PathoGen - Histopathology Image Inpainting
PathoGen is a diffusion-based model for histopathology image inpainting. It enables realistic tissue pattern generation for filling masked regions in pathology whole slide images (WSI).
Model Description
- Model Type: Diffusion model with custom attention processors
- Task: Image inpainting for histopathology images
- Architecture: UNet2DConditionModel with custom SkipAttnProcessor
- Framework: PyTorch, Diffusers, PyTorch Lightning
Usage
Installation
git clone https://github.com/mkoohim/PathoGen.git
cd PathoGen
pip install -r requirements.txt
Download Weights
Download the attention weights and place them in your checkpoint directory:
from huggingface_hub import hf_hub_download
# Download attention weights
hf_hub_download(
repo_id="mkoohim/PathoGen",
filename="attention.pt",
local_dir="./checkpoints"
)
Inference
from src.models.pathogen import PathoGenModel
from omegaconf import OmegaConf
from PIL import Image
# Load configuration
config = OmegaConf.load("configs/config.yaml")
# Initialize model
model = PathoGenModel(config)
model.load_attention_weights("./checkpoints/attention.pt")
model.eval()
# Load images
image = Image.open("your_wsi_crop.jpg")
mask = Image.open("your_mask.jpg")
condition = Image.open("your_source_image.jpg")
# Run inference
result = model(image, mask, condition)
Training
python train.py
See the GitHub repository for full training instructions.
Model Files
| File | Description | Size |
|---|---|---|
attention.pt |
Trained attention module weights | ~190MB |
Training Details
- Base Model: Stable Diffusion Inpainting UNet
- Training Data: Histopathology whole slide image crops
- Optimizer: AdamW
- Learning Rate: 1e-5
- Precision: Mixed precision (FP16)
Intended Use
This model is designed for:
- Histopathology image inpainting and augmentation
- Research in computational pathology
- Data augmentation for pathology AI training
Citation
@misc{pathogen2025,
title={PathoGen: Diffusion-Based Synthesis of Realistic Lesions in Histopathology Images},
author={mkoohim},
year={2025},
url={https://huggingface.co/mkoohim/PathoGen}
}
License
This model is released under the MIT License.
Links
- GitHub: https://github.com/mkoohim/PathoGen
- Hugging Face: https://huggingface.co/mkoohim/PathoGen
- Downloads last month
- 6