Dataset Viewer
Auto-converted to Parquet Duplicate
index
int64
0
3.94k
image
stringlengths
1.1k
1.41M
question
stringlengths
7
1.31k
answer
stringclasses
340 values
metadata
stringclasses
25 values
question_type
stringclasses
2 values
0
iVBORw0KGgoAAAANSUhEUgAAAIkAAABdCAAAAAC04BosAAAGOklEQVR4nMWab2gTZxzHv9fK6qRbfFE129SKRogUJO6NyhwtTLDdArMo1NSC9cX+gAyrDBlDrQw3BLe1Gw66TTCFwSoE7Qs1K1hIaje2vVjd2IwMdYWmW9wb25FCa+N99+Lukktylzx3uUt/b+6uff587vv8nuf53e+JRIgbJeU6ttpvoZag1VgprIJk3nGewyKJah81rnecwxbJYGDaeQ4LJFl/Sqa3rV6xlCSSdvP5EckFf7UxOoPnpXV2nMtxkqk0Gd8IK3Nf0JZZK558Mwr8pRsrB41WrBe4K4eA45ZqiZkkqjPdkEFv1ufO9VF3SIQ1gSrLky3/RPa4QWJl7kgA8M3zkY4RN+aOuMfKpExmfDF+54m44LHW5g4ZfpnkuBsoFkkyvjhJjnvCS00SblauE86jWCPJ+GIkKZMTKweUmyUi0SQh+bu331kUSySKJGrvd7wfO4dhkUTub9U/Jhp7l4pk3juh3KiqTDqKYiUqGNgRUG7UPagxvnvu/BKssTlJNJOZ8h9zTJOy+05uh/lSk0QzCWti0berr0mRJCTJmUB3tTTJ2kChJAAAT+z24SeOSCIcnyxsiBqRAP+95h2qdYBETBMqXmJEzWejqQNOqCKqyawv1gSTaDYdfHq4rmISUT/pCzYBJl8X9SPYu1AxiaAms76fNpb493z7kyv1FZIIatIXLAWC5dc8bekKScQ0mfX9uKlkAcoHUtc8FZEIaEKgL1gaBFLtkK9lFqgk6BdZ/mYa7mkbcInQqDswU0ngJOQnfcFN2rQx+yYlcGn7jn8r+Q4SlUTEevwp+5qIxCcftqteYrSu6f/Wt2zXzUa3NJEppzwPhV+sd8OkSTO2NdFeVYJ07vBqoVeSAJxB82jxNKMkkvIwkSL3EimPpcHv9ybyNQgBAFpNK2hW3mN7eqyAaCg6CyXIePkslCGJflQtSKJW+9ozof/j4n4uXly8aI9Eb1YlIRnOQxm7wPANgVpFJCEAWDunPVr0EkWWcMO4jgtAwqR4SRKGEuSpLIoNSUhGPDmUUIKdcyXKFpOoo7y4nyRDqofda7C3akY8N9W7qVbyK5EquX1HnfI/rAeAzXeUKX72yBqRtaTI9l3eN6LcjQaBN3CifJW8HZAARneDgBoXPbh+zBYIsOdyxwgAcGQ3gE6RPaBAo8cvzpHkKcU9unvtDI1MknJsVYSMq70IuGwhydRxyuQUblAm7zXM2CFR7XtrecHC6HEwfQRA56MoAGzztNgcHADA9LdfHAJEE+0FkVLm01eApKSA3P9zp43+c6/2QtfRQUD44CNPIXVY1SVR7yX24sKJVQPCZc1We81LKkzpJbyfiTZhuu/I7OitjEJBeU40L2hEorzEbe+8AyTiyTjzvXivQ/nWycYzQu2Ykkw4IwnJKf+7IsVMSdr7HQIhU/6eCjRxThKSqaa3yhcy+0JvbzlqY1Uzs9mWwCVrK1vWfvHOO3o8MBM4lClTxOS7+IP36hw9l/Xcuh+SSxcxHp2fX5+sc/iAON1WJkVprMmJcypI5WegWgv10XRwQX02bNWQJD7dVSZJIW7ZFuqHsXdBeTZs1YCEOH3SiVSvrkEAQN3w8mDaVBIDEkrxv7v0LVRsmgR1kZWvzsFUaIP51Dzo3PTVmUxmOnbN0GR5MBid+PRBh8QokkbNCxqLYiBJ2NHT1wLrDuiidH0/Rd+AjG0utxraNaWHvGScDqVYk13OH9Tn93vMOC9YQCLzaiDj3tgoLZ/0GSXjijQJXHWNIwtzptEApZDkasBdEMXONhZnePUkMsnAlWqQsN97J9dnjkTnF9WRhAZ5QUWTHIrbXqKZnJeMk7Mk2aeqSUIy7JnIOx4ByQ5A/RauliQkyaGGcYUjDLQ+fn8ZgKHarrax5oQfw4nbv7rx+zBjo68t+hKk5LrjRPKpCxKBzPZbK5LrEn5cTlQNAwAlPNNTmwns+QTA6Z0gGe+RGbKV7azQZJJhJeEaToDiuVvHetfZ460X1LsaACMJhrfczRPOvWt+oM6Hv2nHvzVA8pEfB5tG9a4qqWVdvTI/PK1RcrepPzZKeYGr5P5VgkTJu/UBACSjABlKcHHr2jk3A7USDhPGNXKslYSS5GstLuL6VbU4lF9D/w+nL1hU5rgiygAAAABJRU5ErkJggg==
As shown in the figure, in triangle ABC, it is known that angle A = 80.0, angle B = 60.0, point D is on AB and point E is on AC, DE parallel BC, then the size of angle CED is () Choices: A:40° B:60° C:120° D:140°
D
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
1
iVBORw0KGgoAAAANSUhEUgAAAIkAAABdCAAAAAC04BosAAAGOklEQVR4nMWab2gTZxzHv9fK6qRbfFE129SKRogUJO6NyhwtTLDdArMo1NSC9cX+gAyrDBlDrQw3BLe1Gw66TTCFwSoE7Qs1K1hIaje2vVjd2IwMdYWmW9wb25FCa+N99+Lukktylzx3uUt/b+6uff587vv8nuf53e+JRIgbJeU6ttpvoZag1VgprIJk3nGewyKJah81rnecwxbJYGDaeQ4LJFl/Sqa3rV6xlCSSdvP5EckFf7UxOoPnpXV2nMtxkqk0Gd8IK3Nf0JZZK558Mwr8pRsrB41WrBe4K4eA45ZqiZkkqjPdkEFv1ufO9VF3SIQ1gSrLky3/RPa4QWJl7kgA8M3zkY4RN+aOuMfKpExmfDF+54m44LHW5g4ZfpnkuBsoFkkyvjhJjnvCS00SblauE86jWCPJ+GIkKZMTKweUmyUi0SQh+bu331kUSySKJGrvd7wfO4dhkUTub9U/Jhp7l4pk3juh3KiqTDqKYiUqGNgRUG7UPagxvnvu/BKssTlJNJOZ8h9zTJOy+05uh/lSk0QzCWti0berr0mRJCTJmUB3tTTJ2kChJAAAT+z24SeOSCIcnyxsiBqRAP+95h2qdYBETBMqXmJEzWejqQNOqCKqyawv1gSTaDYdfHq4rmISUT/pCzYBJl8X9SPYu1AxiaAms76fNpb493z7kyv1FZIIatIXLAWC5dc8bekKScQ0mfX9uKlkAcoHUtc8FZEIaEKgL1gaBFLtkK9lFqgk6BdZ/mYa7mkbcInQqDswU0ngJOQnfcFN2rQx+yYlcGn7jn8r+Q4SlUTEevwp+5qIxCcftqteYrSu6f/Wt2zXzUa3NJEppzwPhV+sd8OkSTO2NdFeVYJ07vBqoVeSAJxB82jxNKMkkvIwkSL3EimPpcHv9ybyNQgBAFpNK2hW3mN7eqyAaCg6CyXIePkslCGJflQtSKJW+9ozof/j4n4uXly8aI9Eb1YlIRnOQxm7wPANgVpFJCEAWDunPVr0EkWWcMO4jgtAwqR4SRKGEuSpLIoNSUhGPDmUUIKdcyXKFpOoo7y4nyRDqofda7C3akY8N9W7qVbyK5EquX1HnfI/rAeAzXeUKX72yBqRtaTI9l3eN6LcjQaBN3CifJW8HZAARneDgBoXPbh+zBYIsOdyxwgAcGQ3gE6RPaBAo8cvzpHkKcU9unvtDI1MknJsVYSMq70IuGwhydRxyuQUblAm7zXM2CFR7XtrecHC6HEwfQRA56MoAGzztNgcHADA9LdfHAJEE+0FkVLm01eApKSA3P9zp43+c6/2QtfRQUD44CNPIXVY1SVR7yX24sKJVQPCZc1We81LKkzpJbyfiTZhuu/I7OitjEJBeU40L2hEorzEbe+8AyTiyTjzvXivQ/nWycYzQu2Ykkw4IwnJKf+7IsVMSdr7HQIhU/6eCjRxThKSqaa3yhcy+0JvbzlqY1Uzs9mWwCVrK1vWfvHOO3o8MBM4lClTxOS7+IP36hw9l/Xcuh+SSxcxHp2fX5+sc/iAON1WJkVprMmJcypI5WegWgv10XRwQX02bNWQJD7dVSZJIW7ZFuqHsXdBeTZs1YCEOH3SiVSvrkEAQN3w8mDaVBIDEkrxv7v0LVRsmgR1kZWvzsFUaIP51Dzo3PTVmUxmOnbN0GR5MBid+PRBh8QokkbNCxqLYiBJ2NHT1wLrDuiidH0/Rd+AjG0utxraNaWHvGScDqVYk13OH9Tn93vMOC9YQCLzaiDj3tgoLZ/0GSXjijQJXHWNIwtzptEApZDkasBdEMXONhZnePUkMsnAlWqQsN97J9dnjkTnF9WRhAZ5QUWTHIrbXqKZnJeMk7Mk2aeqSUIy7JnIOx4ByQ5A/RauliQkyaGGcYUjDLQ+fn8ZgKHarrax5oQfw4nbv7rx+zBjo68t+hKk5LrjRPKpCxKBzPZbK5LrEn5cTlQNAwAlPNNTmwns+QTA6Z0gGe+RGbKV7azQZJJhJeEaToDiuVvHetfZ460X1LsaACMJhrfczRPOvWt+oM6Hv2nHvzVA8pEfB5tG9a4qqWVdvTI/PK1RcrepPzZKeYGr5P5VgkTJu/UBACSjABlKcHHr2jk3A7USDhPGNXKslYSS5GstLuL6VbU4lF9D/w+nL1hU5rgiygAAAABJRU5ErkJggg==
As shown in the figure, it is known that angle A = 80.0, angle B = 60.0, DE parallel BC, then the size of angle CED is () Choices: A:40° B:60° C:120° D:140°
D
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
2
iVBORw0KGgoAAAANSUhEUgAAAIkAAABdCAAAAAC04BosAAAGOklEQVR4nMWab2gTZxzHv9fK6qRbfFE129SKRogUJO6NyhwtTLDdArMo1NSC9cX+gAyrDBlDrQw3BLe1Gw66TTCFwSoE7Qs1K1hIaje2vVjd2IwMdYWmW9wb25FCa+N99+Lukktylzx3uUt/b+6uff587vv8nuf53e+JRIgbJeU6ttpvoZag1VgprIJk3nGewyKJah81rnecwxbJYGDaeQ4LJFl/Sqa3rV6xlCSSdvP5EckFf7UxOoPnpXV2nMtxkqk0Gd8IK3Nf0JZZK558Mwr8pRsrB41WrBe4K4eA45ZqiZkkqjPdkEFv1ufO9VF3SIQ1gSrLky3/RPa4QWJl7kgA8M3zkY4RN+aOuMfKpExmfDF+54m44LHW5g4ZfpnkuBsoFkkyvjhJjnvCS00SblauE86jWCPJ+GIkKZMTKweUmyUi0SQh+bu331kUSySKJGrvd7wfO4dhkUTub9U/Jhp7l4pk3juh3KiqTDqKYiUqGNgRUG7UPagxvnvu/BKssTlJNJOZ8h9zTJOy+05uh/lSk0QzCWti0berr0mRJCTJmUB3tTTJ2kChJAAAT+z24SeOSCIcnyxsiBqRAP+95h2qdYBETBMqXmJEzWejqQNOqCKqyawv1gSTaDYdfHq4rmISUT/pCzYBJl8X9SPYu1AxiaAms76fNpb493z7kyv1FZIIatIXLAWC5dc8bekKScQ0mfX9uKlkAcoHUtc8FZEIaEKgL1gaBFLtkK9lFqgk6BdZ/mYa7mkbcInQqDswU0ngJOQnfcFN2rQx+yYlcGn7jn8r+Q4SlUTEevwp+5qIxCcftqteYrSu6f/Wt2zXzUa3NJEppzwPhV+sd8OkSTO2NdFeVYJ07vBqoVeSAJxB82jxNKMkkvIwkSL3EimPpcHv9ybyNQgBAFpNK2hW3mN7eqyAaCg6CyXIePkslCGJflQtSKJW+9ozof/j4n4uXly8aI9Eb1YlIRnOQxm7wPANgVpFJCEAWDunPVr0EkWWcMO4jgtAwqR4SRKGEuSpLIoNSUhGPDmUUIKdcyXKFpOoo7y4nyRDqofda7C3akY8N9W7qVbyK5EquX1HnfI/rAeAzXeUKX72yBqRtaTI9l3eN6LcjQaBN3CifJW8HZAARneDgBoXPbh+zBYIsOdyxwgAcGQ3gE6RPaBAo8cvzpHkKcU9unvtDI1MknJsVYSMq70IuGwhydRxyuQUblAm7zXM2CFR7XtrecHC6HEwfQRA56MoAGzztNgcHADA9LdfHAJEE+0FkVLm01eApKSA3P9zp43+c6/2QtfRQUD44CNPIXVY1SVR7yX24sKJVQPCZc1We81LKkzpJbyfiTZhuu/I7OitjEJBeU40L2hEorzEbe+8AyTiyTjzvXivQ/nWycYzQu2Ykkw4IwnJKf+7IsVMSdr7HQIhU/6eCjRxThKSqaa3yhcy+0JvbzlqY1Uzs9mWwCVrK1vWfvHOO3o8MBM4lClTxOS7+IP36hw9l/Xcuh+SSxcxHp2fX5+sc/iAON1WJkVprMmJcypI5WegWgv10XRwQX02bNWQJD7dVSZJIW7ZFuqHsXdBeTZs1YCEOH3SiVSvrkEAQN3w8mDaVBIDEkrxv7v0LVRsmgR1kZWvzsFUaIP51Dzo3PTVmUxmOnbN0GR5MBid+PRBh8QokkbNCxqLYiBJ2NHT1wLrDuiidH0/Rd+AjG0utxraNaWHvGScDqVYk13OH9Tn93vMOC9YQCLzaiDj3tgoLZ/0GSXjijQJXHWNIwtzptEApZDkasBdEMXONhZnePUkMsnAlWqQsN97J9dnjkTnF9WRhAZ5QUWTHIrbXqKZnJeMk7Mk2aeqSUIy7JnIOx4ByQ5A/RauliQkyaGGcYUjDLQ+fn8ZgKHarrax5oQfw4nbv7rx+zBjo68t+hKk5LrjRPKpCxKBzPZbK5LrEn5cTlQNAwAlPNNTmwns+QTA6Z0gGe+RGbKV7azQZJJhJeEaToDiuVvHetfZ460X1LsaACMJhrfczRPOvWt+oM6Hv2nHvzVA8pEfB5tG9a4qqWVdvTI/PK1RcrepPzZKeYGr5P5VgkTJu/UBACSjABlKcHHr2jk3A7USDhPGNXKslYSS5GstLuL6VbU4lF9D/w+nL1hU5rgiygAAAABJRU5ErkJggg==
As shown in the figure, it is known that angle A = 80.0, angle B = 60.0, then the size of angle CED is () Choices: A:40° B:60° C:120° D:140°
D
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
3
iVBORw0KGgoAAAANSUhEUgAAAagAAAEhCAYAAAAqDTTQAABhxUlEQVR4nO39eXhj133n+b+xr9ywE9z3vTbVIqlkyZJsyUq8RZPE2TxJT5xMO53FTz+dpd09v3Zmsvwm7uk46fycpONMkok9iRMnluNYiy1bsspSVak2Fvd9A0ESAEESBEjswO+PMq6rWKwqVhW3Yn1fz6NHEol7cQHi4nPPued8jyqfz+cRQggh9hn1Xh+AEEIIsRkJKCGEEPuSBJQQQoh9SQJKCCHEviQBJYQQYl+SgBJCCLEvSUAJIYTYlySghBBC7EsSUEIIIfYlCSghhBD7kgSUEEKIfUkCSgghxL6k3esDEAfT9TWIVSrVfe8vl8sRCoUIBoMkEgk0Gg0mk4ni4mJsNhsmk+m+n0MIsb9IC0rsiO0Ipevl83kSiQQrKyusrKyQTCYBUKvV2/5cQoj9QVpQ4oGg0WiYm5vj/PnzJJNJmpubKSoqQqPRSEAJcUBJQIkds53BkclkmJqa4syZM6TTaUwmE62trWi1WtRq6QgQ4iCSgBL7Xjabxefz4fP5CAQCaDQastkser0eg8EgASXEASUBJfa1WCzG6OgoQ0ND+Hw+DAYDNpsNh8NBUVERJpNJAkqIA0rObLGvLS0tMTo6yuDgIOFwGLPZjMPhoKysDKvVKuEkxAEmLSix71w/Ym9hYYFkMqkMhkilUqRSKfL5vISTEAecBJTYd9LpNLOzs0xPTxONRjGZTHi9Xubm5ojH40QiEeLxOLlcbq8PVQixgySgxL6TTCYJhUL4fD5UKhUulwuDwUBxcTH5fJ5UKkU2m5Xh5UIccBJQ4q7l8/kdDYdEIkEsFmN1dRWLxUJRURE6nQ6bzYbRaESn06HVatFq5eMrxEEmZ7i4K4USRjsRUtlslmQySSwWI5lMolKpMBgMlJSUYDKZKC0tpaioCLPZjMFgkIAS4oCTM1zsG9FolGAwSDgcRqPRUFVVhd1ux263o1arKSoqori4GKPRKPOfhHgISECJu7KTXXtLS0v09/cTj8epra2loaGBsrIy9Ho9kUgEi8VCWVkZBoMBg8GwY8chhNgfJKDEvpDL5Zifn6evr490Oo3T6aS0tBS9Xk8ikSAcDpNMJjGbzZjNZvR6/V4fshBih0lAiT2Vy+VIJBLMzc3R19fHu+++y/LyMuFwmJmZGQwGA6urq0SjUZaWllhfX1daVUKIg00CSuypRCLB7Owsg4ODXL16le7ubmZnZ7l8+TLf+MY3AEilUhgMBsrLy2lsbKS2tlYGSAjxEJCzXOyp9fV1QqGQMgnXarVisVjIZrOEw2HS6TTJZBKLxUJJSQlqtVpG8AnxkJCzXOypeDxOOBxmfX2duro6amtryeVy5HI5stksa2trRCIRMpkMJpMJu92O0Wi8aaHCnZ6bJYTYfRJQYk9kMhklfNbW1tBqtXR2dnLkyBE8Hg8ajYZEIkEkEmF+fp5gMEgwGCQajaLX6zcNIwkpIQ4WCSix61KpFHNzc8zOzrKysoJGo6GmpoaGhgbq6+uVxxUm6Wo0GmW7XC6HwWBAr9fLPCghDjgJKLEjChUnNmvRJBIJ+vv7uXjxInq9nqNHj9LZ2YnD4dh0X7FYjEgkolQ1l3lQQjwcJKDEjtgYTNlslkwmQzweZ3JyksuXL3P27Fm8Xi8nT56ksrLypn3k83lmZ2eZmJhgZmaG1dVVALRaLaurq6RSKWW4uXTtCXHwSECJHZVIJAgGg8zNzeH3+/H5fIyPj3P27FnGx8fp7OwkGAySSCQwGo3KNnNzc0xMTDAyMkJ/fz8+n49YLIZGo6G8vJzFxUVCoRC1tbV4PB4sFssev1IhxHaTgBI7Kh6PMzExweXLl7ly5QpXrlxhYmKCeDwOQCgUYmFhgUAgQE1NDXAtoAYGBnjjjTfo6elheHiYhYUF0uk0AG63m0AgQDgc5uTJk5hMJgkoIQ4gCSixo/L5PPl8Xhk6ns/n0ev1ZLNZioqKqKmpwWq1ks1myeVyyvDxwjZqtVqpwZdIJNBqtUoJpMJQ9ML9LiHEwSIBJe7a3QznNplM1NTUoNPpqK6u5uTJk0SjUbLZLEajEa/XS3t7O6WlpcqoPKvVSnt7OwaDgWPHjrGyssL6+jqZTEYJLJvNhsvloqKigqKiop18uUKIPaLKy+WnuAvXf1y2ElIbW0+FfxdCTq1Wo9Fo0Gg0N028LbSqNm5T+EetViv/yCAJIQ4eCShxV7YaULcbZn4rqVSKRCJBPp9Hp9MpFSPu5tgkqIQ4OKSLT9yVrQbAvQTF2toaoVCIRCKBRqPBbDZTUlKCzWbbsecUQuxfElBiX8jn80QiEaampgiHw+TzeUwmE263m4aGBlwulwSQEA8ZCSix7e6lq02lUhEOh7ly5QojIyOsrq5iMBhobm4mk8mg1+spLS2VkBLiISIBJbZV4d7TvYRUMBiku7ubd999l2AwiE6nY25uDrvdroRTSUmJhJQQDwkJKLEvhMNhAoEACwsLLC0tkc1msVqtxONxhoaGMBgMrK2t0dTUhN1ul5AS4iEgASW21d0GRzKZVO49zc/Pk06ncTgc1NbW0tDQQDwep7+/n+HhYU6fPo1arUan01FSUnLDfu5l1KAQYn+TgBJ7an19ncnJSYaGhggGg5hMJhoaGnjyySc5cuQIQ0NDDAwMMD4+jk6no6amBpPJRFVVFWVlZXt9+EKIHSQBJfbU2toaw8PDXLlyhaWlJSoqKvB4PHR1ddHS0oJarebQoUPk83nW1tZ4++23CYfDHDt2jPb2dux2O1qtVlpOQhxAElDint2pW20r3W7RaJT+/n4uXLiAw+Hg0UcfpaOjg7a2NjweD3q9nlQqRW1tLRcvXuTMmTP09fURi8WUNaEcDoeyqKEQ4uCQgBJ7KhwO4/P58Pv9yr2njo4OKioqMBqNGI1GNBoNFouFUChEX18ffr+fwcFB3G63UizW7XZLK0qIA0YCSuy6XC5HMplkcXGR2dlZotEoarWakpISvF4vXq9XWRtKo9HgcDhoaGjg9OnT5PN5pqamCAaDfOMb38Dn85FKpVCr1djtdmlJCXGASECJe3anFsutfp/JZFhYWGBsbIyZmRlyuRwOh4Py8nLcbjcmk+mGx+v1esrLyzl9+jQVFRVcunSJr33ta5w9e5ZwOExZWZmyHpTL5dqeFyeE2HMSUGLX5XI5ZmdnuXr1KlNTU5hMJpqamqitrb1p+HiBwWDA6/ViNptJJpMMDg4SCARIJpP09/ejVquJxWK0t7fjdDrR6XS7/KqEENtNAkrsumw2y9TUFOfOnSMWi1FfX097ezsdHR2YzeZbblfoBmxsbOQDH/gAHo+HwcFB+vv7GRkZYX5+nnw+T2trK263G71ev4uvSgix3SSgxK5bW1vD5/MxMjKC0Wjk8ccf59ixY9TW1ir3nm5Fo9FQXl6OyWTC6/Wi1WoZHBxkbGwMs9mMx+NR1oiqqKjYpVckhNgJElBi1+RyORKJBH6/n8XFRRKJBEVFRbhcLqqrq3E6nWi1d/5I6vV6HA4HKpWKw4cPMzc3x9DQEOl0mnfeeUfZN4DT6ZSWlBAPKAkosWsikQizs7OMjo6yurqKxWLB5XLh8XhwuVx3dd+o0N139OhRysrK6O/v51vf+hYXLlxgfHwclUqF0Wgkn89TXl5+w+g+WdhQiAeDBJTYNcvLywwPDzM8PEwikcDr9VJbW4vL5bqnVo5er6eyshKbzYbFYmFiYoK+vj5WV1cZHR3FZrORzWYBbggpCSchHgwSUGLXhMNhLl26xPDwMEajka6uLmXU3VZt1voxm81UVlbynve8B41Gw9jYGIFAgJdffpnZ2VkSiQRdXV14PJ6bhrBvZf9CiL0hASV2TTAYVAq/PvLIIxw+fFipp3c3NguR0tJSHn30UaqqqnjnnXf48pe/THd3N7FYjJKSErRaLWq1mpqamtvu91b7F0LsPgkosSsWFxcJBoOEw2ESiQTFxcXU1dVRXV2N1Wq96/1tDBGdTofD4cBkMhGJROjq6mJtbQ2VSsXg4CC5XI50Og2A2+2+42hBIcTek4ASOyqZTLK0tKSs95TP5ykpKcHtdlNeXn7XS2bcqWVjNptpbGzkox/9KE1NTVy6dIm+vj6mpqZYXV0ln8/T1tZGTU3NDSF1fWHbfD4v60sJsQ9IQIkdlUgkmJ6eZnBwkGAwiNVqVcoa7cR6TiqVCo/HQ2lpKZWVlaRSKQYGBpibm2NgYEB5ToPBQG1t7Q3bXf/f0t0nxN6TgBI7KplMMjw8zPnz51ldXaWiooLq6mpqa2uV5TK2m1qtxmw24/V6OXLkCIuLiwwPDxOJRDh//jxLS0uk02nS6TTl5eU3dTEWwgmkBSXEXpKAEjuqsCDhpUuXsNvtPPXUUxw9epTa2lrUavUtt9uOkDCZTBw6dAibzUZvby/f+MY3ePfdd1lYWFCGnGezWZqamm6qgi7BJMTek4ASOyabzRIIBFhYWCAcDuN0OqmqqqKlpQWXy3XbgNoOWq0Wl8tFaWkpWq2W0dFRxsfHSaVSTExMYDKZUKlUGAwGKioqlLlYEk5C7A8SUGLb5XI5IpEI8/PzjI+PE41GMZlMOBwOKioqlFp6t7OdIaHX6/F6vTz11FNYrVaGh4eZnJzkrbfeYmlpiWQySUdHB3V1dTdVU5d7UELsHQkose2y2Szz8/P09PQwMjJCNpulvLyc6upqXC7XHcNpJ5SWlnLq1Clqamo4c+YM8/Pz9Pf3k06nlWXlDQbDTQEl4STE3pGAEtsun8/j9/u5fPkyPp8Po9GodO3ZbLY9OSatVktxcTF6vZ729naOHz+urCE1MjJCKpVCp9Oh0Wjwer33NDdLCLG9JKDEtsvlcvh8Pi5cuEAsFuPUqVM8/vjjtLa2UlRUdF/7vt/5SQaDQZkn1draypkzZzh37hzz8/Nks1lyuRxdXV20trbe0NKTrj4hdp8ElNh2kUiEhYUF/H4/arUap9NJZ2cn1dXVe9K9dz2VSoXT6cThcOByuVhaWqK/v5+FhQUmJiawWq2oVCqKiopoaGhQQknCSYjdJwEltk0ymSQSiTA+Ps7y8jI6nU6pGuF2u++79bSdCkF19OhRotEow8PDzM3N0d3dTTQaJZvNEo1GqampualbUlpTQuwOCSixbSKRCMPDwwwNDbG6uqqUMyovL6e4uPimx6ejIcJrWUCDxe6kaAvLQd0QDIllFlaSd7X9tc0WWEmCtsjJoUOHcLvdXL16lZdeeol3332XlZUV8vk8a2trZLNZSkpKbponJYTYeTs7EUU8VCKRCIODg/T19bG+vk5NTQ2tra14PJ4frPeUDnLxS7/Ke11G9MWu7weYi2K9Edd7f5UvXQySvu2zpAle/AL/prMYlcl23fbFdL74R5wJ3nrrtO9bfPqxYky2a6HptJZx+lP/Sqa6ma6uLjo6OqitrUWn0zEzM0N3dzc9PT2Mj48rK/SCdPcJsVskoMS2WV5epru7m4sXLypzi44fP055efm1B6RH+KsPNXLiZ/4754rfzy997ku89tprvPbal/jcL72f4nP/nZ850ciH/mrkFiGVZuQLz1N94hf465lqfuQ//gVfLWz/sx3MfPVTPFn9PF8Y2WTrpTf4jdMf4tX3/AMjqyny+RSrM9/k56Z/nmM/+WXyHg/PPvssP/mTP8mjjz5KMpnkypUrfPe73+W73/0u3d3drKys3LDL64vKCiF2QF6IbfKNb3wj//zzz+e9Xm/+Yx/7WP7rX/96fmZmJr+2tpbP5XL5sb84nQfyVZ/6Zj6Qunn7VOCb+U9VkYeu/B/1b/L785/JV0He8PRn85fDN/8+fPmz+acN5Kn6TP78hv1P/t9P53nhi/nZ7/9/LpfL53K5fD78z/mP0ZL/g+5r/x8MBvN/93d/l//whz+cb2hoyJ88eTL/8z//8/k/+ZM/yff09Nz3eySE2DppQYn7ksvlSCQSzMzMsLCwQCKRQK/XY7PZ8Hq9eDwezGYzKlUvX/2vbwMf5/O//X5cm9wv0rnez2//+c9joJff+cd3N/w2wD///mfw0cXvfO7XOLrJdCrb0f/AX/zJafD9Pv/XvwRu+N16dBFavFTctFEDx1uGmVtSKQMnWltbefzxxzlx4gRWq5Xx8XHOnz/PuXPn6O7uZmlp6T7eMSHEVklAHWD573dB5XewGyqVSuHz+ejv78fv9yuTcisrK7Hb7eh0hSQK4x8GTj9J283jJRTFzY9yHAitrN34i8Cb/P1LwAu/yU8euvVoiIYP/QofJck/fPFNro+oyqaTGL70Fb71/WxRqa4F0tIbf8UfT/04T7T/4LF1dXV85CMf4WMf+xitra0sLS1x5coVvvOd7/Dtb3+b3t5e1tfXb3jenXyPhXhYySg+cV+SySTT09P09PQwPz9PSUkJlZWVVFdXbzpy716le97iJeDkh0/c3Aq6nvsoz5+El156i570x3j/97Os+IU/4JWfPsIztZf5lf/2m3ywGmbe/Ev+v//tKo/9zet82P2DXZSUlCj/zM3NMTo6ytzcHNPT02g0GgwGAy6Xi+bmZmV0nwycEGL7SUAdYIWF93byyzOVSjE6Osq5c+fIZDI0NDTQ1tZGU1PThmXVq+k4Dbz9FoOrn6DhFtm1OnKOi8Dpjuobfj4zfRWAx1ua73BEzbQ8Drx7lekZoKHwcxtP/+EIE8//Ob/9h7/Fr05DzaOf5E8G/5EP1G2+/LvNZuPkyZOo1Wr6+/sZGhpidHSUbDYLXFvGvrm5GbfbfcN2O/2eC/GwkIA64Hb6i3JtbY2JiQl6e3txuVy8973v5ZFHHqG6uhqt9vqPVwMv/tbH+eUP/S2/9F/+DY//4dPcdBspMcDf/O5fkjR8lF95oeGGX830vw20UGG/8zHZK1qAt+m/IaAAjNR94Nf46w/82pZem06n4/Dhw9TW1lJXV0c8HufcuXMMDg6SyWRYXl5GrVbjcrluWpFXCHH/JKDEPYvH48zPz7O0tKQMjvB4PNTU1GC322/6orZ98HO88Zk+nv7MM9Se+4/82ef+Z56pKQVWmP7OP/M7/5//nX+dPcpn3vhLPrZpP56DUsudj8tS6gCG7/v1qdVq1Go1DoeD1tZWDh8+rJRxmpubA6CsrIzS0lKqq6uVMklCiO0hASXuSTgcxufzMT4+TjKZxOFwUFlZidvtpqys7BaLEdp47L+cZ+KFz/O/PvcpfvrR37/ht2Uf/lMunf15jjm3WBJiFzmdTp599lkqKio4e/Ys77zzDiMjI6hUKpLJJIcPH+bYsWN7Vq1diINIAkrctVwuRzAYpL+/n5GREfL5PLW1tdTX1+NwODZ07V0nHeTMZz/CD/+nc9DxI/zSb/8oH2lzAOvMXHiJL/7Rp3ik6r/yU3/zMn/9sWb2U0yZzWba29uprKwkl8sxOTnJ0NAQk5OTAKTTaex2O2VlZdKKEmKbSECJu6ZWq1lYWODSpUtMT09jtVqVUkF2+61uEq3y1n86zlOfDfL0n/bz8r9t54ahCc99lE/8xh/wrd84znM/cYh1xvnq5v18e6q4uJjW1lbe+973YrfbmZ6eZn5+nu7ubsxmM7FYjIaGBsrLyyWohLhPMg9K3LVcLsf8/DxXrlxheHgYk8nEsWPHOHTo0E0r0ioG/ppf/qwPw8e/wlc2hlOBzsX7/+DL/Cdnkpd+5QtcP1XXUuoELjLiv/Px+UcustUBFfeivr6ej3zkI/zYj/0YXV1dZLNZxsbG+M53vsPLL79Md3f3TfOkhBB3TwJK3LVwOEwwGCQUChGPxyktLaWxsZHq6mosls1HMQR636AXeOGHT9w8eu96usd49qeB0LfoGf/Bj2taTwNJRucDt9qy8EzMjyaBNqrcd3joPTKbzVRVVXHkyBG6urqora3FaDQqy9z39PQwNjZGPB7fmQMQ4iEhXXziJvlbrFqbTCYJh8NMTk6yuLiI0WjEarXi8XhwOp2bhlNhTlAsGgLAe4+DCNxtp2nhJV45N0D6Y+5b359KD3DuFaDlNG07FFAFJSUlHD9+HL1ez9WrV7l06RLz8/NcuHABtVrN/Pw8hw4dwuv17uyBCHFASUCJG9yuZE80GmVsbIzBwUGWl5dxOp3YbDYqKio2rRpx/b6cnnrgbb59dRDef+g2RxAgOAWg54YlmA49yU864TNf+jYX/+BpHrtFQq2+/iX+NAldv/RD3O5Z7sXG4NZqtcrACYfDwfLyMktLS0xOTpJMJllaWsJkMsn9KCHukXTxiS1bXV2lv7+fS5cuEYlEqK6upquri4qKig1VI24OuuKjz/MCMPwHf67Uw9tMuudv+d2XgK6Pcqr2+t+c5Mf+cxeEfpdf/8tbLMeRHuH//d2/JMkL/Ob/1L7ZI7ZVIXSKi4tpbGzk2LFjHD16FLvdzuLiIoODg1y8eJELFy4QCATIZDI7fkxCHCQSUOIGhSKqm13xLy0t0d3dzfnz51ldXaW9vZ1HH32U6urqO++n4sf5zGeqIPR5PvS+3+DV0eiGkEkwd+4L/MwHf51eqvjUH/0MGyOm/ZNf4DNV8PYn38fPfOEi169NmA5e5As/8z4++baBp//ic/z4DgwAvNX7AuB2u3n22Wf50R/9UU6dOoXRaMTn8/Hmm2/yT//0T7z11luEw+HtPyghDjDp4hNbkkgkCAaD+Hw+/H4/dXV1NDQ00N7eTmlp6Ra6sHSc/PRFvqv9CB/8z5/lhebPQlEFLV4rkGFpapxQEjA08FN//zJ/8PQm96p0J/n0218n8PSP8qe/cIJ/+GUnDbU2tJklpsZDJDFw9DNv8JVP7P4cKpPJRENDA263m/X1dXw+H8PDw8zMzBCNRgGorKykrKzsB6sLCyFuSwJK3FY2m2VlZQW/34/P5yObzWKz2fB4PHg8HhwOxy2qRmxC5+I9n36HwM9d5dWv/D1fe/klzk0DaDn6E7/JDz33I/zQh47RVHTreNFVfZDPD87w777zL3zpz/+Cfx6IgPYoP/E7P8bP/fjHON1UtKcTfK1WK+3t7cRiMdxuN729vQSDQQYGBigrKyMSidDa2kpNTY3clxLiDlR5WchG3EYymWRgYICenh6GhoYYGRkhk8nwnve8hxdffJH6+vq9PsR9J51OE41GGRwc5OWXX+Z73/se6+vr2Gw2mpqaeN/73sf73//+Ww7JF0JcIy0ocVupVIqZmRmuXr1KKBSipKQEj8dDQ0PDrSflPuR0Oh02m42Ojg5mZ2cJh8OMj48TDofJZDK4XC4qKipobGykqKjo1qWhhHjIyZkhbiuVSjE1NcXFixdRqVQ8/vjjnDx5kpaWFsxm814f3r5WVFTE8ePHKSoq4uLFi7zzzjuEQiEuXrxIKpXi0KFDnDhxgrq6ur0+VCH2JQkocVurq6v4/X4mJydxOBy43W66urrwer1ys/8ONBoNDQ0NeL1eTCYTi4uLrK+vMzs7SyQSYXl5mdLSUjweDyaTaa8PV4h9RwJKbCqZTLKyssL09DSRSASdTkdpaSkulwu32y1fqHehMMLv1KlTGAwGBgcHCQaDTExM8O6776JSqWhsbKS8vPym+WRCPMxkHpTYVDgcpq+vj/7+fpLJJDU1NTQ2NuJ2u6Vr7x54PB6effZZXnzxRZ544glcLheRSIQzZ87wla98hbfeeovl5eW9Pkwh9hVpQYlNLS4uKus95XI5GhsbaWlpwel0bn1YuVAUVhu22+1Eo1FCoRADAwMsLCywsrKC2Wymvr6eoqIiZXSfDEMXDzsJKLGpUCjE1atXGR8fp6amhq6uLtra2nA4HHt9aA80nU5Ha2urssDh+fPnmZ2dZXh4mG9+85ssLCxw6NAhmpqaJKDEQ08CStwklUoRDAYZHh7G5/PR3NxMV1cXra2tlJWV7fXhPfCqq6txOp24XC7S6TTJZJLFxUXefPNNZmZmyOfzeDweGcYvHnoSUEKRy+VIp9PMzc0RDAZZX19HrVZTVlZGZWUl5eXle32ID6yNldBNJhONjY0cOnSItbU1BgcHmZubY3Jykp6eHpxOJ42NjTgcDhmQIh5aElAPoVut9xSPx5mZmWFkZIRAIEBJSQmlpaVUVFTI1fx9UqlUN1d4Ly7mxIkT2O123G43Z8+eJRAIcOnSJRYXFzly5AjPPPMMzc3NW3qOW/1dhXhQSUA9ZG5X2WptbY2xsTGuXr3K4uKiclO/qqpKRu5tg43BodFolJapXq9nbW2N7u5upqam8Pl8RKNRKisrqaysvOP7LxXLxEEkAfWQ2exKvmB9fZ2RkRGuXLmCWq2moaGB5uZmampqMBgMu3ykDw+NRkNdXR0nT57EYDCQz+cZHx/H7/fzzjvvkM1maWlpoa6u7pZ/h9v9XYV4UElAPYRu1QW0urrK6OgoPT091NfXU19fz/Hjx6msrNx0aPn9dilJl9QPOJ1OHn/8cTweDzrdtXrsgUCAM2fOMDExwTPPPKNUnbgVeR/FQSMBJYBrradQKEQoFCIajaLT6aisrKS+vp7i4uJtvzqXq/1r8vk8KpUKtVpNcXEx7e3tLC0tsbKyAsD4+DiRSASHw0FzczM6nU4pMCvz0cRBJwH1kMvlcoTDYWZmZpiYmCCXy+F2u6moqMDpdFJcXAxs/9V5oUvqYb3qv1VA6/V6WltbUavV2Gw2tFotMzMzjI2N8dJLLzEyMsLJkyfp7OyUgBIHngTUQy6bzTI7O0t3dzfj4+MYDAZaW1tpbGy845yn+w0XCafN3wOv14vL5aKsrIxsNotGo2FqaorXX3+d0dFR9Ho9lZWVMmlaHHgSUA+5bDbL3NwcV69eJRAIYLVaqaqqorm5WYaW75BbDWi4vkWp1Wqpq6vj8OHDZDIZMpkMg4ODLCws0NPTg8PhoKmpifLycqWVK8RBIwH1kMtkMvh8Pi5fvkwymeTJJ5/kxIkTNDY2YrVa9/rwDqzNWk4bf2a1Wjly5Ag2m42ioiL0er1yMbGwsMDx48f5wAc+QHt7+24dthC7SgLqIbe8vMzCwgJ+vx+j0YjD4aC1tZXKykplNJnYG2q1GofDgd1uJ5/Pk0gkuHr1Kn19fczMzJDNZmloaMDj8VBaWopKpXpou03FwSQB9ZAqjNobGRlhaWkJi8WiVDRwOp0y72kPbRw8olKpqKmp4cSJExiNRlKpFCMjI4RCIb773e+ysrJCZ2cnzc3NFBUV7eGRC7G9JKAeUktLS/T09DAwMEA0GqWmpoaqqipl9dftcNDmOd1pcMN22WzfDoeD48ePY7fbUavVmEwmpqenOXPmDP39/Tz//POUlZVJQIkDRQLqIRUOh+nv76e/v59sNktjY6Ny01269vaP61tThZV5I5EIyWSSTCZDKBRienqagYEB6uvryeVyOJ1OioqKZBi6eOBJQB1AW2m5LC4u0tPTQ39/P+3t7Rw+fJjOzk68Xu+2HcdBaTkV7Ie5WwaDgaamJvR6PRaLBbVazfT0NDMzM8o8qaeeeopjx44d+IA6aC10cTMJqANmKxUaYrEYwWCQqakp/H4/R48epb29na6uLoxG4y4c5YNrt78Mb9XdV1ZWhtlsRq1W093dzdWrV/ne977H7OwsNpuN6upqPB7PQ/HlvdcXDWLnSEAdMLcrGppOp1ldXWV2dpaFhQXy+TwlJSW4XC7cbresO7SPbWwtaDQaqqqqiMViwLU6isvLy6ysrNDd3Y3ZbKa1tZXa2lpsNtueHfdOklA6+CSg9thOdFPcal/JZJLx8XH6+vrw+/04nU7cbje1tbVYLJZte35xb273WdjsZxaLhba2NqxWKyqVCr1ez/T0NFevXmViYoLHHnuMD3/4w5SVle3LL/OdbPlIq+pgkIDaQ7tdMDUejzMxMUF3dzcrKyt4PB68Xi91dXXStbePbPXLVaVSYbVaaW5uJpVKkclk0Gg0nD9/nunpaYxGIy0tLZSWluJwODAajWg0ml14BVtTeI25XI5sNksulyOXy910Xmz8/43vTWH+l1qtRqPRoNFoJJwOCAmoPbIX1bzX19cZGxvjypUrWCwWHnvsMY4ePUp9fb3Me9pH7vTlujHANBoN1dXVZDIZdDodmUyG4eFhotEor7/+Oj6fj+PHj3P48GFKS0t3+OjvXjAYZGxsDL/fTyQSYX19nWQyqYTVxtC6vhu7MFiktLQUr9dLY2PjLZeHEQ8eCag9sFdLTUQiEaanpxkdHaWhoYHKykqOHDmCy+WSoeX7wFav+jd7XFlZGZ2dnZSUlGA2m3G5XPT29vL2229z9epVkskkHo8Hq9WKVnv703635nsVBINBzp8/z6VLl5iYmCAYDBKLxZTjyOfzN/x3IaByuRwmkwm73U5NTQ1Hjx5Fr9dTUVGx48csdocE1EMgmUyysrKC3+9ndXUVuFbnrbCsxn7q9hF35/rWlMFgoKamhnQ6jUqlYnV1lcnJSRYXFxkaGuLSpUvE43EqKyux2Wz7ppWh0WjQ6/XKMft8PqU1aLVa0Wg0aLVapRsvn8+TTqdJp9Osr68D14rrejyeG4JNPPgkoPbAbvePB4NBhoaGGB4eRqVS0djYSGNjIw6HQ8LpAbfxs6TT6aiurkar1ZLNZslms0xOTjI7O8s//uM/0tnZyfPPP8+JEyduu3z8biovL+fJJ59UJhgbjUZl8nhdXR3FxcWYTCb0ej16vR64NmoxGAwqIxfT6bTSOpT7TweHBNQBl8vlmJ+fp7u7m8nJSQwGA11dXXR0dBzY4ccPO4vFQmNjI2q1Gq1WS3d3N2fOnOH8+fMsLi5SUVFBZWUlHo8HvV6/5y0pm82GzWajpqaGTCZDIpFAp9Nx+vRpjh8/jtvtxmKxYDQalRbUysoKc3NzzM7OMjQ0xPT0NKWlpTLY54CRgDrgMpkMc3Nz9PT0sLCwQH19PV1dXbS1te3LG+Zie6hUKjweD+3t7eTzecLhMOvr62QyGS5fvkw2m6Wzs5PW1lbcbveeHOPGYfWlpaWYzWa0Wi1msxmPx0N9fT1ms/mG7eLxOAAejweTyUQ8HicajWIyme54f008WOSvucP2uhxLMplkfn6e/v5+YrEYhw4d4siRIzQ0NMiChA+A+xmwYLFYlCkEGo0Gu93O8PAwly9fpru7m6eeegqj0ah0oe21RCLB+vo68XgcvV6PVqu9qUU0OjrK1NQUFouF+vp67Ha7svqwRqNBp9NJF98BIgG1w/bqZCncSA4EAgSDQSKRCHCtO6Wurm7PrprF7jKZTNTW1qJSqTAYDORyOUZGRvD5fNhsNtra2jCbzXi9XkpKSna1BbKx6kksFiOdTivBZDKZbuh+DIVCzMzMMD09jcPhoLa2lqKiIpxOJx6PB+Cm1pZ4sElAbdGDNjM9Fovh8/kYGRlheXkZu91OcXEx5eXlsiTDA+ReCtRufLxarcbj8ZDP50kmk0QiEQYGBkgkErz22mtMTEzwnve8h5MnT1JWVrYTL+OWVCoVqVSK9fV1wuEwer1eqSN4/XDxUCiE3+8nFouh1WoxGAyo1WrUajVOp5OWlhby+Tx2u/2BOk/F7UlAHVCrq6v09/fT29tLNBqlsbERr9crK+U+gO72C3ezx5tMJmpqapTWSXV1NW+//TZnz56lv78fnU5HZWWl0nLZTfF4nGAwSDAYVO6dlZeXK62hWCzG8PAwCwsLpNNpSkpKKCkpUUaglpaWYjKZyOfzMorvgJGA2qLChz4ejxOJRIhGoyQSCdLpNNls9obJhHDzvQO1Wo3BYMBms+FyuZThsjtlZWWF4eFh+vr6MBgMNDQ00NzcjNfrlYB6SGk0GsrLy8nn82g0GoLBIJOTk6yvrzMyMsK5c+dYWVmhrq4Ol8u1a919mUyGWCzG8vIywWCQQCBAJBJBo9Hg8Xjw+/1Ki8/r9dLQ0EBxcfENn+ONQ+YftB4PsTkJqLsUDoe5cOEC/f39zM/Ps7y8rIyOKoRU4Z9cLodKpVImIrpcLp544gleeOEFnE7njh7n8vIyQ0ND9Pb2KsuBHz16lIqKCjlxD5C7HYSj0+mUZTjW19dRq9WMj4/j9/v58pe/TGdnJy+88AJGo3HXiszm83my2SwrKysMDAxw8eJFYrEYDoeD4uJipVK70+nkmWeeobOzk9LS0tte5Mln/GCQgLpLa2trzMzMcOXKFQYGBpiZmVFms99KoZhlofXS3t6+owEVi8UIhULMzc0RCoXQarXU1dXR3NwsNfcOqLtpMRgMBiorK4FrgwrsdjuvvvoqV65cIRqNKpUmstkspaWlO97izmQyxONxlpeXmZubY2xsjGg0yujo6A2PW15e5uTJk5jNZoqLi3e8F0LsPQmou1RUVKQsux2Px1ldXUWlUuFwOJQ1lfR6PRqNRplUuL6+TigUIpfL4fP5+Na3vkUwGKS1tZWampptq+aQzWYJh8PMzMwwOzuLWq3G7XZTXl6Ow+GQcDrA7rbFoFarcblcSiXxYDCodFVfunSJaDTKI488wtGjRykvL9/Rybxra2v4/X5CoRAlJSWcOnWKZDKJyWRCpVLh8/nw+XwUFxdTVFREUVGRzHl6SMhf+C65XC6efPJJ6uvrsdlsGI1G1tfX6ezs5PDhwzgcDqxWKwaDAYPBQDabVSo5DA0NMTc3x7/8y79w6dIlXnzxRWWW/HZIp9NMTU1x5coVpqenKSsrw2az0dTUhNVq3ZbnEPvL/XRlGY1GvF6vskSF1+ulp6eHq1evcvXqVZaXlyktLcVisVBSUrJj3WaFmoHBYJC6ujre//7343K5cDgc5HI5zp07x3e+8x3y+Txut/um+0/i4JKA2qJCF4pWq6W4uJj29nZmZ2cZHh4mlUpx5MgRnnrqKeWEv14ikVCqTK+trTEyMkI4HKa9vZ0TJ07Q0NCwLVeo8Xicqakpenp6lKHllZWVNDQ0yIKEYlOF6t86nQ6LxUIikVDur46OjtLb24taraa2thaHw7Ej3WrRaFQZGNHW1sajjz5KU1OTch6p1WoCgQDRaBSHw7EvJhWL3fFQBdROVHXIZDLAtVn7drt90+46o9FIa2srWq2WeDzO0tISq6urLCwscOnSJdbW1qiurr7v2njRaJTx8XG6u7vR6XQ0NTVx/PhxGhsbZQKjuCW1Wo3dbiefzxOLxVhdXWVwcJD19XVefvllhoeHee9738vJkye3fXRfIpFgbW2NaDTK+vo6Wq1WqQpRYDablQUXi4qKbhmSMnLv4HmoAup+bPzgp1IpYrEYyWRSGUZ+uxO30PUXi8UIBoNMTEwQiUS4dOkSiUQCi8VyXwGVSCQIh8P4fD6mp6cpLy+nvLycrq4u3G63VC0Xt6XT6XC73Rw6dEiZM/Wtb32Ld999l9HRUWWNKY1Gg81mu+8utsIo12g0ytraGul0Gri2bMbGfefzeWw2G1ar9bbVLiScDh4JqHsUiURIJpOo1Wp0Oh16vX7TEwt+cOIYjUacTicul4vFxUWi0Sizs7OUlZWxtrZ2X8cyNzfH+Pg40WhUueJ0u927Op9FPNgKAycKo05nZ2eZm5tTVmI+c+YMS0tLdHR0UFFRcV/dfZlMhmg0yuLiIvF4XClrtLGFlM/nKS4upra2lmw2q1Rgh2vLyKytrWGxWCgrK5P7UgfQQ/XNtR1XWKlUSukzX19fV5ac1ul0N3UxbPZ8Go0Gq9WKxWJRJvxGo1HlCvJehEIhZRBGPp+nra2NlpYW3G63nLTirmi1WhwOB3Ct0HBZWRnDw8OMjo7yla98hfHxcfL5PEajEYfDcc+fr3Q6zeLiIn6/n3g8jtPpRKvVYrfbb7gfq1KpsNlsaLVa1Go15eXlwLWJ6JcvX2Z+fp66ujqOHj0qxY8PoIcqoLZDIpEgFAqxsLBAPB5Xuh2MRuOWVvJUq9VYLBYsFgtqtZq1tTUSiYRyL+tu5fN5AoEAfX19jI+PYzQalWUUdnoysDiYCpN59Xo9DoeDkpISJicnGRsbQ6VSUV9fT0lJCdls9p6roqTTaUKhELOzs8TjcRwOB6WlpTgcjpsu7ApDy6/n9/sZGhrC7/djMBjo7Oy8r9cs9icJqLuUTCaVgMpkMthsNuX+0lbo9XqKi4uVmfCrq6uk02lyudw9H09hxVyfz8eRI0eUgCpcCQtxtwotF7VaTSwW49FHH0Wj0ZBMJrlw4QKLi4ucOnWKkydP3lP5LJ1Op3RNa7Vaamtrqa6upqam5raj9MLhMGNjY4yOjrK0tKQssSEOJgmo79vqujuJRIJgMMj8/DwqlQqXy4XX66W4uPiG7W41YlCv12O1WpXJhvc7vLzQ3Tg9Pc3i4iJWq5W2tjaam5tldVFxX1QqFSUlJTQ3N6NSqaipqeHcuXOcO3eO3t5e4vE4NptNaWltdg/2VudSLpdTuvicTic2m43q6uo7XlRdvXpVuRdmNBpxu91KF6A4eOSvepfW19eZn59ndnYWt9uNw+GgvLz8poC6ncKoP51Oh9FoxGAw3PUou1QqRSQSYWZmhmAwSCaTwWQyYbfbb6gELcT9KCxnUZgnVaiXNz8/z/T0NFevXiWbzdLU1ER5efkNF0WF8yGXy5HL5UilUmQyGdbW1hgaGlK6pdfW1qiqqsJkMrG0tKQsVlioaVk4P2ZnZzlz5gxvv/02Op1OGaEqAXVwyV/1+7YaLrFYjOnpacbHx7FardjtdioqKiguLt7S/rLZLIlEglQqhUajoaioSBlkcTfi8Tijo6P09/cTCoXweDxYLBaqqqoknMQd3c2cIbVaTUlJCVVVVZw4cYJ0Os3IyAihUIjXXnuNkZERnn76aU6cOIHH47np85dOp4lGo8zNzdHT08OlS5cYHBxkfHyccDhMcXExU1NTSjmuwjpPhV6IwhIaKysr9Pb24vf7aW5u5uTJk1RWVioBKg4eCai7VFi7JhAIkE6nKSsru6t7PYWF2ZaWllCpVJSVlVFWVnbXdfJisRhDQ0NcunSJWCym9OFXV1fLnCdxW4Uv/rsJKY1GQ1lZmVLOq7+/n3/5l3/hzJkzzM7OUlRUpFykeb3eG1pS2WyWtbU15ufnOXv2LC+99BJzc3PK75eXl5menlaGt8MPLvCuP8ZsNqtsU5hcXFFRIS2oA0z+qneh0FWh1+sxm81YLJa7aq1ks1lCoRADAwNMTk5isVioqalRiszejWg0yuTkJCMjI9hsNg4fPkxXVxe1tbXSghK3da/TLTQaDXa7XRmB6vP5WFpaUnoVvve977G6usqxY8eorq5WLrr0er1SBaKyspKOjg7KysowGo1YrVZyudwt11WDG+8PZzIZLBYLx44do6GhQdmPTNI9mCSg7kI8HlcmMyaTSVwu1w0tnzuVUkomk8zMzHD+/Hmmp6c5duyYsrT1xlGAd7q6XVlZYWZmhqmpKUpLS2lubub48eMyck/sOKPRSH19Pc8995xSYPbixYuMjo6ysLCg3EPyer0YDAa0Wi02mw2VSoXVauX48eNKWaNCy+dW4bRRYdXcQp1Jq9V6Q8tLHCwSUFuQy+VIJBJEIhFlyelsNrvlki/5fJ50Os38/LwSKsFgUFnh1Ov1bqnVk8vlSCaTLC4uMj09TSAQYHV1VZltX5iomEqlbugiEWK7FJaR0Wg0VFdXo9PpWFtb49y5c4yPj6PVapXWUzabVZaR1+l0uFwuXC7XXr8E8QCRgNqCbDZLNBolFAqxurqqlGQxm81bHiY+Pj7OlStXGBsbI5/P43A4qKqqora2lvLy8i118eVyOWU/ly9fZnl5WalSPjs7S19fH2q1mng8fl+vV4iNCi36QjgV1pGKRqMkk0nsdjter5d4PM7Zs2dZXFxkaWmJRx55hMrKypsm2gqxFRJQW5DNZllaWmJ2dpZwOAxcq15uNBpvKsuymWg0Sm9vL2+//TY+nw+73Y7b7aatrY3q6upNJ/lutq90Os3w8LAyciqRSCiFYEdGRohEIqhUqvsqmyTEnahUKiWwMpkMsVhMWbJjYmKC7u5uJicnSaVSGAwG8vk8NTU1suSLuGsSUFuQz+cJBoOMjo6yvr5OUVERbrcbp9N5y8mwhZFLi4uLDA4OcvHiRaamptBoNLS3t9PU1ERLSwtlZWVbPo5EIoHf72dgYACfz4fb7cZut2M0GpXuR7jW0pKuPbGTCq2pwoWU1Woln8+zuLhILpcjHA4zPDxMSUmJ8rmsq6u7q8FAW508Lw4uCagt0Ol0zM3N0d3djclk4rHHHqO9vZ3a2tpbBlQ8Huc73/kOr7zyCqOjo6yurirrQp0+fZrOzk5qamruanjs+vo6y8vLBINBVldXqaysxGazUVRUhEqlIpVKASg3m+WkfrhtdpFyv5+J6wcCFf4pBFXhPlNzc7NSxuib3/wm8/PzSkhVVVXd1N13q8+qfH6FBNQWLC4uMjExwcDAAE6nk5MnT2KxWG453yifzzM7O8s777zDP/3TPxEOh3G5XBw5coTW1lbe85730NjYuOXnv35wRDQaJZfLKdWkKyoqsFgsN9Tyk9aTKNiJRTo3KgSV0WjEaDTicrkIBAL09vYyOTlJLpfD6XQqI+7q6uo2rTghxEYSUBtks1lSqRSrq6ssLi4qgw/efPNNRkdHWVxc5MyZM0SjUUpKStBoNGg0GlQqFdlsVinpEgqFmJqawuVy4fF4aG5u5siRIxw6dAiv13vDc96ptRONRpmZmWFkZIRYLKZUkD58+DBHjx7FbDaTSqXuueDsnWwMPPlCeTDsRAtqs/0XWlHX35daXFyktLSUsbExMpkM4+PjpNNpIpEImUyGmpoapeUvxK1IQG2QyWRYXV1VJh6++uqr9PT0EAgEgGvzj1ZWVnjjjTfQ6XQ3zcFIpVIkk0ksFgsNDQ388A//MA0NDdTX11NVVYXL5bqpW/BOJ2k4HObq1asMDAyQSCRobW2loqKC97znPRw7dkwJqOtn2m+Xnf6SEztnpy8sNruwKgwaisViHD16lOnpaa5cucL3vvc9hoaGWFxcRK1Wk81mqaurkzWcxG1JQG2Qz+fJZrMkk0nC4TAzMzMEAgHUajXFxcXKnKZAILDpxMJUKqUMI3c6nTz++OMcPnyYioqKm8oZbfU+UTgcZnBwkKGhISwWCy0tLbS2ttLZ2UlVVdW2vn4htkt9fT21tbXkcjn6+vqYnZ1lenqavr4+peehsbHxrquoiIeHBNQGGo0Gi8VCeXk5J0+eRKfTEQgElJVzCwGVTqc3DahMJkM2m6W0tJTDhw/T3t6Ox+PZNJwK/75dSGUyGUKhEMPDw4yNjXH06FHa29vp7OzE7XZv/xsgxDbRarU4nU46Ojp44YUXqKysZG5ujitXrjA/P08sFiOTyVBdXa1UmijYjXtnYv+TgNpAq9VitVoxmUy43W4ef/xxMpnMTV15txqIUPi5Wq1WbhpvVm2iMJeksM3GE7Hws5WVFYLBIH6/n8XFRUwmE01NTTQ1Nd3TSqZC7Ca9Xk9TUxM2m4329na+/vWv89prrzE1NYVarVYqTuj1epnMK24iAbWBSqVSuh9286TZGFLpdJpwOMzU1BRzc3Pk83lKSkpwOp23XWZb5o6I/USlUilLthcm8o6NjTE/P08gEODSpUvK0jMNDQ3KwAn57AqQgNpTG+vlXR9SyWSS4eFhLl++zMzMDE6nk5qaGmpra2/bZy8nttivysrKOHXqFCaTib6+PmXwxPz8vHLft6GhAafTecN2Mqfv4SUBtQ9c391XEIvFGB0d5dKlS8TjcSoqKqivr6e+vl669sQDyWQy0d7eTnl5OQ6Hg9nZWQYHB8lms9jtdqW6eaGLvUDC6eElAbVPbAyplZWVG9Z7qq2t5dixY9TV1d314oZC7AcqlQq9Xo/L5aKxsZHHH38cuDYR3ufzkUgkSCQSyhB0WYhQyF9/B9zPfaBcLsfa2hrBYBCfz8fc3BylpaU0NDRw7Nixu6rdJ8R+pFKp8Hq9vPDCC7S0tPC9732P119/nYmJCaLRKNlsllgsxqFDh6S77yEnAbXPFGqY+Xw+YrEYer0em82G1+vFZrPt9eEJsS2sVitWqxWn00k0GqW/v5+lpSUCgQA9PT3k83msVquycnWBhNPDRQJqB1y/HMHdbrewsMDly5cZGhpCp9PR0dFBa2vrHVtOMm9EPIiKiopoa2vjh3/4h6mpqWFoaIjBwUGWlpaUOYcNDQ2Ul5ffsJ2MVn04SEDtkHs5abLZLH6/n0uXLuH3+ykqKqKjo4POzs4tD3eXLhDxICkUj7Xb7TQ1NfFP//RPjI2NsbS0hMlkQq1Wk8vlsFqttzwH5DN/cElA7SPr6+vMzc0xOjrKysoKx48fp7Ozk+bmZoqLi7e0DzlRxYOmMKE9n8/T1dXF7Ows8/PzLC0t0d3dDVxb8qapqYnS0lK0Wu1NUzTEwSQBtU/kcjmWlpaYn59nZmaGbDZLWVkZ7e3t1NTU3HLdqQIJJvGgKykp4fTp09jtdnp6ejh79iw9PT2srKyQSCRYXl7m0KFDVFZW7vWhil0iAbUPJBIJVlZW8Pv9hEIhkskkZrMZh8NBVVUVZrN5rw9RiB1nNBppaWmhoqKCoqIiZmZmmJ6exufzYTKZyGazmM1mysrKlIETcmF2sElA7QNra2uMjIwwMDDA6uoqXq8Xl8tFeXm5VHoWDx2r1Up9fT1PPPEEJpOJqakpFhYWiMfjytprDQ0NuN3uTetcioNDAmofWFlZobe3l+7ubuLxOO3t7dTX11NRUSF97OKh5PF4eO6552hpaeH111/nlVdeYXh4mGw2SzqdZnV1lZMnT95Q0V8GSxw8ElD7wNLSEqOjo4yOjlJeXk5TUxMdHR14PB5lATghHiZGo5Hy8nJKSkoIBAIMDw+TTqdZXl6mr68PlUpFSUkJBoOBkpISKTB7QElA7bH19XWCwSBTU1PMzMzg9XqVgNq4Ro4QDxuz2UxHRwfpdJr+/n6uXLnC5OSkUnFiZWWFjo4OGhoabthOWlMHgwTUHilUbw4EAgQCAZaWlkgkEpjNZqqrq6moqNjrQxRiz+Xzeerq6nC73dTU1LC2tsbU1BTT09Oo1Wri8TgqlQqHw3HD8vESTgeDBNQeKUzKHR4exufzodfrqayspLKyUurtCfF9hfXZioqKqKur49ixY0QiEaanp5USSUajEYvFQktLC06nU6r9HyASUHskk8kwMTHB+fPn8fv9eDwe2traaGlpueOcJyEeRsXFxTzxxBNUVlZy4cIFXn/9daampkgmkyQSCQKBAI8++ih1dXU3bCfdfQ8uCag9Uuiq6OvrI5PJ0NLSovSlS0AJcbPrexlUKhXj4+MEAgEWFxfp6elR1pVyuVxSYPaAkIDaIysrK/h8PsbHxykrK6O8vJxDhw5RVVV1y4CSK0Ehrqmrq+OZZ56hrKyM/v5+Zmdn6e7uxmQykclkaG5uprq6Wrr7HnASULssk8kQi8UIBAIsLCwQDocpLi6mvLyc5ubm2xbELPxbQko87FwuF+973/tobGzEYrEQDAbx+/2cPXuWWCxGJBLBarXi8Xj2+lDFfZCA2mWrq6tMT08zOTnJ2toaRUVFuFwunE7nliuWC/Gw02q1FBcX09rais/nU1afjsfjDA8PYzQacTqdqFQqbDabVJx4QElA7bJgMMiVK1cYGhpCpVLR1dVFR0cHDofjpsdurCIhLSchbqTX6zl06BB6vZ6+vj7OnTvH5OQkly9fJpvNMj8/z7Fjx+jo6LhhO+mJeDBIQO2ywoqhk5OT2Gw2Ojs7t7QgoZxMQmyuqqqKiooKysvLWV1dZWFhgWAwyIULF1hZWcFgMFBZWSnzpB5AElC7KBaLMT8/z+joKAsLC3i9Xtrb22lpabkpoKQGnxBbp1arqa6u5pFHHiGZTDI8PMz8/DxjY2OUlZVhtVppaWnB6/VKAeYHiATULsjlcqTTaUKhEHNzc8zOzhKNRikuLqalpYXGxsZb9pHLlZ4QW2OxWHj00UepqKjgnXfe4bXXXmN6epoLFy6wtrbG3NwcTz/99E1lkcT+JQG1CwoljSYmJggEAuTzeaxWK06nk/Ly8pvCqdB6knASYus0Gg0OhwOHw0E8HmdiYoJYLEY0GmVgYACA8vJybDabVGt5QEhA7YL19XWl0GUwGKS2thaHw0FdXd0Nc56u79a7l3CSG7/iQbNTn9m6ujqeffZZ3G43PT09TE1NMTo6yhtvvMHy8rJy73erk+Lv5jjlPNw+ElC7YHV1ld7eXs6dO4der6ejo4OWlhYaGho2XU7jXsOp8G85OcSDYCc/s263m6effpr6+npMJpMyeOLcuXNKF7vdbqeqqmpbj1POw+0lAbULwuEw09PTTE9PU19fT21tLZ2dnXi9XjQazbY+l5wUQlwbNGEymaivr6ezs5NQKMTAwACzs7NMTU1hs9moqKggm83icrkwm83b+vxyHm4PCagdks/nyWazRCIRZdjr6uoqer2empoampqaKC4uvmGb+/lQywkhHjS78Zkt9FhYrVaqqqp48803GR4eZnBwkFwuh8/n4/Tp0xw5cmRbjlPOw+0lAbVDcrkcy8vL+Hw+/H4/6+vrGAwGbDabslKoEGLnuVwuXC4XVquVxcVFlpeXCQaDdHd3E4lEKC0tpaqqCrvdvteHKjaQgNoh+Xwev9/P5cuXGRsbw2g00tLSQn19vYSTEHugoqKCEydOoFar6evrY2Jigrm5OS5cuIBOp6O1tZXa2tqbejbE3pGA2iYbh4bncjmmpqY4f/48oVAIu91OXV0dHR0d297fLcRBdL+jWjeyWq2cOnWKqqoqnE4nmUyG6elpuru7CYVC+Hw+PvCBD9xUFmm3j1P8gATUNlGpVDd8UKPRKH6/n9HRUWW9p0OHDtHQ0CABJcQeUKvVFBUV0dLSQjQaZX5+nmw2y+zsLGNjY2i1WqqrqykpKcHhcKDT6bZ9EJO4OzePcRZ3ZePVUz6fV6pGFAZHpFIpXC4Xra2tVFdX31OplXw+L+WPxEOl0BrZqXlSzzzzDM8//zzt7e1otVpmZmb49re/zUsvvcTly5dJJpN7fpwPO2lBbbN4PM7i4iKzs7OEw2EymQwmkwmPx0NNTQ0Gg+G+9i/zK8TDZKc+63a7nccee0wZah6NRvH5fFy6dInZ2Vmy2SwVFRXU1NTs6XE+7CSg7sNmLZpIJMLIyAgDAwOsra3hdrupra3F5XLddzgJIbZXRUUFnZ2dRCIRDAYDo6OjBAIB+vv78Xq9rK+v4/V6ZWDTHpGAug8b7zvBtUm5ly9fpr+/n3Q6zeHDh2lubsbtdt/3cwkh7s2tBjJoNBo6OjooKSmhvLwcrVbLyMiIsvjh+Pg4zzzzDCdPnryr55HzdXtIQN2njR/ExcVFhoaGGB0dpaGhgY6ODtra2jZdkFAIsfPuNMqupKSEkpISdDodi4uLxONxpqen6evrIxaL4Xa7lfWmNitNdqvnlJC6fxJQ2ygSiRAIBJibmyMcDtPZ2UlTUxNNTU1SPVmIPbJZT8dmvF4vp06dwmw2c+nSJQYHBwmHw5w7d45kMklnZyft7e3YbLYtPae4fxJQ2yCTybC2tobf72dhYYFIJEIul6O0tJSamhoqKir2+hCFeKhtJTCsVivHjx+nsrKSoqIicrkc4+PjdHd3K5N6S0pKbhtQEkzbSwJqG6RSKfx+P8PDwywsLKDX63G73Xg8HunaE2Kfu747TqfTUVVVRWdnJ+FwmFwuR19fHz6fj5KSEnp6ejCbzbjdbsxm85a7/MS9kYDaBoUlps+dO8fCwgIVFRU4nU7q6+vR6/XK4+QGqhD7z2bnY01NDU899RR2ux2tVktvby+BQIBXX32V6elpTp8+zalTp7a8ntR2edi+QySgtsHa2hqjo6N0d3ej1+vp6uqio6ODuro6ucIS4gFUXFxMV1cXNpuNZDJJKpVibGyMK1euMDMzg8FgoK6ujurq6l07podxor4E1DYIh8PMzc3h9/uprKyksrKS9vZ2vF7vTcu5CyH2r42j7zweD52dnSQSCQwGA729vaytrTEwMMAbb7xBW1sbdXV1OJ3OHT+26wd7PCyjBB+qgNrO5nGhpFFhvadQKEQsFkOv11NVVUVjYyNFRUU3bPMwfKCE2M/uNOR84880Go0ycs/lcmEymRgZGWF8fJz5+Xk6Ojr44Ac/yBNPPLErdfsKx3d96bOD/L3yUAXUdsrn8ywvLysr5a6vr2OxWHA4HLjd7pvCSQjxYDKbzdTX16NWq1lfXyefz3PlyhWGh4dJJBLU1dVRWVlJeXk5BoNBCsxuIwmoe6RWq5mfn+fixYuMjIyg1Wppb2+npaWF0tLSvT48IcQmttpNtlnrxO12c/ToUQwGA/l8nlwuRyKR4Ny5c8RiMY4cOcKxY8d2ZeRu4XUc5NYTPGQBtZ1/zHw+j8/n491332VhYQGv10tbWxsdHR3SehJiH9vYTbaVrj4Ak8lER0cHdrsdjUaDWq1mZGSEvr4+RkdHWVpawuVy7drUkoMeTiDLbdyz5eVl5ubmmJmZYWlpibKyMtrb22loaMBqtd5iqwRzV7/KH/27FznV2kprayunXvx3/NFX+wmm7/ycick3+cLv/jtePHVt29bnf47f/cKbjEZvv3E6eJEvffr7z3nqRT79hTeZTNz9axbiILrT6LiNv/d4PLS1tXH06FGam5sxm80sLy8zNjbG5cuXlQUQ0+ktnNTitiSg7mDjhzOdTrO8vMzMzAxzc3OsrKwA15r/LS0t1NTUbL4gYWKAL32smYojL/Kpz7+OH4AMky9/nk+92El122/wxtKtjmKJs7/3GK76p/mF//x5Xr+2MZkrf89//oWnaa54kt87u/nG6ZEv8Hz1E/yX3uP82h//MX/8a08x95cfpq3zds8nxMGnUqk2HXSw2eM2qq6u5vHHH+fpp5/m8ccfp7GxkZWVFb7xjW/wxS9+kXfffZe1tbUdPf6HwUPVxbcd1tbW8Pl8jI6Osri4iFqtprS0lPLycioqKpSJezd2HYzzVz90jP/lDWj45D/zrf/2I9QV5velg1z8o5/giV//LC/8/COMf/Vj3FgYKc3IF36Up//TOfTP/xFn/+9f5FGvsjHBi3/K//zMr/Gfnv5RXD2v8Ynm64e1D/CnP/oLpD43zOC/bebab57juR97gSeeP8TP/tlPMPPpYzv2XglxUFksFhobG7FareRyOfR6PVeuXKG3t5epqSmKi4upra3FYDBgMBhkPuQ9knftLsViMQYHB+nu7iYSiVBZWUlbWxter/emlXILV2RL//rbfPKNJM5f+jrvfv66cALQuTj+H77CVz5uIPnKn/PNsQ1P6P9nfvOX3yBZ9Rle//qvXhdOADpcx3+Vr3/vs3Ql3+CXf+c1bmgUrU/T03uan3t/IZwKmzXz4//+x/G9fJnx+35HhHiwbfVezmatLIfDQVtbG4888gidnZ2Ul5cDMDQ0xGuvvcZbb72F3+/f9mN+WEgL6i5FIhF6enq4ePEiRUVFdHV10draitfrvaHV9IMP/QBf/PTfkuQF/vDT72fzMpM2nv//hYj/P0VsLJzif/NveCkJL/z+Jzh5izm/ukO/yO99/Nf50N9+nld+/4P8dKEJZrZgM4wwFUxDw/Ubpxnvexfqf5ydn14oxP53u5C63dwprVZLfX09xcXFGI1GdDodw8PDTE9PMzU1xcjICBqNRhYsvUfSgrqDzdZ7mpqaYmZmBrVaTVNTEx0dHbhcrs13MP4O/9ALfPyX+NBtiprrim4OJwjwva+8AnyUn33f7SqiF3Pihz8KvMJXvhe47ueP8Yk/6eS/fuxn+MK5ORIAiWWGvvpJPvIf1/nMLz9P8W32KoS4M51OR3l5OR0dHTzyyCO0tbWh1+uZnZ1lcHCQgYEBRkZGWFpaIpVK7fXhPlCkBbUFuVyObDZLOBxmfn6epaUlkskkRUVF1NbWUldXh9Vq3fQqbHXwLd4Gnn668x7CYJhLrwAtp2m7w4K87rbTtPASr1waho8VHqyj+RNf4Sy/wo+9t4JfSF77qaHhp/iTy9184qiUYRLiTrY658jlcnHo0CEMBgOpVAqdTkcymeTtt99mYWGBEydO8OijjyrdgOLOJKC2IJPJEAqFmJqaYnZ2llQqhcViwel04vV6KSkpueW2U0PvAnC4thZIEx19my//1R/zF/88QIQS2p/9KT7+iz/GC4e9N7egAvOMJgGv/c7hVmzHCwyPzhMAfpBnNo5+4kuM/eyfEQqvkdVYsDuLkGgSYuu2cp/KaDTS0NBAcXExarUas9lMX18fg4OD9Pf3s76+jtfrpaysbNeroD+opItvC7LZLD6fj56eHnw+HyaTifr6eqqqqm4bTgBh/zBwmo7qJc7+9imczU/zy1/oIQIQG+Srn/8ULx6pwPWBLzCwcW5SLEoI4HAttXc6yNpaDgOEosQ2+72uCKfHg0fCSYhttXHghNPppLm5maNHj9La2ordbieTyTA9Pc358+c5d+4c09PT0t23BQ99C2orBRczmQzj4+OcPXuW1dVVPB4P9fX1NDc3b/nGZ/+f/yi//PdN/MmFV/nZ4y4lJNLBi/zNr7zIL/zDL3DsFz3M/T8fvMVACiHEfrTZd4fX60Wv12MymdDpdAwODhIKhfja177G1atX+cAHPsAzzzyD3W6/7+c/yEVjH/qAKrhdH/Pa2hrT09MMDQ1hNBo5fPgwR48epba2dovLabzN5/74af6i54sb5imBznWcT3zxdTL+Fj75t/8L/+2Tfn7nMWnjCPEgMxqNVFZWKnOgLBYLb731FpcuXWJ+fp7y8nKlAK3FYrlhYVPxA9LF9323CqdUKsXCwgKBQICVlRVUKhXl5eU0NTUpV0lb4fwPv8vPNt9qnHgzP/VbHwdC/I9vXrnHVyCE2Gsbu/tsNhtNTU0cPXqUI0eO0NTUhNlsZnBwkK9//et85zvfwe/3P5SLEW7FA9WC2omm7O32tbq6SiAQYGpqSgmnkpISvF4v1dXVd3XV82NPHb/tvZ/itic5zd/ydvckAU5yw6C98BqrcPuBEqtrhAH0GqTYvxB7Y7P1pCorK5VJ/EajkYGBAYaHhxkeHmZqagqr1YrT6bxNDc+7e86D5IEKqILdKjO/vLzMyMgIo6OjJBIJXC4XlZWVuFyuLYeTvaIFGL7zAxsaOAG8/f1BDu7rfzY8ywJ3CKiF2WvPspUBFUKIXaNSqXA4HLS0tJDNZlGr1SwsLDA3N8fk5CS9vb0UFRVRXV2N3W6/qSLNw+yBCqiNa7kUfrZTgsEgFy9eZGxsDLVazaFDh+js7LyrG5u1rSeBYS6OT8L7m2/9wKkprgI4i/jBdVQdh54G3niHkdV/S/NtEmp15B3eBZ4+VLflYxNC7B673U5bWxtarZZMJkNZWRkrKyu8+eabjIyM8MQTT/De976X6urqHT+WB2VgxQN3D2o339CFhQV6e3sZGRnBZDLxyCOPcPjw4btakPBa1x28+y8XuF1FrvT8OH2A80jddd17tTzyQy3AP/DtS7cr3b/K2y/9A9DFR0/VbvnYhBC7I5/PYzAYqKio4PDhw7zvfe/jueeeo7KykqGhIf71X/+V7373u0xMTBAOh8lkMrt2XPvZAxdQ8IMy+TsZVktLSwQCARYWFohGo5SUlNDU1ERdXd3dLUjY8AKffAF45f/k73puFTKrfO8f/gchnPzic0dv+M2hH/olukjyp3/8z7cOOP/X+e9/mYQXfpP/qX3rhyaE2HkbQ6CsrIz6+nq6urpob2+nuroas9mM3+/nrbfe4q233mJiYoJkMrljx7Qb36HbYd8H1G4nfCqVIhwOMz09zcLCAvF4HJ1Oh9PppKamhvLy8rucBV7Bj3/mM1TRy69/8Df41k0rE6bx/eu/52c/F8Lw9P/Jv9k4xLz9Z/i/fslJ8qWf5eN/NsBN6wwmBvizj/88r1DFr//Wh7hdxT4hxN7YGAQ2m43GxkYeffRRPvjBD/LUU0+RTCb52te+xpe+9CUuXrxIJBK57+e93TpXD4J9fw+q8Ict1MPL5XJ3fNMLgyhUKpWyNLNard7S1UI8Hsfn8zEyMkIoFMJoNGI2m3G73Tid91b7W3fy07z+F9/l0C98jueqv84H//1v8fPvrca8PsO/fu7T/I/vhkhWfYrvfOXf0HDT1jbe/398mV9/7QU++8kOXH/zs/wfv/JTtDlgcfD/5b//b3/DuaiBp//idX73SSn9KsR+s9n3jlqtxmaz0dbWhk6no7i4mOXlZfr6+ohGozQ3N1NXV0cul6OkpOSeB05sXJAxn8/f8F16/WNUKpXyXanVXouGXC6nfOdubc7n9lLlH5B4nZ+fZ2xsjLm5OSKRCOvr66TTaeVNvv6NzGQy6HQ6Kisr6ezsVLrltvIGLyws8Oabb3L58mWCwSC5XI6qqiqee+45nnrqqft4BWmCF/+G3/y5f89f90d/8GODk6d+8Q/5w8/8NEdvV0IiMcmr//u/5RN/8k38121e1PEj/NYf/hG//v4qKWEkxANodXWVyclJ3njjDc6cOcPKygpOp5P6+no6Ozs5duwYtbW1W+q5ud0I51gsxvz8PJOTk4yNjREKhchkMuj1egwGgzLcvb29nY6ODuDaQLHJyUni8Tjvfe97t/Nlb8m+b0EVBINBzp07x6VLl5iamiIUCrG2tqb8QQoBlcvliMfjGI1GHnnkEV588UX0ej1VVVVKEcfbKSxIeOnSJUpLS5WFyO5/ZI0O1/FP8Fd9n+B/REOE17KAgVJP2SbLbGzCWMcHfu81Zn8vwfLCCklAY7HjLJJYEuJBVlxcTHNzMyqVCqfTSU9PD+fPn6e3t5eZmRlMJpMSHrcrrXb9COfNQmpxcZGhoSHeeustvv3tbzMyMkIqlcJsNlNcXIzb7VaGwtfX12MymfD5fJw7d45IJCIBdTtqtVppAUUiEXw+H+l0GpVKhdlsRqfTodPplK68ZDJJIBCgt7cXo9FIPB6nsbERm+3WzZR8Pk8gEGBycpLx8XEaGhowmUwUFRWRTqcJBoMYDAaliXzvVN9vQmeJLS5uXtz1drTaa3+4ZITFnbuPKoTYYYXvrUJQeDwefD4fyWSSmZkZ9Ho9NTU1aLVampqaqKiouOUgrY3LgmSzWWKxGMvLy4RCIebn55menmZ5eZlcLqd8n2q1WrRaLRqNhnQ6zdzcHJcvX8ZsNjM8PEwgEGBtbW3X3pPrPTAB5fV6eeqpp3C5XJSVlWG1WonH47jdbrxeL263G4fDgUajIRKJsLi4SDgcZmhoiJmZGSVcjEYjJpPphiuMQqsrGAwyNjaGz+cjEAhQXFxMKBTC7/cTiUTQaDRoNBqlK1EIIe7H9d8pqVRKuX1hsVgoKSlhcXGRb37zm0xPT/Pkk09y+vRpqqurMZlMyn2i613/vRaPxzlz5gyvv/46CwsLFBUVUVZWRmVlJU1NTeh0OuW+VKGwbT6fZ2Fhgb/6q78imUxSWlqK3W7HbDbv5tuieGACym63Y7fbqa2tBa6NtstkMrS1tdHR0UFDQwNVVVXo9XpWVlYYHx/n9ddf54tf/KJyJXL06FEqKyvR6XRotdobBmCsrKzg8/mYm5sjFouRzWZJJpMsLS0xOzuLWq1WyuNLOAkhtlshqNbW1igtLaWiogK/309fXx+BQECpNlFUVHTDQIbNFILmnXfe4e///u9ZWlri0KFDnD59mqNHj/LYY48p36WZTEa5PTI7O8vf/d3f8a1vfYtgMMhTTz1FbW0tZWVlu/Qu3GjfB9TG/tTS0lK0Wi2pVAqNRoPb7aa5uZna2lqlf9btdqNWq7l69SrJZJJkMkk4HCYej5PJZG4KmEILKhKJkE6nKSsrU8qO5HI5YrEYuVyOZDIp4SSE2DbXV3Qo3KLI5XJYLBZcLpcyYddsNrO+vs7c3Jyy4KHFYtl0n4UL9N7eXsbGxshms5SVlVFXV0dbWxvNzc1UVVUpj78+6DweDw6Hg9LSUhKJBEVFRVit1nuuE3i/9n1AbbzZF4/HWVxcZG5ujuLiYgwGAw6H46abh2azGYvFoox8udMw83Q6TTqdxmw209zcjN1uR6fTYTKZSKfTu1b/Twjx8Lj+O6Uw9FulUlFcXIzRaFQm9ep0OoqKiggGg5SWluJwOHA6nZt+J/n9fl577TUuXLhAKBSivb2d2tpannnmGU6fPo3X60Wj2byktMFgoL6+nve85z2EQiFaWlooLS2VLr6tWl1dZW1tTeluM5vNN61qm8lkWFlZUW48Fv7QhcXDNo7kK8yXMplMuFwuTCaT0toqkIASQuyk63tnCvOR4AchVpg+c/0cpo0Kq39funSJK1eu4Ha7OXz4MMeOHePRRx+lsbHxtseg1WpxuVy0t7eztLSEx+OhpKRkz9aremACKpPJEI/HCYfDaLVavF6v8s/GvtixsTGuXLnCwMAAZrOZ1tZWmpqacLlcWK3Wmx6vVqspLS2ltrYWp9NJOp0mm83e0DcrhBC74foJs9eXIyr05JSVld10UV64BbGwsMDU1BSzs7NEo1Ha29t55JFHeOSRR/B6vTc918YL70JXo9lsJp1OK118ElB3sL6+TjAYJBgMKosGer3em5qeqVSKwcFBzpw5g9/vVyoId3R04Ha7N32jC7O6i4uLb6pUIfechBC77frQuP47qNDbo9PpbnhMKpVibm6OkZERpqamWFtbw2QyUVNTw5EjR+jo6LjjqL/Cc6nVagwGg3KbxGq13nb+1U56YAIqnU4TjUZZXl5mZWWFpaUlMpkMly9fJpFIYLVayWazhMNh5ubmlMm5NptNGVZZXHxzKaDCFURhLoAQQjxokskkPp+PgYEB5ufnMRqNVFVVUVtbu2kv0+1YLBY8Hg/xeFwZMLEXZY7gAQqoQgmj1dVVJiYmOHfuHGtra5w7dw6Xy6U8xm63097ezpNPPonT6VRmYdvt9k1Lhch9JSHEgy4ejzM+Pk53dzfhcJjq6mqqqqpoamq66zp+NpsNjUZDJpPBZDJhMpluOahipz0wAZXJZFhfXycSibC0tKQsgzE3N3fD48rLyykvL6e6uprm5mbMZrO0jIQQ92xjF9t+FI/HmZmZYWhoCK1WyyOPPMKhQ4eoqqq6q+8/lUpFUVHR3S0ptIMemG/utbU15ubmCIVClJaW8uijj5JIJNDr9ajVasLhMOFwGIvFgs/n48033yQcDtPV1bXpzUEhhNiK61fy3q/W1tYIhULKPCmz2YzL5aKkpGTLrZ/9OFL5gQmoSCTC5OQkwWCQ2tpa3ve+9+F0OikrK0OlUrGwsMDIyAjj4+P09/dz9epVurq6+Mmf/EmeeuopZSb0Xv0BduIqTPYp+5R97s4+7/a5dqPVVQiUdDpNLBYjEomwsrKilEEym80YDIYtP/9+Cyd4gAIqGo0SCARYXV2lvb2dU6dO0djYqNy8W19fp6amBqvVSm9vL0NDQySTSU6cOEFra6sy6Va6+4QQB0U+nyedTpNMJonH48TjcdLpNGq1Gr1ef0NJtwfRvl9RFyCRSLC2tsbq6irr6+totVpsNtsNI0vMZjONjY20t7dTX19PaWkpGo2GUCjE9PQ0oVCIdPpWS67vvOsXBbve/XQd7PY+73W/sk/Zp+xza/vc7Pe32ub6qTCFFRYK/339XKoH2b4++nw+TzabJRqNKgsU5vN5ZR7ARsXFxdTU1NDQ0EBNTQ0lJSWsra0xPz+vDEvfS7cKku0IlN3Y5/2QfT54+9wOss+tu9u/4caVcDUajfLfhe/OB73IwL7u78pkMkSjURYXF1lfX1eGOxYXF99yZrPZbEatVitVIAr/3u83ObfLTtzQlX0+nPsUu+tOf8PNBjEUKj8YjUbMZrOyNl4ul1Mq4txNUBZWcUgmry00ZzQaMRqNe9ZNuK8DKp1Os7i4iN/vJ5FI4HQ60el02O32WzZd4/E4y8vLBAIBrFYrOp2O0tJSLBbLHUezXF9ZeDfs1PPsh6tB2afsU/Z59/vc7PeFnxW6+jZ2H+p0OqxWK6WlpUrN0Ww2e8P9qOvdbrReKpVicXGRYDAI/GDajgTUJlKpFKFQiNnZWeLxOE6nU1lAa7MujvX1dWZnZ1lYWCASiWA0GikqKsLhcFBcXHzbgJKrTyHEg2CzgLFarbhcLqVSeWGOqNPpxOVy3TCvabOwSSaTxGIxVldXWVxcZGlpCZ1Oh81m29Pvxn0dUIXFB+fm5tBqtdTW1lJdXU1NTc1Ns6MDgQDd3d2cPXuWoaEhZekMp9OJx+NR1pG6FekiEULsZ7f7jjKZTNTW1tLe3s7s7CyDg4MsLi6SSCQoKSmhsbHxlt9/q6ur+P1+RkZGCIVCWCwWvF6vMo9qL0cB7uuAyuVyhMNh/H4/TqcTm81GdXU1DofjpsdOTk7y6quv8vbbbzM+Pq4sZlhRUYHX671pwa3NuvMe5OGYQogH093MmbrV741GIw0NDSwvL7O+vs6ZM2fo7u4GoLa2lqKiIioqKm7aLplMEgwGGRwc5Lvf/S7z8/McO3aMw4cP09LSsuejAPdVQKVSKWV5i/X1dYaGhhgaGmJqaopkMonf76eoqIjV1VX0ej1GoxG9Xs/y8jJXr16lv7+fQCBASUkJLS0tHDlyhKqqqn1TtkMIIXaCXq+noqKC9fV1QqEQg4ODzM7OEggE6O3tJZvNUlVVpdQkzeVyJBIJotEo4XCYUChEIpFArVZjsVgoLS3d83ACUOX3Ub+W3+8nFosxNDTE1atXGR4eZmxsjHA4THFxMbW1tcrquRqNRhnnn0ql8Pv9+Hw+dDod7e3tHD16lLa2Ntra2vB4PLty/DtRKkT2KfuUfT48+7xXhUERS0tLDA0NceHCBUZHR1lZWSGdTqPT6ZR1pFQqFblcDq1WS1FRESUlJRiNRrRaLcXFxTQ2NtLW1rZnq+heb18FVE9PD6FQiFdeeYWvfvWrTExMACizoQuhBChvcjabVZZD9ng8HDp0iA9+8IM8++yz2Gy2XTv2g1TWRfYp+5R97v4+t0Mul2N1dZWFhQUGBgZ49dVXefnll/H7/ahUKsxmM5lMhkwmQ2lpKU1NTTesuNva2rpnixNuZl918aXTaRKJBEtLS8zOzio/L0ywvVUliFQqRTqdxul0YjQasdvtN4XTfrraEUKInVBYHTyfzxMKhdBqtUQiEeDad+Da2pry2HA4TGlpKbFYDOCm+aW7Pe1mM/uqBSWEEEIU7P1dMCGEEGITElBCCCH2JQkoIYQQ+5IElBBCiH1JAkoIIcS+JAElhBBiX5KAEkIIsS9JQAkhhNiXJKCEEELsSxJQQggh9iUJKCGEEPuSBJQQQoh9SQJKCCHEviQBJYQQYl+SgBJCCLEvSUAJIYTYlySghBBC7EsSUEIIIfYlCSghhBD7kgSUEEKIfUkCSgghxL4kASWEEGJfkoASQgixL0lACSGE2JckoIQQQuxLElBCCCH2JQkoIYQQ+5IElBBCiH1JAkoIIcS+JAElhBBiX/r/A15z9zmwIKx9AAAAAElFTkSuQmCC
As shown in the figure, DE parallel BC, then the size of angle CED is () Choices: A:40° B:60° C:120° D:140°
D
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
4
iVBORw0KGgoAAAANSUhEUgAAA8QAAAKwCAYAAABeaLaUAADbU0lEQVR4nOzdd3gUVd/G8W96gxBKQodQQjX0DoKKglIExIIdsNcHG5bnVbAXFPVRwQ7YURQEBBQRpJfQm/TQAiSUAIEQQjLvH+vM7ia7m00H9v5c117Z7Jwzc3Z2dnbO/E7xMwzDQERERERERMTH+Jd2AURERERERERKgyrEIiIiIiIi4pNUIRYRERERERGfpAqxiIiIiIiI+CRViEVERERERMQnqUIsIiIiIiIiPkkVYhEREREREfFJqhCLiIiIiIiIT1KFWERERERERHySKsQiIiIiIiLik1QhFhEREREREZ+kCrGIiIiIiIj4JFWIRURERERExCepQiwiIiIiIiI+SRViERERERER8UmqEIuIiIiIiIhPUoVYREREREREfJIqxCIiIiIiIuKTVCEWERERERERn6QKsQuDBw/Gz8+P2NjY0i7KReGyyy7Dz8+Pyy67rLSL4rULscxZWVm8//77tGvXjsjISPz8/PDz86N///4AzJs3z3pt3rx5pVpWkfNRbGwsfn5+DB48ONeyxMRE6/szfvz4Ytm+vqNFS7/lno0cOdI63i5m+l45+/rrr+natSvly5fH398fPz8/WrRoUdrFKlXm8TFy5MjSLor8q6Q/kyKpEC9cuNAquJ+fH/Pnzy+K1YpIPtx8880MGzaMFStWcPLkydIujs8yb6bkfISHh1O1alWaNm3KTTfdxKhRo9i6datX6xw/frzLdXp6vPfee8X7RuW85FjJyfkICAggKiqK1q1b88QTT7Bt27Z8rfvUqVN8+eWX3HTTTTRo0IDy5csTHBxMTEwMHTt25PHHH2fp0qXF9M5EpLCGDx/OHXfcwYIFC0hNTcUwjNIukrhhGAbTpk3j/vvvJz4+npiYGIKCgqhQoQLx8fEMHTqUKVOmkJmZ6TK/u2sRT4/U1FSndTjeCHb1W1K7dm06dOjAQw89xNdff01aWloJ7JniUSQV4q+++srj/yLng4v5bvjixYv56aefAOjduzezZ89m3bp1rF+/nv/973+lXDoBSE9P5+DBg2zatIkff/yR4cOH06hRI7p3787atWtLu3jiA7Kzszl+/DirVq1i9OjRXHLJJXzyySde5f3888+pV68ed911Fz/++CPbtm0jNTWVzMxMUlJSWLp0Ke+++y4dO3akXbt2LF68uFjeg+PNocTExGLZxoVM0VBxZ+/evYwePRqADh06MH36dNauXcv69ev5+eefS7l04mjhwoW0bNmSa6+9lk8++YQNGzaQkpLCuXPnOHbsGBs2bGDcuHEMGDCA2NjYYmu15I75W7Jnzx6WLVvGmDFjuOOOO6hWrRqPP/44p06dKtHyFIXAwq4gIyPDuhAvU6YMaWlp/PTTT3zwwQeEhYUVuoBy4dOPcvH7888/AQgICOC7774jMjIyV5rLLrtMd4NL2Pr1663n586dIzU1lX379rF06VJ+/vlnDh48yF9//UW7du344IMPuPfee/Nc5yuvvEK/fv3yTFe1atVClV0ufF9++SVt27a1/s/KyuLAgQPMnDmTsWPHcvbsWR544AHi4uK44oorXK4jOzubhx9+mLFjxwLg7+/PtddeS+/evalfvz6RkZGkpKSwfv16fv31VxYuXMiKFSt46623mDJlSkm8TRGP9NtnM3fuXLKysgDbDa6mTZuWconEla+//pq77rrLivy2b9+egQMH0qJFCypWrMjx48fZsWMHM2bM4LfffiMpKYlhw4a57OpjcrwW8cTVtaOpX79+vPLKK9b/p0+fJjU1lU2bNvH3338zffp0Tp48ybvvvstvv/3G9OnTiYuL8+5Nu1DS39lCV4h//fVXK8T+/vvvc9ddd3HixAl+/fVXBg0aVNjVi4gX9u/fD0DlypU9ntCkZF1yySUuX7/tttt45513eP/99/nvf/9rVUyqVatGnz59PK6zevXqbtcr4qhOnTq5jpXmzZtz9dVX06JFC4YOHYphGIwaNcpthfiVV16xKsP16tXj559/pnnz5rnS9ezZkyeffJKFCxfy6KOPFv2bEZFCMa8TABo0aFCKJRF35s2bx5AhQ8jKyiI8PJxx48Zx44035kp3+eWXc/fdd5OYmMjTTz/N77//7nG9RXHNEBUV5XI9PXr0YNiwYezZs4e7776b2bNns3XrVvr06cOyZcuIiooq9LZLQqGbTE+YMAGAJk2aMHToUJo0aQKo2bRIScrIyAAgKCiolEsi3goJCWH48OF88803gC0Sd88993DmzJlSLpn4giFDhlCpUiUAli1b5jLNqlWreOmllwCoUqUKCxcudFkZdtSlSxcWL17MLbfcUrQFFpFCMa8TQNcK56P09HRuvfVWsrKy8Pf3Z9q0aS4rw45iY2OZOHEi77//fgmV0r1atWoxc+ZMevfuDcDWrVsvqEHKClUhTk5O5o8//gBsEQ+AW2+9FYA//viDQ4cO5bmOpKQknnnmGVq1akW5cuUIDg6mSpUqxMfHc/PNNzN+/HhOnDhRoPJlZWUxfvx4evbsSZUqVQgODiYqKoq4uDi6d+/Oa6+9xqZNm/JcT2pqKi+88AJNmzYlIiKCqKgounbtyrfffutVOdavX8+9995LXFwc4eHhlC1blqZNm/LYY4+57QP1008/Wf2AtmzZ4jJN/fr1rTTu+n/0798fPz8/p2ZzkLsfVnZ2Np9++imdOnWifPnyRERE0KxZM1599VVOnz7t1ft0x9OIza5Gbp09ezZ9+/alSpUqhISEUKdOHR544AH27dtXoO2b7/XFF1+0XnM1SICn/mj79+/n8ccfp379+oSFhVGxYkV69uzJzJkzvSrDsWPHeOWVV+jYsSOVKlUiJCSEatWq0a9fP3755ZcCvS/H92HemNq9e3eu92Xytm/Z7t27uf/++4mNjSU0NJRq1arRv39/5s6dC3jui52fkXg9jeib8/jMyMjgvffeo0OHDlSqVMntyIPnzp3jiy++oFevXlSrVo2QkBAqVapE165dee+9987LyuZNN93EDTfcAMDBgwcZN25cqZXF1ef3008/ceWVVxITE0NYWBiNGjXimWee4dixYx7XtWHDBl555RV69uxJjRo1CAkJoUyZMsTFxXHnnXfmOfhSzuPs+PHjvPzyy7Rs2ZKoqKhcx9ipU6eYOHEid999Ny1atKBcuXIEBQURHR1Nt27dePvtt0tswI/ly5dzzz330KBBA8qUKUNERASNGjXioYceyvdAVsXJHH3Z3ffi9ddft5pYfvDBB1SpUsWr9YaGhuZ5IZdf5vlryJAh1mt16tTJdb7zdG4r7G/56dOnee+997j88supXLmyNaBYjx49GDdunLWvXMl5vvvnn3+45557iI2NJSQkhMqVKzNgwIACD0pmfncvv/xy67XLL7881/7xdF4+c+YMo0aNolWrVpQtW5ayZcvSrl07PvzwQ86dO5dnGUri/PvXX39x8803U6dOHcLCwggPDyc2NpYOHTrw5JNP8tdff+XK4+m3z9MgdK4e7vZfSf32JCYm8thjj9G0aVPKli1LeHg4cXFx3HfffW6bxZrHnqdroPz2x9+5cyfvvPMOffv2JTY2lrCwMMLCwqhduzY33XQTs2bN8pi/qK9B161bx+2330716tUJDQ2lVq1a3HbbbaxatQoouhHnt2zZwqOPPkrTpk0pV64cYWFh1K1blyFDhljbKqgvv/ySpKQkAB544AG3rXZcufPOOwu17aISEBDA+PHjCQ8PB+Czzz7j8OHDBVpXXqNMp6am8uqrr9KxY0fKly9v/d43adKEAQMGMHbsWJKTk73foFEIo0ePNgDDz8/P2L17t2EYhpGYmGj4+fkZgPHOO+94zD9//nwjMjLSADw+pk2blu+ynTx50rj00kvzXPfAgQNz5b3zzjsNwKhdu7axefNmIzY21m3+hx56yGM5XnvtNcPf399t/pCQEGPChAm58iUnJ1tpxo4dm2v5vn378ixHdna2UaFCBQMwnnjiCadl48aNs/Ju2LDBuOKKK9yWsV27dkZaWlpeu9ytbt26GYDRrVu3XMt27dplbWfcuHHG008/7bYc0dHRxqZNm/K9fcf36umxa9cul2VesGCBUbFiRbf5Ro0a5XH7v/32mxEVFeVx27179zZOnjyZ7/fmzfsyzZ0713pt7ty5Ltf3xx9/GBERES7X4+fnZ7z66qvGiBEjcq3blPPz9KR27doGYNx55525ljl+ZitWrDBatGiRqzwjRoxwyrN9+3ajSZMmHvdFXFycsXXr1rx2a6GYx05+Tq+LFy+28lx11VW5ljvuj7z2a2Hk/PyGDh3qdl9WrVrV2Lhxo8v1OB5rnh7PPPOM27I4Hmdbt251eR523BeO+93do06dOsbmzZvdbtPTMenNsZ2ZmWk88MADHssQFBRkfPrpp3nuN3ff0bw47re81lGpUiUDMBo2bJhrWWpqqhEQEGAARq1atYysrKwClaeoeHtMOb7novwtX758uVG9enWP227Xrp1x8OBBl/kdj62ff/7ZCA8Pd7mOgIAA44cffsj3/nE8Pj09HI9dx2Pl4MGDRvPmzd3m69u3r8djoCTOv4899lie769ixYq58nn6Xjnug/zuv5J874ZhGBMmTDBCQkLcbiMgIMB47bXXcuUzjz1PD8frn7zs3LnTq3112223GZmZmS7XUZTXoOPHjzeCgoLcnm/Hjx/vdC5wxUyf87rC0UsvvWQEBga6Laefn5/xwgsveL0fc2rdurW1nm3bthV4PaaCXIvk5HhecfW76M69995r5fv2228LtG1Pn8mmTZuMatWq5XkMfvDBB95vr0Cl/Jd58uzatavT62ZFtHnz5m7znjlzxnozZcuWNYYPH27MnDnTWLlypbF06VJj4sSJxrBhw4yaNWsWqEL8xBNPWDukT58+xvfff28sWrTIWLlypTFr1izjzTffNC699FLj+uuvz5XX/OJER0cbcXFxRtmyZY3/+7//M+bNm2ckJCQYn332mVGjRg1r/bNmzXJZho8++shKEx0dbbz99tvGkiVLjIULFxojR460Kh5+fn7Gb7/9lit/48aNDcC46aabci37+uuvnT70pk2b5kqzevVqa3nOfeh4MurUqZPh7+9v3HnnncZvv/1mrFy50pg8ebLRsWNHK42nC9e8eFsh7tSpk5Xuu+++MxISEow///zTuOOOO6w0HTp0yPf2jx07Zqxfv97pQnX9+vW5HmfPns1V5gYNGhiVKlUyYmJijDfeeMNYuHChsXz5cmP06NFWJTcwMNDYsGGDy23/8ccf1kVlbGys8eabbxrz5s0zVq1aZUybNs247bbbrDJdd911+X5vZtn79etnAEa1atVyvS9TXhfb27Ztsy7SAgICjIceesiYM2eOsWLFCmPcuHHWD367du3cnmSLo0LcrFkzw8/Pz7jjjjucjs8ZM2ZY6ZOSkozKlStb55MnnnjCmDlzprFq1Spj7ty5xrPPPmu9t7p16xqpqale7+P8KsiPUFZWllG2bFkDMMqUKZPrIqI0KsRt27a1Pu/vv//eSEhIMGbMmGHcdNNNVpoaNWoYx48fz7We2bNnGxEREcaNN95ofPzxx9YxP2vWLOOdd95xukD78ssvXZbF8UK1WbNmRlBQkPHII48Ys2fPNhISEozvv//eWLx4sZW+c+fORnx8vPHf//7XmDx5srFs2TLrt2TQoEHWjcmGDRsa6enpLrdZ2Aqx47nqmmuuMb755htj+fLlxooVK4zPPvvMaNq0qbV86tSpufKXZIV4/PjxVrqnnnoq1/Lp06dby++///4ClaUopaWlGevXrzdeeeUVq1y///57rvOd44VzUf2Wr1u3zvq9jomJMUaMGGH8+eefxurVq43ff//deOihh6wL5fbt2zv9lpjMY6tly5ZGaGioUadOHePDDz80li5daixZssQYOXKkERoaagBGZGSkkZycnK/9c/bsWWP9+vXGl19+6fTdyrl/jh07ZuVxPFY6depkBAcHG48++qgxe/ZsY+XKlcZ3331nXYcAxscff+xy2yVx/p02bZrT+WDs2LHGvHnzjNWrVxvz5s0zPv74Y2PgwIFGtWrVcuX19L06dOiQy+sB87F27VqnG7Jz5swp8fduGLbvoxlsKlOmjDFixAhjwYIFxpIlS4x33nnHurkFGGPGjHHKu2XLljyvgVwds+5s27bNCA4ONvr27Wv873//M/78809j1apVxp9//mmMGTPG6TznroJYVNegCxYssM7tYWFhxnPPPWfMnz/fWLZsmfHRRx8ZNWrUMIKDg42WLVsaUPAK8fPPP+9U3s8//9xYsmSJkZCQYHz77bdOZf3f//7n9b40HT9+3LpWbNSoUb7zu1KaFeIff/yx0L8fnj4T8+ZBUFCQ8eCDDxrTpk0zVqxYYSxbtsyYPHmy8eyzzxoNGjQomQrxunXrrMLmvNv9ySefWMvWrVvnMv+cOXPcVtYcZWZmurzgykvNmjUNwGWF19GRI0dyvWb+iAJGVFSUy8rOtm3brB+va6+9Ntfy5ORk6yRYrVo1Y8+ePbnSrFq1yvqRrV69eq4TknnyqlKlSq68d911l7VtsFWqc/6AvvvuuwZg+Pv7O/0IGkbuqOnXX3+daxtnzpwxLrnkEgNsd13d3enLi7cVYsC45557jOzs7Fzp7r77bivNqlWrClQOT5FNd2U2T6D79u3LlWbBggXWD9Sjjz6aa3laWpr1Q9mjRw/j1KlTLrf16aefWtv6888/8//GDCPPu5+GkffFtnksAcZPP/2Ua/mpU6ecKsOu9mNxVIgB44svvvC4rj59+hiAUbNmTWPHjh0u0zh+3/7v//7P4/oKo6A/Ql26dLHy5TxfOO6PV155xeMFXM4bIfmR8/vYq1cvl9/7l156yUrz5JNP5lqekpKS65zjKCMjw7jqqqusY/bcuXO50jh+X/39/Y0//vjDY9nzir7Mnj3bunD6/PPPXaYpTIV40qRJ1vLPPvvM5frT09OtSEhsbGyufVvUFeKcFaI1a9YYv//+uzFs2DAjODjYuvhyVfl69dVX3f7GlybH70JeUa2i+C3Pzs42mjVrZoDtJn9KSorLbc2cOdPj8eV4E6h169YuK0bffPONlWb06NEe35s7+TmGHI+VoKAgl+mPHDli/Y41a9bM5XpK4vx7++23W+cLT62pXF3TFeZ79eSTT1p5n3vuuVzLS+K9nz171mqdUKZMGWP16tW50iQmJhpVq1Y1ACM8PNzlcZqfayBP0tLSjKSkJLfLs7OzjcGDBxuAERER4fJYL6prUDMwFxwcbCxatCjX8kOHDhl169Z1up5zxVPla/ny5dZ3293nl5WVZQU4ypYt6/H3z5VFixZZZbjlllvyldcdx2sRb64ZXF3nFrRCvH37divfFVdcUaDyu/tMduzYYS3zVOHNzs42jh496v32ClRKwx6BDQkJyfXBHzt2zGrWkbOprunbb7+13lBBKrx5MZtPvP/++/nO6/gj6ulOz6BBgwzAKF++fK5lb775prWO77//3u06HO92//jjj07LfvjhB2tZzmZ+9evXtyou5pc9ZyWmf//+BmC0atUq13YdT0aeIpMff/yxlW7t2rVu03nibYW4atWqxpkzZ1yu459//rHSFeQzNYyCV4hdRXJMHTp0MMB21z+nDz74wACM0NBQ49ChQx63Z1Y0b7311rzfiAuFrRDv27fPOuEPGDDA7TrWrFnj9COWU3FUiPM6ma5fv95K++uvv3pMO3z4cANwGUUoKgWtEJtRflffNW+b/Xv6bLzh+PmFhIQY+/fvd5kuKyvLulApX7682++tJ47HUkJCQq7ljt/XoUOH5nv9rpjnxD59+rhcXpgKsXnH2tP3xzBsTb3M9cyePdtpWVFXiD09ypUrZ7z88stuLxgcm6fm9b0qSQWtEBf0t9wxMpnXb+CNN95oAEbnzp1zLXOsELtbT3Z2ttVyLq/jyJ2CVogff/xxt+meeeYZK13Oyk1JnX/NG2gF2S8F/V45tqLo379/rpv1JfXeJ06caG3n9ddfd5vO8YbKW2+9lWt5UVWIvXHkyBEr4jlp0qRcy4viGnTJkiXWsscee8ztOn799VcrXUEqxAMHDjTAdiPLVcDG5Fj3cXdT1Jsyenov+eFNNyLHR16/e/mpEB87dszK5+r62BvuPhPHmwcFrZe4UqBBtbKysvjuu+8A6N27d64htaOioujVqxcA3333ncuBJhznyCyOQWTM9U+cOLHAg0L5+fl5HCmzdevWgG3AJHPqKZM5L2xUVBQDBw50u4677747Vx6T4yBUjgNB7N+/n+3bt+Pn50e3bt2sdI5pDMNg/vz5AHTr1s3t9sE+EJor5nsE2yAKxen6668nJCTE5bKGDRtSpkyZEimHo6ioKGvEPFfM/eOqTL/++itg2/8xMTEet9O1a1cAlixZUtCiFsq8efPIzs4GPA/O0Lx58zxHmS1qno5PsO/n8PBwj58V2PdzUlISe/fuLZoCFhHz+AY4efJkKZbEpkePHlSrVs3lMn9/f+s4OXbsWJ6DiWRkZLBnzx42bdrEhg0b2LBhg9Mcg2vXrvWYP69jwJWUlBS2bdtmbW/Dhg1ER0d7tb382r9/PytXrgTIczCpxo0bW6M7l9b3HWyDlI0bN45Jkya5XO54DEZERJRUsYpFYX7LzfNLw4YNadasmcftmOeXFStWuB1gKz4+3u16/Pz8aNmyJVCyv3Pg/XXArl27nJaV1PnXvKabP38+O3bsyFfegli0aJE1L3yzZs34+uuvcw0kWVLv3bw29PPzY+jQoW7T3XDDDZQrV84pT0nIzMxk3759bN682TrXJiUlUbFiRaBw53dP16Bz5syxnnu6bundu7dVlvzKzMy0Bk+9/vrrXQ4maoqKiiI+Ph7I/7n9YjrfQvFezzjWH/MavDU/ClQh/uOPPzhw4ABgH106J/P1AwcOuPxidunShbp16wIwbNgw2rVrx+uvv87ixYs5e/ZsQYrlxPxyLF68mDp16vDwww8zefJkUlJSvF5HpUqVPH6JKlSoYD3P+YFv2LABgJYtW3oc3r5y5crWqHdmHsdlDRs2BJwru+bzJk2aEB0d7bJCvG7dOo4ePQo4V6xdadSokdtlnt5jUfNUDoDy5cuXSDkcxcXF4e/v/mti7h9XZUpISADg999/z3PkyrfffhuwjTJcGhyPPccfIFfatGlT3MVxktdFqLmfT58+TWBgoMf97DjHb2nta3ccjyFPc0mPGzcOw9a6x+OjsHKOTJ9Tu3btrOc5z11gG/X59ddfp3nz5kRERFC7dm2aNm1KfHw88fHx1oU/kOcolHkdA6ZFixZx0003UbFiRWJiYmjQoIG1vfj4eD777DOvtpdf5jEIcPPNN+f5fTe3X9zH4Ny5c52OiezsbFJTU/n7778ZMGAAO3fu5N5772X48OG58pYtW9Z6furUqWItZ3ErzG+5+dlu2bIlz8/14YcfBuDs2bPW729Oef3OefpNKU4FvQ4oqfPvHXfcAcCRI0e45JJLGDRoEOPGjWP79u35Wo839uzZw3XXXcfZs2eJjo5m6tSpThf4ppJ67+b5NTY21uPN9eDgYOu86uqcXJQyMzP56KOP6NChA2XKlKFmzZo0adLE6XxrjvCb1/m2oMee+R5DQkI8zrMbEBBAixYt8npLLm3atMkKqj377LN5ngPMYyK/n3Fxn2+9uWYoysqlt9czBVGnTh0uvfRSAN59912aNm3KCy+8wF9//VWoWXEKVCE25xj2FD1zjBy7mpM4KCiIadOm0bhxY8B2R/W5556jc+fOREVFcc0117iNLnvj+eefZ+jQofj5+ZGcnMxHH33EddddR+XKlYmPj2fEiBF5TgtlDhvujmNFKWc5zR/DypUr51lWcyoLVz+gZmX277//tl4zK77mMnOahU2bNlkVfjONv7+/deC44+l9enqPRc3b/V3c5XDkbZnM6KopMzMzV6TBG4Wd4qqgHKfQySuabUbZSop5I8SdfA2r76C09rU7jhcNjhcBpSWv48Dx3Jbz3JWYmEh8fDzPPfcc69aty/M7m56e7nF5XscA2KZP6dKlCz/++KPbyoi328uvC+UY9PPzo1y5cnTt2pVffvnFipqOGjUq13Q1ZhQb8GoKxfNZYX7Li/qzPR9/56Dg1wEldex3796dDz/8kLCwMM6cOcPEiRMZOnQocXFx1KhRg/vvv79IWn6kpaXRt29fkpOTCQ4OZvLkydSuXdtl2pJ670V1PVlUjh49SseOHXn44YdZtmxZnkGsvM63BT32zOuWChUqEBAQ4HEbBb1uKanP+GI630LxX898//33dOzYEbDVfV5++WW6d+9OVFQU3bp14+OPP873VGeB+S3EiRMnrGYiqampbpu4OpoyZQonT550ugMCtgjn+vXrmTZtGtOmTePvv/9mx44dpKenM2vWLGbNmsXo0aOZMWNGnhdnOQUFBfHFF1/wxBNP8P333/PXX3+RkJDA2bNnrSYdo0eP5ptvvqFfv375Wnd+eGpeYfIUzenWrRuffPIJBw8e5J9//qFRo0ZW5disENeoUYO6deuyc+dO/v77b66//norTbNmzby6mJSi5XjivvHGG3n++edLsTQXtrx+6Mx9XadOHaZOner1euvUqVOochWl7Oxs1q1bB9jupno732txyuvc5em8dfvtt7Nr1y5r3thBgwbRuHFjoqOjrd+M7Oxs67PNK6Kd1zEwZ84ca47NunXr8uSTT9KlSxdq1apFmTJlrPwvvPACL7/8ssd1FYTj9/3bb7/1OqJd2ufmp556yur+9MUXXzjNe+nYNaKw82teyMzPtnPnznz88cde53PX3eBiU5Ln34ceeogbbriB7777jtmzZ7No0SKOHz/O/v37+eSTT/j000957rnneOWVV/K9brCdh2677TbrXPzxxx/TuXNnt+lL+rensNeTReU///mP1UWkf//+DB06lGbNmhETE0NoaKhVzlq1arF3794SKVNxcTy3jxo1iquvvtqrfPlt9nzJJZcQEBBAVlbWRXG+Xb16tfXcbOlalKpXr87ixYuZM2cOv/zyC3///TebNm0iMzOT+fPnM3/+fN5++21mzJhBgwYNvFpnvivEP/74Y77vrp8+fZpJkyYxZMiQXMsCAgLo378//fv3B2xNrGfOnMmYMWNYuXIlK1eu5L777mPy5Mn5LSpgq3S//PLLvPzyy6Snp7No0SK+++47vvrqK9LS0rj55pvZsWOHU5v0olChQgUOHDjgVbMJ826Qq7soOfsRR0ZGsm3bNqv/sGO6nTt3Mm/ePAYOHOh1/2EpHqGhoYSHh3P69GlSU1M9Nuc5HzhemCcnJ1OjRg23aT11O3C8m5szap5TUTULMptCHjp0iEaNGhEYmO/TWqlbsmQJaWlpAHTs2DHPCmBJyOsuteOdc8dz1z///MPChQsBWxOzV1991WV+x1YJhWU2hY6KimLJkiVub6AW5TYdOTbH9fPzO++/7ybHporr1693WtalSxfrAm3mzJlkZ2d77D5ysapYsSKHDh0iJSXlgvlcS1JJn39jYmIYNmwYw4YNIzs7mzVr1vDLL7/w0UcfkZqayquvvkrbtm0LFOh47rnnrIDP448/7vKa1VFJvXfz/FrY68micOLECSZOnAjALbfcwrfffus2bXGdb03mdcvRo0fJysry+LuZn+6SjhzP7ZmZmcV2DoiMjKRFixasXLmSLVu2sH37durXr18s2yoJs2fPtp536dKl2LbTvXt3unfvDti6U/z55598+umn/PXXX+zYsYObbrrJqXLuSb5/3czmz1WrVuX777/P81GrVi2nfHmpWrUqQ4cOZcmSJbRq1QqA6dOnF0kTt7CwMK688kq+/PJLRo0aBdiackyfPr3Q687J/NKsXr2azMxMt+mSk5PZvXu3Ux5HVatWJS4uDrBViHP2HzY59iNev349R44ccXpdvLu7WpTMvjyLFi0675rn5tS0aVPruWN/SFc8LXdsBeLpx/DIkSNF1o/T3M+nT59m0aJFRbLOkvbee+9ZzwcMGFB6BXGwYsUKr5c7nrs2btxoPR80aJDb/HkdZ/lhbvOKK67w2JqoKLfpyLE/9B9//FEs2ygO586ds57n/J0qV66cdSzu3r2bKVOmlGTR3Cqt8/jWrVut3+rzWWntn9I4//r7+9OqVSteeeUVpwGWfvzxx3yv69tvv+WNN94A4JprrrGuET0pqfdunl8TExM9NuHNzMy0Lv6Lq+K2bds261zh6fy+ZcsW6yZvcTGvWzIyMnLd0HOUlZXFmjVrCryN4OBgoPjP7eYNGMMw+N///les2ypOKSkpVsujiIgIevToUSLbrVixIjfddBNz5szh2muvBWDNmjVs27bNq/z5qhDv2rXLuvM/cOBABg0alOfjhhtuAGx9YPfs2eP1toKCgqzo5rlz5wrUH9MT844CFP0AKwBXXnklYGtW/vPPP7tN98UXX1jNScw8OTn2I87Zf9jk2I/4p59+Amw/jHn1H/YloaGh1vOMjIxi3575hTx16hQfffRRsW+vMC6//HIr+uPp5tXatWs99tMqX768NXaAp8rH999/X7CCuuAYCXjrrbeKbL0l5YcffrBG+q1atSqDBw8u3QL9y3HwxJyys7OZMGECYPvMzZuX4FzJ8nQjKD/NT/NibtPT9tasWcPSpUuLbJuO6tevT5MmTQDb55mf37rS5HhTo2bNmrmWP/PMM9Z54ZFHHvG6P11GRkaBKiXeKK3zOFwY55eS3j/ny/m3VatWVsQwv9d0S5cutWb8aNy4MT/88INXrSFK6r2b14aGYfDll1+6TTdp0iSOHz/ulKeolcb53R3H63hP1y2//fabFSTKr/DwcGs78+bNY/ny5QVajzeGDBlidZf66KOPnMYOyou3Qcfilp2dzeDBg61j49577y2VMVEKUsfLV4X466+/tipv119/vVd5zHSGYfD1119bry9YsMDj6IBnz561DoYyZcrkq0P80aNHmTp1qsd+C453eoqjL+GQIUOsgQKeeOIJl8Psr127ltdeew2wtYc3m43nZN4YOHjwoHWRkbNCbPYjNgyDDz74ALBN71DQoeYvRo7N4kti2ob777/fGijh+eeft4bud2fRokVWU/eSVr16dWuAvMmTJ7uciiU9Pd2ahsITc3qJX3/91eV+3rx5My+88EIhS2zXtm1b6w7kjBkzGDFihMf0iYmJbivk5kiR5sjvxSkjI4NRo0Zx++23A7ZoxxdffOHVuAwlISMjg/vuu8/l4D5vvPGGdUd+6NChTmU2W7QAVqU5p7FjxxZpxNHc5sKFC11OV5OSkuJ2RoSi8n//938AnDlzhuuuu85jE72MjAzGjBmT70E/ilJGRobT99CcKtFR69atrfeVlJREly5dPEZiwNb8v1OnTlaEwNHIkSOt71hBRzQt6fP4wIEDrcE/x44dyxdffOEx/YYNG5g2bVqxl8udkt4/RXn+9WTixIkeWwomJCRYrZLyc023d+9eBgwYwJkzZ6hQoQJTp071elTcknrvAwYMsPqkv/baay5vSu/du5cnn3wSsFXi8mruXVD169e3WiG4q4RNnz7dug4tTh07drTGa/joo49YvHhxrjQpKSk89thjhdrOf//7X+s9Dxo0yOP3ypyWdt++ffneTnh4ON988w3+/v5kZ2fTu3dvjwE1sI2IPmjQIB599NF8b6+o7dmzh6uvvpoZM2YAti45eX0nCmLNmjUeI/6GYThNVebt9Vy+OjyYFdqYmBivI4/t27enRo0a7Nu3j6+//pr//ve/gG0QlJdffplLL72U3r1706xZM6Kjo0lPT2fr1q18/PHHVsfyu+++O199M06cOEG/fv2IjY3luuuuo3379tSuXZvAwEAOHDjAtGnT+PzzzwFbRbJv37752Q1eiY6OZtSoUTz00EMkJSXRpk0bnnnmGTp16kRWVhZ//vkno0aNIi0tDT8/Pz799FO30zM5Vn6PHz+eq/+wY7qdO3dadwjVf9hZp06drOePPfYY//3vf6latap1oouNjS3SPkCRkZF8//33XHPNNWRkZNCnTx8GDhzIwIEDqVevHmDrM79y5UomT57MunXr+OCDD6wKZUkbPXo0c+bM4fTp0wwaNIgHHniA6667jsjISDZs2MBbb73Fpk2baNu2rcfmtA8++CBTp04lPT2dyy67jJEjR9KyZUvS0tL4888/ef/994mJiSEwMLDA/XpyGjduHG3atOHAgQO89NJL/P777wwdOpT4+HhCQ0M5cuQI69atY9asWfz111/079+fm2++uUi27Ynj1BdZWVmkpqayb98+li5dyqRJk6w+YSEhIXz00Udcc801ea5z//79Xk2pERkZaXVZKYg2bdowbdo0OnfuzGOPPUZcXBzJyclMmDCBH374AbCdP3MOGNeyZUsuueQSNmzYwNixY0lNTeXWW2+latWq7N27l2+++YZJkybRuXPnImtmeMcddzBt2jTS0tLo1q0bTz/9NK1bt8YwDBYvXszo0aM5ePAgHTt2LLa5f2+++WZ+//13JkyYwMqVK2nSpAn33Xcf3bp1Izo6mlOnTrFjxw4WLFjAL7/8wtGjR62pZIrLrl27nEYvBdvv45o1axgzZozV1Lx+/frcd999LtcxYsQIDh48yKeffsq2bdto0aIF/fv3p3fv3tSvX5+yZcuSkpLChg0bmDp1qnUj21XEuSi0bNmS0NBQzpw5w/PPP09gYCCxsbFWRK969eqEhYUV2fYCAgKYOHEinTp1Ii0tjbvvvpuffvqJW265hYYNGxIUFERycjKrV69m+vTpLF68mCeeeKJYriu8UatWLeua6+2336Z69eo0bNjQ+m2rXLlyrgFOC6skzr9PP/00999/P/369aNr1640aNCAiIgIjhw5wsKFC60KWEBAAPfcc4/X67311lut8/CIESM4c+aMx/NrjRo1rFZQJfXeg4KC+PTTT+nbty8nT56kS5cuPPXUU3Tv3p3AwEAWL17MG2+8YbXgePvtt3N974tKxYoV6dWrF7/99hszZszg6quv5r777qNWrVokJyfz888/M378eOrWrUtqamqR/ca789FHH9GtWzfOnj3LlVdeyeOPP87VV19NSEgICQkJvP766xw8eJAWLVqwZs2aAnUp6Ny5My+88AIvvvgiu3btokWLFtx111306NGDqlWrkpGRQWJiIkuWLGHSpEkkJSWxfv16j2OxuNO9e3c+//xz7rvvPk6dOsX1119Phw4duP7662nRogUVKlTg+PHj7Ny5k1mzZjF16lQyMjKs+afd8XYartq1a7s9P6SmpjqtJz09ndTUVDZt2sS8efOYPn261YKgYcOGTJ8+Pc9yFcSaNWsYMmQIbdu2pW/fvrRq1YoqVaqQmZnJrl27GDdunNWHuV+/ft6PEWV4aeHChQZgAMZ9993nbTbDMAzj0UcftfIuXbrUMAzDGDFihPWap8d1111npKen52t7u3bt8mrd1atXN1atWpUr/5133mkARu3atT1uZ9y4cda6du3a5TLNq6++avj7+7stQ0hIiDFhwoQ831O9evWsPE2bNnWZ5quvvnJa988//1yoshuG874cN25cnuV0pVu3bgZgdOvWrVDrr127tgEYd955Z4HKYRiGceONN7r9LBz3g6cyO3I8jt2ZM2eOUaVKFa+OSW+OBVe8OWbnzp1rbWfu3Lku0/zxxx9GRESE2/KNGDHCeP755w3ACA0Ndbstx+98zkfNmjWNjRs3evw8vT0+HSUmJhpt27b1aj8PGTIkV/7Tp09by1u1auXVNl0xjx1vHn5+fkb37t2NtWvXelyn4/7w9tGvX798lz3n93Hw4MFu11+1alVj48aNLtezevVqo3z58m7zxsfHG0lJSU7HVU7efLccDRkyxO32AgICjPfeey/PdXo6Jr05V507d84YPny4ERAQkOfnExERYZw+fdopvzff0bx4+9tqPpo3b+7Vd2zs2LFGdHS0V+vs1KmTsXz58lzrGD58uJVm6tSpBXp/OdeT8+G434ryt3zt2rVGXFycV+//xRdfzJXf298vb8vsyZgxY9yWzfHY9fY75s1xWdjzb17M/efpERoa6vI31FP5vVmvu/1XUu/dNH78eCMkJMTjee61115zmz+/51R39uzZY9SqVcttOWrVqlVkv/HenHfHjx9vBAUFuSxLYGCg8dlnnxm33367ARiNGjVyuQ4zvavfItO7777rcf+bj+DgYGPbtm0e9mDe5s2bZ1xyySVeHVO1atUyvvvuu1zryM+1iPmYPHmy0zq8rU+Zj8jISOPxxx83Tp06Vaj3bxjuPxNvr4e6dOliHDlyxOvteR0Oc2waMXDgQG+zWenNDuJfffUV7du3Z/jw4bRv357Zs2ezZMkSkpKSrLtbVapUoX379txxxx0um3HlpXbt2qxZs4bZs2fz119/sXPnTg4dOkRaWhpRUVE0bdqUvn37cu+99xb5ndKcnnvuOfr06cOHH37IX3/9RVJSEv7+/tSqVYsePXowbNgwr8L5l112mdVMw91AWWY/YrA1EyitSOP57JtvvqFNmzZMmjSJLVu2cPLkyTxHQy6sK664gh07djBu3DimT5/O2rVrOXLkCP7+/kRHR9O4cWO6devGwIEDi2V4+vy46qqr2LBhA2+88QazZs3iwIEDlC9fnjZt2vDII4/Qs2dPhg0bBuDxzt/7779Phw4d+Pjjj1mzZg2ZmZnUqlWLAQMG8OSTTxZLU/7atWuzbNkyfv31VyZOnMiyZcs4dOgQmZmZREVFERcXR8eOHbn22mtdtnBxjBwWtomVK6GhoZQrV44KFSoQHx9vjYTq2MT4fDNu3Dh69OjBp59+yvr160lLS6N27dr079+fZ555xu20Qebd+Ndff52ZM2eSlJRE2bJlqV+/PjfeeCMPPfSQU1/HovDll19yxRVX8Omnn7JmzRrOnj1LlSpV6Nq1Kw8//DDt2rVj5MiRRbrNnAICAnjzzTe56667rJEuExMTOXHiBOHh4dSqVYsWLVrQo0cPBgwYUKSRTG+Fh4cTExNDq1atuP7667nhhhu8ahlz//33c9ttt/HDDz/w+++/s3r1alJSUkhPTycqKop69erRqVMnBg0aRNu2bV2uw/yONWjQwOqiURBvvPEGcXFxfPXVV2zcuJHjx48X+7y9zZo1Y9OmTXz33XdMnjyZlStXkpKSQnZ2NhUrVqRhw4Z06dKFAQMGOPWpLw0PPPAAlStX5pNPPmHNmjUcPXrUqe9ncSjs+Tcv8+fPZ/bs2cyePZtNmzZx8OBBjh07Rnh4OPXr16d79+488MADpTKdXnG/d9Odd95Jt27deO+99/jjjz/Ys2cP2dnZVKtWjSuuuIJHHnmE+Pj4InxnrtWsWZNVq1bx5ptv8uuvv7J7925CQ0OJjY2lf//+/Oc//ynRKeXuvPNOWrZsyVtvvcXcuXM5fPgw0dHRdO7cmccff5z27dtbg+cWJmI5bNgwbrjhBj755BNmz57N9u3brelnq1evTnx8PFdddRUDBw4sdIS+W7durF27lunTp1stTw4dOkRqaiplypShRo0atGvXjn79+tGrV68Sn13Dz8+PsmXLEhkZSfXq1WnVqhWdOnViwIAB+Z5yKr9uueUWYmNjmT17NgsWLGDfvn0cOnSIc+fOWb9tgwYN4qabbsrXzAh+/9bCRUS8cuWVVzJnzhy6dOnCggULSrs4RWbkyJG8+OKLxMXFsXnz5vNi6qOSlpiYaF1Qjhs37rwZ4EsufGazvoyMDCZMmFDszcVFREz169dnx44d3HbbbU7jGYmYfG9SQREpsKSkJGvgrw4dOpRyaYqW2ffxueee88nKsEhxWrp0KRkZGdSrV49bb721tIsjIj5ixYoVVgvLi+26RYqOKsQiYvE08nt6ejqDBw+25iC8mCI8Z8+eZdmyZdSpU6fYRyMW8UXmjTTdcBKRouTpuuXIkSPWIGshISHcdNNNJVUsucCUbKNzETmv3X333Zw6dYobb7yR1q1bU6FCBU6ePElCQgJjxoyxfnjuuuuuEumrVFKCg4M9zqkoIoXz/PPP5xqRXESksK666irq1KnDgAEDaNasGeXKlePYsWMsWrSIMWPGcODAAcA2NV5xjb4tFz5ViEXESUJCAgkJCW6XDxgwoETmGBQRERHxxDAM5s6dy9y5c92mefDBB3nuuedKsFRyoVGFWEQso0ePZvLkyfz111/s27ePlJQUDMMgJiaGDh06cMcddxRqdFgRERGRojJhwgSmTZvG33//zYEDBzh8+DCBgYFUqVKFLl26cO+999KpU6fSLqac5zTKtIiIiIiIiPgkDaolIiIiIiIiPkkVYhEREREREfFJqhCLiIiIiIiIT1KFWERERERERHxSoSvEmZmZNGzYED8/PyZOnOi0rFevXvj5+TFixIjCbkZERERERESkSBV6lOnRo0fzxBNP0LhxYzZs2IC/v72OvXTpUjp27EhYWBhbtmyhZs2ahS6wiIiIiIiISFEoVIQ4LS2N119/HYAXXnjBqTIM0KFDB6666irS09N55ZVXCrMpERERERERkSJVqArx2LFjOXz4MDVr1uTGG290meaJJ54AYNy4cezfv78wmxMREREREREpMgWuEGdlZfHhhx8CcPPNN+eKDpuuvPJKYmJiyMzMZOzYsQXdnIiIiIiIiEiRKnCFePbs2ezZsweA2267zW26gIAAbrrpJgDGjx9PdnZ2QTcpIiIiIiIiUmQKXCH+8ccfAYiLiyM+Pt5j2oEDBwKwf/9+Fi5cWNBNioiIiIiIiBSZAleI586dC9gGzspL27ZtCQgIAGDevHkF3aSIiIiIiIhIkSlQhXjfvn0kJiYCtspuXsLDw2natCkACxYsKMgmRURERERERIpUgSrEixcvtp63bNnSqzytW7cGYMmSJRRy6mMRERERERGRQitwhNgUExPjVR4z3alTp0hNTS3IZkVERERERESKTIEqxCkpKdbz8uXLe5WnQoUKLvOLiIiIiIiIlIYCVYiPHj1qPfe2QuyY7siRIwXZrIiIiIiIiEiRKVCFODQ01Hqenp7uVR7HdGFhYQXZrIiIiIiIiEiRKVCFODo62nruGC32xDGdY34RERERERGR0lDoCvGxY8e8yuOYrlKlSgXZrIiIiIiIiEiRKVCFOD4+3nq+detWr/KY6Ro0aEBISEhBNisiIiIiIiJSZApUIW7Tpo3VD3jFihVe5UlISADg0ksvLcgmRURERERERIpUgSrEwcHBtGvXDoDly5fnmX7nzp0cPnwYUIVYREREREREzg8FqhAD9O7dG7BViE+ePOkx7Zw5cwAICAigZ8+eBd2kiIiIiIiISJEpcIX4lltuISAggDNnzjB58mSPab/77jsArrzySqpUqVLQTYqIiIiIiIgUmQJXiKtXr06/fv0A+Pbbb92m279/P/PnzwfgwQcfLOjmRERERERERIpUgSvEAE899RRgaxKdmJjoMs24cePIzs6mYcOG9OnTpzCbExERERERESkyhaoQd+jQgWuuuYasrCxef/31XMvT0tJ47733ABgxYgT+/oXanIiIiIiIiEiR8TMMwyjMCtavX0/Lli3x9/dn+/bt1KpVy1r25ptv8swzz9C2bVuWLVuGn59foQssIiIiIiIiUhQCC7uC+Ph4xo8fz/bt29mzZ49Thbhs2bKMGDGC6667TpVhEREREREROa8UOkIsIiIiIiIiciFSp14RERERERHxSaoQi4iIiIiIiE9ShVhERERERER8kirEIiIiIiIi4pNUIRYRERERERGfVKoV4sTERPz8/PDz82P8+PGlWRRGjhxplUVEREREREQufoWuEGdmZvLDDz9w55130rhxYypWrEhQUBCVKlWidevWPPDAA/z5559kZ2cXRXnlPPPKK69YNxLKli3L6dOnS2S7Y8aMsbabnxsqS5Ys4fbbbyc2NpbQ0FCqVq3K1VdfzQ8//OBV/oyMDF544QXq1KlDaGgol1xyCWPGjOF8mL1s3rx5Tvsk56NMmTI0aNCAO++8k3nz5hVLGf78808GDx5M/fr1iYiIoFy5cjRo0IDrr7+esWPHkpaW5jH/6dOnGTVqFO3ataNChQqUKVOGxo0b8+STT7Jnzx6vyrB8+XJ69OhBmTJlKF++PIMGDWL79u1F8faK3D///MNLL71Et27dqFWrFmFhYZQpU4batWvTt29fRo8ezcGDBwu1jbS0NObPn8/bb7/NjTfeSJ06daxjIjY21qt1GIbBwoULeeGFF+jevTtVq1YlODiYyMhImjZtyoMPPsjatWvzVa4ffviBnj17UrVqVUJDQ4mNjeX2229n6dKlXuVPSkpi8ODBREdHEx4eTrdu3ZgzZ06+ylBcHG+wOj5CQkKIiYkhLi6OXr168cILLzB//vwi3fa5c+dYvXo1n3zyCXfffTfNmjUjMDDQKkNiYmKh1q9zr4iIXHSMQpgyZYpRt25dA8jz0aBBA2P69OlO+Xft2mUtHzduXGGKUmgjRoywyiLea9CggdPn/PXXXxf7Nvfv329ERkY6bdeb4+fFF180/P393R6jffv2NdLT093mP3funNGjRw+Xee+5554ifIcFM3fuXK++i+Zj6NChxrlz54pk20ePHjX69euX5zZXr17tdh3bt283GjZs6DZvuXLljN9++81jOWbPnm0EBwfnylu+fHljw4YNRfJei8KxY8eMwYMHGwEBAXnus8DAQOP+++83jhw5UqBtXXbZZW7XXbt2ba/WUatWrTzL6efnZwwfPtzIzs72uK709HSjT58+btfj7+9vvPTSSx7XsX//fqNGjRou85bEOSgvjr8n3jwaN25s/Pjjj0Wy7ZEjR3rc1q5duwq8bp17RUTkYlTg2t9rr71m+Pn5WT9KV155pfHBBx8Yc+bMMVauXGnMnj3b+PDDD42ePXtaP4TNmzd3Wsf5VCGW/FuyZIn1+ZUpU8YAjKuuuqrYtztgwAADMGJiYrw+fj777DMrbb169YwvvvjCWL58uTFlyhTj8ssvt5bdeuutbtcxZswYAzCqV69ujBs3zli6dKnx3nvvGeXKlTMAY+bMmUX8TvPHsUL8wAMPGOvXr7ce69atM+bNm2e8/vrrTvvthRdeKPR2U1NTjdatW1vr7N27t/H1118bS5YsMRYuXGh8++23xrBhw4waNWq4rRCfPHnSaNSokdNF7pw5c4zFixcbr776qnV8hYeHG2vXrnW5joyMDKNmzZoGYAwePNiYN2+e8ccffxjXXHONARjt27cv9HstCrt27XJ6r9HR0cZ//vMf45dffjGWLFliLF261Pjll1+MRx991KhevbqVbvLkyQXaXrdu3ZxuDFx11VXW/vS2QmxW3OvXr288/fTTxtSpU42EhARjwYIFxksvvWSUL1/e2sazzz7rcV233HKLlfbyyy83pkyZYixfvtz44osvjHr16lnLPvvsM7fruPHGGw3A6NixozFt2jRj4cKFxmOPPWb4+fkZERERxuHDh/Ozi4qcY4X4yy+/dPoeLliwwPjll1+MZ5991oiPj3eq3A0dOtTIysoqsm2HhoYaHTp0cNqvhakQ69wrIiIXowJViL/66iuni7m//vrLY/p169YZV1xxhSrEF5kHHnjAAIxKlSoZb775phWh2bdvX7Ftc8qUKdZx984773h1/Bw7dsyIiooyAKNWrVpGSkqK0/Jz584Zffv2tdb1999/u1yPGWnLWSGbPHmyARhDhgwp9PsrDMcK8YgRI9ym27hxoxEWFmYARmRkpHH27NlCbff22283wBbJ/OGHH9ymy87ONjIzM10uc7yIf+utt3ItX7x4sREYGGhVolyZN2+eARgDBgxwev3cuXNWhX337t35eGdF7/Tp08Yll1xivdchQ4YYJ06ccJs+IyPDeO+994yIiIgCV4g/+eQT49tvvzW2bdtmvVa7du18VYg7duxozJo1y230d/v27UZ0dLR1HOzYscNlOvMzMqOCOVsopKSkWNHo8uXLG8eOHcu1jjNnzhghISFGzZo1jbS0NKdl//nPfwzAmDBhglfvq7g4Hs9z5871mHbq1KlGpUqVrPRPPfVUobY9a9Ys4+OPPzZWrlxpfd/uvPPOQleIde4VEZGLVb4rxPv37zciIiKsaM3GjRu9ypeVlZWrKZsqxBeujIwMo0KFCgZgPPjgg8aBAwesKNKbb75ZLNs8ceKE1UxywoQJxrhx47w6ft566y0r3ffff+8yzd69e63y9+nTx2WauLg4o2LFii7LBRg9evQo0PsqKt5WiA3DMK6//norrbuIqzcWLFhgrWfkyJEFWsfZs2eti+bGjRu7jZDdd9991rYSEhJyLf/2228NwPjggw9yLXv88ccNwFi8eHGBylhUhg0bZr2HwYMHe51vw4YNLt9zQeW3QuyNDz74wHpvo0ePdpmmV69eBmAEBAQYe/fudZnm+++/t9bz9ttv51q+f/9+AzAGDhyYa9nUqVMNwHjttdcK92YKKT8VYsMwjK1btzo1RV61alWRlqewFWKde0VE5GKW70G13n33XU6dOgXAiy++SJMmTbzK5+/vz2233ZZnutmzZ9O3b1+qVKlCSEgIderU4YEHHmDfvn155j179ixjxozh8ssvJzo6muDgYKpUqUKvXr345ptvPA7s5e0o02fPnuXTTz+ld+/eVK9e3RokpXXr1jz88MMsWLDA4yAfs2fP5rbbbqNOnTqEhYURGRlJ8+bNGT58OAcOHPC47aSkJJ555hlatWpFuXLlrPcXHx/PzTffzPjx4zlx4oTnnVREpk2bxtGjRwG47bbbqFKlCldccQUAX331VbFs89lnn2Xfvn1cdtll3HHHHV7nmzJlCgCRkZFcd911LtPUqFGDK6+8ErB9Rq4Gf4qJieHIkSNs3LjR6XVzgKoqVap4XabS5jiY0pkzZwq8ng8//BCAMmXK8MQTTxRoHfPmzSM1NRWAO++8E39/16elwYMHW89/+eWXXMtjYmIA+Pvvv51ez87OZuHChUDpfkaHDx/m008/tcrxv//9z+u8TZs2pXXr1sVVtCJx+eWXW8937NiRa3laWpo16NVVV11FjRo1XK7nuuuuIzIyEnD9OZcvX57AwEASEhJyDeJ3IX4XAeLi4nj99det/994441SLE1uOveKiMhFLT+15+zsbKtZXEREhHH8+PFC1cZzRoiffvppp/5Ujo/o6Ghj06ZNbteVmJhoNG7c2G1+wOjSpYvbgWm8GVRr9erVRp06dTxuAzd34NPS0qz+V+4eZcqUMaZNm+Zy2/Pnz881mImrh6v8jpHDO++80+37y49rr73WAFufMNOECROs7axcuTLPdZhpvYlSLV261PD39zeCg4ONzZs3G4ZheBWlyMjIsJra9uzZ0+M2XnvtNWt9rroBjBo1ygCMmjVrGuPHjzeWLVtmfPDBB1b/SXefXUkpaIT4wIEDLtM4RpVcRbkyMjKM0NBQAzBuuOEG6/XMzEwjMTHR2L17t5GRkZFnuZ9//nlrO0uWLHGbLjMz02qd0rVr11zLT58+bTU9veuuu4y///7bmD17tjWAU+vWrfMsS3FyjKD+3//9X5Gs04z05vNUXiwR4pUrV1pleeSRR3ItnzNnjrX89ddf97gucwClwMBAl036e/fubQBG586djenTpxuLFi0ynnrqKcPf398IDw83Dh48WGTvqyDyGyE2DMM4deqU1VIiPDzc5fvO6zvpTmEixDr3iojIxS5fEeJNmzaRkpICwKWXXmrdxS8Kn332GW+++SbdunXju+++IyEhgT///NO6G52SksLQoUNd5k1LS+OKK65g8+bNAPTv35+pU6eSkJDATz/9RLdu3QBYuHAhffr0ISsrK9/l27RpE5deeim7du0CYMCAAUycOJEVK1awdOlSJkyYwG233UZERESuvFlZWfTt25fJkyfj5+fHzTffzE8//URCQgJLlizh/fffp1atWqSlpTFw4EBWrlzplD8jI4NBgwZx4sQJypYty/Dhw5k5cyYrV65k6dKlTJw4kWHDhlGzZs18v6+COHz4MDNnzgTg1ltvtV6/7rrrCA8PB4o2SpyZmck999xDdnY2Tz31FI0aNfI677Zt2zh37hxAnvkcl5vHkqOHH36Y9u3bs3fvXgYPHkz79u155JFHOHbsGHfccQd9+vTxulyl6Z9//uG3334DoG3btgWOrqxdu9aKLnfs2JGDBw8yZMgQoqKiiI2NpXbt2pQrV45evXqxePFit+tx3NeePqPAwEDq1auXK48pLCyMjz/+mICAAL744gu6devGVVddxfTp04mMjOTzzz8v0PssKo6R6wvlWMkPx/fn6nP09nN2XH7u3Dm2bduWa/l7771HxYoVWbRoEX369KFz586MGjUKwzD43//+R+XKlQv6NkpNeHg4nTp1AmzTj61ataqUS6Rzr4iI+Ij81J7NPnqA8dxzzxW6Nu4YIQbbyLKuBm25++67PfatevLJJz1GXrKzs41bb73VSjNmzJhcafKKELds2dIA26BR7vpCGYZhHD582Dh9+rTTa2+//bYBGEFBQcaMGTNc5jt69KjRtGlTK5LtyDGy4ulOeGZmpsuofVFHiN9//31rfVu3bnVadvPNNxtgG4XU3QBKJnMdeUWpXn31VQMw6tat67RvvYlSzJw500ozatQoj9tZsWKFlfaZZ55xmebkyZPGE088YVSvXt0ICgoyGjRoYIwePbrQI8MWhbxGmZ4/f77x5ptvGlWqVDHANqDWokWL3K4vr2jU+PHjreWvvfaa08BAOR/+/v7Gu+++63I77du3N8DW6iQvZmQQMM6cOeMyzV9//WV07drVCAsLMyIjI40BAwZYka3SFBcXZ+0Ld2XPr/MlQnzq1ClrMKzg4GCXA+s5tgBasWKFx/WZEUHAmDVrlss0O3bsMG688UYjKirKCA0NNTp27JjntFwlpSARYsMwjP/7v/+z8n311Ve5lpd0hFjnXhER8QX5ihAfPnzYel7Ud+CrVq3KBx984LIP75NPPmk9X7BggdOyjIwMK/LTpEkTRo4cmSu/n58fY8aMoWLFioC936O3fv/9d1avXg3AI488wqBBg9ymrVixImFhYdb/mZmZvPPOO4DtLvc111zjMl/58uUZNWoUYItkb9++3Vp28OBB63nXrl3dbjswMLBIo/bumNHfdu3aERcX57TM7CeenJzMrFmzCr2t7du38/LLLwPw0UcfOe1bb5w8edJ6XqZMGY9pHaP7rvqxmet4++232bdvH2fPnmXLli089thjbvu9lpaxY8cSHx9vPZo1a0bXrl15+umnSU5O5r777mPZsmVWRKogzD7kYBtP4PDhw/Tp04eEhATOnDnDoUOHGDNmDJGRkWRnZ/P4449bLQscmZ9RXp8PePcZXX755fz999+cPn2a48eP88svv+QrslVczPNnuXLlCAkJKeXSFK2nn36aPXv2APDQQw9RvXr1XGmK+rtYt25dJk6cyLFjx0hPT2fx4sX06tWrIMU/b5i/UQDHjh0rxZLo3CsiIr4jX78kjj9wrpoGF8b111/v9iKxYcOG1g/qzp07nZatXLnSGpBn8ODBBAQEuFxHZGQkN954I2Br/pzXAFaOzOalAI899pjX+QCWL19ubcvcvjuOld0lS5ZYz6tWrWo9HzduXL62D3DZZZdh2EYUZ/z48fnO72jTpk1Wk25Xg6T16NHDGtzo66+/9rgus0yJiYlu09x///2cOXOGG264gauvvjrf5XUcMCo4ONhjWsfjLz09Pd/bulBkZ2fz448/8vnnn3P27Fm36caPH299Rpdddlmu5ebgemC7MdW3b19+/fVXWrdubQ0298ADD/Dbb7/h7++PYRgMHz4816Bz5meU1+cDF/ZnZJ4/i/LcmZiYaH1GpeXbb7+1bjI2btyYV1991WU6fRfz5lhxdPy9NeX1nSxKOveKiIivyFeFuGzZstZzx4vhopBXBKd8+fJA7ouEDRs2WM/bt2/vcR2Oyx3z5cWMDteqVYvatWt7nQ8gISHBet6xY0drJGtXD8eLIceocJcuXahbty4Aw4YNo127drz++ussXrzYY4WmOEyYMAGwRaNdRcoDAwO56aabAJg6dSrHjx8v8LbGjx/PnDlziIyM5L333ivQOkJDQ63nee2rjIwM63l+oyHnmxEjRlgXzubj9OnTrFu3jqeeeoqTJ0/yzjvv0KNHjwJfgDruW4BRo0a5jNZ06dLFGmF2w4YNub575nq8OZYv5M/IPH8W9bmzNM2bN4+77roLsJ2jJ02a5PZz8dXvYn44/r6VRGsfd3TuFRERX5KvCnGlSpWs54cOHSrSgpiDMbljXmjnHBDLsdlmXs24HQcPcsyXF7Opo2Ok1lvJycn5zgM4TScSFBTEtGnTaNy4MQArVqzgueeeo3PnzkRFRXHNNdfw3XffFWiwsPzIzs7m22+/BWyR4OjoaJfpzMjxmTNn+PHHHwu0rZSUFKup/Msvv0y1atUKtB7HmzjumuKZHCsq3jTfvdCEhYURHx/PW2+9xZgxYwDbQEiO073kh+O+rVOnDg0bNnSbtmfPntbzFStWuFxPXp8PXNifkXn+PH78uFMF4EKVkJDAtddeS0ZGBhEREcyYMcPjNHz6LubNsVtShQoVSqUMOveKiIivCcxP4ubNm1vPz4cRMHPKaw7hwjYrzGv9rjhWUufNm+fUR8wTs9mxqUmTJqxfv55p06Yxbdo0/v77b3bs2EF6ejqzZs1i1qxZjB49mhkzZuTKW1TmzJnD/v37AZgxY4ZX++Orr77innvuyfe2Pv/8c44cOUJUVBQVK1bkhx9+yJVm2bJlTs/NiMQVV1xh7QPHuU7zmst679691vOSGrG7tNx1110888wzHD16lC+++IKXXnop3+tw3Efu5pR1lTbnTaIaNWqwbNkyTp06RWpqKlFRUW7XY35G0dHRF1w/3ObNm7Nt2zays7NZs2ZNni1azmcbN27k6quv5uTJk4SEhDBlyhQ6dOjgMU/O72KbNm3cpvWl76IjszUS4PEGU3HSuVdERHxNvirETZo0oVKlShw+fJgFCxZw4sSJUm3WBc530Q8ePEiDBg3cpnWMaufn7rsZ2UlKSsp3+RwrwMHBwVxyySX5XocpICCA/v37079/fwAOHDjAzJkzGTNmDCtXrmTlypXcd999TJ48ucDb8MRsLp0fixYtYufOnVaTb2+ZEbTU1FSXfZVz+vjjj/n4448BmDt3rnVR1qBBAwICAsjKyuKff/7xuA7H5WY0/mLl7+9PXFwcy5YtIykpiaNHj+Y7ItW0aVPreV6tExyXBwY6n3aaNGnCzz//DNg+A3cVq3PnzrFjxw7gwvx8unXrxqRJkwDbuAQXaoV4x44dXHXVVRw5coTAwEAmTpzIlVdemWc+x+ixt9/FwMBA6tevX7gCXyBOnz5tTU8WERFBixYtSqUcOveKiIivyVeTaT8/PwYPHgzYmjiV9ryegFMF0/GutSvLly93mS8vrVq1AmDPnj3s3r07X+Vr2bKl9fyPP/7IV968VK1alaFDh7JkyRKrjNOnTy+WQUnS0tKsinb37t35/vvvPT7MY8MwjDwH1ypOwcHBtGvXDrANVOapL5s5j2pISIjH6NXFwpwjFGyjoedX7dq1qVWrFoBVUXXHcXnOEYi7dOliPXecyzanhIQEq2ll586d813e0jZo0CCrf+Tnn39+QfYl3rdvH927d+fAgQP4+/szYcIE+vXr51Xetm3bWoMrefqcz549y9KlS3PludiNGzfOGnOhb9++uW4cXWh07hURkQtGfudp2rdvnxEeHm7NG+rt/J5ZWVnG119/7fSa4zzE7uYyNJnzZuacR/fMmTNGVFSUARhNmzY1zp075zL/iRMnrHlSmzRpkmu5p3mIZ8+ebS37z3/+47GcOaWnpxsVKlQwAKNKlSou5wkuCo899phVxqSkpCJfv+O8k5MmTfIqT+vWrQ3AqFevXpGXJ2eZPB0/b775ppXO3RzSe/fuNQICAgzA6NWrV7GUt7g5zkM8YsQIj2lPnTplhIWFGYARGhrq9nuTF8fjztOcxpdddpmVbu/evU7LMjIyjHLlyhmA0bhxY5dzkRuGYdx3333WOpYvX16g8pa2Rx991HoPd999t9f5NmzYYCQkJBRZOQoyD/GhQ4eMhg0bWuX/9NNP873da665xgCMwMDAXMeB6fvvv7e28dZbb+V7G+eD/M5DvHXrVqNs2bJWnjVr1hRpeQo6D7E7OveKiMjFJN8T+FWvXt2aYuPUqVN069bN491+sE3V07NnT95+++38bi5PISEh3H333YCtX9uLL76YK41hGDz88MPWgCUPP/xwvrZx5ZVX0rp1awA++OADl32qTEePHnWK0IaGhloDlBw8eJBBgwZ5jAydPHky1zzJCxYscJqXOKezZ89an0GZMmVyDXY1b948ayRrM8KfX+bcw+Hh4W7nUs7p+uuvB2zRwUWLFuVabpYpNja2QGXy1t133025cuUAeOaZZzhy5IjT8qysLB588EGrWa/jvNcXqxEjRljHac+ePV1OVzZ48GDrM5o3b57L9QwbNszqP/joo4+6PLa/+eYbK3/v3r1z9TcODg7m0UcfBWDz5s0uzxNLlizhiy++AGxNj9u2bevdGz3PvP7661bT4c8//5x77rnH44BDmZmZfPDBB3To0MGpn6UpNjbW+oyKU2pqKj179mTLli0AvPvuuwUaG8D8bp07d46HHnooV1P7w4cP8/TTTwMQFRVlndsvZtOnT6dTp07WCNPPPvus03gdjrz5Tp5PdO4VEZELQYHaZA0ZMoR9+/bxwgsvkJyczGWXXUaPHj3o168fjRs3JioqiqNHj7J161Z+++03Zs2aRVZWltsf+cJ64YUX+OWXX9i5cycvv/wyGzZsYOjQoVSrVo1du3bx4YcfWhcPHTt25N577833Nr7++mvatWtHWloaN998Mz/99BODBg2ibt26ZGVlsX37dmbPns2kSZNYv369UyVv+PDhzJkzhzlz5jBz5kyaNGnC/fffT8eOHYmKiuLkyZNs2bKFefPmMWXKFEJDQ50q7XPmzOHll1/m0ksvpXfv3jRr1ozo6GjS09PZunUrH3/8sTXI2d13313kTe327Nlj7b9rrrkmzxHBTQMHDuTZZ58FbBXq0mrmWqFCBd58803uv/9+du/eTfv27fnvf/9LfHw8SUlJvPfee8ydOxeAm2++mcsvv7xUylmUkpOTc01vdObMGbZt28ZXX33FrFmzANsNm5dffrnA26lVqxYvvfQSw4cPZ+XKlbRr147hw4dzySWXcPz4cX755Rerf2FkZCTvvvuuy/U89dRTTJw4ka1btzJ8+HC2b99uNTGeO3cur732GufOnSMsLKzA08CcD8LDw5k2bRrXXHMNW7du5fPPP2fq1KnceuutdOvWjapVq2IYBgcOHGD+/Pn8/PPP7Nmzp1Db3L59OwsXLnR6zayEp6Wl5Zqb/Oqrr3YakT8jI4PevXuzZs0aAG699VauvPJKj1PXRUREUKdOnVyvX3HFFQwaNIgffviBqVOnctVVVzFs2DCqVavG+vXrefXVV633+8Ybb1jT7V3Idu3aZY1DYRgGJ06cICUlhRUrVjBt2jTWr19vpb3nnnvczuPsrbS0NKuvusnxhuqkSZOcZoxo0aJFsfVX9sVzr4iIXIAKE17++eefjdjYWKtJlKdH06ZNjd9//90pf1E0mXZcV6NGjTyWoXPnzsaRI0dc5vfUZNqUkJBg1KxZM8/36qpJ2unTp4077rjDq31Vp04dt2Xz9LjuuuuM9PT0XNt2bErrbv958sorr+TZ7M2dZs2aGYARFRVlnDlzxmmZuc78NNt05G2zPdMLL7xg+Pn5ud1/vXr1crn/LhSOn7M3j+jo6FzfSUeOzSzzavb5zDPPeNy3MTExxuLFiz2uY9u2bUZcXJzbdURGRhrTpk0ryK457xw5csS4/fbbDX9//zw/p6CgIOPRRx81UlNTc63HPC96Om85fk+8eeT8rB3P094+unXr5rY8p0+fNnr16uU2r7+/f55N/s933p6zzUeTJk2Mn3/+Oc/1evOdzO/nVZB9rXOviIhcTAoVSrzuuuvo06cPkyZNYubMmaxYsYLk5GROnjxJZGQksbGxdOjQgYEDB3L55ZcXa7O+2NhY1q5dy2effcZPP/3Ehg0bOHHiBBUqVKBly5bceuut3HLLLdZ8xgXRunVrtmzZwueff86UKVPYsGEDx44do2LFilSvXp0uXbowaNAgl02Aw8LCmDBhAo8++ihffPEF8+fPZ9++fZw6dYoyZcoQGxtL69atueaaa+jTp49T3uHDh9O+fXtmz57NkiVLSEpKsqauqVKlCu3bt+eOO+6gV69eBX5vnpiDYoWEhNC7d+985R04cCDr1q0jNTWVqVOncsMNNxRHEb3y4osv0rNnTz766CMWLFjAoUOHiIqKonnz5gwZMoSbb7651MpWEoKDg6lQoQJNmzalV69eDBkypMgicK+//jrXXnstY8eOZcGCBRw4cIDQ0FAaNGjAtddeyyOPPGI1nXSnfv36rF69mo8++oiffvqJ7du3c/bsWWrWrEmvXr34z3/+Q+3atYukvKWtQoUKfPXVVzz77LNMnDiROXPmsGvXLg4fPkxAQACVKlWiefPmXHHFFdxyyy3FNpVaaQgLC+O3337ju+++Y/z48axdu5bU1FQqV67MpZdeysMPP0zHjh1Lu5jFIigoiMjISMqVK0fDhg1p06YNPXr0cBpY7mLk6+deERE5v/kZRiEn5xURERERERG5ABU8XCoiIiIiIiJyAVOFWERERERERHySKsQiIiIiIiLik1QhFhEREREREZ+kCrGIiIiIiIj4JFWIRURERERExCepQiwiIiIiIiI+SRViERERERER8UmqEIuIiIiIiIhPUoVYREREREREfJIqxCIiIiIiIuKTVCEWERERERERn6QKsYiIiIiIiPgkVYhFRERERETEJ6lCLCIiIiIiIj5JFWIRERERERHxSaoQi4iIiIiIiE9ShVhERERERER8kirEIiIiIiIi4pNUIRYRERERERGfpAqxiIiIiIiI+CRViEVERERERMQnqUIsIiIiIiIiPkkVYhEREREREfFJqhCLiIiIiIiIT1KFWERERERERHySKsQiIiIiIiLik1QhFhEREREREZ+kCrGIiIiIiIj4JFWIRURERERExCepQiwiIiIiIiI+SRViERERERER8UmqEIuIiIiIiIhPCiztAoiIXMgMw3D5up+fXwmXJG/Z2dkApKSkWK8lJycDcObMGQACAgIACAsLAyAyMhKAChUqWHnMZSIiIiIXOkWIRURERERExCcpQiwiUghmJNhdpPh8YpbRjAYDpKamOr1WpkwZwB4F9ve33Tc9HyPeIiIiIoWlCLGIiIiIiIj4JFWIRURERERExCepybSIiI8wB8xKSkqyXlu2bBkAGRkZADRo0ACAsmXLOuVRk2kRERG5GClCLCIiIiIiIj5JEWIRkSJwIURQz507B0BiYqL12oIFCwDIzMwE7INpNWrUCIDAQNvPhDm4loiIiMjFRFc4IiIiIiIi4pMUIRYRuchlZWUBsHfvXqe/AIcOHQLsfYXNtMHBwQCEhIQAihCLiIjIxUlXOCIiIiIiIuKTFCEWEblIpaWlAbBt2zYA/vnnH8A5QmxGgCtUqABApUqVAPso02afYkWIRURE5GKkKxwRERERERHxSYoQi4hcpI4ePQrYI8SbN28G4MiRI1aa8PBwwB4ZLl++PABlypQBFBkWERGRi5uudERERERERMQnKUIsInIBMwzDen7mzBkAUlNTATh48CAAGRkZgH0kacc5k8+ePev011yfIsMiIiLiC3TFIyIiIiIiIj5JFWIRERERERHxSWoyLSJyAcvMzLSe79u3D4Ddu3cDcPLkScA+dVK1atUASEpKsvKkp6cDcPz4caf/s7Ozi7PYIiIiIucFRYhFRERERETEJylCLCJyATMHzAJISUkBYO/evYB98KyYmBgAQkJCAIiMjLTymINomYNqZWVlOeUVERERuZgpQiwiIiIiIiI+SRFiEfEpZkT0YomAmlMtAaSlpQFw4sQJACIiIgAoW7YsAEFBQQBUqFDByhMaGuq0LDAw0OmviIiIyMVMEWIRERERERHxSQoBiIhPMCPDrv6/kKLFZh9fs++wGRV2fM18P2af4XLlygH20aajoqKsPGb0ODw83CmPIsQiIiLiCxQhFhEREREREZ+kEICIyAXEnFs4OTkZgCNHjljLAgICAKhZsyYAFStWdPrr72+7B2pGhcE+4rTZl9iMEJtpRURERC5muuIRERERERERn6QIsYj4hAupn7AnR48eBWDjxo0ApKenW8tiY2MBqFevHgDly5cHIDg4GIDjx48D9tGnHdOYkWHzr4iIiIgvUIRYREREREREfJIqxCIiIiIiIuKT1GRaROQCkJ2dDcCBAwcA2LBhAwCZmZlWmujoaMA+rZLZVPrMmTOAfQAuc3omsE+3ZP4184iIiIj4AkWIRURERERExCcpQiwich4yI8JmdDcpKQmwR4aXL18OwLFjx6w8ZgR4z549gH2ArBMnTgD2KZvMgbkATp8+DeQegEtERETEFyhCLCIiIiIiIj5JEWIRkfOQGRnet28fAJs3bwZg7dq1AKxZs8ZpOcCqVasA+O2335zWdfbsWcAeMa5ataq1rH79+oB9yqbAQP0siIiIiO9QhFhERERERER8kkIBIiLnIbNvb0pKCmDvQ5yeng5AmTJlAIiIiLDyZGVlAfa+xOYI1Oao0mbacuXKWXn8/W33Rc3osSLEIiIi4ksUIRYRERERERGfpFCAiMh5yIwEm9FeM2Jcp04dwN7n1xyN2vG5GSk+deoUAMePHwfg3LlzAISFhVl5KlasCEBoaChgjxj7+fm5LZthGHmmEREREbkQKEIsIiIiIiIiPkkVYhEREREREfFJajItIlLKzKbMZhNnsDdzNl8zB7u65JJLAGjRogUAVapUsfIEBAQA9imbzHUcOHAAgOTkZKe/ACdPngQgODgYyF8zaDWdFhERkQudIsQiIiIiIiLikxQhFhEpJWfPngXsUyrt27fPWpaamgrYo761a9cGoF69egDUrVvX7XrNKZTM6ZXMdeTcLtgH4jLzmJFic3AtERERkYuZrnhERERERETEJylCLCJSCGY/WlN++tOafX03btwIQEJCgrXMjNS2bNkSsPcdrlSpUr7LmJaWBtj7FGdkZFjLzOixGSE2/4qIiIj4AkWIRURERERExCcpQiwiUgjeRISzsrIA+2jS6enpAOzatQuAVatWAbBkyRIrT7Vq1QBo164dADVq1PC6TGbU2uyTvHPnTgD27NkDwIkTJ3LlMUexNpeZ/YzNSLUjjSotIiIiFwtFiEVERERERMQnKUIsIlKEzH7BjnP9mqNI79+/H4C9e/cCsGPHDsAeGTb/B3ufYXM95npDQ0Ndbs9xO2ZEeOvWrYC9j7K5XbNPMdj7EFetWhWAw4cPA5CSkgJAbGws4DzfcUREhPsdICIiInIBUYRYREREREREfJIixCIiRcjsH2xGacHeR3j16tVOf800Zh5HZoT24MGDABw6dAiwz0dscowQb9q0CYC5c+cCsG7dOgC2bNnitK7MzMxc26tcubLTdo4cOQLY+zCHhYVZaRUhFhERkYuFIsQiIiIiIiLik1QhFhEREREREZ+kJtMiIkXInPLI/AuQnZ3t9NdcZk5pZE7LVLZsWSuP2TS6TJkyTmnMdfj72+5nOk6BZK43ZxqziXP58uUB52bW5nRLUVFRTmUy12Fu1/H9iIiIiFwsFCEWERERERERn6QIsYj4FDPS6RhZLUrm4FOOg18FBQUBUKtWLcA+UNXJkycBexTWcUqlatWqAdCkSRPAHsE1o74mM4LsmDYkJASAVq1aAZCamgrA6dOnATh37pyVJ2cUuUKFCgDExMQAUL16dcA5ei0iIiJysVCEWERERERERHySn6GOYSLiAzyd6ooyWpyzH6/j85zLcvY3diyHGbkNCAhw+uuprOZ6cvY3drc9x/Xl/GtuP+ffvMogIiIiciFRhFhERERERER8kiLEIuITiitCnHO9xR09PXv2LGAfKdpx+2ZfZbMvcs7+xkWtuPtji4iIiBQ3RYhFRERERETEJ2mUaRHxCcUVxSzp6OipU6cASElJAZznFDb7GYeHhwNQrlw5wD5ydFFTZFhEREQudIoQi4iIiIiIiE9ShFhE5AJg9tc9fvw4AImJiQAcOXIkVxpzLuTKlSsDUK9ePcA+t7AiuyIiIiI2ihCLiIiIiIiIT1KFWERERERERHySmkyLiBRASU85ZG7HbCK9evVqALZu3WqlOXHiBAAhISEANGjQAIBz584BEBwcDEBUVFSu9YqIiIj4IkWIRURERERExCcpQiwi4iUzKuzqtZKKtCYnJwOwZs0aAJYvX55rWVBQEABJSUkAVKxYEbBHhh3Lak7NpEixiIiI+CJFiEVERERERMQnKUIsInIBMPsOHzp0CICDBw8CcPToUStNVlYWAGXKlAEgPT0dgH/++Qew9y0+deqUlScuLg6wR5EVKRYRERFfogixiIiIiIiI+CRFiEVEvFSS0dOMjAwAjh8/DkBiYiIABw4cACAzMxOASpUqWXliY2MBqFevHmCPEG/cuBGALVu2ANC5c2crj7+/7b6o2e/Y7FPsSc6+1Ioqi4iIyIVKEWIRERERERHxSYoQi4ich06fPg3Arl27AHs/YHMk6bCwMMAeDQbo2rUrAC1atHDKs2nTJgB27NgB2KPBALVr13ZaX82aNQEoX758Ub4dERERkfOSIsQiIiIiIiLikxQhFhE5D5kjQZv9flevXg3YR5WuXr06AFWqVLHyxMfHA9CwYUPA3j+4WbNmgL3vr+Mo04sWLQLso1i3atUKgCZNmgD20acDA+0/F+ozLCIiIhcLRYhFRERERETEJ6lCLCIiIiIiIj5JTaZFxOcVxTRCRT0V0cmTJwH7lEkrVqwA7NMsdejQAYCmTZtaeRo3bgzYm1EHBwcDcPbsWcA+LVNCQoKVZ8GCBQBs2LABgLS0NABCQkKcyuM4vVNAQEDB35iIiIjIeUQRYhEREREREfFJihCLiJyHzEGu9u7dC8D+/fsBe6TWjPY6RojNgbZCQ0Od/poR3YiICABSUlKsPGZk2Fz/5s2bAahcuTIAWVlZgHME3FymwbVERETkQqcIsYiIiIiIiPgkRYhFREpJdnY2ABkZGQAcPnzYWrZv3z7A3pfYnEKpXLlyAFSrVs3pL9gjwiYzMmxGlevVqwdA586drTRm5DcxMRGA5ORkAH777TfAHqE2+yE7lsWckkl9ikVERORCpQixiIiIiIiI+CRFiEXE5xVFX9iCrOPcuXMAHDx4EIDt27dby/bs2QPYo8hmlLdq1aqAvR9vWFhYntsxR5s28zpGiM1+xytXrgTg119/BWDJkiWAvS9z+fLlrTxmX2RTTExMnmUQEREROR8pQiwiIiIiIiI+SRFiEZFSYkZ/zf7Ca9eutZaZfXrNCHBcXBxgH13a7EucH+bcwo79jsPDwwF7P2ZzlOlDhw45vW7Ohwz2PsTmnMVNmjQBIDo6GoCgoKB8l01ERESkNChCLCIiIiIiIj5JFWIRERERERHxSWoyLSJSSrKysgB78+ilS5day8zmyHXr1gXszZKbNm0K2Js6F4TZ5BnsTa/r168PwNVXXw1AlSpVAHsTascm01u3bgXgwIEDgH3qpkaNGgH2Ab/MwbxEREREzleKEIuIiIiIiIhPUoRYRKSUnDp1CoC9e/cC9sgrQGhoKACdOnUCoFWrVoB9UC1zeWEFBAQA9imZzEG8zIG3AgNtPxNmpBjs00OZUWozmmxGns2/5pROIiIiIucrRYhFRERERETEJylCLCJSQsxpls6cOQPA/v37ATh8+LDT6wBly5YFICYmBoBatWoB9qmNzMhtUTH7+1aqVAkAPz8/AJo3bw5AUlKSlfaff/4BIDMzE4DFixe7fR8ms9zqVywiIiLnE0WIRURERERExCcpQiwiUkKOHz8OwL59+wDYtm0bACdOnAAgIiLCSmtGhs3+ueb/QUFBxVpGs/+vOfp0y5YtAShfvryVxhxxevbs2QCsWLECgB07dgD26LJjP2dzJGqzr7LZd9kVM625HhEREZHiogixiIiIiIiI+CRFiEVESsixY8cA2LJli9Nfs8+tObIz2EeTNiPDJd331txejRo1AKhQoYK1zIxk79y5E4ANGzYA9ki3Gfl2zGPOuWzyFClWZFhERERKiiLEIiIiIiIi4pMUIRYRKSFHjhwBYOXKlYA9Qmz2tY2Pj7fSNmnSBLCPzlxcvO2va845DPao8aWXXgrYo7zm/MSHDh0CYMaMGVYes9+0GQ0336vZR9qc/7iw1P9YRERE8kMRYhEREREREfFJqhCLiIiIiIiIT1KTaRGREpKcnAzApk2bAPs0Ra1btwagefPmVlqzyXTFihVLpGz5aWocFRUFQIcOHQCoWbMmAIsXLwZg4sSJAKxZs8bKk5aWBtincwoMtP38mNM81a5duzDFt8qf8381nRYRERFPFCEWERERERERn6QIsYhIMTt8+DBgjxCbg2uZA0xFRkYCUKdOHStPrVq1AChTpkyJlRO8i6wGBQUBUKlSJcA+INbx48cB+4BZp06dsvKY69u8eTMA2dnZAGRmZuZaf+XKlQH7YGMiIiIixUURYhEREREREfFJihCLiBShjIwMAI4ePWq9lpiYCMCBAwcAexTW7E9rRkSrVq1q5SlfvnyxlxWKpo+tOSVT/fr1Aejfvz8AcXFxVhpzqqkNGzYA9n1y4sQJwLkPcOPGjQF7v2J3keKc/YbB/n7MZTnTqE+xiIiIOFKEWERERERERHySIsQiIkXI7Be8e/du6zWz36zZh9jsF2z2wTUjwyUVFS5qZtS1SpUqgH0U6ho1alhpzp49C9hH2E5KSnL639V7DwkJASA2Ntbjdj0tczf6dF75RURExDcoQiwiIiIiIiI+SRFiEZEiZPYh3rJli/XasmXLAHt/2erVqwP2kaTNCKgZEb1QmXMKm32Kq1WrZi1r0aIFYB9x29w/5sjU5j4Ce/9rcwRq868ZSfdm5G1X/YtBUWERERFxpgixiIiIiIiI+CRFiEVEipA5965jhNgcYblixYoAdOvWDYCWLVsC9gixGWEtqPMtKmrOTwzQrFkzACpUqADA+vXrAfjtt98AWL58uZX24MGDAAQEBDitLysrC7CPXp1zuSuKCIuIiIgnihCLiIiIiIiIT1KFWERERERERHySmkyLiBQBsznvoUOHAHuzX4AjR44AEB0dDUDNmjUBaNiwIQAxMTFA4ZtMn28CA+0/MeZ7NKdkMpdt27YNgB07dlhpzSmadu7cCdibXpvNn83Bx8zByQCCg4Odtq2m0iIiIuKNi+vqS0RERERERMRLihCLiBRAdnY2YJ826MCBA4A90nny5EkrrRnhrFSpEmCPbJrTCDkOPlUYF0JU1IzkmlMymQOMOU6lZA5ItmvXLgDmz58P2KdjMqe2atq0qZWnTp06AJQrV87j9h0HHrsQ9peIiIgUL0WIRURERERExCcpQiwiUgBmn2EzMrxu3ToAtm7d6rQc7JHgWrVqAfb+tEUVGb4QmX2J27dvD0Dt2rWtZQsWLADs+3bjxo0AZGZmAvYos9nXGOz9ivOKECsqLCIiIo4UIRYRERERERGfpAixiEgBmH1R9+/fD8CqVasA2Lt3LwChoaFW2pyjSleoUKHEynm+MkeZjoyMBJxHiW7SpAkAbdq0Aeyjb6elpQH2KLxjhDgoKAiAgIAAwN5H2bFvsoiIiEhOihCLiIiIiIiIT1KEWESkAMxRps2I8IoVKwB7FNPsGwvQqVMnABo1agRA2bJlS6yceXEcdRlKr4+t2QcYoH79+gD0798fsO83s2/x0qVLAXsfY7D32TY/l/j4eKe8nvprm/tA/YtFRER8jyLEIiIiIiIi4pMUIRYRKQBz/uGDBw8C9r7EZn/X6OhoK+0ll1wC2EeZ9uXRpd1xjM6a+86ct9kclduch9gcddrc9wA7d+4E7H2GzfWZ0fh69erl2o6rbYuIiIhvUYRYREREREREfJIqxCIiIiIiIuKT1GRaRCQPGRkZgL2ZNMCOHTsAOHbsGGCf9qdcuXIAVK5c2UprPj+fBtO6EJhNmc0m1C1btgTg5MmTAGzZssVKm5SUBMCaNWuc0piDbZn/165d28qT1/RXGmxLRETk4qcIsYiIiIiIiPgkRYhFRPJgRoYdI5L//PMPACdOnADsUeCqVas6/QWIjIz0ajuZJ1Os50dOZf37LACAiIq2KGnZoPyW3jO30c8ztsj3wdQMp3IUZ1nsm7YNlmVuOrCsbXvNmjUD7Pt67dq1Vp4pU6YAsHz5clve1FTAHuU9deoUYI8Ygz2aHxBgf28iIiLiWxQhFhEREREREZ+kCLGISB7MCPHmzZut18ypf06fPg3Y+6bWrVsXgCpVqlhpg4ODnVeYmQxAwo+vAPDkY58C8HdKBu6FABDd7V4A3n37/wC4sU2MlaJgAdtMAJITJgDw9ODHARi/8aSHPLa+0E0HvAzA2I8fBODSmPyXIHPvbABG3DjQeu31pTm3/e/2Bo8F4MextwIQn51tpdi2bRsAycm2fWt+Znv27AHs02E5TnllRu7N6bBCQ0Odtqq+wyIiIhc/RYhFRERERETEJylCLCKSB3MkaXMEY7D3X61evToAzZs3B6Bp06aAcx9iS+ZWAMb1bQPA0N9tkdCQen0AePC/N1tJ+zWu9O+zwwBs/vV7AD744gMAbms7HoCvv0yw8kwb0gDwJlKcaT3b+nlPAJrdMxeAjLK28g94dhgAd1xmi56G/1sOgM3f2crw/ARbmq4zfgXgs3W/A3B3Ay8ixUdt2xveuS8Afw+aYi/TH90BiPt3UO6Te1cC8MmdlwHQ6mbbT9fqcT2tPN272/KYkXnzszL/rl69GoCzZ89aecz+xPHx8QA0atQIgKioKLfFNvskmxRFFhERubApQiwiIiIiIiI+yc/IebtbRESczJgxA4D//e9/1mvr168H4NJLLwXgtttuA+yR4ooVK1ppzX6rO7+wpa1/zyIAag77A4CEt64CwJsuuJnJtj63w9v0AOC9vfHWsvc3rgPg0SZ5rGP5i9bzeu1HApB8+SgAlkx6EoCWnqfoBeDo6rcBuL7jUwDMjbGta9mOEQC08/B+EsddAUCdn+4CYN+MW61l1f/9mysae2wKAIMqPgtA6zX2Pt1P2gag5vBhWyR7zpw5AHz/vS2ybvb5dvxczMiwOb9x165dnV4XERGRi58ixCIiIiIiIuKT1IdYRORf2f+OWmz2MzVHLD540DYv7pkzZ6y05sjRFSrYQqnVqlUD7H1Yg4Icw6O2yO3ktxf9+//tAIx50fvIsCkoxpbnxU9skdWxvb6wlr3yk20O3kdHtHOT+xAAv7w+0nplL7Zo6Kj3/gN4Fxk2VWhpiyZ/9uEUAOrf8zoA70y9H4CJAyu7zXv65L99khva9lt1tykdN1gPgDYNbfNB7z9q779rduWNjrbNWWz2B+7UqRMA4eHhgP0zBdixYwdg/7zNz9TsW2yOPm1+xiIiInLxUYRYREREREREfJIqxCIiIiIiIuKT1GRaRPLF0zh8F/oUNGbT2b179wKwfft2APbv3w9AaGiolbZmzZoA1KhRA7AP1uTcVNp0xLaeLf/+29k2eFPjyIKXNbJBBwDaYG8yvSj1lOdMh+YB8MMUh9eueRqAm5vlo912DvX6PgJAfwYB8OM3tu38b+BNVpqcjadrxNmadYe8MgmA2c9fbi276t8WyjmPp6Nzx9nWm3gjAO96GDysTp06APTr1w+Ahg0b2rYze7aVZuHChYB9IK7MTNt0VCdOnACgTRvb9Fht27a18phNr3MyvxcX+ndARETE1yhCLCIiIiIiIj5JEWIRkX9lZGQAsHv3bgDWrbMNhnXgwAEAypUrZ6U1I8PmwEuRkYUI95aQzHXzAZji8Fq7a23RT68GtXKnsm3aop7/juU1ZYptO+sy7RHiq3IEoCOveQuAmbe2AOCK2FXWskdG26LWfWy7lj3zbFHwN0avBaDjhD8BuNb9mF3WZ5Xzb1JSkpVm27ZtTq+Zn3tAQAAAISEhAMTExFh5GjRo4JTGpMiwiIjIhUkRYhEREREREfFJihCLSL44RsIutn6TZh9iM3K4dOlSAM6dOwdAvXr1rLSNGzcGIC4uDnDuX5ybLdTZtPO//y6yRVA3n7jbtt4CBJdPbLWVLcHhtc5Na3nMs2f32lyvdWrYIP8bz8W2joad/v13uW07u/c4JKlHDraOwpe/uxWAnT0/sZa8+O4zADxqC9hSu8MDAHy4+ScArq7jaV+7Zk6d1K6dfUoqf3/bPeGNGzcC8M8//wD2z9+cfsmR2d/YjBRXruwhTP2vi+17IiIicjFRhFhERERERER8kiLEIlJgF1vE69Qp2yjNO3fuBGD9+vWAvQ/pZZddZqVt3bo1YO9DHBjo6XRqC49e98ztADzc92sAHhwxBIBO79pGWK7gTSHPbAJgwqu2frUZIf2tRY9ckysM62TPxkX/PmtovVa9ojcb9U7F6uZ6bdvZ6DFCbLJFe+tc/R/rlfEOz4uKOfp38+bNrddiY2Nt2/53ROr09HTA3jJg8+bNgL2FAMCxY8cAe3TZPDY8fRcutu+JiIjIxUQRYhEREREREfFJihCLiM8zI4PmaNJHjx4F4MyZMwAEBwcDUKVKFStP7dq1Afv8w95EASv0eQ+AuSM3AHD5yCsAiF36LAAfv3eHlfaK2lH/PksFYPdfvwDwygsvATB9n21k55Fz7fMQ3+T1UNGVrGdREd7myVtElLneLR7TlQYzomv+BahUyVbeRo0aAfbo8fHjxwE4ePAg4Dwytal8+fIAREVFAfaWAmXKlAEUFRYREblQKEIsIiIiIiIiPkkVYhEREREREfFJajItIj7pyJEj1vO9e/cCsGPHDgAyMjIAe5PaGjVqAM5T7JhNZh2b4ObNNmxWxxHLANh5zRgA7usxDIBbO7ye5xrKXzsWgJVL7gKgVXRQPrYvrkRHRwPQvXt3AKpXt7U9X7JkCQCLFy+20m7dapsmymwSbR4rZnPrVq1aAfZpnkREROT8pgixiIiIiIiI+CRFiEXEp2RnZwOQnJxsvbZx40bAHv0zDAOwT8tTt25dwB4xhrymWXIj07bNBaP6AdD7v7bpfWg6AIAHX7zeStqvsbmt0wDsWTEFgG/eHwZA65pvA3DLhBlWnvE3NQBAMeP8CQ8PB6BJkyaAvUWAeazs2rXLSvvPP//keg0gMzMTsA+yZrYgAA2wJSIicj5ThFhERERERER8kiLEIuJTzD6/5pQ6ACtXrgRg9+7dgH3qnPj4eACaNm0K2KN/+XcCgPn/bQNAt1G2SPHlY22R6Rn32yKToZ5W0aM/AHcPfwuA2cNt6+oxqJmV5DS2PtCTvZ9/SVyIjIwE7NMxXXbZZdYy8xgwjxVzqq41a9YA9mhzWlqaladevXoAVK1aFVDEWERE5HyiCLGIiIiIiIj4JEWIRcSnmP1CzcgewOrVqwFISUkBoEuXLoB9xGAzUliuXLmCbXTTeAAeHmUbzTrk9mkATPImMpxTUAwAV701EYD/ftvJWvTqI58DsPymEQC0y5E1Iir632cJ1mtb9//7pF5+CuHa/q3mehsCUL2gAfXzhNl33PFzN4+F33//HYBFixYBsH37dgDOnDkDOB9fl156qdN6IiIiirPYIiIikg+KEIuIiIiIiIhPUoRYRHyKOf+w4yjTZmQ4PT0dgKioKADq168PQK1atQAIDc1XLNdyaP1cANb/+3//3m0Bc1biAgrqCED3W+0vvfrebADW7fg3Qpwj6lu7Ued/n02xXtt24NC/zypTcLZ1HNiW8e//jQGoWZhVngfM/sDmX4CwsDAAkpKSANi/3xZi37NnD2CPDJujToM9MmzOb9ygQQOndYmIiEjpUYRYREREREREfJIixCJywTDnBzZ5M1pvRoYtamlGhs35Yw8fPmylMSO/5ujSVapUASA62tbnNj99Ps0yOpYt7WSKU5pqFQoVGy6wyo1tEeKGDhHimUs3AZB5ky2cW6A5jDNt61g689//G9q20/gCjxC7YkZ727SxjfIdHBwMwNq1awH7iOWOfYhXrFgB2Ec4N5c1a2YbIbxatWrFXWwRERFxQxFiERERERER8UmqEIuIiIiIiIhPUpNpETnv5WwqnR8nT54E7NPibN68GYBjx45Zacym0RX+bcpsDn4UGRlZJGWMrlL332e2KXrmrLWVgauaeb3+3GwDWSUnOr5ma74bEOAmS7OuANwcbX9p5LdzAEh463IAOhagzfSJP78FYOy/Y2rFP9jLtrn8r6pUedMkPzDQ9rPZpIltyqwaNWoAUKlSJcB+XB09etTKYzbTN5vvm8vMQbWqVq3qcZsiIiJSfBQhFhEREREREZ+kCLGIXNROnDgBwMaNGwFYvXo1AKdPn7bSmNMq1alTB7BHiL2ZZsmb6HVky54AXMPXAMx86xMAZg/9CICrCjDGVuY627peneLwYnx/ANrHusvVDoAb/i/eemXkf14F4Kkv7gBg7v22KYG8ChRnbgXgu1e/ACCDawB4emATb3JfkHJGcM1WBOYUXa1atQIgKyvLSpOYmAjYB3IzWymYLRMcp1+qXbs2ABUrVgTsEWkREREpHooQi4iIiIiIiE/yMwrTOU9E5DyXkJAAwGeffQbA0qVLAXskDqB79+4ANG/eHLBH+8zpcMzpcgouE4DlL9YDoP3IvQCEtHwKgCkTn7eVI66slSN3hPYMAElLvwHgsRvvAeDHvTWtFMP+WgPAu5fnEXLOXG49fbFeewBG/rueGz/7BYAP7rRNKxTjIlScmWzbpxMeuQ6Ae35MBuDyz9YB8Pvd+YgyXyTS09MBSEpKAux91gEWLFgAwMKFCwF7qwWzJYLZHxns0zl17Wrr71258kU4d5WIiMh5RBFiERERERER8UnqnCQiF6UzZ2wR1eRkW/Ry715bVHb//v2Avb8wQL16tsitGamLiooCinLEX1ustN1ztsjq34H9AOjzf6MAuKaB7S9lq1s5GlYr8++zcwAcTdwBQMq/IzkTYivzLT/MsPK8lVdk2CpOO+vpc4umAXDo8usBGHtPWwB+fNjWv7VerG2dgefsoyYn7kgBIIMQAFqOnAvAJB+MDJvMfsDmseQY2TX7q5vH4JYtWwDYs2cPYB8J3ZE5enX58uUBCA4OLo5ii4iI+DxFiEVERERERMQnKUIsIhc8xxF9U1NTAXsk2IzKmWnMuYarVKli5TGfm3PJFr7PsBtBMQBc+txiAA4NXgvArEk/APDrjClW0qW7zWe203TLQU8D0KvHANvfvrbRjOPKFi4eG1SzDwBjNtuilQ/9NRWAbz+x9bn+ZdPxf4vR0soz6JUbABh8400AdP6377MvRobdKVOmjPXcbHmQlpYG2KPH69evB+ytGAA2bdoE2CPDx4/b9n+jRo0Ae993zVcsIiJSNBQhFhEREREREZ+kUaZF5IKXkZFhPTcjbOvW2UY8/ueffwDYutU2Z+65c7Y+uZdeeqmV57rrbKMl161bt/gLKz4nM9M2yrjZV9ich3jGDFv/b3P0abD3NzZbMsTFxQFw5ZVXAnDVVVcBEBERUdzFFhER8QmKEIuIiIiIiIhPUoVYREREREREfJIG1RKRC97Zs2et5+ZUNmvX2gasSkmxTRFUrlw5wD6Aljk9juMykeIQFGQbbsxsBt20aVMA9u3bB8CRI0estDt27HB6zWziHxNjG5CtenXb1Fz169e38pQtaxvULDBQP+kiIiL5pQixiIiIiIiI+CTdThaRC55jhDgxMRGAhIQEwD49TadOnQBo164dAA0bNrTyhIeHl0QxRQB7RLdNmzZO/4P9uF282DY1l9nCwXzdPNabNWtm5Wnbti0AderUKc5ii4iIXJQUIRYRERERERGfpAixiFzwTpw4YT3fv38/ALt27QKgUqVKAFSuXBmA+Ph4AKpVq2blCQ4OLpFyigAEBAQA9n7sjsdiWFgYAIcPHwbs0zCZ/Y2PHz8OwLFjx6w8UVFRgL1/vLkOERERyZsixCIiIiIiIuKTFCEWkQtORkYGAKmpqQDs3r3bWmZG0MyRfc3omTlKrxkpVhRNzheOx6IZNW7fvj0AISEhAGzevBmA5ORkAHbu3GnlWb58OWDvL2+OQF21alUAQkNDi63sIiIiFzpFiEVERERERMQnKUIsIhccc45WM2r2zz//WMvM6HHt2rUBe7TMjAxrRGk5n5n9gLt37w5A3bp1Afj7778BWLhwIQBHjx618ixYsACAvXv3AvYR1Xv06AHYI8UiIiKSmyLEIiIiIiIi4pMUIRaRC445Au/GjRsB2Lp1q7UsOzsbsEeGzfmGo6OjAfD3131AOX+ZI56bkeKKFSsCcPLkScA+L/GmTZusPAcPHgTsferNVhBmdNmc5zgiIiLX9sx+xyIiIr5KV4YiIiIiIiLik1QhFhEREREREZ+kJtMicsExm42uXbsWgB07dljLzMG04uPjAWjcuDEAlSpVKskiihQJc/qwRo0aAZCZmQnYm1IDLFu2DIB9+/YBsGXLFgD++OMPwN6kulmzZlaeuLg4QE2mRUREFCEWERERERERn6QIsYhcMM6ePQtAcnIyYI+EmdPNADRo0ACwR4jNyFr58uVLrJwiRa1WrVqAfXC4mJgYa5kZNTanHDMHnZs3bx4Ae/bsAcAwDCuPOWhXuXLlirHUIiIi5z9FiEVERERERMQnKUIsIuctcwolMwKWlJQE2CPEp0+fBpynUjIjwTVq1ACgatWqJVNYkSLgGMWF3H18w8LCAPu0YmDvG3zq1CkANm/eDNi/L7t27QJg3bp1Vh4z0myux+xjb65fRETEVyhCLCIiIiIiIj5JEWIRKRF5Rb5cSU9PB+x9ILdu3QrAoUOHAHv/x6ioKCtP9erVnZaJXEjM70XO70tOkZGR1vO2bdsC9pGnK1euDMCSJUsA+/dl5cqVVh6zn3GLFi0AuOKKKwB7H/yiVpDvv4iISElQhFhERERERER8kiLEIlJs8opy5cXsE7l9+3bAPu+wGd0yR8p1nJO1Zs2aAISHhxdq2yKlKa8IakBAgPU8Z3/54OBgwP79WbNmDQCJiYlWHnNk9pMnTzqtw/xbVN+fwp4DREREipsixCIiIiIiIuKTVCEWERERERERn6Qm0yJSbBybfRak6aQ5rZI5mNbq1asB+zRL9erVA5wHAqpduzYAISEhBSixyIXLbEZdp04dANq1awfYvwuO38EdO3YAsH//fgAWL14MQFZWFgANGzZ0WpfjevLD20HCRERESosixCIiIiIiIuKTFCEWkRJRkGlWTpw4AcC2bdsAWLduHQB169Z1+tumTRsrjzkokBlF9sb5MiWMqyiapqeR/IqOjgagU6dOgH3wuaCgoFxpzSmZFixYAMDOnTsB+zRMjlOamespCB3HIiJyvlKEWERERERERHySIsQicl4x+w0DpKSkOP01p4gxI11mNNiMFANERkYCF1afxQuprHL+MY8fMwprto4wvwtNmjQB4OjRo1ae1NRUp3WYfYqPHz8OQKVKlQDn/vnm965s2bIABAYGOm1PRETkQqRfMREREREREfFJihCLSKnKzs4G4MiRIwDs2bPHWmb2ZzTTVK5cGYDq1asD9r6SZiTM0YXUZ9HVSLwXUvml5BSkNUFwcDAAjRo1sl4zo7oVKlQA7NFe8/u3fft2AKZMmWLlMUd7N0evvuSSS5zWJSIiciHSr5iIiIiIiIj4JEWIRaRUmfOe7tu3D4A1a9ZYy8x+jeb8p2aEq379+gCUL1++SMpwvkRjz5dyyPnHU2TY2+OmWrVq1vOYmBjA/h0yv4fmXMaJiYkA/Pnnn1Yec7R3M+Js9uE3+xuLiIhciBQhFhEREREREZ+kCLGIlCozMpWUlATA2rVrrWXmHKllypQBoGbNmoB95Nty5cqVWDlFSpOrfuZ5yTn6tCOzz3CdOnUAaN68OQDnzp1z+rt582Yrz8GDBwH7fOBmZDguLg6AqlWrAq779IuIiJyvFCEWERERERERn6QKsYiIiIiIiPgkNZkWkVJlNs3cu3cvAKtWrbKWZWRkANC1a1cA2rZtC9gH1TKbUov4ivwMvOZNWvM71KJFC8A+DVPZsmUB+wBakLtbg9mEuk2bNgBcffXVADRp0sTrMoqIiJQ2RYhFRERERETEJylCLCKl6tixY4A92rR//35rWWhoKGAfvMecdsmc7iUoKKjEyilyMfL3t90XN79jFStWBOwDcp05c8ZKa0aGN2zYAMCePXsA+8B49erVA6BKlSpWnqioKMAerdbUYiIicr5RhFhERERERER8kiLEIlKiTp8+DUBKSgoAW7duBeDo0aMAREREWGnNaFXlypUBiI6OBiAkJKRkCityEXGcssldpNZ8vXbt2oC93z7YW2ycPXsWsH93ze/y33//DUBqaqqV55JLLgHsU6WZfZNFRETOF4oQi4iIiIiIiE9ShFhESpQZCV63bh0AmzZtAuDkyZOAPTIFULNmTQCqVasGQFhYWImVM78co2+gvpIXopyfoeli+Szz8z7MPsXmCNJgb7Fh9js2v4+7d+8GYMGCBQBs3LjRytOzZ08AypcvDyhCLCIi5x9FiEVERERERMQnKUIsIiXqyJEjgD2KZP41R6o15xgGiIuLA6Bq1aqARpUWKS5mdDxnFNmxVYY5ivTx48cB+zzh5lziZl9iM2IM9hYgdevWBSA7OxuwjwfgGDE2I88iIiIlSb8+IiIiIiIi4pMUIRYRj4q6b+zhw4cBex9iM0LcpEkTAJo3b26lNUeoNfsQn88uln6mvsz8DN1FS32dObq72XIjODgYsI8Mb0Z4HSPE5lzFU6ZMAewjU3fr1g2AVq1aWWkVIb74ueqnr++ZiJQ2/fqIiIiIiIiIT1KFWERERERERHySmkyLiEvupqApqLS0NACSk5MBSExMBGD//v0AtGzZErA3nQaIj48HIDQ0tEjLIuKJLzbhLMiUTOZUSuHh4YC9yfOaNWustGvXrgVg4cKFAOzbtw+AChUqAFCrVi0rbZUqVfJdFrnwqYuCiJQ2RYhFRERERETEJylCLCIu5RxgKD8yMzMBOHHihPWaGRk6ePCg03rLlSsHQExMDACVK1e28jhO+SIiJcebwY8CAgIAqFmzJmBvBeLIPAccO3YMgNTUVMAeRTajywCNGjUCIDY2FrBHkeXioSiwiJyPFCEWERERERERn6QIsUgJKuopjEpCQcqYkZEBwI4dO6zXNmzYANj7DEdHRwP2iLAZFTKncJH/b+8+o+xIz8PO/0UMBjkDjYwG0AAaOc8MhjOcRHLIEUdam6uwClxKFqlD6ki2j464kuXjPbQtybv2WYsKlmTJNlcSrUCRYtJyBuSQM+QEYDhIg5xzzjkD2g8XT711L7obnfverv/vy719b1XdutVAVfX7vM/zSB3TkfNNW5aN/7Nz5swBYPDgwfdtJ1o0RUumyC3eu3dvtuzjjz8OwI/+6I8CKUe5Fs6T1Sz/76CWj2Vv+R6Sqo8RYkmSJElSIRkhlrpYZ1drrgXXrl0DyqM/kTMYOYRRUXbChAkATJs2DbCitNRVuirCFtuKyPCsWbOy927evAnA7du3gZR3/PbbbwMpYgzp/35jYyMAw4cPB1JV63g/tqHWaep3fffuXQDu3LlT9nM8tua61ZplWvPvLJaJx6hWHr/neDQqLKmrGCGWJEmSJBWSEWKpixQxMhyuXr0KwO7du7PX1q9fD6R8w8gXjP7D06dPB6Bfv37dtp9SkXRWhO1BfWPzEdzoMxwR4r59+5b9vGPHjmzZS5cuAfDKK68AcOjQIQCWL18OwKJFi4AUOVb7RT/4OEdHbYcLFy4A6RwOqSZEZfS4NdHk5roVRE45pGtC/F5j1tCMGTMAmDRpEpAix5LU2Ty7SJIkSZIKyQix1MmKHBkOEWXI5wfu2rULgIaGBiCN+i9evBhIfYgjgiSpY7oq57It241K0fPnzwdS3/HoPxz/7wE2bdoEwJtvvgmkStQRoYy6A/kq1g891PHbmObO2b05ZzUixJHLvXbtWiDVfYj3IfWXrjxO8XNTx69yFkFlVDnfY37UqFEA1NfXA2nWUESRJ06c2NavJ0ltYoRYkiRJklRI/kEsSZIkSSokp0xL6rCY0hgtlaJAy8WLF+9bNqY7jh07FkjT4WylItW2loptRbG8mBZ769at+5aN88W+ffsAOH36NADbt28H0rTeaOsGKfVi5MiRgIWXWivOtzEtOX4P8TuIgmZwf0G0OIfHNmLaev53Gb+H+DcRv+94zBftCrGdmBrf3FRtSepsXjkkSZIkSYVkhFjqZL25EEtzogBLRHKilUr+WEQLjXgcPXo0YGRY6i1ac+6LKGO0Y8oXxbpz507ZY0SKDx8+DMDf/d3fAalAF8CHPvQhAB555BGgfW3binjOHj9+PABPPfUUAGPGjAFgyJAhAPTv3z9bNn4fce6eNm0aAEOHDgVSgax8K6X8c0iR57hWnDt3LnsvZhZF9Dgi0E1FniWpKxghliRJkiQVkhFiSe0WLTSOHTsGwIYNG4AU2clHaxYsWADAvHnzgJTzJ6l4Bg0aBKSoI6S804gMxvnk9ddfB1KLoMgthlSDIHKJI/80IpTmFDctzr/xGLndkS98/fr1bNmI6j/xxBMALF++HEh1IOJ3mY8qV+YQRxT46NGjQIr6Q5pZFG36hg8fft/2JKkreaWQJEmSJBWSEWJJ7RbRhBj137hxIwDHjx8HYPr06dmyESGeM2cOkKIAkoornx8a0d25c+cCKbp45swZIFUmjvMOwLp164CU5xr5xbNnzwZSFLPImqrSXJmXG+fjgQMHAuW53fFa/H7ivB6vtyRfETy/jcg7zi9z6dKlsvfy+yBJXckIsSRJkiSpkBx+k1qhcoTdqpcl0X84coi3bNkCpP6RCxcuzJZdvHgxAA0NDQAMGzasu3ZT0gM01+u1O891kYsaVYwjhzQq0Y8aNQpIVewhRYgj3/jpp58uW7eyErKaFjnDEYXPR3YjHzsitq3J7d21axcA+/fvB9LvNqLL8bsEqKurA2DEiBFA+n1H7rLXW0ldzQixJEmSJKmQjBBLreAIdYogRa9IgBMnTgCpt+SFCxfK1slXko6ojzl9kloS0dypU6cC6fwbVeujuj3Azp07ATh06BCQzjlRqyDyXCdMmJCtE7NTipKjmr9+NTcTIGb1xPk9f2wiIhy/l+Yqd586dSp7fvDgQSBVjo6+8/E7jX7HkHogR35xaE2OsiR1BiPEkiRJkqRC8g9iSZIkSVIhFWO+kHqNmO7lFObuF1PqYmoipOmK586dA1KhlChkM378+GzZ/BQ5SdUlzqnddY5tzefE1NyYShvrRDE/SGkaW7duBVJxqJUrVwKwd+9eAN73vvdl6zz66KNAKuJUJHG8b968CaQiWtHaKgpoTZkyJVsnjv/EiROb3GZMlT5y5Ej2WlwvYup1THeP32l+2nVMmW5sbATS7zmuJ17vJXU1I8SSJEmSpEIyQiypVS5evAik1koAmzZtAuDSpUsAzJgxA0gFbCZNmpQtGy00JFWv7orGteVzophTfX090HTBp4hovvnmmwCsWrUKSOer/PknzkuVxaKKJNoqRUHEeIzfS77AVcz0qSxyFVHgaIN1/Pjx7L0ozhUFzOIxWirlDR8+HEi/h4gQx+/ZCLGkrmaEWJIkSZJUSEaIVVMqR4pjlDvyyCJSCSmXLEaq79y5A6TR5+baT7T0Xnx+Pv8pcqOi3UddXR2QcrF6i/PnzwMpGgCwefNmIB2DhoYGAGbNmgWUtzoxQiypIyK6mK9NEOfqeC8infv27QNSjmzUOwBYvXo1kM5p0RIuzt1FaMd0+/ZtIEV5ow5EHL9oqQfp+hrHOKLHkTNcmb8N6dwf14SoK9HSdSCuI83JX5eNGkvqTEaIJUmSJEmF1PuHQdWrRWXMd955ByjPbz127BiQRr4jUhAj401Fiitfu3v3LpBGo2OEPB/9jajCk08+CcALL7wApMqZvUUcx+3bt2evRQ7x/PnzgRQZXrJkCVBeldQRfal3a2pmTVf8v89HGSNaGZ8T5/mYxbNnzx6gvALy3/7t3wLpvBXn7MgpjurTvfmcFb+rmDkV0fKI9q5ZsyZbNqLIo0ePBlK0N+pKxLUhf8177rnngHSMI0+4IzOnevPvQ1LPMkIsSZIkSSokI8SqaVeuXAHg4MGDAKxfvz57L0a6472IHHREjFDnR6ojVyqiFnPnzgV6T4Q4ogPRa/Lo0aPZe/Fa5NxFLl5Eih+UEyapd+vqvsZxjslXtIdUETl62b788svZe3GdiJoTsW7UgYioaUQ1offVQIiZUlGHI6K8cX7fvXt3tmwcp127drW4zdgGpF7P8XuIqHJvq60hqXcwQixJkiRJKiT/IJYkSZIkFZJTplXThgwZAqTWDtEeAtJUsCj8EVP2ojDI2LFjARgwYEC2TkzniuJZUZglpv3FtOuYKgyp8NahQ4cA+Pa3vw2k9hWzZ8/Olq2vry/bfjWK6YJRsCymnB8+fBgobzkVxzDaoMSxdaq0JOi+QkhxXooih3FejvNZnI/zr8V5fe3atUCaGrxs2TIgFQeEdI7Ln/9qWaQbRbGxuKYNGzYMgMceeyxb9saNG0C6VsbvNK558RjToiFdm+Mx1i1CSytJtad3nNklSZIkSWojh+pU0yIa8NRTTwEwffr07L0okBKtNCK6G20gFi1aBKSoJsDgwYOBFOGMx4goRCunDRs2ZOtEG6IoRvL1r38dSFGHj370o9myEVEdNGhQ279sN7l16xYA+/fvB1IBmgMHDgCpJQmkYzxz5kwgHT9JxVMNbXHifB/FDmM2Tn5WTry3ceNGAN59992yxygOlS+qFefsiKBWw3ftiJg5tW/fPiBF0KMw4gc/+MFs2bjOxrUyou+rV68G4Lvf/S5Q3nYrrnURNe5tRckk9S5GiCVJkiRJhWSEWDWlsoVH5CPFKHS0PIKU87pjxw4Abt68CcDixYsBePrpp4EULYAH5/Zev34dSFECSG0lIidr586dQMrBze/TI488AqSc52rMR4vc64gQRxQloibRxgRSu5L4PtUc+ZZUHFEPYuLEiUB5hDLOU3E+37JlC5BmAEV7oU2bNmXrxLl66tSpQIqW1mobociXPnHiBJDqb8yZMweAFStWZMvGDKDK62Mck9hGbBPS8cnX6JCkalV9d+OSJEmSJHUDI8RqtXx+ENRODtXt27fLfo7oQEQ621LxOfLT8pWjI0odkdWzZ88CKUfr+PHj2bKRVxzR5ClTpgApF7caxCj/nj17gJQvHRGWiBYALF++HIAZM2YAKVouSdUgopj5mS1xLbt8+TKQztXbtm0DUr2Jb37zm9k6MdPomWeeAeDRRx8FUn5trVRPjqh4XIPifB/fOb5HvlZEc9fION9HNDiuj5CqS7cngl45E0ySupoRYkmSJElSIdXGkKZ0z4NGjCNPGNLof/RQjHUjYtCREf2mKlPH50W1zr179wLlvZEjQhyj9BGtroYIcexT5D5Hb8moLh19OOMRYMGCBUCqKFrN/ZUlFVc+hzjOVwsXLgRSnmv0iY9e8j/4wQ+ydSKvOKKiERmOc16cw6upmnJEWqMqNKSIcESIo6tAiOtia75HbD++e77LQNTZaM911siwpO5mhFiSJEmSVEhGiNWr5KOxERmOiHCMeEdOU1tGwENTI9eRNzVmzBggRQ5Onz4NlFfejMrXkZ8Vo/Q9JX+8oo9y5A7HflfmiUV0BWovf06S4poQ5684r8djnKfjnAgpx3b37t0AvP7660CqGTFv3jwgVbWGnq9AHfUz8teguC5FzYuIjscxaU3ub1wXo7tDVN6+c+dOtsy4ceOa3E7MoMpf+2KmVFwXqynKLqkYjBBLkiRJkgrJP4glSZIkSYXkPEe1WjUWuogiWjEl7MSJE9l7McUtpmzFtKyYjtWa1g5t+c5RXCUKi8Tn5aclx37GY2VBk+526tSp7Hm0V9q+fTuQjs+cOXMAaGxsBMqnTDu1TVKtilSPfJFESOk2+dZD0XYpimt96UtfAlKKSZwv862HYrs9dZ6M60tMkwY4cuQIkKZMR6pPHItoTxVTqJsS18UophXr5tfJF18EOH/+PADr1q0D4NixY9l706ZNA2DJkiVAKsglSd3FCLEkSZIkqZCMEKumRaugiHQeP348ey9GwCNiG6POMYJfWTCro2J0PCLD8ZgfNY9CIrHfUfSku8V3z0fUN2/eDKSIRxyn+fPnAzB79mwgRRQkqTeICG5lIah85DiuH/v27QNSca2Ilk6fPr1sOUhFpqJ4V3cX2YoIcX4mUBQMi+tjfMfhw4eX/dya2VFRgCseWxKR6ZiBFD8D9OvXD0jXGknqbkaIJUmSJEmFZIRYNS1yvZqKEEf0NfKcYuQ7IsadLUb/oxVFjLjnowIXL14E0sj93bt3u2RfHiSOW7TAgDRyf+jQIQAWL14M3B8hrsy3k6TeoDI3Nj+75/LlywCsWLECSDUj4lz6zjvvAOX5uo899hgAjz76KAATJkwAui+nOD6nqfZ6kfcbLZOmTJkCQH19PZDaMbXXmTNngBRJj9zraFMVxy+/n5LUU4wQS5IkSZIKyQixukVL+bodqV4dubgR6cxXroztRv5WjM5HBLelz63c39bsY0SCIwIdeVX5kfaWKnd2p6aqch84cABIEY74HlFletasWUB5FVVJ6m3ifJ/PB47zX7wXkdTVq1eXPW7atClbJ/J0I+JcmZvcmshoa7ohNCdmIDVVZTpqQcS+RYS4s2YAvfvuuwC8/vrrQIoMx/Uj362gslq1JHW36rg7lyRJkiSpmzkcp5oWvYYjMhwVNCGNQMeId/RFbE2EuCNiuxENzkcBYnQ8qmrm86i6UvRrjlyygwcPAuU5xJFzHRHt6EcZx23gwIHdsq+SVA3yM3oiohrn8+giEP11t27dCpTPUopZNxEtjarTM2fOBMp79TY386byOpWvOxHP4/we5/DoZhB1IaKDAKQuArHM5MmTgXTej0huvvZFRG4jWh2Pldex/PU3IsNvvvkmkI7bggULACPEkqqLEWJJkiRJUiE5HKdu0VXR2Kj8GSPxMfoNKQc2Ip0TJ04EUoS4Je3Z3xj9j7zmGLXPR4EjrziiC91VXTNy2aLS55YtW4Dy/pTRgzP2LSIHRoYlVbuO5Nq2RkSLI684zo+PPPIIkDoH7Ny5M1snzq8rV64se+/ZZ58tWxfS+fdB59v4HEi1IKJy9MaNGwFYu3YtANu2bQPKr4tR/Tmug/v37wfSTKqI+uaj4/G8srZGRHTjmEe0HFIudeQsRw52VNyeNGlStmxl9F2SupsRYkmSJElSIfkHsSRJkiSpkJwyrZoWU4GjOFS+jVBMLRsxYgTQee0kmhMFvmJKWhQnyU/hi32Jx5ie1tViankUWYkpdfE6wNSpU4HUfiMeu6vwlyS1VeU03q6eOh3nwziHL1q0CEjXl0hHAfj6178OpAJTUXQqUmeaSt+J9oDNFdmK1BxIhbGikNeqVasA+OpXvwqkqdRNOXfuHJDSjeJ4NXXcKl9r7hjn961STLuuTGECi2pJ6nlGiCVJkiRJheRwnGpStJuIx2gRkS9IEsWhurooVIyKRwGVaL+xb9++sv0AqK+vB1LLiWh10dWi+ErsUxR3iZF5SJGOaIsREWOLakmqVl0VCX6QiBRHxDPO8/liVIcOHQLSbKHKIpBvvPFGtuzFixcBWLp0KZBm6FTOIsq3Q4oockSco1DVvHnzgBTFzkebo9hkXDtjJlVcxypbK7WkpWWiBVQcl/heDQ0NZfuW37+e+l1KkhFiSZIkSVIhGSFWTYrc4RiNr6urA+DGjRvZMvFac3m6TY1ut2eEOj7z4MGDALz99ttAigLEyDik1hqRPxWj9S3pjJy4aIcR+xitNoYPH54tE20xli9fDnR9zrUk9RYR5Zw+fXr22vPPPw+kvOBoi7RmzRogtcEDOH78OJAiwJFPG+vGdSyfZxszfOLaENeTOIdHXYv8OpV5uu2JDLdGbCc+LyLpEcXOX/tayl+WpO5ghFiSJEmSVEhGiFUTIt/p+vXrAFy4cAFI+U/Dhg0Dyqtcxuh53759O20/YtQ7PhdShc/K6GtUvs5XaR4/fjyQRv07Mz83jhGkqPXp06eBFK2OKtyRr5aPBkTF0ziW4ebNm0DTo/edFU2QpFoU5/eYrZQ/30cecFyDoir06tWrAdizZ0+2bERSK3OH45oWkdV8PnBsN2ZDxaMkqW2MEEuSJEmSCskIsWpCjJJHteSo6ByRzhidj2qbkKKv+aqfnSU/sr9+/XoAdu/eDaSoaeTgTp48OVs2KjdHpLgzq0znI8Sxf7Fv69atA1LvyXzl6xA9Mjdv3gyk4xb52pJUdJU1HSojw/nzcOV1K2buRD5tzBSCdJ6NXsIxuycqVC9btgxIkWIov95JktrPCLEkSZIkqZCMEKsmxEh7jJZHNPPMmTNly+Ujn5Fr1VyEuD0VLWOkf9OmTdlrb775JpB6Tsbof/QanjNnTrZs5Ie1prp0W/czn9e8Y8cOAFauXAmkvsORgx37ls93i2UiPzs+N79dSdL94nyZr6sQr0VP3uhDHF0G8vUt9u7dC8CGDRuA1DM+ajhETnF++9HXvqkZP5Kk1jNCLEmSJEkqJP8gliRJkiQVklOmVRNimli0Mtq1axcAV69eBVJxkZgKDDBmzBigvE1Fa8UU7WiTEQVOtm3bBsCaNWuyZaPNUkw/njt3LgAzZ84EoLGxMVt2xIgRbd6X1orp0ABHjhwBYOvWrUCazh3HJ6Z1549NZSurEEVibLEkSS3Lp7hEuk5l2kukzOTPqXGNifNtpANF+ku0w2sqhWXatGlA5xZpbEpz14D2pB9JUjUxQixJkiRJKiQjxKoJUXzk6NGjQCo8EiPijz/+OJCis5BaHLUnQhwtML773e8C8NJLLwEpMh3tnvLbnz17NgBPPPEEAPPnzwdS4ROAhx7quv9yES2H1F4pIuqxv9GyY+TIkUB5244Y5Y8iLiGiApXtRiSpM7V2Fko1nYMq9zm/b/G8skVT/JwvqlVXVwfArFmzgDRjJ6553/rWtwA4duxYtk5ltDha/LWmHVN7zufVdNwlqTMZIZYkSZIkFZIRYtWEyK+K1hSRGxt5wo8++ihQ3n4i31KotWLUPNo6vfXWWwB8+ctfBlJeV4zmAyxevBhIEeL3ve99AMyYMaPNn98WkWt248YNIB0jSO2hYpmIYo8ePRpIbT/yxyuWrWTusKTu1FLUtZZVRozzs5fieVxbTpw4AaQWf9GGKX+ejutf5CTHdiOnuKXZUb3lmEpSZzBCLEmSJEkqJCPE6jFRyTlyViPPNSKdEaUF2Lx5MwCvvfYakHJ5Y9nXX38dSJFRSFU5I1IcjzEyHp+fH3GPfTl16hSQKkjHqP24ceOAlOcFKUK8cOFCACZMmPDA794Z+bjxXQ8ePAjAzp07s/cuX75ctt8PP/wwAIsWLQJgyZIlAAwcODBbJ757c5HiWvGgiLaREak61WIOcUuai3RHLnH+/Xjv9u3bQLq2DR8+HIDdu3eXvQ+wZ88eIOUSR95xLBP1K5qqFSFJSowQS5IkSZIKyQixekyMYkdk+MCBAwC88cYbALz88svZshs3bgRSXlU4f/582eOrr76avRcVPCvztirlqypHPm7k1jY0NADwkY98pOzn6dOnZ+tEZc+IxramqnVnjNJHPvO7774LpLxqSD2JI685coYjv3np0qVA0xHiiJzXkrbkORshkapTb5vd0ZaZQBE1DjHLJ2bzxPVx/fr12TJxrdy+fTuQosqxrTiXR04xpJlTkqTECLEkSZIkqZD8g1iSJEmSVEhOmVaPielkMa0rpivHVOAoFgVpqnRMBRs6dGjZNqKoSH5Kdbz3oGl4+SnTsWy0J4q2Fu9973uBVJQqpiAD9OvXr1XfEzp3yl8cp23btgFp2hykKd+NjY1Amjo9f/58IE3zliRVr0jPmTp1KlBe9DCKTUYByphWHa9XFpSE1A5wwIABXbjXklRbjBBLkiRJkgrJCLF6TIxaRzRz/PjxADz66KNAKooFKfIb7YNincoIcTzm33tQhDjfxiKi1dHqIiLCc+fOBVLbpQdFhZv73M5otxT7G62hduzYAaS2HJAKscR+R2R47Nix7f5cSVL3euih0m1azFaaN29e9t4LL7wAwKRJkwA4evQokApvHTt2DEgFuiBdP6ZMmQLAyJEjgZavSc21j5Kk3sIIsSRJkiSpkIwQq8fEyPfgwYOBlNMUUczI24U0qv2gFkptab/T0jqRqxwtlOIxH7V+kNjHjkaKK5eNFlMnT54E4MiRI0BquQHpWM6cObPsMSLskqTaEefuOJdDiu7GTKBvfOMbAKxcuRKA/fv3A+UtnWJ2U8yGiu0OGTKkq3ZdkqqeEWJJkiRJUiEZIVaPiYhnZSXMIo1YtyZSHHnRUVU6Rv0jXyy2MWzYsGydyDerq6sD2hcZbi7abv6YJHWvOO/mr4vxPGYu7d27F0j1JCKHON99Ye3atUDqrhDX3YaGhrJt5s/znvMl9XZGiCVJkiRJhWSEWOpiTY2uV0ZfW4oUR3/mqCa9bt06IPVpjmhwfX19tk70rOxIr0mjApJU/UaMGAHAY489BqTzfvQjjqrTAG+88QaQoseRSxzXmYgUx3WlJZ3RNUGSqoERYkmSJElSIRkhlnpASxWoK0UPyV27dgEpB+zatWsATJw4EYDp06dn68Rzq0pLUu8WEeGoNj1+/HgARo8eDcDhw4ezZbdt2wakyPCoUaOA1PWhsvtDfvuVjAxL6i2MEEuSJEmSCsk/iCVJkiRJheSUaakHtWbq9Pnz5wHYt28fADt37gRg5MiRQCqgtXTp0mydadOmAdCvX79O3V9JUnWJ60ikyES7vRkzZgDw3ve+9751Tp8+DcChQ4cAuH79etljTKmGdD2Ja05Mq5ak3sIIsSRJkiSpkBzmk3Kai9R2V/GQu3fvAnDlypXstZMnTwJpJP/o0aMADB8+HEhtMvIR4mjDIUkqlrheTZgwAYAXXnghe6+xsRFI7ZdeeeUVAPbu3QvApUuXgPIIcRR2XLhwIWBLJkm9jxFiSZIkSVIhGSGWqsiFCxeAFAWGFBmOUfrIE4t8rogCxM+SJEXrpHwLpYjuRiR4y5YtAJw9exaAEydOALBx48ZsnYj2xnYGDhwIwKBBg5r9bCPDkmqJEWJJkiRJUiEZIZZyKqs+d9cod3zO8ePHAVi3bl323vbt2wHo27cvAPPmzQNg9uzZQOflC1fmTzvCL0m9y5AhQwCYM2cOAB/5yEcAqK+vB9L1Ztu2bdk6ET2Oa8StW7eAVL9i/PjxD/zcljopeK2R1NOMEEuSJEmSCskIsdSE7h6xjoqeR44cAWDt2rXZe/FajOxHhHj+/Pllr3c2q4RKUu8S5/PoLTxq1CgAZs6cCcCXv/xlAHbv3p2tExHiAQMGAPCe95RiKdEVIXKL23st8lojqacZIZYkSZIkFZIRYqkKXL16FUjVpXft2pW9d/78eQCWL18OpMjwrFmzABg6dGiX7JOj9ZLUO/Xv37/sMaK0CxYsAODw4cPZsseOHQNSpHjDhg1l24r6FhFlBhg+fDgADz1Uus2svJ60lFMsSd3NCLEkSZIkqZD8g1iSJEmSVEhOmZZ6UBQlialoMTXt4MGD2TJRcCvaK82dOxdIbTJiyltHOUVakopp2LBhADzxxBNAKrYFsHHjRgBWrVpV9nOk81y/fh2Ac+fOZessXLgQgEmTJnXhXktS5zBCLEmSJEkqJCPEUg+IEfUYYY/WSqdOnQLgxo0b2bIDBw4EYPTo0QBMnjy57HVJkjoiZho1NjYCMHHixOy9aKcUM5cOHDgAwKFDh4DUjilmM0G6PsXMpkGDBpV9njOSJFUTI8SSJEmSpEIyQiz1gCtXrgCwc+dOALZu3QrAxYsXAZgwYUK2bF1dHQDjx48H0mi8JEldYfDgwdnz6dOnA/Dkk08C6Rq0f/9+AI4fPw7AtWvXsnX69OkDpEhwQ0MDAGPHjgVSqyZJqgZGiCVJkiRJhWSEWOoBkTu8adMmADZs2ACkEfaoJA1pdD5yuv7xH/+xm/ZSklR048aNA+D5558HUp7xK6+8AsBLL70EwI4dO7J1Ip/41q1bQJr99OijjwIpUtyUuMaZZyypuxghliRJkiQVkhFiqQdE3+Fdu3aVPUae8MyZM7Nl582bB6RR+ve8x3EsSVL3iArUcX2KnsUnTpwAUmQ4osGQehJv3rwZSNHeWLdfv37ZsvFaLGNkWFJ3885akiRJklRIRoilbnT16lUATp48CaQqndHfMapLNxUhHjlyJODouSSp50SP4bg2RWR4y5Yt2TLr168HYN++fQBcunQJSLnFUUcjv52oRN2cfP0Mr4OSOpMRYkmSJElSIfkHsSRJkiSpkJwyLXWRmBp248aN7LUoQhKPUVzr+vXrQJqKNmXKlGydaLckSVJPi6nL06ZNA1ILpfr6+myZK1euACkt6MCBA0AqChktBiFNfx49ejSQimxVcpq0pK5ihFiSJEmSVEhGiKUuEhHiI0eOZK9Fe4pDhw4B8PDDDwMwadKksscRI0Z0235KktRaEant06cPAEOGDAFSxBhg6dKlAFy4cAFIEeIorpUvwBVtnQYNGgRAY2MjAGPGjAHSdVKSuooRYkmSJElSIRkhlrrI7du3Adi7d2/22ttvvw2kqPG4ceMAmDNnDpBGxmPEXJKkWjB06NDs+ZNPPgmkWU/vvPMOAK+88gqQcosh1dmIWhpRY2PFihVAeeS5OZHXbJ6xpPYwQixJkiRJKiQjxFIXqayyCbB582YgRY8jIjxv3jwAGhoaACPEkqTaks/1rayLEZHbPXv2ACkKDHD69GkANm7cCKT6G6NGjQKgrq4OSDnGTTEyLKkjjBBLkiRJkgrJCLHURc6fPw+kitKQRsejivT48eMBWLhwIQCTJ08G2hchjhwqcLRcklQ9Ig/4ueeeA8o7KUTF6cOHDwOwYcMGAAYMGACkGVWzZs3K1pkyZQpgBWpJncMIsSRJkiSpkIwQS50kRrEvX74MpByp48ePZ8ucOXMGSNU4I0IcI9/Rz7Et8pHhyteMFEuSelrkAX/gAx8AYMaMGdl7kRt88uRJIHVhWLVqFZCuqdHTGGDw4MFA6tQgSR1hhFiSJEmSVEj+QSxJkiRJKiSnTEud5OLFiwAcOHAAgH379gGp/RKkKdExfWzMmDFlr0uS1Ns89FDpdjPShWbPnp29F4Un45q5c+dOAK5duwbAjh07gPJik3HtjLSgkSNHAtC3b9+u+QKSejUjxJIkSZKkQjJCLHWSKAiyfv16ALZv3w6UF7ZasGABAPPmzQNg9OjRrd5+U8Wz8iygJUmqBfl2SdF2MF7bvHkzAKtXrwZS5HjdunXZOnfu3AHg2LFjACxduhRI19aWWHRSUiUjxJIkSZKkQjJCLHWSaLO0ceNGII1qR24TwPz584GUPzVixIgOf66j3JKkWjV58mQAJk6cCKR2hFGXI1oXxiwsgHfeeQeA8+fPA9CvXz8AJk2aBMCwYcOa/TyvmZIqGSGWJEmSJBWSEWKpgy5fvgykXKZdu3YBaVR7woQJ2bJz584FoLGxEWhdhPhBucOSJNW697ynFKOZMmUKAMuWLQPgxo0bQKo2Del6u3v3biBdSwcPHgyka2z++jtgwIAu23dJtc0IsSRJkiSpkIwQS21w9+5dAG7dupW9durUKQCOHj0KwOHDhwG4dOkSkPouQhq1njFjBtC+nonmP0mSeqtBgwYBsGLFCiDlFr/11lvZMitXrgTgwIEDQMopvnLlCpCux88++2y2TkNDQ1futqQaZoRYkiRJklRI/kEsSZIkSSokp0xLbRDFPaLFEsDevXvLXosiWFHcY8yYMdmy0U7iQVOlmyqk5VRpSVJv16dPHwBGjx5d9njt2rVsmbjuRlHLSFHaunVr2bbimgupBWJntDuU1LsYIZYkSZIkFZIRYqkNrl69CsCWLVuy19avXw/AyZMnAZg6dSqQRrWnTZuWLdu/f/8mt9tSa6XujgzHvhiRlqTepZbP7/lr6fvf/34Axo4dC8DGjRsB2L9/P5DaH7766qvZOufOnQNg/vz5AMyePRto/rrcUV19rGv5dylVGyPEkiRJkqRCMkIstcHFixcB2LRpU/ba6tWrAXj44YcBmDdvHpBaLOVbPbznPa0bg+qJEd/KKLWjz5JU+5qagVSL5/eIBkNqpzR9+nQABgwYAKRr9PHjx4F0fYb7WyKOGjUKgMmTJ3fqfnb1tdRrtdT5jBBLkiRJkgrJCLHUBmfOnAHgwIED2WvxPEaqI4c48pQmTJiQLRvVM2uBo82SpGqRn2EVEeG47sb19tSpU0CqNh1RYUj5xVFteuLEiQDcuXMHgLq6OgAGDhzYJfvfVbxWSx1nhFiSJEmSVEhGiKUmRE5OjBxfuHABSHlJUVEaUs5S5BDX19cDMHPmTACGDh36wM+rhhHeatgHSVLn6s3n9sraHYMHDwZSXvBrr72WLbtjxw4Atm3bBsDdu3cBOHToEABPPPEEAIsXL+7QPnX18e7Nv0+ppxghliRJkiQVkhFiqQkxchx9C2ME+ciRI0DqRwzQr18/IOUljR8/HoBhw4Z1z85KklRgkf8bjxEpPn36dLZMXM9jhteGDRuANANs+PDhQHnV6ahELal3M0IsSZIkSSok/yCWJEmSJBWSU6alJkRRrZgivW7dOgB2794NQP/+/bNlGxsbgdT+wanSkiT1nGip9Mgjj2SvRdumzZs3A7B3714Ajh49CsA777wDQN++fbN1Zs+eDaR2iq0pkimp9hghliRJkiQVkhFiFU5Ef0NTLQyiqNb+/fsBePvttwE4deoUUF5oY9q0aUBq+zBw4MDO3WFJknpY5bUzVGMboCiq9dhjj2WvRbGsMWPGAHD79m0ADhw4AKQiW3Gdh1RQ88Mf/jCQrvNdrbljDdV5vKVaZ4RYkiRJklRIRohVODG62tII7KVLl4CUQ7xr1y4gjShH3jDAwoULAWhoaACMEEuS1JMiX3jIkCHZa3Hdjuv7sWPHALhz5w4Ahw8fBlKtEICHHirdJk+ZMgVINUJGjx4NpHzjPn36dMG3kNRdjBBLkiRJkgrJCLF6vYgEV+bdNBUpjghw5BAdP34cgJMnTwIpL6muri5bJ6pQRlXLfAXq7tBUpNscI0lSZ6q8ZtbqdSbqfjz33HMAjBs3DoBVq1YBsG3btmzZgwcPAvCd73wHgBMnTgCwdOlSABYvXgx0/syw3nKspVphhFiSJEmSVEhGiFV4165dy56fPn0aSLlEZ86cAVLkeMCAAUAaUQaor68HoF+/fl2/s63kqLIkqSvU+nUlukQ8/vjjQJrdFbnEkWMMqcr02rVrgXRvEMvGunEf0Nlq/VhLtcIIsSRJkiSpkIwQq9dqqYp03oULF7LnO3fuBGDr1q0AXLlyBYCxY8cCMHXqVKA8h7iaIsOSJKn1Iso7f/58oPyeIK7v0Wkicoi3bNkCwIQJEwC4evVqtk68FhWpJVU/I8SSJEmSpELyD2JJkiRJUiE5ZVq9VlNtlZoShbMA1q1bB6TpULdu3QJg0aJFAMyaNQtIU6irgUU3JElq+Xrf3LWyT58+AMybNw8on+o8fvx4AB56qHS7HGlV8RhFOffs2ZOtE+2cHn300bZ/gVao/I7eA0gdZ4RYkiRJklRIRojV6z1o9DRaLQFs374dSAU0GhoagDRyPGfOHABGjx7d6fspSZLarrnIcFuipxEZzkeI+/btC6T7hIgIHzhwAIDNmzcDcPny5WydmEEWxboiyvye93RNDMo2i1LHGSGWJEmSJBWSEWIVVrRWiDYKAEePHgVSXnG0YZg5c2bZ44gRI7ptPyVJUvNaWzOkraKF0mOPPQbAwIEDAVi7di0A27ZtA8prkaxevRqAGzduAOk+Yu7cuQCMHDmyU/fRyLDUcUaIJUmSJEmFZIRYhXH79m0Arly5AsCRI0cAOH78eLZMRI3v3r0LwPDhwwGor68HUk6QJEmqLp0dLR08eDAAy5cvB2DSpEkADBkyBEj3Cvkq0xs2bABg7969QJp5FrnJHY0QGxGWOp8RYkmSJElSIRkhVmHcvHkTSJHhHTt2AOUR4ocffhhIVSLHjRsHWFVakqTerKVqzVFtevLkyUDKC47c4YgUQ6o8fejQISBFhjdu3AikPOS4z8i/1lWVqCW1zP95kiRJkqRCMkKswoiKjxEZjkqQ+Qhx5AiPGTMGgOnTpwMpctyUyqqW5vdIklRb2nLtjroiTz/9NACjRo3K3nvoodKt9aZNm4DUyeLll18GUg/jJ554Ilsnqlj379+/Xftey7yHUjUwQixJkiRJKiT/IJYkSZIkFZJTplUY0W5p165dQGqNkJ8OvWDBAgDmzZsHwLRp0wALXUiSpJKhQ4cC6Z4h30op0rOikOfu3bsBWL9+PQAHDx4EoF+/ftk6ca8xZcqUrtztqlE5TVrqad7lS5IkSZIKyQixCiPaIxw9ehRI7ZcmTZqULRPP586dC8CECROA1HJBkiQVS0stmSC1aITUkun69etAigRHka2YrbZ169ZsnVdffRWAOXPmACliHAU+e5v8cayMFj/oWEtdwQixJEmSJKmQjBCr1WqhNH5+H2/dugXAhQsXgNRe6dSpUwBcvnwZKM8hnjx5MgAzZswAYMiQIQ/8zGo8DpIkFV1LuaptuXY/aNk+ffpkz2OGWeQV19XVATBgwAAAdu7cCcCePXuydY4dOwak+iUvvvgiAE8++eR92+9tKo9t/M6a+t15v6WuYoRYkiRJklRIRojVq+RHFM+dOwfAgQMHyh6vXr0KwKBBgwAYPXp0ts7YsWOB1kWGJUmS8gYOHAjA9OnTgdSlIu494j4lqk4D7NixA0h5x5FDHHVNxo8fny0bOcm9OWosdTcjxJIkSZKkQjJCrF4l3y84cnLWrFkDpLydhx4q/bOPPJ/GxsZsneHDh3fHbkqSpC7WVdWM21JTJWaeLVmyBEgR3vw27t69C6QI8erVq4FU62Tx4sXZskuXLgXKZ7f1JnEsrTat7mSEWJIkSZJUSP5BLEmSJEkqJKdMq9VqYdpKfgrSoUOHAPjBD34ApLZLEyZMAGDOnDlAanMAFtOSJKk3elB7n85sw5QX7ZbiXmPUqFFAeVGsSPeK1K7NmzcDsGvXLgDOnj2bLRttnHrrlOlQC/ec6j2MEEuSJEmSCskIsXqVaLUEcPToUQAOHjwIpOIUMUobRbUaGhqydQYPHtyOTy0VwTj67ksA/N2f/iUAf/WdrQBcyC05bO77Afjpj/0SAD/1Ymlf6vq242Mr92Lfa9nzL/zV3wHwza9/B4CtsRP1KwD42I//HAA/8ZNPZOvMHNL+nbh1slS47Iuf+x0Afv/v7333YXOzZT76yX8OwCd/9hkApvVv98dJktSpOquI04O2M27cOCDNUoN0fxIuXChdtE+fPg3A7t27s/fWrVtXtuzEiROBVBS0b99OuKGQCsYIsSRJkiSpkH7oHytrx0tVIv9Ps7mR1lu3bgFpdPXAgQPZe1/5ylcA+MY3vgGkdks/9mM/BsBHP/pRIDW+hzSy+sCG99e3Zk//58c/DMDPfvHQvVdKecgTG0u5yoO5nS17dv8eAE7dKP3cr+EzALz0g/8IwLMjW/7YcqWcolW/8xEAPvSvV2fvXIo9mVhqKTXhXuD79tn9AOyJHRiyIlvnt1f+fwD85uOt34lbO/9b6bMX/jIABz/4fwLw735lOQCjT2/Llv2rP/g3APzNqU8B7f3OkiR1vpZuh7sin/XKlSvZ82gTuXVr6d7ijTfeKPs52jEBDBs2DIBp06YB8OyzzwLwxBOlGV+2j5TazgixJEmSJKmQzCFWTYsR1qgoHRUZIeXeRPXGGDUdP348kPJu+ve/P5m1+RygUoT38z+8NHvln71aemz49N8D8O3//E+BZnJkb50EYM3v/W8APPmZ/wTAC7+wrLT1r/xkad+aWDW3EQB2/rdSpPvZe5Hhhz/0e9kSq/7HLwKwYkLlTpTWPbnmjwH435/7F9k7//rZ0vbqNq4E4BOzmstDStHxP/6xTwJw83M7ANj2qVkApDWfT89+/AUAnvzQQgA+/ielY3DwN9OxlCSpCAYNGpQ9nzFjBpDqmNy9exeAhx9+GID169dny27atAmA/fv3AzB06FAApk6dCkC/fv3KHiHdB0lqmv9DJEmSJEmFZIRYNS1yh7dtK+Wqbty4MXsvqjRGjnB9fT2Q+hBHb8CWVEaKz/7DvwXg06/eyJYZ80vfAuAH/+WDALSYEtu31D9w+a99CYAvbSzty4988b8C8K3dpQjxz89oYRtHSpHoX//lUmj6xuTPAvD9b/zzbJFHmy0yWXqjbnlp2W+8cTN7Z9miUj7zL/9WKUL80b94senvczXlaW/cVMpZ+rkPVkaGm/ro0jI/8as/AcAn/69Spcw99yLEDU2vJUlSl4vrfGeX1qncXkv5yNFbOCpQx7pRLwXSfU88bt++HYCVK0vX7spOGgCTJ09u/xeQCsAIsSRJkiSpkIwQq6ZFFDgiw2vWrMneGzKkVO15wYIFAMyePRtIEeKWegXe/1opb/YLv1nqMXyDF7J3fvc3WxEZvk9p6Q/9l1MAXPuL0r62pjXvkdf+HICv3gtSv/AfPgG0FBVuXt+Fv5g9/52PlSLEP/KXfwTAS/+hFCH+mcqE5oEp72lkv50A7D95b/S6oaWdKC2zZ/MPSj9OL0WKx7R9tyVJ6hKd1Ye4PduNbhjTp08HUn5wvtZJdMPYsaNUuyO6a0RO8c6dpetyvltGXV1pdlo+r1hSYoRYkiRJklRI/kEsSZIkSSokp0yrarVmelG0VoqpQgcPHszei6nSM2fOBFKhiZg61CZ73gLgi5vu/fyxX8re+pGWeyS1qO+9ad2tm+18AoA3vvTSvZ//CQAf/0AHdoCh2bNHPlLaHn/5VQC+9Ebp837mJ8dWrPN49uwTfzgfgIU/+bMATP3i7wLwsytK09L7Xz+XLbv9pdKU7P/lX10F4LNvf6hiDyRJUkyLjjaR+aJa169fB1IrpbgP2rNnT9m6W7emFoljx5au49FuMto7RVsnqeiMEEuSJEmSCskIsWpCNKm/c+cOAGfOnAHg2LFjAJw9exaAGzdSO6QoqhXN6qdNmwakkdG2FM64uO37ALx57+dnn52fvdd9Ec5SAY21ESBuLLU8mlMZwG2nsXNK22vkqwC8tLb0edwXIU7x7FmfKLWPWsWvAPDjz5RGnz95g/v0a/hpAP5w3QYAPrGkHVXAJEmqYpXtmzpapAvKZ7YtXLgQSAWybt4stU+MyHDcB7355pvZOsePHwfgkUceAWDFihVAikBLRWeEWJIkSZJUSEaIVRNu374NwKlTpTZFkTN8+PBhII2QDhqUWgKNGVNq6BNtloYNG9buz9+//QdlPy+6F3UuKeX2XNpVGo3928//PgB/9vel/J0LpM+d+/5SlPRjv/jjALyw6F6ubWt24kQpGr4roq8TRgGdGKEeWtrehHs/7thV+rwT935uOhBdah+15BP/E4DdH/8TAE6duQLAnT7p9zFqTFvypSVJql2dERkO+bZLDQ0NQGrJFLnEAwcOBGDz5s0AbNu2LVtny5YtAFy9WqrhEfdFI0aMuG/7UhEZIZYkSZIkFZIRYtWEyB0+dOgQABs3biz7ecCAAUBqZg8wefJkoGOR4XDmyL18Wkp5tvOmnM3eW/VvPwDAs59dX3phTGn0durIe/+9LqdR2q/80b8sexzyoT8DYPVXPwHA3JYGaS9fAuBU/LxoaulzWv0tHuBe1HvRvR9fPVX6vMv3fm5VqnLfUhR4zLghnbVXkiQVSmvyj2MW3KxZs4BUibpyRh2keisHDhwA4O233wbg2rVrQKqxks8ptgK1isQIsSRJkiSpkIwQq0vE6GboaC5NjHhGn71Vq1YBcPHiRQDGjRsHlEeIY9Q0KjF2pi3/9cey57/8N6U+x3/4zssAfHx5qRpkU7myt06uAeDPf+WjAHzyi58EYOkvlvb/6F+8CERmriRJKpq23DNFPnBEdGPGXFSdhpRPHFHjr33tawC8++67AHz4wx8G4LnnnsvWGTVqVLv2vSt19r2lFIwQS5IkSZIKyQixukV+VK89I3pXrpSqFkf+y/bt24FUGXHRolLm65IlS7J1ov9wfpS040qVpD/3+89mr/zZxi8A8IlZD/6cvnXLS8t+4RUAbh9pBODTf/nPAPjPnz4CwG89bi1mSZLUsrgPmjRpEpBmxUX1aUgdOL7//e8DsHbtWiDlFkfucH6WXawf65pTrN7MCLEkSZIkqZD8g1iSJEmSVEhOmVa3aM806Zs3b2bPjx8/DsCJEycAOH/+PJCm+cTjzJkzs3Xita6Y5jPm1347e/7xVkyVvk/fUsGvn/6NjwHw6R/5SwD+9Ful1k2/9fijHdxDSZLU2zyoJdPIkaWynPn7oVg2CpFWPkbRrYceSn8WLFiwAIClS5cCKQ3NQlbqjYwQS5IkSZIKyQhxlassMQ+1MTrXkX2MEcuIBgPs378fSJHh2P6wYcOA1HZgypQp2TpdWQDix59enj3vSPmroXOeAuAJShHiNzfsA+AEKUI8trmVz5QKjV2MbXVgP0obKm3vTPz8cB8A+nR0u5IkqVM86P6qT5/SVTuKbEFqxRSiENfWrVsB2LFjR9kjpPuuwYMHAzBmzJiyn3tCLdz/qjYZIZYkSZIkFZIR4hr0oPyRWnfu3DkAdu7cmb22a9cuAK5fvw5AXV0dkEZA4+euigqPmth479mOFpdrs4YGAB659+Obpy4BcDm3yNjmlt1xGIDj937ucIT4eGl72TdcNBWAqR3driRJ6lb5e8TRo0cD0NhYupe5c+cOkForRZ2Wo0ePZuvs21easbZp0yYAhgwZAqSZeKNGjQLujz5LtcgIsSRJkiSpkIwQV7n8CF9lPnHlz70lYnzy5EkA1qxZk722e/duII1mLly4EID58+cDaaSyq0ydHTm9pfjpmj370psfnNX+Dd/L0Xk3fh5TGoFtOkNnGgALn73346tvAbDz4qcAmNXBEPHFnaXt/eDez88unNaxDUqSpKoR90pz5swBUlXp27dvAzBixIhs2ajZ8tprrwFp1t6TTz4JwDPPPAOU127pbXrrfbbuZ4RYkiRJklRIRohrSIxMNVV5ujeJXJbIWwE4dOgQAPPmzQNg2bJlAMyePRuA4cOHd+k+3VcN+uvvZO8d+VQpQjyxHdu9dWwPAJvv/TxmcSkq23Rl6akALPvhe/nMr34RgO+s/e8AvPhse+pdX8yevfnVL957Vuo9+E8em9qO7UmSpGoS9439+vUDYOLE0h3LwIEDyx7Hjk13H2+9VZo19r3vfQ+AdevWASn/OCLDgwYNytaJzh/5fsa9SW+v4VNkRoglSZIkSYXUO4dwerneOjJ19uxZIPUfjkgxwKVLperLMfo4c+ZMAKZNK0VUo/phl2l4AYBPlx5486X/O3vrrzf+BAC/trAtEdpSZPaNL/4pAKco9ff7188veeCaC3/4lwBY8Jl/AcAf//7flz7/2Z/Mlml1tPrIN7Knf/Dfb5SevPDrAPyvc1u7EUmSVE1aM5swcoanT59+33uRQxzVpg8ePAjAkSNHAPj+978PpM4gkGbx1dfXAykiXat66/227meEWJIkSZJUSP5BLEmSJEkqJKdMV4kiJurfvHkTSNOhYzpOTJW+du1atmzfvqXpyGPGlKYWx3Sc8ePHd8/O3puE/BOf/SwA/+qlz2bvfObF/wOARWv+IwAfrGtp6vQtAA79w68C8PHPnQKg37P/A4Cff7wV067n/iwA/88v/RYAz//RxwH42J8syBb55qdK8537N7eN61sB+JOP/UL20ktMBuAzv/EjQPuKhEmSpOryoHvLkSNHAqm1JcCtW7fK1t2yZQsAe/fuBeBrX/saABs3bszW+ehHPwqkQqd1dXUd3fVOYwsltcQIsSRJkiSpkIwQV4nKkaq7d+8Cqbx9/rUY5epI+6XKiHT+8/v06QOkkcJ47OzRtIgAR0ulaPp+6lQpatq/f4pvVrYEiEhxd+v76G8C8MqffS97beEnPwfA81NKBape/NXfAOAXnim1JBh49WC27D98rrT+n36v9B1vTP6XAHz3Sz8PQEOr9qI0kvvBf/+3AHxmZanS13/69Lxsibo/L0WN//2v/DQAc0aXXj+97a8A+IN/8+cArL6UCl48+2evAPDbTw1t1V5IkqTq1JZ7trjPi0gxwJw5c4A0Q2/o0NK9QRTR2ry51DAyZvkBzJpVakMZBU/jvjUKog4YMKCN36LzVB6Pynvp/D115T14/NzctvKvVd47V7agym+r8r4+jrW6nxFiSZIkSVIh/dA/diTMqC5z7NgxAHbv3p29dvToUQAuXLgAwNWrV4GU51E5gpV/rXIU6vbt20AajZo0aVK2zvz584H7Wxp19shV5Aq/9tprQGr6fvLkybJ9Bpg8uZTf+vzzzwPw9NNPd+q+tN2t7NnJNaVo66//XCkv+P/dcqnJNQDoV4psP/2LvwvA7372ZwBYMrLZNR7seqklwsv/7lPZS5/4w28BcKSZXRky758C8Bu/+3vZa5/5YOkYOz4pSZIALl4stYmM9kuvvvoqAK+//jqQ2jNBmr0XbZzifnLp0qUATJ06FSifAdgZOlKH5/Lly0C674b0XeMePGYuxr3zww8/DJS3lRo8eDCQjsHcuaVaLtGKKsQ9bv5zYsbkM8880+b9V+cwQixJkiRJKiRziKtUjCCtXr06e23t2rUA7N+/H0gjVleuXAGaHiGrjBDHY4xGxSjdsmXLsnWiSmCMgEV0NvJH8lUIOyJG5bZt2wak7xfVCfP7FKOMU6ZM6ZTP7rgUR61b/gkAPr+59Pinl0q/lzNXIv87jSAOHzcCaKH6c3v0L0XyP/w7K7OXDv/OdQDOHT8PwI17r/cZNAqAMUOMA0uSpJbFvV/kB8c9ZkRC81Wm3377bQA2bdoEpO4hkTtcGUWF8ihrW1VOcm1PpPj06dMAbN++PXvt+9//PgDf+c53gFTjJrqjRF2bODaQatw0NjYCKf84ouVxDKJuDqR7/Jj5aYS45xghliRJkiQVkhHiKhVR2KbydmMkKUaZKnvFxchVfv14rKwYfeNGKXZ44sSJbJ0Y2YvocUSTZ8yYAZRXIWyPGMGLz4wcij179gDQ0FCqtZyvRhh5zPFdI4IeI4tNVeXuOaVjmyoLpn26fG8k8nJ37cq9fcj+o98o/ds5faPpxSVJkirvHyujo+PGjQPKI55xTxmR4ZhpWF9fD6T7opkzZ2brTJw4EUj3eW0R97ItRYbjvjBmJUaV7JhlGbnDBw4cyNaJZeLesvJePL5HvoJ0dGiJ+9So+xP1ceK47dixI1sn7oNjpqd6jhFiSZIkSVIhGSGuUhMmTADKqynX1dUBMGJEKQ81cjEighv5C7Fu/rXRo0uNaGMEK6LMkTtx5syZbJ3Io4gRvspobESO8xHc5vI1KnOW89uL6n0xuhgjZZGTEaN3AEeOHCnb7/ge8VhZRVuSJEnt09x9VkSKKzueAAwaNAhIfYfjHvNb3yp1vogo7FNPPZWt88QTTwCpRkzcW1b2721JSznDcf8ZVbFfeeUVIHU6ich03FtD6rwSkeyIEFf2LI4IeH6/473Y/uc//3kgRc+jTg7AqFGlui75mZ3qGUaIJUmSJEmF5B/EkiRJkqRCcsp0lYppFPEIqaF5iGkr0Sh8zpw5QHkT8ChQFa2TYnpHNFKPQlYxhQTgC1/4AnB/UYQlS5YAaSpJvshATG2pnLYSU2zyjdtjinQUHIhCB1H4IKaVnD17Nlvn8OHDQCoKFt89OFVakiSpa1VOoc4XhIrpwFEoK9LdNm/eDKTUuHwBrZgqHa/FfV5bpkxXyt8TxtTlt956C4C/+Zu/AdI95sKFC4E0dRvS/e7jjz8O3H//HffdcQzyz+N+9a//+q8B+Pa3vw2kdMF8KmRsNz9dWz3DCLEkSZIkqZCMEFeJ1jQTj5G3GDWLKGmM1kUBrWieDmn0qbLxeSwbI3Hvvvtu9l5EaOMxCm5FYYIYGWtNVLapolpRiCFK08fIWIwSRlQ8P/IWUeR4LfbNyLAkSVLnqry/ivvTyjae+Xu1KKoVRWDjfjFE8ah8Ia6YLRj3glG4NbbVFpWzHyG1Eo1CrjEbMT5v2rRpQJplCek+OmZXVmopeh3tqKKYbdy7X79+HSiPjkdx3HhUzzFCLEmSJEkqJCPEVaKlyHCIKGuUsY9RtWhTFFHgGJXKv9acGK3Lj8TF6FyIUcDW7GNzIhqcfx6fHSNxERmO0cd8W6dYpzWRdEmSJLVfc/dZEWGNyHB+ubgfjfvIiMJOnz4dSPd3+Shp5NZGJDXuYceMGdPifjQlcpZXrlyZvfbOO+8AqZXn3LlzgTSD8rnnngPKc4ijfWnMwGyLuO+O7/y+972v7PMbGxuzZeM723ap5xkhliRJkiQVkhHiGnLx4kUgVfSrrLQcI0zREL0lkdcR+Rb5bcV2Kkf4ImJbmT/SkhjZy4+yxXYixyR+rsxRbooRYkmSpJ7RUu2WuC+svD+svGfL3+fFPWVl5LktYt3oYrJ27drsvfXr1wOpds6iRYsAWLp0KQArVqwAYMaMGW3+3KZEfnHc40ZEOqpaR44xpPv16OainmOEWJIkSZJUSEaIq1SMnuWrM0e15xh9ihyHysfW9G6LansxcrZ169bsvYgQz549G4CZM2cCabQrquG15nNilDDyJCDlbUR+SOQHxwhfS/3dJEmSVB3y0d/KCHG8VxkhzteViYhzzEZszSzHyo4j0Wt4//79QOoFDHDp0iUgRWqXLVtW9hj3zq3RmlmKldW44546vnNTVaaNEPc8I8SSJEmSpELyD2JJkiRJUiE5ZbpKRdPyKEeffx7TMcaPHw+k6R6tKdsexbO2bdsGwOuvvw6kUvWQ2h9Fk/J58+YBqSBBW6Z2xLSZkSNHZq9FWf6Y8hJTUCoLNbRUuEGSJEnVo7mpxC3dz1UWX42pxi1NS4572Wg/unPnTiBNmY7is5AKt9bX1wOwePFiIN3btib9r3JfWxLfNe5/ow1TU21OY8r0g1qkqusZIZYkSZIkFZIR4ioVyfdRDADg3LlzQGqVFCXcowjVunXrALh+/Xq2Tow+RcGqKMwVo2oR7Z08eXK2TkRzJ02aBKSiWhHZbY3KwgP5Ebi2jMZJkiRJIYppRZulKAx77NgxILUNhXR/GwVd21KAtiMiEhxtlqJI7ujRo7NlouBsRMXVc4wQS5IkSZIKyVBdlYoIa755+cWLFwHYu3cvAKtXrwZSrkT8HO2Rmtpe5AdH+fmnnnoKSC2QIOVbRHQ51smPuD1Ia/IsJEmSpLaIaOuePXsA2LBhA5BmQU6ZMiVbNiLEMdsx7nG7Wsy2jNzouJ/Pf348j2XUc4wQS5IkSZIKyQhxlYqRpKg2DXDhwgUg5Q5HI/LIM4684JZEZep4jFG0WbNmZctEJTxzfSVJklqvuYrKzpzrPBEhPnjwIADbt28H0n3rsmXLsmUXLlwIpEhxV9/bxu95yJAhZY+qbkaIJUmSJEmFZAiwSkVecD7qe+rUKSBVpVuxYgWQqkpHxejofQYpnyIeo+pdVOZ77bXXyt4HWLBgAZAq8UmSJOnBIkLYUu9ddUzcI8d9cdwrjxgxAkgzHSHV1Rk2bBjQdfm6ld1VVFuMEEuSJEmSCskIcZWKfOF9+/Zlr508eRJIvdQ+8IEPAKlCdIyM5UenIs94586dQKrIt2XLFgDeffddIEWFAX7qp34KgKeffrpsu8HRr5ZHfqv5+PS2/a7FfYba3O9q3meozf3230j36W3HGmpzv2txn6F9+91d37UWj3VrNBVxvXXrFgCXL18G0r3y+fPngVS1OZ8nHNHifv363be9zlTrx7vojBBLkiRJkgrJP4glSZIkSYXklOkqFa2UTpw4kb128eJFAObOnQvAY489BsCMGTMA6Nu3733bibZN9fX1AAwePBiATZs2AalU/Y0bN7J1HnnkEQBmz55dtt2mpqJIkiRJXSE/JTymTMc9a7Rfisd4P19cNgrOxr2rU5vVFCPEkiRJkqRCMtRXZaKFUpSUj6gwpGhvjHKNHDkSaDoyHKKYQESRowDB9OnTgRQhzpehjzL2Bw4cAFIhgvHjx5d9fpHlRxjbUmq/p8vyV7aDqIV9zn92e/a7chvdpT3/RpoqjtJT+11Lxzr/mbW03021Z/HfSNfw/2P3qsX99v9j27Tlu7fn85r6PvHa3bt3Abhz506Tr+fXiWhxPmosVfJfhyRJkiSpkAz19bDKUa3IHY5ocORD5JeNaG5LkeFKQ4cOBVIucUNDQ9nP+ahvRKePHTsGwOjRo4HU3knl2jOC3NNR1/aMIPf0Prf2s1tqndFT2vNvpKd5rLtPbz3WULv7XW1qcZ+hNve7FvcZer7NU2dr6vvEaxHtjfvhytfz+xhR5LjPlppihFiSJEmSVEhGiHvY7du3gRQZPn36NJAixFHZGdJIWER7o3JeW0ROcYyixefnR84qX6vGEX51vabyqWpBLe53Le4z1OZ+N5WPVgtq8VhD7e63pKZ1xv/ptuRp59+PmZH9+/cH0j1tPMb7+XvamGkZkeKujqTH50Ql7HwXF0j7nn9eq7MSehMjxJIkSZKkQjJC3MNi5Coiw0eOHAFStel83m6MfI0aNQpoX8W86NV27tw5IPU5jv7E+c8ZPnw4AIMGDQLKK1F3RE9Xkuxutf79anX/a3G/a3Gfwf3uTrW4z1Cb+12L+wzud3eqxX2Gztnvtmyjctn8fWBz9Uma2n7cn8Y9a9ynjhgxAkizKiNKCy33KG5OR2qm3Lx5E0j39SdPnix7Pzq25J/X6r+j3sQIsSRJkiSpkIwQ97AYSYrev4cPHwbSiFY+QhwjYREhbkuFz8hJju0fP34cSH2J8zkNQ4YMAVJ16chZ7kiE2PwxSZIkNaUtUdmIENfV1QEwYcIEIN2nRl0egKNHjwLpfjrWiXvdprQ2YpvPD758+TIAFy9eBFKE+OzZs0CKbo8cOTJbx3vj6mGEWJIkSZJUSP5BLEmSJEkqJKdM97BonXT+/HkgTe146KHSr2bq1KnZslOmTAGgvr4eKG/J1JwomrVhwwYAVq1aBcD27duBVGQgStZDmlYybtw4IE3Vjn1qj1ptdSJJkqTO09F7wrj/jXvkuXPnAiktcNu2bdmyMXU5itUOGzYMgBkzZgDtu7eNadFRCBdg586dQEqBjIK0MZ07pmrH54PFtKqJEWJJkiRJUiEZIe5h0Tz8zJkzQBptiihtPvk+IsRR7Ko19u3bB8DLL78MwJtvvgnAnj17gFSAYOzYsdk6EydOBNKoVr4lU3Pa0krJETFJkqTq11wEt7Pu5dqznSgE29DQAKRWolFA9vXXX8+WjRmSIaLKUVQr7nlbI4poRSulfCT6e9/7HgDHjh0DYOnSpQAsWrQIgMbGRqB9LVPV9fytSJIkSZIKyQhxF4qWShEFjkdIo1iRyxuP+/fvB9IoVD4/IUazInch8o9jpCx+jpEygHfffReALVu2ACmnOHIYYsRq8eLF2TqTJ08u+zxJkiSpGsT9bkR345468nfzkdvIK477302bNgFw584dIN3zRktTSPfVcd8e+cfRzilmdcbn5ZeJCHDkEEcdHiPD1c3fjiRJkiSpkH7oHy3522UiuhvNuiMKDClyu2PHDgB2794NpFGnoUOHAuVVpiN3uF+/fkDK/41Rp3iMyHR+Hw4dOgSkxuBRkW/JkiUAzJkzJ1snnkeV6d6qLU3gq4n73X1qcZ+hNvc7fymqxf2upX2G2tzvWtxnqM399v9j96rV/e4pEd29du0aAGfPngXSffY777yTLbtr1y4gdXOJ7ipxPzxixAig6erPESGOStQxczKWjUhyfpm4f48q1nFPne/moupjhFiSJEmSVEhGiLvQxo0bgZRj8NJLL2XvfeUrXwFg7969ZevECFOMTkUUGO7PP6gcwYoRsxj1gjSaFdHehQsXAvDiiy8C8P73vx8or2bd27X0T76aR2e7utJjV/BYd69a3G//jXSf3nasoTb3uxb3GWpzv2txn6G697saxX1w1Ng5fvx49t7WrVuB1G3lm9/8JpBmUMaxzkdwb9++XfYYecAzZ84EUuXoqCQNsGLFCgBmz54NpDxn1QYjxJIkSZKkQrLKdBeKPIWoPBc5DpCq3lWK0ajKbbRFPoc41o++xpHvENX0WhMZNrdFkiRJ1ShmUEYkNx99j1maMQPzwoULZevGsleuXGl2+1HfJ7YftYHyIne4uchwUzMCvK+uHkaIJUmSJEmF5B/EkiRJkqRCsqiWJEmSJKmQjBBLkiRJkgrJP4glSZIkSYXkH8SSJEmSpELyD2JJkiRJUiH5B7EkSZIkqZD8g1iSJEmSVEj+QSxJkiRJKiT/IJYkSZIkFZJ/EEuSJEmSCsk/iCVJkiRJheQfxJIkSZKkQvIPYkmSJElSIfkHsSRJkiSpkP5/QAGnZ4ZSHqsAAAAASUVORK5CYII=
null
D
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
5
iVBORw0KGgoAAAANSUhEUgAAANMAAACECAAAAAAv50FKAAAKlElEQVR4nN1cf2xUWRX+7qtrSejaGFthQzdFWiy7FW2CGyCgVBZkMDhbNkRqQiKwUNZAbHfBpSYmlmQTa+JKyTJEFxPbrHURiMBScWosQsQFojiwttkS6XawrRHYP+q2JmzbeZ9/vDdvZsrM9P04b6bxSzrvvem759xzz7nn3B/njiLyDyoqAMC9eRLkNAkiXqFgiNS79K4EuVkhk4nhjW+US5jNLJJpPHCgzlSYN6h89yfGpYgFPndYhmTeZbKwY/SMEKWPCdFxjbieWvovSZHMu0ymSB2dVwvFSObd9qgA9Gz78yIxivmXCQD6aruWy1HLu+0B4EjguKBIsyI+jQcO1EnSmwW2ZwYmwwFSIOjOApnkApOJ/PcnwcBkIu8ydXS+YwUmCcNDnm2PCj3brlRIk81zf5INTCby68uHzcAk27A5lek5pZRSX7GercAk04/iyKlM54IRMvzZ+GNs8/pGaR0BOZZpcqJm8sjap+OPu4oOQ1pHQI59+cVaHF/wWCMAgCopMAk5cYtcDhECECGpk2R75QOf2OTU9rojfL4Shrn1NIdLfIojubS96IdfwKoi476vvqvCh64EILc+4kJA4WXsA2gFJl+QM5kIdAdAPPckoP4rPGNKRe7GRt0B4xqpEVzKS4scj/eoQIUdo2cS6/7yyPFcQwEKh/ovJdb9/WCSTk8tfnEDANy6/MLcLMw9oiWdj6D1AT8GYxj83Sfm+kLd0nu6pvLN0AGgr/btb1yqkOeRRDCdL1dGC3bfhLyihgLHV+477MPINZlgxlHTRFVEfig2Xt1GjpaMylMmySAAnGRmmV5ZPybOdGpdE0nuaROnbCB4imFEMo4jjtX8S9o84jMmNB2NydMGMDkQQFXmsVF0bGVpkTTPlv4TAIGqheelSQMALq4qQuOemky2t5eDDdKW0V5535w7da2Rpk3Smp9lkCkEoIE0q+ANcRJ/mH/H+qqyVxeinoxghCFEMswJo2NkeBEg4nNNEn31Z63VSdXUpoSoJyH6YQ12V3Wn70/RHQeBAVF+GN6YNGPit7oeyJIHgQsBYOT2orTxaT8QYRBoEDSOsepU/33gVSnKCQQjnKgqHcsSn0RhBqYE7pRNCbMIAwDWkvR9/mSMwx7dY9pcv9Uvlo/0J2kZFWAEpmTCBJvahBklkJP1iI7O84XTfJxa8/C6D5wIpJHJh3lGT3N3yaNM9vqxJGFECJ/7E1WmPaaHn/lLmT88/bY9heEN6Zfy5uz6GUA/mtR3vze+Yndj+v/cq4mKpRilwFc9Mb7HlBbz1r3pD1v/9JQpMCVw/YVeXzj7pycrMGXE8sd7fOHsr4/o6Dyfrcv4FHd99RFZkx+oEKvoEU+OgE96Mtupr/5slkRDBRR8+6jxuvDipX96Gl75et0Mr3ywtL9YnrF//Wl8w8x7TCWb2n1oU9/0ZG+Pqa/uH/Ks5fVkNtKuuXbGqE8v7JKf3sjLZAzsW/p/PfOrhGo8Ij8V8Kk/dXSeL+SMGlDAxrt9mNU5VJZT7mkOlxh7gjOhYG8bACUqlS8+om/Nb21nCvxnibg798FH0FHyQ3H9T8WXQOT1lHnGlBYDzw4UyFZATE9W28Q2f9WJSKhYehqyXkIRgA4oMYe6Y/SMs83anu9fleJtQDM+vIsUb+iW/hMOA86zY3/1yjwVYrZnnWPKOmNKi5fapCphVoUAoCsCGnSloAMazM/4xbrTAQ06FAFNn9Yg7s8xfbTwpsi53Dg066oBSoGapggqTemIX2Dcxb/WQE2Drk1TscJMM6a0IFC4/WjiQQIkyZhOxkidjMViMZ0xkjHGLymfMfNt8y8Z+lDZGVdbEkPzH8ZJuCo/DZrVyIpUADRNc+svXJ9jKqs9AQAUGs4qgtR0DYCulPkBHRp0LX7B9K+Vsv6S4OEc0/UXI84LZYQGKOjG0rkCoFE3HIGuWRedKV/roPWXDDP5waiX/doRwPI5l50VyoqksZHHVmrpvuR+qbjztOS5rkTX8tY/2yvvu6JkvDtVFvXEPQVxh0xd96SmnuZwqWWLTigZ7xa8eHSG95xApGX03pJr1I0mt62ksJlWQpJ8MF8uY0tmbDQSOL7c8DFR9a7NMtHfcPCNH8EMtCWbOkRqAkBGT2PVbaZ+wsaBDDs4QzK0lqSh4EilWC6GhJ5i69c3mh1jw0SV3VJ1ACp0wAwiNQsuCFQFgMy4fOuNZUlPThzEQCBx3yTmJQRkahm5fiiUeHQwDp08fzBR5Ot3QllfdgDP1tte+YAPysPmk6Ms2leSfN3Yj4ufEErX8aynnu+FP4WSs7usX/Gxb3vHnklkct545tq5iXGvlTHhsU16S66RJNu2kNQd6SncSoZPkST1tpIT5N5Wj5Ux4VEma8b0sNyQzb5MIQAoHdNJsnXJEMk75TLG502mpKy843UkOQjgtGMyx8uHSJ3c5LxoOniSKZGVp3P0cavDOw2e7xW/Z9yEV3upjQVPPmJX0WHTESsULz+XNIR1tLDw0qElxs2GD0RWxRSBFnczJ14e2F6QoOJ6nXroQkOc/41/Pu91maXFjLnuZhnv/v2bBWYNjIvjplEAFJ7caZWreV/CnZsrKy6QkvzgeSXBJNA8p8UNwaS3qQCSIaB2otFh1+4tNZw3Hc6asmOo7OHML2WAVQUNUXWL/EXhE84scDjwRsoek0c9HVBK3To4jrIVWfKT0sPaYlXGNiWBiardJPnySUdtMj1d3BsG0UCyroHklWUuygcBoNSKJQgZ96GIEyJT65pMSsApF5VIxUTVD0lysJUkl10hHZtyMEJ9vyUUqlpddIbtdSYlTnze+zrC/tqkh19ucU5g4msk9eBu81G7XeG8M/yg/y0Ak1M1+MljX/J8SmqyK5CI0ay/7vh3OvnHMgBqcTwlJjGOsHrYjOj41dtzAFz8MgZvw/vsdOR2BRSOKaXdBFTBTscU1e/XA0BiR6WqlSQHbfSKuIX2zB8gaQysJWYHgzhJkuFag8m/5zt15xPVYyS5f4/5rH2n+TTYvWOLjeYwLn1bzT2m7lsMSaQULqh6H4ivTSjMC7Q7HC+OrCoCEX1tXfwLdgPYk6UVpsGaMQ2uJcN/c9ikaRHGKZLBOK3IUw7Lh1pJnXWWp3E610gEppDQrJTGrAum6ZFcHc7++jRMVEXIQSScJ5z58aRzTMGIo5IZoT9ydzrgpFLGuafkMGlbTwab7XV6glLEAeeZSCdLMVV+J9OrGeqV2gbO5jype0yUP4RjDLBfG/QUIZSu7A/sO169ah368fPHCxzmik2vimbMy2wh5RyTfyIRxcGfOykwvSp2bS/zOSY/0B/wkitmd40l8zkmP7DkqbMeStteNxoPfLfOAx9HIJpe91DclkzZzzHJQ2HDvZvui88sk5FdYiY/5Az7jrgva9NHeEp+cIPxxe5zxez1JzdZed5QtM2RO0+BLT31rftTpWsOLnF3ddStO7elp+pIzkVC+Yq3AHcZfbPgN6Qz4PJ+txsCNvSUJ6nXxK64LGnDl/v5S1vZ4Dq5wKbt5UOwjxa/U+aKr82xUT50Vbgz5I7v7PURwP3q4Y/7qKe84NOB9v87PfHGdlcH4mezntQXP+nq901msZ6oMO5qg+F/X1kynDvHfGsAAAAASUVORK5CYII=
As shown in the figure, AB parallel CD, straight line EF intersects AB at point E, intersects CD at point F, EG bisects angle BEF, and it intersects CD at point G, angle 1 = 50.0, then angle 2 is equal to () Choices: A:50° B:60° C:65° D:90°
C
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
6
iVBORw0KGgoAAAANSUhEUgAAANMAAACECAAAAAAv50FKAAAKlElEQVR4nN1cf2xUWRX+7qtrSejaGFthQzdFWiy7FW2CGyCgVBZkMDhbNkRqQiKwUNZAbHfBpSYmlmQTa+JKyTJEFxPbrHURiMBScWosQsQFojiwttkS6XawrRHYP+q2JmzbeZ9/vDdvZsrM9P04b6bxSzrvvem759xzz7nn3B/njiLyDyoqAMC9eRLkNAkiXqFgiNS79K4EuVkhk4nhjW+US5jNLJJpPHCgzlSYN6h89yfGpYgFPndYhmTeZbKwY/SMEKWPCdFxjbieWvovSZHMu0ymSB2dVwvFSObd9qgA9Gz78yIxivmXCQD6aruWy1HLu+0B4EjguKBIsyI+jQcO1EnSmwW2ZwYmwwFSIOjOApnkApOJ/PcnwcBkIu8ydXS+YwUmCcNDnm2PCj3brlRIk81zf5INTCby68uHzcAk27A5lek5pZRSX7GercAk04/iyKlM54IRMvzZ+GNs8/pGaR0BOZZpcqJm8sjap+OPu4oOQ1pHQI59+cVaHF/wWCMAgCopMAk5cYtcDhECECGpk2R75QOf2OTU9rojfL4Shrn1NIdLfIojubS96IdfwKoi476vvqvCh64EILc+4kJA4WXsA2gFJl+QM5kIdAdAPPckoP4rPGNKRe7GRt0B4xqpEVzKS4scj/eoQIUdo2cS6/7yyPFcQwEKh/ovJdb9/WCSTk8tfnEDANy6/MLcLMw9oiWdj6D1AT8GYxj83Sfm+kLd0nu6pvLN0AGgr/btb1yqkOeRRDCdL1dGC3bfhLyihgLHV+477MPINZlgxlHTRFVEfig2Xt1GjpaMylMmySAAnGRmmV5ZPybOdGpdE0nuaROnbCB4imFEMo4jjtX8S9o84jMmNB2NydMGMDkQQFXmsVF0bGVpkTTPlv4TAIGqheelSQMALq4qQuOemky2t5eDDdKW0V5535w7da2Rpk3Smp9lkCkEoIE0q+ANcRJ/mH/H+qqyVxeinoxghCFEMswJo2NkeBEg4nNNEn31Z63VSdXUpoSoJyH6YQ12V3Wn70/RHQeBAVF+GN6YNGPit7oeyJIHgQsBYOT2orTxaT8QYRBoEDSOsepU/33gVSnKCQQjnKgqHcsSn0RhBqYE7pRNCbMIAwDWkvR9/mSMwx7dY9pcv9Uvlo/0J2kZFWAEpmTCBJvahBklkJP1iI7O84XTfJxa8/C6D5wIpJHJh3lGT3N3yaNM9vqxJGFECJ/7E1WmPaaHn/lLmT88/bY9heEN6Zfy5uz6GUA/mtR3vze+Yndj+v/cq4mKpRilwFc9Mb7HlBbz1r3pD1v/9JQpMCVw/YVeXzj7pycrMGXE8sd7fOHsr4/o6Dyfrcv4FHd99RFZkx+oEKvoEU+OgE96Mtupr/5slkRDBRR8+6jxuvDipX96Gl75et0Mr3ywtL9YnrF//Wl8w8x7TCWb2n1oU9/0ZG+Pqa/uH/Ks5fVkNtKuuXbGqE8v7JKf3sjLZAzsW/p/PfOrhGo8Ij8V8Kk/dXSeL+SMGlDAxrt9mNU5VJZT7mkOlxh7gjOhYG8bACUqlS8+om/Nb21nCvxnibg798FH0FHyQ3H9T8WXQOT1lHnGlBYDzw4UyFZATE9W28Q2f9WJSKhYehqyXkIRgA4oMYe6Y/SMs83anu9fleJtQDM+vIsUb+iW/hMOA86zY3/1yjwVYrZnnWPKOmNKi5fapCphVoUAoCsCGnSloAMazM/4xbrTAQ06FAFNn9Yg7s8xfbTwpsi53Dg066oBSoGapggqTemIX2Dcxb/WQE2Drk1TscJMM6a0IFC4/WjiQQIkyZhOxkidjMViMZ0xkjHGLymfMfNt8y8Z+lDZGVdbEkPzH8ZJuCo/DZrVyIpUADRNc+svXJ9jKqs9AQAUGs4qgtR0DYCulPkBHRp0LX7B9K+Vsv6S4OEc0/UXI84LZYQGKOjG0rkCoFE3HIGuWRedKV/roPWXDDP5waiX/doRwPI5l50VyoqksZHHVmrpvuR+qbjztOS5rkTX8tY/2yvvu6JkvDtVFvXEPQVxh0xd96SmnuZwqWWLTigZ7xa8eHSG95xApGX03pJr1I0mt62ksJlWQpJ8MF8uY0tmbDQSOL7c8DFR9a7NMtHfcPCNH8EMtCWbOkRqAkBGT2PVbaZ+wsaBDDs4QzK0lqSh4EilWC6GhJ5i69c3mh1jw0SV3VJ1ACp0wAwiNQsuCFQFgMy4fOuNZUlPThzEQCBx3yTmJQRkahm5fiiUeHQwDp08fzBR5Ot3QllfdgDP1tte+YAPysPmk6Ms2leSfN3Yj4ufEErX8aynnu+FP4WSs7usX/Gxb3vHnklkct545tq5iXGvlTHhsU16S66RJNu2kNQd6SncSoZPkST1tpIT5N5Wj5Ux4VEma8b0sNyQzb5MIQAoHdNJsnXJEMk75TLG502mpKy843UkOQjgtGMyx8uHSJ3c5LxoOniSKZGVp3P0cavDOw2e7xW/Z9yEV3upjQVPPmJX0WHTESsULz+XNIR1tLDw0qElxs2GD0RWxRSBFnczJ14e2F6QoOJ6nXroQkOc/41/Pu91maXFjLnuZhnv/v2bBWYNjIvjplEAFJ7caZWreV/CnZsrKy6QkvzgeSXBJNA8p8UNwaS3qQCSIaB2otFh1+4tNZw3Hc6asmOo7OHML2WAVQUNUXWL/EXhE84scDjwRsoek0c9HVBK3To4jrIVWfKT0sPaYlXGNiWBiardJPnySUdtMj1d3BsG0UCyroHklWUuygcBoNSKJQgZ96GIEyJT65pMSsApF5VIxUTVD0lysJUkl10hHZtyMEJ9vyUUqlpddIbtdSYlTnze+zrC/tqkh19ucU5g4msk9eBu81G7XeG8M/yg/y0Ak1M1+MljX/J8SmqyK5CI0ay/7vh3OvnHMgBqcTwlJjGOsHrYjOj41dtzAFz8MgZvw/vsdOR2BRSOKaXdBFTBTscU1e/XA0BiR6WqlSQHbfSKuIX2zB8gaQysJWYHgzhJkuFag8m/5zt15xPVYyS5f4/5rH2n+TTYvWOLjeYwLn1bzT2m7lsMSaQULqh6H4ivTSjMC7Q7HC+OrCoCEX1tXfwLdgPYk6UVpsGaMQ2uJcN/c9ikaRHGKZLBOK3IUw7Lh1pJnXWWp3E610gEppDQrJTGrAum6ZFcHc7++jRMVEXIQSScJ5z58aRzTMGIo5IZoT9ydzrgpFLGuafkMGlbTwab7XV6glLEAeeZSCdLMVV+J9OrGeqV2gbO5jype0yUP4RjDLBfG/QUIZSu7A/sO169ah368fPHCxzmik2vimbMy2wh5RyTfyIRxcGfOykwvSp2bS/zOSY/0B/wkitmd40l8zkmP7DkqbMeStteNxoPfLfOAx9HIJpe91DclkzZzzHJQ2HDvZvui88sk5FdYiY/5Az7jrgva9NHeEp+cIPxxe5zxez1JzdZed5QtM2RO0+BLT31rftTpWsOLnF3ddStO7elp+pIzkVC+Yq3AHcZfbPgN6Qz4PJ+txsCNvSUJ6nXxK64LGnDl/v5S1vZ4Dq5wKbt5UOwjxa/U+aKr82xUT50Vbgz5I7v7PURwP3q4Y/7qKe84NOB9v87PfHGdlcH4mezntQXP+nq901msZ6oMO5qg+F/X1kynDvHfGsAAAAASUVORK5CYII=
As shown in the figure, AB parallel CD, EG bisects angle BEF, angle 1 = 50.0, then angle 2 is equal to () Choices: A:50° B:60° C:65° D:90°
C
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
7
iVBORw0KGgoAAAANSUhEUgAAANMAAACECAAAAAAv50FKAAAKlElEQVR4nN1cf2xUWRX+7qtrSejaGFthQzdFWiy7FW2CGyCgVBZkMDhbNkRqQiKwUNZAbHfBpSYmlmQTa+JKyTJEFxPbrHURiMBScWosQsQFojiwttkS6XawrRHYP+q2JmzbeZ9/vDdvZsrM9P04b6bxSzrvvem759xzz7nn3B/njiLyDyoqAMC9eRLkNAkiXqFgiNS79K4EuVkhk4nhjW+US5jNLJJpPHCgzlSYN6h89yfGpYgFPndYhmTeZbKwY/SMEKWPCdFxjbieWvovSZHMu0ymSB2dVwvFSObd9qgA9Gz78yIxivmXCQD6aruWy1HLu+0B4EjguKBIsyI+jQcO1EnSmwW2ZwYmwwFSIOjOApnkApOJ/PcnwcBkIu8ydXS+YwUmCcNDnm2PCj3brlRIk81zf5INTCby68uHzcAk27A5lek5pZRSX7GercAk04/iyKlM54IRMvzZ+GNs8/pGaR0BOZZpcqJm8sjap+OPu4oOQ1pHQI59+cVaHF/wWCMAgCopMAk5cYtcDhECECGpk2R75QOf2OTU9rojfL4Shrn1NIdLfIojubS96IdfwKoi476vvqvCh64EILc+4kJA4WXsA2gFJl+QM5kIdAdAPPckoP4rPGNKRe7GRt0B4xqpEVzKS4scj/eoQIUdo2cS6/7yyPFcQwEKh/ovJdb9/WCSTk8tfnEDANy6/MLcLMw9oiWdj6D1AT8GYxj83Sfm+kLd0nu6pvLN0AGgr/btb1yqkOeRRDCdL1dGC3bfhLyihgLHV+477MPINZlgxlHTRFVEfig2Xt1GjpaMylMmySAAnGRmmV5ZPybOdGpdE0nuaROnbCB4imFEMo4jjtX8S9o84jMmNB2NydMGMDkQQFXmsVF0bGVpkTTPlv4TAIGqheelSQMALq4qQuOemky2t5eDDdKW0V5535w7da2Rpk3Smp9lkCkEoIE0q+ANcRJ/mH/H+qqyVxeinoxghCFEMswJo2NkeBEg4nNNEn31Z63VSdXUpoSoJyH6YQ12V3Wn70/RHQeBAVF+GN6YNGPit7oeyJIHgQsBYOT2orTxaT8QYRBoEDSOsepU/33gVSnKCQQjnKgqHcsSn0RhBqYE7pRNCbMIAwDWkvR9/mSMwx7dY9pcv9Uvlo/0J2kZFWAEpmTCBJvahBklkJP1iI7O84XTfJxa8/C6D5wIpJHJh3lGT3N3yaNM9vqxJGFECJ/7E1WmPaaHn/lLmT88/bY9heEN6Zfy5uz6GUA/mtR3vze+Yndj+v/cq4mKpRilwFc9Mb7HlBbz1r3pD1v/9JQpMCVw/YVeXzj7pycrMGXE8sd7fOHsr4/o6Dyfrcv4FHd99RFZkx+oEKvoEU+OgE96Mtupr/5slkRDBRR8+6jxuvDipX96Gl75et0Mr3ywtL9YnrF//Wl8w8x7TCWb2n1oU9/0ZG+Pqa/uH/Ks5fVkNtKuuXbGqE8v7JKf3sjLZAzsW/p/PfOrhGo8Ij8V8Kk/dXSeL+SMGlDAxrt9mNU5VJZT7mkOlxh7gjOhYG8bACUqlS8+om/Nb21nCvxnibg798FH0FHyQ3H9T8WXQOT1lHnGlBYDzw4UyFZATE9W28Q2f9WJSKhYehqyXkIRgA4oMYe6Y/SMs83anu9fleJtQDM+vIsUb+iW/hMOA86zY3/1yjwVYrZnnWPKOmNKi5fapCphVoUAoCsCGnSloAMazM/4xbrTAQ06FAFNn9Yg7s8xfbTwpsi53Dg066oBSoGapggqTemIX2Dcxb/WQE2Drk1TscJMM6a0IFC4/WjiQQIkyZhOxkidjMViMZ0xkjHGLymfMfNt8y8Z+lDZGVdbEkPzH8ZJuCo/DZrVyIpUADRNc+svXJ9jKqs9AQAUGs4qgtR0DYCulPkBHRp0LX7B9K+Vsv6S4OEc0/UXI84LZYQGKOjG0rkCoFE3HIGuWRedKV/roPWXDDP5waiX/doRwPI5l50VyoqksZHHVmrpvuR+qbjztOS5rkTX8tY/2yvvu6JkvDtVFvXEPQVxh0xd96SmnuZwqWWLTigZ7xa8eHSG95xApGX03pJr1I0mt62ksJlWQpJ8MF8uY0tmbDQSOL7c8DFR9a7NMtHfcPCNH8EMtCWbOkRqAkBGT2PVbaZ+wsaBDDs4QzK0lqSh4EilWC6GhJ5i69c3mh1jw0SV3VJ1ACp0wAwiNQsuCFQFgMy4fOuNZUlPThzEQCBx3yTmJQRkahm5fiiUeHQwDp08fzBR5Ot3QllfdgDP1tte+YAPysPmk6Ms2leSfN3Yj4ufEErX8aynnu+FP4WSs7usX/Gxb3vHnklkct545tq5iXGvlTHhsU16S66RJNu2kNQd6SncSoZPkST1tpIT5N5Wj5Ux4VEma8b0sNyQzb5MIQAoHdNJsnXJEMk75TLG502mpKy843UkOQjgtGMyx8uHSJ3c5LxoOniSKZGVp3P0cavDOw2e7xW/Z9yEV3upjQVPPmJX0WHTESsULz+XNIR1tLDw0qElxs2GD0RWxRSBFnczJ14e2F6QoOJ6nXroQkOc/41/Pu91maXFjLnuZhnv/v2bBWYNjIvjplEAFJ7caZWreV/CnZsrKy6QkvzgeSXBJNA8p8UNwaS3qQCSIaB2otFh1+4tNZw3Hc6asmOo7OHML2WAVQUNUXWL/EXhE84scDjwRsoek0c9HVBK3To4jrIVWfKT0sPaYlXGNiWBiardJPnySUdtMj1d3BsG0UCyroHklWUuygcBoNSKJQgZ96GIEyJT65pMSsApF5VIxUTVD0lysJUkl10hHZtyMEJ9vyUUqlpddIbtdSYlTnze+zrC/tqkh19ucU5g4msk9eBu81G7XeG8M/yg/y0Ak1M1+MljX/J8SmqyK5CI0ay/7vh3OvnHMgBqcTwlJjGOsHrYjOj41dtzAFz8MgZvw/vsdOR2BRSOKaXdBFTBTscU1e/XA0BiR6WqlSQHbfSKuIX2zB8gaQysJWYHgzhJkuFag8m/5zt15xPVYyS5f4/5rH2n+TTYvWOLjeYwLn1bzT2m7lsMSaQULqh6H4ivTSjMC7Q7HC+OrCoCEX1tXfwLdgPYk6UVpsGaMQ2uJcN/c9ikaRHGKZLBOK3IUw7Lh1pJnXWWp3E610gEppDQrJTGrAum6ZFcHc7++jRMVEXIQSScJ5z58aRzTMGIo5IZoT9ydzrgpFLGuafkMGlbTwab7XV6glLEAeeZSCdLMVV+J9OrGeqV2gbO5jype0yUP4RjDLBfG/QUIZSu7A/sO169ah368fPHCxzmik2vimbMy2wh5RyTfyIRxcGfOykwvSp2bS/zOSY/0B/wkitmd40l8zkmP7DkqbMeStteNxoPfLfOAx9HIJpe91DclkzZzzHJQ2HDvZvui88sk5FdYiY/5Az7jrgva9NHeEp+cIPxxe5zxez1JzdZed5QtM2RO0+BLT31rftTpWsOLnF3ddStO7elp+pIzkVC+Yq3AHcZfbPgN6Qz4PJ+txsCNvSUJ6nXxK64LGnDl/v5S1vZ4Dq5wKbt5UOwjxa/U+aKr82xUT50Vbgz5I7v7PURwP3q4Y/7qKe84NOB9v87PfHGdlcH4mezntQXP+nq901msZ6oMO5qg+F/X1kynDvHfGsAAAAASUVORK5CYII=
As shown in the figure, angle 1 = 50.0, then angle 2 is equal to () Choices: A:50° B:60° C:65° D:90°
C
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
8
iVBORw0KGgoAAAANSUhEUgAAAWAAAADjCAYAAAC7Ms6OAABARklEQVR4nO3dd1xUV/7/8dcMvUpTEARpIlhiAysK9l5ijJrERDebrL+sSUw22fTsuil+s5u6STbNmMTeY8OKXUGIFRUEKYp0kCp9mLm/P7LMUoYqMDNwno+Hj80yd+58pr3n3HPPPUcmSZKEIAiC0OHk2i5AEAShqxIBLAiCoCUigAVBELREBLAgCIKWiAAWBEHQEhHAgiAIWiICWBAEQUtEAAuCIGiJCGBBEAQtEQEsCIKgJSKABaGZJEmi+sr9mv/dGIVCQWlpaXuXJugpEcCC0EwymQyZTFbvvxuiUqnYuXMn7733HsnJyc0KbKFrEQEsCO2gvLyc8PBwdu/ezdGjRykoKNB2SYIOEgEsCO3gzp07vPLKK1RVVfHBBx/g4+ODTCYTrWChFkNtFyAInU1YWBg///wz9vb2TJs2jaCgIMzMzLRdlqCDRAtYENrQ3bt3CQkJ4bfffmPOnDnMnDkTCwsL9e1N9RsLXYtoAQtCHdXdBC0Ny9LSUlavXk1CQgKzZ89m/vz59OjRoz1KFDoJEcCCUEdrWqkpKSns2LGD6OhoRowYwTPPPCPCV2iS6IIQhAd0//59QkNDCQkJYcCAAcyZMwcPDw8AcdJNaJRoAQtCHS3pglAqlezevZuQkBAAnn/+efr376++XfT5Co0RLWBBqKM5F1kAlJWVcfbsWdatW4dMJmPVqlV4e3t3QIVCZyFawILQShcuXGD9+vWYm5szdepUxo0bp+2SBD0jAlgQGiBJksaWsCRJxMbGsn//fkJDQ/nyyy+ZM2eOFioU9J1MEmcJBKFF7t27x4svvkh6ejpLly5l5syZYsSD0CqiBSwILXD79m02btxIdnY2AQEBzJs3D1tbW22XJegpcRJOEJqpqKiIY8eO8f333xMUFMSf//xnEb7CAxEtYEFops8//5yTJ0+yaNGiWmN9BaG1RAALQhNKSkrYt28fFy5coEePHjz22GP069ev3nYNnbQThIaILghBaMKlS5f47rvvsLa2ZtGiRfj7+2NkZNTi/TR3FQ2h6xAtYEFoxP79+9m2bRtyuZzHHnuM2bNnN7htU61f0ToW6hIBLAgaqFQqrly5wp49e8jMzOTpp59mzJgx2i5L6GREAAuCBomJiWzYsIGUlBT8/f158skntV2S0AmJPmBBqCMpKYl9+/YREhLCpEmTeOutt1q1H9HnKzRFtICFLq3uyIWCggI2b95MaGgoS5YsYdasWVhbW7dq36LPV2iKCGBB+K/8/Hz27dvH+fPnsba25plnnqFXr17aLkvoxEQXhNClVbdSFQoFV69eZdWqVfTs2ZN//etfODk5abk6obMTk/EIOqk1FzU8yIUQW7duZf369Tg5ObFw4UKmTZvWLo8jCDWJLghBJ8lkMiRJIi4ujqysLMrLy1EqlfVObBkZGdGtWze8vLzo3r17ix9HqVRy/vx5Dh8+TG5uLn/5y1/EcDOhw4gAFnRWVVUVGzduZOvWrSQmJmrcxsTEhP79+7Nq1apGL5JoSEZGBqtWrcLIyIgXXniBUaNGYWZm1uh9ROtXaCsigAWdZWhoyB//+EdMTU3ZsWMHkydPpn///tjb22NqakpSUhLXr1/n7t27rQrFy5cv8+OPPyKXy5k2bRqzZ8/GwsJCfbvoahDamwhgQSdVh5+HhwejRo3i8uXLPP744wwdOhSA4uJiBg0axNChQ9mxY0et4GyO5ORkQkJCuHjxIgsXLmTmzJl069atPZ6KIDRIBLCgk2q2PPPy8lAqleq5d+/du8f27dsZOnQo/fv3x9vbu0VjdUtLS/nxxx+JiIhg4MCBPPnkkzg6OjZagyC0BxHAgs6SJImEhAQqKioIDAzEw8ODkpISzp49i7GxMebm5lhZWfHwww9jbm7e6H7g90DNyspi3759HD9+nMGDB/Pqq6+2eDkh0TUhtBURwILOkiSJrKws4uLiiIqKQqFQkJOTQ3p6Og8//DB2dnYA6gBtKBir/1ZSUsLx48fZuXMn/fr1Y968eXh6enbcExKEOkQACzpLkiTy8/OJiYnhwIEDHDp0iKqqKhwcHFi6dCn29va1tq8euqYphBUKBadPn+bw4cPk5OTw3nvvMWLEiFbVJVq/QlsRASzoLJlMRkREBE5OTmzfvh0fHx/279/PmTNn6N27t8bhYg2Fb0xMDJ9++inGxsZ8/vnnDBgwABDdCYJ2iQAWdFZRURF37tzB1dWVefPmYWBgQF5eHrm5ueruh+a4fPky3333HZaWlkyZMoWxY8cil4ur8AXtE59CQSdVVFRw9+5dVCoV1tbWGBgYAGBpacmgQYOwtrZGpVJRVFTU6JSPt2/f5vDhw4SGhjJ//nyWLVtWK3xF61fQJtECFnRSdnY2ly9fxt3dnb59+6r/PmDAAPz8/DA3N+fo0aNcvHiRF198EUtLS6B2l0JJSQnvvfcecXFxvPvuu0yaNKnF44UFoT2JABZ0Qt2+2NLSUq5evUpAQAAjR45U/93ExASAo0ePcurUKYyMjDS2gNPT01mzZg3p6emMGDGCWbNm4eLi0v5PRBBaQASwoBNkMhlKpZKysjJKSko4ffo0v/32Gx4eHqSkpFBYWIgkSZiZmZGens5HH32Evb09CxcurLVCsUwmo6SkhFOnTrFt2zZmzJjBE088IcJX0EkigAWdUVpaSkREBH/729+IiIgAIDIyEiMjI3XrWCaToVAoqKqqYunSpQwbNqzeEvFr165l//79jBw5kkWLFjFkyJAOfy6C0BxiPmBBZ1RWVpKWlsbJkyfJyMjAyspKHbbVH9PqrgoDAwOGDx/O8OHDMTU1RSaTUV5ezoEDB9iwYQMymYxXX30Vf39/TExManVxiKFngq4QASx0CpIkERERwccff4yBgQEzZ85k2bJl2i5LEBolhqEJncK5c+fYtGkTqampLFq0SISvoBd0ug84IiKC27dvY2xsrO1SBB1kYGCAUqkkLy+PY8eOER8fj4+PD9nZ2Rw6dIjS0tIm91F9+bLQeVVWVuLr66uT5wJ0OoBjY2OJiIhodKarpogvWOcjk8nU/cD5+flcvHiRxMRE7Ozs6NWrF6mpqSQkJNTaXtNnoGY/sPiM6B9Nc39oeh9LS0sxMjISAdyUui+mmZkZ1tbWmJmZ1ZpSsDX7EjoXuVxOcXExOTk5xMfHo1Qqsbe3x8TEBDMzs3ojI4TOreYJ1roMDQ0xNTXt6JKaRadPwqWnp1NUVNTgdfsymQxDw99/QyRJUi/aWHcbHX6KQgsZGBggSRKVlZV89dVXhIaGsnTpUo4fP05hYSFffPEFvXr1QpIkVCqVtssV2kHd73RTLWCVSoWdnV2L533uCDrVAq5JkiScnZ1xdnZudLvqYUpGRkbqMBY6N6VSyb59+ygsLGTQoEE89dRTyGQyzp07R0VFBc7Ozk0urCkIukBnE6tu94GmLgiFQsG5c+eorKzE1dWVPn361Dr0bGm3haD7qqqquHDhAu+88w6DBg3ijTfeoHfv3owfP56ysjK2b9+OlZUVo0aN0napghZUHwk3dPRjYGCAXC7XmUzQ2QCuS9MLplQqWbt2LU5OTjz77LP1ttGVF1loOwcPHuTbb79l8ODBPProo+pFOv39/cnOzuaVV14hKChIBHAXdfPmTb7++mtu3rxJQUEBkiShUCioqKjA0dGRV199lfHjx2NjY6PtUgE9HgdcXFzMyZMnuXXrlvoEjJjjtXM7f/48hw4dorCwkIcffpigoCD1NJUmJiZ4enpiaWlJSkoKWVlZou+/C7KwsMDFxYWMjAySkpKQJAkPDw88PDyorKxkw4YNHDp0iJKSEm2XCuhRC7iua9euERISgpmZGZ6enjg4OGi7JKEdZWZm8uWXX5Kbm8sjjzzCtGnT1FNQVrO3t2f69OlkZ2dz4sQJFi1aJI6CupjevXvz9ttvc//+fbKzs3n88ceZNGkSSqWS/fv388QTT6BSqRg2bBg+Pj7aLlf/WsCSJHH8+HESEhLw9vamuLiYgoICbZcltKPq5YRSU1MJDg5m+fLl9cIXwMHBgQULFpCens7BgwfFEVEXVj2Zv7+/P/B736+XlxeGhoYoFAqdGSGjd5/QkpIS4uLiqKysZMCAAZibm4tWTieWkpJCSEgIYWFhTJ48mblz59aafL0mU1NTBg4ciIWFBZmZmSQmJurMF03oGFVVVSQlJWFiYoKXl5e6rzctLY0jR47Qq1cvBg4ciJOTk3YL/S+96oIoLi4mISEBExMTXF1d8fDwwNHREWtra22XJrSD4uJidu3axdmzZ3FycmLZsmW4ubnV2qbuBTempqb079+f4uJizpw5g5mZWZNDGYXOo6CggBs3bmBiYoKhoSFZWVmYm5tz7tw5wsPDCQ4OZsqUKTpzEk6vAvj27dvs3buXp59+GldXV1JSUnB2dtaZF1NoOwUFBZw8eZLNmzfj4+PDP/7xj1qTqjc2xDAoKIjS0lJ2796Nn5+fCOAuRKlUkp2drT5B//HHH1NRUcGCBQt4//33cXJy0qkGm94EcHp6OiEhIaxZs4akpCQcHBzIy8tDoVBo7A+sJi5J1g0teR8UCgWnTp3i+++/Z+DAgcybNw8vL6962zW0v0GDBnH79m02bNhAcnJyrSWNHrQ2Qbfl5+dz/fp1Ro4cycSJEzE1NeXKlSvcvXuXDRs2sHz5cuzt7bVdpppeBLBSqeTixYvcvHkTgEOHDlFWVoaxsTHBwcENXvUkhiHphpa8D0qlkvDwcA4fPkxqaip//etfmThxYr3tGgtMY2NjPDw86NatG8nJydy5cwd3d/cmaxQhrP+ysrKIjY1lxYoVzJkzB4CoqCjef/99/vnPf+Ll5cXDDz+sM6OmdP4knEqlIjc3l7S0NCZMmMC1a9eIj48nLCyML7/8ksGDBzc48Ur1rFmCdjX3fZAkidTUVD744AOio6P597//zfDhw1v1mE5OTixcuJDbt28TGhraJvUJuk2hUJCTk0N5eXmtgB00aBBTpkzB09OTmJgYEhMTtVhlbToXwHVbS3FxcaxduxZXV1dmzJiBnZ0d3bp1w9vbGysrK6ytrbGysmrw/oL+uHbtGqtWrcLCwoJHHnmEUaNG1XpvW6JHjx7MmDGDtLQ0zp07h1KpbONqBW2r+12Pj48nKysLHx8fbG1ta91WPW+0gYGBTs0vrnMBLJPJqKysJCUlhfDwcNatW8fatWuxsLCgR48eSJJEZmYmBw8e5PDhw1y5coXr16+TmZmJUqkULRk9lZSUxMGDBwkLC2PSpEk8/vjjDzQPtImJCQMGDMDCwoLs7GwSExNRKBRtWLGga2JiYsjJyWHs2LF079691t/Dw8MpLCzEw8ODnj17arHK2nSyDzgrK4vvvvuOrVu3kpSUBPz+Io4aNQoDAwP+85//sGXLFvWhxPnz50lJSeHll19Wj4gQfXr6Q6VS8cUXXxAZGcnTTz/NzJkz22zqwODgYK5cuUJISAgLFy6kV69ebbJfQfvqfr/j4uLIzs7m0UcfVZ9oUygUfPTRR2zfvh0XFxeGDx+uM2OAQUcD2NbWljlz5tC/f38KCgqwsLBg+PDhGBoaIpfLmT17tnqspyRJ2NjY4O7uXutknAhf/ZCXl8cPP/xAfHw8w4YN49FHH6V3795ttv/g4GDu3bvHrl27CA4OFgHcyWRnZ3PmzBnWr19PeHg4SqWS69evY2lpiYGBAQqFglu3bjF79myeffZZ/Pz8tF1yLToXwJIkYWlpyYgRIxgxYoTGbaqXI2/o/iJ89UP1hEp79uxh6NChLFy4UD3crK3ex759++Lu7k5qaip3795Vz54mdA5KpZLCwkJSU1Nxc3PD1NSUkpIS7t+/r54nfPTo0SxdupQpU6YAupUROr0ihqDfmvqgr1+/np07d6JSqXjjjTcIDAxslzrOnz/PRx99xKhRo5g2bRqDBw9ul8cRtEOSpCZPvuvqSBedaQHr0q+S0DYaej8rKys5fvw4e/fuRaFQ8MYbbzBs2DCgbT4Hda+Sc3NzY9asWZw4cQIzMzMRwJ2MroZrc+jEKAjRCO86VCoVUVFRbNiwAZVKxfTp0wkKCqq18Gpbc3R0JDg4mLy8PG7cuEFlZWW7PI4gtJROBLDQdVy/fp39+/dz8eJFpk+fzosvvqi+rb1aMoaGhnh7e9O9e3cKCwu5fv065eXlbf44gu7R9cadTgSwPh9CCM2XkZHB2rVrOXDgAG+//TazZs1ql8fR9HmSyWRMmDABe3t7du/eTV5eXrs8tqBbdD1XdCKAhc4vMzOTH374gcTERIYPH86sWbM6dJYySZIYP348Li4uhIaGkpWV1WGPLQgNEQEstLm6Z6ULCgoICwvjp59+ok+fPvztb3/Dzs6uQ2uSyWR4eHjg5uZGeno6ycnJoi9Y0DqdGQUhdB51D/s2bNjAL7/8whNPPMH8+fO1eimol5cXEyZMICoqih49ejB69Gj1bY3NMSwI7UG0gIV2o1Ao2LhxI2fOnKFnz57MmzdP60PAvL29mTVrFhcvXiQiIkKrtQiCCGChXahUKmJiYvj222+pqqriueeeY8iQIRgaavegy9HRkcDAQDIzM4mJiaGqqkp9mzgZLHQ0EcDCA9M01Of06dO89957dO/eXb2MfEPzNnc0Gxsb/P39kclknDhxgtLSUm2XJHRRIoCFNlEzhH/77Tf27NlDZmYmCxYsYMqUKRgYGGixutqMjY2ZPHkyJiYm7Nq1i5KSEm2XJHRRIoCFFtF03X3NQ/eMjAzWr19PbGwsY8eOZe7cuep5nHWFXC5n3Lhx2NnZcf78ebKzs7VdktBFiQAWWqSxftKkpCR++eUXIiMjGTp0KO+++656RQtd6luVyWQ4ODjg4eGBsbExMTEx5ObmarssoQsSASy0iZycHEJCQti7dy/Tp09n0aJFWFhYaLusRvn6+jJq1CjCwsK4evWqtssRuiARwMIDKykpISQkhLNnz2Jra8vixYu1PtysOXx8fJg8eTJRUVFERUVpuxyhCxIBLDyQ0tJSLl26xDfffENlZSVffvklffr00XZZGtXtv7a3t8ff35/CwkKSkpIoLCzUqb5qofMTASzU05IQOnv2LP/4xz8YOHAgf/jDH/D29taZ4WZ1aeq/7tatG4GBgSiVSo4dO0ZFRYXG+9Z8TURIC21FBLDQauHh4Rw8eJCcnBzmzJnDrFmzdOpkW3MYGRkxe/ZsjIyMCAkJobi4WNslCV2ICGChnuaEaFZWFv/85z+JjIzkvffeIygoSOtXubWGsbExwcHBmJubEx4e3uBoiJqvib79yAi6SwSw0GLx8fG89tprqFQq5s+fT3BwMLa2ttouq9WMjIzo06cPrq6uXLhwgdTUVG2XJHQRIoCFFklOTiYkJITLly8zcuRIFixYgI2NjbbLemAPPfQQo0eP5sSJE8TExGi7HKGLEAEstMgvv/zCr7/+yuTJk3nkkUfw9PTUdkltYsCAAYwbN46IiAhu3ryp7XKELkIEsNCss/pFRUV8+eWXhIWF4eHhwYoVK+jbt28HVNcxzMzM8PDwwMHBgczMTO7evYtKpVLfLkY+CO1BBLDQpPv373Pq1Cn27NlDr169WLhwIV5eXshksk4VTPb29owdO5bCwkJCQ0NrTVUpCO1BBLDQ5Fn9kydPsnPnThQKBQsXLqy1mKa+jwio+QNiZmbGnDlzUCqVHD16lLKyMvVt+v48Bd0kAlhoUFVVFZGRkWzcuJHExETee+89xo4dC9Q/JNc0S5o+qBmsJiYmBAQEYGlpSVJSEmlpaRqfkz4+T0E3iQAWGhQbG8u3336LQqHg4YcfJjAwsNEJdjpDK1Eul+Pr60vPnj0JCwvj7t272i5J6MREAHcBNVunzW2p3rp1i8OHD3P27FkCAwN56aWXal1iXDdsO0P4VgsICGDMmDEcPXqU2NjYerfXfK6iNSw8CBHAXUDNORCas+5ZSUkJa9as4ccff+SNN95g4cKFenmVW2s99NBD+Pv7c+HCBZKSkhrdtjP98AgdTwSwUKsVl5+fz6effkpsbCxBQUFMnToVV1dXLVbX8eRyOW5ubnh4eJCRkcGtW7dqDUkThLYiAlhQKygo4OzZs2zduhVnZ2defvnlLhe+1WxtbZk1axb37t3j0KFDKJVKbZckdEIigAX1YfSePXt4//33mThxIkuWLMHX17fLHmLb2Ngwd+5c8vPzOXLkiOjrFdqFCOBOpiVBUXPb7du3Exoaql5GPiAgoD3K0xuGhoZ4e3vj6OhIWVkZ0dHRGucKFsEsPIiuc2alC2hpGMhkMlQqFTExMWzYsAG5XM7ixYsZM2aMzk6q3tEGDx5Mfn4+oaGhWFlZ4e3tre2ShE7kgVvAKpWq1j99HZDfGTRnhENdFy5c4NNPP6W4uJhp06bx1FNPifCtYcyYMQwdOpSQkBBu375d7/au2kUjtI0HDmBNE1WLD6X2NPXjV/P2qKgodu3aRUxMDE888QTz5s1r9n66ij59+uDn50dGRgZ37twRJ+OENtUmASxWC9ANzQnN6vcnMzOTbdu2ER0dzfDhw5k3bx49e/ast50Abm5ueHl5kZycLJavF9qUOAnXiTS3CyIjI4ODBw9y4MABXF1d+fDDD3FwcOiACvWTvb09ixYtIj09nSNHjmi7HKETafMAliRJ3Rdc/b81b9PUR1y9bc1+5Ib229g2LdmutfetuU1Dz6Pm89S0vwepsbnPoyElJSUcPHiQr776itmzZ/Pss89ibW3dpo/f2djb2zN16lTy8/OJiIigvLxc2yUJnUS7tYAbC8iGtPSwtznB1ZKTgs3pP9X0g9LUdtXPq7HtO0JlZSV79uzh+PHj9OjRg3nz5jFs2LAOeWx9JpfLcXZ2xsnJiYqKCq5du1ZrqkpBaK02H4ZWM2wa6h/WNJmJXF77t6D6/jW3qd5fzSDTtK+aj9vQtnXVrbdma7XmxOOa9i1JEnK5vN596z6v6m1lMpn67+0xakTT86ysrCQ2Npb//Oc/mJqa8vnnn+Pn59emj9tZNPR5qV75ec+ePdjY2ODj49PqfQkCtFMLWFOQNaTuoXpDXRTV+627/8a2ay5Nj1n9GHUDvr1OOLZ3KzgiIoKVK1fi7e3Nc889R79+/TA2Nm7Xx9RXDX2+goOD8fHxYc+ePaSlpbVoX2JUiaBJu3VBNBaQDW3fUOg1tL/W1tEW2zZ1n4a+xK0Zq/ugwsLC2L17N8XFxUydOpVp06aJsb6t4OTkhKenJ5WVlSQnJ4tuCOGBtWkANxQsTXUD1A1fTSGljy0IXag5Pz+fH374gfDwcJ599lkmT56MlZWVtsvSW25ubgQGBpKQkEBkZGSD22k6ohKEuloVwA2NZqirJd0QzX3MttqutXVoGtnREG1/6dLS0njnnXfIzs5m6tSpPPLII/To0aPedi09+diVubi48PDDDxMTE8OxY8ca3E50OwjN0eoWcN0Qbk7YNNT6BeoN36p5u6aTXpr2p2k7TScDG3qMuvdrqNaG9t3QCImW/ndbSElJYc+ePVy4cIGAgAAWLlyIvb19vTqbQ9s/JLrEzs6OkSNHUlVVRWJiIgUFBdouSdBjrQrglpxka6hLoaF9NRR8zRnV0FBYN9Qf3dhQscZ+CBqroyXDzNqrhaRUKtm9ezf79u3Dx8eHRx55hAEDBqhvb81yQl0xhBt6fxwdHfH09ESlUhEZGUlRUZHG7briaya0TKuHobXlyaTm7Ku5j/cg+6o7FE6TxrZp6X6b83gtVVJSwq5duzhw4ADm5uasWrUKLy+vNn+crqCxz9HEiRM5efIku3btwtvbW1zMIrSKuBS5EykrKyMsLIyNGzfi6OjIk08+ibe3d7tc4NLVBQYG4u7uTnh4OBkZGdouR9BT7R7A4svccSIiIti/fz/5+fnMnDmT+fPnt3pfXfl9a05/vK2tLe7u7lRWVpKUlCT6goVWafMr4WqeVALtjHvtapRKJUlJSaxdu5Zr167x2WefMWLECPXtLR1L3dXfr+Y+f3d3d2bPns21a9ewt7dn5syZ7VyZ0Nm0y6XIDZ34EtpHcnIyH3zwAffv3+fJJ59k+PDh6rG+4lLY2hQKBQkJCaxbt46EhAQcHBwYOXIkwcHBuLu7t2hf7u7uzJw5k48++ghjY2MRwEKLtcuSROLL3nFu377NoUOHiIyM5LHHHmP58uXqE0KNha9SqSQ+Ph5DQ0NcXV0xNjbuEu9beno6Z8+e5eTJk8TFxWFubs6lS5coLy9n2bJlmJiYNPt1sLa2ZujQoSgUCu7cuUNubi52dnZd4nUU2oY4CafHqqqqWLduHf/+97957rnnWLJkSa2z8Y11/6SlpbF48WJWrlxJWlpal1jpobi4mEuXLnH58mV++uknsrKy2LRpE8nJyfzwww/s2bOn3uXFTfUHW1hYEBgYiKWlJUePHqWwsLC9n4bQiYgA1lMVFRX83//9H5cuXSI4OJhp06Y1a7hZRkYGP//8M4899hhRUVGUlpZSVVXVARVrlyRJ3Lx5ExMTE5566in69euHiYkJQ4cO5bHHHsPGxoZz587VW/m4oYuAqhkaGjJlyhSsrKzYtm1bg2OCBUETEcB66P79+5w4cYLDhw9jb2/PH/7wB/XUiE212CoqKigoKODevXvA75ONd5VDZkmS8PT0ZPTo0ernbGFhwdy5c/Hw8CA5OVnjj1FTr09AQABOTk5ER0c3e5Y0QQARwHrp0KFDrFq1Cg8PDxYvXsyoUaOanKqzmru7Oy+//DIRERFMnToVIyOjLjHXg0wmIyAgAF9f31p/lyQJKysrLC0tMTAwaPT+ml5bmUyGqakpXl5eODk5cf36dZKTk9vlOQidjwhgPVAzHHft2sXXX3/NlStX8Pb2rhUoLQnRbt26qU+8dZUWcEOz7OXl5WFpaYmvr2+rp+n08fFh0qRJREZGcuXKlbYoV+gCRADrAZlMhlKpJDo6mu3bt5Obm8uYMWPIycnh6tWr5Ofnq7drrq7S99sUlUrF5cuXMTc3Z+rUqZiZmbVqP15eXkyZMoWUlBQiIyMpLCzs9EcVwoMTAawnYmJiWLduHSkpKSxYsICPPvqIK1eu8P3333PkyBFKS0tbtd+u0P3QmKKiIqKiorC1tWX8+PGYmJg0uG1jr5WZmRm+vr4olUr1FYnFxcXtVbbQSbTLOGChbSUlJbFz504OHjzICy+8wMyZM3FwcOCzzz7jxx9/5KuvvsLZ2Znhw4djamqq7XL1RnR0NCdOnGDZsmUMGjSoye0bO8LIzc3lwIEDJCYmkp6ejqWlJePHjxeT3wuNEgGs43Jzc9m8eTNXr15l9OjRTJs2jV69egEwcuRIUlJSyMrKYuvWrUiSRFBQkJYr1g9ZWVncuHGDgoICRowYga2tbav2U1xcTHh4OFeuXCEhIQF/f38uXLjAtWvXxPL1QpNEAOuw3Nxczp49y65du/Dz82P16tXqSdWrzZ49m27durFixQqsra0ZOHAgtra2LZr3oauchKtWUVHB8ePHycvLY8SIEepuB6VSiST9vsJ1c6YKzc/P58qVK3zyySekpaUxatQoVq5cyb59+/j111/FBD1Ck0QA67DQ0FD+8Y9/MHv2bBYsWICDg0O9bUxNTXnooYdYvHgxKSkp/PLLL7zwwgu1zuY3dkmypn5NpVKFgUHnPD1QXl7OzZs3KSwsxNfXl0mTJgG/n5SMjo4mJycHX19fPD0969235hwnUVFRbNmyhX379hEYGMif/vQnhg8fjpubG5mZmSQkJBAeHo6lpSV9+/bt0Oco6A8RwDpIkiS2bdvGgQMHcHd3Z8aMGQwfPrzB7bt3787ChQv57LPPOHz4MAsWLMDNzU19u6b1ySwtLTE0NMTIyAgLC4tagX0jNpFftu5n+sTRjB05BDPThk9M6QtJkkhNTeXEiRPs37+frKwsPD09uX79OgqFgrS0NKqqqpg1axaWlpYa9yGTyaiqquLmzZts2LCB6OhoRo4cyfz589WXIwMMHjyYjIwMTpw4QY8ePUQACw0SAaxjFAoF8fHx/PTTT1RUVPDee+81Gr4ABgYGDBw4kF69ehEVFcWVK1ewtLTEzs5OvU3N1q9SqeTu3bsUFxcjl8tJSUnB0tKSbt26ATDA14vEO6l8/J8NfL12O8FjhjF9wmj8fDza50l3kFu3bnHixAkOHDiAgYEBV69eZfv27eofp4CAAF5//XWNC5dWS0hIYMuWLZw6dYqRI0fy0Ucf1Qtsb29vAgMD+f7777l582a7PidBv8mkrjwGSQdduXKFv/71r9jZ2TFr1iwWLVrU6NComqrDJS8vj6effpqxY8fW26ayspINGzbwl7/8RT1vQc+ePXnzzTeZO3euuuX8/qc/ciai9gUFri6OTJ8wmukTx2Bp0brxstpUUlJCYWFhrfkaan78zczM6NWrF4aGmtslcXFxbNmyhfXr1/P888+zaNEiXFxcau2r+ocuMzOT5cuX4+npybJly+jfv3+D+xW6LvGJ0LKaX9oLFy6wc+dOSkpKWLhwIdOnT292+AIMGTKErKwsVq1axfjx4zUGsFwux9vbmyVLlmBubo5KpcLAwIB+/fphbm6u3s5/cL96AZySlkVs/B3mz5zQymerXRYWFlhYWODs7Nzi+1ZWVrJlyxbOnj3LnDlzmD59eq3wrcva2pqJEycSExPDwYMH8fHxEQEs1CM+EVpWHb4FBQVs3bqVCxcuMGfOHGbOnEn37t1btC9bW1v69OlDfn4+6enpGifGNzQ0JCgoqMnhav6D+9X725jhg3jrpac77Qm6hlRUVBAVFcWpU6cwNDTkzTffxNHRsd52NV9rExMTpk2bRnx8PKdOneLpp59u9VV2QufVtb5JOio3N5dPPvmEGzduMGLECF566aVGW1eNcXBw4KGHHiI7O5uLFy+2uqbu9ja4u9VuKd68dZu8gq433WJmZiZff/01ffr04U9/+pPG8K3LwMAAHx8fevbsSW5uLklJSV1izmWhZVrdAo6JiSEpKanVk5d0dTKZDAMDA4qKirh69Sr79+/H2dkZGxsbfvvtN1QqFZWVlU3uA/7Xj2lsbMy9e/fUk8pcvnyZ3NxcDAwMUKlULa7R0daCO3dh/MgBZGTnEZuUzvNv/B+LZo7Bwkz/R0Y0pvq1rZ4r4uzZswQFBVFRUcGxY8cAGg1UuVyOubk5BQUFGBoasnHjRuLi4ujduzcKhaJLX/7d0RQKBZ6envTrV/+oTttafRLu119/5fjx4+rDqq42mP9BVL9WSqWSa9euER8fj4GBAYGBgXh5eXH//v1mratXd3iZJEkYGBhgbm6OUqlEoVCoLy5ojZIKFZUKFbaWhkgS3MmpoLBUiYWJHC8nU+Sd/C2XyWTcv3+fu3fvEhcXx8iRI/H29qakpKRZ95fL5RQWFnL37l2uX7/O4MGDGTRoUL1J34X2VVpaysSJEx9olfD20uoWsIGBAcbGxl1mLbG2ZGhoSEVFBenp6SQlJaFQKJg6dSr29vZUVlaqjypa+7pWt5ybe0VXQ4yNa/9/b2cjbqWVcL+siuR7CnycLdD3t17TGOmaf7e1tcXa2po+ffpgYmJCVVUVxnVfmEY4OjpSVVXFuXPnKC4uRiaTtej+woORJAljY+NG53rWplYH8PDhw+nTpw8WFhbIZDJUKhVKpVLdOjAxMaGiooKqqioR0DUYGhpSXl7OxYsX+fXXXxk0aBBz5sxh4MCBGBkZqVuszX3NOnrV47LySr5et5ec3EIqDGx5fN4E5J24KVxzInaVSlUvrJt6r8zMzEhJSSE7OxsrKyucnJzUlz83NR2oWNH6fx7ktaiqqsLJyamtS2oTrQ7g6hMRycnJKBQKjI2N6datGw899BDw+9pjPXv2bJsqO5mrV6+SkZGBg4MDc+fOZenSpdouqUV8/fx48a1PuBZ7G+/rSTy3bIG2S9Jpnp6eZGVlcf78efLz8/H399d2SV1SSxo2HaXVx6fXrl3j448/JigoiHHjxjFp0iSee+45oqOjiY+P55NPPiE+Ph5o2UoNnZlKpSIrK4tvvvmGzZs3qy9+aEpz5uztyNfYzsaa/3t7BXY21vx64CTrtx/osMfWR4aGhkyfPp3S0lIOHTokJulpB835/Ota+EIrWsDx8fG88847lJWV0bdvX9asWaNeV0ypVPLxxx9z7949Bg8erO7r0sUnrg1ZWVm8+eab5OXl8cwzzzBy5EhsbGzaZN8d/Rq7ujjy/hvP8eqqL9iw4yDdrC2ZO63rTIUZGRnJnj17CAsLQ5IkFAoF9vb2fPjhh8hkMmJjY5kwYQLdu3dHLpdjb2+Pu7s7d+/e5eLFiwQEBKgv/RZqq26ptqTFWrMvv+5/a9q3rmhRACcmJrJjxw4OHDjAmDFjGD9+PDNmzFDfXlZWxqZNm0hISGDWrFli4HkNycnJHDhwgKioKKZNm8ZTTz3V7AstdOkDU5OPlxur317Bq6u+4NtfdmJrY824kUO0XVa7ysnJISwsjPPnzxMTE6M+4VlVVUVJSQnnzp3j/v375OTkMHr06Fr3HTp0KDk5ORw9ehQHBwcGDx6shWegP2QyGQqFguvXr5OdnU1FRQVKpbLWkEq5XI6rqysBAQENnlDVaVILfPDBB5K7u7v0+OOPS2FhYRq3+e6776TXX39d2rVrl3Tv3r2W7L5T+/zzzyU/Pz/p3Xffla5duyZJkiSpVCpJqVQ2+U+lUmm5+sadPn9ZmrroeWnqouelqzduabucdlNRUSGtWbNGAqQRI0ZI69evr3V7aWmp9OKLL0pTpkyRXnvttXqf/8zMTGndunXS0KFDpZ07d3Zk6XorPz9fWrFiheTi4iIBGv/NmDFDys3N1XaprdLsFvCZM2e4cOECkiTx7LPPNngioVu3bjg5OeHk5NSlh9tINQ6jPvvsM86cOcOwYcN49NFHGThwIPn5+Xz++efqiyWqqqpqjdmtvr+trS2LFy9m0qRJGueo1QXjRg6h6OmF/HvNVt796Fv++e4Lej9zmibffvst+/btY/78+SxZsoQJE2rPiWFmZsbixYs5d+4cpaWl9Y5cHB0d8fHxoaKiguTkZO7fv9/gkkWSjh0qa4uVlRUvv/wy5ubmnDx5kjlz5uDj44OtrS0qlYqjR49y4cIFHn/8cf7+978zatQobZfcIs0O4O3bt1NcXMyoUaPw9/dvMFx9fHzo1asXvXv3btFEMp2NTCajpKSEsLAwDh06hKOjI0uWLGHAgAHA718wOzs70tPTiY2Nxc/PD1tbW0xNTZHL5chkMuLi4rh69SpTpkzR+ddy1pSxFJeWsXbTXlZ9/AOfrHoJV5emL9nVB5WVldy6dYtjx45RXl7Oc889R1BQkMarQAMCArCysiItLU3j+nzOzs4MHTqUtLQ0zp8/z5QpUzriKegl6b8XFnl5eTF48GDS09N54oknajVE+vTpw88//8yPP/5IaGgozs7O9O7dW4tVt0yzA3jv3r2MGDGCOXPm1FttoeYv9dChQ9u2Qj0WHh7O999/j7GxMbNmzWLq1KnA/8L3pZdewsDAgIsXL/Lyyy8zcODAWgPGjxw5wltvvcWIESNaPTdER1o8bwr5BUX8euAkr7//JV9/9Dp2NtbaLuuBZWRk8PPPP1NYWMiYMWPUq2hoYmhoyIABA9Q/tHXZ2NiwYMECdu/ezdGjR5kwYYLGWdJE67f2a1BQUIBKpaq3dp+XlxdPPvkkcXFxnD9/Hmtra1566aUOrrT1mj0MLTU1FblcTs+ePWtdXSU+KJqdOHGCbdu2kZqayvPPP9/gcLPy8nJkMhleXl4YGBhQUFDAr7/+SnFxMd27d8fLy6vVC0Zqw3PLFjB+zDBycgt4ddUXFN7X/6XZCwoKiIyMxM7OjoEDB6r/LrXihE/1NJUKhYIrV66Qn5/flqV2OgqFglu3blFQUICdnZ3GKztNTExwdnampKSErKwsLVTZei0aBSGTyVo0sqEr9mOpVCoSEhLYtGkTWVlZLFiwgMDAwFpz7cpkMpRKJffu3cPQ0JA+ffqo+wLT0tIIDw/Hz88Pd3d3Fi9e3Kr5a7Xp9ReWUVZeQcSlG6z61w+sfnuFXi9rlJWVxa1bt/Dw8Kh1eFvdx3/79m2uX79OXFwcJiYmlJeXY2ZmxvTp03F3d1cfMVZ/HywsLPD09CQ/P5/IyEhGjx5da/US4X+qqqqIiopCoVDg4+Oj8ZJiIyMjXFxcuHbtGmVlZVqosvVaFMCSJDU6Q5f03/GQMpms3odO0pNxeQ8qKSmJvXv3cvXqVSZOnMgrr7yi8Ve7vLxcvR6ZtbU1GRkZVFVVERMTw/379ykrK8POzk4nJxBpioGBnLdeepq3PvwPN2ITWf3FT6z663K9nEe4qqqK3Nxc7t27p77asyaVSkViYiJbtmxh27Zt6r+7urri5eWFi4uLxrk9AgMDqaioYP/+/bi4uIgAbkD1kYKpqSlDhgzReO7J0NCQbt261VvbUB80+xtRvRx6Xl5egxNbFBYWcu7cOS5dugTUXvK8oeXPdTl8pWZcgVZTbm4ue/bs4ZtvvmHZsmW88MILDU6GI0kShYWFHDp0iJUrV6pnyvrggw9wcnLS+0H6ZqYmvP/Gc7i6OBJx6Qb//OoXbZfUKtWfgYY+BwYGBowdO5a33nqLL774An9/f1auXMnZs2cJDg6udSKu5j7GjBlD//79OXLkCKmpqe3+PPRVWVkZERERqFQqAgICNAasQqEgJycHS0vLRtfz00XNDuCpU6eSmZnJunXriImJqXVbRUUFYWFhfPPNN5SUlNCrV682L1QbWvLjUFpayg8//MCZM2eYPHkyU6ZMwdXVtcHtq1dZcHZ25oknnuDRRx9l6NChuLi40LNnT41n0PWNpYUZn6x6Ccfu9pwMu8S3v+zUdkktZmRkhI2NDVZWVlRVVVFeXq6+rTpQTU1NcXFxwc3NjcGDBxMYGEjv3r2xsLBo8HyJhYUFHh4e2NjYcOfOHXJycmo9bmv6lzujsrIydbCamppq/E6mpqZy4MABdXeePml2AC9atAhbW1vCw8P59ddfCQsLIy0tjdu3bxMZGcnZs2eJjIzE2dm50wQwNC+Eq1v+e/bsQS6X89ZbbzX5QSgqKiIqKorAwEDWrl3L119/zerVq5k/fz49e/bsNOuH1Z03Yuueo9ouqcVcXFwYOnQoBQUFXL9+XR3CNT8bGRkZxMbG0qdPn2b32bu4uDBp0iSSkpI4ffp0u9Suz4qLi8nOzsbb27ve4qfVCgoKuHDhAhEREXTv3r3B0Se6qtkBPH36dD788ENWrFjBp59+SmBgIH379mXAgAG8++67mJqasmbNmi45DO3MmTOsXLmSESNG8Oqrr9K7d+9G5+FVqVRkZ2dTUlKCtbW1ul/L0NCQ7t274+joqPPjfluiet4IM1MT1m7aS8jRs9ouqUV69+7NCy+8QFxcHB9//DHh4eH1VhjJzc3lypUreHh44OHRvItQHB0dmT9/PomJiepVNqrpctdcR0lLSyMqKgpLS8sGu+QOHjzI7t27GTBgAJMmTcLb27uDq3wwzW5mGRkZ0a9fPwwNDTE2NqagoEAdMh4eHgQEBKj7XzrbibXG7Nixg7179+Lp6cn06dMZPnx4k889JSWFxMREevfuXWt9MTc3N+zt7TE3N681aqIzqDlvxNc/bcfa2lJv5o2wtrZm3LhxvPrqq4SGhvL222/j6uqKnZ0dVVVVGBoakpycTFlZGe7u7hqnYdX0nbCwsOChhx7CzMyM9PR0UlJScHFxeaBJ9DuTO3fucPz4cebPn8+gQYPUf5fJZNy9e5cvv/ySc+fOYWdnxzvvvKN3V8FBC0dByOVyfH198fX1bXS7rhC+SqWShIQEduzYQWZmJitXrmTMmDHNuvz6zp073Lp1C39//1r9xA4ODjg4OLRn2Vo1wNeLt156mtVf/MQ/v1yHnY01A3y9tF1Wk+RyOd27d+eZZ57Bzc2N5cuXk5iYiJGRkXrCGCcnJ4KCghrt99fE0tKS/v37ExMTw+nTp5k6dWqLV8PuTJRKJffv3ycvL49Dhw5x+vRpAgMDiY2NxcLCQj0SKywsjJ9++glnZ2cWL17MokWLAP1r/DV7TTh9e2LtLS4ujrfeeouKigqmTJnC//t//6/Zc19s3LiRI0eO8Oc//5lBgwZ1utZuU0KOnuXfa7ZiZmrC5+//BS933TxnoOkzr1AoKCkpqXeSTC6XY2hoiJmZGXK5vEXfl/DwcA4dOkR0dDR///vfa7X2upq8vDxOnTrFm2++ya1bt4DfG3SGhobq17OyshI3NzdeeeUVpk2bhre3t94eNTS7BdyVwlfTl6fm36Kioti5cyepqanqEQxNhW9hYSFXr15l48aNHDt2jJycHOLj41m+fDnz58/H2tq6y7zGNeeNeOvD/+jsvBE134/q9796VERjWtpY8ff3Jy4ujs2bN5Oent6lA9jc3JyBAwfy2muvUVRUhIWFhXpps+rXVaFQ0KNHDyZMmICbm5u2S34gneNUeweo/kLl5uaye/duzp8/z9ixY5kxY0azll6qqqoiPz+fGzduYGRkhI+PD7m5ueTl5VFZWdnljjBqzhvxzkff8vn7f9HLeSM0vW8tfR+NjY3VQ9ISExNJTU3tVCOJmkuSJExNTenTp4/eDSdrrVYvS98V5ebmsn79evbt24eLiwtff/11s1e0qB7MX3chxuqVixu6UKWzW/3FT5wMu4SriyP/+eh1vb5kuTFN/cAmJiayfft2kpOTGT16NE899VQHVidoS7M7ThrK6a6S3/n5+YSGhrJp0yYGDRrEypUrW7SckEwmQy6XY2xsXOufoaGhOoC7otdfWMbIYQNIz8wh4tINbZfTbpp6f3v16sWMGTNISEjg/PnzHVSV7uvs+SK6IJpBoVBw9OhRQkJCcHJyYubMmQQEBLRqX12tq6Ep1fNG3Lx1m6EPNT66pjMzMTHBz88PCwsLsrOzSUpKws3NrdNckCNo1uwWcEOh0dnDpKKigqtXr7Jlyxaio6NZvXp1vZUQWqKzv16tYWZq0mXDt2YLz9DQkLFjx2Jra0tISAi5ublarEw3dPbvi36O3WgnmiZdiY+P57XXXsPY2Fh9iXFDkxEJQkvVDBi5XM706dNxcnJi27Zt5OXlabEyoSOIAK6j5hfi4sWLbNq0ibKyMoKCgpgzZ45Y6VloV/3796d3795kZmZy586dTt8H2tWJAK6hOnxVKhV5eXls3ryZ7du3s2LFChYsWNCp5mcQdJenpyd+fn7cuHGD69eva7scoR2JANagpKSE119/nZiYGJYsWcLEiRNrzdkgCO2hurXr7e3NzJkzuXjxIhEREVquSmhPIoDrSE9PZ+vWrURHR+Pr68tjjz2md0sCCfrNxcWFcePGkZmZSUxMTL2x40Ln0aUDWFP/2pEjR/jpp58YPHgwjz76aJMTDwlCW6nuAqueWNzW1pZ79+4RExPT6FJggv7qMgGsaYRDzbXqAH744Qf27t2Lg4MDy5cvZ8yYMR1dpiAA/xsRYW1tze7duykqKtJ2SUI76DIB3NiadKWlpZw8eZK9e/diYmLCH//4R/XM+uIstKANcrmcyZMnY2try5EjR8SQtE5KXGYDXL58mc2bN1NWVsacOXOYN2+e+rbOPhC8Iyju55BbomxkCxNsnGxpcBW88nwyCyqa3k69eSYFFQZY2HfHSr8WyVWTy+V4enri7OxMVlYWd+7cwd3dvdlTngr6ocu0gBty9epVduzYwZkzZ3jxxRd58skntV1Sp3N328P07NmzkX/voWn2A0X2RX78wwCszez+u50dZtYD+MOPF8lWaLhDeQybnvCmR99AgoOH4GLlzRPbbqFpU33h6+vLuHHj+O2334iKitJ2OUIb67IBrFKpuHv3Lt988w23bt3i6aefZvTo0V1ucvSOoKxSQPdVRNZY4r32v88ZX/dOeSd5zT+A56NmsP1mHmWShFRZxK3tM4h6PgD/105S+6C8iJNvTmPtkB3cyU4gNjaV3Lvf0uOvk1j9m/5GsJ+fH5MmTeLs2bNcunRJ2+UIbazLBnBVVRX3798nPT0dT09PXnjhBfWadkLbSov7DXxcsG/2PRSc/2wRX5T/mf3H/sU03/92OxhZ0Wfavzi2/8+Uf7GUr2oF6yX2fTGbN1cOwe6/fzHqMZnn/+ZG6LW7bfhsOpazszPDhw8nKyuL+Pj4eouBCvqtywawsbExffv25auvvuLNN98ULV9dUnSMtZ/kMPCdFUy2q3+z3eQVvDMwhf/bcq5G94I9Ln1vk51dc0sFRffuYaznc3d0796dIUOGUF5ezqlTpygvL9e4nThhrH+6bADD7+MtPTw8uuTqAx2niJJcIMCLZi+/efUkGyv68lRwvwY26MfIR7pTsekMV9R/e4jHPrTi5aA/sznqDpmZsZz6cglzv5nOu3PdH+wpaJm5uTnTpk1DpVKxe/fuBscEixPG+qdLB7DQEXLITKrxfxX3ycnMJDMzh/sNdM3eSbxIBcPxdW94r719x0DOaaLv/O9vLo9s5MbWMdz4xyKCg5fyZfFijlz9nPEaWtH6xNDQkKCgICwtLYmMjCQnJ0fbJQltpMsFsDhM047epZGsnj8Aa2NrevTsSc+ePbC26kHwW6Gk1Aniotx0wB6LRpaIc+zhDpRQUasxaEQP/ydY/WsksbGR/PrWw/jpefjC70PSnJyccHV1RaVSERMTQ35+vrbLEtpAlwng6jPu4jCto+WSdguSf3iT74xe4ujdIiolCaksj5t7llH02RT6TP2RWzVCODctrpn7/o24tHYpWicNHDiQUaNGcfr0aW7evKntcoQ20GUCWNCWKgzt+jL8zaNc3PgMI12tMAIwtcX3vyMarE8+z7+OiUttm9K/f3+CgoK4ePEiMTEx2i5HaANdJoCbWnVYdE20l9G8HRtL5OrJ9NBwVZrd5OW81reCtVvO0PII7o6NRRuUqCd69OjBkCFD1GvGlZaWqj+34vOrn7pMADdFdE1oix+DJgJJmVSfWnLr3/QkSIqqSsAHl+YPLu4UbGxsCA4Opri4mNDQUBSK3/tuxOdXP4kAFrTMCMM60xt0d/IELpCY2PC9bideBAbR2609a9M95ubmzJ07l/Lycvbv368OYEE/iQAW2l15fj6aLx0AuMOdKKC7FZb//Yu13zjGEMaZmw11ShRxK/w3GO9PHz2dbKe1zMzMmDBhAnK5nPPnz1NQUKDtkoQHIAJYaFdZ2x7GzC6IHxo6Z5QWxo6TMGamP+pFn7xGs3AgbN8TprlfOG0/32yA6X+cgnt7FK3jjIyM8PPzw9XVlXPnzpGZmantkoRWEgEstCvH6X/ijybXee2dzfXG+6JIYfebL3PI9a+sXljzOrl+LPn0z1ivXc7fT9aZB1eRzeHVv9/njdku7V2+zvL392fYsGEcPnyYW7duabscobUkQWhnuSf+KnmZIFn1f1h6c81u6ciRI9LuNW9Ks7xMJKymSmuiyzTdSwpfNUQywUoaufQLadORI9KRTV9IS0daSVhNlX6Kq+zw56FLioqKpD179kh+fn7S2rVrtV2O0EoySRLjV4T2p8iOJmTLN2zYfJyYQqD3SJ58dBmPLwnGo8EZ1hVkR4ew5ePv+DYiGbr1Y+LjT/Lnx2bRX9OYti4mOjqapUuXMnPmTJ599llcXFzEaAg9IwJYEPRUQUEBW7duxcPDg2HDhmFvby8CWM+IABYEPVH9Va0ZsiqVCrlcnMrRVyKABUEQtET8dAqCIGiJCGBBEAQtEQEsCIKgJSKABUEQtEQEsCAIgpaIABYEQdASEcCCIAhaIgJYEARBS0QAC4IgaIkIYEEQBC0RASwIgqAlIoAFQRC0RASwIAiClogAFgRB0BIRwIIgCFoiAlgQBEFLRAALgiBoiQhgQRAELREBLAiCoCUigAVBELREBLAgCIKWiAAWBEHQkv8PZweDuMUzYB0AAAAASUVORK5CYII=
As shown in the figure, AB parallel CD, EG bisects angle BEF, then angle 2 is equal to () Choices: A:50° B:60° C:65° D:90°
C
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
9
"iVBORw0KGgoAAAANSUhEUgAAA2EAAAJTCAYAAACByR4tAADIKUlEQVR4nOzddXgUx/8H8HfcjYQAIUSQ4O5OcfcWbYMVKRUoLV+(...TRUNCATED)
null
C
{'source': 'GeoQA', 'split': 'testmini', 'subfield': 'Angle', 'subject': 'Plane Geometry'}
multi-choice
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
24