deberta-v3-large-csb
This model is a fine-tuned version of microsoft/deberta-v3-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2608
- Accuracy: 0.8813
- F1: 0.8805
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.4418 | 1.0 | 228 | 0.3463 | 0.8396 | 0.8397 |
| 0.3375 | 2.0 | 456 | 0.2615 | 0.8703 | 0.8705 |
| 0.2706 | 3.0 | 684 | 0.2608 | 0.8813 | 0.8805 |
| 0.2298 | 4.0 | 912 | 0.3437 | 0.8791 | 0.8780 |
| 0.1609 | 5.0 | 1140 | 0.6636 | 0.8132 | 0.8050 |
| 0.1665 | 6.0 | 1368 | 0.5089 | 0.8791 | 0.8791 |
| 0.099 | 7.0 | 1596 | 0.6432 | 0.8813 | 0.8804 |
| 0.075 | 8.0 | 1824 | 0.7101 | 0.8747 | 0.8741 |
| 0.044 | 9.0 | 2052 | 0.7694 | 0.8681 | 0.8673 |
| 0.0478 | 10.0 | 2280 | 0.8504 | 0.8593 | 0.8573 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.2.1
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 117
Model tree for sameearif/deberta-v3-large-csb
Base model
microsoft/deberta-v3-large