Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    ValueError
Message:      Feature type 'Int' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'List', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf']
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
                  ).get_module()
                    ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 605, in get_module
                  dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 386, in from_dataset_card_data
                  dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 317, in _from_yaml_dict
                  yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
                                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2031, in _from_yaml_list
                  return cls.from_dict(from_yaml_inner(yaml_data))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1876, in from_dict
                  obj = generate_from_dict(dic)
                        ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1463, in generate_from_dict
                  return {key: generate_from_dict(value) for key, value in obj.items()}
                               ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1469, in generate_from_dict
                  raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}")
              ValueError: Feature type 'Int' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'List', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf']

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Dataset of elliptic curves with J-invariant 0 over finite field

Introduction

Elliptic curve with J-invariant 0 is an important class of elliptic curve, both theoretically and in applications of cryptography.

An elliptic curve with Weierstrass equation $y^2 = x^3 + a x + b$ has J-invariant 0 when $a=0$ and $b \neq 0$.

Well known curves such as secp256k1 ($y^2=x^3+7$ over 256 bit prime field) and bls2-381 ($y^2=x^3+4$ over 381 bit prime field) are widely used in cryptocurrency projects.

During development of ECDLP solver for these curves, it often valuable to test the proposed algorithm on a smaller curve to gain insights.

Thus, it is beneficial to standarize curves used for testing purposes:

  1. To gain insights on asymptotic performance of proposed algorithm as field size grows.
  2. Simplify engineering hurdle during prototyping phase. Eg. 256 bit modular arithmetic may require specialized libraries on a GPU, but 64 and 32 bit integer support is out-of-box most times.
  3. The standardized curves allows more precise comparison of different ECDLP solvers.

Notations

Notation Meaning
$E/\mathbb{F}_p$ elliptic curve reduced modulo prime number $p$
$E/\mathbb{F}_q$ elliptic curve of finite field of size $q$
$E_\unicode{x2b23}$ elliptic curve of J-invariant 0 ^$\dagger 1$
$l(E/\mathbb{F}_q)$ point count of elliptic curve over $\mathbb{F}_q$
$G(E)$ generator of elliptic curve $E$
$a_q(E/\mathbb{F}_q)$ frobenius trace of elliptic curve $E$ modulo $q$
$[n]P$ scalar multiplication by $n$ of point $P$ on an elliptic curve

List of Datasets

ellws-a0b7-v1.csv

This is directly related to secp256k1 curve with Weierstrass equation $E:y^2=x^3+7$ . The dataset consists of curve $y^2=x^3+7$ reduced modulo various primes. The primes are from small bit length to large ones, up to 256 bits. The curve secp256k1 itself is also in the dataset.

The dataset is constructed via search algorithm, each curve $E_\unicode{x2b23}/\mathbb{F}_p$ in the dataset satisfies:

  • Is neither a supersingular curve nor a anomalous curve.
  • Embedding degree for MOV attack is high.
  • $p-1$ and $l(E_\unicode{x2b23})-1$ are not smooth numbers.
  • $p \equiv 7 \mod{24}$ and $l(E_\unicode{x2b23}) \equiv 1 \mod{24}$
  • There are 6 isomorphism classes of all non-singular $E_\unicode{x2b23}/\mathbb{F}_p$
  • When $x=1$, $y = \sqrt{1^3+7} = \sqrt{8} \in \mathbb{F}_p$, this allows point with x-coordinate 1 always a curve generator.
  • Let the curve's bit length $L = \lceil log_2(p) \rceil$, then $2^{L-1} \leq l(E_\unicode{x2b23}) \lt 2^L$, this ensures no integer overflow happens with chosen bit length.

Most of above resembles cryptographic properties of secp256k1 itself.

The row schema for this dataset is:

COLUMN bits field point_count generator embedding_degree
TYPE integer 2-tuple of integer integer 2-tuple of integer integer
EXAMPLE 16 36607^1 36457 1;3610 9114
MEANING bit length field characteristic & extension degree group order group generator representative $^\dagger 2$ MOV attack embedding degree

More datasets

More dataset may be constructed as the need arise.


$\dagger$ Footnotes

  1. Hexagon symbol is used because elliptic curve with J-invariant 0 has Eisenstein integers as endomorphism ring. Eisenstein integers form a hexagonal lattice.

  2. If group order $l(E)$ is for prime, any valid generator can be used without impact on curve security. Assuming we are finding $n$ for $[n]P = Q$ where $P,Q \in E$, we can find $u,v \in \mathbb{F}_{l(E)}$ such that $[u]G = P, [v]G = Q$, then $n = v/u$. Nevertheless, we put a canonical generator in the dataset.

License

MIT License

Downloads last month
28