|
|
|
|
|
import os |
|
|
import sys |
|
|
import subprocess |
|
|
os.system("pip install gradio==5.38.1") |
|
|
import os |
|
|
import io |
|
|
import tempfile |
|
|
import traceback |
|
|
import zipfile |
|
|
from typing import List, Tuple, Dict, Any, Optional, Union |
|
|
from abc import ABC, abstractmethod |
|
|
from unittest.mock import MagicMock |
|
|
from dataclasses import dataclass |
|
|
from enum import Enum |
|
|
import json |
|
|
|
|
|
from PIL import Image |
|
|
import gradio as gr |
|
|
import plotly.graph_objects as go |
|
|
from plotly.subplots import make_subplots |
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
import matplotlib.pyplot as plt |
|
|
import seaborn as sns |
|
|
from scipy.integrate import odeint |
|
|
from scipy.optimize import curve_fit, differential_evolution |
|
|
from sklearn.metrics import mean_squared_error, r2_score |
|
|
from docx import Document |
|
|
from docx.shared import Inches |
|
|
from fpdf import FPDF |
|
|
from fpdf.enums import XPos, YPos |
|
|
|
|
|
|
|
|
class Language(Enum): |
|
|
ES = "Español" |
|
|
EN = "English" |
|
|
PT = "Português" |
|
|
FR = "Français" |
|
|
DE = "Deutsch" |
|
|
ZH = "中文" |
|
|
JA = "日本語" |
|
|
|
|
|
TRANSLATIONS = { |
|
|
Language.ES: { |
|
|
"title": "🔬 Analizador de Cinéticas de Bioprocesos", |
|
|
"subtitle": "Análisis avanzado de modelos matemáticos biotecnológicos", |
|
|
"upload": "Sube tu archivo Excel (.xlsx)", |
|
|
"select_models": "Modelos a Probar", |
|
|
"analyze": "Analizar y Graficar", |
|
|
"results": "Resultados", |
|
|
"download": "Descargar", |
|
|
"biomass": "Biomasa", |
|
|
"substrate": "Sustrato", |
|
|
"product": "Producto", |
|
|
"time": "Tiempo", |
|
|
"parameters": "Parámetros", |
|
|
"model_comparison": "Comparación de Modelos", |
|
|
"dark_mode": "Modo Oscuro", |
|
|
"light_mode": "Modo Claro", |
|
|
"language": "Idioma", |
|
|
"theory": "Teoría y Modelos", |
|
|
}, |
|
|
Language.EN: { |
|
|
"title": "🔬 Bioprocess Kinetics Analyzer", |
|
|
"subtitle": "Advanced analysis of biotechnological mathematical models", |
|
|
"upload": "Upload your Excel file (.xlsx)", |
|
|
"select_models": "Models to Test", |
|
|
"analyze": "Analyze and Plot", |
|
|
"results": "Results", |
|
|
"download": "Download", |
|
|
"biomass": "Biomass", |
|
|
"substrate": "Substrate", |
|
|
"product": "Product", |
|
|
"time": "Time", |
|
|
"parameters": "Parameters", |
|
|
"model_comparison": "Model Comparison", |
|
|
"dark_mode": "Dark Mode", |
|
|
"light_mode": "Light Mode", |
|
|
"language": "Language", |
|
|
"theory": "Theory and Models", |
|
|
}, |
|
|
} |
|
|
|
|
|
|
|
|
C_TIME = 'tiempo' |
|
|
C_BIOMASS = 'biomass' |
|
|
C_SUBSTRATE = 'substrate' |
|
|
C_PRODUCT = 'product' |
|
|
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT] |
|
|
|
|
|
|
|
|
THEMES = { |
|
|
"light": gr.themes.Soft( |
|
|
primary_hue="blue", |
|
|
secondary_hue="sky", |
|
|
neutral_hue="gray", |
|
|
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "sans-serif"] |
|
|
), |
|
|
"dark": gr.themes.Base( |
|
|
primary_hue="blue", |
|
|
secondary_hue="cyan", |
|
|
neutral_hue="slate", |
|
|
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "sans-serif"] |
|
|
).set( |
|
|
body_background_fill="*neutral_950", |
|
|
body_background_fill_dark="*neutral_950", |
|
|
button_primary_background_fill="*primary_600", |
|
|
button_primary_background_fill_hover="*primary_700", |
|
|
) |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
class KineticModel(ABC): |
|
|
def __init__(self, name: str, display_name: str, param_names: List[str], |
|
|
description: str = "", equation: str = "", reference: str = ""): |
|
|
self.name = name |
|
|
self.display_name = display_name |
|
|
self.param_names = param_names |
|
|
self.num_params = len(param_names) |
|
|
self.description = description |
|
|
self.equation = equation |
|
|
self.reference = reference |
|
|
|
|
|
@abstractmethod |
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
pass |
|
|
|
|
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
|
return 0.0 |
|
|
|
|
|
@abstractmethod |
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
pass |
|
|
|
|
|
@abstractmethod |
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
pass |
|
|
|
|
|
|
|
|
class LogisticModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"logistic", |
|
|
"Logístico", |
|
|
["X0", "Xm", "μm"], |
|
|
"Modelo de crecimiento logístico clásico para poblaciones limitadas", |
|
|
r"X(t) = \frac{X_0 X_m e^{\mu_m t}}{X_m - X_0 + X_0 e^{\mu_m t}}", |
|
|
"Verhulst (1838)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
X0, Xm, um = params |
|
|
if Xm <= 0 or X0 <= 0 or Xm < X0: |
|
|
return np.full_like(t, np.nan) |
|
|
exp_arg = np.clip(um * t, -700, 700) |
|
|
term_exp = np.exp(exp_arg) |
|
|
denominator = Xm - X0 + X0 * term_exp |
|
|
denominator = np.where(denominator == 0, 1e-9, denominator) |
|
|
return (X0 * term_exp * Xm) / denominator |
|
|
|
|
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
|
_, Xm, um = params |
|
|
return um * X * (1 - X / Xm) if Xm > 0 else 0.0 |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [ |
|
|
biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3, |
|
|
max(biomass) if len(biomass) > 0 else 1.0, |
|
|
0.1 |
|
|
] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9 |
|
|
max_biomass = max(biomass) if len(biomass) > 0 else 1.0 |
|
|
return ([1e-9, initial_biomass, 1e-9], [max_biomass * 1.2, max_biomass * 5, np.inf]) |
|
|
|
|
|
|
|
|
class GompertzModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"gompertz", |
|
|
"Gompertz", |
|
|
["Xm", "μm", "λ"], |
|
|
"Modelo de crecimiento asimétrico con fase lag", |
|
|
r"X(t) = X_m \exp\left(-\exp\left(\frac{\mu_m e}{X_m}(\lambda-t)+1\right)\right)", |
|
|
"Gompertz (1825)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
Xm, um, lag = params |
|
|
if Xm <= 0 or um <= 0: |
|
|
return np.full_like(t, np.nan) |
|
|
exp_term = (um * np.e / Xm) * (lag - t) + 1 |
|
|
exp_term_clipped = np.clip(exp_term, -700, 700) |
|
|
return Xm * np.exp(-np.exp(exp_term_clipped)) |
|
|
|
|
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
|
Xm, um, lag = params |
|
|
k_val = um * np.e / Xm |
|
|
u_val = k_val * (lag - t) + 1 |
|
|
u_val_clipped = np.clip(u_val, -np.inf, 700) |
|
|
return X * k_val * np.exp(u_val_clipped) if Xm > 0 and X > 0 else 0.0 |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [ |
|
|
max(biomass) if len(biomass) > 0 else 1.0, |
|
|
0.1, |
|
|
time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0 |
|
|
] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9 |
|
|
max_biomass = max(biomass) if len(biomass) > 0 else 1.0 |
|
|
return ([max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 5, np.inf, max(time) if len(time) > 0 else 1]) |
|
|
|
|
|
|
|
|
class MoserModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"moser", |
|
|
"Moser", |
|
|
["Xm", "μm", "Ks"], |
|
|
"Modelo exponencial simple de Moser", |
|
|
r"X(t) = X_m (1 - e^{-\mu_m (t - K_s)})", |
|
|
"Moser (1958)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
Xm, um, Ks = params |
|
|
return Xm * (1 - np.exp(-um * (t - Ks))) if Xm > 0 and um > 0 else np.full_like(t, np.nan) |
|
|
|
|
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
|
Xm, um, _ = params |
|
|
return um * (Xm - X) if Xm > 0 else 0.0 |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [max(biomass) if len(biomass) > 0 else 1.0, 0.1, 0] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9 |
|
|
max_biomass = max(biomass) if len(biomass) > 0 else 1.0 |
|
|
return ([max(1e-9, initial_biomass), 1e-9, -np.inf], [max_biomass * 5, np.inf, np.inf]) |
|
|
|
|
|
|
|
|
class BaranyiModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"baranyi", |
|
|
"Baranyi", |
|
|
["X0", "Xm", "μm", "λ"], |
|
|
"Modelo de Baranyi con fase lag explícita", |
|
|
r"X(t) = X_m / [1 + ((X_m/X_0) - 1) \exp(-\mu_m A(t))]", |
|
|
"Baranyi & Roberts (1994)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
X0, Xm, um, lag = params |
|
|
if X0 <= 0 or Xm <= X0 or um <= 0 or lag < 0: |
|
|
return np.full_like(t, np.nan) |
|
|
A_t = t + (1 / um) * np.log(np.exp(-um * t) + np.exp(-um * lag) - np.exp(-um * (t + lag))) |
|
|
exp_um_At = np.exp(np.clip(um * A_t, -700, 700)) |
|
|
numerator = Xm |
|
|
denominator = 1 + ((Xm / X0) - 1) * (1 / exp_um_At) |
|
|
return numerator / np.where(denominator == 0, 1e-9, denominator) |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [ |
|
|
biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3, |
|
|
max(biomass) if len(biomass) > 0 else 1.0, |
|
|
0.1, |
|
|
time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0.0 |
|
|
] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9 |
|
|
max_biomass = max(biomass) if len(biomass) > 0 else 1.0 |
|
|
return ([1e-9, max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 1.2, max_biomass * 10, np.inf, max(time) if len(time) > 0 else 1]) |
|
|
|
|
|
|
|
|
class MonodModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"monod", |
|
|
"Monod", |
|
|
["μmax", "Ks", "Y", "m"], |
|
|
"Modelo de Monod con mantenimiento celular", |
|
|
r"\mu = \frac{\mu_{max} \cdot S}{K_s + S} - m", |
|
|
"Monod (1949)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
return np.full_like(t, np.nan) |
|
|
|
|
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
|
μmax, Ks, Y, m = params |
|
|
S = 10.0 |
|
|
μ = (μmax * S / (Ks + S)) - m |
|
|
return μ * X |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [0.5, 0.1, 0.5, 0.01] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
return ([0.01, 0.001, 0.1, 0.0], [2.0, 5.0, 1.0, 0.1]) |
|
|
|
|
|
|
|
|
class ContoisModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"contois", |
|
|
"Contois", |
|
|
["μmax", "Ksx", "Y", "m"], |
|
|
"Modelo de Contois para alta densidad celular", |
|
|
r"\mu = \frac{\mu_{max} \cdot S}{K_{sx} \cdot X + S} - m", |
|
|
"Contois (1959)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
return np.full_like(t, np.nan) |
|
|
|
|
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
|
μmax, Ksx, Y, m = params |
|
|
S = 10.0 |
|
|
μ = (μmax * S / (Ksx * X + S)) - m |
|
|
return μ * X |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [0.5, 0.5, 0.5, 0.01] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
return ([0.01, 0.01, 0.1, 0.0], [2.0, 10.0, 1.0, 0.1]) |
|
|
|
|
|
|
|
|
class AndrewsModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"andrews", |
|
|
"Andrews (Haldane)", |
|
|
["μmax", "Ks", "Ki", "Y", "m"], |
|
|
"Modelo de inhibición por sustrato", |
|
|
r"\mu = \frac{\mu_{max} \cdot S}{K_s + S + \frac{S^2}{K_i}} - m", |
|
|
"Andrews (1968)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
return np.full_like(t, np.nan) |
|
|
|
|
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
|
μmax, Ks, Ki, Y, m = params |
|
|
S = 10.0 |
|
|
μ = (μmax * S / (Ks + S + S**2/Ki)) - m |
|
|
return μ * X |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [0.5, 0.1, 50.0, 0.5, 0.01] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
return ([0.01, 0.001, 1.0, 0.1, 0.0], [2.0, 5.0, 200.0, 1.0, 0.1]) |
|
|
|
|
|
|
|
|
class TessierModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"tessier", |
|
|
"Tessier", |
|
|
["μmax", "Ks", "X0"], |
|
|
"Modelo exponencial de Tessier", |
|
|
r"\mu = \mu_{max} \cdot (1 - e^{-S/K_s})", |
|
|
"Tessier (1942)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
μmax, Ks, X0 = params |
|
|
return X0 * np.exp(μmax * t * 0.5) |
|
|
|
|
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
|
μmax, Ks, X0 = params |
|
|
return μmax * X * 0.5 |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [0.5, 1.0, biomass[0] if len(biomass) > 0 else 0.1] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
return ([0.01, 0.1, 1e-9], [2.0, 10.0, 1.0]) |
|
|
|
|
|
|
|
|
class RichardsModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"richards", |
|
|
"Richards", |
|
|
["A", "μm", "λ", "ν", "X0"], |
|
|
"Modelo generalizado de Richards", |
|
|
r"X(t) = A \cdot [1 + \nu \cdot e^{-\mu_m(t-\lambda)}]^{-1/\nu}", |
|
|
"Richards (1959)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
A, μm, λ, ν, X0 = params |
|
|
if A <= 0 or μm <= 0 or ν <= 0: |
|
|
return np.full_like(t, np.nan) |
|
|
exp_term = np.exp(-μm * (t - λ)) |
|
|
return A * (1 + ν * exp_term) ** (-1/ν) |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [ |
|
|
max(biomass) if len(biomass) > 0 else 1.0, |
|
|
0.5, |
|
|
time[len(time)//4] if len(time) > 0 else 1.0, |
|
|
1.0, |
|
|
biomass[0] if len(biomass) > 0 else 0.1 |
|
|
] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
max_biomass = max(biomass) if len(biomass) > 0 else 10.0 |
|
|
max_time = max(time) if len(time) > 0 else 100.0 |
|
|
return ( |
|
|
[0.1, 0.01, 0.0, 0.1, 1e-9], |
|
|
[max_biomass * 2, 5.0, max_time, 10.0, max_biomass] |
|
|
) |
|
|
|
|
|
|
|
|
class StannardModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"stannard", |
|
|
"Stannard", |
|
|
["Xm", "μm", "λ", "α"], |
|
|
"Modelo de Stannard modificado", |
|
|
r"X(t) = X_m \cdot [1 - e^{-\mu_m(t-\lambda)^\alpha}]", |
|
|
"Stannard et al. (1985)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
Xm, μm, λ, α = params |
|
|
if Xm <= 0 or μm <= 0 or α <= 0: |
|
|
return np.full_like(t, np.nan) |
|
|
t_shifted = np.maximum(t - λ, 0) |
|
|
return Xm * (1 - np.exp(-μm * t_shifted ** α)) |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [ |
|
|
max(biomass) if len(biomass) > 0 else 1.0, |
|
|
0.5, |
|
|
0.0, |
|
|
1.0 |
|
|
] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
max_biomass = max(biomass) if len(biomass) > 0 else 10.0 |
|
|
max_time = max(time) if len(time) > 0 else 100.0 |
|
|
return ([0.1, 0.01, -max_time/10, 0.1], [max_biomass * 2, 5.0, max_time/2, 3.0]) |
|
|
|
|
|
|
|
|
class HuangModel(KineticModel): |
|
|
def __init__(self): |
|
|
super().__init__( |
|
|
"huang", |
|
|
"Huang", |
|
|
["Xm", "μm", "λ", "n", "m"], |
|
|
"Modelo de Huang para fase lag variable", |
|
|
r"X(t) = X_m \cdot \frac{1}{1 + e^{-\mu_m(t-\lambda-m/n)}}", |
|
|
"Huang (2008)" |
|
|
) |
|
|
|
|
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
|
Xm, μm, λ, n, m = params |
|
|
if Xm <= 0 or μm <= 0 or n <= 0: |
|
|
return np.full_like(t, np.nan) |
|
|
return Xm / (1 + np.exp(-μm * (t - λ - m/n))) |
|
|
|
|
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
|
return [ |
|
|
max(biomass) if len(biomass) > 0 else 1.0, |
|
|
0.5, |
|
|
time[len(time)//4] if len(time) > 0 else 1.0, |
|
|
1.0, |
|
|
0.5 |
|
|
] |
|
|
|
|
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
|
max_biomass = max(biomass) if len(biomass) > 0 else 10.0 |
|
|
max_time = max(time) if len(time) > 0 else 100.0 |
|
|
return ( |
|
|
[0.1, 0.01, 0.0, 0.1, 0.0], |
|
|
[max_biomass * 2, 5.0, max_time/2, 10.0, 5.0] |
|
|
) |
|
|
|
|
|
|
|
|
AVAILABLE_MODELS: Dict[str, KineticModel] = { |
|
|
model.name: model for model in [ |
|
|
LogisticModel(), |
|
|
GompertzModel(), |
|
|
MoserModel(), |
|
|
BaranyiModel(), |
|
|
MonodModel(), |
|
|
ContoisModel(), |
|
|
AndrewsModel(), |
|
|
TessierModel(), |
|
|
RichardsModel(), |
|
|
StannardModel(), |
|
|
HuangModel() |
|
|
] |
|
|
} |
|
|
|
|
|
|
|
|
class BioprocessFitter: |
|
|
def __init__(self, kinetic_model: KineticModel, maxfev: int = 50000, |
|
|
use_differential_evolution: bool = False): |
|
|
self.model = kinetic_model |
|
|
self.maxfev = maxfev |
|
|
self.use_differential_evolution = use_differential_evolution |
|
|
self.params: Dict[str, Dict[str, float]] = {c: {} for c in COMPONENTS} |
|
|
self.r2: Dict[str, float] = {} |
|
|
self.rmse: Dict[str, float] = {} |
|
|
self.mae: Dict[str, float] = {} |
|
|
self.aic: Dict[str, float] = {} |
|
|
self.bic: Dict[str, float] = {} |
|
|
self.data_time: Optional[np.ndarray] = None |
|
|
self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS} |
|
|
self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS} |
|
|
|
|
|
def _get_biomass_at_t(self, t: np.ndarray, p: List[float]) -> np.ndarray: |
|
|
return self.model.model_function(t, *p) |
|
|
|
|
|
def _get_initial_biomass(self, p: List[float]) -> float: |
|
|
if not p: return 0.0 |
|
|
if any(k in self.model.param_names for k in ["Xo", "X0"]): |
|
|
try: |
|
|
idx = self.model.param_names.index("Xo") if "Xo" in self.model.param_names else self.model.param_names.index("X0") |
|
|
return p[idx] |
|
|
except (ValueError, IndexError): pass |
|
|
return float(self.model.model_function(np.array([0]), *p)[0]) |
|
|
|
|
|
def _calc_integral(self, t: np.ndarray, p: List[float]) -> Tuple[np.ndarray, np.ndarray]: |
|
|
X_t = self._get_biomass_at_t(t, p) |
|
|
if np.any(np.isnan(X_t)): return np.full_like(t, np.nan), np.full_like(t, np.nan) |
|
|
integral_X = np.zeros_like(X_t) |
|
|
if len(t) > 1: |
|
|
dt = np.diff(t, prepend=t[0] - (t[1] - t[0] if len(t) > 1 else 1)) |
|
|
integral_X = np.cumsum(X_t * dt) |
|
|
return integral_X, X_t |
|
|
|
|
|
def substrate(self, t: np.ndarray, so: float, p_c: float, q: float, bio_p: List[float]) -> np.ndarray: |
|
|
integral, X_t = self._calc_integral(t, bio_p) |
|
|
X0 = self._get_initial_biomass(bio_p) |
|
|
return so - p_c * (X_t - X0) - q * integral |
|
|
|
|
|
def product(self, t: np.ndarray, po: float, alpha: float, beta: float, bio_p: List[float]) -> np.ndarray: |
|
|
integral, X_t = self._calc_integral(t, bio_p) |
|
|
X0 = self._get_initial_biomass(bio_p) |
|
|
return po + alpha * (X_t - X0) + beta * integral |
|
|
|
|
|
def process_data_from_df(self, df: pd.DataFrame) -> None: |
|
|
try: |
|
|
time_col = [c for c in df.columns if c[1].strip().lower() == C_TIME][0] |
|
|
self.data_time = df[time_col].dropna().to_numpy() |
|
|
min_len = len(self.data_time) |
|
|
|
|
|
def extract(name: str) -> Tuple[np.ndarray, np.ndarray]: |
|
|
cols = [c for c in df.columns if c[1].strip().lower() == name.lower()] |
|
|
if not cols: return np.array([]), np.array([]) |
|
|
reps = [df[c].dropna().values[:min_len] for c in cols] |
|
|
reps = [r for r in reps if len(r) == min_len] |
|
|
if not reps: return np.array([]), np.array([]) |
|
|
arr = np.array(reps) |
|
|
mean = np.mean(arr, axis=0) |
|
|
std = np.std(arr, axis=0, ddof=1) if arr.shape[0] > 1 else np.zeros_like(mean) |
|
|
return mean, std |
|
|
|
|
|
self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] = extract('Biomasa') |
|
|
self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE] = extract('Sustrato') |
|
|
self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT] = extract('Producto') |
|
|
except (IndexError, KeyError) as e: |
|
|
raise ValueError(f"Estructura de DataFrame inválida. Error: {e}") |
|
|
|
|
|
def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray, |
|
|
n_params: int) -> Dict[str, float]: |
|
|
n = len(y_true) |
|
|
residuals = y_true - y_pred |
|
|
ss_res = np.sum(residuals**2) |
|
|
ss_tot = np.sum((y_true - np.mean(y_true))**2) |
|
|
r2 = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0 |
|
|
rmse = np.sqrt(ss_res / n) |
|
|
mae = np.mean(np.abs(residuals)) |
|
|
if n > n_params + 1: |
|
|
aic = n * np.log(ss_res/n) + 2 * n_params |
|
|
bic = n * np.log(ss_res/n) + n_params * np.log(n) |
|
|
else: |
|
|
aic = bic = np.inf |
|
|
return {'r2': r2, 'rmse': rmse, 'mae': mae, 'aic': aic, 'bic': bic} |
|
|
|
|
|
def _fit_component_de(self, func, t, data, bounds, *args): |
|
|
def objective(params): |
|
|
try: |
|
|
pred = func(t, *params, *args) |
|
|
if np.any(np.isnan(pred)): return 1e10 |
|
|
return np.sum((data - pred)**2) |
|
|
except: |
|
|
return 1e10 |
|
|
result = differential_evolution(objective, bounds=list(zip(*bounds)), maxiter=1000, seed=42) |
|
|
if result.success: |
|
|
popt = result.x |
|
|
pred = func(t, *popt, *args) |
|
|
metrics = self._calculate_metrics(data, pred, len(popt)) |
|
|
return list(popt), metrics |
|
|
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, 'aic': np.nan, 'bic': np.nan} |
|
|
|
|
|
def _fit_component(self, func, t, data, p0, bounds, sigma=None, *args): |
|
|
try: |
|
|
if self.use_differential_evolution: |
|
|
return self._fit_component_de(func, t, data, bounds, *args) |
|
|
if sigma is not None: |
|
|
sigma = np.where(sigma == 0, 1e-9, sigma) |
|
|
popt, _ = curve_fit(func, t, data, p0, bounds=bounds, maxfev=self.maxfev, ftol=1e-9, xtol=1e-9, sigma=sigma, absolute_sigma=bool(sigma is not None)) |
|
|
pred = func(t, *popt, *args) |
|
|
if np.any(np.isnan(pred)): |
|
|
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, 'aic': np.nan, 'bic': np.nan} |
|
|
metrics = self._calculate_metrics(data, pred, len(popt)) |
|
|
return list(popt), metrics |
|
|
except (RuntimeError, ValueError): |
|
|
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, 'aic': np.nan, 'bic': np.nan} |
|
|
|
|
|
def fit_all_models(self) -> None: |
|
|
t, bio_m, bio_s = self.data_time, self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] |
|
|
if t is None or bio_m is None or len(bio_m) == 0: return |
|
|
popt_bio = self._fit_biomass_model(t, bio_m, bio_s) |
|
|
if popt_bio: |
|
|
bio_p = list(self.params[C_BIOMASS].values()) |
|
|
if self.data_means[C_SUBSTRATE] is not None and len(self.data_means[C_SUBSTRATE]) > 0: |
|
|
self._fit_substrate_model(t, self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE], bio_p) |
|
|
if self.data_means[C_PRODUCT] is not None and len(self.data_means[C_PRODUCT]) > 0: |
|
|
self._fit_product_model(t, self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT], bio_p) |
|
|
|
|
|
def _fit_biomass_model(self, t, data, std): |
|
|
p0, bounds = self.model.get_initial_params(t, data), self.model.get_param_bounds(t, data) |
|
|
popt, metrics = self._fit_component(self.model.model_function, t, data, p0, bounds, std) |
|
|
if popt: |
|
|
self.params[C_BIOMASS] = dict(zip(self.model.param_names, popt)) |
|
|
self.r2[C_BIOMASS], self.rmse[C_BIOMASS], self.mae[C_BIOMASS], self.aic[C_BIOMASS], self.bic[C_BIOMASS] = metrics['r2'], metrics['rmse'], metrics['mae'], metrics['aic'], metrics['bic'] |
|
|
return popt |
|
|
|
|
|
def _fit_substrate_model(self, t, data, std, bio_p): |
|
|
p0, b = [data[0], 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf]) |
|
|
popt, metrics = self._fit_component(lambda t, so, p, q: self.substrate(t, so, p, q, bio_p), t, data, p0, b, std) |
|
|
if popt: |
|
|
self.params[C_SUBSTRATE] = {'So': popt[0], 'p': popt[1], 'q': popt[2]} |
|
|
self.r2[C_SUBSTRATE], self.rmse[C_SUBSTRATE], self.mae[C_SUBSTRATE], self.aic[C_SUBSTRATE], self.bic[C_SUBSTRATE] = metrics['r2'], metrics['rmse'], metrics['mae'], metrics['aic'], metrics['bic'] |
|
|
|
|
|
def _fit_product_model(self, t, data, std, bio_p): |
|
|
p0, b = [data[0] if len(data)>0 else 0, 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf]) |
|
|
popt, metrics = self._fit_component(lambda t, po, a, b: self.product(t, po, a, b, bio_p), t, data, p0, b, std) |
|
|
if popt: |
|
|
self.params[C_PRODUCT] = {'Po': popt[0], 'alpha': popt[1], 'beta': popt[2]} |
|
|
self.r2[C_PRODUCT], self.rmse[C_PRODUCT], self.mae[C_PRODUCT], self.aic[C_PRODUCT], self.bic[C_PRODUCT] = metrics['r2'], metrics['rmse'], metrics['mae'], metrics['aic'], metrics['bic'] |
|
|
|
|
|
def system_ode(self, y, t, bio_p, sub_p, prod_p): |
|
|
X, _, _ = y |
|
|
dXdt = self.model.diff_function(X, t, bio_p) |
|
|
return [dXdt, -sub_p.get('p',0)*dXdt - sub_p.get('q',0)*X, prod_p.get('alpha',0)*dXdt + prod_p.get('beta',0)*X] |
|
|
|
|
|
def solve_odes(self, t_fine): |
|
|
p = self.params |
|
|
bio_d, sub_d, prod_d = p[C_BIOMASS], p[C_SUBSTRATE], p[C_PRODUCT] |
|
|
if not bio_d: return None, None, None |
|
|
try: |
|
|
bio_p = list(bio_d.values()) |
|
|
y0 = [self._get_initial_biomass(bio_p), sub_d.get('So',0), prod_d.get('Po',0)] |
|
|
sol = odeint(self.system_ode, y0, t_fine, args=(bio_p, sub_d, prod_d)) |
|
|
return sol[:, 0], sol[:, 1], sol[:, 2] |
|
|
except: |
|
|
return None, None, None |
|
|
|
|
|
def _generate_fine_time_grid(self, t_exp): |
|
|
return np.linspace(min(t_exp), max(t_exp), 500) if t_exp is not None and len(t_exp) > 1 else np.array([]) |
|
|
|
|
|
def get_model_curves_for_plot(self, t_fine, use_diff): |
|
|
if use_diff and self.model.diff_function(1, 1, [1]*self.model.num_params) != 0: |
|
|
return self.solve_odes(t_fine) |
|
|
X, S, P = None, None, None |
|
|
if self.params[C_BIOMASS]: |
|
|
bio_p = list(self.params[C_BIOMASS].values()) |
|
|
X = self.model.model_function(t_fine, *bio_p) |
|
|
if self.params[C_SUBSTRATE]: |
|
|
S = self.substrate(t_fine, *list(self.params[C_SUBSTRATE].values()), bio_p) |
|
|
if self.params[C_PRODUCT]: |
|
|
P = self.product(t_fine, *list(self.params[C_PRODUCT].values()), bio_p) |
|
|
return X, S, P |
|
|
|
|
|
|
|
|
def format_number(value: Any, decimals: int) -> str: |
|
|
if not isinstance(value, (int, float, np.number)) or pd.isna(value): |
|
|
return "" if pd.isna(value) else str(value) |
|
|
decimals = int(decimals) |
|
|
if decimals == 0: |
|
|
if 0 < abs(value) < 1: |
|
|
return f"{value:.2e}" |
|
|
else: |
|
|
return str(int(round(value, 0))) |
|
|
return str(round(value, decimals)) |
|
|
|
|
|
|
|
|
def create_interactive_plot(plot_config: Dict, models_results: List[Dict], |
|
|
selected_component: str = "all") -> go.Figure: |
|
|
time_exp = plot_config['time_exp'] |
|
|
time_fine = np.linspace(min(time_exp), max(time_exp), 500) |
|
|
if selected_component == "all": |
|
|
fig = make_subplots(rows=3, cols=1, subplot_titles=('Biomasa', 'Sustrato', 'Producto'), vertical_spacing=0.08, shared_xaxes=True) |
|
|
components_to_plot, rows = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT], [1, 2, 3] |
|
|
else: |
|
|
fig, components_to_plot, rows = go.Figure(), [selected_component], [None] |
|
|
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] |
|
|
for comp, row in zip(components_to_plot, rows): |
|
|
data_exp, data_std = plot_config.get(f'{comp}_exp'), plot_config.get(f'{comp}_std') |
|
|
if data_exp is not None: |
|
|
error_y = dict(type='data', array=data_std, visible=True) if data_std is not None and np.any(data_std > 0) else None |
|
|
trace = go.Scatter(x=time_exp, y=data_exp, mode='markers', name=f'{comp.capitalize()} (Experimental)', marker=dict(size=10, symbol='circle'), error_y=error_y, legendgroup=comp, showlegend=True) |
|
|
if selected_component == "all": fig.add_trace(trace, row=row, col=1) |
|
|
else: fig.add_trace(trace) |
|
|
for i, res in enumerate(models_results): |
|
|
color, model_name = colors[i % len(colors)], AVAILABLE_MODELS[res["name"]].display_name |
|
|
for comp, row, key in zip(components_to_plot, rows, ['X', 'S', 'P']): |
|
|
if res.get(key) is not None: |
|
|
trace = go.Scatter(x=time_fine, y=res[key], mode='lines', name=f'{model_name} - {comp.capitalize()}', line=dict(color=color, width=2), legendgroup=f'{res["name"]}_{comp}', showlegend=True) |
|
|
if selected_component == "all": fig.add_trace(trace, row=row, col=1) |
|
|
else: fig.add_trace(trace) |
|
|
theme, template = plot_config.get('theme', 'light'), "plotly_white" if plot_config.get('theme', 'light') == 'light' else "plotly_dark" |
|
|
fig.update_layout(title=f"Análisis de Cinéticas: {plot_config.get('exp_name', '')}", template=template, hovermode='x unified', legend=dict(orientation="v", yanchor="middle", y=0.5, xanchor="left", x=1.02), margin=dict(l=80, r=250, t=100, b=80)) |
|
|
if selected_component == "all": |
|
|
fig.update_xaxes(title_text="Tiempo", row=3, col=1) |
|
|
fig.update_yaxes(title_text="Biomasa (g/L)", row=1, col=1) |
|
|
fig.update_yaxes(title_text="Sustrato (g/L)", row=2, col=1) |
|
|
fig.update_yaxes(title_text="Producto (g/L)", row=3, col=1) |
|
|
else: |
|
|
fig.update_xaxes(title_text="Tiempo") |
|
|
labels = {C_BIOMASS: "Biomasa (g/L)", C_SUBSTRATE: "Sustrato (g/L)", C_PRODUCT: "Producto (g/L)"} |
|
|
fig.update_yaxes(title_text=labels.get(selected_component, "Valor")) |
|
|
return fig |
|
|
|
|
|
|
|
|
def run_analysis(file, model_names, component, use_de, maxfev, exp_names, theme='light'): |
|
|
if not file: return None, pd.DataFrame(), "Error: Sube un archivo Excel." |
|
|
if not model_names: return None, pd.DataFrame(), "Error: Selecciona un modelo." |
|
|
try: |
|
|
xls = pd.ExcelFile(file.name) |
|
|
except Exception as e: |
|
|
return None, pd.DataFrame(), f"Error al leer archivo: {e}" |
|
|
results_data, msgs, models_results = [], [], [] |
|
|
exp_list = [n.strip() for n in exp_names.split('\n') if n.strip()] if exp_names else [] |
|
|
for i, sheet in enumerate(xls.sheet_names): |
|
|
exp_name = exp_list[i] if i < len(exp_list) else f"Hoja '{sheet}'" |
|
|
try: |
|
|
df = pd.read_excel(xls, sheet_name=sheet, header=[0,1]) |
|
|
reader = BioprocessFitter(list(AVAILABLE_MODELS.values())[0]) |
|
|
reader.process_data_from_df(df) |
|
|
if reader.data_time is None: |
|
|
msgs.append(f"WARN: Sin datos de tiempo en '{sheet}'.") |
|
|
continue |
|
|
plot_config = {'exp_name': exp_name, 'time_exp': reader.data_time, 'theme': theme} |
|
|
for c in COMPONENTS: |
|
|
plot_config[f'{c}_exp'], plot_config[f'{c}_std'] = reader.data_means[c], reader.data_stds[c] |
|
|
t_fine = reader._generate_fine_time_grid(reader.data_time) |
|
|
for m_name in model_names: |
|
|
if m_name not in AVAILABLE_MODELS: |
|
|
msgs.append(f"WARN: Modelo '{m_name}' no disponible.") |
|
|
continue |
|
|
fitter = BioprocessFitter(AVAILABLE_MODELS[m_name], maxfev=int(maxfev), use_differential_evolution=use_de) |
|
|
fitter.data_time, fitter.data_means, fitter.data_stds = reader.data_time, reader.data_means, reader.data_stds |
|
|
fitter.fit_all_models() |
|
|
row = {'Experimento': exp_name, 'Modelo': fitter.model.display_name} |
|
|
for c in COMPONENTS: |
|
|
if fitter.params[c]: |
|
|
row.update({f'{c.capitalize()}_{k}': v for k, v in fitter.params[c].items()}) |
|
|
row[f'R2_{c.capitalize()}'], row[f'RMSE_{c.capitalize()}'], row[f'MAE_{c.capitalize()}'], row[f'AIC_{c.capitalize()}'], row[f'BIC_{c.capitalize()}'] = fitter.r2.get(c), fitter.rmse.get(c), fitter.mae.get(c), fitter.aic.get(c), fitter.bic.get(c) |
|
|
results_data.append(row) |
|
|
X, S, P = fitter.get_model_curves_for_plot(t_fine, False) |
|
|
models_results.append({'name': m_name, 'X': X, 'S': S, 'P': P, 'params': fitter.params, 'r2': fitter.r2, 'rmse': fitter.rmse}) |
|
|
except Exception as e: |
|
|
msgs.append(f"ERROR en '{sheet}': {e}") |
|
|
traceback.print_exc() |
|
|
msg = "Análisis completado." + ("\n" + "\n".join(msgs) if msgs else "") |
|
|
df_res = pd.DataFrame(results_data).dropna(axis=1, how='all') |
|
|
fig = None |
|
|
if models_results and reader.data_time is not None: |
|
|
fig = create_interactive_plot(plot_config, models_results, component) |
|
|
return fig, df_res, msg |
|
|
|
|
|
|
|
|
def create_gradio_interface() -> gr.Blocks: |
|
|
def change_language(lang_key: str) -> Dict: |
|
|
lang = Language[lang_key] |
|
|
trans = TRANSLATIONS.get(lang, TRANSLATIONS[Language.ES]) |
|
|
return trans["title"], trans["subtitle"] |
|
|
|
|
|
MODEL_CHOICES = [(model.display_name, model.name) for model in AVAILABLE_MODELS.values()] |
|
|
DEFAULT_MODELS = [m.name for m in list(AVAILABLE_MODELS.values())[:4]] |
|
|
|
|
|
with gr.Blocks(theme=THEMES["light"], css=""" |
|
|
.gradio-container {font-family: 'Inter', sans-serif;} |
|
|
.theory-box {background-color: #f0f9ff; padding: 20px; border-radius: 10px; margin: 10px 0;} |
|
|
.dark .theory-box {background-color: #1e293b;} |
|
|
.model-card {border: 1px solid #e5e7eb; padding: 15px; border-radius: 8px; margin: 10px 0;} |
|
|
.dark .model-card {border-color: #374151;} |
|
|
""") as demo: |
|
|
current_theme = gr.State("light") |
|
|
current_language = gr.State("ES") |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=8): |
|
|
title_text = gr.Markdown("# 🔬 Analizador de Cinéticas de Bioprocesos") |
|
|
subtitle_text = gr.Markdown("Análisis avanzado de modelos matemáticos biotecnológicos") |
|
|
with gr.Column(scale=2): |
|
|
with gr.Row(): |
|
|
theme_toggle = gr.Checkbox(label="🌙 Modo Oscuro", value=False) |
|
|
language_select = gr.Dropdown(choices=[(lang.value, lang.name) for lang in Language], value="ES", label="🌐 Idioma") |
|
|
with gr.Tabs() as tabs: |
|
|
with gr.TabItem("📚 Teoría y Modelos"): |
|
|
gr.Markdown("## Introducción a los Modelos Cinéticos\nLos modelos cinéticos en biotecnología describen el comportamiento dinámico de los microorganismos.") |
|
|
for model_name, model in AVAILABLE_MODELS.items(): |
|
|
with gr.Accordion(f"📊 {model.display_name}", open=False): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=3): |
|
|
gr.Markdown(f"**Descripción**: {model.description}\n\n**Ecuación**: ${model.equation}$\n\n**Parámetros**: {', '.join(model.param_names)}\n\n**Referencia**: {model.reference}") |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown(f"**Características**:\n- Parámetros: {model.num_params}\n- Complejidad: {'⭐' * min(model.num_params, 5)}") |
|
|
with gr.TabItem("🔬 Análisis"): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
file_input = gr.File(label="📁 Sube tu archivo Excel (.xlsx)", file_types=['.xlsx']) |
|
|
exp_names_input = gr.Textbox(label="🏷️ Nombres de Experimentos", placeholder="Experimento 1\nExperimento 2\n...", lines=3) |
|
|
model_selection_input = gr.CheckboxGroup(choices=MODEL_CHOICES, label="📊 Modelos a Probar", value=DEFAULT_MODELS) |
|
|
with gr.Accordion("⚙️ Opciones Avanzadas", open=False): |
|
|
use_de_input = gr.Checkbox(label="Usar Evolución Diferencial", value=False, info="Optimización global más robusta pero más lenta") |
|
|
maxfev_input = gr.Number(label="Iteraciones máximas", value=50000) |
|
|
with gr.Column(scale=2): |
|
|
component_selector = gr.Dropdown(choices=[("Todos los componentes", "all"), ("Solo Biomasa", C_BIOMASS), ("Solo Sustrato", C_SUBSTRATE), ("Solo Producto", C_PRODUCT)], value="all", label="📈 Componente a visualizar") |
|
|
plot_output = gr.Plot(label="Visualización Interactiva") |
|
|
analyze_button = gr.Button("🚀 Analizar y Graficar", variant="primary") |
|
|
with gr.TabItem("📊 Resultados"): |
|
|
status_output = gr.Textbox(label="Estado del Análisis", interactive=False) |
|
|
results_table = gr.DataFrame(label="Tabla de Resultados", wrap=True) |
|
|
with gr.Row(): |
|
|
download_excel = gr.Button("📥 Descargar Excel") |
|
|
download_json = gr.Button("📥 Descargar JSON") |
|
|
download_file = gr.File(label="Archivo descargado") |
|
|
def run_analysis_wrapper(file, models, component, use_de, maxfev, exp_names, theme): |
|
|
try: |
|
|
return run_analysis(file, models, component, use_de, maxfev, exp_names, 'dark' if theme else 'light') |
|
|
except Exception as e: |
|
|
print(f"--- ERROR EN ANÁLISIS ---\n{traceback.format_exc()}") |
|
|
return None, pd.DataFrame(), f"Error: {str(e)}" |
|
|
analyze_button.click(fn=run_analysis_wrapper, inputs=[file_input, model_selection_input, component_selector, use_de_input, maxfev_input, exp_names_input, theme_toggle], outputs=[plot_output, results_table, status_output]) |
|
|
language_select.change(fn=change_language, inputs=[language_select], outputs=[title_text, subtitle_text]) |
|
|
def apply_theme(is_dark): |
|
|
return gr.Info("Tema cambiado. Los gráficos nuevos usarán el tema seleccionado.") |
|
|
theme_toggle.change(fn=apply_theme, inputs=[theme_toggle], outputs=[]) |
|
|
def download_results_excel(df): |
|
|
if df is None or df.empty: |
|
|
gr.Warning("No hay datos para descargar") |
|
|
return None |
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as tmp: |
|
|
df.to_excel(tmp.name, index=False) |
|
|
return tmp.name |
|
|
def download_results_json(df): |
|
|
if df is None or df.empty: |
|
|
gr.Warning("No hay datos para descargar") |
|
|
return None |
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as tmp: |
|
|
df.to_json(tmp.name, orient='records', indent=2) |
|
|
return tmp.name |
|
|
download_excel.click(fn=download_results_excel, inputs=[results_table], outputs=[download_file]) |
|
|
download_json.click(fn=download_results_json, inputs=[results_table], outputs=[download_file]) |
|
|
return demo |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
gradio_app = create_gradio_interface() |
|
|
gradio_app.launch() |