YOLOv8-Detection: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge by Ultralytics

Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of YOLOv8-Detection found here.

This repository provides scripts to run YOLOv8-Detection on Qualcomm® devices. More details on model performance across various devices, can be found here.

WARNING: The model assets are not readily available for download due to licensing restrictions.

Model Details

  • Model Type: Model_use_case.object_detection
  • Model Stats:
    • Model checkpoint: YOLOv8-N
    • Input resolution: 640x640
    • Number of parameters: 3.18M
    • Model size (float): 12.2 MB
    • Model size (w8a8): 3.25 MB
    • Model size (w8a16): 3.60 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
YOLOv8-Detection float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 13.519 ms 0 - 83 MB NPU --
YOLOv8-Detection float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 13.053 ms 4 - 126 MB NPU --
YOLOv8-Detection float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 6.131 ms 0 - 45 MB NPU --
YOLOv8-Detection float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 6.898 ms 5 - 45 MB NPU --
YOLOv8-Detection float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 3.49 ms 0 - 80 MB NPU --
YOLOv8-Detection float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 3.292 ms 5 - 80 MB NPU --
YOLOv8-Detection float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 5.361 ms 0 - 73 MB NPU --
YOLOv8-Detection float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 5.013 ms 0 - 82 MB NPU --
YOLOv8-Detection float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 4.944 ms 1 - 106 MB NPU --
YOLOv8-Detection float SA7255P ADP Qualcomm® SA7255P TFLITE 13.519 ms 0 - 83 MB NPU --
YOLOv8-Detection float SA7255P ADP Qualcomm® SA7255P QNN_DLC 13.053 ms 4 - 126 MB NPU --
YOLOv8-Detection float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 3.483 ms 0 - 86 MB NPU --
YOLOv8-Detection float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 3.298 ms 3 - 78 MB NPU --
YOLOv8-Detection float SA8295P ADP Qualcomm® SA8295P TFLITE 7.214 ms 0 - 36 MB NPU --
YOLOv8-Detection float SA8295P ADP Qualcomm® SA8295P QNN_DLC 7.161 ms 3 - 36 MB NPU --
YOLOv8-Detection float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 3.491 ms 0 - 83 MB NPU --
YOLOv8-Detection float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 3.306 ms 0 - 72 MB NPU --
YOLOv8-Detection float SA8775P ADP Qualcomm® SA8775P TFLITE 5.013 ms 0 - 82 MB NPU --
YOLOv8-Detection float SA8775P ADP Qualcomm® SA8775P QNN_DLC 4.944 ms 1 - 106 MB NPU --
YOLOv8-Detection float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 2.586 ms 0 - 166 MB NPU --
YOLOv8-Detection float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 2.44 ms 5 - 261 MB NPU --
YOLOv8-Detection float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 3.469 ms 3 - 105 MB NPU --
YOLOv8-Detection float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 2.061 ms 0 - 88 MB NPU --
YOLOv8-Detection float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 1.903 ms 3 - 108 MB NPU --
YOLOv8-Detection float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 2.916 ms 3 - 84 MB NPU --
YOLOv8-Detection float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 1.57 ms 0 - 79 MB NPU --
YOLOv8-Detection float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 1.459 ms 5 - 129 MB NPU --
YOLOv8-Detection float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 2.458 ms 1 - 69 MB NPU --
YOLOv8-Detection float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 3.657 ms 141 - 141 MB NPU --
YOLOv8-Detection float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 5.632 ms 5 - 5 MB NPU --
YOLOv8-Detection w8a16 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 QNN_DLC 8.957 ms 2 - 100 MB NPU --
YOLOv8-Detection w8a16 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 330.811 ms 65 - 70 MB CPU --
YOLOv8-Detection w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 6.512 ms 2 - 30 MB NPU --
YOLOv8-Detection w8a16 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 3.957 ms 2 - 40 MB NPU --
YOLOv8-Detection w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 3.275 ms 2 - 12 MB NPU --
YOLOv8-Detection w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 4.787 ms 0 - 20 MB NPU --
YOLOv8-Detection w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 3.868 ms 0 - 28 MB NPU --
YOLOv8-Detection w8a16 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 135.911 ms 61 - 65 MB CPU --
YOLOv8-Detection w8a16 SA7255P ADP Qualcomm® SA7255P QNN_DLC 6.512 ms 2 - 30 MB NPU --
YOLOv8-Detection w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 3.279 ms 2 - 11 MB NPU --
YOLOv8-Detection w8a16 SA8295P ADP Qualcomm® SA8295P QNN_DLC 4.499 ms 2 - 36 MB NPU --
YOLOv8-Detection w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 3.282 ms 2 - 11 MB NPU --
YOLOv8-Detection w8a16 SA8775P ADP Qualcomm® SA8775P QNN_DLC 3.868 ms 0 - 28 MB NPU --
YOLOv8-Detection w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 2.2 ms 2 - 42 MB NPU --
YOLOv8-Detection w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 2.891 ms 0 - 45 MB NPU --
YOLOv8-Detection w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 1.511 ms 2 - 40 MB NPU --
YOLOv8-Detection w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 2.28 ms 0 - 39 MB NPU --
YOLOv8-Detection w8a16 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 3.77 ms 2 - 41 MB NPU --
YOLOv8-Detection w8a16 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 155.207 ms 68 - 84 MB CPU --
YOLOv8-Detection w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 1.257 ms 2 - 41 MB NPU --
YOLOv8-Detection w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 2.064 ms 1 - 43 MB NPU --
YOLOv8-Detection w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 3.634 ms 0 - 0 MB NPU --
YOLOv8-Detection w8a16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 4.928 ms 2 - 2 MB NPU --
YOLOv8-Detection w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 TFLITE 3.644 ms 0 - 7 MB NPU --
YOLOv8-Detection w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 QNN_DLC 3.274 ms 0 - 102 MB NPU --
YOLOv8-Detection w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 58.189 ms 21 - 30 MB CPU --
YOLOv8-Detection w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 3.282 ms 0 - 26 MB NPU --
YOLOv8-Detection w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 3.109 ms 1 - 28 MB NPU --
YOLOv8-Detection w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 1.628 ms 0 - 38 MB NPU --
YOLOv8-Detection w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.588 ms 1 - 42 MB NPU --
YOLOv8-Detection w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.486 ms 0 - 15 MB NPU --
YOLOv8-Detection w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.337 ms 1 - 16 MB NPU --
YOLOv8-Detection w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 1.84 ms 0 - 19 MB NPU --
YOLOv8-Detection w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.913 ms 0 - 26 MB NPU --
YOLOv8-Detection w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 6.821 ms 1 - 28 MB NPU --
YOLOv8-Detection w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 45.596 ms 2 - 11 MB NPU --
YOLOv8-Detection w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 37.684 ms 19 - 25 MB CPU --
YOLOv8-Detection w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 3.282 ms 0 - 26 MB NPU --
YOLOv8-Detection w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 3.109 ms 1 - 28 MB NPU --
YOLOv8-Detection w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.497 ms 0 - 14 MB NPU --
YOLOv8-Detection w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.341 ms 0 - 15 MB NPU --
YOLOv8-Detection w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 2.296 ms 0 - 32 MB NPU --
YOLOv8-Detection w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 2.115 ms 1 - 34 MB NPU --
YOLOv8-Detection w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.483 ms 0 - 15 MB NPU --
YOLOv8-Detection w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.341 ms 1 - 15 MB NPU --
YOLOv8-Detection w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.913 ms 0 - 26 MB NPU --
YOLOv8-Detection w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 6.821 ms 1 - 28 MB NPU --
YOLOv8-Detection w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.98 ms 0 - 38 MB NPU --
YOLOv8-Detection w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.921 ms 1 - 36 MB NPU --
YOLOv8-Detection w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 1.211 ms 0 - 40 MB NPU --
YOLOv8-Detection w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 0.747 ms 0 - 34 MB NPU --
YOLOv8-Detection w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.667 ms 1 - 35 MB NPU --
YOLOv8-Detection w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 0.931 ms 0 - 37 MB NPU --
YOLOv8-Detection w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 1.521 ms 0 - 32 MB NPU --
YOLOv8-Detection w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 1.439 ms 1 - 35 MB NPU --
YOLOv8-Detection w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 39.512 ms 21 - 39 MB CPU --
YOLOv8-Detection w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.688 ms 0 - 33 MB NPU --
YOLOv8-Detection w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.601 ms 1 - 35 MB NPU --
YOLOv8-Detection w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 0.85 ms 1 - 52 MB NPU --
YOLOv8-Detection w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.554 ms 2 - 2 MB NPU --
YOLOv8-Detection w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.767 ms 2 - 2 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 4.53 ms 1 - 28 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 2.11 ms 2 - 11 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 2.618 ms 1 - 27 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 SA7255P ADP Qualcomm® SA7255P QNN_DLC 4.53 ms 1 - 28 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 2.108 ms 2 - 11 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 2.114 ms 2 - 11 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 SA8775P ADP Qualcomm® SA8775P QNN_DLC 2.618 ms 1 - 27 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 1.429 ms 2 - 42 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 1.026 ms 2 - 36 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 2.546 ms 2 - 36 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.846 ms 1 - 35 MB NPU --
YOLOv8-Detection w8a8_mixed_int16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 2.412 ms 2 - 2 MB NPU --

Installation

Install the package via pip:

# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[yolov8-det]"

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.yolov8_det.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov8_det.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.yolov8_det.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.yolov8_det import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.yolov8_det.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov8_det.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on YOLOv8-Detection's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of YOLOv8-Detection can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support