Dataset Viewer
Auto-converted to Parquet Duplicate
question
stringlengths
8
123
choices
listlengths
4
4
answer
int64
0
3
answer_label
stringclasses
4 values
split
stringclasses
1 value
subcategories
stringclasses
1 value
category
stringclasses
1 value
lang
stringclasses
1 value
second_lang
stringclasses
1 value
notes
stringclasses
1 value
id
stringlengths
7
7
set_id
stringlengths
5
5
variation_id
stringclasses
1 value
vanilla_cos_sim_to_canonical
dict
trimmed_cos_sim_to_canonical
dict
token_counts
dict
7 + 7 is
[ "15", "13", "16", "14" ]
3
D
test
Canonical
Mathematical & Scientific Notation
eng_Latn
200-1.0
200.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 5, "Qwen/Qwen3-8B": 5, "bigscience/bloom": 4, "common-pile/comma-v0.1-1t": 5, "facebook/xglm-564M": 4, "google-bert/bert-base-multilingual-cased": 4, "google/byt5-small": 8, "google/gemma-2-2b": 5, "gpt2": 4, "meta-llama/Llama-3.2-1B": 5, "microsoft/Phi-3-mini-4k-instruct": 6, "mistralai/tekken": 5, "tiktoken/gpt-4o": 5, "tokenmonster/englishcode-32000-consistent-v1": 4 }
1/2 + 1/4 = 2/4 + 1/4 equals
[ "3/4", "1/2", "3/8", "1/3" ]
0
A
test
Canonical
Mathematical & Scientific Notation
eng_Latn
201-1.0
201.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 19, "Qwen/Qwen3-8B": 19, "bigscience/bloom": 9, "common-pile/comma-v0.1-1t": 19, "facebook/xglm-564M": 10, "google-bert/bert-base-multilingual-cased": 17, "google/byt5-small": 28, "google/gemma-2-2b": 19, "gpt2": 16, "meta-llama/Llama-3.2-1B": 19, "microsoft/Phi-3-mini-4k-instruct": 20, "mistralai/tekken": 19, "tiktoken/gpt-4o": 19, "tokenmonster/englishcode-32000-consistent-v1": 13 }
The area of a 4 by 3 rectangle is
[ "10 square units", "13 square units", "14 square units", "12 square units" ]
3
D
test
Canonical
Mathematical & Scientific Notation
eng_Latn
202-1.0
202.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 11, "Qwen/Qwen3-8B": 11, "bigscience/bloom": 9, "common-pile/comma-v0.1-1t": 12, "facebook/xglm-564M": 10, "google-bert/bert-base-multilingual-cased": 11, "google/byt5-small": 33, "google/gemma-2-2b": 11, "gpt2": 9, "meta-llama/Llama-3.2-1B": 11, "microsoft/Phi-3-mini-4k-instruct": 11, "mistralai/tekken": 11, "tiktoken/gpt-4o": 11, "tokenmonster/englishcode-32000-consistent-v1": 8 }
In the pattern 2, 4, 6, 8, the next number is
[ "10", "9", "8", "11" ]
0
A
test
Canonical
Mathematical & Scientific Notation
eng_Latn
203-1.0
203.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 19, "Qwen/Qwen3-8B": 19, "bigscience/bloom": 15, "common-pile/comma-v0.1-1t": 19, "facebook/xglm-564M": 13, "google-bert/bert-base-multilingual-cased": 15, "google/byt5-small": 45, "google/gemma-2-2b": 19, "gpt2": 15, "meta-llama/Llama-3.2-1B": 19, "microsoft/Phi-3-mini-4k-instruct": 19, "mistralai/tekken": 19, "tiktoken/gpt-4o": 19, "tokenmonster/englishcode-32000-consistent-v1": 9 }
The sum of angles in a triangle is
[ "90 degrees", "60 degrees", "360 degrees", "180 degrees" ]
3
D
test
Canonical
Mathematical & Scientific Notation
eng_Latn
204-1.0
204.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 8, "Qwen/Qwen3-8B": 8, "bigscience/bloom": 8, "common-pile/comma-v0.1-1t": 10, "facebook/xglm-564M": 9, "google-bert/bert-base-multilingual-cased": 8, "google/byt5-small": 34, "google/gemma-2-2b": 8, "gpt2": 8, "meta-llama/Llama-3.2-1B": 8, "microsoft/Phi-3-mini-4k-instruct": 8, "mistralai/tekken": 8, "tiktoken/gpt-4o": 8, "tokenmonster/englishcode-32000-consistent-v1": 6 }
In the sequence 15, 20, 25, ___, 35, the missing number is
[ "28", "24", "30", "32" ]
2
C
test
Canonical
Mathematical & Scientific Notation
eng_Latn
205-1.0
205.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 25, "Qwen/Qwen3-8B": 25, "bigscience/bloom": 17, "common-pile/comma-v0.1-1t": 21, "facebook/xglm-564M": 16, "google-bert/bert-base-multilingual-cased": 19, "google/byt5-small": 58, "google/gemma-2-2b": 25, "gpt2": 17, "meta-llama/Llama-3.2-1B": 21, "microsoft/Phi-3-mini-4k-instruct": 26, "mistralai/tekken": 25, "tiktoken/gpt-4o": 21, "tokenmonster/englishcode-32000-consistent-v1": 13 }
The number of sides in a square is
[ "3", "4", "5", "6" ]
1
B
test
Canonical
Mathematical & Scientific Notation
eng_Latn
206-1.0
206.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 9, "Qwen/Qwen3-8B": 9, "bigscience/bloom": 9, "common-pile/comma-v0.1-1t": 11, "facebook/xglm-564M": 8, "google-bert/bert-base-multilingual-cased": 8, "google/byt5-small": 35, "google/gemma-2-2b": 9, "gpt2": 9, "meta-llama/Llama-3.2-1B": 9, "microsoft/Phi-3-mini-4k-instruct": 9, "mistralai/tekken": 9, "tiktoken/gpt-4o": 9, "tokenmonster/englishcode-32000-consistent-v1": 7 }
Half of a circle is colored blue. The fraction that is shaded is
[ "1/3", "1/4", "1/2", "1/5" ]
2
C
test
Canonical
Mathematical & Scientific Notation
eng_Latn
207-1.0
207.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 14, "Qwen/Qwen3-8B": 14, "bigscience/bloom": 15, "common-pile/comma-v0.1-1t": 15, "facebook/xglm-564M": 17, "google-bert/bert-base-multilingual-cased": 16, "google/byt5-small": 64, "google/gemma-2-2b": 14, "gpt2": 15, "meta-llama/Llama-3.2-1B": 14, "microsoft/Phi-3-mini-4k-instruct": 15, "mistralai/tekken": 14, "tiktoken/gpt-4o": 14, "tokenmonster/englishcode-32000-consistent-v1": 14 }
In the Pythagorean theorem a² + b² = c², variable 'c' represents
[ "The hypotenuse", "The shortest side", "The base", "The height" ]
0
A
test
Canonical
Mathematical & Scientific Notation
eng_Latn
208-1.0
208.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 20, "Qwen/Qwen3-8B": 20, "bigscience/bloom": 18, "common-pile/comma-v0.1-1t": 23, "facebook/xglm-564M": 22, "google-bert/bert-base-multilingual-cased": 21, "google/byt5-small": 67, "google/gemma-2-2b": 17, "gpt2": 20, "meta-llama/Llama-3.2-1B": 20, "microsoft/Phi-3-mini-4k-instruct": 21, "mistralai/tekken": 20, "tiktoken/gpt-4o": 21, "tokenmonster/englishcode-32000-consistent-v1": 30 }
24 stickers minus 8 stickers leaves
[ "15", "16", "14", "17" ]
1
B
test
Canonical
Mathematical & Scientific Notation
eng_Latn
209-1.0
209.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 8, "Qwen/Qwen3-8B": 8, "bigscience/bloom": 8, "common-pile/comma-v0.1-1t": 9, "facebook/xglm-564M": 8, "google-bert/bert-base-multilingual-cased": 8, "google/byt5-small": 35, "google/gemma-2-2b": 8, "gpt2": 6, "meta-llama/Llama-3.2-1B": 7, "microsoft/Phi-3-mini-4k-instruct": 11, "mistralai/tekken": 10, "tiktoken/gpt-4o": 7, "tokenmonster/englishcode-32000-consistent-v1": 8 }
3 apples at 25 cents each costs
[ "70 cents", "75 cents", "85 cents", "80 cents" ]
1
B
test
Canonical
Mathematical & Scientific Notation
eng_Latn
210-1.0
210.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 9, "Qwen/Qwen3-8B": 9, "bigscience/bloom": 7, "common-pile/comma-v0.1-1t": 8, "facebook/xglm-564M": 9, "google-bert/bert-base-multilingual-cased": 8, "google/byt5-small": 31, "google/gemma-2-2b": 9, "gpt2": 7, "meta-llama/Llama-3.2-1B": 8, "microsoft/Phi-3-mini-4k-instruct": 12, "mistralai/tekken": 9, "tiktoken/gpt-4o": 8, "tokenmonster/englishcode-32000-consistent-v1": 8 }
47 rounded to the nearest 10 is
[ "40", "55", "50", "45" ]
2
C
test
Canonical
Mathematical & Scientific Notation
eng_Latn
211-1.0
211.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 10, "Qwen/Qwen3-8B": 10, "bigscience/bloom": 7, "common-pile/comma-v0.1-1t": 10, "facebook/xglm-564M": 9, "google-bert/bert-base-multilingual-cased": 7, "google/byt5-small": 31, "google/gemma-2-2b": 10, "gpt2": 7, "meta-llama/Llama-3.2-1B": 8, "microsoft/Phi-3-mini-4k-instruct": 11, "mistralai/tekken": 10, "tiktoken/gpt-4o": 8, "tokenmonster/englishcode-32000-consistent-v1": 6 }
9 × 9 equals
[ "62", "81", "36", "64" ]
1
B
test
Canonical
Mathematical & Scientific Notation
eng_Latn
212-1.0
212.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 5, "Qwen/Qwen3-8B": 5, "bigscience/bloom": 4, "common-pile/comma-v0.1-1t": 5, "facebook/xglm-564M": 5, "google-bert/bert-base-multilingual-cased": 5, "google/byt5-small": 13, "google/gemma-2-2b": 5, "gpt2": 4, "meta-llama/Llama-3.2-1B": 5, "microsoft/Phi-3-mini-4k-instruct": 6, "mistralai/tekken": 5, "tiktoken/gpt-4o": 5, "tokenmonster/englishcode-32000-consistent-v1": 6 }
A pizza is cut into 8 equal slices. If you eat 3 slices, 5 slices will be left. The fraction of pizza which is left will be
[ "5/8", "3/8", "5/3", "3/5" ]
0
A
test
Canonical
Mathematical & Scientific Notation
eng_Latn
213-1.0
213.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 33, "Qwen/Qwen3-8B": 33, "bigscience/bloom": 30, "common-pile/comma-v0.1-1t": 34, "facebook/xglm-564M": 34, "google-bert/bert-base-multilingual-cased": 35, "google/byt5-small": 123, "google/gemma-2-2b": 33, "gpt2": 30, "meta-llama/Llama-3.2-1B": 33, "microsoft/Phi-3-mini-4k-instruct": 38, "mistralai/tekken": 33, "tiktoken/gpt-4o": 33, "tokenmonster/englishcode-32000-consistent-v1": 24 }
If x + 6 = 12, then x = 12 - 6 equals
[ "8", "6", "7", "17" ]
1
B
test
Canonical
Mathematical & Scientific Notation
eng_Latn
214-1.0
214.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 20, "Qwen/Qwen3-8B": 20, "bigscience/bloom": 14, "common-pile/comma-v0.1-1t": 18, "facebook/xglm-564M": 14, "google-bert/bert-base-multilingual-cased": 15, "google/byt5-small": 37, "google/gemma-2-2b": 20, "gpt2": 14, "meta-llama/Llama-3.2-1B": 18, "microsoft/Phi-3-mini-4k-instruct": 20, "mistralai/tekken": 20, "tiktoken/gpt-4o": 18, "tokenmonster/englishcode-32000-consistent-v1": 13 }
50% of 60 is
[ "30", "25", "35", "40" ]
0
A
test
Canonical
Mathematical & Scientific Notation
eng_Latn
215-1.0
215.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 8, "Qwen/Qwen3-8B": 8, "bigscience/bloom": 4, "common-pile/comma-v0.1-1t": 7, "facebook/xglm-564M": 4, "google-bert/bert-base-multilingual-cased": 5, "google/byt5-small": 12, "google/gemma-2-2b": 8, "gpt2": 5, "meta-llama/Llama-3.2-1B": 6, "microsoft/Phi-3-mini-4k-instruct": 9, "mistralai/tekken": 8, "tiktoken/gpt-4o": 6, "tokenmonster/englishcode-32000-consistent-v1": 5 }
5,000,000,000 / 1,000 is equal to
[ "5,000,000", "50,000,000", "1,000", "500,000" ]
0
A
test
Canonical
Mathematical & Scientific Notation
eng_Latn
216-1.0
216.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 23, "Qwen/Qwen3-8B": 23, "bigscience/bloom": 14, "common-pile/comma-v0.1-1t": 17, "facebook/xglm-564M": 7, "google-bert/bert-base-multilingual-cased": 14, "google/byt5-small": 33, "google/gemma-2-2b": 23, "gpt2": 14, "meta-llama/Llama-3.2-1B": 15, "microsoft/Phi-3-mini-4k-instruct": 24, "mistralai/tekken": 23, "tiktoken/gpt-4o": 15, "tokenmonster/englishcode-32000-consistent-v1": 10 }
The value of 16^(1/2) is equal to
[ "3", "5", "4", "6" ]
2
C
test
Canonical
Mathematical & Scientific Notation
eng_Latn
217-1.0
217.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 14, "Qwen/Qwen3-8B": 14, "bigscience/bloom": 11, "common-pile/comma-v0.1-1t": 16, "facebook/xglm-564M": 11, "google-bert/bert-base-multilingual-cased": 13, "google/byt5-small": 33, "google/gemma-2-2b": 14, "gpt2": 13, "meta-llama/Llama-3.2-1B": 13, "microsoft/Phi-3-mini-4k-instruct": 14, "mistralai/tekken": 14, "tiktoken/gpt-4o": 13, "tokenmonster/englishcode-32000-consistent-v1": 9 }
Calculate 3.1416 × 2
[ "7.2831", "628.33", "62.832", "6.2832" ]
3
D
test
Canonical
Mathematical & Scientific Notation
eng_Latn
218-1.0
218.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 11, "Qwen/Qwen3-8B": 11, "bigscience/bloom": 7, "common-pile/comma-v0.1-1t": 9, "facebook/xglm-564M": 6, "google-bert/bert-base-multilingual-cased": 8, "google/byt5-small": 21, "google/gemma-2-2b": 11, "gpt2": 9, "meta-llama/Llama-3.2-1B": 9, "microsoft/Phi-3-mini-4k-instruct": 12, "mistralai/tekken": 11, "tiktoken/gpt-4o": 9, "tokenmonster/englishcode-32000-consistent-v1": 9 }
The unit of volume is
[ "m^2", "m", "m^3", "kg" ]
2
C
test
Canonical
Mathematical & Scientific Notation
eng_Latn
219-1.0
219.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 5, "Qwen/Qwen3-8B": 5, "bigscience/bloom": 5, "common-pile/comma-v0.1-1t": 6, "facebook/xglm-564M": 5, "google-bert/bert-base-multilingual-cased": 5, "google/byt5-small": 21, "google/gemma-2-2b": 5, "gpt2": 5, "meta-llama/Llama-3.2-1B": 5, "microsoft/Phi-3-mini-4k-instruct": 5, "mistralai/tekken": 5, "tiktoken/gpt-4o": 5, "tokenmonster/englishcode-32000-consistent-v1": 5 }
The last digit of 1982354 is
[ "4", "1", "8", "2" ]
0
A
test
Canonical
Mathematical & Scientific Notation
eng_Latn
220-1.0
220.0
1.0
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 1, "Qwen/Qwen3-8B": 1, "bigscience/bloom": 1, "common-pile/comma-v0.1-1t": 1, "facebook/xglm-564M": 1, "google-bert/bert-base-multilingual-cased": 1, "google/byt5-small": 1, "google/gemma-2-2b": 1, "gpt2": 1, "meta-llama/Llama-3.2-1B": 1, "microsoft/Phi-3-mini-4k-instruct": 1, "mistralai/tekken": 1, "tiktoken/gpt-4o": 1, "tokenmonster/englishcode-32000-consistent-v1": 1 }
{ "CohereLabs/aya-expanse-8b": 13, "Qwen/Qwen3-8B": 13, "bigscience/bloom": 8, "common-pile/comma-v0.1-1t": 10, "facebook/xglm-564M": 7, "google-bert/bert-base-multilingual-cased": 9, "google/byt5-small": 28, "google/gemma-2-2b": 13, "gpt2": 8, "meta-llama/Llama-3.2-1B": 9, "microsoft/Phi-3-mini-4k-instruct": 13, "mistralai/tekken": 13, "tiktoken/gpt-4o": 9, "tokenmonster/englishcode-32000-consistent-v1": 8 }

Dataset Card for Tokenization Robustness Math

TokSuite Logo

TokSuite Benchmark ({LANGUAGE_NAME} Collection)

Dataset Description

This dataset is part of TokSuite, a comprehensive benchmark designed to measure how different tokenization strategies affect language model performance and robustness. This specific subset contains {LANGUAGE_NAME} language multiple-choice text completion questions with various real-world perturbations that test tokenizer robustness.

  • Curated by: R3 Research Team
  • Language(s): {LANGUAGE_NAME} ({LANGUAGE_CODE})
  • License: MIT License

Dataset Summary

TokSuite addresses a fundamental challenge in language model research: understanding how tokenization choices impact model behavior in isolation. The {LANGUAGE_NAME} subset specifically measures model performance on canonical questions and various perturbations including {LIST_KEY_PERTURBATION_TYPES}.

Key Features:

  • {NUM_CANONICAL_QUESTIONS} canonical questions covering {TOPIC_AREAS}
  • Multiple perturbation types reflecting real-world text variations in {LANGUAGE_NAME}
  • Parallel structure with TokSuite benchmark (available in English, Turkish, Italian, Chinese, Farsi)
  • Native speaker curation ensuring linguistic authenticity

Supported Tasks

  • Multiple-Choice Question Answering: Text completion format with 4 answer choices
  • Tokenizer Robustness Evaluation: Measuring performance degradation under various text perturbations
  • Multilingual NLP Benchmarking: Evaluating language models on {LANGUAGE_NAME} text understanding

Languages

The dataset contains text in {LANGUAGE_NAME} written in {SCRIPT_NAME} (language code: {LANGUAGE_CODE_FULL}).

Dataset Structure

Data Instances

An example from the dataset:

{
  "question": "{EXAMPLE_QUESTION}",
  "choices": ["{CHOICE_A}", "{CHOICE_B}", "{CHOICE_C}", "{CHOICE_D}"],
  "answer": {ANSWER_INDEX},
  "answer_label": "{ANSWER_LABEL}",
  "split": "test",
  "subcategories": "{SUBCATEGORY}",
  "lang": "{LANGUAGE_CODE_FULL}",
  "second_lang": "{ENGLISH_TRANSLATION}",
  "coding_lang": "",
  "notes": "{NOTES}",
  "id": "{ID}",
  "set_id": {SET_ID},
  "variation_id": {VARIATION_ID}
}

Data Fields

Field Type Description
question string The question text in {LANGUAGE_NAME} ({SCRIPT_DESCRIPTION})
choices list[string] Four multiple-choice answer options in {LANGUAGE_NAME}
answer int64 Index of the correct answer (0-3)
answer_label string Letter label of the correct answer (A, B, C, or D)
split string Dataset split identifier (all entries are "test")
subcategories string Perturbation category
lang string Language code ({LANGUAGE_CODE_FULL} = {LANGUAGE_DESCRIPTION})
second_lang string English translation or description of the question
coding_lang string Not applicable for this dataset (empty string)
notes string Additional context about the question or perturbation type
id string Unique question identifier
set_id float64 Question set grouping identifier (ranges from {ID_RANGE_START}-{ID_RANGE_END})
variation_id float64 Variation number within a question set

Dataset Creation

Curation Rationale

This dataset was created to:

  1. Systematically evaluate how different tokenization strategies handle {LANGUAGE_NAME} text
  2. Measure robustness against real-world text perturbations specific to {LANGUAGE_NAME} language
  3. Support research into tokenization's impact on language model behavior
  4. Provide standardized benchmarks for {LANGUAGE_NAME} language models

The questions were designed to be straightforward with high baseline accuracy, allowing researchers to cleanly measure performance degradation when perturbations are applied.

Source Data

Data Collection and Processing

  • Canonical Questions: {NUM_BASE_QUESTIONS} baseline questions in English were created covering general knowledge topics
  • Translation: Native {LANGUAGE_NAME} speakers translated questions to {LANGUAGE_NAME}
  • Perturbations: Each question underwent targeted perturbations designed to reflect {LINGUISTIC_CHARACTERISTICS}
  • Validation: Model-in-the-loop process ensured high baseline accuracy across 14 different tokenizers

Perturbation Categories

  1. Canonical {DESCRIPTION_OF_CANONICAL}

  2. {PERTURBATION_NAME_1} {DESCRIPTION_1}

  3. {PERTURBATION_NAME_2} {DESCRIPTION_2}

  4. {PERTURBATION_NAME_3} {DESCRIPTION_3}

  5. {PERTURBATION_NAME_4} {DESCRIPTION_4}

  6. {PERTURBATION_NAME_5} {DESCRIPTION_5}

  7. {PERTURBATION_NAME_6} {DESCRIPTION_6}

  8. {PERTURBATION_NAME_7} {DESCRIPTION_7}

Model Performance Comparison

model_name canonical {PERTURBATION_COL_1} {PERTURBATION_COL_2} {PERTURBATION_COL_3} {PERTURBATION_COL_4} {PERTURBATION_COL_5} {PERTURBATION_COL_6} {PERTURBATION_COL_7}
Aya {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
BLOOM {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
ByT5 {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
Comma {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
GPT-2 {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
GPT-4o {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
Gemma-2 {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
Llama-3.2 {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
Phi-3 {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
Qwen-3 {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
Tekken {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
TokenMonster {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
XGLM {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}
mBERT {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL} {VAL}

Who are the source data producers?

Native {LANGUAGE_NAME} speakers curated and validated all questions and perturbations. The TokSuite research team at R3 designed the overall benchmark framework.

Annotations

Annotation process

Questions were manually created and translated by native speakers. Each perturbation was carefully designed to reflect authentic variations encountered in real-world {LANGUAGE_NAME} text processing.

Who are the annotators?

Native {LANGUAGE_NAME} speakers with expertise in linguistics and NLP, working as part of the TokSuite project.

Personal and Sensitive Information

The dataset contains only general knowledge questions and does not include any personal or sensitive information.

Considerations for Using the Data

Social Impact of Dataset

This dataset contributes to improving language technology for {LANGUAGE_NAME} speakers by:

  • Enabling better understanding of tokenization challenges in {LANGUAGE_NAME}
  • Supporting development of more robust multilingual models
  • Providing standardized evaluation for {LANGUAGE_NAME} NLP research

Discussion of Biases

  • Language variety: The dataset uses {STANDARD_VARIETY} and may not fully represent dialectal variations
  • Script focus: {SCRIPT_LIMITATIONS_DESCRIPTION}
  • Domain coverage: Questions focus on general knowledge and may not represent domain-specific language use
  • Question simplicity: Designed for high baseline accuracy, which may not reflect real-world task complexity

Other Known Limitations

  • Relatively small dataset size (designed for evaluation, not training)
  • Focus on multiple-choice format may not capture all aspects of language understanding
  • Perturbations are specific to {LANGUAGE_NAME}'s characteristics and findings may not generalize to all languages
  • Models evaluated were trained at ~1B parameters; results may differ at larger scales

Additional Information

Dataset Curators

The dataset was curated by the TokSuite research team at R3.

Licensing Information

MIT license

Citation Information

If you use this dataset in your research, please cite the TokSuite paper:

@inproceedings{toksuite2026,
  title={TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior},
  author={Altıntaş, Gül Sena and Ehghaghi, Malikeh and Lester, Brian and Liu, Fengyuan and Zhao, Wanru and Ciccone, Marco and Raffel, Colin},
  booktitle={Preprint.},
  year={2026},
  url={TBD}
}

Paper: TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior

Contributions

This dataset is part of TokSuite, which includes:

  • 14 language models with identical architectures but different tokenizers
  • Multilingual benchmark datasets (English, Turkish, Italian, Farsi, Chinese)
  • Comprehensive analysis of tokenization's impact on model behavior

Contact

For questions or issues related to this dataset, please refer to the TokSuite project or contact the authors through the paper submission system.


Part of the TokSuite Project

Understanding Tokenization's Role in Language Model Behavior

Downloads last month
264

Collection including r-three/tokenizer_robustness_completion_math