The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: RuntimeError
Message: Dataset scripts are no longer supported, but found ami.py
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 989, in dataset_module_factory
raise RuntimeError(f"Dataset scripts are no longer supported, but found {filename}")
RuntimeError: Dataset scripts are no longer supported, but found ami.pyNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Dataset Card for AMI
Dataset Description
The AMI Meeting Corpus consists of 100 hours of meeting recordings. The recordings use a range of signals synchronized to a common timeline. These include close-talking and far-field microphones, individual and room-view video cameras, and output from a slide projector and an electronic whiteboard. During the meetings, the participants also have unsynchronized pens available to them that record what is written. The meetings were recorded in English using three different rooms with different acoustic properties, and include mostly non-native speakers.
Note: This dataset corresponds to the data-processing of KALDI's AMI S5 recipe. This means text is normalized and the audio data is chunked according to the scripts above! To make the user experience as simply as possible, we provide the already chunked data to the user here so that the following can be done:
Example Usage
from datasets import load_dataset
ds = load_dataset("edinburghcstr/ami", "ihm")
print(ds)
gives:
DatasetDict({
train: Dataset({
features: ['meeting_id', 'audio_id', 'text', 'audio', 'begin_time', 'end_time', 'microphone_id', 'speaker_id'],
num_rows: 108502
})
validation: Dataset({
features: ['meeting_id', 'audio_id', 'text', 'audio', 'begin_time', 'end_time', 'microphone_id', 'speaker_id'],
num_rows: 13098
})
test: Dataset({
features: ['meeting_id', 'audio_id', 'text', 'audio', 'begin_time', 'end_time', 'microphone_id', 'speaker_id'],
num_rows: 12643
})
})
ds["train"][0]
automatically loads the audio into memory:
{'meeting_id': 'EN2001a',
'audio_id': 'AMI_EN2001a_H00_MEE068_0000557_0000594',
'text': 'OKAY',
'audio': {'path': '/cache/dir/path/downloads/extracted/2d75d5b3e8a91f44692e2973f08b4cac53698f92c2567bd43b41d19c313a5280/EN2001a/train_ami_en2001a_h00_mee068_0000557_0000594.wav',
'array': array([0. , 0. , 0. , ..., 0.00033569, 0.00030518,
0.00030518], dtype=float32),
'sampling_rate': 16000},
'begin_time': 5.570000171661377,
'end_time': 5.940000057220459,
'microphone_id': 'H00',
'speaker_id': 'MEE068'}
The dataset was tested for correctness by fine-tuning a Wav2Vec2-Large model on it, more explicitly the wav2vec2-large-lv60 checkpoint.
As can be seen in this experiments, training the model for less than 2 epochs gives
Result (WER):
| "dev" | "eval" |
|---|---|
| 25.27 | 25.21 |
as can be seen here.
The results are in-line with results of published papers:
- Hybrid acoustic models for distant and multichannel large vocabulary speech recognition
- Multi-Span Acoustic Modelling using Raw Waveform Signals
You can run run.sh to reproduce the result.
Supported Tasks and Leaderboards
Languages
Dataset Structure
Data Instances
Data Fields
Data Splits
Transcribed Subsets Size
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
Citation Information
Contributions
Thanks to @sanchit-gandhi, @patrickvonplaten, and @polinaeterna for adding this dataset.
Terms of Usage
- Downloads last month
- 5