Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| microphone |
|
| history |
|
| camera |
|
| Label | Accuracy |
|---|---|
| all | 1.0 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("porxelek/word-classification")
# Run inference
preds = model("Show recent chats")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 2 | 4.1364 | 10 |
| Label | Training Sample Count |
|---|---|
| camera | 250 |
| history | 150 |
| microphone | 150 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0003 | 1 | 0.1209 | - |
| 0.0164 | 50 | 0.1449 | - |
| 0.0328 | 100 | 0.046 | - |
| 0.0492 | 150 | 0.0099 | - |
| 0.0656 | 200 | 0.0049 | - |
| 0.0820 | 250 | 0.0036 | - |
| 0.0985 | 300 | 0.0022 | - |
| 0.1149 | 350 | 0.0015 | - |
| 0.1313 | 400 | 0.0011 | - |
| 0.1477 | 450 | 0.001 | - |
| 0.1641 | 500 | 0.0009 | - |
| 0.1805 | 550 | 0.0009 | - |
| 0.1969 | 600 | 0.0009 | - |
| 0.2133 | 650 | 0.0008 | - |
| 0.2297 | 700 | 0.0007 | - |
| 0.2461 | 750 | 0.0006 | - |
| 0.2626 | 800 | 0.0006 | - |
| 0.2790 | 850 | 0.0006 | - |
| 0.2954 | 900 | 0.0006 | - |
| 0.3118 | 950 | 0.0005 | - |
| 0.3282 | 1000 | 0.0004 | - |
| 0.3446 | 1050 | 0.0005 | - |
| 0.3610 | 1100 | 0.0005 | - |
| 0.3774 | 1150 | 0.0004 | - |
| 0.3938 | 1200 | 0.0004 | - |
| 0.4102 | 1250 | 0.0004 | - |
| 0.4266 | 1300 | 0.0005 | - |
| 0.4431 | 1350 | 0.0004 | - |
| 0.4595 | 1400 | 0.0003 | - |
| 0.4759 | 1450 | 0.0003 | - |
| 0.4923 | 1500 | 0.0003 | - |
| 0.5087 | 1550 | 0.0003 | - |
| 0.5251 | 1600 | 0.0003 | - |
| 0.5415 | 1650 | 0.0003 | - |
| 0.5579 | 1700 | 0.0003 | - |
| 0.5743 | 1750 | 0.0003 | - |
| 0.5907 | 1800 | 0.0003 | - |
| 0.6072 | 1850 | 0.0002 | - |
| 0.6236 | 1900 | 0.0003 | - |
| 0.6400 | 1950 | 0.0002 | - |
| 0.6564 | 2000 | 0.0002 | - |
| 0.6728 | 2050 | 0.0002 | - |
| 0.6892 | 2100 | 0.0003 | - |
| 0.7056 | 2150 | 0.0002 | - |
| 0.7220 | 2200 | 0.0002 | - |
| 0.7384 | 2250 | 0.0002 | - |
| 0.7548 | 2300 | 0.0002 | - |
| 0.7713 | 2350 | 0.0002 | - |
| 0.7877 | 2400 | 0.0002 | - |
| 0.8041 | 2450 | 0.0002 | - |
| 0.8205 | 2500 | 0.0002 | - |
| 0.8369 | 2550 | 0.0002 | - |
| 0.8533 | 2600 | 0.0002 | - |
| 0.8697 | 2650 | 0.0002 | - |
| 0.8861 | 2700 | 0.0002 | - |
| 0.9025 | 2750 | 0.0002 | - |
| 0.9189 | 2800 | 0.0002 | - |
| 0.9353 | 2850 | 0.0002 | - |
| 0.9518 | 2900 | 0.0002 | - |
| 0.9682 | 2950 | 0.0002 | - |
| 0.9846 | 3000 | 0.0002 | - |
| 1.0 | 3047 | - | 0.0 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
Base model
sentence-transformers/all-MiniLM-L6-v2