File size: 40,947 Bytes
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a68b16
 
273832f
71f4ff3
 
 
 
 
273832f
 
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae8c21
71f4ff3
 
273832f
71f4ff3
 
 
 
 
 
 
 
 
 
273832f
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
273832f
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a68b16
71f4ff3
 
273832f
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
273832f
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273832f
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273832f
2a68b16
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4f09ad
71f4ff3
c4f09ad
71f4ff3
 
 
 
 
 
 
 
 
 
 
273832f
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4f09ad
71f4ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105522
ccd76a9
6f25629
71f4ff3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
# --- INSTALACIÓN DE DEPENDENCIAS ADICIONALES ---
import os
import sys
import subprocess
os.system("pip install gradio==5.38.1")
import os
import io
import tempfile
import traceback
import zipfile
from typing import List, Tuple, Dict, Any, Optional, Union
from abc import ABC, abstractmethod
from unittest.mock import MagicMock
from dataclasses import dataclass
from enum import Enum
import json

from PIL import Image
import gradio as gr
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import odeint
from scipy.optimize import curve_fit, differential_evolution
from sklearn.metrics import mean_squared_error, r2_score
from docx import Document
from docx.shared import Inches
from fpdf import FPDF
from fpdf.enums import XPos, YPos

# --- SISTEMA DE INTERNACIONALIZACIÓN ---
class Language(Enum):
    ES = "Español"
    EN = "English"
    PT = "Português"
    FR = "Français"
    DE = "Deutsch"
    ZH = "中文"
    JA = "日本語"

TRANSLATIONS = {
    Language.ES: {
        "title": "🔬 Analizador de Cinéticas de Bioprocesos",
        "subtitle": "Análisis avanzado de modelos matemáticos biotecnológicos",
        "upload": "Sube tu archivo Excel (.xlsx)",
        "select_models": "Modelos a Probar",
        "analyze": "Analizar y Graficar",
        "results": "Resultados",
        "download": "Descargar",
        "biomass": "Biomasa",
        "substrate": "Sustrato",
        "product": "Producto",
        "time": "Tiempo",
        "parameters": "Parámetros",
        "model_comparison": "Comparación de Modelos",
        "dark_mode": "Modo Oscuro",
        "light_mode": "Modo Claro",
        "language": "Idioma",
        "theory": "Teoría y Modelos",
    },
    Language.EN: {
        "title": "🔬 Bioprocess Kinetics Analyzer",
        "subtitle": "Advanced analysis of biotechnological mathematical models",
        "upload": "Upload your Excel file (.xlsx)",
        "select_models": "Models to Test",
        "analyze": "Analyze and Plot",
        "results": "Results",
        "download": "Download",
        "biomass": "Biomass",
        "substrate": "Substrate",
        "product": "Product",
        "time": "Time",
        "parameters": "Parameters",
        "model_comparison": "Model Comparison",
        "dark_mode": "Dark Mode",
        "light_mode": "Light Mode",
        "language": "Language",
        "theory": "Theory and Models",
    },
}

# --- CONSTANTES MEJORADAS ---
C_TIME = 'tiempo'
C_BIOMASS = 'biomass'
C_SUBSTRATE = 'substrate'
C_PRODUCT = 'product'
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT]

# --- SISTEMA DE TEMAS ---
THEMES = {
    "light": gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="sky",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "sans-serif"]
    ),
    "dark": gr.themes.Base(
        primary_hue="blue",
        secondary_hue="cyan",
        neutral_hue="slate",
        font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "sans-serif"]
    ).set(
        body_background_fill="*neutral_950",
        body_background_fill_dark="*neutral_950",
        button_primary_background_fill="*primary_600",
        button_primary_background_fill_hover="*primary_700",
    )
}

# --- MODELOS CINÉTICOS COMPLETOS ---

class KineticModel(ABC):
    def __init__(self, name: str, display_name: str, param_names: List[str],
                 description: str = "", equation: str = "", reference: str = ""):
        self.name = name
        self.display_name = display_name
        self.param_names = param_names
        self.num_params = len(param_names)
        self.description = description
        self.equation = equation
        self.reference = reference

    @abstractmethod
    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        pass

    def diff_function(self, X: float, t: float, params: List[float]) -> float:
        return 0.0

    @abstractmethod
    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        pass

    @abstractmethod
    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        pass

# Modelo Logístico
class LogisticModel(KineticModel):
    def __init__(self):
        super().__init__(
            "logistic",
            "Logístico",
            ["X0", "Xm", "μm"],
            "Modelo de crecimiento logístico clásico para poblaciones limitadas",
            r"X(t) = \frac{X_0 X_m e^{\mu_m t}}{X_m - X_0 + X_0 e^{\mu_m t}}",
            "Verhulst (1838)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        X0, Xm, um = params
        if Xm <= 0 or X0 <= 0 or Xm < X0:
            return np.full_like(t, np.nan)
        exp_arg = np.clip(um * t, -700, 700)
        term_exp = np.exp(exp_arg)
        denominator = Xm - X0 + X0 * term_exp
        denominator = np.where(denominator == 0, 1e-9, denominator)
        return (X0 * term_exp * Xm) / denominator

    def diff_function(self, X: float, t: float, params: List[float]) -> float:
        _, Xm, um = params
        return um * X * (1 - X / Xm) if Xm > 0 else 0.0

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [
            biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3,
            max(biomass) if len(biomass) > 0 else 1.0,
            0.1
        ]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9
        max_biomass = max(biomass) if len(biomass) > 0 else 1.0
        return ([1e-9, initial_biomass, 1e-9], [max_biomass * 1.2, max_biomass * 5, np.inf])

# Modelo Gompertz
class GompertzModel(KineticModel):
    def __init__(self):
        super().__init__(
            "gompertz",
            "Gompertz",
            ["Xm", "μm", "λ"],
            "Modelo de crecimiento asimétrico con fase lag",
            r"X(t) = X_m \exp\left(-\exp\left(\frac{\mu_m e}{X_m}(\lambda-t)+1\right)\right)",
            "Gompertz (1825)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        Xm, um, lag = params
        if Xm <= 0 or um <= 0:
            return np.full_like(t, np.nan)
        exp_term = (um * np.e / Xm) * (lag - t) + 1
        exp_term_clipped = np.clip(exp_term, -700, 700)
        return Xm * np.exp(-np.exp(exp_term_clipped))

    def diff_function(self, X: float, t: float, params: List[float]) -> float:
        Xm, um, lag = params
        k_val = um * np.e / Xm
        u_val = k_val * (lag - t) + 1
        u_val_clipped = np.clip(u_val, -np.inf, 700)
        return X * k_val * np.exp(u_val_clipped) if Xm > 0 and X > 0 else 0.0

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [
            max(biomass) if len(biomass) > 0 else 1.0,
            0.1,
            time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0
        ]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9
        max_biomass = max(biomass) if len(biomass) > 0 else 1.0
        return ([max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 5, np.inf, max(time) if len(time) > 0 else 1])

# Modelo Moser
class MoserModel(KineticModel):
    def __init__(self):
        super().__init__(
            "moser",
            "Moser",
            ["Xm", "μm", "Ks"],
            "Modelo exponencial simple de Moser",
            r"X(t) = X_m (1 - e^{-\mu_m (t - K_s)})",
            "Moser (1958)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        Xm, um, Ks = params
        return Xm * (1 - np.exp(-um * (t - Ks))) if Xm > 0 and um > 0 else np.full_like(t, np.nan)

    def diff_function(self, X: float, t: float, params: List[float]) -> float:
        Xm, um, _ = params
        return um * (Xm - X) if Xm > 0 else 0.0

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [max(biomass) if len(biomass) > 0 else 1.0, 0.1, 0]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9
        max_biomass = max(biomass) if len(biomass) > 0 else 1.0
        return ([max(1e-9, initial_biomass), 1e-9, -np.inf], [max_biomass * 5, np.inf, np.inf])

# Modelo Baranyi
class BaranyiModel(KineticModel):
    def __init__(self):
        super().__init__(
            "baranyi",
            "Baranyi",
            ["X0", "Xm", "μm", "λ"],
            "Modelo de Baranyi con fase lag explícita",
            r"X(t) = X_m / [1 + ((X_m/X_0) - 1) \exp(-\mu_m A(t))]",
            "Baranyi & Roberts (1994)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        X0, Xm, um, lag = params
        if X0 <= 0 or Xm <= X0 or um <= 0 or lag < 0:
            return np.full_like(t, np.nan)
        A_t = t + (1 / um) * np.log(np.exp(-um * t) + np.exp(-um * lag) - np.exp(-um * (t + lag)))
        exp_um_At = np.exp(np.clip(um * A_t, -700, 700))
        numerator = Xm
        denominator = 1 + ((Xm / X0) - 1) * (1 / exp_um_At)
        return numerator / np.where(denominator == 0, 1e-9, denominator)

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [
            biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3,
            max(biomass) if len(biomass) > 0 else 1.0,
            0.1,
            time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0.0
        ]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9
        max_biomass = max(biomass) if len(biomass) > 0 else 1.0
        return ([1e-9, max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 1.2, max_biomass * 10, np.inf, max(time) if len(time) > 0 else 1])

# Modelo Monod
class MonodModel(KineticModel):
    def __init__(self):
        super().__init__(
            "monod",
            "Monod",
            ["μmax", "Ks", "Y", "m"],
            "Modelo de Monod con mantenimiento celular",
            r"\mu = \frac{\mu_{max} \cdot S}{K_s + S} - m",
            "Monod (1949)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        return np.full_like(t, np.nan)

    def diff_function(self, X: float, t: float, params: List[float]) -> float:
        μmax, Ks, Y, m = params
        S = 10.0
        μ = (μmax * S / (Ks + S)) - m
        return μ * X

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [0.5, 0.1, 0.5, 0.01]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        return ([0.01, 0.001, 0.1, 0.0], [2.0, 5.0, 1.0, 0.1])

# Modelo Contois
class ContoisModel(KineticModel):
    def __init__(self):
        super().__init__(
            "contois",
            "Contois",
            ["μmax", "Ksx", "Y", "m"],
            "Modelo de Contois para alta densidad celular",
            r"\mu = \frac{\mu_{max} \cdot S}{K_{sx} \cdot X + S} - m",
            "Contois (1959)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        return np.full_like(t, np.nan)

    def diff_function(self, X: float, t: float, params: List[float]) -> float:
        μmax, Ksx, Y, m = params
        S = 10.0
        μ = (μmax * S / (Ksx * X + S)) - m
        return μ * X

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [0.5, 0.5, 0.5, 0.01]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        return ([0.01, 0.01, 0.1, 0.0], [2.0, 10.0, 1.0, 0.1])

# Modelo Andrews
class AndrewsModel(KineticModel):
    def __init__(self):
        super().__init__(
            "andrews",
            "Andrews (Haldane)",
            ["μmax", "Ks", "Ki", "Y", "m"],
            "Modelo de inhibición por sustrato",
            r"\mu = \frac{\mu_{max} \cdot S}{K_s + S + \frac{S^2}{K_i}} - m",
            "Andrews (1968)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        return np.full_like(t, np.nan)

    def diff_function(self, X: float, t: float, params: List[float]) -> float:
        μmax, Ks, Ki, Y, m = params
        S = 10.0
        μ = (μmax * S / (Ks + S + S**2/Ki)) - m
        return μ * X

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [0.5, 0.1, 50.0, 0.5, 0.01]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        return ([0.01, 0.001, 1.0, 0.1, 0.0], [2.0, 5.0, 200.0, 1.0, 0.1])

# Modelo Tessier
class TessierModel(KineticModel):
    def __init__(self):
        super().__init__(
            "tessier",
            "Tessier",
            ["μmax", "Ks", "X0"],
            "Modelo exponencial de Tessier",
            r"\mu = \mu_{max} \cdot (1 - e^{-S/K_s})",
            "Tessier (1942)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        μmax, Ks, X0 = params
        return X0 * np.exp(μmax * t * 0.5)

    def diff_function(self, X: float, t: float, params: List[float]) -> float:
        μmax, Ks, X0 = params
        return μmax * X * 0.5

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [0.5, 1.0, biomass[0] if len(biomass) > 0 else 0.1]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        return ([0.01, 0.1, 1e-9], [2.0, 10.0, 1.0])

# Modelo Richards
class RichardsModel(KineticModel):
    def __init__(self):
        super().__init__(
            "richards",
            "Richards",
            ["A", "μm", "λ", "ν", "X0"],
            "Modelo generalizado de Richards",
            r"X(t) = A \cdot [1 + \nu \cdot e^{-\mu_m(t-\lambda)}]^{-1/\nu}",
            "Richards (1959)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        A, μm, λ, ν, X0 = params
        if A <= 0 or μm <= 0 or ν <= 0:
            return np.full_like(t, np.nan)
        exp_term = np.exp(-μm * (t - λ))
        return A * (1 + ν * exp_term) ** (-1/ν)

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [
            max(biomass) if len(biomass) > 0 else 1.0,
            0.5,
            time[len(time)//4] if len(time) > 0 else 1.0,
            1.0,
            biomass[0] if len(biomass) > 0 else 0.1
        ]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        max_biomass = max(biomass) if len(biomass) > 0 else 10.0
        max_time = max(time) if len(time) > 0 else 100.0
        return (
            [0.1, 0.01, 0.0, 0.1, 1e-9],
            [max_biomass * 2, 5.0, max_time, 10.0, max_biomass]
        )

# Modelo Stannard
class StannardModel(KineticModel):
    def __init__(self):
        super().__init__(
            "stannard",
            "Stannard",
            ["Xm", "μm", "λ", "α"],
            "Modelo de Stannard modificado",
            r"X(t) = X_m \cdot [1 - e^{-\mu_m(t-\lambda)^\alpha}]",
            "Stannard et al. (1985)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        Xm, μm, λ, α = params
        if Xm <= 0 or μm <= 0 or α <= 0:
            return np.full_like(t, np.nan)
        t_shifted = np.maximum(t - λ, 0)
        return Xm * (1 - np.exp(-μm * t_shifted ** α))

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [
            max(biomass) if len(biomass) > 0 else 1.0,
            0.5,
            0.0,
            1.0
        ]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        max_biomass = max(biomass) if len(biomass) > 0 else 10.0
        max_time = max(time) if len(time) > 0 else 100.0
        return ([0.1, 0.01, -max_time/10, 0.1], [max_biomass * 2, 5.0, max_time/2, 3.0])

# Modelo Huang
class HuangModel(KineticModel):
    def __init__(self):
        super().__init__(
            "huang",
            "Huang",
            ["Xm", "μm", "λ", "n", "m"],
            "Modelo de Huang para fase lag variable",
            r"X(t) = X_m \cdot \frac{1}{1 + e^{-\mu_m(t-\lambda-m/n)}}",
            "Huang (2008)"
        )

    def model_function(self, t: np.ndarray, *params: float) -> np.ndarray:
        Xm, μm, λ, n, m = params
        if Xm <= 0 or μm <= 0 or n <= 0:
            return np.full_like(t, np.nan)
        return Xm / (1 + np.exp(-μm * (t - λ - m/n)))

    def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]:
        return [
            max(biomass) if len(biomass) > 0 else 1.0,
            0.5,
            time[len(time)//4] if len(time) > 0 else 1.0,
            1.0,
            0.5
        ]

    def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]:
        max_biomass = max(biomass) if len(biomass) > 0 else 10.0
        max_time = max(time) if len(time) > 0 else 100.0
        return (
            [0.1, 0.01, 0.0, 0.1, 0.0],
            [max_biomass * 2, 5.0, max_time/2, 10.0, 5.0]
        )

# --- REGISTRO ACTUALIZADO DE MODELOS ---
AVAILABLE_MODELS: Dict[str, KineticModel] = {
    model.name: model for model in [
        LogisticModel(),
        GompertzModel(),
        MoserModel(),
        BaranyiModel(),
        MonodModel(),
        ContoisModel(),
        AndrewsModel(),
        TessierModel(),
        RichardsModel(),
        StannardModel(),
        HuangModel()
    ]
}

# --- CLASE MEJORADA DE AJUSTE ---
class BioprocessFitter:
    def __init__(self, kinetic_model: KineticModel, maxfev: int = 50000,
                 use_differential_evolution: bool = False):
        self.model = kinetic_model
        self.maxfev = maxfev
        self.use_differential_evolution = use_differential_evolution
        self.params: Dict[str, Dict[str, float]] = {c: {} for c in COMPONENTS}
        self.r2: Dict[str, float] = {}
        self.rmse: Dict[str, float] = {}
        self.mae: Dict[str, float] = {}
        self.aic: Dict[str, float] = {}
        self.bic: Dict[str, float] = {}
        self.data_time: Optional[np.ndarray] = None
        self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}
        self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS}

    def _get_biomass_at_t(self, t: np.ndarray, p: List[float]) -> np.ndarray:
        return self.model.model_function(t, *p)

    def _get_initial_biomass(self, p: List[float]) -> float:
        if not p: return 0.0
        if any(k in self.model.param_names for k in ["Xo", "X0"]):
            try:
                idx = self.model.param_names.index("Xo") if "Xo" in self.model.param_names else self.model.param_names.index("X0")
                return p[idx]
            except (ValueError, IndexError): pass
        return float(self.model.model_function(np.array([0]), *p)[0])

    def _calc_integral(self, t: np.ndarray, p: List[float]) -> Tuple[np.ndarray, np.ndarray]:
        X_t = self._get_biomass_at_t(t, p)
        if np.any(np.isnan(X_t)): return np.full_like(t, np.nan), np.full_like(t, np.nan)
        integral_X = np.zeros_like(X_t)
        if len(t) > 1:
            dt = np.diff(t, prepend=t[0] - (t[1] - t[0] if len(t) > 1 else 1))
            integral_X = np.cumsum(X_t * dt)
        return integral_X, X_t

    def substrate(self, t: np.ndarray, so: float, p_c: float, q: float, bio_p: List[float]) -> np.ndarray:
        integral, X_t = self._calc_integral(t, bio_p)
        X0 = self._get_initial_biomass(bio_p)
        return so - p_c * (X_t - X0) - q * integral

    def product(self, t: np.ndarray, po: float, alpha: float, beta: float, bio_p: List[float]) -> np.ndarray:
        integral, X_t = self._calc_integral(t, bio_p)
        X0 = self._get_initial_biomass(bio_p)
        return po + alpha * (X_t - X0) + beta * integral

    def process_data_from_df(self, df: pd.DataFrame) -> None:
        try:
            time_col = [c for c in df.columns if c[1].strip().lower() == C_TIME][0]
            self.data_time = df[time_col].dropna().to_numpy()
            min_len = len(self.data_time)

            def extract(name: str) -> Tuple[np.ndarray, np.ndarray]:
                cols = [c for c in df.columns if c[1].strip().lower() == name.lower()]
                if not cols: return np.array([]), np.array([])
                reps = [df[c].dropna().values[:min_len] for c in cols]
                reps = [r for r in reps if len(r) == min_len]
                if not reps: return np.array([]), np.array([])
                arr = np.array(reps)
                mean = np.mean(arr, axis=0)
                std = np.std(arr, axis=0, ddof=1) if arr.shape[0] > 1 else np.zeros_like(mean)
                return mean, std

            self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] = extract('Biomasa')
            self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE] = extract('Sustrato')
            self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT] = extract('Producto')
        except (IndexError, KeyError) as e:
            raise ValueError(f"Estructura de DataFrame inválida. Error: {e}")

    def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray,
                          n_params: int) -> Dict[str, float]:
        n = len(y_true)
        residuals = y_true - y_pred
        ss_res = np.sum(residuals**2)
        ss_tot = np.sum((y_true - np.mean(y_true))**2)
        r2 = 1 - (ss_res / ss_tot) if ss_tot > 0 else 0
        rmse = np.sqrt(ss_res / n)
        mae = np.mean(np.abs(residuals))
        if n > n_params + 1:
            aic = n * np.log(ss_res/n) + 2 * n_params
            bic = n * np.log(ss_res/n) + n_params * np.log(n)
        else:
            aic = bic = np.inf
        return {'r2': r2, 'rmse': rmse, 'mae': mae, 'aic': aic, 'bic': bic}

    def _fit_component_de(self, func, t, data, bounds, *args):
        def objective(params):
            try:
                pred = func(t, *params, *args)
                if np.any(np.isnan(pred)): return 1e10
                return np.sum((data - pred)**2)
            except:
                return 1e10
        result = differential_evolution(objective, bounds=list(zip(*bounds)), maxiter=1000, seed=42)
        if result.success:
            popt = result.x
            pred = func(t, *popt, *args)
            metrics = self._calculate_metrics(data, pred, len(popt))
            return list(popt), metrics
        return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, 'aic': np.nan, 'bic': np.nan}

    def _fit_component(self, func, t, data, p0, bounds, sigma=None, *args):
        try:
            if self.use_differential_evolution:
                return self._fit_component_de(func, t, data, bounds, *args)
            if sigma is not None:
                sigma = np.where(sigma == 0, 1e-9, sigma)
            popt, _ = curve_fit(func, t, data, p0, bounds=bounds, maxfev=self.maxfev, ftol=1e-9, xtol=1e-9, sigma=sigma, absolute_sigma=bool(sigma is not None))
            pred = func(t, *popt, *args)
            if np.any(np.isnan(pred)):
                return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, 'aic': np.nan, 'bic': np.nan}
            metrics = self._calculate_metrics(data, pred, len(popt))
            return list(popt), metrics
        except (RuntimeError, ValueError):
            return None, {'r2': np.nan, 'rmse': np.nan, 'mae': np.nan, 'aic': np.nan, 'bic': np.nan}

    def fit_all_models(self) -> None:
        t, bio_m, bio_s = self.data_time, self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS]
        if t is None or bio_m is None or len(bio_m) == 0: return
        popt_bio = self._fit_biomass_model(t, bio_m, bio_s)
        if popt_bio:
            bio_p = list(self.params[C_BIOMASS].values())
            if self.data_means[C_SUBSTRATE] is not None and len(self.data_means[C_SUBSTRATE]) > 0:
                self._fit_substrate_model(t, self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE], bio_p)
            if self.data_means[C_PRODUCT] is not None and len(self.data_means[C_PRODUCT]) > 0:
                self._fit_product_model(t, self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT], bio_p)

    def _fit_biomass_model(self, t, data, std):
        p0, bounds = self.model.get_initial_params(t, data), self.model.get_param_bounds(t, data)
        popt, metrics = self._fit_component(self.model.model_function, t, data, p0, bounds, std)
        if popt:
            self.params[C_BIOMASS] = dict(zip(self.model.param_names, popt))
            self.r2[C_BIOMASS], self.rmse[C_BIOMASS], self.mae[C_BIOMASS], self.aic[C_BIOMASS], self.bic[C_BIOMASS] = metrics['r2'], metrics['rmse'], metrics['mae'], metrics['aic'], metrics['bic']
        return popt

    def _fit_substrate_model(self, t, data, std, bio_p):
        p0, b = [data[0], 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf])
        popt, metrics = self._fit_component(lambda t, so, p, q: self.substrate(t, so, p, q, bio_p), t, data, p0, b, std)
        if popt:
            self.params[C_SUBSTRATE] = {'So': popt[0], 'p': popt[1], 'q': popt[2]}
            self.r2[C_SUBSTRATE], self.rmse[C_SUBSTRATE], self.mae[C_SUBSTRATE], self.aic[C_SUBSTRATE], self.bic[C_SUBSTRATE] = metrics['r2'], metrics['rmse'], metrics['mae'], metrics['aic'], metrics['bic']

    def _fit_product_model(self, t, data, std, bio_p):
        p0, b = [data[0] if len(data)>0 else 0, 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf])
        popt, metrics = self._fit_component(lambda t, po, a, b: self.product(t, po, a, b, bio_p), t, data, p0, b, std)
        if popt:
            self.params[C_PRODUCT] = {'Po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
            self.r2[C_PRODUCT], self.rmse[C_PRODUCT], self.mae[C_PRODUCT], self.aic[C_PRODUCT], self.bic[C_PRODUCT] = metrics['r2'], metrics['rmse'], metrics['mae'], metrics['aic'], metrics['bic']

    def system_ode(self, y, t, bio_p, sub_p, prod_p):
        X, _, _ = y
        dXdt = self.model.diff_function(X, t, bio_p)
        return [dXdt, -sub_p.get('p',0)*dXdt - sub_p.get('q',0)*X, prod_p.get('alpha',0)*dXdt + prod_p.get('beta',0)*X]

    def solve_odes(self, t_fine):
        p = self.params
        bio_d, sub_d, prod_d = p[C_BIOMASS], p[C_SUBSTRATE], p[C_PRODUCT]
        if not bio_d: return None, None, None
        try:
            bio_p = list(bio_d.values())
            y0 = [self._get_initial_biomass(bio_p), sub_d.get('So',0), prod_d.get('Po',0)]
            sol = odeint(self.system_ode, y0, t_fine, args=(bio_p, sub_d, prod_d))
            return sol[:, 0], sol[:, 1], sol[:, 2]
        except:
            return None, None, None

    def _generate_fine_time_grid(self, t_exp):
        return np.linspace(min(t_exp), max(t_exp), 500) if t_exp is not None and len(t_exp) > 1 else np.array([])

    def get_model_curves_for_plot(self, t_fine, use_diff):
        if use_diff and self.model.diff_function(1, 1, [1]*self.model.num_params) != 0:
            return self.solve_odes(t_fine)
        X, S, P = None, None, None
        if self.params[C_BIOMASS]:
            bio_p = list(self.params[C_BIOMASS].values())
            X = self.model.model_function(t_fine, *bio_p)
            if self.params[C_SUBSTRATE]:
                S = self.substrate(t_fine, *list(self.params[C_SUBSTRATE].values()), bio_p)
            if self.params[C_PRODUCT]:
                P = self.product(t_fine, *list(self.params[C_PRODUCT].values()), bio_p)
        return X, S, P

# --- FUNCIONES AUXILIARES ---
def format_number(value: Any, decimals: int) -> str:
    if not isinstance(value, (int, float, np.number)) or pd.isna(value):
        return "" if pd.isna(value) else str(value)
    decimals = int(decimals)
    if decimals == 0:
        if 0 < abs(value) < 1:
            return f"{value:.2e}"
        else:
            return str(int(round(value, 0)))
    return str(round(value, decimals))

# --- FUNCIONES DE PLOTEO MEJORADAS CON PLOTLY ---
def create_interactive_plot(plot_config: Dict, models_results: List[Dict],
                          selected_component: str = "all") -> go.Figure:
    time_exp = plot_config['time_exp']
    time_fine = np.linspace(min(time_exp), max(time_exp), 500)
    if selected_component == "all":
        fig = make_subplots(rows=3, cols=1, subplot_titles=('Biomasa', 'Sustrato', 'Producto'), vertical_spacing=0.08, shared_xaxes=True)
        components_to_plot, rows = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT], [1, 2, 3]
    else:
        fig, components_to_plot, rows = go.Figure(), [selected_component], [None]
    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
    for comp, row in zip(components_to_plot, rows):
        data_exp, data_std = plot_config.get(f'{comp}_exp'), plot_config.get(f'{comp}_std')
        if data_exp is not None:
            error_y = dict(type='data', array=data_std, visible=True) if data_std is not None and np.any(data_std > 0) else None
            trace = go.Scatter(x=time_exp, y=data_exp, mode='markers', name=f'{comp.capitalize()} (Experimental)', marker=dict(size=10, symbol='circle'), error_y=error_y, legendgroup=comp, showlegend=True)
            if selected_component == "all": fig.add_trace(trace, row=row, col=1)
            else: fig.add_trace(trace)
    for i, res in enumerate(models_results):
        color, model_name = colors[i % len(colors)], AVAILABLE_MODELS[res["name"]].display_name
        for comp, row, key in zip(components_to_plot, rows, ['X', 'S', 'P']):
            if res.get(key) is not None:
                trace = go.Scatter(x=time_fine, y=res[key], mode='lines', name=f'{model_name} - {comp.capitalize()}', line=dict(color=color, width=2), legendgroup=f'{res["name"]}_{comp}', showlegend=True)
                if selected_component == "all": fig.add_trace(trace, row=row, col=1)
                else: fig.add_trace(trace)
    theme, template = plot_config.get('theme', 'light'), "plotly_white" if plot_config.get('theme', 'light') == 'light' else "plotly_dark"
    fig.update_layout(title=f"Análisis de Cinéticas: {plot_config.get('exp_name', '')}", template=template, hovermode='x unified', legend=dict(orientation="v", yanchor="middle", y=0.5, xanchor="left", x=1.02), margin=dict(l=80, r=250, t=100, b=80))
    if selected_component == "all":
        fig.update_xaxes(title_text="Tiempo", row=3, col=1)
        fig.update_yaxes(title_text="Biomasa (g/L)", row=1, col=1)
        fig.update_yaxes(title_text="Sustrato (g/L)", row=2, col=1)
        fig.update_yaxes(title_text="Producto (g/L)", row=3, col=1)
    else:
        fig.update_xaxes(title_text="Tiempo")
        labels = {C_BIOMASS: "Biomasa (g/L)", C_SUBSTRATE: "Sustrato (g/L)", C_PRODUCT: "Producto (g/L)"}
        fig.update_yaxes(title_text=labels.get(selected_component, "Valor"))
    return fig

# --- FUNCIÓN PRINCIPAL DE ANÁLISIS ---
def run_analysis(file, model_names, component, use_de, maxfev, exp_names, theme='light'):
    if not file: return None, pd.DataFrame(), "Error: Sube un archivo Excel."
    if not model_names: return None, pd.DataFrame(), "Error: Selecciona un modelo."
    try:
        xls = pd.ExcelFile(file.name)
    except Exception as e:
        return None, pd.DataFrame(), f"Error al leer archivo: {e}"
    results_data, msgs, models_results = [], [], []
    exp_list = [n.strip() for n in exp_names.split('\n') if n.strip()] if exp_names else []
    for i, sheet in enumerate(xls.sheet_names):
        exp_name = exp_list[i] if i < len(exp_list) else f"Hoja '{sheet}'"
        try:
            df = pd.read_excel(xls, sheet_name=sheet, header=[0,1])
            reader = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])
            reader.process_data_from_df(df)
            if reader.data_time is None:
                msgs.append(f"WARN: Sin datos de tiempo en '{sheet}'.")
                continue
            plot_config = {'exp_name': exp_name, 'time_exp': reader.data_time, 'theme': theme}
            for c in COMPONENTS:
                plot_config[f'{c}_exp'], plot_config[f'{c}_std'] = reader.data_means[c], reader.data_stds[c]
            t_fine = reader._generate_fine_time_grid(reader.data_time)
            for m_name in model_names:
                if m_name not in AVAILABLE_MODELS:
                    msgs.append(f"WARN: Modelo '{m_name}' no disponible.")
                    continue
                fitter = BioprocessFitter(AVAILABLE_MODELS[m_name], maxfev=int(maxfev), use_differential_evolution=use_de)
                fitter.data_time, fitter.data_means, fitter.data_stds = reader.data_time, reader.data_means, reader.data_stds
                fitter.fit_all_models()
                row = {'Experimento': exp_name, 'Modelo': fitter.model.display_name}
                for c in COMPONENTS:
                    if fitter.params[c]:
                        row.update({f'{c.capitalize()}_{k}': v for k, v in fitter.params[c].items()})
                    row[f'R2_{c.capitalize()}'], row[f'RMSE_{c.capitalize()}'], row[f'MAE_{c.capitalize()}'], row[f'AIC_{c.capitalize()}'], row[f'BIC_{c.capitalize()}'] = fitter.r2.get(c), fitter.rmse.get(c), fitter.mae.get(c), fitter.aic.get(c), fitter.bic.get(c)
                results_data.append(row)
                X, S, P = fitter.get_model_curves_for_plot(t_fine, False)
                models_results.append({'name': m_name, 'X': X, 'S': S, 'P': P, 'params': fitter.params, 'r2': fitter.r2, 'rmse': fitter.rmse})
        except Exception as e:
            msgs.append(f"ERROR en '{sheet}': {e}")
            traceback.print_exc()
    msg = "Análisis completado." + ("\n" + "\n".join(msgs) if msgs else "")
    df_res = pd.DataFrame(results_data).dropna(axis=1, how='all')
    fig = None
    if models_results and reader.data_time is not None:
        fig = create_interactive_plot(plot_config, models_results, component)
    return fig, df_res, msg

# --- INTERFAZ GRADIO MEJORADA ---
def create_gradio_interface() -> gr.Blocks:
    def change_language(lang_key: str) -> Dict:
        lang = Language[lang_key]
        trans = TRANSLATIONS.get(lang, TRANSLATIONS[Language.ES])
        return trans["title"], trans["subtitle"]

    MODEL_CHOICES = [(model.display_name, model.name) for model in AVAILABLE_MODELS.values()]
    DEFAULT_MODELS = [m.name for m in list(AVAILABLE_MODELS.values())[:4]]

    with gr.Blocks(theme=THEMES["light"], css="""
        .gradio-container {font-family: 'Inter', sans-serif;}
        .theory-box {background-color: #f0f9ff; padding: 20px; border-radius: 10px; margin: 10px 0;}
        .dark .theory-box {background-color: #1e293b;}
        .model-card {border: 1px solid #e5e7eb; padding: 15px; border-radius: 8px; margin: 10px 0;}
        .dark .model-card {border-color: #374151;}
    """) as demo:
        current_theme = gr.State("light")
        current_language = gr.State("ES")
        with gr.Row():
            with gr.Column(scale=8):
                title_text = gr.Markdown("# 🔬 Analizador de Cinéticas de Bioprocesos")
                subtitle_text = gr.Markdown("Análisis avanzado de modelos matemáticos biotecnológicos")
            with gr.Column(scale=2):
                with gr.Row():
                    theme_toggle = gr.Checkbox(label="🌙 Modo Oscuro", value=False)
                    language_select = gr.Dropdown(choices=[(lang.value, lang.name) for lang in Language], value="ES", label="🌐 Idioma")
        with gr.Tabs() as tabs:
            with gr.TabItem("📚 Teoría y Modelos"):
                gr.Markdown("## Introducción a los Modelos Cinéticos\nLos modelos cinéticos en biotecnología describen el comportamiento dinámico de los microorganismos.")
                for model_name, model in AVAILABLE_MODELS.items():
                    with gr.Accordion(f"📊 {model.display_name}", open=False):
                        with gr.Row():
                            with gr.Column(scale=3):
                                gr.Markdown(f"**Descripción**: {model.description}\n\n**Ecuación**: ${model.equation}$\n\n**Parámetros**: {', '.join(model.param_names)}\n\n**Referencia**: {model.reference}")
                            with gr.Column(scale=1):
                                gr.Markdown(f"**Características**:\n- Parámetros: {model.num_params}\n- Complejidad: {'⭐' * min(model.num_params, 5)}")
            with gr.TabItem("🔬 Análisis"):
                with gr.Row():
                    with gr.Column(scale=1):
                        file_input = gr.File(label="📁 Sube tu archivo Excel (.xlsx)", file_types=['.xlsx'])
                        exp_names_input = gr.Textbox(label="🏷️ Nombres de Experimentos", placeholder="Experimento 1\nExperimento 2\n...", lines=3)
                        model_selection_input = gr.CheckboxGroup(choices=MODEL_CHOICES, label="📊 Modelos a Probar", value=DEFAULT_MODELS)
                        with gr.Accordion("⚙️ Opciones Avanzadas", open=False):
                            use_de_input = gr.Checkbox(label="Usar Evolución Diferencial", value=False, info="Optimización global más robusta pero más lenta")
                            maxfev_input = gr.Number(label="Iteraciones máximas", value=50000)
                    with gr.Column(scale=2):
                        component_selector = gr.Dropdown(choices=[("Todos los componentes", "all"), ("Solo Biomasa", C_BIOMASS), ("Solo Sustrato", C_SUBSTRATE), ("Solo Producto", C_PRODUCT)], value="all", label="📈 Componente a visualizar")
                        plot_output = gr.Plot(label="Visualización Interactiva")
                analyze_button = gr.Button("🚀 Analizar y Graficar", variant="primary")
            with gr.TabItem("📊 Resultados"):
                status_output = gr.Textbox(label="Estado del Análisis", interactive=False)
                results_table = gr.DataFrame(label="Tabla de Resultados", wrap=True)
                with gr.Row():
                    download_excel = gr.Button("📥 Descargar Excel")
                    download_json = gr.Button("📥 Descargar JSON")
                download_file = gr.File(label="Archivo descargado")
        def run_analysis_wrapper(file, models, component, use_de, maxfev, exp_names, theme):
            try:
                return run_analysis(file, models, component, use_de, maxfev, exp_names, 'dark' if theme else 'light')
            except Exception as e:
                print(f"--- ERROR EN ANÁLISIS ---\n{traceback.format_exc()}")
                return None, pd.DataFrame(), f"Error: {str(e)}"
        analyze_button.click(fn=run_analysis_wrapper, inputs=[file_input, model_selection_input, component_selector, use_de_input, maxfev_input, exp_names_input, theme_toggle], outputs=[plot_output, results_table, status_output])
        language_select.change(fn=change_language, inputs=[language_select], outputs=[title_text, subtitle_text])
        def apply_theme(is_dark):
            return gr.Info("Tema cambiado. Los gráficos nuevos usarán el tema seleccionado.")
        theme_toggle.change(fn=apply_theme, inputs=[theme_toggle], outputs=[])
        def download_results_excel(df):
            if df is None or df.empty:
                gr.Warning("No hay datos para descargar")
                return None
            with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as tmp:
                df.to_excel(tmp.name, index=False)
                return tmp.name
        def download_results_json(df):
            if df is None or df.empty:
                gr.Warning("No hay datos para descargar")
                return None
            with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as tmp:
                df.to_json(tmp.name, orient='records', indent=2)
                return tmp.name
        download_excel.click(fn=download_results_excel, inputs=[results_table], outputs=[download_file])
        download_json.click(fn=download_results_json, inputs=[results_table], outputs=[download_file])
    return demo

# --- PUNTO DE ENTRADA ---
if __name__ == '__main__':
    gradio_app = create_gradio_interface()
    gradio_app.launch()