Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      Failed to parse string: '35838529|22724510' as a scalar of type double
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2224, in cast_table_to_schema
                  cast_array_to_feature(
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2086, in cast_array_to_feature
                  return array_cast(
                         ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1797, in wrapper
                  return func(array, *args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1949, in array_cast
                  return array.cast(pa_type)
                         ^^^^^^^^^^^^^^^^^^^
                File "pyarrow/array.pxi", line 1135, in pyarrow.lib.Array.cast
                File "/usr/local/lib/python3.12/site-packages/pyarrow/compute.py", line 412, in cast
                  return call_function("cast", [arr], options, memory_pool)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/_compute.pyx", line 604, in pyarrow._compute.call_function
                File "pyarrow/_compute.pyx", line 399, in pyarrow._compute.Function.call
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Failed to parse string: '35838529|22724510' as a scalar of type double
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1334, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 911, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

chembl
string
pchembl
null
activity_value
null
activity_type
null
assay_chembl
null
uniprot_id
string
references
null
confidence_score
null
stitch_combined_score
float64
source
string
CHEMBL271225
null
null
null
null
A0A0B4K692
null
null
707
STITCH
CHEMBL294536
null
null
null
null
A0A0B4K692
null
null
733
STITCH
CHEMBL294760
null
null
null
null
A0A0B4K692
null
null
706
STITCH
CHEMBL303159
null
null
null
null
A0A0B4K692
null
null
767
STITCH
CHEMBL304233
null
null
null
null
A0A0B4K692
null
null
726
STITCH
CHEMBL58315
null
null
null
null
A0A0B4K692
null
null
798
STITCH
CHEMBL66967
null
null
null
null
A0A0B4K692
null
null
767
STITCH
CHEMBL89840
null
null
null
null
A0A0B4K692
null
null
703
STITCH
CHEMBL226853
null
null
null
null
A0A0C5PRQ1
null
null
null
ChEMBL
CHEMBL3740110
null
null
null
null
A0A0C5PRQ1
null
null
null
ChEMBL
CHEMBL3740431
null
null
null
null
A0A0C5PRQ1
null
null
null
ChEMBL
CHEMBL2332039
null
null
null
null
A0A0G2JZ79
null
null
723
STITCH
CHEMBL2338810
null
null
null
null
A0A0G2JZ79
null
null
707
STITCH
CHEMBL479233
null
null
null
null
A0A0G2JZ79
null
null
800
STITCH
CHEMBL1196117
null
null
null
null
A0A0G2K344
null
null
724
STITCH
CHEMBL1921986
null
null
null
null
A0A0G2K344
null
null
822
STITCH
CHEMBL2017976
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL2017977
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL2133638
null
null
null
null
A0A0G2K344
null
null
814
STITCH
CHEMBL2381375
null
null
null
null
A0A0G2K344
null
null
711
STITCH
CHEMBL2381376
null
null
null
null
A0A0G2K344
null
null
712
STITCH
CHEMBL2381382
null
null
null
null
A0A0G2K344
null
null
711
STITCH
CHEMBL3693561
null
null
null
null
A0A0G2K344
null
null
795
STITCH
CHEMBL5170832
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5170887
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5173182
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5173332
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5174001
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5175263
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5175657
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5177019
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5177354
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5177612
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5181013
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5181180
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5183913
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5185811
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5185902
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5187418
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5187488
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5188146
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5188186
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5189026
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5192317
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5192813
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5197306
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5199826
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5200137
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5201844
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5202872
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5203121
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5204344
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5205857
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5207057
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL5208098
null
null
null
null
A0A0G2K344
null
null
null
ChEMBL
CHEMBL1825138
null
null
null
null
A0A0K3AUJ9
null
null
721
STITCH
CHEMBL2002099
null
null
null
null
A0A0K3AUJ9
null
null
721
STITCH
CHEMBL2347958
null
null
null
null
A0A0K3AUJ9
null
null
721
STITCH
CHEMBL2393431
null
null
null
null
A0A0K3AUJ9
null
null
700
STITCH
CHEMBL2393447
null
null
null
null
A0A0K3AUJ9
null
null
700
STITCH
CHEMBL2393448
null
null
null
null
A0A0K3AUJ9
null
null
700
STITCH
CHEMBL3182647
null
null
null
null
A0A0K3AUJ9
null
null
721
STITCH
CHEMBL3732675
null
null
null
null
A0A0K3AUJ9
null
null
721
STITCH
CHEMBL1802728
null
null
null
null
A0A0K3AV08
null
null
738
STITCH
CHEMBL1825138
null
null
null
null
A0A0K3AV08
null
null
770
STITCH
CHEMBL2002099
null
null
null
null
A0A0K3AV08
null
null
817
STITCH
CHEMBL2436978
null
null
null
null
A0A0K3AV08
null
null
735
STITCH
CHEMBL3182647
null
null
null
null
A0A0K3AV08
null
null
805
STITCH
CHEMBL3182647
null
null
null
null
A0A0K3AWM6
null
null
721
STITCH
CHEMBL3693561
null
null
null
null
A0A0R4ITC5
null
null
756
STITCH
CHEMBL142450
null
null
null
null
A0A0R4IVV0
null
null
700
STITCH
CHEMBL168216
null
null
null
null
A0A0R4IVV0
null
null
796
STITCH
CHEMBL168680
null
null
null
null
A0A0R4IVV0
null
null
796
STITCH
CHEMBL2146489
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147279
null
null
null
null
A0A0R4IVV0
null
null
815
STITCH
CHEMBL2147280
null
null
null
null
A0A0R4IVV0
null
null
822
STITCH
CHEMBL2147281
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147282
null
null
null
null
A0A0R4IVV0
null
null
733
STITCH
CHEMBL2147283
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147284
null
null
null
null
A0A0R4IVV0
null
null
788
STITCH
CHEMBL2147285
null
null
null
null
A0A0R4IVV0
null
null
804
STITCH
CHEMBL2147286
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147287
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147288
null
null
null
null
A0A0R4IVV0
null
null
730
STITCH
CHEMBL2147289
null
null
null
null
A0A0R4IVV0
null
null
733
STITCH
CHEMBL2147290
null
null
null
null
A0A0R4IVV0
null
null
916
STITCH
CHEMBL2147291
null
null
null
null
A0A0R4IVV0
null
null
769
STITCH
CHEMBL2147292
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147293
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147294
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147295
null
null
null
null
A0A0R4IVV0
null
null
844
STITCH
CHEMBL2147296
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147297
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147298
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL2147299
null
null
null
null
A0A0R4IVV0
null
null
896
STITCH
CHEMBL2147300
null
null
null
null
A0A0R4IVV0
null
null
797
STITCH
CHEMBL2147301
null
null
null
null
A0A0R4IVV0
null
null
898
STITCH
CHEMBL353385
null
null
null
null
A0A0R4IVV0
null
null
783
STITCH
CHEMBL355892
null
null
null
null
A0A0R4IVV0
null
null
796
STITCH
CHEMBL474892
null
null
null
null
A0A0R4IVV0
null
null
782
STITCH
End of preview.
YAML Metadata Warning: The task_categories "graph-construction" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, image-text-to-image, image-text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
YAML Metadata Warning: The task_categories "link-prediction" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, image-text-to-image, image-text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
YAML Metadata Warning: The task_categories "node-classification" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, image-text-to-image, image-text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

CROssBARv2-KG

This repository provides the dataset for the CROssBARv2 Knowledge Graph (KG), a heterogeneous and general-purpose biomedical KG-based system.

The CROssBARv2 KG comprises approximately 2.7 million nodes spanning 14 distinct node types and around 12.6 million edges representing 51 different edge types, all integrated from 34 biological data sources. We also incorporated several ontologies (e.g., Gene Ontology, Mondo Disease Ontology) along with rich metadata captured as node and edge properties.

Building upon this foundation, we further enhanced the semantic depth of CROssBARv2. This was achieved by generating and storing embeddings for key biological entities, such as proteins, drugs, and Gene Ontology terms. These embeddings are managed using the native vector index feature in Neo4j, enabling powerful semantic similarity searches.

CROssBARv2 KG

Data

The dataset is organized into two primary directories:

  • nodes/: Contains CSV files defining the biological entities.
  • edges/: Contains CSV files defining the relationships between these entities.

nodes

Each file corresponds to a specific biological entity type and contains a primary identifier column that provides a unique ID along with additional metadata fields. Identifiers follow the Compact URI (CURIE) standard (e.g., uniprot:Q9H161) as defined in the Bioregistry.

The table below lists the primary identifier column name for each node file:

File ID Column Name
Cellular_component.csv id
Biological_process.csv id
Molecular_function.csv id
Protein.csv id
Phenotype.csv hpo_id
Pathway.csv pathway_id
Ec.csv ec_number
Compound.csv compound_id
Gene.csv id
Side_effect.csv meddra_id
Drug.csv drugbank_id
Drug.csv drugbank_id
Organism.csv id
Domain.csv id
Disease.csv disease_id

The following table demonstrates the CURIE format used for each node type within the KG:

Node Type CURIE
Protein uniprot:Q9H161
Gene ncbigene:60529
OrganismTaxon ncbitaxon:9606
ProteinDomain interpro:IPR000001
Drug drugbank:DB00821
Compound chembl:CHEMBL6228
GOTerm (BiologicalProcess, MolecularFunction, CellularComponent) go:0016072
Disease mondo:0054666
Phenotype hp:0000012
SideEffect meddra:10073487
EcNumber eccode:1.1.1.-

edges

Each file represents a relationship between two biological entity types in the KG.
Every edge file contains source and target columns, which specify the identifiers of the nodes being linked.
Other columns serve as metadata for the relationship.

The table below lists the filename along with the source and target identifier column names and a description of the edge type:

File Source Column Target Column Description
Pathway_orthology.csv pathway1_id pathway2_id Evolutionarily conserved pathway relationship
Go_to_go.csv source target Hierarchical or regulatory connection between functional terms
Gene_to_disease_edge.csv gene_id disease_id

Gene-disease link via expression or function
Genetic variant linked to disease risk/pathology

Ec_hierarchy.csv child_id parent_id Hierarchical classification of enzyme functions
Disease_to_drug_edge.csv disease_id drug_id Therapeutic intervention with a drug
DTI.csv drugbank_id uniprot_id Direct target binding or modulation
Phenotype_hierarchical_edges.csv child_id parent_id Hierarchical classification of phenotypes
Protein_to_phenotype.csv protein_id hpo_id Protein involvement in a phenotypic condition
Drug_to_side_effect.csv drugbank_id meddra_id Associated adverse effect of a drug
Disease_to_disease_comorbidity_edge.csv disease1 disease2 Comorbid occurrence in patients
DGI.csv entrez_id drugbank_id Positive/negative regulation of gene expression
Drug_to_pathway.csv drug_id pathway_id Target involvement in a biological pathway
PPI.csv uniprot_a uniprot_b Physical/functional protein-protein association
Disease_to_disease_association_edge.csv disease_id1 disease_id2 Statistical or mechanistic disease link
Phenotype_to_disease.csv hpo_id disease_id Disease-related clinical trait
Orthology.csv entrez_a entrez_b Evolutionary relationship between genes
Side_effect_hierarchy.csv child_id parent_id Hierarchical classification of side effects
Organism_to_disease_edge.csv organism_id disease_id Pathogen-induced disease etiology
DDI.csv drug1 drug2 Pharmacological or biochemical interaction
Protein_to_ec.csv protein_id ec_id Enzymatic reaction catalysis
Reactome_hierarchical_edges.csv child_id parent_id Hierarchical or functional pathway connection
Tf_gene_edges.csv tf target Regulatory influence on gene expression
Disease_hiererchical_edges.csv child_id parent_id Hierarchical classification of diseases
Protein_to_pathway.csv uniprot_id pathway_id Functional participation in a biological pathway
Protein_has_domain.csv source_id target_id Protein contains structural/functional domain
Protein_belongs_to_organism.csv source_id target_id Protein origin specific to an organism
Protein_to_go.csv source target Molecular activity performed by protein / Cellular component localization / Biological role or process involvement
Pathway_to_pathway.csv pathway_id1 pathway_id2 Hierarchical or functional pathway connection
Gene_encodes_protein.csv source_id target_id Genetic encoding of a protein product
Disease_to_pathway.csv disease_id pathway_id Regulation of biological pathway activity
Domain_to_go.csv source target Functional role enabled by domain / Structural or localization role of domain / Biological role or process involvement of domain
CTI.csv chembl uniprot_id Direct target binding or modulation

How to Use

You can easily load this dataset using the Hugging Face datasets library:

from datasets import load_dataset

# Example 1: Load the Protein nodes
proteins = load_dataset("HUBioDataLab/CROssBARv2-KG", data_files="nodes/Protein.csv")

# Example 2: Load Drug-Target Interactions (Edges)
dti_edges = load_dataset("HUBioDataLab/CROssBARv2-KG", data_files="edges/DTI.csv")
Downloads last month
6