File size: 22,944 Bytes
3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 c5880fb 3f48755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
"""
Knowledge Graph Core Module (Refactored)
Simplified knowledge graph implementation focusing on:
1. Clean data structures
2. Proper CRUD operations
3. Cytoscape visualization support
4. Session serialization
Removed over-engineered TreeCache in favor of simpler state management.
"""
import uuid
import json
import logging
from enum import Enum
from datetime import datetime
from dataclasses import dataclass, field, asdict
from typing import Dict, List, Optional, Any, Tuple, Set
import networkx as nx
logger = logging.getLogger(__name__)
class NodeType(str, Enum):
"""Types of nodes in the reasoning graph."""
QUERY = "query"
FACT = "fact"
REASONING = "reasoning"
HYPOTHESIS = "hypothesis"
CONCLUSION = "conclusion"
EVIDENCE = "evidence"
CONSTRAINT = "constraint"
GHOST = "ghost" # Pruned nodes
class EdgeType(str, Enum):
"""Types of relationships between nodes."""
LEADS_TO = "leads_to"
SUPPORTS = "supports"
CONTRADICTS = "contradicts"
REQUIRES = "requires"
ALTERNATIVE = "alternative"
FOLLOW_UP = "follow_up"
CAUSES = "causes"
TREATS = "treats"
INDICATES = "indicates"
class EntityCategory(str, Enum):
"""Categories of medical entities."""
SYMPTOM = "symptom"
DISEASE = "disease"
TREATMENT = "treatment"
MEDICATION = "medication"
PROCEDURE = "procedure"
FINDING = "finding"
ANATOMY = "anatomy"
# Node type metadata for UI
NODE_TYPE_INFO = {
NodeType.QUERY: {
"icon": "❓", "name": "Query", "color": "#38bdf8",
"description": "Your input question or symptom description"
},
NodeType.FACT: {
"icon": "📋", "name": "Fact", "color": "#4ade80",
"description": "Verified medical fact from knowledge base"
},
NodeType.REASONING: {
"icon": "🔍", "name": "Reasoning", "color": "#818cf8",
"description": "Logical inference step"
},
NodeType.HYPOTHESIS: {
"icon": "💡", "name": "Hypothesis", "color": "#fbbf24",
"description": "Potential diagnosis being considered"
},
NodeType.CONCLUSION: {
"icon": "✅", "name": "Conclusion", "color": "#f472b6",
"description": "Final diagnostic conclusion"
},
NodeType.EVIDENCE: {
"icon": "📊", "name": "Evidence", "color": "#2dd4bf",
"description": "Supporting medical evidence"
},
NodeType.CONSTRAINT: {
"icon": "⚠️", "name": "Constraint", "color": "#fb7185",
"description": "Limitation or warning"
},
NodeType.GHOST: {
"icon": "👻", "name": "Ghost", "color": "#94a3b8",
"description": "Pruned reasoning path"
},
}
def create_node_id() -> str:
"""Generate a unique node ID."""
return f"n_{uuid.uuid4().hex[:8]}"
@dataclass
class ReasoningNode:
"""A node in the reasoning graph."""
id: str
label: str
node_type: NodeType
content: str
confidence: float = 1.0
kg_entity_id: Optional[str] = None
metadata: Dict[str, Any] = field(default_factory=dict)
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
language: str = "en"
def to_dict(self) -> Dict:
"""Serialize to dictionary."""
return {
"id": self.id,
"label": self.label,
"node_type": self.node_type.value if isinstance(self.node_type, NodeType) else self.node_type,
"content": self.content,
"confidence": self.confidence,
"kg_entity_id": self.kg_entity_id,
"metadata": self.metadata,
"timestamp": self.timestamp,
"language": self.language,
}
def to_cytoscape(self) -> Dict:
"""Convert to Cytoscape element format."""
type_val = self.node_type.value if isinstance(self.node_type, NodeType) else self.node_type
type_info = NODE_TYPE_INFO.get(NodeType(type_val), {"icon": "●", "name": "Unknown"})
# Smart label truncation
display_label = self.label[:60] + "..." if len(self.label) > 60 else self.label
return {
"data": {
"id": self.id,
"label": display_label,
"full_label": self.label,
"type": type_val,
"content": self.content,
"confidence": self.confidence,
"kg_entity_id": self.kg_entity_id or "",
"timestamp": self.timestamp,
"type_icon": type_info["icon"],
"type_name": type_info["name"],
"language": self.language,
},
"classes": type_val
}
@classmethod
def from_dict(cls, data: Dict) -> "ReasoningNode":
"""Deserialize from dictionary."""
node_type = data.get("node_type", "reasoning")
if isinstance(node_type, str):
node_type = NodeType(node_type)
return cls(
id=data["id"],
label=data["label"],
node_type=node_type,
content=data["content"],
confidence=data.get("confidence", 1.0),
kg_entity_id=data.get("kg_entity_id"),
metadata=data.get("metadata", {}),
timestamp=data.get("timestamp", datetime.now().isoformat()),
language=data.get("language", "en"),
)
@dataclass
class ReasoningEdge:
"""An edge in the reasoning graph."""
source: str
target: str
edge_type: EdgeType
weight: float = 1.0
label: str = ""
metadata: Dict[str, Any] = field(default_factory=dict)
@property
def id(self) -> str:
return f"{self.source}-{self.target}"
def to_dict(self) -> Dict:
"""Serialize to dictionary."""
return {
"source": self.source,
"target": self.target,
"edge_type": self.edge_type.value if isinstance(self.edge_type, EdgeType) else self.edge_type,
"weight": self.weight,
"label": self.label,
"metadata": self.metadata,
}
def to_cytoscape(self) -> Dict:
"""Convert to Cytoscape element format."""
type_val = self.edge_type.value if isinstance(self.edge_type, EdgeType) else self.edge_type
return {
"data": {
"id": self.id,
"source": self.source,
"target": self.target,
"type": type_val,
"weight": self.weight,
"label": self.label or type_val.replace("_", " ").title(),
},
"classes": type_val
}
@classmethod
def from_dict(cls, data: Dict) -> "ReasoningEdge":
"""Deserialize from dictionary."""
edge_type = data.get("edge_type", "leads_to")
if isinstance(edge_type, str):
edge_type = EdgeType(edge_type)
return cls(
source=data["source"],
target=data["target"],
edge_type=edge_type,
weight=data.get("weight", 1.0),
label=data.get("label", ""),
metadata=data.get("metadata", {}),
)
@dataclass
class Entity:
"""A knowledge base entity (symptom, disease, treatment, etc.)."""
id: str
name: str
category: EntityCategory
description: str = ""
synonyms: List[str] = field(default_factory=list)
properties: Dict[str, Any] = field(default_factory=dict)
xrefs: Dict[str, str] = field(default_factory=dict) # External references
def to_dict(self) -> Dict:
"""Serialize to dictionary."""
return {
"id": self.id,
"name": self.name,
"category": self.category.value if isinstance(self.category, EntityCategory) else self.category,
"description": self.description,
"synonyms": self.synonyms,
"properties": self.properties,
"xrefs": self.xrefs,
}
def to_embedding_text(self) -> str:
"""Generate text for embedding."""
parts = [self.name]
if self.description:
parts.append(self.description)
parts.extend(self.synonyms)
return " ".join(parts)
@classmethod
def from_dict(cls, data: Dict) -> "Entity":
"""Deserialize from dictionary."""
category = data.get("category", "finding")
if isinstance(category, str):
try:
category = EntityCategory(category)
except ValueError:
category = EntityCategory.FINDING
return cls(
id=data["id"],
name=data["name"],
category=category,
description=data.get("description", ""),
synonyms=data.get("synonyms", []),
properties=data.get("properties", {}),
xrefs=data.get("xrefs", {}),
)
class KnowledgeGraph:
"""
Core Knowledge Graph managing:
1. Static knowledge base (entities and relations)
2. Dynamic reasoning graph (nodes and edges)
Simplified from original - removed TreeCache, streamlined operations.
"""
def __init__(self):
# Knowledge base (static)
self.entities: Dict[str, Entity] = {}
self.kb_graph = nx.DiGraph() # Entity relationships
# Reasoning graph (dynamic)
self.nodes: Dict[str, ReasoningNode] = {}
self.edges: Dict[str, ReasoningEdge] = {}
self.reasoning_graph = nx.DiGraph()
# Version tracking
self.version = 0
self._last_node_id: Optional[str] = None
# ========== Knowledge Base Operations ==========
def add_entity(self, entity: Entity):
"""Add an entity to the knowledge base."""
self.entities[entity.id] = entity
entity_dict = entity.to_dict()
# Remove 'id' and 'category' since we pass them explicitly
entity_dict.pop('id', None)
entity_dict.pop('category', None)
self.kb_graph.add_node(
entity.id,
category=entity.category.value,
**entity_dict
)
def add_relation(
self,
source_id: str,
target_id: str,
relation_type: str,
weight: float = 1.0,
**properties
):
"""Add a relationship between entities."""
self.kb_graph.add_edge(
source_id, target_id,
relation=relation_type,
weight=weight,
**properties
)
def get_entity(self, entity_id: str) -> Optional[Entity]:
"""Get entity by ID."""
return self.entities.get(entity_id)
def get_related_entities(
self,
entity_id: str,
relation_type: Optional[str] = None
) -> List[Tuple[str, str, Dict]]:
"""Get entities related to a given entity."""
if entity_id not in self.kb_graph:
return []
results = []
for _, target, data in self.kb_graph.out_edges(entity_id, data=True):
if relation_type is None or data.get("relation") == relation_type:
results.append((target, data.get("relation"), data))
return results
def get_entities_by_category(self, category: EntityCategory) -> List[Entity]:
"""Get all entities of a specific category."""
return [e for e in self.entities.values() if e.category == category]
def get_diseases_for_symptoms(
self,
symptom_ids: List[str]
) -> List[Tuple[Entity, float]]:
"""Get possible diseases given a set of symptoms with match scores."""
disease_scores: Dict[str, float] = {}
for symptom_id in symptom_ids:
# Find diseases that cause this symptom
for source, _, data in self.kb_graph.in_edges(symptom_id, data=True):
if data.get("relation") == "causes":
entity = self.entities.get(source)
if entity and entity.category == EntityCategory.DISEASE:
weight = data.get("weight", 1.0)
disease_scores[source] = disease_scores.get(source, 0) + weight
# Normalize and sort
results = []
for disease_id, score in sorted(disease_scores.items(), key=lambda x: -x[1]):
entity = self.entities.get(disease_id)
if entity:
# Normalize by number of symptoms
total_symptoms = len(self.get_symptoms_for_disease(disease_id))
normalized_score = score / max(total_symptoms, 1)
results.append((entity, min(normalized_score, 1.0)))
return results
def get_symptoms_for_disease(self, disease_id: str) -> List[Entity]:
"""Get symptoms associated with a disease."""
symptoms = []
for target, relation, _ in self.get_related_entities(disease_id, "causes"):
entity = self.entities.get(target)
if entity and entity.category == EntityCategory.SYMPTOM:
symptoms.append(entity)
return symptoms
def get_treatments_for_disease(self, disease_id: str) -> List[Entity]:
"""Get treatments for a disease."""
treatments = []
# Check outgoing "treats" relations
for target, relation, _ in self.get_related_entities(disease_id, "treats"):
entity = self.entities.get(target)
if entity:
treatments.append(entity)
# Check incoming "treats" relations
for source, _, data in self.kb_graph.in_edges(disease_id, data=True):
if data.get("relation") == "treats":
entity = self.entities.get(source)
if entity and entity not in treatments:
treatments.append(entity)
return treatments
# ========== Reasoning Graph Operations ==========
def add_node(self, node: ReasoningNode) -> str:
"""Add a node to the reasoning graph."""
self.nodes[node.id] = node
self.reasoning_graph.add_node(node.id, **node.to_dict())
if node.node_type not in [NodeType.GHOST, NodeType.EVIDENCE]:
self._last_node_id = node.id
self.version += 1
return node.id
def add_edge(self, edge: ReasoningEdge) -> str:
"""Add an edge to the reasoning graph."""
# Validate that source and target nodes exist
if edge.source not in self.nodes:
logger.warning(f"Edge source node {edge.source} not found in graph - edge not created")
return ""
if edge.target not in self.nodes:
logger.warning(f"Edge target node {edge.target} not found in graph - edge not created")
return ""
self.edges[edge.id] = edge
self.reasoning_graph.add_edge(edge.source, edge.target, **edge.to_dict())
logger.debug(f"Created edge: {edge.source[:8]}... --[{edge.edge_type.value}]--> {edge.target[:8]}...")
self.version += 1
return edge.id
def update_node(self, node_id: str, **updates) -> bool:
"""Update a node's properties."""
if node_id not in self.nodes:
return False
node = self.nodes[node_id]
for key, value in updates.items():
if hasattr(node, key):
setattr(node, key, value)
self.reasoning_graph.nodes[node_id].update(node.to_dict())
self.version += 1
return True
def delete_node(self, node_id: str) -> List[str]:
"""Delete a node and its edges."""
if node_id not in self.nodes:
return []
# Remove connected edges
deleted_edges = []
for edge_id in list(self.edges.keys()):
edge = self.edges[edge_id]
if edge.source == node_id or edge.target == node_id:
if self.reasoning_graph.has_edge(edge.source, edge.target):
self.reasoning_graph.remove_edge(edge.source, edge.target)
del self.edges[edge_id]
deleted_edges.append(edge_id)
# Remove node
if node_id in self.reasoning_graph:
self.reasoning_graph.remove_node(node_id)
del self.nodes[node_id]
self.version += 1
return deleted_edges
def prune_branch(self, node_id: str) -> Dict[str, List[str]]:
"""
Soft prune: Convert node and descendants to GHOST type.
Preserves reasoning history for RLHF and allows resurrection.
"""
if node_id not in self.nodes:
return {"nodes": [], "edges": []}
# Get descendants
try:
descendants = list(nx.descendants(self.reasoning_graph, node_id))
except Exception:
descendants = []
all_nodes = [node_id] + descendants
affected_edges = []
# Convert to ghosts
for nid in all_nodes:
if nid in self.nodes:
node = self.nodes[nid]
node.metadata["original_type"] = node.node_type.value
node.node_type = NodeType.GHOST
node.confidence *= 0.3
self.reasoning_graph.nodes[nid].update(node.to_dict())
# Mark affected edges
for edge_id, edge in self.edges.items():
if edge.source in all_nodes or edge.target in all_nodes:
affected_edges.append(edge_id)
self.version += 1
return {"nodes": all_nodes, "edges": affected_edges}
def resurrect_node(self, node_id: str) -> bool:
"""Restore a ghost node to its original type."""
node = self.nodes.get(node_id)
if not node or node.node_type != NodeType.GHOST:
return False
original_type = node.metadata.get("original_type", "hypothesis")
try:
node.node_type = NodeType(original_type)
except ValueError:
node.node_type = NodeType.HYPOTHESIS
node.confidence = max(node.confidence * 2, 0.6)
self.reasoning_graph.nodes[node_id].update(node.to_dict())
self.version += 1
return True
def get_last_active_node(self) -> Optional[ReasoningNode]:
"""Get the most recent active (non-ghost) node."""
if self._last_node_id and self._last_node_id in self.nodes:
node = self.nodes[self._last_node_id]
if node.node_type != NodeType.GHOST:
return node
# Fallback: find most recent valid node
valid_nodes = [
n for n in self.nodes.values()
if n.node_type not in [NodeType.GHOST, NodeType.EVIDENCE]
]
if not valid_nodes:
return None
return max(valid_nodes, key=lambda x: x.timestamp)
def get_node_children(self, node_id: str) -> List[ReasoningNode]:
"""Get direct children of a node."""
children = []
for edge in self.edges.values():
if edge.source == node_id:
child = self.nodes.get(edge.target)
if child:
children.append(child)
return children
def get_node_parents(self, node_id: str) -> List[ReasoningNode]:
"""Get direct parents of a node."""
parents = []
for edge in self.edges.values():
if edge.target == node_id:
parent = self.nodes.get(edge.source)
if parent:
parents.append(parent)
return parents
# ========== Visualization & Export ==========
def to_cytoscape_elements(
self,
include_ghosts: bool = False,
confidence_threshold: float = 0.0
) -> List[Dict]:
"""Convert reasoning graph to Cytoscape format."""
elements = []
# Add nodes
for node in self.nodes.values():
if node.node_type == NodeType.GHOST and not include_ghosts:
continue
if node.confidence < confidence_threshold:
continue
elements.append(node.to_cytoscape())
# Add edges
visible_node_ids = {e["data"]["id"] for e in elements}
for edge in self.edges.values():
if edge.source not in visible_node_ids or edge.target not in visible_node_ids:
continue
elements.append(edge.to_cytoscape())
return elements
def get_stats(self) -> Dict[str, int]:
"""Get graph statistics."""
return {
"nodes": len(self.nodes),
"edges": len(self.edges),
"entities": len(self.entities),
"version": self.version,
"ghosts": sum(1 for n in self.nodes.values() if n.node_type == NodeType.GHOST),
}
def clear_reasoning(self):
"""Clear the reasoning graph while keeping the knowledge base."""
self.nodes.clear()
self.edges.clear()
self.reasoning_graph.clear()
self._last_node_id = None
self.version = 0
# ========== Serialization ==========
def get_state(self) -> Dict:
"""Get complete state for serialization."""
return {
"nodes": [n.to_dict() for n in self.nodes.values()],
"edges": [e.to_dict() for e in self.edges.values()],
"version": self.version,
"last_node_id": self._last_node_id,
}
def restore_state(self, state: Dict):
"""Restore state from serialized data."""
self.clear_reasoning()
for node_data in state.get("nodes", []):
node = ReasoningNode.from_dict(node_data)
self.nodes[node.id] = node
self.reasoning_graph.add_node(node.id, **node.to_dict())
for edge_data in state.get("edges", []):
edge = ReasoningEdge.from_dict(edge_data)
self.edges[edge.id] = edge
self.reasoning_graph.add_edge(edge.source, edge.target, **edge.to_dict())
self.version = state.get("version", 0)
self._last_node_id = state.get("last_node_id")
def export_json(self) -> str:
"""Export reasoning graph to JSON."""
return json.dumps(self.get_state(), indent=2)
def get_entity_dict_for_embedding(self) -> Dict[str, Dict]:
"""Get entity data formatted for embedding service."""
return {
entity_id: {
"id": entity.id,
"name": entity.name,
"category": entity.category.value,
"description": entity.description,
"synonyms": entity.synonyms,
}
for entity_id, entity in self.entities.items()
}
|