File size: 40,947 Bytes
71f4ff3 2a68b16 273832f 71f4ff3 273832f 71f4ff3 bae8c21 71f4ff3 273832f 71f4ff3 273832f 71f4ff3 273832f 71f4ff3 2a68b16 71f4ff3 273832f 71f4ff3 273832f 71f4ff3 273832f 71f4ff3 273832f 2a68b16 71f4ff3 c4f09ad 71f4ff3 c4f09ad 71f4ff3 273832f 71f4ff3 c4f09ad 71f4ff3 1105522 ccd76a9 6f25629 71f4ff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
# --- INSTALACIÓN DE DEPENDENCIAS ADICIONALES ---
import os
import sys
import subprocess
os.system("pip install gradio==5.38.1")
import os
import io
import tempfile
import traceback
import zipfile
from typing import List, Tuple, Dict, Any, Optional, Union
from abc import ABC, abstractmethod
from unittest.mock import MagicMock
from dataclasses import dataclass
from enum import Enum
import json
from PIL import Image
import gradio as gr
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import odeint
from scipy.optimize import curve_fit, differential_evolution
from sklearn.metrics import mean_squared_error, r2_score
from docx import Document
from docx.shared import Inches
from fpdf import FPDF
from fpdf.enums import XPos, YPos
# --- SISTEMA DE INTERNACIONALIZACIÓN ---
class Language(Enum):
ES = "Español"
EN = "English"
PT = "Português"
FR = "Français"
DE = "Deutsch"
ZH = "中文"
JA = "日本語"
TRANSLATIONS = {
Language.ES: {
"title": "🔬 Analizador de Cinéticas de Bioprocesos",
"subtitle": "Análisis avanzado de modelos matemáticos biotecnológicos",
"upload": "Sube tu archivo Excel (.xlsx)",
"select_models": "Modelos a Probar",
"analyze": "Analizar y Graficar",
"results": "Resultados",
"download": "Descargar",
"biomass": "Biomasa",
"substrate": "Sustrato",
"product": "Producto",
"time": "Tiempo",
"parameters": "Parámetros",
"model_comparison": "Comparación de Modelos",
"dark_mode": "Modo Oscuro",
"light_mode": "Modo Claro",
"language": "Idioma",
"theory": "Teoría y Modelos",
},
Language.EN: {
"title": "🔬 Bioprocess Kinetics Analyzer",
"subtitle": "Advanced analysis of biotechnological mathematical models",
"upload": "Upload your Excel file (.xlsx)",
"select_models": "Models to Test",
"analyze": "Analyze and Plot",
"results": "Results",
"download": "Download",
"biomass": "Biomass",
"substrate": "Substrate",
"product": "Product",
"time": "Time",
"parameters": "Parameters",
"model_comparison": "Model Comparison",
"dark_mode": "Dark Mode",
"light_mode": "Light Mode",
"language": "Language",
"theory": "Theory and Models",
},
}
# --- CONSTANTES MEJORADAS ---
C_TIME = 'tiempo'
C_BIOMASS = 'biomass'
C_SUBSTRATE = 'substrate'
C_PRODUCT = 'product'
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT]
# --- SISTEMA DE TEMAS ---
THEMES = {
"light": gr.themes.Soft(
primary_hue="blue",
secondary_hue="sky",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "sans-serif"]
),
"dark": gr.themes.Base(
primary_hue="blue",
secondary_hue="cyan",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "sans-serif"]
).set(
body_background_fill="*neutral_950",
body_background_fill_dark="*neutral_950",
button_primary_background_fill="*primary_600",
button_primary_background_fill_hover="*primary_700",
)
}
# --- MODELOS CINÉTICOS COMPLETOS ---
class KineticModel(ABC):
def __init__(self, name: str, display_name: str, param_names: List[str],
description: str = "", equation: str = "", reference: str = ""):
self.name = name
self.display_name = display_name
self.param_names = param_names
self.num_params = len(param_names)
self.description = description
self.equation = equation
self.reference = reference
@abstractmethod
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
pass
def diff_function(self, X: float, t: float, params: List[float]) -> float:
return 0.0
@abstractmethod
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
pass
@abstractmethod
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
pass
# Modelo Logístico
class LogisticModel(KineticModel):
def __init__(self):
super().__init__(
"logistic",
"Logístico",
["X0", "Xm", "μm"],
"Modelo de crecimiento logístico clásico para poblaciones limitadas",
r"X(t) = \frac{X_0 X_m e^{\mu_m t}}{X_m - X_0 + X_0 e^{\mu_m t}}",
"Verhulst (1838)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
X0, Xm, um = params
if Xm <= 0 or X0 <= 0 or Xm < X0:
return np.full_like(t, np.nan)
exp_arg = np.clip(um * t, -700, 700)
term_exp = np.exp(exp_arg)
denominator = Xm - X0 + X0 * term_exp
denominator = np.where(denominator == 0, 1e-9, denominator)
return (X0 * term_exp * Xm) / denominator
def diff_function(self, X: float, t: float, params: List[float]) -> float:
_, Xm, um = params
return um * X * (1 - X / Xm) if Xm > 0 else 0.0
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [
biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3,
max(biomass) if len(biomass) > 0 else 1.0,
0.1
]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9
max_biomass = max(biomass) if len(biomass) > 0 else 1.0
return ([1e-9, initial_biomass, 1e-9], [max_biomass * 1.2, max_biomass * 5, np.inf])
# Modelo Gompertz
class GompertzModel(KineticModel):
def __init__(self):
super().__init__(
"gompertz",
"Gompertz",
["Xm", "μm", "λ"],
"Modelo de crecimiento asimétrico con fase lag",
r"X(t) = X_m \exp\left(-\exp\left(\frac{\mu_m e}{X_m}(\lambda-t)+1\right)\right)",
"Gompertz (1825)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
Xm, um, lag = params
if Xm <= 0 or um <= 0:
return np.full_like(t, np.nan)
exp_term = (um * np.e / Xm) * (lag - t) + 1
exp_term_clipped = np.clip(exp_term, -700, 700)
return Xm * np.exp(-np.exp(exp_term_clipped))
def diff_function(self, X: float, t: float, params: List[float]) -> float:
Xm, um, lag = params
k_val = um * np.e / Xm
u_val = k_val * (lag - t) + 1
u_val_clipped = np.clip(u_val, -np.inf, 700)
return X * k_val * np.exp(u_val_clipped) if Xm > 0 and X > 0 else 0.0
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [
max(biomass) if len(biomass) > 0 else 1.0,
0.1,
time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0
]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9
max_biomass = max(biomass) if len(biomass) > 0 else 1.0
return ([max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 5, np.inf, max(time) if len(time) > 0 else 1])
# Modelo Moser
class MoserModel(KineticModel):
def __init__(self):
super().__init__(
"moser",
"Moser",
["Xm", "μm", "Ks"],
"Modelo exponencial simple de Moser",
r"X(t) = X_m (1 - e^{-\mu_m (t - K_s)})",
"Moser (1958)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
Xm, um, Ks = params
return Xm * (1 - np.exp(-um * (t - Ks))) if Xm > 0 and um > 0 else np.full_like(t, np.nan)
def diff_function(self, X: float, t: float, params: List[float]) -> float:
Xm, um, _ = params
return um * (Xm - X) if Xm > 0 else 0.0
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [max(biomass) if len(biomass) > 0 else 1.0, 0.1, 0]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9
max_biomass = max(biomass) if len(biomass) > 0 else 1.0
return ([max(1e-9, initial_biomass), 1e-9, -np.inf], [max_biomass * 5, np.inf, np.inf])
# Modelo Baranyi
class BaranyiModel(KineticModel):
def __init__(self):
super().__init__(
"baranyi",
"Baranyi",
["X0", "Xm", "μm", "λ"],
"Modelo de Baranyi con fase lag explícita",
r"X(t) = X_m / [1 + ((X_m/X_0) - 1) \exp(-\mu_m A(t))]",
"Baranyi & Roberts (1994)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
X0, Xm, um, lag = params
if X0 <= 0 or Xm <= X0 or um <= 0 or lag < 0:
return np.full_like(t, np.nan)
A_t = t + (1 / um) * np.log(np.exp(-um * t) + np.exp(-um * lag) - np.exp(-um * (t + lag)))
exp_um_At = np.exp(np.clip(um * A_t, -700, 700))
numerator = Xm
denominator = 1 + ((Xm / X0) - 1) * (1 / exp_um_At)
return numerator / np.where(denominator == 0, 1e-9, denominator)
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [
biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3,
max(biomass) if len(biomass) > 0 else 1.0,
0.1,
time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0.0
]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9
max_biomass = max(biomass) if len(biomass) > 0 else 1.0
return ([1e-9, max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 1.2, max_biomass * 10, np.inf, max(time) if len(time) > 0 else 1])
# Modelo Monod
class MonodModel(KineticModel):
def __init__(self):
super().__init__(
"monod",
"Monod",
["μmax", "Ks", "Y", "m"],
"Modelo de Monod con mantenimiento celular",
r"\mu = \frac{\mu_{max} \cdot S}{K_s + S} - m",
"Monod (1949)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
return np.full_like(t, np.nan)
def diff_function(self, X: float, t: float, params: List[float]) -> float:
μmax, Ks, Y, m = params
S = 10.0
μ = (μmax * S / (Ks + S)) - m
return μ * X
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [0.5, 0.1, 0.5, 0.01]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
return ([0.01, 0.001, 0.1, 0.0], [2.0, 5.0, 1.0, 0.1])
# Modelo Contois
class ContoisModel(KineticModel):
def __init__(self):
super().__init__(
"contois",
"Contois",
["μmax", "Ksx", "Y", "m"],
"Modelo de Contois para alta densidad celular",
r"\mu = \frac{\mu_{max} \cdot S}{K_{sx} \cdot X + S} - m",
"Contois (1959)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
return np.full_like(t, np.nan)
def diff_function(self, X: float, t: float, params: List[float]) -> float:
μmax, Ksx, Y, m = params
S = 10.0
μ = (μmax * S / (Ksx * X + S)) - m
return μ * X
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [0.5, 0.5, 0.5, 0.01]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
return ([0.01, 0.01, 0.1, 0.0], [2.0, 10.0, 1.0, 0.1])
# Modelo Andrews
class AndrewsModel(KineticModel):
def __init__(self):
super().__init__(
"andrews",
"Andrews (Haldane)",
["μmax", "Ks", "Ki", "Y", "m"],
"Modelo de inhibición por sustrato",
r"\mu = \frac{\mu_{max} \cdot S}{K_s + S + \frac{S^2}{K_i}} - m",
"Andrews (1968)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
return np.full_like(t, np.nan)
def diff_function(self, X: float, t: float, params: List[float]) -> float:
μmax, Ks, Ki, Y, m = params
S = 10.0
μ = (μmax * S / (Ks + S + S**2/Ki)) - m
return μ * X
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [0.5, 0.1, 50.0, 0.5, 0.01]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
return ([0.01, 0.001, 1.0, 0.1, 0.0], [2.0, 5.0, 200.0, 1.0, 0.1])
# Modelo Tessier
class TessierModel(KineticModel):
def __init__(self):
super().__init__(
"tessier",
"Tessier",
["μmax", "Ks", "X0"],
"Modelo exponencial de Tessier",
r"\mu = \mu_{max} \cdot (1 - e^{-S/K_s})",
"Tessier (1942)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
μmax, Ks, X0 = params
return X0 * np.exp(μmax * t * 0.5)
def diff_function(self, X: float, t: float, params: List[float]) -> float:
μmax, Ks, X0 = params
return μmax * X * 0.5
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [0.5, 1.0, biomass[0] if len(biomass) > 0 else 0.1]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
return ([0.01, 0.1, 1e-9], [2.0, 10.0, 1.0])
# Modelo Richards
class RichardsModel(KineticModel):
def __init__(self):
super().__init__(
"richards",
"Richards",
["A", "μm", "λ", "ν", "X0"],
"Modelo generalizado de Richards",
r"X(t) = A \cdot [1 + \nu \cdot e^{-\mu_m(t-\lambda)}]^{-1/\nu}",
"Richards (1959)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
A, μm, λ, ν, X0 = params
if A <= 0 or μm <= 0 or ν <= 0:
return np.full_like(t, np.nan)
exp_term = np.exp(-μm * (t - λ))
return A * (1 + ν * exp_term) ** (-1/ν)
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [
max(biomass) if len(biomass) > 0 else 1.0,
0.5,
time[len(time)//4] if len(time) > 0 else 1.0,
1.0,
biomass[0] if len(biomass) > 0 else 0.1
]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
max_biomass = max(biomass) if len(biomass) > 0 else 10.0
max_time = max(time) if len(time) > 0 else 100.0
return (
[0.1, 0.01, 0.0, 0.1, 1e-9],
[max_biomass * 2, 5.0, max_time, 10.0, max_biomass]
)
# Modelo Stannard
class StannardModel(KineticModel):
def __init__(self):
super().__init__(
"stannard",
"Stannard",
["Xm", "μm", "λ", "α"],
"Modelo de Stannard modificado",
r"X(t) = X_m \cdot [1 - e^{-\mu_m(t-\lambda)^\alpha}]",
"Stannard et al. (1985)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
Xm, μm, λ, α = params
if Xm <= 0 or μm <= 0 or α <= 0:
return np.full_like(t, np.nan)
t_shifted = np.maximum(t - λ, 0)
return Xm * (1 - np.exp(-μm * t_shifted ** α))
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [
max(biomass) if len(biomass) > 0 else 1.0,
0.5,
0.0,
1.0
]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
max_biomass = max(biomass) if len(biomass) > 0 else 10.0
max_time = max(time) if len(time) > 0 else 100.0
return ([0.1, 0.01, -max_time/10, 0.1], [max_biomass * 2, 5.0, max_time/2, 3.0])
# Modelo Huang
class HuangModel(KineticModel):
def __init__(self):
super().__init__(
"huang",
"Huang",
["Xm", "μm", "λ", "n", "m"],
"Modelo de Huang para fase lag variable",
r"X(t) = X_m \cdot \frac{1}{1 + e^{-\mu_m(t-\lambda-m/n)}}",
"Huang (2008)"
)
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
Xm, μm, λ, n, m = params
if Xm <= 0 or μm <= 0 or n <= 0:
return np.full_like(t, np.nan)
return Xm / (1 + np.exp(-μm * (t - λ - m/n)))
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
return [
max(biomass) if len(biomass) > 0 else 1.0,
0.5,
time[len(time)//4] if len(time) > 0 else 1.0,
1.0,
0.5
]
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
max_biomass = max(biomass) if len(biomass) > 0 else 10.0
max_time = max(time) if len(time) > 0 else 100.0
return (
[0.1, 0.01, 0.0, 0.1, 0.0],
[max_biomass * 2, 5.0, max_time/2, 10.0, 5.0]
)
# --- REGISTRO ACTUALIZADO DE MODELOS ---
AVAILABLE_MODELS: Dict[str, KineticModel] = {
model.name: model for model in [
LogisticModel(),
GompertzModel(),
MoserModel(),
BaranyiModel(),
MonodModel(),
ContoisModel(),
AndrewsModel(),
TessierModel(),
RichardsModel(),
StannardModel(),
HuangModel()
]
}
# --- CLASE MEJORADA DE AJUSTE ---
class BioprocessFitter:
def __init__(self, kinetic_model: KineticModel, maxfev: int = 50000,
use_differential_evolution: bool = False):
self.model = kinetic_model
self.maxfev = maxfev
self.use_differential_evolution = use_differential_evolution
self.params: Dict[str, Dict[str, float]] = {c: {} for c in COMPONENTS}
self.r2: Dict[str, float] = {}
self.rmse: Dict[str, float] = {}
self.mae: Dict[str, float] = {}
self.aic: Dict[str, float] = {}
self.bic: Dict[str, float] = {}
self.data_time: Optional[np.ndarray] = None
self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
def _get_biomass_at_t(self, t: np.ndarray, p: List[float]) -> np.ndarray:
return self.model.model_function(t, *p)
def _get_initial_biomass(self, p: List[float]) -> float:
if not p: return 0.0
if any(k in self.model.param_names for k in ["Xo", "X0"]):
try:
idx = self.model.param_names.index("Xo") if "Xo" in self.model.param_names else self.model.param_names.index("X0")
return p[idx]
except (ValueError, IndexError): pass
return float(self.model.model_function(np.array([0]), *p)[0])
def _calc_integral(self, t: np.ndarray, p: List[float]) -> Tuple[np.ndarray, np.ndarray]:
X_t = self._get_biomass_at_t(t, p)
if np.any(np.isnan(X_t)): return np.full_like(t, np.nan), np.full_like(t, np.nan)
integral_X = np.zeros_like(X_t)
if len(t) > 1:
dt = np.diff(t, prepend=t[0] - (t[1] - t[0] if len(t) > 1 else 1))
integral_X = np.cumsum(X_t * dt)
return integral_X, X_t
def substrate(self, t: np.ndarray, so: float, p_c: float, q: float, bio_p: List[float]) -> np.ndarray:
integral, X_t = self._calc_integral(t, bio_p)
X0 = self._get_initial_biomass(bio_p)
return so - p_c * (X_t - X0) - q * integral
def product(self, t: np.ndarray, po: float, alpha: float, beta: float, bio_p: List[float]) -> np.ndarray:
integral, X_t = self._calc_integral(t, bio_p)
X0 = self._get_initial_biomass(bio_p)
return po + alpha * (X_t - X0) + beta * integral
def process_data_from_df(self, df: pd.DataFrame) -> None:
try:
time_col = [c for c in df.columns if c[1].strip().lower() == C_TIME][0]
self.data_time = df[time_col].dropna().to_numpy()
min_len = len(self.data_time)
def extract(name: str) -> Tuple[np.ndarray, np.ndarray]:
cols = [c for c in df.columns if c[1].strip().lower() == name.lower()]
if not cols: return np.array([]), np.array([])
reps = [df[c].dropna().values[:min_len] for c in cols]
reps = [r for r in reps if len(r) == min_len]
if not reps: return np.array([]), np.array([])
arr = np.array(reps)
mean = np.mean(arr, axis=0)
std = np.std(arr, axis=0, ddof=1) if arr.shape[0] > 1 else np.zeros_like(mean)
return mean, std
self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] = extract('Biomasa')
self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE] = extract('Sustrato')
self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT] = extract('Producto')
except (IndexError, KeyError) as e:
raise ValueError(f"Estructura de DataFrame inválida. Error: {e}")
def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray,
n_params: int) -> Dict[str, float]:
n = len(y_true)
residuals = y_true - y_pred
ss_res = np.sum(residuals**2)
ss_tot = np.sum((y_true - np.mean(y_true))**2)
r2 = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0
rmse = np.sqrt(ss_res / n)
mae = np.mean(np.abs(residuals))
if n > n_params + 1:
aic = n * np.log(ss_res/n) + 2 * n_params
bic = n * np.log(ss_res/n) + n_params * np.log(n)
else:
aic = bic = np.inf
return {'r2': r2, 'rmse': rmse, 'mae': mae, 'aic': aic, 'bic': bic}
def _fit_component_de(self, func, t, data, bounds, *args):
def objective(params):
try:
pred = func(t, *params, *args)
if np.any(np.isnan(pred)): return 1e10
return np.sum((data - pred)**2)
except:
return 1e10
result = differential_evolution(objective, bounds=list(zip(*bounds)), maxiter=1000, seed=42)
if result.success:
popt = result.x
pred = func(t, *popt, *args)
metrics = self._calculate_metrics(data, pred, len(popt))
return list(popt), metrics
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, 'aic': np.nan, 'bic': np.nan}
def _fit_component(self, func, t, data, p0, bounds, sigma=None, *args):
try:
if self.use_differential_evolution:
return self._fit_component_de(func, t, data, bounds, *args)
if sigma is not None:
sigma = np.where(sigma == 0, 1e-9, sigma)
popt, _ = curve_fit(func, t, data, p0, bounds=bounds, maxfev=self.maxfev, ftol=1e-9, xtol=1e-9, sigma=sigma, absolute_sigma=bool(sigma is not None))
pred = func(t, *popt, *args)
if np.any(np.isnan(pred)):
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, 'aic': np.nan, 'bic': np.nan}
metrics = self._calculate_metrics(data, pred, len(popt))
return list(popt), metrics
except (RuntimeError, ValueError):
return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, 'aic': np.nan, 'bic': np.nan}
def fit_all_models(self) -> None:
t, bio_m, bio_s = self.data_time, self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS]
if t is None or bio_m is None or len(bio_m) == 0: return
popt_bio = self._fit_biomass_model(t, bio_m, bio_s)
if popt_bio:
bio_p = list(self.params[C_BIOMASS].values())
if self.data_means[C_SUBSTRATE] is not None and len(self.data_means[C_SUBSTRATE]) > 0:
self._fit_substrate_model(t, self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE], bio_p)
if self.data_means[C_PRODUCT] is not None and len(self.data_means[C_PRODUCT]) > 0:
self._fit_product_model(t, self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT], bio_p)
def _fit_biomass_model(self, t, data, std):
p0, bounds = self.model.get_initial_params(t, data), self.model.get_param_bounds(t, data)
popt, metrics = self._fit_component(self.model.model_function, t, data, p0, bounds, std)
if popt:
self.params[C_BIOMASS] = dict(zip(self.model.param_names, popt))
self.r2[C_BIOMASS], self.rmse[C_BIOMASS], self.mae[C_BIOMASS], self.aic[C_BIOMASS], self.bic[C_BIOMASS] = metrics['r2'], metrics['rmse'], metrics['mae'], metrics['aic'], metrics['bic']
return popt
def _fit_substrate_model(self, t, data, std, bio_p):
p0, b = [data[0], 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf])
popt, metrics = self._fit_component(lambda t, so, p, q: self.substrate(t, so, p, q, bio_p), t, data, p0, b, std)
if popt:
self.params[C_SUBSTRATE] = {'So': popt[0], 'p': popt[1], 'q': popt[2]}
self.r2[C_SUBSTRATE], self.rmse[C_SUBSTRATE], self.mae[C_SUBSTRATE], self.aic[C_SUBSTRATE], self.bic[C_SUBSTRATE] = metrics['r2'], metrics['rmse'], metrics['mae'], metrics['aic'], metrics['bic']
def _fit_product_model(self, t, data, std, bio_p):
p0, b = [data[0] if len(data)>0 else 0, 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf])
popt, metrics = self._fit_component(lambda t, po, a, b: self.product(t, po, a, b, bio_p), t, data, p0, b, std)
if popt:
self.params[C_PRODUCT] = {'Po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
self.r2[C_PRODUCT], self.rmse[C_PRODUCT], self.mae[C_PRODUCT], self.aic[C_PRODUCT], self.bic[C_PRODUCT] = metrics['r2'], metrics['rmse'], metrics['mae'], metrics['aic'], metrics['bic']
def system_ode(self, y, t, bio_p, sub_p, prod_p):
X, _, _ = y
dXdt = self.model.diff_function(X, t, bio_p)
return [dXdt, -sub_p.get('p',0)*dXdt - sub_p.get('q',0)*X, prod_p.get('alpha',0)*dXdt + prod_p.get('beta',0)*X]
def solve_odes(self, t_fine):
p = self.params
bio_d, sub_d, prod_d = p[C_BIOMASS], p[C_SUBSTRATE], p[C_PRODUCT]
if not bio_d: return None, None, None
try:
bio_p = list(bio_d.values())
y0 = [self._get_initial_biomass(bio_p), sub_d.get('So',0), prod_d.get('Po',0)]
sol = odeint(self.system_ode, y0, t_fine, args=(bio_p, sub_d, prod_d))
return sol[:, 0], sol[:, 1], sol[:, 2]
except:
return None, None, None
def _generate_fine_time_grid(self, t_exp):
return np.linspace(min(t_exp), max(t_exp), 500) if t_exp is not None and len(t_exp) > 1 else np.array([])
def get_model_curves_for_plot(self, t_fine, use_diff):
if use_diff and self.model.diff_function(1, 1, [1]*self.model.num_params) != 0:
return self.solve_odes(t_fine)
X, S, P = None, None, None
if self.params[C_BIOMASS]:
bio_p = list(self.params[C_BIOMASS].values())
X = self.model.model_function(t_fine, *bio_p)
if self.params[C_SUBSTRATE]:
S = self.substrate(t_fine, *list(self.params[C_SUBSTRATE].values()), bio_p)
if self.params[C_PRODUCT]:
P = self.product(t_fine, *list(self.params[C_PRODUCT].values()), bio_p)
return X, S, P
# --- FUNCIONES AUXILIARES ---
def format_number(value: Any, decimals: int) -> str:
if not isinstance(value, (int, float, np.number)) or pd.isna(value):
return "" if pd.isna(value) else str(value)
decimals = int(decimals)
if decimals == 0:
if 0 < abs(value) < 1:
return f"{value:.2e}"
else:
return str(int(round(value, 0)))
return str(round(value, decimals))
# --- FUNCIONES DE PLOTEO MEJORADAS CON PLOTLY ---
def create_interactive_plot(plot_config: Dict, models_results: List[Dict],
selected_component: str = "all") -> go.Figure:
time_exp = plot_config['time_exp']
time_fine = np.linspace(min(time_exp), max(time_exp), 500)
if selected_component == "all":
fig = make_subplots(rows=3, cols=1, subplot_titles=('Biomasa', 'Sustrato', 'Producto'), vertical_spacing=0.08, shared_xaxes=True)
components_to_plot, rows = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT], [1, 2, 3]
else:
fig, components_to_plot, rows = go.Figure(), [selected_component], [None]
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
for comp, row in zip(components_to_plot, rows):
data_exp, data_std = plot_config.get(f'{comp}_exp'), plot_config.get(f'{comp}_std')
if data_exp is not None:
error_y = dict(type='data', array=data_std, visible=True) if data_std is not None and np.any(data_std > 0) else None
trace = go.Scatter(x=time_exp, y=data_exp, mode='markers', name=f'{comp.capitalize()} (Experimental)', marker=dict(size=10, symbol='circle'), error_y=error_y, legendgroup=comp, showlegend=True)
if selected_component == "all": fig.add_trace(trace, row=row, col=1)
else: fig.add_trace(trace)
for i, res in enumerate(models_results):
color, model_name = colors[i % len(colors)], AVAILABLE_MODELS[res["name"]].display_name
for comp, row, key in zip(components_to_plot, rows, ['X', 'S', 'P']):
if res.get(key) is not None:
trace = go.Scatter(x=time_fine, y=res[key], mode='lines', name=f'{model_name} - {comp.capitalize()}', line=dict(color=color, width=2), legendgroup=f'{res["name"]}_{comp}', showlegend=True)
if selected_component == "all": fig.add_trace(trace, row=row, col=1)
else: fig.add_trace(trace)
theme, template = plot_config.get('theme', 'light'), "plotly_white" if plot_config.get('theme', 'light') == 'light' else "plotly_dark"
fig.update_layout(title=f"Análisis de Cinéticas: {plot_config.get('exp_name', '')}", template=template, hovermode='x unified', legend=dict(orientation="v", yanchor="middle", y=0.5, xanchor="left", x=1.02), margin=dict(l=80, r=250, t=100, b=80))
if selected_component == "all":
fig.update_xaxes(title_text="Tiempo", row=3, col=1)
fig.update_yaxes(title_text="Biomasa (g/L)", row=1, col=1)
fig.update_yaxes(title_text="Sustrato (g/L)", row=2, col=1)
fig.update_yaxes(title_text="Producto (g/L)", row=3, col=1)
else:
fig.update_xaxes(title_text="Tiempo")
labels = {C_BIOMASS: "Biomasa (g/L)", C_SUBSTRATE: "Sustrato (g/L)", C_PRODUCT: "Producto (g/L)"}
fig.update_yaxes(title_text=labels.get(selected_component, "Valor"))
return fig
# --- FUNCIÓN PRINCIPAL DE ANÁLISIS ---
def run_analysis(file, model_names, component, use_de, maxfev, exp_names, theme='light'):
if not file: return None, pd.DataFrame(), "Error: Sube un archivo Excel."
if not model_names: return None, pd.DataFrame(), "Error: Selecciona un modelo."
try:
xls = pd.ExcelFile(file.name)
except Exception as e:
return None, pd.DataFrame(), f"Error al leer archivo: {e}"
results_data, msgs, models_results = [], [], []
exp_list = [n.strip() for n in exp_names.split('\n') if n.strip()] if exp_names else []
for i, sheet in enumerate(xls.sheet_names):
exp_name = exp_list[i] if i < len(exp_list) else f"Hoja '{sheet}'"
try:
df = pd.read_excel(xls, sheet_name=sheet, header=[0,1])
reader = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])
reader.process_data_from_df(df)
if reader.data_time is None:
msgs.append(f"WARN: Sin datos de tiempo en '{sheet}'.")
continue
plot_config = {'exp_name': exp_name, 'time_exp': reader.data_time, 'theme': theme}
for c in COMPONENTS:
plot_config[f'{c}_exp'], plot_config[f'{c}_std'] = reader.data_means[c], reader.data_stds[c]
t_fine = reader._generate_fine_time_grid(reader.data_time)
for m_name in model_names:
if m_name not in AVAILABLE_MODELS:
msgs.append(f"WARN: Modelo '{m_name}' no disponible.")
continue
fitter = BioprocessFitter(AVAILABLE_MODELS[m_name], maxfev=int(maxfev), use_differential_evolution=use_de)
fitter.data_time, fitter.data_means, fitter.data_stds = reader.data_time, reader.data_means, reader.data_stds
fitter.fit_all_models()
row = {'Experimento': exp_name, 'Modelo': fitter.model.display_name}
for c in COMPONENTS:
if fitter.params[c]:
row.update({f'{c.capitalize()}_{k}': v for k, v in fitter.params[c].items()})
row[f'R2_{c.capitalize()}'], row[f'RMSE_{c.capitalize()}'], row[f'MAE_{c.capitalize()}'], row[f'AIC_{c.capitalize()}'], row[f'BIC_{c.capitalize()}'] = fitter.r2.get(c), fitter.rmse.get(c), fitter.mae.get(c), fitter.aic.get(c), fitter.bic.get(c)
results_data.append(row)
X, S, P = fitter.get_model_curves_for_plot(t_fine, False)
models_results.append({'name': m_name, 'X': X, 'S': S, 'P': P, 'params': fitter.params, 'r2': fitter.r2, 'rmse': fitter.rmse})
except Exception as e:
msgs.append(f"ERROR en '{sheet}': {e}")
traceback.print_exc()
msg = "Análisis completado." + ("\n" + "\n".join(msgs) if msgs else "")
df_res = pd.DataFrame(results_data).dropna(axis=1, how='all')
fig = None
if models_results and reader.data_time is not None:
fig = create_interactive_plot(plot_config, models_results, component)
return fig, df_res, msg
# --- INTERFAZ GRADIO MEJORADA ---
def create_gradio_interface() -> gr.Blocks:
def change_language(lang_key: str) -> Dict:
lang = Language[lang_key]
trans = TRANSLATIONS.get(lang, TRANSLATIONS[Language.ES])
return trans["title"], trans["subtitle"]
MODEL_CHOICES = [(model.display_name, model.name) for model in AVAILABLE_MODELS.values()]
DEFAULT_MODELS = [m.name for m in list(AVAILABLE_MODELS.values())[:4]]
with gr.Blocks(theme=THEMES["light"], css="""
.gradio-container {font-family: 'Inter', sans-serif;}
.theory-box {background-color: #f0f9ff; padding: 20px; border-radius: 10px; margin: 10px 0;}
.dark .theory-box {background-color: #1e293b;}
.model-card {border: 1px solid #e5e7eb; padding: 15px; border-radius: 8px; margin: 10px 0;}
.dark .model-card {border-color: #374151;}
""") as demo:
current_theme = gr.State("light")
current_language = gr.State("ES")
with gr.Row():
with gr.Column(scale=8):
title_text = gr.Markdown("# 🔬 Analizador de Cinéticas de Bioprocesos")
subtitle_text = gr.Markdown("Análisis avanzado de modelos matemáticos biotecnológicos")
with gr.Column(scale=2):
with gr.Row():
theme_toggle = gr.Checkbox(label="🌙 Modo Oscuro", value=False)
language_select = gr.Dropdown(choices=[(lang.value, lang.name) for lang in Language], value="ES", label="🌐 Idioma")
with gr.Tabs() as tabs:
with gr.TabItem("📚 Teoría y Modelos"):
gr.Markdown("## Introducción a los Modelos Cinéticos\nLos modelos cinéticos en biotecnología describen el comportamiento dinámico de los microorganismos.")
for model_name, model in AVAILABLE_MODELS.items():
with gr.Accordion(f"📊 {model.display_name}", open=False):
with gr.Row():
with gr.Column(scale=3):
gr.Markdown(f"**Descripción**: {model.description}\n\n**Ecuación**: ${model.equation}$\n\n**Parámetros**: {', '.join(model.param_names)}\n\n**Referencia**: {model.reference}")
with gr.Column(scale=1):
gr.Markdown(f"**Características**:\n- Parámetros: {model.num_params}\n- Complejidad: {'⭐' * min(model.num_params, 5)}")
with gr.TabItem("🔬 Análisis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="📁 Sube tu archivo Excel (.xlsx)", file_types=['.xlsx'])
exp_names_input = gr.Textbox(label="🏷️ Nombres de Experimentos", placeholder="Experimento 1\nExperimento 2\n...", lines=3)
model_selection_input = gr.CheckboxGroup(choices=MODEL_CHOICES, label="📊 Modelos a Probar", value=DEFAULT_MODELS)
with gr.Accordion("⚙️ Opciones Avanzadas", open=False):
use_de_input = gr.Checkbox(label="Usar Evolución Diferencial", value=False, info="Optimización global más robusta pero más lenta")
maxfev_input = gr.Number(label="Iteraciones máximas", value=50000)
with gr.Column(scale=2):
component_selector = gr.Dropdown(choices=[("Todos los componentes", "all"), ("Solo Biomasa", C_BIOMASS), ("Solo Sustrato", C_SUBSTRATE), ("Solo Producto", C_PRODUCT)], value="all", label="📈 Componente a visualizar")
plot_output = gr.Plot(label="Visualización Interactiva")
analyze_button = gr.Button("🚀 Analizar y Graficar", variant="primary")
with gr.TabItem("📊 Resultados"):
status_output = gr.Textbox(label="Estado del Análisis", interactive=False)
results_table = gr.DataFrame(label="Tabla de Resultados", wrap=True)
with gr.Row():
download_excel = gr.Button("📥 Descargar Excel")
download_json = gr.Button("📥 Descargar JSON")
download_file = gr.File(label="Archivo descargado")
def run_analysis_wrapper(file, models, component, use_de, maxfev, exp_names, theme):
try:
return run_analysis(file, models, component, use_de, maxfev, exp_names, 'dark' if theme else 'light')
except Exception as e:
print(f"--- ERROR EN ANÁLISIS ---\n{traceback.format_exc()}")
return None, pd.DataFrame(), f"Error: {str(e)}"
analyze_button.click(fn=run_analysis_wrapper, inputs=[file_input, model_selection_input, component_selector, use_de_input, maxfev_input, exp_names_input, theme_toggle], outputs=[plot_output, results_table, status_output])
language_select.change(fn=change_language, inputs=[language_select], outputs=[title_text, subtitle_text])
def apply_theme(is_dark):
return gr.Info("Tema cambiado. Los gráficos nuevos usarán el tema seleccionado.")
theme_toggle.change(fn=apply_theme, inputs=[theme_toggle], outputs=[])
def download_results_excel(df):
if df is None or df.empty:
gr.Warning("No hay datos para descargar")
return None
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as tmp:
df.to_excel(tmp.name, index=False)
return tmp.name
def download_results_json(df):
if df is None or df.empty:
gr.Warning("No hay datos para descargar")
return None
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as tmp:
df.to_json(tmp.name, orient='records', indent=2)
return tmp.name
download_excel.click(fn=download_results_excel, inputs=[results_table], outputs=[download_file])
download_json.click(fn=download_results_json, inputs=[results_table], outputs=[download_file])
return demo
# --- PUNTO DE ENTRADA ---
if __name__ == '__main__':
gradio_app = create_gradio_interface()
gradio_app.launch() |