
1024,1,0,1,1,1
|
| 1027 |
+
1025,0,1,1,0,1
|
| 1028 |
+
1026,0,1,1,1,0
|
| 1029 |
+
1027,0,0,0,0,1
|
| 1030 |
+
1028,1,0,1,1,0
|
| 1031 |
+
1029,1,1,0,0,0
|
| 1032 |
+
1030,1,0,1,1,0
|
| 1033 |
+
1031,0,0,1,0,0
|
| 1034 |
+
1032,1,0,0,0,0
|
| 1035 |
+
1033,0,0,0,0,1
|
| 1036 |
+
1034,0,1,0,1,0
|
| 1037 |
+
1035,1,0,0,0,1
|
| 1038 |
+
1036,0,1,1,1,1
|
| 1039 |
+
1037,0,0,0,0,0
|
| 1040 |
+
1038,0,1,0,1,1
|
| 1041 |
+
1039,0,1,1,1,0
|
| 1042 |
+
1040,0,0,0,0,1
|
| 1043 |
+
1041,1,1,1,1,0
|
| 1044 |
+
1042,1,1,1,0,1
|
| 1045 |
+
1043,1,0,1,0,0
|
| 1046 |
+
1044,0,1,0,1,1
|
| 1047 |
+
1045,0,1,0,1,0
|
| 1048 |
+
1046,1,1,1,0,0
|
| 1049 |
+
1047,0,0,0,0,0
|
| 1050 |
+
1048,0,0,0,1,0
|
| 1051 |
+
1049,1,0,0,1,0
|
| 1052 |
+
1050,1,0,0,0,0
|
| 1053 |
+
1051,0,1,1,0,0
|
| 1054 |
+
1052,0,0,1,1,1
|
| 1055 |
+
1053,0,1,0,1,1
|
| 1056 |
+
1054,0,0,1,1,0
|
| 1057 |
+
1055,1,1,0,1,0
|
| 1058 |
+
1056,1,0,0,0,1
|
| 1059 |
+
1057,1,1,1,0,1
|
| 1060 |
+
1058,1,0,0,1,0
|
| 1061 |
+
1059,0,1,1,1,0
|
| 1062 |
+
1060,1,0,1,1,1
|
| 1063 |
+
1061,0,1,0,0,0
|
| 1064 |
+
1062,1,1,0,0,0
|
| 1065 |
+
1063,0,0,0,1,1
|
| 1066 |
+
1064,0,0,0,1,1
|
| 1067 |
+
1065,1,1,1,0,1
|
| 1068 |
+
1066,1,1,0,1,0
|
| 1069 |
+
1067,0,1,0,0,1
|
| 1070 |
+
1068,0,1,0,0,1
|
| 1071 |
+
1069,0,1,1,0,1
|
| 1072 |
+
1070,1,1,1,1,1
|
| 1073 |
+
1071,1,0,1,0,0
|
| 1074 |
+
1072,1,0,0,1,1
|
| 1075 |
+
1073,1,0,1,1,0
|
| 1076 |
+
1074,1,0,0,1,0
|
| 1077 |
+
1075,1,1,1,0,1
|
| 1078 |
+
1076,1,1,0,1,0
|
| 1079 |
+
1077,0,0,0,1,1
|
| 1080 |
+
1078,0,0,1,0,1
|
| 1081 |
+
1079,1,1,0,1,1
|
| 1082 |
+
1080,0,0,1,0,0
|
| 1083 |
+
1081,1,1,1,0,0
|
| 1084 |
+
1082,0,0,1,0,1
|
| 1085 |
+
1083,1,0,0,0,1
|
| 1086 |
+
1084,1,1,0,0,1
|
| 1087 |
+
1085,1,0,0,1,1
|
| 1088 |
+
1086,0,1,1,0,1
|
| 1089 |
+
1087,0,0,0,0,1
|
| 1090 |
+
1088,0,1,1,1,0
|
| 1091 |
+
1089,1,0,1,1,1
|
| 1092 |
+
1090,0,0,0,0,0
|
| 1093 |
+
1091,0,1,1,0,0
|
| 1094 |
+
1092,1,1,1,1,0
|
| 1095 |
+
1093,0,0,0,1,0
|
| 1096 |
+
1094,1,1,1,1,1
|
| 1097 |
+
1095,1,0,0,0,1
|
| 1098 |
+
1096,1,1,0,0,0
|
| 1099 |
+
1097,1,0,1,1,1
|
| 1100 |
+
1098,1,0,0,0,1
|
| 1101 |
+
1099,0,0,0,0,0
|
| 1102 |
+
1100,1,0,1,1,0
|
| 1103 |
+
1101,0,0,0,0,0
|
| 1104 |
+
1102,0,0,1,1,1
|
| 1105 |
+
1103,0,1,0,0,0
|
| 1106 |
+
1104,0,1,0,0,0
|
| 1107 |
+
1105,0,0,1,0,1
|
| 1108 |
+
1106,1,0,0,1,0
|
| 1109 |
+
1107,1,1,1,0,1
|
| 1110 |
+
1108,1,0,0,1,0
|
| 1111 |
+
1109,1,0,0,1,0
|
| 1112 |
+
1110,1,0,0,1,0
|
| 1113 |
+
1111,1,0,1,0,1
|
| 1114 |
+
1112,1,0,0,0,0
|
| 1115 |
+
1113,1,1,0,1,0
|
| 1116 |
+
1114,1,0,1,1,0
|
| 1117 |
+
1115,0,1,1,1,0
|
| 1118 |
+
1116,0,1,1,0,0
|
| 1119 |
+
1117,0,1,1,0,0
|
| 1120 |
+
1118,1,0,1,1,1
|
| 1121 |
+
1119,1,0,1,0,0
|
| 1122 |
+
1120,1,0,0,1,1
|
| 1123 |
+
1121,1,0,1,0,1
|
| 1124 |
+
1122,1,0,1,0,1
|
| 1125 |
+
1123,0,0,1,0,1
|
| 1126 |
+
1124,1,0,0,1,0
|
| 1127 |
+
1125,1,1,0,1,0
|
| 1128 |
+
1126,0,1,1,0,0
|
| 1129 |
+
1127,0,0,1,0,1
|
| 1130 |
+
1128,0,1,1,0,1
|
| 1131 |
+
1129,0,1,0,0,1
|
| 1132 |
+
1130,1,1,0,0,1
|
| 1133 |
+
1131,1,0,0,1,0
|
| 1134 |
+
1132,0,0,0,1,0
|
| 1135 |
+
1133,0,1,0,1,0
|
| 1136 |
+
1134,0,0,1,0,1
|
| 1137 |
+
1135,1,0,1,0,0
|
| 1138 |
+
1136,1,0,1,0,0
|
| 1139 |
+
1137,0,1,1,0,1
|
| 1140 |
+
1138,0,1,1,1,1
|
| 1141 |
+
1139,1,0,0,1,1
|
| 1142 |
+
1140,0,0,1,0,1
|
| 1143 |
+
1141,1,0,0,0,0
|
| 1144 |
+
1142,1,1,0,0,1
|
| 1145 |
+
1143,0,1,1,1,0
|
| 1146 |
+
1144,0,1,0,0,0
|
| 1147 |
+
1145,0,0,1,1,1
|
| 1148 |
+
1146,0,1,1,1,0
|
| 1149 |
+
1147,1,0,0,0,0
|
| 1150 |
+
1148,0,0,1,0,0
|
| 1151 |
+
1149,0,1,0,0,1
|
| 1152 |
+
1150,1,1,1,1,0
|
| 1153 |
+
1151,1,1,0,0,1
|
| 1154 |
+
1152,1,0,0,1,0
|
| 1155 |
+
1153,1,0,1,0,1
|
| 1156 |
+
1154,0,1,1,0,1
|
| 1157 |
+
1155,0,0,1,1,0
|
| 1158 |
+
1156,1,0,1,0,1
|
| 1159 |
+
1157,0,0,1,1,1
|
| 1160 |
+
1158,0,0,0,0,1
|
| 1161 |
+
1159,1,1,1,0,1
|
| 1162 |
+
1160,0,1,0,0,0
|
| 1163 |
+
1161,1,1,0,1,0
|
| 1164 |
+
1162,1,0,1,1,1
|
| 1165 |
+
1163,1,1,1,0,0
|
| 1166 |
+
1164,0,0,1,0,1
|
| 1167 |
+
1165,0,0,1,0,0
|
| 1168 |
+
1166,1,1,1,0,1
|
| 1169 |
+
1167,0,1,0,0,0
|
| 1170 |
+
1168,0,0,1,0,0
|
| 1171 |
+
1169,0,0,1,0,1
|
| 1172 |
+
1170,1,1,1,1,0
|
| 1173 |
+
1171,1,1,0,1,1
|
| 1174 |
+
1172,0,0,1,1,0
|
| 1175 |
+
1173,0,0,1,0,1
|
| 1176 |
+
1174,0,1,1,0,0
|
| 1177 |
+
1175,0,1,1,1,1
|
| 1178 |
+
1176,0,0,1,0,1
|
| 1179 |
+
1177,0,0,1,0,0
|
| 1180 |
+
1178,1,1,1,1,0
|
| 1181 |
+
1179,0,1,0,0,1
|
| 1182 |
+
1180,1,1,0,1,1
|
| 1183 |
+
1181,0,0,1,0,0
|
| 1184 |
+
1182,1,0,1,1,0
|
| 1185 |
+
1183,0,0,1,1,0
|
| 1186 |
+
1184,1,1,0,0,0
|
| 1187 |
+
1185,0,1,1,0,1
|
| 1188 |
+
1186,1,0,1,1,1
|
| 1189 |
+
1187,1,1,0,0,1
|
| 1190 |
+
1188,0,0,0,0,0
|
| 1191 |
+
1189,0,1,0,0,1
|
| 1192 |
+
1190,1,0,0,0,0
|
| 1193 |
+
1191,0,0,1,1,1
|
| 1194 |
+
1192,0,1,1,1,1
|
| 1195 |
+
1193,1,1,0,1,1
|
| 1196 |
+
1194,0,0,0,1,0
|
| 1197 |
+
1195,1,1,1,0,1
|
| 1198 |
+
1196,1,1,0,1,1
|
| 1199 |
+
1197,1,1,0,1,0
|
| 1200 |
+
1198,1,1,1,0,0
|
| 1201 |
+
1199,0,0,0,1,0
|
| 1202 |
+
1200,0,0,1,1,0
|
| 1203 |
+
1201,0,1,1,1,0
|
| 1204 |
+
1202,1,1,1,0,0
|
| 1205 |
+
1203,0,1,0,1,0
|
| 1206 |
+
1204,0,1,1,0,1
|
| 1207 |
+
1205,0,1,1,0,1
|
| 1208 |
+
1206,1,1,1,0,0
|
| 1209 |
+
1207,1,1,1,0,1
|
| 1210 |
+
1208,0,1,1,1,1
|
| 1211 |
+
1209,1,0,0,1,1
|
| 1212 |
+
1210,0,1,1,1,0
|
| 1213 |
+
1211,1,0,0,1,1
|
| 1214 |
+
1212,0,1,0,0,0
|
| 1215 |
+
1213,1,0,1,0,0
|
| 1216 |
+
1214,1,1,0,1,1
|
| 1217 |
+
1215,1,0,1,1,1
|
| 1218 |
+
1216,0,0,0,0,1
|
| 1219 |
+
1217,0,1,1,0,1
|
| 1220 |
+
1218,0,0,0,0,1
|
| 1221 |
+
1219,0,1,1,0,1
|
| 1222 |
+
1220,1,0,0,1,0
|
| 1223 |
+
1221,1,1,0,0,0
|
| 1224 |
+
1222,1,1,0,1,0
|
| 1225 |
+
1223,1,1,0,1,0
|
| 1226 |
+
1224,0,0,1,1,1
|
| 1227 |
+
1225,0,0,0,0,1
|
| 1228 |
+
1226,1,0,0,1,0
|
| 1229 |
+
1227,0,0,0,1,0
|
| 1230 |
+
1228,1,0,0,1,1
|
| 1231 |
+
1229,1,1,1,0,1
|
| 1232 |
+
1230,0,1,1,0,1
|
| 1233 |
+
1231,0,1,1,1,1
|
| 1234 |
+
1232,0,1,0,0,0
|
| 1235 |
+
1233,1,0,1,0,0
|
| 1236 |
+
1234,1,1,1,1,0
|
| 1237 |
+
1235,1,0,1,1,0
|
| 1238 |
+
1236,0,0,1,0,1
|
| 1239 |
+
1237,0,1,1,0,0
|
| 1240 |
+
1238,0,0,1,1,1
|
| 1241 |
+
1239,0,1,0,1,0
|
| 1242 |
+
1240,0,0,0,0,0
|
| 1243 |
+
1241,1,1,1,0,0
|
| 1244 |
+
1242,1,1,0,0,0
|
| 1245 |
+
1243,1,1,0,1,0
|
| 1246 |
+
1244,1,0,0,0,1
|
| 1247 |
+
1245,0,0,0,1,1
|
| 1248 |
+
1246,1,1,0,0,0
|
| 1249 |
+
1247,0,0,1,0,0
|
| 1250 |
+
1248,1,1,1,0,0
|
| 1251 |
+
1249,0,0,1,1,0
|
| 1252 |
+
1250,0,0,0,0,0
|
| 1253 |
+
1251,0,1,0,1,0
|
| 1254 |
+
1252,0,0,0,1,1
|
| 1255 |
+
1253,1,0,1,0,0
|
| 1256 |
+
1254,0,1,1,0,1
|
| 1257 |
+
1255,1,1,1,1,0
|
| 1258 |
+
1256,1,1,1,0,0
|
| 1259 |
+
1257,0,0,0,1,1
|
| 1260 |
+
1258,1,1,0,0,0
|
| 1261 |
+
1259,1,0,0,1,0
|
| 1262 |
+
1260,1,1,1,0,1
|
| 1263 |
+
1261,1,0,0,0,0
|
| 1264 |
+
1262,1,1,1,1,1
|
| 1265 |
+
1263,0,1,0,0,1
|
| 1266 |
+
1264,0,0,0,0,1
|
| 1267 |
+
1265,1,0,1,1,1
|
| 1268 |
+
1266,1,0,1,0,0
|
| 1269 |
+
1267,0,1,1,0,1
|
| 1270 |
+
1268,0,1,1,1,1
|
| 1271 |
+
1269,1,0,1,0,0
|
| 1272 |
+
1270,1,0,1,1,0
|
| 1273 |
+
1271,1,0,0,1,1
|
| 1274 |
+
1272,0,1,0,0,1
|
| 1275 |
+
1273,1,1,0,1,1
|
| 1276 |
+
1274,0,1,1,0,1
|
| 1277 |
+
1275,0,1,1,0,0
|
| 1278 |
+
1276,0,0,1,0,0
|
| 1279 |
+
1277,1,1,0,0,0
|
| 1280 |
+
1278,1,0,0,0,1
|
| 1281 |
+
1279,0,0,1,0,1
|
| 1282 |
+
1280,0,0,1,1,1
|
| 1283 |
+
1281,0,1,0,0,1
|
| 1284 |
+
1282,0,1,1,1,0
|
| 1285 |
+
1283,1,0,0,0,0
|
| 1286 |
+
1284,1,1,0,1,1
|
| 1287 |
+
1285,0,1,1,1,0
|
| 1288 |
+
1286,1,1,1,1,1
|
| 1289 |
+
1287,1,0,1,1,0
|
| 1290 |
+
1288,0,0,1,0,1
|
| 1291 |
+
1289,1,1,0,0,0
|
| 1292 |
+
1290,0,0,0,0,0
|
| 1293 |
+
1291,0,1,0,1,0
|
| 1294 |
+
1292,1,0,1,1,1
|
| 1295 |
+
1293,1,0,0,1,0
|
| 1296 |
+
1294,1,0,0,0,0
|
| 1297 |
+
1295,0,0,0,1,0
|
| 1298 |
+
1296,1,1,1,1,1
|
| 1299 |
+
1297,1,1,0,1,1
|
| 1300 |
+
1298,1,1,0,1,1
|
| 1301 |
+
1299,0,0,1,1,1
|
| 1302 |
+
1300,1,0,0,0,1
|
| 1303 |
+
1301,0,0,0,1,0
|
| 1304 |
+
1302,1,1,1,1,1
|
| 1305 |
+
1303,1,1,0,1,1
|
| 1306 |
+
1304,1,0,1,0,1
|
| 1307 |
+
1305,0,1,1,0,1
|
| 1308 |
+
1306,0,0,1,1,1
|
| 1309 |
+
1307,1,1,1,1,0
|
| 1310 |
+
1308,0,0,1,1,1
|
| 1311 |
+
1309,0,1,0,1,1
|
| 1312 |
+
1310,1,1,1,1,0
|
| 1313 |
+
1311,1,1,1,1,1
|
| 1314 |
+
1312,0,0,0,0,1
|
| 1315 |
+
1313,1,0,0,1,1
|
| 1316 |
+
1314,1,0,1,0,1
|
| 1317 |
+
1315,1,1,0,1,0
|
| 1318 |
+
1316,1,0,0,0,1
|
| 1319 |
+
1317,1,1,1,0,0
|
| 1320 |
+
1318,1,1,1,1,0
|
| 1321 |
+
1319,0,0,0,0,0
|
| 1322 |
+
1320,1,0,0,1,1
|
| 1323 |
+
1321,1,1,0,0,0
|
| 1324 |
+
1322,0,1,1,1,1
|
| 1325 |
+
1323,0,1,1,0,0
|
| 1326 |
+
1324,0,1,1,1,0
|
| 1327 |
+
1325,1,0,0,0,1
|
| 1328 |
+
1326,1,0,1,0,1
|
| 1329 |
+
1327,0,0,0,0,0
|
| 1330 |
+
1328,0,1,1,0,0
|
| 1331 |
+
1329,1,1,0,0,1
|
| 1332 |
+
1330,0,0,0,1,1
|
| 1333 |
+
1331,0,1,0,0,0
|
| 1334 |
+
1332,0,0,0,0,0
|
| 1335 |
+
1333,1,0,1,0,0
|
| 1336 |
+
1334,0,0,0,0,1
|
| 1337 |
+
1335,1,1,0,0,0
|
| 1338 |
+
1336,1,0,0,0,1
|
| 1339 |
+
1337,1,0,0,1,0
|
| 1340 |
+
1338,0,1,1,0,0
|
| 1341 |
+
1339,0,1,0,0,0
|
| 1342 |
+
1340,0,1,1,1,0
|
| 1343 |
+
1341,1,0,0,1,0
|
| 1344 |
+
1342,0,0,0,0,0
|
| 1345 |
+
1343,1,1,1,1,0
|
| 1346 |
+
1344,1,1,1,1,0
|
| 1347 |
+
1345,0,0,1,0,0
|
| 1348 |
+
1346,1,1,0,1,1
|
| 1349 |
+
1347,0,0,0,0,1
|
| 1350 |
+
1348,1,0,0,0,0
|
| 1351 |
+
1349,0,0,1,1,1
|
| 1352 |
+
1350,0,1,0,0,0
|
| 1353 |
+
1351,0,0,1,1,0
|
| 1354 |
+
1352,1,0,0,1,0
|
| 1355 |
+
1353,1,0,0,0,0
|
| 1356 |
+
1354,1,1,1,1,0
|
| 1357 |
+
1355,0,0,0,0,0
|
| 1358 |
+
1356,0,0,1,0,0
|
| 1359 |
+
1357,1,1,0,1,1
|
| 1360 |
+
1358,0,0,0,1,0
|
| 1361 |
+
1359,1,0,1,1,1
|
| 1362 |
+
1360,1,1,0,0,0
|
| 1363 |
+
1361,1,1,0,1,1
|
| 1364 |
+
1362,0,1,0,0,1
|
| 1365 |
+
1363,1,0,0,1,0
|
| 1366 |
+
1364,0,1,1,0,1
|
| 1367 |
+
1365,1,1,0,0,1
|
| 1368 |
+
1366,0,0,1,1,0
|
| 1369 |
+
1367,0,0,0,0,0
|
| 1370 |
+
1368,1,0,1,1,0
|
| 1371 |
+
1369,1,1,1,0,1
|
| 1372 |
+
1370,0,0,0,1,1
|
| 1373 |
+
1371,0,0,1,0,1
|
| 1374 |
+
1372,0,1,1,1,1
|
| 1375 |
+
1373,0,0,0,0,1
|
| 1376 |
+
1374,0,1,1,1,1
|
| 1377 |
+
1375,0,0,0,0,0
|
| 1378 |
+
1376,1,1,0,1,1
|
| 1379 |
+
1377,1,0,0,0,1
|
| 1380 |
+
1378,0,0,0,1,0
|
| 1381 |
+
1379,1,0,0,0,1
|
| 1382 |
+
1380,0,1,1,1,0
|
| 1383 |
+
1381,0,1,0,1,1
|
| 1384 |
+
1382,1,1,0,1,1
|
| 1385 |
+
1383,1,1,1,1,1
|
| 1386 |
+
1384,0,1,0,1,0
|
| 1387 |
+
1385,0,1,1,1,0
|
| 1388 |
+
1386,1,0,0,1,0
|
| 1389 |
+
1387,0,1,0,1,1
|
| 1390 |
+
1388,1,1,0,0,0
|
| 1391 |
+
1389,0,0,0,0,1
|
| 1392 |
+
1390,0,1,0,0,1
|
| 1393 |
+
1391,0,0,0,0,0
|
| 1394 |
+
1392,0,1,1,0,1
|
| 1395 |
+
1393,0,1,0,0,0
|
| 1396 |
+
1394,1,1,1,1,0
|
| 1397 |
+
1395,1,0,0,1,1
|
| 1398 |
+
1396,0,1,0,0,0
|
| 1399 |
+
1397,0,0,1,1,1
|
| 1400 |
+
1398,1,0,1,1,1
|
| 1401 |
+
1399,0,1,0,1,1
|
| 1402 |
+
1400,0,0,0,1,1
|
| 1403 |
+
1401,0,1,1,1,0
|
| 1404 |
+
1402,0,1,0,1,0
|
| 1405 |
+
1403,1,0,1,0,0
|
| 1406 |
+
1404,0,0,1,0,0
|
| 1407 |
+
1405,0,0,1,1,0
|
| 1408 |
+
1406,1,0,1,1,0
|
| 1409 |
+
1407,0,0,0,1,0
|
| 1410 |
+
1408,1,0,0,1,0
|
| 1411 |
+
1409,1,0,1,1,1
|
| 1412 |
+
1410,0,0,1,0,0
|
| 1413 |
+
1411,1,0,0,1,0
|
| 1414 |
+
1412,0,0,1,0,1
|
| 1415 |
+
1413,0,0,0,1,1
|
| 1416 |
+
1414,0,1,1,1,1
|
| 1417 |
+
1415,0,1,0,1,1
|
| 1418 |
+
1416,1,0,1,1,1
|
| 1419 |
+
1417,1,0,0,0,1
|
| 1420 |
+
1418,0,1,0,1,1
|
| 1421 |
+
1419,1,1,1,1,0
|
| 1422 |
+
1420,1,0,0,0,1
|
| 1423 |
+
1421,1,1,1,0,1
|
| 1424 |
+
1422,1,1,1,0,1
|
| 1425 |
+
1423,1,1,0,0,0
|
| 1426 |
+
1424,0,1,1,1,0
|
| 1427 |
+
1425,1,1,1,0,1
|
| 1428 |
+
1426,0,0,0,1,0
|
| 1429 |
+
1427,1,0,1,0,1
|
| 1430 |
+
1428,0,1,1,0,1
|
| 1431 |
+
1429,0,1,0,1,1
|
| 1432 |
+
1430,0,0,1,1,1
|
| 1433 |
+
1431,1,0,1,1,0
|
| 1434 |
+
1432,0,1,0,1,0
|
| 1435 |
+
1433,1,0,1,1,0
|
| 1436 |
+
1434,0,1,1,1,0
|
| 1437 |
+
1435,0,0,1,0,1
|
| 1438 |
+
1436,0,1,0,1,1
|
| 1439 |
+
1437,1,1,1,1,1
|
| 1440 |
+
1438,1,1,1,0,0
|
| 1441 |
+
1439,0,0,1,1,1
|
| 1442 |
+
1440,0,1,0,1,1
|
| 1443 |
+
1441,0,0,1,1,1
|
| 1444 |
+
1442,0,1,1,0,0
|
| 1445 |
+
1443,0,0,0,1,1
|
| 1446 |
+
1444,0,0,0,0,0
|
| 1447 |
+
1445,0,1,1,0,0
|
| 1448 |
+
1446,0,0,1,1,0
|
| 1449 |
+
1447,0,0,1,0,1
|
| 1450 |
+
1448,0,1,1,0,0
|
| 1451 |
+
1449,0,0,1,0,1
|
| 1452 |
+
1450,1,0,0,0,1
|
| 1453 |
+
1451,0,1,1,0,1
|
| 1454 |
+
1452,1,1,1,1,0
|
| 1455 |
+
1453,1,0,0,1,0
|
| 1456 |
+
1454,0,1,0,1,1
|
| 1457 |
+
1455,0,0,0,1,0
|
| 1458 |
+
1456,0,1,0,0,0
|
| 1459 |
+
1457,0,0,0,1,1
|
| 1460 |
+
1458,0,1,0,0,1
|
| 1461 |
+
1459,0,1,1,0,1
|
| 1462 |
+
1460,1,0,0,1,1
|
| 1463 |
+
1461,1,0,1,0,1
|
| 1464 |
+
1462,1,0,0,0,1
|
| 1465 |
+
1463,1,1,1,0,1
|
| 1466 |
+
1464,1,0,0,1,1
|
| 1467 |
+
1465,1,0,0,0,1
|
| 1468 |
+
1466,1,0,0,0,0
|
| 1469 |
+
1467,1,0,0,0,0
|
| 1470 |
+
1468,1,0,1,1,0
|
| 1471 |
+
1469,0,1,0,0,1
|
| 1472 |
+
1470,0,0,0,0,0
|
| 1473 |
+
1471,1,0,1,0,1
|
| 1474 |
+
1472,0,0,1,1,1
|
| 1475 |
+
1473,1,1,1,0,0
|
| 1476 |
+
1474,1,0,1,1,0
|
| 1477 |
+
1475,0,0,1,0,0
|
| 1478 |
+
1476,1,0,1,0,1
|
| 1479 |
+
1477,0,0,1,1,0
|
| 1480 |
+
1478,0,1,1,0,1
|
| 1481 |
+
1479,1,1,0,0,0
|
| 1482 |
+
1480,1,0,1,0,1
|
| 1483 |
+
1481,0,0,1,1,0
|
| 1484 |
+
1482,0,1,1,0,0
|
| 1485 |
+
1483,1,0,0,0,1
|
| 1486 |
+
1484,1,1,0,0,0
|
| 1487 |
+
1485,1,0,1,0,1
|
| 1488 |
+
1486,0,1,0,0,1
|
| 1489 |
+
1487,1,1,1,0,0
|
| 1490 |
+
1488,1,1,1,1,1
|
| 1491 |
+
1489,1,0,0,0,0
|
| 1492 |
+
1490,1,1,0,1,0
|
| 1493 |
+
1491,0,0,1,1,0
|
| 1494 |
+
1492,0,0,1,0,1
|
| 1495 |
+
1493,0,0,1,0,1
|
| 1496 |
+
1494,0,0,0,1,0
|
| 1497 |
+
1495,1,1,0,0,0
|
| 1498 |
+
1496,0,1,0,0,1
|
| 1499 |
+
1497,0,1,0,1,0
|
| 1500 |
+
1498,1,1,1,0,1
|
| 1501 |
+
1499,1,1,0,0,1
|
| 1502 |
+
1500,1,0,1,0,0
|
| 1503 |
+
1501,1,1,1,1,0
|
| 1504 |
+
1502,0,1,0,0,0
|
| 1505 |
+
1503,1,0,1,0,0
|
| 1506 |
+
1504,1,0,1,1,1
|
| 1507 |
+
1505,0,1,0,0,1
|
| 1508 |
+
1506,1,0,0,1,1
|
| 1509 |
+
1507,1,0,1,1,0
|
| 1510 |
+
1508,1,1,0,0,0
|
| 1511 |
+
1509,0,0,1,0,0
|
| 1512 |
+
1510,0,0,1,1,0
|
| 1513 |
+
1511,0,1,1,0,0
|
| 1514 |
+
1512,0,0,1,1,0
|
| 1515 |
+
1513,1,1,0,0,1
|
| 1516 |
+
1514,1,0,0,0,1
|
| 1517 |
+
1515,1,0,1,0,0
|
| 1518 |
+
1516,1,0,1,0,0
|
| 1519 |
+
1517,0,0,1,0,0
|
| 1520 |
+
1518,1,0,1,1,0
|
| 1521 |
+
1519,0,1,1,0,0
|
| 1522 |
+
1520,0,1,0,1,0
|
| 1523 |
+
1521,1,1,0,1,0
|
| 1524 |
+
1522,1,1,1,1,0
|
| 1525 |
+
1523,0,0,1,1,1
|
| 1526 |
+
1524,0,0,0,1,0
|
| 1527 |
+
1525,1,0,0,1,0
|
| 1528 |
+
1526,1,1,1,1,1
|
| 1529 |
+
1527,1,0,0,0,1
|
| 1530 |
+
1528,0,1,0,1,0
|
| 1531 |
+
1529,0,0,1,1,1
|
| 1532 |
+
1530,0,1,0,0,0
|
| 1533 |
+
1531,0,1,1,1,1
|
| 1534 |
+
1532,0,0,1,0,1
|
| 1535 |
+
1533,1,0,1,0,0
|
| 1536 |
+
1534,1,0,1,0,1
|
| 1537 |
+
1535,1,1,0,0,0
|
| 1538 |
+
1536,0,1,0,1,1
|
| 1539 |
+
1537,0,1,1,1,0
|
| 1540 |
+
1538,0,0,0,1,0
|
| 1541 |
+
1539,0,0,0,0,1
|
| 1542 |
+
1540,1,1,0,0,0
|
| 1543 |
+
1541,0,0,1,0,0
|
| 1544 |
+
1542,0,0,1,0,0
|
| 1545 |
+
1543,1,0,1,0,1
|
| 1546 |
+
1544,0,1,0,0,1
|
| 1547 |
+
1545,1,0,0,1,1
|
| 1548 |
+
1546,1,0,1,1,1
|
| 1549 |
+
1547,1,1,0,0,1
|
| 1550 |
+
1548,0,0,1,1,0
|
| 1551 |
+
1549,0,0,0,1,0
|
| 1552 |
+
1550,0,0,0,1,0
|
| 1553 |
+
1551,0,1,0,0,0
|
| 1554 |
+
1552,1,0,0,1,1
|
| 1555 |
+
1553,1,1,1,1,1
|
| 1556 |
+
1554,0,1,0,0,1
|
| 1557 |
+
1555,0,0,1,1,0
|
| 1558 |
+
1556,1,0,0,1,0
|
| 1559 |
+
1557,0,1,0,0,0
|
| 1560 |
+
1558,1,1,0,0,1
|
| 1561 |
+
1559,0,0,0,1,0
|
| 1562 |
+
1560,1,1,1,0,1
|
| 1563 |
+
1561,1,1,0,1,0
|
| 1564 |
+
1562,0,0,0,1,1
|
| 1565 |
+
1563,0,0,0,1,1
|
| 1566 |
+
1564,1,0,0,1,1
|
| 1567 |
+
1565,1,1,1,1,1
|
| 1568 |
+
1566,1,1,0,1,0
|
| 1569 |
+
1567,0,1,0,0,0
|
| 1570 |
+
1568,1,1,0,1,1
|
| 1571 |
+
1569,1,1,0,1,1
|
| 1572 |
+
1570,0,0,0,0,1
|
| 1573 |
+
1571,0,1,0,0,0
|
| 1574 |
+
1572,0,0,1,0,0
|
| 1575 |
+
1573,0,1,1,0,1
|
| 1576 |
+
1574,1,0,0,0,1
|
| 1577 |
+
1575,0,1,0,1,1
|
| 1578 |
+
1576,0,0,1,1,0
|
| 1579 |
+
1577,1,1,1,0,1
|
| 1580 |
+
1578,1,0,0,1,1
|
| 1581 |
+
1579,1,1,0,0,0
|
| 1582 |
+
1580,1,1,0,0,0
|
| 1583 |
+
1581,1,0,1,0,0
|
| 1584 |
+
1582,0,1,0,0,1
|
| 1585 |
+
1583,1,0,1,0,0
|
| 1586 |
+
1584,1,0,0,0,0
|
| 1587 |
+
1585,0,0,1,1,1
|
| 1588 |
+
1586,1,1,1,0,0
|
| 1589 |
+
1587,1,1,1,0,1
|
| 1590 |
+
1588,1,1,1,0,1
|
| 1591 |
+
1589,0,0,1,1,0
|
| 1592 |
+
1590,1,0,1,0,0
|
| 1593 |
+
1591,0,1,1,0,1
|
| 1594 |
+
1592,0,1,0,0,0
|
| 1595 |
+
1593,1,0,0,0,1
|
| 1596 |
+
1594,0,1,1,0,0
|
| 1597 |
+
1595,1,0,0,1,1
|
| 1598 |
+
1596,1,1,1,1,1
|
| 1599 |
+
1597,0,0,0,0,1
|
| 1600 |
+
1598,1,0,0,1,0
|
| 1601 |
+
1599,0,1,0,0,1
|
| 1602 |
+
1600,0,0,1,0,1
|
| 1603 |
+
1601,0,0,0,0,1
|
| 1604 |
+
1602,1,0,0,1,1
|
| 1605 |
+
1603,1,0,0,1,0
|
| 1606 |
+
1604,0,0,0,1,1
|
| 1607 |
+
1605,1,0,0,0,0
|
| 1608 |
+
1606,1,0,0,0,1
|
| 1609 |
+
1607,1,0,1,1,0
|
| 1610 |
+
1608,0,1,1,0,1
|
| 1611 |
+
1609,0,1,0,0,0
|
| 1612 |
+
1610,0,1,0,0,0
|
| 1613 |
+
1611,1,0,0,1,1
|
| 1614 |
+
1612,1,0,1,0,0
|
| 1615 |
+
1613,1,0,0,1,0
|
| 1616 |
+
1614,0,0,0,1,0
|
| 1617 |
+
1615,0,1,0,0,0
|
| 1618 |
+
1616,0,0,1,1,0
|
| 1619 |
+
1617,0,0,0,0,1
|
| 1620 |
+
1618,0,1,1,1,0
|
| 1621 |
+
1619,0,0,0,1,1
|
| 1622 |
+
1620,0,1,1,0,1
|
| 1623 |
+
1621,1,0,0,1,1
|
| 1624 |
+
1622,1,0,1,0,0
|
| 1625 |
+
1623,0,0,0,0,1
|
| 1626 |
+
1624,1,1,0,0,0
|
| 1627 |
+
1625,1,0,0,1,0
|
| 1628 |
+
1626,0,1,1,0,0
|
| 1629 |
+
1627,1,0,1,0,1
|
| 1630 |
+
1628,0,1,0,1,1
|
| 1631 |
+
1629,1,0,1,1,1
|
| 1632 |
+
1630,0,0,0,0,1
|
| 1633 |
+
1631,1,0,1,1,0
|
| 1634 |
+
1632,0,0,0,1,0
|
| 1635 |
+
1633,0,0,1,1,1
|
| 1636 |
+
1634,0,1,0,1,0
|
| 1637 |
+
1635,0,0,0,0,1
|
| 1638 |
+
1636,0,0,0,0,0
|
| 1639 |
+
1637,1,0,1,1,0
|
| 1640 |
+
1638,0,0,1,0,0
|
| 1641 |
+
1639,0,1,1,0,1
|
| 1642 |
+
1640,1,1,0,1,1
|
| 1643 |
+
1641,0,0,1,1,0
|
| 1644 |
+
1642,1,0,0,1,0
|
| 1645 |
+
1643,1,1,1,1,0
|
| 1646 |
+
1644,0,0,0,1,1
|
| 1647 |
+
1645,0,1,0,1,1
|
| 1648 |
+
1646,0,1,0,1,1
|
| 1649 |
+
1647,1,0,1,1,1
|
| 1650 |
+
1648,1,0,1,0,1
|
| 1651 |
+
1649,1,0,0,1,0
|
| 1652 |
+
1650,1,1,0,1,1
|
| 1653 |
+
1651,0,0,1,1,0
|
| 1654 |
+
1652,1,1,0,0,0
|
| 1655 |
+
1653,1,1,1,1,0
|
| 1656 |
+
1654,0,0,0,1,1
|
| 1657 |
+
1655,1,1,0,0,1
|
| 1658 |
+
1656,0,0,1,1,0
|
| 1659 |
+
1657,0,1,1,1,1
|
| 1660 |
+
1658,1,0,1,0,0
|
| 1661 |
+
1659,0,0,1,1,0
|
| 1662 |
+
1660,1,1,0,1,0
|
| 1663 |
+
1661,0,1,1,1,1
|
| 1664 |
+
1662,0,1,1,1,0
|
| 1665 |
+
1663,0,1,1,0,0
|
| 1666 |
+
1664,1,0,1,1,1
|
| 1667 |
+
1665,1,1,1,1,1
|
| 1668 |
+
1666,0,0,1,0,0
|
| 1669 |
+
1667,0,1,0,0,1
|
| 1670 |
+
1668,1,1,1,0,0
|
| 1671 |
+
1669,1,1,1,1,1
|
| 1672 |
+
1670,1,0,1,1,1
|
| 1673 |
+
1671,1,1,0,0,0
|
| 1674 |
+
1672,0,0,1,0,1
|
| 1675 |
+
1673,0,0,0,1,1
|
| 1676 |
+
1674,1,1,0,0,1
|
| 1677 |
+
1675,0,0,1,1,1
|
| 1678 |
+
1676,1,1,1,1,0
|
| 1679 |
+
1677,1,1,1,0,1
|
| 1680 |
+
1678,1,0,0,1,0
|
| 1681 |
+
1679,0,1,0,1,1
|
| 1682 |
+
1680,1,0,0,0,0
|
| 1683 |
+
1681,0,0,1,1,1
|
| 1684 |
+
1682,1,0,1,1,1
|
| 1685 |
+
1683,1,1,1,0,0
|
| 1686 |
+
1684,0,1,1,0,1
|
| 1687 |
+
1685,1,0,0,0,0
|
| 1688 |
+
1686,1,0,0,1,0
|
| 1689 |
+
1687,0,1,0,0,1
|
| 1690 |
+
1688,0,0,1,1,0
|
| 1691 |
+
1689,0,1,0,1,1
|
| 1692 |
+
1690,1,0,1,1,0
|
| 1693 |
+
1691,0,0,0,1,1
|
| 1694 |
+
1692,1,1,0,1,0
|
| 1695 |
+
1693,0,0,0,0,0
|
| 1696 |
+
1694,0,0,0,0,1
|
| 1697 |
+
1695,1,0,0,0,1
|
| 1698 |
+
1696,0,1,1,0,1
|
| 1699 |
+
1697,0,0,1,1,1
|
| 1700 |
+
1698,1,1,1,1,0
|
| 1701 |
+
1699,1,0,1,1,0
|
| 1702 |
+
1700,1,1,1,1,0
|
| 1703 |
+
1701,1,0,0,1,0
|
| 1704 |
+
1702,1,1,0,0,1
|
| 1705 |
+
1703,1,0,0,1,0
|
| 1706 |
+
1704,0,0,1,0,1
|
| 1707 |
+
1705,0,0,0,1,0
|
| 1708 |
+
1706,0,0,1,0,0
|
kaggle/input/2025-sep-dl-gen-ai-project/test.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
kaggle/input/2025-sep-dl-gen-ai-project/train.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
main.ipynb
ADDED
|
@@ -0,0 +1,621 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Deep Learning Project - Emotion Classification\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"This notebook implements a **multi-label emotion classification system** using state-of-the-art transformer models. The goal is to predict multiple emotions (anger, fear, joy, sadness, surprise) that may be present in a given text.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"**Key Features:**\n",
|
| 12 |
+
"- **Model**: Microsoft DeBERTa-v3-base (184M parameters)\n",
|
| 13 |
+
"- **Strategy**: 5-Fold Stratified Cross-Validation for robust performance estimation\n",
|
| 14 |
+
"- **Optimization**: Mixed Precision Training, Gradient Clipping, Learning Rate Warmup\n",
|
| 15 |
+
"- **Evaluation**: Macro F1 Score with Per-Label Threshold Tuning\n",
|
| 16 |
+
"- **Ensemble**: Average predictions across all folds for final submission\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"**Problem Type**: Multi-label classification (each text can have 0 or more emotions)\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"---\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"## 1. Imports & Setup\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"We import all necessary libraries for:\n",
|
| 25 |
+
"- **Data handling**: `numpy`, `pandas` for data manipulation\n",
|
| 26 |
+
"- **Deep learning**: `torch` (PyTorch) and `transformers` (Hugging Face) for model training\n",
|
| 27 |
+
"- **Evaluation**: `sklearn` for F1 metrics and stratified k-fold cross-validation\n",
|
| 28 |
+
"- **Optimization**: Mixed precision training with `autocast` and `GradScaler` to speed up training and reduce memory usage\n",
|
| 29 |
+
"- **Memory management**: `gc` for garbage collection to free up GPU memory between folds"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "code",
|
| 34 |
+
"execution_count": null,
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"outputs": [],
|
| 37 |
+
"source": [
|
| 38 |
+
"import numpy as np\n",
|
| 39 |
+
"import pandas as pd\n",
|
| 40 |
+
"import torch\n",
|
| 41 |
+
"import torch.nn as nn\n",
|
| 42 |
+
"from sklearn.model_selection import StratifiedKFold\n",
|
| 43 |
+
"from sklearn.metrics import f1_score\n",
|
| 44 |
+
"from transformers import (\n",
|
| 45 |
+
" AutoTokenizer,\n",
|
| 46 |
+
" AutoModelForSequenceClassification,\n",
|
| 47 |
+
" get_linear_schedule_with_warmup,\n",
|
| 48 |
+
" AutoConfig\n",
|
| 49 |
+
")\n",
|
| 50 |
+
"from torch.optim import AdamW\n",
|
| 51 |
+
"from torch.cuda.amp import autocast, GradScaler\n",
|
| 52 |
+
"import gc\n",
|
| 53 |
+
"import warnings\n",
|
| 54 |
+
"import os\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"warnings.filterwarnings(\"ignore\")"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"cell_type": "markdown",
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"source": [
|
| 63 |
+
"## 2. Configuration\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"Centralized configuration class containing all hyperparameters and paths. This makes it easy to:\n",
|
| 66 |
+
"- Experiment with different settings\n",
|
| 67 |
+
"- Ensure reproducibility\n",
|
| 68 |
+
"- Keep the code organized\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"**Key Hyperparameters:**\n",
|
| 71 |
+
"- `MODEL_NAME`: DeBERTa-v3-base chosen for its strong performance on text classification tasks\n",
|
| 72 |
+
"- `MAX_LEN=128`: Balance between capturing context and computational efficiency\n",
|
| 73 |
+
"- `BATCH_SIZE=16`: Fits in GPU memory while maintaining good gradient estimates\n",
|
| 74 |
+
"- `LR=1.5e-5`: Small learning rate typical for fine-tuning pre-trained transformers\n",
|
| 75 |
+
"- `EPOCHS=4`: Sufficient for fine-tuning without overfitting\n",
|
| 76 |
+
"- `N_FOLDS=5`: Standard choice for cross-validation, balances between training data and validation reliability"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": null,
|
| 82 |
+
"metadata": {},
|
| 83 |
+
"outputs": [],
|
| 84 |
+
"source": [
|
| 85 |
+
"# ========= CONFIG =========\n",
|
| 86 |
+
"class Config:\n",
|
| 87 |
+
" SEED = 42\n",
|
| 88 |
+
" LABELS = [\"anger\", \"fear\", \"joy\", \"sadness\", \"surprise\"]\n",
|
| 89 |
+
" MODEL_NAME = \"microsoft/deberta-v3-base\"\n",
|
| 90 |
+
" MAX_LEN = 128\n",
|
| 91 |
+
" BATCH_SIZE = 16\n",
|
| 92 |
+
" EPOCHS = 4\n",
|
| 93 |
+
" LR = 1.5e-5\n",
|
| 94 |
+
" WEIGHT_DECAY = 0.01\n",
|
| 95 |
+
" WARMUP_RATIO = 0.1\n",
|
| 96 |
+
" N_FOLDS = 5\n",
|
| 97 |
+
" TRAIN_CSV = \"/kaggle/input/2025-sep-dl-gen-ai-project/train.csv\"\n",
|
| 98 |
+
" TEST_CSV = \"/kaggle/input/2025-sep-dl-gen-ai-project/test.csv\"\n",
|
| 99 |
+
" SUBMISSION_PATH = \"submission.csv\"\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"CONFIG = Config()"
|
| 102 |
+
]
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "markdown",
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"source": [
|
| 108 |
+
"## 3. Seed & Device Setup\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"**Reproducibility**: Setting seeds ensures that our results can be replicated exactly.\n",
|
| 111 |
+
"We set seeds for:\n",
|
| 112 |
+
"- NumPy random number generation\n",
|
| 113 |
+
"- PyTorch CPU operations\n",
|
| 114 |
+
"- PyTorch GPU operations (all CUDA devices)\n",
|
| 115 |
+
"- Python's built-in hash function\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"**Device Selection**: Automatically detects and uses GPU if available (CUDA), otherwise falls back to CPU.\n",
|
| 118 |
+
"GPU training is significantly faster (~10-50x) than CPU for deep learning models."
|
| 119 |
+
]
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"cell_type": "code",
|
| 123 |
+
"execution_count": null,
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"outputs": [],
|
| 126 |
+
"source": [
|
| 127 |
+
"def set_seed(seed=CONFIG.SEED):\n",
|
| 128 |
+
" np.random.seed(seed)\n",
|
| 129 |
+
" torch.manual_seed(seed)\n",
|
| 130 |
+
" torch.cuda.manual_seed_all(seed)\n",
|
| 131 |
+
" os.environ['PYTHONHASHSEED'] = str(seed)\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"set_seed()\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 136 |
+
"print(f\"Using device: {device}\")"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "markdown",
|
| 141 |
+
"metadata": {},
|
| 142 |
+
"source": [
|
| 143 |
+
"## 4. Utility Functions\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"Helper functions used throughout the pipeline:\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"### `ensure_text_column(df)`\n",
|
| 148 |
+
"- Standardizes the text column name across different datasets\n",
|
| 149 |
+
"- Searches for common alternatives like 'comment_text', 'sentence', etc.\n",
|
| 150 |
+
"- Raises error if no text column is found\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"### `tune_thresholds(y_true, y_prob)`\n",
|
| 153 |
+
"- **Critical for multi-label classification performance**\n",
|
| 154 |
+
"- Default threshold of 0.5 is often suboptimal\n",
|
| 155 |
+
"- Finds the best threshold per label that maximizes F1 score\n",
|
| 156 |
+
"- Tests 17 different thresholds between 0.1 and 0.9\n",
|
| 157 |
+
"- Can improve F1 score by 2-5% over default threshold\n",
|
| 158 |
+
"\n",
|
| 159 |
+
"### `get_optimizer_params(model, lr, weight_decay)`\n",
|
| 160 |
+
"- Implements **differential weight decay**\n",
|
| 161 |
+
"- Applies weight decay to most parameters (helps prevent overfitting)\n",
|
| 162 |
+
"- No weight decay for bias and LayerNorm parameters (standard practice in transformer fine-tuning)\n",
|
| 163 |
+
"- This technique is recommended in the BERT and DeBERTa papers"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"cell_type": "code",
|
| 168 |
+
"execution_count": null,
|
| 169 |
+
"metadata": {},
|
| 170 |
+
"outputs": [],
|
| 171 |
+
"source": [
|
| 172 |
+
"def ensure_text_column(df: pd.DataFrame) -> pd.DataFrame:\n",
|
| 173 |
+
" if \"text\" in df.columns:\n",
|
| 174 |
+
" return df\n",
|
| 175 |
+
" for c in [\"comment_text\", \"sentence\", \"content\", \"review\"]:\n",
|
| 176 |
+
" if c in df.columns:\n",
|
| 177 |
+
" return df.rename(columns={c: \"text\"})\n",
|
| 178 |
+
" raise ValueError(\"No text column found. Add/rename your text column to 'text'.\")\n",
|
| 179 |
+
"\n",
|
| 180 |
+
"def tune_thresholds(y_true: np.ndarray, y_prob: np.ndarray) -> np.ndarray:\n",
|
| 181 |
+
" th = np.zeros(y_true.shape[1], dtype=np.float32)\n",
|
| 182 |
+
" for j in range(y_true.shape[1]):\n",
|
| 183 |
+
" best_t, best_f1 = 0.5, -1\n",
|
| 184 |
+
" for t in np.linspace(0.1, 0.9, 17):\n",
|
| 185 |
+
" f1 = f1_score(y_true[:, j], (y_prob[:, j] >= t).astype(int), zero_division=0)\n",
|
| 186 |
+
" if f1 > best_f1:\n",
|
| 187 |
+
" best_f1, best_t = f1, t\n",
|
| 188 |
+
" th[j] = best_t\n",
|
| 189 |
+
" return th\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"def get_optimizer_params(model, lr, weight_decay):\n",
|
| 192 |
+
" param_optimizer = list(model.named_parameters())\n",
|
| 193 |
+
" no_decay = [\"bias\", \"LayerNorm.bias\", \"LayerNorm.weight\"]\n",
|
| 194 |
+
" optimizer_parameters = [\n",
|
| 195 |
+
" {\n",
|
| 196 |
+
" \"params\": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],\n",
|
| 197 |
+
" \"weight_decay\": weight_decay,\n",
|
| 198 |
+
" },\n",
|
| 199 |
+
" {\n",
|
| 200 |
+
" \"params\": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],\n",
|
| 201 |
+
" \"weight_decay\": 0.0,\n",
|
| 202 |
+
" },\n",
|
| 203 |
+
" ]\n",
|
| 204 |
+
" return optimizer_parameters"
|
| 205 |
+
]
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"cell_type": "markdown",
|
| 209 |
+
"metadata": {},
|
| 210 |
+
"source": [
|
| 211 |
+
"## 5. Dataset Class\n",
|
| 212 |
+
"\n",
|
| 213 |
+
"Custom PyTorch Dataset for emotion classification.\n",
|
| 214 |
+
"\n",
|
| 215 |
+
"**Key Features:**\n",
|
| 216 |
+
"- Tokenizes text on-the-fly using the DeBERTa tokenizer\n",
|
| 217 |
+
"- Handles both training data (with labels) and test data (without labels)\n",
|
| 218 |
+
"- Uses `padding='max_length'` to ensure all sequences have the same length (required for batching)\n",
|
| 219 |
+
"- Applies `truncation=True` to handle texts longer than MAX_LEN\n",
|
| 220 |
+
"\n",
|
| 221 |
+
"**Returns:**\n",
|
| 222 |
+
"- `input_ids`: Token IDs representing the text\n",
|
| 223 |
+
"- `attention_mask`: Indicates which tokens are real vs padding\n",
|
| 224 |
+
"- `labels`: Multi-label binary targets (only for training data)\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"**PyTorch DataLoader** will use this dataset to create batches efficiently with multi-processing."
|
| 227 |
+
]
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"cell_type": "code",
|
| 231 |
+
"execution_count": null,
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"outputs": [],
|
| 234 |
+
"source": [
|
| 235 |
+
"class EmotionDS(torch.utils.data.Dataset):\n",
|
| 236 |
+
" def __init__(self, df, tokenizer, max_len, is_test=False):\n",
|
| 237 |
+
" self.texts = df[\"text\"].tolist()\n",
|
| 238 |
+
" self.is_test = is_test\n",
|
| 239 |
+
" if not is_test:\n",
|
| 240 |
+
" self.labels = df[CONFIG.LABELS].values.astype(np.float32)\n",
|
| 241 |
+
" self.tok = tokenizer\n",
|
| 242 |
+
" self.max_len = max_len\n",
|
| 243 |
+
"\n",
|
| 244 |
+
" def __len__(self):\n",
|
| 245 |
+
" return len(self.texts)\n",
|
| 246 |
+
"\n",
|
| 247 |
+
" def __getitem__(self, i):\n",
|
| 248 |
+
" enc = self.tok(\n",
|
| 249 |
+
" self.texts[i],\n",
|
| 250 |
+
" truncation=True,\n",
|
| 251 |
+
" padding=\"max_length\",\n",
|
| 252 |
+
" max_length=self.max_len,\n",
|
| 253 |
+
" return_tensors=\"pt\",\n",
|
| 254 |
+
" )\n",
|
| 255 |
+
" item = {k: v.squeeze(0) for k, v in enc.items()}\n",
|
| 256 |
+
" if not self.is_test:\n",
|
| 257 |
+
" item[\"labels\"] = torch.tensor(self.labels[i])\n",
|
| 258 |
+
" return item"
|
| 259 |
+
]
|
| 260 |
+
},
|
| 261 |
+
{
|
| 262 |
+
"cell_type": "markdown",
|
| 263 |
+
"metadata": {},
|
| 264 |
+
"source": [
|
| 265 |
+
"## 6. Training & Validation Helper Functions\n",
|
| 266 |
+
"\n",
|
| 267 |
+
"Core training and validation loops.\n",
|
| 268 |
+
"\n",
|
| 269 |
+
"### `train_one_epoch()`\n",
|
| 270 |
+
"Trains the model for one complete pass through the training data.\n",
|
| 271 |
+
"\n",
|
| 272 |
+
"**Key Techniques:**\n",
|
| 273 |
+
"- **Mixed Precision Training** (`autocast`): Uses float16 where safe, reducing memory and increasing speed by ~2x\n",
|
| 274 |
+
"- **Gradient Scaling** (`GradScaler`): Prevents gradient underflow in mixed precision\n",
|
| 275 |
+
"- **Gradient Clipping** (max_norm=1.0): Prevents exploding gradients, stabilizes training\n",
|
| 276 |
+
"- **Memory Efficient**: Uses `zero_grad(set_to_none=True)` and `non_blocking=True` for async GPU transfers\n",
|
| 277 |
+
"\n",
|
| 278 |
+
"### `validate()`\n",
|
| 279 |
+
"Evaluates the model on validation data without updating weights.\n",
|
| 280 |
+
"\n",
|
| 281 |
+
"**Features:**\n",
|
| 282 |
+
"- Runs in `model.eval()` mode (disables dropout, fixes batch normalization)\n",
|
| 283 |
+
"- Uses `torch.no_grad()` to save memory (no gradient computation)\n",
|
| 284 |
+
"- Applies sigmoid to convert logits to probabilities [0, 1]\n",
|
| 285 |
+
"- Returns predictions and targets for metric calculation"
|
| 286 |
+
]
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"cell_type": "code",
|
| 290 |
+
"execution_count": null,
|
| 291 |
+
"metadata": {},
|
| 292 |
+
"outputs": [],
|
| 293 |
+
"source": [
|
| 294 |
+
"def train_one_epoch(model, loader, optimizer, scheduler, scaler, criterion):\n",
|
| 295 |
+
" model.train()\n",
|
| 296 |
+
" losses = []\n",
|
| 297 |
+
" for batch in loader:\n",
|
| 298 |
+
" batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}\n",
|
| 299 |
+
" optimizer.zero_grad(set_to_none=True)\n",
|
| 300 |
+
" with autocast(enabled=True):\n",
|
| 301 |
+
" out = model(input_ids=batch[\"input_ids\"], attention_mask=batch[\"attention_mask\"])\n",
|
| 302 |
+
" loss = criterion(out.logits, batch[\"labels\"])\n",
|
| 303 |
+
" \n",
|
| 304 |
+
" scaler.scale(loss).backward()\n",
|
| 305 |
+
" scaler.unscale_(optimizer)\n",
|
| 306 |
+
" torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)\n",
|
| 307 |
+
" scaler.step(optimizer)\n",
|
| 308 |
+
" scaler.update()\n",
|
| 309 |
+
" scheduler.step()\n",
|
| 310 |
+
" losses.append(loss.item())\n",
|
| 311 |
+
" return np.mean(losses)\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"def validate(model, loader, criterion):\n",
|
| 314 |
+
" model.eval()\n",
|
| 315 |
+
" losses = []\n",
|
| 316 |
+
" preds = []\n",
|
| 317 |
+
" targs = []\n",
|
| 318 |
+
" with torch.no_grad():\n",
|
| 319 |
+
" for batch in loader:\n",
|
| 320 |
+
" batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}\n",
|
| 321 |
+
" with autocast(enabled=True):\n",
|
| 322 |
+
" out = model(input_ids=batch[\"input_ids\"], attention_mask=batch[\"attention_mask\"])\n",
|
| 323 |
+
" loss = criterion(out.logits, batch[\"labels\"])\n",
|
| 324 |
+
" losses.append(loss.item())\n",
|
| 325 |
+
" preds.append(torch.sigmoid(out.logits).float().cpu().numpy())\n",
|
| 326 |
+
" targs.append(batch[\"labels\"].cpu().numpy())\n",
|
| 327 |
+
" \n",
|
| 328 |
+
" return np.mean(losses), np.vstack(preds), np.vstack(targs)"
|
| 329 |
+
]
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"cell_type": "markdown",
|
| 333 |
+
"metadata": {},
|
| 334 |
+
"source": [
|
| 335 |
+
"## 7. Main K-Fold Training Loop\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"The heart of our training pipeline - implements **5-Fold Stratified Cross-Validation**.\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"### Why K-Fold Cross-Validation?\n",
|
| 340 |
+
"- More reliable performance estimates than a single train/val split\n",
|
| 341 |
+
"- Every sample is used for validation exactly once\n",
|
| 342 |
+
"- Out-of-fold predictions can be used for threshold optimization\n",
|
| 343 |
+
"- Reduces variance in model performance\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"### Why Stratified?\n",
|
| 346 |
+
"- Maintains label distribution in each fold\n",
|
| 347 |
+
"- Important for imbalanced datasets\n",
|
| 348 |
+
"- For multi-label, we concatenate all labels into a string for stratification\n",
|
| 349 |
+
"\n",
|
| 350 |
+
"### Training Process per Fold:\n",
|
| 351 |
+
"1. **Split data**: 80% training, 20% validation\n",
|
| 352 |
+
"2. **Initialize model**: Fresh DeBERTa-v3-base with random classification head\n",
|
| 353 |
+
"3. **Setup optimizer**: AdamW with differential weight decay\n",
|
| 354 |
+
"4. **Setup scheduler**: Linear warmup (10% of steps) then linear decay to 0\n",
|
| 355 |
+
"5. **Train for 4 epochs**: Track training and validation metrics\n",
|
| 356 |
+
"6. **Save best model**: Based on validation F1 score\n",
|
| 357 |
+
"7. **Store OOF predictions**: For threshold tuning\n",
|
| 358 |
+
"8. **Clean up memory**: Delete model and optimizer, run garbage collection\n",
|
| 359 |
+
"\n",
|
| 360 |
+
"### Output:\n",
|
| 361 |
+
"- 5 trained models (one per fold) saved as `model_fold_{0-4}.pth`\n",
|
| 362 |
+
"- Out-of-fold predictions for the entire training set\n",
|
| 363 |
+
"- Cross-validated performance metrics"
|
| 364 |
+
]
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"cell_type": "code",
|
| 368 |
+
"execution_count": null,
|
| 369 |
+
"metadata": {},
|
| 370 |
+
"outputs": [],
|
| 371 |
+
"source": [
|
| 372 |
+
"def run_training():\n",
|
| 373 |
+
" if not os.path.exists(CONFIG.TRAIN_CSV):\n",
|
| 374 |
+
" print(\"Train CSV not found. Please check the path.\")\n",
|
| 375 |
+
" return None, None\n",
|
| 376 |
+
"\n",
|
| 377 |
+
" df = pd.read_csv(CONFIG.TRAIN_CSV)\n",
|
| 378 |
+
" df = ensure_text_column(df)\n",
|
| 379 |
+
" \n",
|
| 380 |
+
" # Create Stratified Folds\n",
|
| 381 |
+
" skf = StratifiedKFold(n_splits=CONFIG.N_FOLDS, shuffle=True, random_state=CONFIG.SEED)\n",
|
| 382 |
+
" y_str = df[CONFIG.LABELS].astype(str).agg(\"\".join, axis=1)\n",
|
| 383 |
+
" \n",
|
| 384 |
+
" oof_preds = np.zeros((len(df), len(CONFIG.LABELS)))\n",
|
| 385 |
+
" \n",
|
| 386 |
+
" tokenizer = AutoTokenizer.from_pretrained(CONFIG.MODEL_NAME)\n",
|
| 387 |
+
" \n",
|
| 388 |
+
" for fold, (train_idx, val_idx) in enumerate(skf.split(df, y_str)):\n",
|
| 389 |
+
" print(f\"\\n{'='*20} FOLD {fold+1}/{CONFIG.N_FOLDS} {'='*20}\")\n",
|
| 390 |
+
" \n",
|
| 391 |
+
" df_tr = df.iloc[train_idx].reset_index(drop=True)\n",
|
| 392 |
+
" df_va = df.iloc[val_idx].reset_index(drop=True)\n",
|
| 393 |
+
" \n",
|
| 394 |
+
" ds_tr = EmotionDS(df_tr, tokenizer, CONFIG.MAX_LEN)\n",
|
| 395 |
+
" ds_va = EmotionDS(df_va, tokenizer, CONFIG.MAX_LEN)\n",
|
| 396 |
+
" \n",
|
| 397 |
+
" dl_tr = torch.utils.data.DataLoader(ds_tr, batch_size=CONFIG.BATCH_SIZE, shuffle=True, num_workers=2, pin_memory=True)\n",
|
| 398 |
+
" dl_va = torch.utils.data.DataLoader(ds_va, batch_size=CONFIG.BATCH_SIZE, shuffle=False, num_workers=2, pin_memory=True)\n",
|
| 399 |
+
" \n",
|
| 400 |
+
" model = AutoModelForSequenceClassification.from_pretrained(\n",
|
| 401 |
+
" CONFIG.MODEL_NAME, \n",
|
| 402 |
+
" num_labels=len(CONFIG.LABELS),\n",
|
| 403 |
+
" problem_type=\"multi_label_classification\"\n",
|
| 404 |
+
" )\n",
|
| 405 |
+
" model.to(device)\n",
|
| 406 |
+
" \n",
|
| 407 |
+
" optimizer_params = get_optimizer_params(model, CONFIG.LR, CONFIG.WEIGHT_DECAY)\n",
|
| 408 |
+
" optimizer = AdamW(optimizer_params, lr=CONFIG.LR)\n",
|
| 409 |
+
" \n",
|
| 410 |
+
" total_steps = len(dl_tr) * CONFIG.EPOCHS\n",
|
| 411 |
+
" scheduler = get_linear_schedule_with_warmup(\n",
|
| 412 |
+
" optimizer, \n",
|
| 413 |
+
" num_warmup_steps=int(total_steps * CONFIG.WARMUP_RATIO), \n",
|
| 414 |
+
" num_training_steps=total_steps\n",
|
| 415 |
+
" )\n",
|
| 416 |
+
" \n",
|
| 417 |
+
" criterion = nn.BCEWithLogitsLoss()\n",
|
| 418 |
+
" scaler = GradScaler(enabled=True)\n",
|
| 419 |
+
" \n",
|
| 420 |
+
" best_f1 = 0\n",
|
| 421 |
+
" best_state = None\n",
|
| 422 |
+
" \n",
|
| 423 |
+
" for ep in range(CONFIG.EPOCHS):\n",
|
| 424 |
+
" train_loss = train_one_epoch(model, dl_tr, optimizer, scheduler, scaler, criterion)\n",
|
| 425 |
+
" val_loss, val_preds, val_targs = validate(model, dl_va, criterion)\n",
|
| 426 |
+
" \n",
|
| 427 |
+
" val_f1 = f1_score(val_targs, (val_preds >= 0.5).astype(int), average=\"macro\", zero_division=0)\n",
|
| 428 |
+
" \n",
|
| 429 |
+
" print(f\"Ep {ep+1}: TrLoss={train_loss:.4f} | VaLoss={val_loss:.4f} | VaF1={val_f1:.4f}\")\n",
|
| 430 |
+
" \n",
|
| 431 |
+
" if val_f1 > best_f1:\n",
|
| 432 |
+
" best_f1 = val_f1\n",
|
| 433 |
+
" best_state = model.state_dict()\n",
|
| 434 |
+
" \n",
|
| 435 |
+
" torch.save(best_state, f\"model_fold_{fold}.pth\")\n",
|
| 436 |
+
" \n",
|
| 437 |
+
" model.load_state_dict(best_state)\n",
|
| 438 |
+
" _, val_preds, _ = validate(model, dl_va, criterion)\n",
|
| 439 |
+
" oof_preds[val_idx] = val_preds\n",
|
| 440 |
+
" \n",
|
| 441 |
+
" del model, optimizer, scaler, scheduler\n",
|
| 442 |
+
" torch.cuda.empty_cache()\n",
|
| 443 |
+
" gc.collect()\n",
|
| 444 |
+
" \n",
|
| 445 |
+
" return oof_preds, df[CONFIG.LABELS].values\n",
|
| 446 |
+
"\n",
|
| 447 |
+
"if os.path.exists(CONFIG.TRAIN_CSV):\n",
|
| 448 |
+
" oof_preds, y_true = run_training()\n",
|
| 449 |
+
"else:\n",
|
| 450 |
+
" print(\"Skipping training as data is not found (likely in a dry-run environment).\")"
|
| 451 |
+
]
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"cell_type": "markdown",
|
| 455 |
+
"metadata": {},
|
| 456 |
+
"source": [
|
| 457 |
+
"## 8. Threshold Optimization\n",
|
| 458 |
+
"\n",
|
| 459 |
+
"**Why optimize thresholds?**\n",
|
| 460 |
+
"\n",
|
| 461 |
+
"In multi-label classification, we convert probabilities to binary predictions using a threshold:\n",
|
| 462 |
+
"- `prediction = 1 if probability >= threshold else 0`\n",
|
| 463 |
+
"- The default threshold of 0.5 is often suboptimal\n",
|
| 464 |
+
"- Different emotion labels may have different optimal thresholds\n",
|
| 465 |
+
"\n",
|
| 466 |
+
"**Example:**\n",
|
| 467 |
+
"- 'Joy' might be common → optimal threshold could be 0.4\n",
|
| 468 |
+
"- 'Surprise' might be rare → optimal threshold could be 0.6\n",
|
| 469 |
+
"\n",
|
| 470 |
+
"### Process:\n",
|
| 471 |
+
"1. Use out-of-fold predictions (already trained models, no data leakage)\n",
|
| 472 |
+
"2. For each label independently, test thresholds from 0.1 to 0.9\n",
|
| 473 |
+
"3. Select threshold that maximizes F1 score for that label\n",
|
| 474 |
+
"4. Apply optimized thresholds to get final binary predictions\n",
|
| 475 |
+
"\n",
|
| 476 |
+
"**Expected Improvement**: 2-5% increase in Macro F1 score\n",
|
| 477 |
+
"\n",
|
| 478 |
+
"This is a standard technique in Kaggle competitions and production systems."
|
| 479 |
+
]
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"cell_type": "code",
|
| 483 |
+
"execution_count": null,
|
| 484 |
+
"metadata": {},
|
| 485 |
+
"outputs": [],
|
| 486 |
+
"source": [
|
| 487 |
+
"if os.path.exists(CONFIG.TRAIN_CSV):\n",
|
| 488 |
+
" best_thresholds = tune_thresholds(y_true, oof_preds)\n",
|
| 489 |
+
" oof_tuned = (oof_preds >= best_thresholds).astype(int)\n",
|
| 490 |
+
" final_f1 = f1_score(y_true, oof_tuned, average=\"macro\", zero_division=0)\n",
|
| 491 |
+
" print(f\"\\nFinal CV Macro F1: {final_f1:.4f}\")\n",
|
| 492 |
+
" print(f\"Best Thresholds: {best_thresholds}\")\n",
|
| 493 |
+
"else:\n",
|
| 494 |
+
" best_thresholds = np.array([0.5] * len(CONFIG.LABELS))"
|
| 495 |
+
]
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"cell_type": "markdown",
|
| 499 |
+
"metadata": {},
|
| 500 |
+
"source": [
|
| 501 |
+
"## 9. Inference & Submission\n",
|
| 502 |
+
"\n",
|
| 503 |
+
"Final prediction pipeline for test data.\n",
|
| 504 |
+
"\n",
|
| 505 |
+
"### Ensemble Strategy:\n",
|
| 506 |
+
"We use **model averaging** across all 5 folds:\n",
|
| 507 |
+
"1. Load each trained fold model\n",
|
| 508 |
+
"2. Make predictions on test set\n",
|
| 509 |
+
"3. Average the probabilities across all folds\n",
|
| 510 |
+
"4. Apply optimized thresholds to get binary predictions\n",
|
| 511 |
+
"\n",
|
| 512 |
+
"### Why ensemble?\n",
|
| 513 |
+
"- Reduces variance and overfitting\n",
|
| 514 |
+
"- More robust predictions\n",
|
| 515 |
+
"- Often improves score by 1-3%\n",
|
| 516 |
+
"- Each fold sees different training data, captures different patterns\n",
|
| 517 |
+
"\n",
|
| 518 |
+
"### Process:\n",
|
| 519 |
+
"1. Load test data and tokenize\n",
|
| 520 |
+
"2. For each fold:\n",
|
| 521 |
+
" - Load saved model weights\n",
|
| 522 |
+
" - Generate predictions (probabilities)\n",
|
| 523 |
+
" - Clean up memory\n",
|
| 524 |
+
"3. Average all fold predictions\n",
|
| 525 |
+
"4. Apply optimized thresholds\n",
|
| 526 |
+
"5. Create submission file with format: `id, anger, fear, joy, sadness, surprise`\n",
|
| 527 |
+
"\n",
|
| 528 |
+
"### Output:\n",
|
| 529 |
+
"- `submission.csv` ready for Kaggle upload\n",
|
| 530 |
+
"- Binary predictions (0 or 1) for each emotion per text"
|
| 531 |
+
]
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"cell_type": "code",
|
| 535 |
+
"execution_count": null,
|
| 536 |
+
"metadata": {},
|
| 537 |
+
"outputs": [],
|
| 538 |
+
"source": [
|
| 539 |
+
"def predict_test(thresholds):\n",
|
| 540 |
+
" if not os.path.exists(CONFIG.TEST_CSV):\n",
|
| 541 |
+
" print(\"Test CSV not found.\")\n",
|
| 542 |
+
" return\n",
|
| 543 |
+
"\n",
|
| 544 |
+
" df_test = pd.read_csv(CONFIG.TEST_CSV)\n",
|
| 545 |
+
" df_test = ensure_text_column(df_test)\n",
|
| 546 |
+
" \n",
|
| 547 |
+
" tokenizer = AutoTokenizer.from_pretrained(CONFIG.MODEL_NAME)\n",
|
| 548 |
+
" ds_test = EmotionDS(df_test, tokenizer, CONFIG.MAX_LEN, is_test=True)\n",
|
| 549 |
+
" dl_test = torch.utils.data.DataLoader(ds_test, batch_size=CONFIG.BATCH_SIZE, shuffle=False, num_workers=2)\n",
|
| 550 |
+
" \n",
|
| 551 |
+
" fold_preds = []\n",
|
| 552 |
+
" \n",
|
| 553 |
+
" for fold in range(CONFIG.N_FOLDS):\n",
|
| 554 |
+
" model_path = f\"model_fold_{fold}.pth\"\n",
|
| 555 |
+
" if not os.path.exists(model_path):\n",
|
| 556 |
+
" print(f\"Model for fold {fold} not found, skipping.\")\n",
|
| 557 |
+
" continue\n",
|
| 558 |
+
" \n",
|
| 559 |
+
" print(f\"Predicting Fold {fold+1}...\")\n",
|
| 560 |
+
" model = AutoModelForSequenceClassification.from_pretrained(\n",
|
| 561 |
+
" CONFIG.MODEL_NAME, \n",
|
| 562 |
+
" num_labels=len(CONFIG.LABELS),\n",
|
| 563 |
+
" problem_type=\"multi_label_classification\"\n",
|
| 564 |
+
" )\n",
|
| 565 |
+
" model.load_state_dict(torch.load(model_path))\n",
|
| 566 |
+
" model.to(device)\n",
|
| 567 |
+
" model.eval()\n",
|
| 568 |
+
" \n",
|
| 569 |
+
" preds = []\n",
|
| 570 |
+
" with torch.no_grad():\n",
|
| 571 |
+
" for batch in dl_test:\n",
|
| 572 |
+
" batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}\n",
|
| 573 |
+
" with autocast(enabled=True):\n",
|
| 574 |
+
" out = model(input_ids=batch[\"input_ids\"], attention_mask=batch[\"attention_mask\"])\n",
|
| 575 |
+
" preds.append(torch.sigmoid(out.logits).float().cpu().numpy())\n",
|
| 576 |
+
" \n",
|
| 577 |
+
" fold_preds.append(np.vstack(preds))\n",
|
| 578 |
+
" del model\n",
|
| 579 |
+
" torch.cuda.empty_cache()\n",
|
| 580 |
+
" gc.collect()\n",
|
| 581 |
+
" \n",
|
| 582 |
+
" if not fold_preds:\n",
|
| 583 |
+
" print(\"No predictions made.\")\n",
|
| 584 |
+
" return\n",
|
| 585 |
+
"\n",
|
| 586 |
+
" avg_preds = np.mean(fold_preds, axis=0)\n",
|
| 587 |
+
" final_preds = (avg_preds >= thresholds).astype(int)\n",
|
| 588 |
+
" \n",
|
| 589 |
+
" sub = pd.DataFrame(columns=[\"id\"] + CONFIG.LABELS)\n",
|
| 590 |
+
" sub[\"id\"] = df_test[\"id\"] if \"id\" in df_test.columns else np.arange(len(df_test))\n",
|
| 591 |
+
" sub[CONFIG.LABELS] = final_preds\n",
|
| 592 |
+
" sub.to_csv(CONFIG.SUBMISSION_PATH, index=False)\n",
|
| 593 |
+
" print(f\"Submission saved to {CONFIG.SUBMISSION_PATH}\")\n",
|
| 594 |
+
" print(sub.head())\n",
|
| 595 |
+
"\n",
|
| 596 |
+
"predict_test(best_thresholds)"
|
| 597 |
+
]
|
| 598 |
+
}
|
| 599 |
+
],
|
| 600 |
+
"metadata": {
|
| 601 |
+
"kernelspec": {
|
| 602 |
+
"display_name": ".venv",
|
| 603 |
+
"language": "python",
|
| 604 |
+
"name": "python3"
|
| 605 |
+
},
|
| 606 |
+
"language_info": {
|
| 607 |
+
"codemirror_mode": {
|
| 608 |
+
"name": "ipython",
|
| 609 |
+
"version": 3
|
| 610 |
+
},
|
| 611 |
+
"file_extension": ".py",
|
| 612 |
+
"mimetype": "text/x-python",
|
| 613 |
+
"name": "python",
|
| 614 |
+
"nbconvert_exporter": "python",
|
| 615 |
+
"pygments_lexer": "ipython3",
|
| 616 |
+
"version": "3.13.7"
|
| 617 |
+
}
|
| 618 |
+
},
|
| 619 |
+
"nbformat": 4,
|
| 620 |
+
"nbformat_minor": 5
|
| 621 |
+
}
|
main_code_explanation.md
ADDED
|
@@ -0,0 +1,812 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Deep Learning Emotion Classification - Code Explanation
|
| 2 |
+
|
| 3 |
+
This document provides a detailed line-by-line explanation of the `main.ipynb` notebook, which implements a multi-label emotion classification system using the DeBERTa transformer model with K-Fold cross-validation.
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## Section 1: Imports & Setup
|
| 8 |
+
|
| 9 |
+
### Lines 18-36: Import Statements
|
| 10 |
+
|
| 11 |
+
```python
|
| 12 |
+
import numpy as np
|
| 13 |
+
import pandas as pd
|
| 14 |
+
```
|
| 15 |
+
- **numpy**: Used for numerical operations, array manipulation, and random seed setting
|
| 16 |
+
- **pandas**: Used for data loading and manipulation (CSV files, DataFrames)
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
```
|
| 22 |
+
- **torch**: PyTorch deep learning framework for tensor operations and model training
|
| 23 |
+
- **torch.nn**: Neural network modules including loss functions
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
from sklearn.model_selection import StratifiedKFold
|
| 27 |
+
from sklearn.metrics import f1_score
|
| 28 |
+
```
|
| 29 |
+
- **StratifiedKFold**: Creates k-fold splits while maintaining class distribution in each fold
|
| 30 |
+
- **f1_score**: Calculates F1 metric for evaluation (harmonic mean of precision and recall)
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from transformers import (
|
| 34 |
+
AutoTokenizer,
|
| 35 |
+
AutoModelForSequenceClassification,
|
| 36 |
+
get_linear_schedule_with_warmup,
|
| 37 |
+
AutoConfig
|
| 38 |
+
)
|
| 39 |
+
```
|
| 40 |
+
- **AutoTokenizer**: Automatically loads the appropriate tokenizer for the specified model
|
| 41 |
+
- **AutoModelForSequenceClassification**: Pre-trained transformer model for classification tasks
|
| 42 |
+
- **get_linear_schedule_with_warmup**: Learning rate scheduler with warmup and linear decay
|
| 43 |
+
- **AutoConfig**: Model configuration loader
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
from torch.optim import AdamW
|
| 47 |
+
```
|
| 48 |
+
- **AdamW**: Adam optimizer with decoupled weight decay (better than standard Adam for transformers)
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
from torch.cuda.amp import autocast, GradScaler
|
| 52 |
+
```
|
| 53 |
+
- **autocast**: Enables automatic mixed precision (AMP) to speed up training
|
| 54 |
+
- **GradScaler**: Scales gradients for mixed precision training to prevent underflow
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
import gc
|
| 58 |
+
import warnings
|
| 59 |
+
import os
|
| 60 |
+
```
|
| 61 |
+
- **gc**: Garbage collection to free up memory
|
| 62 |
+
- **warnings**: To suppress warning messages
|
| 63 |
+
- **os**: For file system operations and environment variables
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
warnings.filterwarnings("ignore")
|
| 67 |
+
```
|
| 68 |
+
- Suppresses all warning messages for cleaner output
|
| 69 |
+
|
| 70 |
+
---
|
| 71 |
+
|
| 72 |
+
## Section 2: Configuration
|
| 73 |
+
|
| 74 |
+
### Lines 52-68: Configuration Class
|
| 75 |
+
|
| 76 |
+
```python
|
| 77 |
+
class Config:
|
| 78 |
+
SEED = 42
|
| 79 |
+
```
|
| 80 |
+
- Sets random seed for reproducibility across all random operations
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
LABELS = ["anger", "fear", "joy", "sadness", "surprise"]
|
| 84 |
+
```
|
| 85 |
+
- Defines the 5 emotion labels for multi-label classification
|
| 86 |
+
|
| 87 |
+
```python
|
| 88 |
+
MODEL_NAME = "microsoft/deberta-v3-base"
|
| 89 |
+
```
|
| 90 |
+
- Specifies the pre-trained model (DeBERTa v3 base - 184M parameters, SOTA performance)
|
| 91 |
+
|
| 92 |
+
```python
|
| 93 |
+
MAX_LEN = 128
|
| 94 |
+
```
|
| 95 |
+
- Maximum sequence length for tokenization (tokens longer than this are truncated)
|
| 96 |
+
|
| 97 |
+
```python
|
| 98 |
+
BATCH_SIZE = 16
|
| 99 |
+
```
|
| 100 |
+
- Number of samples processed together in one forward/backward pass
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
EPOCHS = 4
|
| 104 |
+
```
|
| 105 |
+
- Number of complete passes through the training dataset
|
| 106 |
+
|
| 107 |
+
```python
|
| 108 |
+
LR = 1.5e-5
|
| 109 |
+
```
|
| 110 |
+
- Learning rate (1.5 × 10⁻⁵) - small value typical for fine-tuning transformers
|
| 111 |
+
|
| 112 |
+
```python
|
| 113 |
+
WEIGHT_DECAY = 0.01
|
| 114 |
+
```
|
| 115 |
+
- L2 regularization strength to prevent overfitting
|
| 116 |
+
|
| 117 |
+
```python
|
| 118 |
+
WARMUP_RATIO = 0.1
|
| 119 |
+
```
|
| 120 |
+
- Fraction of training steps used for learning rate warmup (10% of total steps)
|
| 121 |
+
|
| 122 |
+
```python
|
| 123 |
+
N_FOLDS = 5
|
| 124 |
+
```
|
| 125 |
+
- Number of folds for K-Fold cross-validation
|
| 126 |
+
|
| 127 |
+
```python
|
| 128 |
+
TRAIN_CSV = "/kaggle/input/2025-sep-dl-gen-ai-project/train.csv"
|
| 129 |
+
TEST_CSV = "/kaggle/input/2025-sep-dl-gen-ai-project/test.csv"
|
| 130 |
+
```
|
| 131 |
+
- Paths to training and test datasets (Kaggle environment paths)
|
| 132 |
+
|
| 133 |
+
```python
|
| 134 |
+
SUBMISSION_PATH = "submission.csv"
|
| 135 |
+
```
|
| 136 |
+
- Output file for predictions
|
| 137 |
+
|
| 138 |
+
```python
|
| 139 |
+
CONFIG = Config()
|
| 140 |
+
```
|
| 141 |
+
- Creates a global instance of the configuration class
|
| 142 |
+
|
| 143 |
+
---
|
| 144 |
+
|
| 145 |
+
## Section 3: Seed & Device Setup
|
| 146 |
+
|
| 147 |
+
### Lines 84-93: Reproducibility and Device Selection
|
| 148 |
+
|
| 149 |
+
```python
|
| 150 |
+
def set_seed(seed=CONFIG.SEED):
|
| 151 |
+
np.random.seed(seed)
|
| 152 |
+
```
|
| 153 |
+
- Sets numpy's random seed for reproducible random number generation
|
| 154 |
+
|
| 155 |
+
```python
|
| 156 |
+
torch.manual_seed(seed)
|
| 157 |
+
```
|
| 158 |
+
- Sets PyTorch's random seed for CPU operations
|
| 159 |
+
|
| 160 |
+
```python
|
| 161 |
+
torch.cuda.manual_seed_all(seed)
|
| 162 |
+
```
|
| 163 |
+
- Sets PyTorch's random seed for all GPU devices
|
| 164 |
+
|
| 165 |
+
```python
|
| 166 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 167 |
+
```
|
| 168 |
+
- Sets hash seed for Python's built-in hash() function for reproducibility
|
| 169 |
+
|
| 170 |
+
```python
|
| 171 |
+
set_seed()
|
| 172 |
+
```
|
| 173 |
+
- Calls the seed setting function
|
| 174 |
+
|
| 175 |
+
```python
|
| 176 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 177 |
+
print(f"Using device: {device}")
|
| 178 |
+
```
|
| 179 |
+
- Checks if GPU is available; uses GPU if available, otherwise falls back to CPU
|
| 180 |
+
- Prints the device being used for training
|
| 181 |
+
|
| 182 |
+
---
|
| 183 |
+
|
| 184 |
+
## Section 4: Utility Functions
|
| 185 |
+
|
| 186 |
+
### Lines 109-115: `ensure_text_column` Function
|
| 187 |
+
|
| 188 |
+
```python
|
| 189 |
+
def ensure_text_column(df: pd.DataFrame) -> pd.DataFrame:
|
| 190 |
+
if "text" in df.columns:
|
| 191 |
+
return df
|
| 192 |
+
```
|
| 193 |
+
- Checks if DataFrame already has a "text" column; if yes, returns unchanged
|
| 194 |
+
|
| 195 |
+
```python
|
| 196 |
+
for c in ["comment_text", "sentence", "content", "review"]:
|
| 197 |
+
if c in df.columns:
|
| 198 |
+
return df.rename(columns={c: "text"})
|
| 199 |
+
```
|
| 200 |
+
- Searches for common alternative text column names
|
| 201 |
+
- Renames the first matching column to "text" for standardization
|
| 202 |
+
|
| 203 |
+
```python
|
| 204 |
+
raise ValueError("No text column found. Add/rename your text column to 'text'.")
|
| 205 |
+
```
|
| 206 |
+
- Raises an error if no text column is found
|
| 207 |
+
|
| 208 |
+
### Lines 117-126: `tune_thresholds` Function
|
| 209 |
+
|
| 210 |
+
```python
|
| 211 |
+
def tune_thresholds(y_true: np.ndarray, y_prob: np.ndarray) -> np.ndarray:
|
| 212 |
+
th = np.zeros(y_true.shape[1], dtype=np.float32)
|
| 213 |
+
```
|
| 214 |
+
- Creates array to store optimal threshold for each label (initialized to 0)
|
| 215 |
+
- Multi-label classification requires separate thresholds per label
|
| 216 |
+
|
| 217 |
+
```python
|
| 218 |
+
for j in range(y_true.shape[1]):
|
| 219 |
+
best_t, best_f1 = 0.5, -1
|
| 220 |
+
```
|
| 221 |
+
- Iterates through each label
|
| 222 |
+
- Initializes best threshold to 0.5 (default) and best F1 to -1
|
| 223 |
+
|
| 224 |
+
```python
|
| 225 |
+
for t in np.linspace(0.1, 0.9, 17):
|
| 226 |
+
```
|
| 227 |
+
- Tests 17 threshold values evenly spaced between 0.1 and 0.9
|
| 228 |
+
|
| 229 |
+
```python
|
| 230 |
+
f1 = f1_score(y_true[:, j], (y_prob[:, j] >= t).astype(int), zero_division=0)
|
| 231 |
+
```
|
| 232 |
+
- Calculates F1 score for current label and threshold
|
| 233 |
+
- Converts probabilities to binary predictions using threshold
|
| 234 |
+
|
| 235 |
+
```python
|
| 236 |
+
if f1 > best_f1:
|
| 237 |
+
best_f1, best_t = f1, t
|
| 238 |
+
```
|
| 239 |
+
- Updates best threshold if current F1 is better
|
| 240 |
+
|
| 241 |
+
```python
|
| 242 |
+
th[j] = best_t
|
| 243 |
+
return th
|
| 244 |
+
```
|
| 245 |
+
- Stores optimal threshold for each label and returns the array
|
| 246 |
+
|
| 247 |
+
### Lines 128-141: `get_optimizer_params` Function
|
| 248 |
+
|
| 249 |
+
```python
|
| 250 |
+
def get_optimizer_params(model, lr, weight_decay):
|
| 251 |
+
param_optimizer = list(model.named_parameters())
|
| 252 |
+
```
|
| 253 |
+
- Gets all model parameters with their names
|
| 254 |
+
|
| 255 |
+
```python
|
| 256 |
+
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
|
| 257 |
+
```
|
| 258 |
+
- Lists parameters that should NOT have weight decay applied
|
| 259 |
+
- Bias and LayerNorm parameters typically trained without weight decay
|
| 260 |
+
|
| 261 |
+
```python
|
| 262 |
+
optimizer_parameters = [
|
| 263 |
+
{
|
| 264 |
+
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
|
| 265 |
+
"weight_decay": weight_decay,
|
| 266 |
+
},
|
| 267 |
+
```
|
| 268 |
+
- First parameter group: all parameters EXCEPT bias and LayerNorm
|
| 269 |
+
- These parameters will have weight decay applied
|
| 270 |
+
|
| 271 |
+
```python
|
| 272 |
+
{
|
| 273 |
+
"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
|
| 274 |
+
"weight_decay": 0.0,
|
| 275 |
+
},
|
| 276 |
+
]
|
| 277 |
+
```
|
| 278 |
+
- Second parameter group: only bias and LayerNorm parameters
|
| 279 |
+
- These parameters have weight decay set to 0.0
|
| 280 |
+
|
| 281 |
+
```python
|
| 282 |
+
return optimizer_parameters
|
| 283 |
+
```
|
| 284 |
+
- Returns grouped parameters for differential weight decay
|
| 285 |
+
|
| 286 |
+
---
|
| 287 |
+
|
| 288 |
+
## Section 5: Dataset Class
|
| 289 |
+
|
| 290 |
+
### Lines 157-180: `EmotionDS` Class
|
| 291 |
+
|
| 292 |
+
```python
|
| 293 |
+
class EmotionDS(torch.utils.data.Dataset):
|
| 294 |
+
def __init__(self, df, tokenizer, max_len, is_test=False):
|
| 295 |
+
```
|
| 296 |
+
- Custom PyTorch Dataset class for emotion classification
|
| 297 |
+
- `is_test` flag indicates whether this is test data (no labels)
|
| 298 |
+
|
| 299 |
+
```python
|
| 300 |
+
self.texts = df["text"].tolist()
|
| 301 |
+
```
|
| 302 |
+
- Extracts text data as a Python list
|
| 303 |
+
|
| 304 |
+
```python
|
| 305 |
+
self.is_test = is_test
|
| 306 |
+
if not is_test:
|
| 307 |
+
self.labels = df[CONFIG.LABELS].values.astype(np.float32)
|
| 308 |
+
```
|
| 309 |
+
- Stores test flag
|
| 310 |
+
- If training data, extracts multi-label targets as float32 array
|
| 311 |
+
|
| 312 |
+
```python
|
| 313 |
+
self.tok = tokenizer
|
| 314 |
+
self.max_len = max_len
|
| 315 |
+
```
|
| 316 |
+
- Stores tokenizer and max length for later use
|
| 317 |
+
|
| 318 |
+
```python
|
| 319 |
+
def __len__(self):
|
| 320 |
+
return len(self.texts)
|
| 321 |
+
```
|
| 322 |
+
- Returns dataset size (required by PyTorch)
|
| 323 |
+
|
| 324 |
+
```python
|
| 325 |
+
def __getitem__(self, i):
|
| 326 |
+
enc = self.tok(
|
| 327 |
+
self.texts[i],
|
| 328 |
+
truncation=True,
|
| 329 |
+
padding="max_length",
|
| 330 |
+
max_length=self.max_len,
|
| 331 |
+
return_tensors="pt",
|
| 332 |
+
)
|
| 333 |
+
```
|
| 334 |
+
- Tokenizes the text at index `i`
|
| 335 |
+
- **truncation**: Cuts text longer than max_len
|
| 336 |
+
- **padding**: Pads shorter sequences to max_len
|
| 337 |
+
- **return_tensors="pt"**: Returns PyTorch tensors
|
| 338 |
+
|
| 339 |
+
```python
|
| 340 |
+
item = {k: v.squeeze(0) for k, v in enc.items()}
|
| 341 |
+
```
|
| 342 |
+
- Removes the batch dimension (1, seq_len) → (seq_len)
|
| 343 |
+
- Returns dict with keys: input_ids, attention_mask, token_type_ids (if applicable)
|
| 344 |
+
|
| 345 |
+
```python
|
| 346 |
+
if not self.is_test:
|
| 347 |
+
item["labels"] = torch.tensor(self.labels[i])
|
| 348 |
+
return item
|
| 349 |
+
```
|
| 350 |
+
- Adds labels to the item dict if training data
|
| 351 |
+
- Returns the complete item
|
| 352 |
+
|
| 353 |
+
---
|
| 354 |
+
|
| 355 |
+
## Section 6: Training & Validation Helper Functions
|
| 356 |
+
|
| 357 |
+
### Lines 196-213: `train_one_epoch` Function
|
| 358 |
+
|
| 359 |
+
```python
|
| 360 |
+
def train_one_epoch(model, loader, optimizer, scheduler, scaler, criterion):
|
| 361 |
+
model.train()
|
| 362 |
+
```
|
| 363 |
+
- Sets model to training mode (enables dropout, batch normalization updates)
|
| 364 |
+
|
| 365 |
+
```python
|
| 366 |
+
losses = []
|
| 367 |
+
for batch in loader:
|
| 368 |
+
```
|
| 369 |
+
- Initializes list to track losses
|
| 370 |
+
- Iterates through batches
|
| 371 |
+
|
| 372 |
+
```python
|
| 373 |
+
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
|
| 374 |
+
```
|
| 375 |
+
- Moves batch data to GPU (or CPU)
|
| 376 |
+
- `non_blocking=True`: Async transfer for faster processing
|
| 377 |
+
|
| 378 |
+
```python
|
| 379 |
+
optimizer.zero_grad(set_to_none=True)
|
| 380 |
+
```
|
| 381 |
+
- Clears gradients from previous step
|
| 382 |
+
- `set_to_none=True`: More memory efficient than setting to zero
|
| 383 |
+
|
| 384 |
+
```python
|
| 385 |
+
with autocast(enabled=True):
|
| 386 |
+
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"])
|
| 387 |
+
loss = criterion(out.logits, batch["labels"])
|
| 388 |
+
```
|
| 389 |
+
- **autocast**: Uses mixed precision (float16) for faster computation
|
| 390 |
+
- Forward pass through model
|
| 391 |
+
- Calculates loss between predictions (logits) and true labels
|
| 392 |
+
|
| 393 |
+
```python
|
| 394 |
+
scaler.scale(loss).backward()
|
| 395 |
+
```
|
| 396 |
+
- Scales loss to prevent gradient underflow in mixed precision
|
| 397 |
+
- Computes gradients via backpropagation
|
| 398 |
+
|
| 399 |
+
```python
|
| 400 |
+
scaler.unscale_(optimizer)
|
| 401 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
| 402 |
+
```
|
| 403 |
+
- Unscales gradients before clipping
|
| 404 |
+
- Clips gradients to maximum norm of 1.0 to prevent exploding gradients
|
| 405 |
+
|
| 406 |
+
```python
|
| 407 |
+
scaler.step(optimizer)
|
| 408 |
+
scaler.update()
|
| 409 |
+
```
|
| 410 |
+
- Updates model parameters (with scaled gradients)
|
| 411 |
+
- Updates the scaler's internal state
|
| 412 |
+
|
| 413 |
+
```python
|
| 414 |
+
scheduler.step()
|
| 415 |
+
```
|
| 416 |
+
- Updates learning rate according to schedule
|
| 417 |
+
|
| 418 |
+
```python
|
| 419 |
+
losses.append(loss.item())
|
| 420 |
+
return np.mean(losses)
|
| 421 |
+
```
|
| 422 |
+
- Stores loss value
|
| 423 |
+
- Returns average loss for the epoch
|
| 424 |
+
|
| 425 |
+
### Lines 215-230: `validate` Function
|
| 426 |
+
|
| 427 |
+
```python
|
| 428 |
+
def validate(model, loader, criterion):
|
| 429 |
+
model.eval()
|
| 430 |
+
```
|
| 431 |
+
- Sets model to evaluation mode (disables dropout, fixes batch norm)
|
| 432 |
+
|
| 433 |
+
```python
|
| 434 |
+
losses = []
|
| 435 |
+
preds = []
|
| 436 |
+
targs = []
|
| 437 |
+
```
|
| 438 |
+
- Initializes lists for losses, predictions, and targets
|
| 439 |
+
|
| 440 |
+
```python
|
| 441 |
+
with torch.no_grad():
|
| 442 |
+
```
|
| 443 |
+
- Disables gradient computation (saves memory and speeds up inference)
|
| 444 |
+
|
| 445 |
+
```python
|
| 446 |
+
for batch in loader:
|
| 447 |
+
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
|
| 448 |
+
with autocast(enabled=True):
|
| 449 |
+
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"])
|
| 450 |
+
loss = criterion(out.logits, batch["labels"])
|
| 451 |
+
```
|
| 452 |
+
- Moves batch to device
|
| 453 |
+
- Forward pass with mixed precision
|
| 454 |
+
- Calculates validation loss
|
| 455 |
+
|
| 456 |
+
```python
|
| 457 |
+
losses.append(loss.item())
|
| 458 |
+
preds.append(torch.sigmoid(out.logits).float().cpu().numpy())
|
| 459 |
+
targs.append(batch["labels"].cpu().numpy())
|
| 460 |
+
```
|
| 461 |
+
- Stores loss
|
| 462 |
+
- Applies sigmoid to convert logits to probabilities [0, 1]
|
| 463 |
+
- Moves predictions and targets to CPU as numpy arrays
|
| 464 |
+
|
| 465 |
+
```python
|
| 466 |
+
return np.mean(losses), np.vstack(preds), np.vstack(targs)
|
| 467 |
+
```
|
| 468 |
+
- Returns average loss, stacked predictions, and stacked targets
|
| 469 |
+
|
| 470 |
+
---
|
| 471 |
+
|
| 472 |
+
## Section 7: Main K-Fold Training Loop
|
| 473 |
+
|
| 474 |
+
### Lines 246-324: `run_training` Function
|
| 475 |
+
|
| 476 |
+
```python
|
| 477 |
+
def run_training():
|
| 478 |
+
if not os.path.exists(CONFIG.TRAIN_CSV):
|
| 479 |
+
print("Train CSV not found. Please check the path.")
|
| 480 |
+
return None, None
|
| 481 |
+
```
|
| 482 |
+
- Checks if training data exists
|
| 483 |
+
- Returns None if not found (graceful failure)
|
| 484 |
+
|
| 485 |
+
```python
|
| 486 |
+
df = pd.read_csv(CONFIG.TRAIN_CSV)
|
| 487 |
+
df = ensure_text_column(df)
|
| 488 |
+
```
|
| 489 |
+
- Loads training data
|
| 490 |
+
- Ensures text column exists
|
| 491 |
+
|
| 492 |
+
```python
|
| 493 |
+
skf = StratifiedKFold(n_splits=CONFIG.N_FOLDS, shuffle=True, random_state=CONFIG.SEED)
|
| 494 |
+
y_str = df[CONFIG.LABELS].astype(str).agg("".join, axis=1)
|
| 495 |
+
```
|
| 496 |
+
- Creates 5-fold stratified splitter
|
| 497 |
+
- Converts multi-label to string representation for stratification
|
| 498 |
+
- Example: [1,0,1,0,0] → "10100"
|
| 499 |
+
|
| 500 |
+
```python
|
| 501 |
+
oof_preds = np.zeros((len(df), len(CONFIG.LABELS)))
|
| 502 |
+
```
|
| 503 |
+
- Initializes out-of-fold predictions array (for all training samples)
|
| 504 |
+
|
| 505 |
+
```python
|
| 506 |
+
tokenizer = AutoTokenizer.from_pretrained(CONFIG.MODEL_NAME)
|
| 507 |
+
```
|
| 508 |
+
- Loads DeBERTa tokenizer
|
| 509 |
+
|
| 510 |
+
```python
|
| 511 |
+
for fold, (train_idx, val_idx) in enumerate(skf.split(df, y_str)):
|
| 512 |
+
print(f"\n{'='*20} FOLD {fold+1}/{CONFIG.N_FOLDS} {'='*20}")
|
| 513 |
+
```
|
| 514 |
+
- Iterates through each fold
|
| 515 |
+
- `train_idx`: indices for training, `val_idx`: indices for validation
|
| 516 |
+
|
| 517 |
+
```python
|
| 518 |
+
df_tr = df.iloc[train_idx].reset_index(drop=True)
|
| 519 |
+
df_va = df.iloc[val_idx].reset_index(drop=True)
|
| 520 |
+
```
|
| 521 |
+
- Splits data into training and validation sets for current fold
|
| 522 |
+
- Resets index for clean indexing
|
| 523 |
+
|
| 524 |
+
```python
|
| 525 |
+
ds_tr = EmotionDS(df_tr, tokenizer, CONFIG.MAX_LEN)
|
| 526 |
+
ds_va = EmotionDS(df_va, tokenizer, CONFIG.MAX_LEN)
|
| 527 |
+
```
|
| 528 |
+
- Creates PyTorch datasets for training and validation
|
| 529 |
+
|
| 530 |
+
```python
|
| 531 |
+
dl_tr = torch.utils.data.DataLoader(ds_tr, batch_size=CONFIG.BATCH_SIZE, shuffle=True, num_workers=2, pin_memory=True)
|
| 532 |
+
dl_va = torch.utils.data.DataLoader(ds_va, batch_size=CONFIG.BATCH_SIZE, shuffle=False, num_workers=2, pin_memory=True)
|
| 533 |
+
```
|
| 534 |
+
- Creates data loaders
|
| 535 |
+
- **shuffle=True** for training (randomizes batch order)
|
| 536 |
+
- **shuffle=False** for validation (keeps consistent order)
|
| 537 |
+
- **num_workers=2**: Uses 2 subprocesses for data loading
|
| 538 |
+
- **pin_memory=True**: Speeds up CPU→GPU transfer
|
| 539 |
+
|
| 540 |
+
```python
|
| 541 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 542 |
+
CONFIG.MODEL_NAME,
|
| 543 |
+
num_labels=len(CONFIG.LABELS),
|
| 544 |
+
problem_type="multi_label_classification"
|
| 545 |
+
)
|
| 546 |
+
model.to(device)
|
| 547 |
+
```
|
| 548 |
+
- Loads pre-trained DeBERTa model
|
| 549 |
+
- Configures for 5-label multi-label classification
|
| 550 |
+
- Moves model to GPU/CPU
|
| 551 |
+
|
| 552 |
+
```python
|
| 553 |
+
optimizer_params = get_optimizer_params(model, CONFIG.LR, CONFIG.WEIGHT_DECAY)
|
| 554 |
+
optimizer = AdamW(optimizer_params, lr=CONFIG.LR)
|
| 555 |
+
```
|
| 556 |
+
- Gets parameter groups with differential weight decay
|
| 557 |
+
- Creates AdamW optimizer
|
| 558 |
+
|
| 559 |
+
```python
|
| 560 |
+
total_steps = len(dl_tr) * CONFIG.EPOCHS
|
| 561 |
+
scheduler = get_linear_schedule_with_warmup(
|
| 562 |
+
optimizer,
|
| 563 |
+
num_warmup_steps=int(total_steps * CONFIG.WARMUP_RATIO),
|
| 564 |
+
num_training_steps=total_steps
|
| 565 |
+
)
|
| 566 |
+
```
|
| 567 |
+
- Calculates total training steps
|
| 568 |
+
- Creates learning rate scheduler:
|
| 569 |
+
- Warmup: LR increases linearly for 10% of steps
|
| 570 |
+
- Decay: LR decreases linearly to 0 for remaining 90%
|
| 571 |
+
|
| 572 |
+
```python
|
| 573 |
+
criterion = nn.BCEWithLogitsLoss()
|
| 574 |
+
scaler = GradScaler(enabled=True)
|
| 575 |
+
```
|
| 576 |
+
- **BCEWithLogitsLoss**: Binary cross-entropy loss for multi-label classification
|
| 577 |
+
- Creates gradient scaler for mixed precision
|
| 578 |
+
|
| 579 |
+
```python
|
| 580 |
+
best_f1 = 0
|
| 581 |
+
best_state = None
|
| 582 |
+
```
|
| 583 |
+
- Initializes tracking for best model
|
| 584 |
+
|
| 585 |
+
```python
|
| 586 |
+
for ep in range(CONFIG.EPOCHS):
|
| 587 |
+
train_loss = train_one_epoch(model, dl_tr, optimizer, scheduler, scaler, criterion)
|
| 588 |
+
val_loss, val_preds, val_targs = validate(model, dl_va, criterion)
|
| 589 |
+
```
|
| 590 |
+
- Trains for one epoch
|
| 591 |
+
- Validates on validation set
|
| 592 |
+
|
| 593 |
+
```python
|
| 594 |
+
val_f1 = f1_score(val_targs, (val_preds >= 0.5).astype(int), average="macro", zero_division=0)
|
| 595 |
+
```
|
| 596 |
+
- Calculates macro F1 score (average F1 across all labels)
|
| 597 |
+
- Uses 0.5 threshold for predictions
|
| 598 |
+
|
| 599 |
+
```python
|
| 600 |
+
print(f"Ep {ep+1}: TrLoss={train_loss:.4f} | VaLoss={val_loss:.4f} | VaF1={val_f1:.4f}")
|
| 601 |
+
```
|
| 602 |
+
- Prints epoch metrics
|
| 603 |
+
|
| 604 |
+
```python
|
| 605 |
+
if val_f1 > best_f1:
|
| 606 |
+
best_f1 = val_f1
|
| 607 |
+
best_state = model.state_dict()
|
| 608 |
+
```
|
| 609 |
+
- Saves model state if validation F1 improves
|
| 610 |
+
|
| 611 |
+
```python
|
| 612 |
+
torch.save(best_state, f"model_fold_{fold}.pth")
|
| 613 |
+
```
|
| 614 |
+
- Saves best model weights to disk
|
| 615 |
+
|
| 616 |
+
```python
|
| 617 |
+
model.load_state_dict(best_state)
|
| 618 |
+
_, val_preds, _ = validate(model, dl_va, criterion)
|
| 619 |
+
oof_preds[val_idx] = val_preds
|
| 620 |
+
```
|
| 621 |
+
- Loads best weights
|
| 622 |
+
- Gets predictions on validation set
|
| 623 |
+
- Stores out-of-fold predictions
|
| 624 |
+
|
| 625 |
+
```python
|
| 626 |
+
del model, optimizer, scaler, scheduler
|
| 627 |
+
torch.cuda.empty_cache()
|
| 628 |
+
gc.collect()
|
| 629 |
+
```
|
| 630 |
+
- Deletes objects to free memory
|
| 631 |
+
- Clears GPU cache
|
| 632 |
+
- Runs garbage collector
|
| 633 |
+
|
| 634 |
+
```python
|
| 635 |
+
return oof_preds, df[CONFIG.LABELS].values
|
| 636 |
+
```
|
| 637 |
+
- Returns out-of-fold predictions and true labels
|
| 638 |
+
|
| 639 |
+
```python
|
| 640 |
+
if os.path.exists(CONFIG.TRAIN_CSV):
|
| 641 |
+
oof_preds, y_true = run_training()
|
| 642 |
+
else:
|
| 643 |
+
print("Skipping training as data is not found (likely in a dry-run environment).")
|
| 644 |
+
```
|
| 645 |
+
- Executes training if data exists
|
| 646 |
+
- Otherwise skips gracefully
|
| 647 |
+
|
| 648 |
+
---
|
| 649 |
+
|
| 650 |
+
## Section 8: Threshold Optimization
|
| 651 |
+
|
| 652 |
+
### Lines 340-347: Threshold Tuning
|
| 653 |
+
|
| 654 |
+
```python
|
| 655 |
+
if os.path.exists(CONFIG.TRAIN_CSV):
|
| 656 |
+
best_thresholds = tune_thresholds(y_true, oof_preds)
|
| 657 |
+
```
|
| 658 |
+
- Finds optimal threshold for each emotion label using validation predictions
|
| 659 |
+
|
| 660 |
+
```python
|
| 661 |
+
oof_tuned = (oof_preds >= best_thresholds).astype(int)
|
| 662 |
+
```
|
| 663 |
+
- Converts probabilities to binary predictions using optimized thresholds
|
| 664 |
+
|
| 665 |
+
```python
|
| 666 |
+
final_f1 = f1_score(y_true, oof_tuned, average="macro", zero_division=0)
|
| 667 |
+
print(f"\nFinal CV Macro F1: {final_f1:.4f}")
|
| 668 |
+
print(f"Best Thresholds: {best_thresholds}")
|
| 669 |
+
```
|
| 670 |
+
- Calculates cross-validated F1 score with optimized thresholds
|
| 671 |
+
- Prints final performance and optimal thresholds
|
| 672 |
+
|
| 673 |
+
```python
|
| 674 |
+
else:
|
| 675 |
+
best_thresholds = np.array([0.5] * len(CONFIG.LABELS))
|
| 676 |
+
```
|
| 677 |
+
- Falls back to 0.5 thresholds if training data not available
|
| 678 |
+
|
| 679 |
+
---
|
| 680 |
+
|
| 681 |
+
## Section 9: Inference & Submission
|
| 682 |
+
|
| 683 |
+
### Lines 363-420: `predict_test` Function
|
| 684 |
+
|
| 685 |
+
```python
|
| 686 |
+
def predict_test(thresholds):
|
| 687 |
+
if not os.path.exists(CONFIG.TEST_CSV):
|
| 688 |
+
print("Test CSV not found.")
|
| 689 |
+
return
|
| 690 |
+
```
|
| 691 |
+
- Checks if test data exists
|
| 692 |
+
|
| 693 |
+
```python
|
| 694 |
+
df_test = pd.read_csv(CONFIG.TEST_CSV)
|
| 695 |
+
df_test = ensure_text_column(df_test)
|
| 696 |
+
```
|
| 697 |
+
- Loads test data and ensures text column
|
| 698 |
+
|
| 699 |
+
```python
|
| 700 |
+
tokenizer = AutoTokenizer.from_pretrained(CONFIG.MODEL_NAME)
|
| 701 |
+
ds_test = EmotionDS(df_test, tokenizer, CONFIG.MAX_LEN, is_test=True)
|
| 702 |
+
dl_test = torch.utils.data.DataLoader(ds_test, batch_size=CONFIG.BATCH_SIZE, shuffle=False, num_workers=2)
|
| 703 |
+
```
|
| 704 |
+
- Creates tokenizer, dataset, and data loader for test data
|
| 705 |
+
- `is_test=True`: No labels expected
|
| 706 |
+
|
| 707 |
+
```python
|
| 708 |
+
fold_preds = []
|
| 709 |
+
```
|
| 710 |
+
- Initializes list to store predictions from each fold
|
| 711 |
+
|
| 712 |
+
```python
|
| 713 |
+
for fold in range(CONFIG.N_FOLDS):
|
| 714 |
+
model_path = f"model_fold_{fold}.pth"
|
| 715 |
+
if not os.path.exists(model_path):
|
| 716 |
+
print(f"Model for fold {fold} not found, skipping.")
|
| 717 |
+
continue
|
| 718 |
+
```
|
| 719 |
+
- Iterates through all folds
|
| 720 |
+
- Checks if model exists
|
| 721 |
+
|
| 722 |
+
```python
|
| 723 |
+
print(f"Predicting Fold {fold+1}...")
|
| 724 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 725 |
+
CONFIG.MODEL_NAME,
|
| 726 |
+
num_labels=len(CONFIG.LABELS),
|
| 727 |
+
problem_type="multi_label_classification"
|
| 728 |
+
)
|
| 729 |
+
model.load_state_dict(torch.load(model_path))
|
| 730 |
+
model.to(device)
|
| 731 |
+
model.eval()
|
| 732 |
+
```
|
| 733 |
+
- Loads model architecture
|
| 734 |
+
- Loads trained weights
|
| 735 |
+
- Sets to evaluation mode
|
| 736 |
+
|
| 737 |
+
```python
|
| 738 |
+
preds = []
|
| 739 |
+
with torch.no_grad():
|
| 740 |
+
for batch in dl_test:
|
| 741 |
+
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
|
| 742 |
+
with autocast(enabled=True):
|
| 743 |
+
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"])
|
| 744 |
+
preds.append(torch.sigmoid(out.logits).float().cpu().numpy())
|
| 745 |
+
```
|
| 746 |
+
- Makes predictions without computing gradients
|
| 747 |
+
- Uses mixed precision for speed
|
| 748 |
+
- Applies sigmoid to get probabilities
|
| 749 |
+
|
| 750 |
+
```python
|
| 751 |
+
fold_preds.append(np.vstack(preds))
|
| 752 |
+
del model
|
| 753 |
+
torch.cuda.empty_cache()
|
| 754 |
+
gc.collect()
|
| 755 |
+
```
|
| 756 |
+
- Stores fold predictions
|
| 757 |
+
- Frees memory
|
| 758 |
+
|
| 759 |
+
```python
|
| 760 |
+
if not fold_preds:
|
| 761 |
+
print("No predictions made.")
|
| 762 |
+
return
|
| 763 |
+
```
|
| 764 |
+
- Checks if any predictions were made
|
| 765 |
+
|
| 766 |
+
```python
|
| 767 |
+
avg_preds = np.mean(fold_preds, axis=0)
|
| 768 |
+
```
|
| 769 |
+
- Averages predictions across all folds (ensemble)
|
| 770 |
+
|
| 771 |
+
```python
|
| 772 |
+
final_preds = (avg_preds >= thresholds).astype(int)
|
| 773 |
+
```
|
| 774 |
+
- Applies optimized thresholds to get binary predictions
|
| 775 |
+
|
| 776 |
+
```python
|
| 777 |
+
sub = pd.DataFrame(columns=["id"] + CONFIG.LABELS)
|
| 778 |
+
sub["id"] = df_test["id"] if "id" in df_test.columns else np.arange(len(df_test))
|
| 779 |
+
sub[CONFIG.LABELS] = final_preds
|
| 780 |
+
sub.to_csv(CONFIG.SUBMISSION_PATH, index=False)
|
| 781 |
+
print(f"Submission saved to {CONFIG.SUBMISSION_PATH}")
|
| 782 |
+
print(sub.head())
|
| 783 |
+
```
|
| 784 |
+
- Creates submission DataFrame
|
| 785 |
+
- Adds ID column (from data or generated)
|
| 786 |
+
- Adds prediction columns
|
| 787 |
+
- Saves to CSV
|
| 788 |
+
- Displays first few rows
|
| 789 |
+
|
| 790 |
+
```python
|
| 791 |
+
predict_test(best_thresholds)
|
| 792 |
+
```
|
| 793 |
+
- Executes prediction function with optimized thresholds
|
| 794 |
+
|
| 795 |
+
---
|
| 796 |
+
|
| 797 |
+
## Summary
|
| 798 |
+
|
| 799 |
+
This notebook implements a **robust emotion classification pipeline** with:
|
| 800 |
+
|
| 801 |
+
1. **K-Fold Cross-Validation**: 5-fold stratified CV for reliable performance estimates
|
| 802 |
+
2. **State-of-the-Art Model**: DeBERTa-v3-base transformer
|
| 803 |
+
3. **Optimization Techniques**:
|
| 804 |
+
- Mixed precision training (faster, less memory)
|
| 805 |
+
- Gradient clipping (stability)
|
| 806 |
+
- Learning rate warmup and decay
|
| 807 |
+
- Differential weight decay
|
| 808 |
+
4. **Threshold Optimization**: Per-label thresholds for better F1 scores
|
| 809 |
+
5. **Ensemble Prediction**: Averages predictions from all folds
|
| 810 |
+
6. **Memory Management**: Explicit cleanup between folds
|
| 811 |
+
|
| 812 |
+
The model predicts 5 emotions (anger, fear, joy, sadness, surprise) in a **multi-label** setting, where text can have multiple emotions simultaneously.
|
submission_notebook.ipynb
ADDED
|
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "b2b05c00",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"!pip install -q transformers torch huggingface_hub pandas numpy kaggle\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"import os\n",
|
| 13 |
+
"from pathlib import Path\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"kaggle_json_path = Path.home() / '.kaggle' / 'kaggle.json'\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"if not kaggle_json_path.exists():\n",
|
| 18 |
+
" print(\"Kaggle credentials not found.\")\n",
|
| 19 |
+
" print(\"\\nIf you have kaggle.json in the current directory:\")\n",
|
| 20 |
+
" if Path('kaggle.json').exists():\n",
|
| 21 |
+
" kaggle_json_path.parent.mkdir(exist_ok=True, parents=True)\n",
|
| 22 |
+
" import shutil\n",
|
| 23 |
+
" shutil.copy('kaggle.json', kaggle_json_path)\n",
|
| 24 |
+
" kaggle_json_path.chmod(0o600)\n",
|
| 25 |
+
" print(\"Kaggle credentials configured\")\n",
|
| 26 |
+
" else:\n",
|
| 27 |
+
" print(\"\\nPlease upload kaggle.json to this directory, then re-run this cell.\")\n",
|
| 28 |
+
" print(\"Download from: https://www.kaggle.com/settings\")\n",
|
| 29 |
+
"else:\n",
|
| 30 |
+
" print(\"Kaggle credentials found\")\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"import numpy as np\n",
|
| 33 |
+
"import pandas as pd\n",
|
| 34 |
+
"import torch\n",
|
| 35 |
+
"from transformers import AutoTokenizer, AutoModelForSequenceClassification\n",
|
| 36 |
+
"from torch.cuda.amp import autocast\n",
|
| 37 |
+
"from huggingface_hub import hf_hub_download\n",
|
| 38 |
+
"import warnings\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"class Config:\n",
|
| 43 |
+
" HF_REPO_ID = \"YOUR_USERNAME/emotion-classifier-deberta-v3\"\n",
|
| 44 |
+
" COMPETITION_NAME = \"2025-sep-dl-gen-ai-project\"\n",
|
| 45 |
+
" LABELS = [\"anger\", \"fear\", \"joy\", \"sadness\", \"surprise\"]\n",
|
| 46 |
+
" MAX_LEN = 128\n",
|
| 47 |
+
" BATCH_SIZE = 32\n",
|
| 48 |
+
" TEST_CSV = \"/kaggle/input/2025-sep-dl-gen-ai-project/test.csv\"\n",
|
| 49 |
+
" SUBMISSION_PATH = \"submission.csv\"\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"CONFIG = Config()\n",
|
| 52 |
+
"\n",
|
| 53 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 54 |
+
"print(f\"Using device: {device}\")\n",
|
| 55 |
+
"if torch.cuda.is_available():\n",
|
| 56 |
+
" print(f\"GPU: {torch.cuda.get_device_name(0)}\")\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"print(f\"Loading model from HuggingFace: {CONFIG.HF_REPO_ID}\")\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"try:\n",
|
| 61 |
+
" print(\" Loading model...\")\n",
|
| 62 |
+
" model = AutoModelForSequenceClassification.from_pretrained(\n",
|
| 63 |
+
" CONFIG.HF_REPO_ID,\n",
|
| 64 |
+
" num_labels=len(CONFIG.LABELS),\n",
|
| 65 |
+
" problem_type=\"multi_label_classification\"\n",
|
| 66 |
+
" )\n",
|
| 67 |
+
" model.to(device)\n",
|
| 68 |
+
" model.eval()\n",
|
| 69 |
+
" print(\" Model loaded\")\n",
|
| 70 |
+
" \n",
|
| 71 |
+
" print(\" Loading tokenizer...\")\n",
|
| 72 |
+
" tokenizer = AutoTokenizer.from_pretrained(CONFIG.HF_REPO_ID)\n",
|
| 73 |
+
" print(\" Tokenizer loaded\")\n",
|
| 74 |
+
" \n",
|
| 75 |
+
" print(\" Loading optimized thresholds...\")\n",
|
| 76 |
+
" try:\n",
|
| 77 |
+
" threshold_path = hf_hub_download(\n",
|
| 78 |
+
" repo_id=CONFIG.HF_REPO_ID,\n",
|
| 79 |
+
" filename=\"best_thresholds.npy\"\n",
|
| 80 |
+
" )\n",
|
| 81 |
+
" best_thresholds = np.load(threshold_path)\n",
|
| 82 |
+
" print(\" Optimized thresholds loaded\")\n",
|
| 83 |
+
" print(f\"\\n Thresholds per label:\")\n",
|
| 84 |
+
" for i, label in enumerate(CONFIG.LABELS):\n",
|
| 85 |
+
" print(f\" {label}: {best_thresholds[i]:.3f}\")\n",
|
| 86 |
+
" except Exception as e:\n",
|
| 87 |
+
" print(f\" Could not load thresholds: {e}\")\n",
|
| 88 |
+
" print(\" Using default thresholds of 0.5\")\n",
|
| 89 |
+
" best_thresholds = np.array([0.5] * len(CONFIG.LABELS))\n",
|
| 90 |
+
" \n",
|
| 91 |
+
" print(\"\\nModel setup complete\")\n",
|
| 92 |
+
" \n",
|
| 93 |
+
"except Exception as e:\n",
|
| 94 |
+
" print(f\"\\nError loading model: {e}\")\n",
|
| 95 |
+
" print(\"\\nPlease ensure:\")\n",
|
| 96 |
+
" print(\"1. You've updated CONFIG.HF_REPO_ID with your actual repository ID\")\n",
|
| 97 |
+
" print(\"2. The model was successfully uploaded in the training notebook\")\n",
|
| 98 |
+
" print(\"3. The repository is public or you're logged in to HuggingFace\")\n",
|
| 99 |
+
" raise\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"def ensure_text_column(df: pd.DataFrame) -> pd.DataFrame:\n",
|
| 102 |
+
" if \"text\" in df.columns:\n",
|
| 103 |
+
" return df\n",
|
| 104 |
+
" for c in [\"comment_text\", \"sentence\", \"content\", \"review\"]:\n",
|
| 105 |
+
" if c in df.columns:\n",
|
| 106 |
+
" return df.rename(columns={c: \"text\"})\n",
|
| 107 |
+
" raise ValueError(\"No text column found. Add/rename your text column to 'text'.\")\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"class EmotionDS(torch.utils.data.Dataset):\n",
|
| 110 |
+
" def __init__(self, texts, tokenizer, max_len):\n",
|
| 111 |
+
" self.texts = texts\n",
|
| 112 |
+
" self.tok = tokenizer\n",
|
| 113 |
+
" self.max_len = max_len\n",
|
| 114 |
+
"\n",
|
| 115 |
+
" def __len__(self):\n",
|
| 116 |
+
" return len(self.texts)\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" def __getitem__(self, i):\n",
|
| 119 |
+
" enc = self.tok(\n",
|
| 120 |
+
" self.texts[i],\n",
|
| 121 |
+
" truncation=True,\n",
|
| 122 |
+
" padding=\"max_length\",\n",
|
| 123 |
+
" max_length=self.max_len,\n",
|
| 124 |
+
" return_tensors=\"pt\",\n",
|
| 125 |
+
" )\n",
|
| 126 |
+
" return {k: v.squeeze(0) for k, v in enc.items()}\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"print(f\"Loading test data from: {CONFIG.TEST_CSV}\")\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"if not os.path.exists(CONFIG.TEST_CSV):\n",
|
| 131 |
+
" print(\"Test CSV not found. Please check the path.\")\n",
|
| 132 |
+
" print(\"\\nIf you're running locally, make sure you have the test data.\")\n",
|
| 133 |
+
" print(\"On Kaggle, ensure you've added the competition data as input.\")\n",
|
| 134 |
+
" raise FileNotFoundError(CONFIG.TEST_CSV)\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"df_test = pd.read_csv(CONFIG.TEST_CSV)\n",
|
| 137 |
+
"df_test = ensure_text_column(df_test)\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"print(f\"Test data loaded: {len(df_test)} samples\")\n",
|
| 140 |
+
"print(f\"\\nColumns: {df_test.columns.tolist()}\")\n",
|
| 141 |
+
"print(f\"\\nFirst few rows:\")\n",
|
| 142 |
+
"print(df_test.head())\n",
|
| 143 |
+
"\n",
|
| 144 |
+
"print(\"\\nGenerating predictions...\\n\")\n",
|
| 145 |
+
"\n",
|
| 146 |
+
"test_texts = df_test[\"text\"].tolist()\n",
|
| 147 |
+
"test_dataset = EmotionDS(test_texts, tokenizer, CONFIG.MAX_LEN)\n",
|
| 148 |
+
"test_loader = torch.utils.data.DataLoader(\n",
|
| 149 |
+
" test_dataset, \n",
|
| 150 |
+
" batch_size=CONFIG.BATCH_SIZE, \n",
|
| 151 |
+
" shuffle=False, \n",
|
| 152 |
+
" num_workers=2,\n",
|
| 153 |
+
" pin_memory=True\n",
|
| 154 |
+
")\n",
|
| 155 |
+
"\n",
|
| 156 |
+
"all_preds = []\n",
|
| 157 |
+
"\n",
|
| 158 |
+
"with torch.no_grad():\n",
|
| 159 |
+
" for batch_idx, batch in enumerate(test_loader):\n",
|
| 160 |
+
" batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}\n",
|
| 161 |
+
" \n",
|
| 162 |
+
" with autocast(enabled=True):\n",
|
| 163 |
+
" outputs = model(\n",
|
| 164 |
+
" input_ids=batch[\"input_ids\"], \n",
|
| 165 |
+
" attention_mask=batch[\"attention_mask\"]\n",
|
| 166 |
+
" )\n",
|
| 167 |
+
" \n",
|
| 168 |
+
" probs = torch.sigmoid(outputs.logits).float().cpu().numpy()\n",
|
| 169 |
+
" all_preds.append(probs)\n",
|
| 170 |
+
" \n",
|
| 171 |
+
" if (batch_idx + 1) % 10 == 0:\n",
|
| 172 |
+
" progress = (batch_idx + 1) * CONFIG.BATCH_SIZE\n",
|
| 173 |
+
" print(f\" Processed {min(progress, len(df_test))}/{len(df_test)} samples...\")\n",
|
| 174 |
+
"\n",
|
| 175 |
+
"all_probs = np.vstack(all_preds)\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"print(f\"\\nPredictions generated for {len(all_probs)} samples\")\n",
|
| 178 |
+
"print(f\"Shape: {all_probs.shape}\")\n",
|
| 179 |
+
"\n",
|
| 180 |
+
"print(\"\\nApplying optimized thresholds...\\n\")\n",
|
| 181 |
+
"\n",
|
| 182 |
+
"final_predictions = (all_probs >= best_thresholds).astype(int)\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"print(f\"Thresholds applied\")\n",
|
| 185 |
+
"print(f\"\\nPrediction distribution:\")\n",
|
| 186 |
+
"for i, label in enumerate(CONFIG.LABELS):\n",
|
| 187 |
+
" count = final_predictions[:, i].sum()\n",
|
| 188 |
+
" percentage = (count / len(final_predictions)) * 100\n",
|
| 189 |
+
" print(f\" {label:<12} {count:>6} samples ({percentage:>5.1f}%)\")\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"avg_labels_per_sample = final_predictions.sum(axis=1).mean()\n",
|
| 192 |
+
"print(f\"\\n Average labels per sample: {avg_labels_per_sample:.2f}\")\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"print(\"\\nCreating submission file...\\n\")\n",
|
| 195 |
+
"\n",
|
| 196 |
+
"submission = pd.DataFrame()\n",
|
| 197 |
+
"\n",
|
| 198 |
+
"if \"id\" in df_test.columns:\n",
|
| 199 |
+
" submission[\"id\"] = df_test[\"id\"]\n",
|
| 200 |
+
"else:\n",
|
| 201 |
+
" submission[\"id\"] = np.arange(len(df_test))\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"for i, label in enumerate(CONFIG.LABELS):\n",
|
| 204 |
+
" submission[label] = final_predictions[:, i]\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"submission.to_csv(CONFIG.SUBMISSION_PATH, index=False)\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"print(f\"Submission file saved to: {CONFIG.SUBMISSION_PATH}\")\n",
|
| 209 |
+
"print(f\"\\nSubmission preview:\")\n",
|
| 210 |
+
"print(submission.head(10))\n",
|
| 211 |
+
"print(f\"\\nTotal rows: {len(submission)}\")\n",
|
| 212 |
+
"print(f\"Columns: {submission.columns.tolist()}\")\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"print(\"Verifying submission format...\\n\")\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"required_columns = [\"id\"] + CONFIG.LABELS\n",
|
| 217 |
+
"submission_columns = submission.columns.tolist()\n",
|
| 218 |
+
"\n",
|
| 219 |
+
"if submission_columns == required_columns:\n",
|
| 220 |
+
" print(\"Submission format is correct\")\n",
|
| 221 |
+
" print(f\" Columns: {submission_columns}\")\n",
|
| 222 |
+
" \n",
|
| 223 |
+
" if submission[CONFIG.LABELS].isin([0, 1]).all().all():\n",
|
| 224 |
+
" print(\"All predictions are binary (0 or 1)\")\n",
|
| 225 |
+
" else:\n",
|
| 226 |
+
" print(\"Warning: Some predictions are not binary\")\n",
|
| 227 |
+
" \n",
|
| 228 |
+
" if not submission.isnull().any().any():\n",
|
| 229 |
+
" print(\"No missing values\")\n",
|
| 230 |
+
" else:\n",
|
| 231 |
+
" print(\"Missing values detected\")\n",
|
| 232 |
+
" print(submission.isnull().sum())\n",
|
| 233 |
+
"else:\n",
|
| 234 |
+
" print(\"Submission format is incorrect\")\n",
|
| 235 |
+
" print(f\" Expected: {required_columns}\")\n",
|
| 236 |
+
" print(f\" Got: {submission_columns}\")\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"print(\"\\nSubmitting to Kaggle...\\n\")\n",
|
| 239 |
+
"\n",
|
| 240 |
+
"submission_message = f\"DeBERTa-v3 with optimized thresholds - HF: {CONFIG.HF_REPO_ID}\"\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"try:\n",
|
| 243 |
+
" import kaggle\n",
|
| 244 |
+
" \n",
|
| 245 |
+
" kaggle.api.competition_submit(\n",
|
| 246 |
+
" file_name=CONFIG.SUBMISSION_PATH,\n",
|
| 247 |
+
" message=submission_message,\n",
|
| 248 |
+
" competition=CONFIG.COMPETITION_NAME\n",
|
| 249 |
+
" )\n",
|
| 250 |
+
" \n",
|
| 251 |
+
" print(\"Submission successful\")\n",
|
| 252 |
+
" print(f\"\\nSubmission message: {submission_message}\")\n",
|
| 253 |
+
" print(f\"\\nView your submission at:\")\n",
|
| 254 |
+
" print(f\" https://www.kaggle.com/c/{CONFIG.COMPETITION_NAME}/submissions\")\n",
|
| 255 |
+
" \n",
|
| 256 |
+
"except Exception as e:\n",
|
| 257 |
+
" print(f\"Submission failed: {e}\")\n",
|
| 258 |
+
" print(\"\\nPossible reasons:\")\n",
|
| 259 |
+
" print(\"1. Kaggle API credentials not configured\")\n",
|
| 260 |
+
" print(\"2. Competition name is incorrect\")\n",
|
| 261 |
+
" print(\"3. You've reached the daily submission limit\")\n",
|
| 262 |
+
" print(\"4. The competition has ended\")\n",
|
| 263 |
+
" print(\"\\nYou can manually upload the submission.csv file to Kaggle.\")\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"print(\"\\n\" + \"=\"*60)\n",
|
| 266 |
+
"print(\"PREDICTION STATISTICS\")\n",
|
| 267 |
+
"print(\"=\"*60)\n",
|
| 268 |
+
"\n",
|
| 269 |
+
"labels_per_sample = final_predictions.sum(axis=1)\n",
|
| 270 |
+
"print(\"\\nLabels per sample distribution:\")\n",
|
| 271 |
+
"for i in range(6):\n",
|
| 272 |
+
" count = (labels_per_sample == i).sum()\n",
|
| 273 |
+
" percentage = (count / len(labels_per_sample)) * 100\n",
|
| 274 |
+
" print(f\" {i} labels: {count:>6} samples ({percentage:>5.1f}%)\")\n",
|
| 275 |
+
"\n",
|
| 276 |
+
"print(\"\\nMost common label combinations:\")\n",
|
| 277 |
+
"label_combinations = []\n",
|
| 278 |
+
"for pred in final_predictions:\n",
|
| 279 |
+
" active_labels = [CONFIG.LABELS[i] for i, val in enumerate(pred) if val == 1]\n",
|
| 280 |
+
" if active_labels:\n",
|
| 281 |
+
" label_combinations.append(\", \".join(sorted(active_labels)))\n",
|
| 282 |
+
" else:\n",
|
| 283 |
+
" label_combinations.append(\"(none)\")\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"from collections import Counter\n",
|
| 286 |
+
"combo_counts = Counter(label_combinations)\n",
|
| 287 |
+
"for combo, count in combo_counts.most_common(10):\n",
|
| 288 |
+
" percentage = (count / len(label_combinations)) * 100\n",
|
| 289 |
+
" print(f\" {combo:<30} {count:>6} ({percentage:>5.1f}%)\")\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"print(\"\\nAverage probability per label:\")\n",
|
| 292 |
+
"for i, label in enumerate(CONFIG.LABELS):\n",
|
| 293 |
+
" avg_prob = all_probs[:, i].mean()\n",
|
| 294 |
+
" std_prob = all_probs[:, i].std()\n",
|
| 295 |
+
" print(f\" {label:<12} {avg_prob:.4f} +/- {std_prob:.4f}\")\n",
|
| 296 |
+
"\n",
|
| 297 |
+
"print(\"\\n\" + \"=\"*60)\n",
|
| 298 |
+
"print(\"SUBMISSION COMPLETE\")\n",
|
| 299 |
+
"print(\"=\"*60)\n",
|
| 300 |
+
"print(f\"\\nSubmission file: {CONFIG.SUBMISSION_PATH}\")\n",
|
| 301 |
+
"print(f\"Model used: {CONFIG.HF_REPO_ID}\")\n",
|
| 302 |
+
"print(f\"Optimized thresholds: {best_thresholds}\")\n",
|
| 303 |
+
"print(\"\\nCheck Kaggle leaderboard for your score\")"
|
| 304 |
+
]
|
| 305 |
+
}
|
| 306 |
+
],
|
| 307 |
+
"metadata": {
|
| 308 |
+
"language_info": {
|
| 309 |
+
"name": "python"
|
| 310 |
+
}
|
| 311 |
+
},
|
| 312 |
+
"nbformat": 4,
|
| 313 |
+
"nbformat_minor": 5
|
| 314 |
+
}
|
training_notebook.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|