Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet Duplicate
PDB_ID
stringlengths
4
4
Entity_ID
stringlengths
6
6
Chain
stringclasses
31 values
Length
int16
0
250
Fmax_eps-over-A
float32
0
10.3
Fmax_pN
float32
0
1.13k
Dmax_A
float32
0
821
Lmax_A
float32
0
819
Lambda
float32
0
2.52
Sequence
stringlengths
4
440
1l35
1l35_1
A
164
0
0
9.95
0
0
MNIFEMLRCDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNC
1puo
1puo_1
A
141
0
0
9.89
0
0
VKMAETCPIFYDVFFAVANGNELLLDLSLTKVNATEPERTAMKKIQDCYVENGLISRVLDGLVMTTISSSKDCMGEAVQNTVEDLKLNTLGREICPAVKRDVDLFLTGTPDEYVEQVAQYKALPVVLENARILKNCVDAKMTEEDKENALSLLDKIYTSPLCLEHHHHHH
2fk1
2fk1_1
A
59
0
0
9.79
0
0
EACKFLHQERMDVCETHLHWHTVAKETCSEKSTNLHDYGMLLPCGIDKFRGVEFVCCPL
1nkl
1nkl_1
A
78
0
0
9.76
0
0
GYFCESCRKIIQKLEDMVGPQPNEDTVTQAASQVCDKLKILRGLCKKIMRSFLRRISWDILTGKKPQAICVDIKICKE
1tto
1tto_1
A
104
0
0
9.68
0
0
ACDYTCGSNCYSSSDVSTAQAAGYKLHEDGETVGSNSYPHEFRNWNGFDFSVSSPYYEYPILSSGDVYSGGSPGADRVVFNENNQLAGVITHTGASGNNFVECT
2cov
2cov_1
D
92
0
0
9.67
0
0
MGTEPPENCQDDFNFNYVSDQEIEVYHVDKGWSAGWNYVCLNDYCLPGNKSNGAFRKTFNAVLGQDYKLTFKVEDRYGQGQQILDRNITFTTQVCNLEHHHHHH
152l
152l_1
A
164
0
0
9.62
0
0
MNCFEMLRCDEGLRLKIYKDCEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRCALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQCPNRAKRVITTFRTGTWDAYKNC
1hej
1hej_1
C
88
0
0
9.5
0
0
TGSCSVSAVRGEEWADRFNVTYSVSGSSSWVVTLGLNGGQSVQSSWNAALTGSSGTVTARPNGSGNSFGVTFYKNGSSATPGATCATG
1aiw
1aiw_1
A
62
0
0
9.46
0
0
MGDCANANVYPNWVSKDWAGGQPTHNEAGQSIVYKGNLYTANWYTASVPGSDSSWTQVGSCN
2xbd
2xbd_1
A
87
0
0
9.36
0
0
TGCSVTATRAEEWSDRFNVTYSVSGSSAWTVNLALNGSQTIQASWNANVTGSGSTRTVTPNGSGNTFGVTVMKNGSSTTPAATCAGS
2bds
2bds_1
A
43
0
0
9.23
0
0
AAPCFCSGKPGRGDLWILRGTCPGGYGYTSNCYKWPNICCYPH
1h34
1h34_1
A
57
0
0
9.16
0
0
SGHHEHSTDZPSZSSKPCCDHCSCTKSIPPQCRCTDLRLDSCHSACKSCICTLSIPAQCVCDDIDDFCYEPCKSSHSDDDNNN
1xbd
1xbd_1
A
87
0
0
9.14
0
0
TGCSVTATRAEEWSDRFNVTYSVSGSSAWTVNLALNGSQTIQASWNANVTGSGSTRTVTPNGSGNTFGVTVMKNGSSTTPAATCAGS
1kdu
1kdu_1
A
85
0
0
8.96
0
0
TCYEGNGHFYRGKASTDTMGRPCLPWNSATVLQQTYHAHRSDALQLGLGKHNYCRNPDNRRRPWCYVQVGLKPLVQECMVHDCAD
1jv9
1jv9_1
A
58
0
0
8.87
0
0
RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGACRAKRNNFKSAEDCMRTCGGA
1e5c
1e5c_1
A
87
0
0
8.82
0
0
TGCSVTATRAEEWSDGFNVTYSVSGSSAWTVNLALNGSQTIQASWNANVTGSGSTRTVTPNGSGNTFGVTVMKNGSSTTPAATCAGS
1aap
1aap_1
A
56
0
0
8.8
0
0
VREVCSEQAETGPCRAMISRWYFDVTEGKCAPFFYGGCGGNRNNFDTEEYCMAVCGSA
1ceb
1ceb_1
A
80
0
0
8.71
0
0
LSECKTGNGKNYRGTMSKTKNGITCQKWSSTSPHRPRFSPATHPSEGLEENYCRNPDNDPQGPWCYTTDPEKRYDYCDILECEEECMH
1n69
1n69_1
A
78
0
0
8.57
0
0
MDGDVCQDCIQMVTDIQTAVRTNSTFVQALVEHVKEECDRLGPGMADICKNYISQYSEIAIQMMMHMQPKEICALVGFCDE
2adf
2adf_1
A
189
0
0
8.52
0
0
GSHMAPDCSQPLDVILLLDGSSSFPASYFDEMKSFAKAFISKANIGPRLTQVSVLQYGSITTIDVPWNVVPEKAHLLSLVDVMQREGGPSQIGDALGFAVRYLTSEMHGARPGASKAVVILVTDVSVDSVDAAADAARSNRVTVFPIGIGDRYDAAQLRILAGPAGDSNVVKLQRIEDLPTMVTLGNSFLHKLCSG
1pkr
1pkr_1
A
80
0
0
8.43
0
0
SECKTGNGKNYRGTMSKTKNGITCQKWSSTSPHRPRFSPATHPSEGLEENYCRNPDNDPQGPWCYTTDPEKRYDYCDILECD
1shu
1shu_1
X
181
0
0
8.43
0
0
GSCRRAFDLYFVLDKSGSVANNWIEIYNFVQQLAERFVSPEMRLSFIVFSSQATIILPLTGDRGKISKGLEDLKRVSPVGETYIHEGLKLANEQIQKAGGLKTSSIIIALTDGKLDGLVPSYAEKEAKISRSLGASVYCVGVLDFEQAQLERIADSKEQVFPVKGGFQALKGIINSILAQSC
2fi1
2fi1_1
A
187
0
0
8.32
0
0
MKGMKYHDYIWDLGGTLLDNYETSTAAFVETLALYGITQDHDSVYQALKVSTPFAIETFAPNLENFLEKYKENEARELEHPILFEGVSDLLEDISNQGGRHFLVSHRNDQVLEILEKTSIAAYFTEVVTSSSGFKRKPNPESMLYLREKYQISSGLVIGDRPIDIEAGQAAGLDTHLFTSIVNLRQVLDI
3kiv
3kiv_1
A
79
0
0
8.3
0
0
QCYHGNGQSYRGTFSTTVTGRTCQSWSSMTPHRHQRTPENYPNDGLTMNYCRNPDADTGPWCFTTDPSIRWEYCNLTRC
1pit
1pit_1
A
58
0
0
8.25
0
0
RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA
1i5k
1i5k_1
A
79
0
0
8.11
0
0
FSEECMHGSGENYDGKISKTMSGLECQAWDSQSPHAHGYIPSKFPNKNLKKNYCRNPDRDLRPWCFTTDPNKRWEYCDIPRCAA
1pk4
1pk4_1
A
79
0
0
8
0
0
DCYHGDGQSYRGTSSTTTTGKKCQSWSSMTPHRHQKTPENYPNAGLTMNYCRNPDADKGPWCFTTDPSVRWEYCNLKKC
2gtg
2gtg_1
A
78
0
0
7.95
0
0
MDSDVYCEVCEFLVKEVTKLIDNNKTEKEILDAFDKMCSKLPKSLSEECQEVVDTYGSSILSILLEEVSPELVCSMLHLCSGT
1cea
1cea_1
A
80
0
0
7.94
0
0
LSECKTGNGKNYRGTMSKTKNGITCQKWSSTSPHRPRFSPATHPSEGLEENYCRNPDNDPQGPWCYTTDPEKRYDYCDILECEEECMH
1hn6
1hn6_1
A
110
0
0
78.370003
0
0
EVENNFPCSLYKDEIMKEIERESKRIKLNDNDDEGNKKIIAPRIFISDDKDSLKCPCDPEMVSNSTCRFFVCKCVERRAEVTSNNEVVVKEEYKDEYADIPEHKPTYDKM
2jot
2jot_1
A
55
0
0
7.82
0
0
IDTCRLPSDRGRCKASFERWYFNGRTCAKFIYGGCGGNGNKFPTQEACMKRCAKA
2qyp
2qyp_1
A
78
0
0
7.65
0
0
AYVSDVYCEVCEFLVKEVTKLIDNNKTEKEILDAFDKMCSKLPKSLSEECQEVVDTYGSSILSILLEEVSPELVCSMLHLCSGTRHHHHHH
2pk4
2pk4_1
A
80
0
0
7.56
0
0
QDCYHGDGQSYRGTSSTTTTGKKCQSWSSMTPHRHQKTPENYPNAGLTMNYCRNPDADKGPWCFTTDPSVRWEYCNLKKC
1jv8
1jv8_1
A
58
0
0
7.41
0
0
RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGACRAKRNNFKSAEDCMRTCGGA
2qvo
2qvo_1
A
87
0
0
7.24
0
0
MEDERIKLLFKEKALEILMTIYYESLGGNDVYIQYIASKVNSPHSYVWLIIKKFEEAKMVECELEGRTKIIRLTDKGQKIAQQIKSIIDIMENDT
1nag
1nag_1
A
56
0
0
7.15
0
0
RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRGNFKSAEDCMRTCGGA
1aqz
1aqz_1
A
142
0
0
6.98
0
0
ATWTCINQQLNPKTNKWEDKRLLYSQAKAESNSHHAPLSDGKTGSSYPHWFTNGYDGNGKLIKGRTPIKFGKADCDRPPKHSQNGMGKDDHYLLEFPTFPDGHDYKFDSKKPKENPGPARVIYTYPNKVFCGIVAHQRGNQGDLRLCSH
1oa6
1oa6_1
5
58
0
0
6.82
0
0
RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA
1cyl
1cyl_1
A
129
0
0
6.78
0
0
HKCDITLQEIIKTLNSLTEQKTLCTELTVTDIFAASKNTTEKETFCRAATVLRQFYSHHEKDTRCLGATAQQFHRHKQLIRFLKRLDRNLWGLAGLNSCPVKEANQSTLENFLERLKTIMREKYSKCSS
1jkz
1jkz_1
A
46
0
0
6.75
0
0
KTCEHLADTYRGVCFTNASCDDHCKNKAHLISGTCHNWKCFCTQNC
4kiv
4kiv_1
A
79
0
0
6.64
0
0
QCYHGNGQSYRGTFSTTVTGRTCQSWSSMTPHRHQRTPENYPNDGLTMNYCRNPDADTGPWCFTMDPSIRREYCNLTRC
2it5
2it5_1
A
132
0
0
6.63
0
0
ERLCHPCPWEWTFFQGNCYFMSNSQRNWHDSITACKEVGAQLVVIKSAEEQNFLQLQSSRSNRFTWMGLSDLNQEGTWQWVDGSPLLPSFKQYWNRGEPNNVGEEDCAEFSGNGWNDDKCNLAKFWICKKSAASCSRDE
2uwi
2uwi_1
A
127
0
0
64.349998
0
0
MCEQGVSYYNSQELKCCKLCKPGTYSDHRCDKYSDTICGHCPSDTFTSIYNRSPWCHSCRGPCGTNRVEVTPCTPTTNRICHCDSNSYCLLKASDGNCVTCAPKTKCGRGYGKKGEDEMGNTICKKCRKGTYSKTGHHHHHH
1hpk
1hpk_1
A
79
0
0
6.42
0
0
CKTGNGKNYRGTMSKTKNGITCQKWSSTSPHRPRFSPATHPSEGLEENYCRNPDNDPQGPWCYTTDPEKRYDYCDILEC
1pmk
1pmk_1
A
78
0
0
6.17
0
0
VQDCYHGDGQSYRGTSSTTTTGKKCQSWSSMTPHRHQKTPENYPNAGLTMNYCRNPDADKGPWCFTTDPSVRWEYCNLKKCSGTEASV
1ayj
1ayj_1
A
50
0
0
5.9
0
0
QKLCERPSGTWSGVCGNNNACKNQCINLEKARHGSCNYVFPAHKCICYFPC
1itm
1itm_1
A
130
0
0
5.79
0
0
MHKCDITLQEIIKTLNSLTEQKTLCTELTVTDIFAASKNTTEKETFCRAATVLRQFYSHHEKDTRCLGATAQQFHRHKQLIRFLKRLDRNLWGLAGLNSCPVKEANQSTLENFLERLKTIMREKYSKCSS
2cku
2cku_1
A
89
0
0
56.669998
0
0
AEETCFDKYTGNTYRVGDTYERPKDSMIWDCTCIGAGRGRISCTIANRCHEGGQSYKIGDTWRRPHETGGYMLECVCLGNGKGEWTCKPI
1fbr
1fbr_1
A
93
0
0
56.610001
0
0
AEKCFDHAAGTSYVVGETWEKPYQGWMMVDCTCLGEGSGRITCTSRNRCNDQDTRTSYRIGDTWSKKDNRGNLLQCICTGNGRGEWKCERHTS
1mf7
1mf7_1
A
194
0
0
5.64
0
0
CPQEDSDIAFLIDGSGSIIPHDFRRMKEFVSTVMEQLKKSKTLFSLMQYSEEFRIHFTFKEFQNNPNPRSLVKPITQLLGRTHTATGIRKVVRELFNITNGARKNAFKILVVITDGEKFGDPLGYEDVIPEADREGVIRYVIGVGDAFRSEKSRQELNTIASKPPRDHVFQVNNFEALKTIQNQLREKIFCIGS
1fe8
1fe8_1
A
186
0
0
5.42
0
0
GSHMAPDCSQPLDVILLLDGSSSFPASYFDEMKSFAKAFISKANIGPRLTQVSVLQYGSITTIDVPWNVVPEKAHLLSLVDVMQREGGPSQIGDALGFAVRYLTSEMHGARPGASKAVVILVTDVSVDSVDAAADAARSNRVTVFPIGIGDRYDAAQLRILAGPAGDSNVVKLQRIEDLPTMVTLGNSFLHKLCSG
1gpt
1gpt_1
A
47
0
0
5.41
0
0
RICRRRSAGFKGPCVSNKNCAQVCMQEGWGGGNCDGPLRRCKCMRRC
1vex
1vex_1
A
56
0
0
53.450001
0
0
GSIPCLLSPWSEWSDCSVTCGKGMRTRQRMLKSLAELGDCNEDLEQAEKCMLPECP
1kmx
1kmx_1
A
55
0
0
52.689999
0
0
ARQENPCGPCSERRKHLFVQDPQTCKCSCKNTDSRCKARQLELNERTCRCDKPRR
1hpj
1hpj_1
A
79
0
0
5.21
0
0
CKTGNGKNYRGTMSKTKNGITCQKWSSTSPHRPRFSPATHPSEGLEENYCRNPDNDPQGPWCYTTDPEKRYDYCDILEC
2bbx
2bbx_1
A
49
0
0
50.619999
0
0
GSASCGVWDEWSPCSVTCGKGTRSRKREILHEGCTSEIQEQCEEERCPP
1kiv
1kiv_1
A
78
0
0
5
0
0
CYHGNGQSYRGTFSTTVTGRTCQSWSSMTPHRHQRTPENYPNDGLTMNYCRNPDADTGPWCFTMDPSIRWEYCNLTRC
1vgh
1vgh_1
A
55
0
0
49.029999
0
0
ARQENPCGPCSERRKHLFVQDPQTCKCSCKNTDSRCKARQLELNERTCRCDKPRR
1n4n
1n4n_1
A
47
0
0
4.84
0
0
ATCKAECPTWDSVCINKKPCVACCKKAKFSDGHCSKILRRCLCTKEC
2cyk
2cyk_1
A
129
0
0
4.83
0
0
HKCDITLQEIIKTLNSLTEQKTLCTELTVTDIFAASKNTTEKETFCRAATVLRQFYSHHEKDTRCLGATAQQFHRHKQLIRFLKRLDRNLWGLAGLNSCPVKEANQSTLENFLERLKTIMREKYSKCSS
1kt3
1kt3_1
A
175
0
0
47.279999
0
0
ERDCRVSSFRVKENFDKARFAGTWYAMAKKDPEGLFLQDNIVAEFSVDENGHMSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIIDTDYETFAVQYSCRLLNLDGTCADSYSFVFARDPSGFSPEVQKIVRQRQEELCLARQYRLIPHNGYCDGKSERNIL
1ao3
1ao3_1
A
187
0
0
4.71
0
0
CSQPLDVILLLDGSSSFPASYFDEMKSFAKAFISKANIGPRLTQVSVLQYGSITTIDVPWNVVPEKAHLLSLVDVMQREGGPSQIGDALGFAVRYLTSEMHGARPGASKAVVILVTDVSVDSVDAAADAARSNRVTVFPIGIGDRYDAAQLRILAGPAGDSNVVKLQRIEDLPTMVTLGNSFLHKLC
1itl
1itl_1
A
130
0
0
4.71
0
0
MHKCDITLQEIIKTLNSLTEQKTLCTELTVTDIFAASKNTTEKETFCRAATVLRQFYSHHEKDTRCLGATAQQFHRHKQLIRFLKRLDRNLWGLAGLNSCPVKEANQSTLENFLERLKTIMREKYSKCSS
1kt7
1kt7_1
A
175
0
0
46.16
0
0
ERDCRVSSFRVKENFDKARFAGTWYAMAKKDPEGLFLQDNIVAEFSVDENGHMSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIIDTDYETFAVQYSCRLLNLDGTCADSYSFVFARDPSGFSPEVQKIVRQRQEELCLARQYRLIPHNGYCDGKSERNIL
1kt6
1kt6_1
A
175
0
0
46.099998
0
0
ERDCRVSSFRVKENFDKARFAGTWYAMAKKDPEGLFLQDNIVAEFSVDENGHMSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIIDTDYETFAVQYSCRLLNLDGTCADSYSFVFARDPSGFSPEVQKIVRQRQEELCLARQYRLIPHNGYCDGKSERNIL
1kt5
1kt5_1
A
175
0
0
45.689999
0
0
ERDCRVSSFRVKENFDKARFAGTWYAMAKKDPEGLFLQDNIVAEFSVDENGHMSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIIDTDYETFAVQYSCRLLNLDGTCADSYSFVFARDPSGFSPEVQKIVRQRQEELCLARQYRLIPHNGYCD
2dip
2dip_1
A
98
0
0
45.68
0
0
GSSGSSGLEEFKNSSKLVAAAEKERLDKHLGIPCNNCKQFPIEGKCYKCTECIEYHLCQECFDSYCHLSHTFTFREKRNQKWRSLEKRADEVSGPSSG
1aqb
1aqb_1
A
175
0
0
45.52
0
0
ERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDENGHMSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIIDTDYDTYAVQYSCRLQNLDGTCADSYSFVFARDPHGFSPEVQKIVRQRQEELCLARQYRIITHNGYCDGKSERNIL
2vgh
2vgh_1
A
55
0
0
44.82
0
0
ARQENPCGPCSERRKHLFVQDPQTCKCSCKNTDSRCKARQLELNERTCRCDKPRR
1kt4
1kt4_1
A
175
0
0
44.720001
0
0
ERDCRVSSFRVKENFDKARFAGTWYAMAKKDPEGLFLQDNIVAEFSVDENGHMSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIIDTDYETFAVQYSCRLLNLDGTCADSYSFVFARDPSGFSPEVQKIVRQRQEELCLARQYRLIPHNGYCDGKSERNIL
1bk8
1bk8_1
A
50
0
0
4.4
0
0
LCNERPSQTWSGNCGNTAHCDKQCQDWEKASHGACHKRENHWKCFCYFNC
2azh
2azh_1
A
147
0
0
43.84
0
0
MSFNANLDTLYRQVIMDHYKNPRNKGVLNDSIVVDMNNPTCGDRIRLTMKLDGDIVEDAKFEGEGCSISMASASMMTQAIKGKDIETALSMSKIFSDMMQGKEYDDSIDLGDIEALQGVSKFPARIKCATLSWKALEKGVAKEEGGN
1jyj
1jyj_1
A
174
0
0
42.5
0
0
MERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNLDVCADMVGTFTDTEDPAKFKMKYHGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSERNL
1iiu
1iiu_1
A
174
0
0
42.169998
0
0
MDCRVSSFKVKENFDKNRYSGTWYAMAKKDPEGLFLQDNVVAQFTVDENGQMSATAKGRVRLFNNWDVCADMIGSFTDTEDPAKFKMKYWGVASFLQKGNDDHWVVDTDYDTYALHYSCRELNEDGTCADSYSFVFSRDPKGLPPEAQKIVRQRQIDLCLDRKYRVIVHNGFCS
1acz
1acz_1
A
108
0
0
41.619999
0
0
CTTPTAVAVTFDLTATTTYGENIYLVGSISQLGDWETSDGIALSADKYTSSDPLWYVTVTLPAGESFEYKFIRIESDDSVEWESDPNREYTVPQACGTSTATVTDTWR
1dz7
1dz7_1
A
92
0
0
41.41
0
0
APDVQDCPECTLQENPFFSQPGAPILQCMGCCFSRAYPTPLRSKKTMLVQKNVTSESTCCVAKSYNRVTVMGGFKVENHTACHCSTCYYHKS
2bic
2bic_1
A
52
0
0
41.290001
0
0
EDPLYCQAIGCPTLYSEANLAVSKECRDQGKLGDDFHRCCEEQCGSTTPASA
1tpm
1tpm_1
A
50
0
0
41.209999
0
0
SYQVICRDEKTQMIYQQHQSWLRPVLRSNRVEYCWCNSGRAQCHSVPVKS
1jyd
1jyd_1
A
174
0
0
40.59
0
0
MERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSERNL
2npl
2npl_1
X
96
0
0
39.880001
0
0
GSSGARCYVDGSEEIGSDFKIKCEPKEGSLPLQYEWQKLSDSQKMPTSWLAEMTSSVISVKNASSEYSGTYSCTVRNRVGSDQCLLRLNVVPPSNK
1tpn
1tpn_1
A
50
0
0
39.860001
0
0
SYQVICRDEKTQMIYQQHQSWLRPVLRSNRVEYCWCNSGRAQCHSVPVKS
1mr4
1mr4_1
A
47
0
0
3.97
0
0
RECKTESNTFPGICITKPPCRKACISEKFTDGHCSKILRRCLCTKPC
1oma
1oma_1
A
48
0
0
39.41
0
0
EDNCIAEDYGKCTWGGTKCCRGRPCRCSMIGTNCECTPRLIMEGLSFA
1myn
1myn_1
A
44
0
0
3.94
0
0
DCLSGRYKGPCAVWDNETCRRVCKEEGRSSGHCSPSLKCWCEGC
1ac0
1ac0_1
A
108
0
0
39.049999
0
0
CTTPTAVAVTFDLTATTTYGENIYLVGSISQLGDWETSDGIALSADKYTSSDPLWYVTVTLPAGESFEYKFIRIESDDSVEWESDPNREYTVPQACGTSTATVTDTWR
1g4f
1g4f_1
A
86
0
0
39.029999
0
0
TKASCKLPVKKATVVYQGERVKIQEKFKNGMLHGDKVSFFCKNKEKKCSYTEDAQCIDGTIEVPKCFKEHSSLAFWKTDASDVKPC
1g4g
1g4g_1
A
86
0
0
38.950001
0
0
TKASCKLPVKKATVVYQGERVKIQEKFKNGMLHGDKVSFFCKNKEKKCSYTEDAQCIDGTIEVPKCFKEHSSLAFWKTDASDVKPC
1esr
1esr_1
A
75
0
0
38.869999
0
0
QPDSVSIPITCCFNVINRKIPIQRLESYTRITNIQCPKEAVIFKTQRGKEVCADPKERWVRDSMKHLDQIFQNLKP
1oav
1oav_1
A
48
0
0
38.189999
0
0
KKKCIAKDYGRCKWGGTPCCRGRGCICSIMGTNCECKPRLIMEGLGLA
1yzc
1yzc_1
A
106
0
0
37.939999
0
0
ADLEDNDETGNDNGKGGEKADNAAQVKDALTKMRAAALDAQKATPPKLEDKSPDSPEMKDFRHGFDILVGQIDDALKLANEGKVKEAQAAAEQLKTTGRAGNQKGG
1qg7
1qg7_1
A
62
0
0
37.77
0
0
KPVSLSYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLKWIQEYLEKALN
2fjg
2fjg_1
A
95
0
0
37.700001
0
0
GQNHHEVVKFMDVYQRSYCHPIETLVDIFQEYPDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCECRPKKD
1t8d
1t8d_1
A
143
0
0
37.380001
0
0
SGFVCNTCPEKWINFQRKCYYFGKGTKQWVHARYACDDMEGQLVSIHSPEEQDFLTKHASHTGSWIGLRNLDLKGEFIWVDGSHVDYSNWAPGEPTSRSQGEDCVMMRGSGRWNDAFCDRKLGAWVCDRLATCTPPASEGSAE
2i1p
2i1p_1
A
48
0
0
37.299999
0
0.14
GAMVLNCTSAQFKCADGSSCINSRYRCDGVYDCRDNSDEAGCPTRPPG
1sdf
1sdf_1
A
67
0
0
36.849998
0
0
KPVSLSYRCPCRFFESHVARANVKHLKILNTPNCALQIVARLKNNNRQVCIDPKLKWIQEYLEKALN
1o7y
1o7y_1
A
68
0
0
36.84
0
0
VPLSRTVRCTCISISNQPVNPRSLEKLEIIPASQFCPRVEIIATMKKKGEKRCLNPESKAIKNLLKAVSKEMSKRSP
1ata
1ata_1
A
62
0
0
36.380001
0
0
EAEKCTKPNEQWTKCGGCEGTCAQKIVPCTRECKPPRCECIASAGFVRDAQGNCIKFEDCPK
1kum
1kum_1
A
108
0
0
36.34
0
0
CTTPTAVAVTFDLTATTTYGENIYLVGSISQLGDWETSDGIALSADKYTSSDPLWYVTVTLPAGESFEYKFIRIESDDSVEWESDPNREYTVPQACGTSTATVTDTWR
2juj
2juj_1
A
56
0
0
35.810001
0
0
ATASPQLSSEIENLMSQGYSYQDIQKALVIAQNNIEMAKNILREFVSISSPAHVAT
1rtg
1rtg_1
A
203
0
0
35.740002
0
0
IDLGTGPTPTLGPVTPEICKQDIVFDGIAQIRGEIFFFKDRFIWRTVTPRDKPMGPLLVATFWPELPEKIDAVYEAPQEEKAVFFAGNEYWIYSASTLERGYPKPLTSLGLPPDVQRVDAAFNWSKNKKTYIFAGDKFWRYNEVKKKMDPGFPKLIADAWNAIPDNLDAVVDLQGGGHSYFFKGAYYLKLENQSLKSVKFGSIKSDWLGC
End of preview. Expand in Data Studio

PRESTO: Rapid protein mechanical strength prediction with an end-to-end deep learning model

Proteins often form biomaterials with exceptional mechanical properties equal or even superior to synthetic materials. Currently, using experimental atomic force microscopy or computational molecular dynamics to evaluate protein mechanical strength remains costly and time-consuming, limiting large-scale de novo protein investigations. Therefore, there exists a growing demand for fast and accurate prediction of protein mechanical strength. To address this challenge, we propose PRESTO, a rapid end-to-end deep learning (DL) model to predict protein resistance to pulling directly from its sequence. By integrating a natural language processing model with simulation-based protein stretching data, we first demonstrate that PRESTO can accurately predict the maximal pulling force, for given protein sequences with unprecedented efficiency, bypassing the costly steps of conventional methods. Enabled by this rapid prediction capacity, we further find that PRESTO can successfully identify specific mutation locations that may greatly influence protein strength in a biologically plausible manner, such as at the center of polyalanine regions. Finally, we apply our method to design de novo protein sequences by randomly mixing two known sequences at varying ratios. Interestingly, the model predicts that the strength of these mixed proteins follows up- or down-opening “banana curves”, constructing a protein strength curve that breaks away from the general linear law of mixtures. By discovering key insights and suggesting potential optimal sequences, we demonstrate the versatility of PRESTO primarily as a screening tool in a rapid protein design pipeline. Thereby our model may offer new pathways for protein material research that requires analysis and testing of large-scale novel protein sets, as a discovery tool that can be complemented with other modeling methods, and ultimately, experimental synthesis and testing.

image

Data, model and training

Load data

import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from datasets import load_dataset

ds = load_dataset("lamm-mit/PRESTO-protein-force", split="train")

protein_df = ds.to_pandas()

print(protein_df.columns)

Scale data

y_data = np.array(protein_df.Fmax_pN.values)
plt.scatter(range(y_data.shape[0]),y_data,s=2)
plt.xlabel('Sequence Number')
plt.ylabel('${F_{max}} (pN)$')
plt.savefig('data_view.png',dpi=500)
scalar=StandardScaler()
y_data_temp=np.reshape(y_data,(y_data.shape[0],1))
fit_data=scalar.fit(y_data_temp)  
mean=fit_data.mean_[0]  
std=math.sqrt(fit_data.var_)  
Y=scalar.fit_transform(y_data_temp)

Define tokenizer and model

# maximum length of sequence, longer the sequences, more time we need - 
max_length = 300

from tensorflow.keras.preprocessing.text import Tokenizer
tokenizer = Tokenizer(char_level=True)
tokenizer.fit_on_texts(seqs)
X = tokenizer.texts_to_sequences(seqs)
# if AA seq is longer than max_lenght will be discarded
X = sequence.pad_sequences(X, maxlen=max_length)

Split train/test

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=.2,random_state=23)

Define model

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv1D, Flatten
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Embedding

model = Sequential()
model.add(Embedding(len(tokenizer.word_index)+1, embedding_dim, input_length=max_length))
model.add(Conv1D(filters=64, kernel_size=3, padding='same', activation='relu'))
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(tf.keras.layers.Bidirectional(keras.layers.LSTM(units=32,return_sequences=True)))
model.add(tf.keras.layers.Bidirectional(keras.layers.LSTM(units=16,return_sequences=True)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')

Train model

hist=model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100, batch_size=128)
model.save('PRESTO.h5')

Plots

from tensorflow.keras.models import load_model
import itertools

model=load_model('PRESTO.h5')
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
plt.title('Sequence-to-Feature Model')
plt.scatter(y_train,y_train_pred,s=2)
plt.scatter(y_test,y_test_pred,c='r',s=2)
plt.xlabel('BSDB ${F_{max}}$ (pN)')
plt.ylabel('ML ${F_{max}}$ (pN)')
plt.legend(['training', 'validation'])
plt.savefig('train_comp.png',dpi=500)

image

Optimization examples

Fitness function

def objective_value(input_seqs,fitness_fcn):
    tmp=tokenizer.texts_to_sequences(input_seqs)
    temp=sequence.pad_sequences(tmp, maxlen=max_length)
    y_pred=fitness_fcn.predict(temp)
    return y_pred

def iterate_mutate_no_target(sequences, targeta):
    list_list_seq = []
    for x in range(len(sequences)):
        list_list_seq.append(mutate_no_target(sequences[x], targeta))
    return list_list_seq

def iterate_calc(sequences):
    list_list_seq = []
    for x in sequences:
      list_list_seq.append((objective_value(x,fitness_fcn)*std+mean).flatten())
    return list_list_seq

Sample sequences

prot_2c7w =     'HQRKVVSWIDVYTRATCQPREVVVPLTVELMGTVAKQLVPSCVTVQRCGGCCPDDGLECVPTGQHQVRMQILMIRYPSSQLGEMSLEEHSQCECRPKKK'
prot_2g38 =     'MSFVITNPEALTVAATEVRRIRDRAIQSDAQVAPMTTAVRPPAADLVSEKAATFLVEYARKYRQTIAAAAVVLEEFAHALTTGADKYATAEADNIKTFS'
prot_2g38_mut = 'MSFVITNPEALTVAATCVRRIRDRAIQSDAQGAPMTTAVRPCADLVSCGGACCFLGEYACKYGQTIAAAAVVLEEFAHALTTGADKYATAEACNCKTFS'
prot_1yn4=      'GKHTVPYTISVDGITALHRTYFVFPENKKVLYQEIDSKVKNELASQRGVTTEKINNAQTATYTLTLNDGNKKVVNLKKNDDAKNSIDPSTIKQIQIVVK'
prot_1kat=      'HHEVVKFMDVYQRSYCHPIETLVDIFQEYPDEIEYIFKPSCVPLMRCGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCECRPKKD'
prot_1bmp=      'STGSKQRSQNRSKTPKNQEALRMANVAENSSSDQRQACKKHELYVSFRDLGWQDWIIAPEGYAAYYCEGECAFPLNSYMNATNHAIVQTLVHFINPETVPKPCCAPTQLNAISVLYFDDSSNVILKKYRNMVVRACGCH'
prot_1cdc=      'RDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILDKALDLRILE'
#mutates seq into poly-X (change AA and color)
ori =           'MNIFEMLRIDEGLRLKIYLDKAIGRNRAALVNLVFQIGETAAAAAAAAAAAAAAAAAAGAAGFTNSLRYLQQKRWDEAAVNFAKSRWYNQTPNRAKRIAAAAAAAAAAAAAAAAAAITVFRTGTWDAYKNL'
AA='T'
color='orange'
multiple_ori = []
mutated_seqs=[]
mutated_seqs_fmax=[]
num=100
for i in range(num):
    multiple_ori.append(ori)

mutated_seqs = iterate_mutate_no_target(multiple_ori, AA)
mutated_seqs_fmax = iterate_calc(mutated_seqs)
pd.DataFrame(mutated_seqs).to_csv("mutations_"+AA+".csv")
np.savetxt('mutations_'+AA+'_fmax.csv', mutated_seqs_fmax, delimiter=',')

for y in mutated_seqs_fmax:
    plt.plot(y,'0.7', zorder=0, linewidth=0.4)

transposed=np.transpose(mutated_seqs_fmax)
transposed_mean=[]
transposed_sd=[]

for x in transposed:
    transposed_mean.append(np.mean(x))
    transposed_sd.append(np.std(x))

Plot results

plt.errorbar(range(len(transposed_mean)),transposed_mean,transposed_sd,capsize=2,zorder=50,color=color)
plt.xlabel('Number of mutations')
plt.ylabel('${F_{max}}$ (pN)')
plt.title(str(num)+' 1p3n sequences mutate towards poly-'+AA)
plt.plot(0,mutated_seqs_fmax[0][0],'or',zorder=100)
plt.plot(len(mutated_seqs[0])-1,mutated_seqs_fmax[0][len(mutated_seqs_fmax[0])-1],'or',zorder=100)
plt.savefig('mutations_'+AA+'.png',dpi=500)

image

Sample results

image

image

Reference

@article{liu2022presto,
  title        = {{PRESTO}: Rapid protein mechanical strength prediction with an end-to-end deep learning model},
  author       = {Liu, Frank Y. C. and Ni, Bo and Buehler, Markus J.},
  journal      = {Extreme Mechanics Letters},
  volume       = {55},
  pages        = {101803},
  year         = {2022},
  publisher    = {Elsevier},
  doi          = {10.1016/j.eml.2022.101803},
}
Downloads last month
42