HITL-KG / src /core /knowledge_graph.py
avojarot's picture
Upload 22 files
c5880fb verified
"""
Knowledge Graph Core Module (Refactored)
Simplified knowledge graph implementation focusing on:
1. Clean data structures
2. Proper CRUD operations
3. Cytoscape visualization support
4. Session serialization
Removed over-engineered TreeCache in favor of simpler state management.
"""
import uuid
import json
import logging
from enum import Enum
from datetime import datetime
from dataclasses import dataclass, field, asdict
from typing import Dict, List, Optional, Any, Tuple, Set
import networkx as nx
logger = logging.getLogger(__name__)
class NodeType(str, Enum):
"""Types of nodes in the reasoning graph."""
QUERY = "query"
FACT = "fact"
REASONING = "reasoning"
HYPOTHESIS = "hypothesis"
CONCLUSION = "conclusion"
EVIDENCE = "evidence"
CONSTRAINT = "constraint"
GHOST = "ghost" # Pruned nodes
class EdgeType(str, Enum):
"""Types of relationships between nodes."""
LEADS_TO = "leads_to"
SUPPORTS = "supports"
CONTRADICTS = "contradicts"
REQUIRES = "requires"
ALTERNATIVE = "alternative"
FOLLOW_UP = "follow_up"
CAUSES = "causes"
TREATS = "treats"
INDICATES = "indicates"
class EntityCategory(str, Enum):
"""Categories of medical entities."""
SYMPTOM = "symptom"
DISEASE = "disease"
TREATMENT = "treatment"
MEDICATION = "medication"
PROCEDURE = "procedure"
FINDING = "finding"
ANATOMY = "anatomy"
# Node type metadata for UI
NODE_TYPE_INFO = {
NodeType.QUERY: {
"icon": "❓", "name": "Query", "color": "#38bdf8",
"description": "Your input question or symptom description"
},
NodeType.FACT: {
"icon": "📋", "name": "Fact", "color": "#4ade80",
"description": "Verified medical fact from knowledge base"
},
NodeType.REASONING: {
"icon": "🔍", "name": "Reasoning", "color": "#818cf8",
"description": "Logical inference step"
},
NodeType.HYPOTHESIS: {
"icon": "💡", "name": "Hypothesis", "color": "#fbbf24",
"description": "Potential diagnosis being considered"
},
NodeType.CONCLUSION: {
"icon": "✅", "name": "Conclusion", "color": "#f472b6",
"description": "Final diagnostic conclusion"
},
NodeType.EVIDENCE: {
"icon": "📊", "name": "Evidence", "color": "#2dd4bf",
"description": "Supporting medical evidence"
},
NodeType.CONSTRAINT: {
"icon": "⚠️", "name": "Constraint", "color": "#fb7185",
"description": "Limitation or warning"
},
NodeType.GHOST: {
"icon": "👻", "name": "Ghost", "color": "#94a3b8",
"description": "Pruned reasoning path"
},
}
def create_node_id() -> str:
"""Generate a unique node ID."""
return f"n_{uuid.uuid4().hex[:8]}"
@dataclass
class ReasoningNode:
"""A node in the reasoning graph."""
id: str
label: str
node_type: NodeType
content: str
confidence: float = 1.0
kg_entity_id: Optional[str] = None
metadata: Dict[str, Any] = field(default_factory=dict)
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
language: str = "en"
def to_dict(self) -> Dict:
"""Serialize to dictionary."""
return {
"id": self.id,
"label": self.label,
"node_type": self.node_type.value if isinstance(self.node_type, NodeType) else self.node_type,
"content": self.content,
"confidence": self.confidence,
"kg_entity_id": self.kg_entity_id,
"metadata": self.metadata,
"timestamp": self.timestamp,
"language": self.language,
}
def to_cytoscape(self) -> Dict:
"""Convert to Cytoscape element format."""
type_val = self.node_type.value if isinstance(self.node_type, NodeType) else self.node_type
type_info = NODE_TYPE_INFO.get(NodeType(type_val), {"icon": "●", "name": "Unknown"})
# Smart label truncation
display_label = self.label[:60] + "..." if len(self.label) > 60 else self.label
return {
"data": {
"id": self.id,
"label": display_label,
"full_label": self.label,
"type": type_val,
"content": self.content,
"confidence": self.confidence,
"kg_entity_id": self.kg_entity_id or "",
"timestamp": self.timestamp,
"type_icon": type_info["icon"],
"type_name": type_info["name"],
"language": self.language,
},
"classes": type_val
}
@classmethod
def from_dict(cls, data: Dict) -> "ReasoningNode":
"""Deserialize from dictionary."""
node_type = data.get("node_type", "reasoning")
if isinstance(node_type, str):
node_type = NodeType(node_type)
return cls(
id=data["id"],
label=data["label"],
node_type=node_type,
content=data["content"],
confidence=data.get("confidence", 1.0),
kg_entity_id=data.get("kg_entity_id"),
metadata=data.get("metadata", {}),
timestamp=data.get("timestamp", datetime.now().isoformat()),
language=data.get("language", "en"),
)
@dataclass
class ReasoningEdge:
"""An edge in the reasoning graph."""
source: str
target: str
edge_type: EdgeType
weight: float = 1.0
label: str = ""
metadata: Dict[str, Any] = field(default_factory=dict)
@property
def id(self) -> str:
return f"{self.source}-{self.target}"
def to_dict(self) -> Dict:
"""Serialize to dictionary."""
return {
"source": self.source,
"target": self.target,
"edge_type": self.edge_type.value if isinstance(self.edge_type, EdgeType) else self.edge_type,
"weight": self.weight,
"label": self.label,
"metadata": self.metadata,
}
def to_cytoscape(self) -> Dict:
"""Convert to Cytoscape element format."""
type_val = self.edge_type.value if isinstance(self.edge_type, EdgeType) else self.edge_type
return {
"data": {
"id": self.id,
"source": self.source,
"target": self.target,
"type": type_val,
"weight": self.weight,
"label": self.label or type_val.replace("_", " ").title(),
},
"classes": type_val
}
@classmethod
def from_dict(cls, data: Dict) -> "ReasoningEdge":
"""Deserialize from dictionary."""
edge_type = data.get("edge_type", "leads_to")
if isinstance(edge_type, str):
edge_type = EdgeType(edge_type)
return cls(
source=data["source"],
target=data["target"],
edge_type=edge_type,
weight=data.get("weight", 1.0),
label=data.get("label", ""),
metadata=data.get("metadata", {}),
)
@dataclass
class Entity:
"""A knowledge base entity (symptom, disease, treatment, etc.)."""
id: str
name: str
category: EntityCategory
description: str = ""
synonyms: List[str] = field(default_factory=list)
properties: Dict[str, Any] = field(default_factory=dict)
xrefs: Dict[str, str] = field(default_factory=dict) # External references
def to_dict(self) -> Dict:
"""Serialize to dictionary."""
return {
"id": self.id,
"name": self.name,
"category": self.category.value if isinstance(self.category, EntityCategory) else self.category,
"description": self.description,
"synonyms": self.synonyms,
"properties": self.properties,
"xrefs": self.xrefs,
}
def to_embedding_text(self) -> str:
"""Generate text for embedding."""
parts = [self.name]
if self.description:
parts.append(self.description)
parts.extend(self.synonyms)
return " ".join(parts)
@classmethod
def from_dict(cls, data: Dict) -> "Entity":
"""Deserialize from dictionary."""
category = data.get("category", "finding")
if isinstance(category, str):
try:
category = EntityCategory(category)
except ValueError:
category = EntityCategory.FINDING
return cls(
id=data["id"],
name=data["name"],
category=category,
description=data.get("description", ""),
synonyms=data.get("synonyms", []),
properties=data.get("properties", {}),
xrefs=data.get("xrefs", {}),
)
class KnowledgeGraph:
"""
Core Knowledge Graph managing:
1. Static knowledge base (entities and relations)
2. Dynamic reasoning graph (nodes and edges)
Simplified from original - removed TreeCache, streamlined operations.
"""
def __init__(self):
# Knowledge base (static)
self.entities: Dict[str, Entity] = {}
self.kb_graph = nx.DiGraph() # Entity relationships
# Reasoning graph (dynamic)
self.nodes: Dict[str, ReasoningNode] = {}
self.edges: Dict[str, ReasoningEdge] = {}
self.reasoning_graph = nx.DiGraph()
# Version tracking
self.version = 0
self._last_node_id: Optional[str] = None
# ========== Knowledge Base Operations ==========
def add_entity(self, entity: Entity):
"""Add an entity to the knowledge base."""
self.entities[entity.id] = entity
entity_dict = entity.to_dict()
# Remove 'id' and 'category' since we pass them explicitly
entity_dict.pop('id', None)
entity_dict.pop('category', None)
self.kb_graph.add_node(
entity.id,
category=entity.category.value,
**entity_dict
)
def add_relation(
self,
source_id: str,
target_id: str,
relation_type: str,
weight: float = 1.0,
**properties
):
"""Add a relationship between entities."""
self.kb_graph.add_edge(
source_id, target_id,
relation=relation_type,
weight=weight,
**properties
)
def get_entity(self, entity_id: str) -> Optional[Entity]:
"""Get entity by ID."""
return self.entities.get(entity_id)
def get_related_entities(
self,
entity_id: str,
relation_type: Optional[str] = None
) -> List[Tuple[str, str, Dict]]:
"""Get entities related to a given entity."""
if entity_id not in self.kb_graph:
return []
results = []
for _, target, data in self.kb_graph.out_edges(entity_id, data=True):
if relation_type is None or data.get("relation") == relation_type:
results.append((target, data.get("relation"), data))
return results
def get_entities_by_category(self, category: EntityCategory) -> List[Entity]:
"""Get all entities of a specific category."""
return [e for e in self.entities.values() if e.category == category]
def get_diseases_for_symptoms(
self,
symptom_ids: List[str]
) -> List[Tuple[Entity, float]]:
"""Get possible diseases given a set of symptoms with match scores."""
disease_scores: Dict[str, float] = {}
for symptom_id in symptom_ids:
# Find diseases that cause this symptom
for source, _, data in self.kb_graph.in_edges(symptom_id, data=True):
if data.get("relation") == "causes":
entity = self.entities.get(source)
if entity and entity.category == EntityCategory.DISEASE:
weight = data.get("weight", 1.0)
disease_scores[source] = disease_scores.get(source, 0) + weight
# Normalize and sort
results = []
for disease_id, score in sorted(disease_scores.items(), key=lambda x: -x[1]):
entity = self.entities.get(disease_id)
if entity:
# Normalize by number of symptoms
total_symptoms = len(self.get_symptoms_for_disease(disease_id))
normalized_score = score / max(total_symptoms, 1)
results.append((entity, min(normalized_score, 1.0)))
return results
def get_symptoms_for_disease(self, disease_id: str) -> List[Entity]:
"""Get symptoms associated with a disease."""
symptoms = []
for target, relation, _ in self.get_related_entities(disease_id, "causes"):
entity = self.entities.get(target)
if entity and entity.category == EntityCategory.SYMPTOM:
symptoms.append(entity)
return symptoms
def get_treatments_for_disease(self, disease_id: str) -> List[Entity]:
"""Get treatments for a disease."""
treatments = []
# Check outgoing "treats" relations
for target, relation, _ in self.get_related_entities(disease_id, "treats"):
entity = self.entities.get(target)
if entity:
treatments.append(entity)
# Check incoming "treats" relations
for source, _, data in self.kb_graph.in_edges(disease_id, data=True):
if data.get("relation") == "treats":
entity = self.entities.get(source)
if entity and entity not in treatments:
treatments.append(entity)
return treatments
# ========== Reasoning Graph Operations ==========
def add_node(self, node: ReasoningNode) -> str:
"""Add a node to the reasoning graph."""
self.nodes[node.id] = node
self.reasoning_graph.add_node(node.id, **node.to_dict())
if node.node_type not in [NodeType.GHOST, NodeType.EVIDENCE]:
self._last_node_id = node.id
self.version += 1
return node.id
def add_edge(self, edge: ReasoningEdge) -> str:
"""Add an edge to the reasoning graph."""
# Validate that source and target nodes exist
if edge.source not in self.nodes:
logger.warning(f"Edge source node {edge.source} not found in graph - edge not created")
return ""
if edge.target not in self.nodes:
logger.warning(f"Edge target node {edge.target} not found in graph - edge not created")
return ""
self.edges[edge.id] = edge
self.reasoning_graph.add_edge(edge.source, edge.target, **edge.to_dict())
logger.debug(f"Created edge: {edge.source[:8]}... --[{edge.edge_type.value}]--> {edge.target[:8]}...")
self.version += 1
return edge.id
def update_node(self, node_id: str, **updates) -> bool:
"""Update a node's properties."""
if node_id not in self.nodes:
return False
node = self.nodes[node_id]
for key, value in updates.items():
if hasattr(node, key):
setattr(node, key, value)
self.reasoning_graph.nodes[node_id].update(node.to_dict())
self.version += 1
return True
def delete_node(self, node_id: str) -> List[str]:
"""Delete a node and its edges."""
if node_id not in self.nodes:
return []
# Remove connected edges
deleted_edges = []
for edge_id in list(self.edges.keys()):
edge = self.edges[edge_id]
if edge.source == node_id or edge.target == node_id:
if self.reasoning_graph.has_edge(edge.source, edge.target):
self.reasoning_graph.remove_edge(edge.source, edge.target)
del self.edges[edge_id]
deleted_edges.append(edge_id)
# Remove node
if node_id in self.reasoning_graph:
self.reasoning_graph.remove_node(node_id)
del self.nodes[node_id]
self.version += 1
return deleted_edges
def prune_branch(self, node_id: str) -> Dict[str, List[str]]:
"""
Soft prune: Convert node and descendants to GHOST type.
Preserves reasoning history for RLHF and allows resurrection.
"""
if node_id not in self.nodes:
return {"nodes": [], "edges": []}
# Get descendants
try:
descendants = list(nx.descendants(self.reasoning_graph, node_id))
except Exception:
descendants = []
all_nodes = [node_id] + descendants
affected_edges = []
# Convert to ghosts
for nid in all_nodes:
if nid in self.nodes:
node = self.nodes[nid]
node.metadata["original_type"] = node.node_type.value
node.node_type = NodeType.GHOST
node.confidence *= 0.3
self.reasoning_graph.nodes[nid].update(node.to_dict())
# Mark affected edges
for edge_id, edge in self.edges.items():
if edge.source in all_nodes or edge.target in all_nodes:
affected_edges.append(edge_id)
self.version += 1
return {"nodes": all_nodes, "edges": affected_edges}
def resurrect_node(self, node_id: str) -> bool:
"""Restore a ghost node to its original type."""
node = self.nodes.get(node_id)
if not node or node.node_type != NodeType.GHOST:
return False
original_type = node.metadata.get("original_type", "hypothesis")
try:
node.node_type = NodeType(original_type)
except ValueError:
node.node_type = NodeType.HYPOTHESIS
node.confidence = max(node.confidence * 2, 0.6)
self.reasoning_graph.nodes[node_id].update(node.to_dict())
self.version += 1
return True
def get_last_active_node(self) -> Optional[ReasoningNode]:
"""Get the most recent active (non-ghost) node."""
if self._last_node_id and self._last_node_id in self.nodes:
node = self.nodes[self._last_node_id]
if node.node_type != NodeType.GHOST:
return node
# Fallback: find most recent valid node
valid_nodes = [
n for n in self.nodes.values()
if n.node_type not in [NodeType.GHOST, NodeType.EVIDENCE]
]
if not valid_nodes:
return None
return max(valid_nodes, key=lambda x: x.timestamp)
def get_node_children(self, node_id: str) -> List[ReasoningNode]:
"""Get direct children of a node."""
children = []
for edge in self.edges.values():
if edge.source == node_id:
child = self.nodes.get(edge.target)
if child:
children.append(child)
return children
def get_node_parents(self, node_id: str) -> List[ReasoningNode]:
"""Get direct parents of a node."""
parents = []
for edge in self.edges.values():
if edge.target == node_id:
parent = self.nodes.get(edge.source)
if parent:
parents.append(parent)
return parents
# ========== Visualization & Export ==========
def to_cytoscape_elements(
self,
include_ghosts: bool = False,
confidence_threshold: float = 0.0
) -> List[Dict]:
"""Convert reasoning graph to Cytoscape format."""
elements = []
# Add nodes
for node in self.nodes.values():
if node.node_type == NodeType.GHOST and not include_ghosts:
continue
if node.confidence < confidence_threshold:
continue
elements.append(node.to_cytoscape())
# Add edges
visible_node_ids = {e["data"]["id"] for e in elements}
for edge in self.edges.values():
if edge.source not in visible_node_ids or edge.target not in visible_node_ids:
continue
elements.append(edge.to_cytoscape())
return elements
def get_stats(self) -> Dict[str, int]:
"""Get graph statistics."""
return {
"nodes": len(self.nodes),
"edges": len(self.edges),
"entities": len(self.entities),
"version": self.version,
"ghosts": sum(1 for n in self.nodes.values() if n.node_type == NodeType.GHOST),
}
def clear_reasoning(self):
"""Clear the reasoning graph while keeping the knowledge base."""
self.nodes.clear()
self.edges.clear()
self.reasoning_graph.clear()
self._last_node_id = None
self.version = 0
# ========== Serialization ==========
def get_state(self) -> Dict:
"""Get complete state for serialization."""
return {
"nodes": [n.to_dict() for n in self.nodes.values()],
"edges": [e.to_dict() for e in self.edges.values()],
"version": self.version,
"last_node_id": self._last_node_id,
}
def restore_state(self, state: Dict):
"""Restore state from serialized data."""
self.clear_reasoning()
for node_data in state.get("nodes", []):
node = ReasoningNode.from_dict(node_data)
self.nodes[node.id] = node
self.reasoning_graph.add_node(node.id, **node.to_dict())
for edge_data in state.get("edges", []):
edge = ReasoningEdge.from_dict(edge_data)
self.edges[edge.id] = edge
self.reasoning_graph.add_edge(edge.source, edge.target, **edge.to_dict())
self.version = state.get("version", 0)
self._last_node_id = state.get("last_node_id")
def export_json(self) -> str:
"""Export reasoning graph to JSON."""
return json.dumps(self.get_state(), indent=2)
def get_entity_dict_for_embedding(self) -> Dict[str, Dict]:
"""Get entity data formatted for embedding service."""
return {
entity_id: {
"id": entity.id,
"name": entity.name,
"category": entity.category.value,
"description": entity.description,
"synonyms": entity.synonyms,
}
for entity_id, entity in self.entities.items()
}