Datasets:
Tasks:
Image Segmentation
Size:
1K - 10K
ArXiv:
Tags:
medical-imaging
electron-microscopy
neuroscience
axon-segmentation
3d-segmentation
connectomics
License:
Search is not available for this dataset
The dataset viewer is not available for this split.
The info cannot be fetched for the config 'default' of the dataset.
Error code: InfoError
Exception: SplitsNotFoundError
Message: The split names could not be parsed from the dataset config.
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
for split_generator in builder._split_generators(
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/hdf5/hdf5.py", line 64, in _split_generators
with h5py.File(first_file, "r") as h5:
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 564, in __init__
fid = make_fid(name, mode, userblock_size, fapl, fcpl, swmr=swmr)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 238, in make_fid
fid = h5f.open(name, flags, fapl=fapl)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "h5py/_objects.pyx", line 56, in h5py._objects.with_phil.wrapper
File "h5py/_objects.pyx", line 57, in h5py._objects.with_phil.wrapper
File "h5py/h5f.pyx", line 102, in h5py.h5f.open
FileNotFoundError: [Errno 2] Unable to synchronously open file (unable to open file: name = 'hf://datasets/Angelou0516/AxonEM@e7fc28b2e8a224e8f8920ac4364fe5ad0996b1a8/EM30-H-train-9vol-pad-20-512-512/im_0-0-0_pad.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 223, in compute_first_rows_from_streaming_response
info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
AxonEM Dataset
Large-scale 3D Axon Instance Segmentation of Brain Cortical Regions from serial section Electron Microscopy (sEM).
Dataset Description
AxonEM contains high-resolution electron microscopy volumes of mouse and human brain cortex tissue for axon instance segmentation.
Subsets
| Subset | Species | Volumes | Resolution | Original Size |
|---|---|---|---|---|
| Human | Homo sapiens | 9 | 30×8×8 nm | 1000×4096×4096 |
| Mouse | Mus musculus | 9 | 40×8×8 nm | 750×4096×4096 |
Volume Information
Each training sub-volume has shape (90, 1536, 1536) voxels with padding:
- Padding: 20 slices in Z, 512 pixels in Y/X (on each side)
- Annotated region: (50, 512, 512) after removing padding
File Structure
AxonEM/
├── EM30-H-train-9vol-pad-20-512-512/ # Human subset
│ ├── im_0-0-0_pad.h5 # Image volume
│ ├── seg_0-0-0_pad.h5 # Segmentation (instance labels)
│ └── ...
├── EM30-M-train-9vol-pad-20-512-512/ # Mouse subset
│ ├── im_0-0-0_pad.h5
│ ├── seg_0-0-0_pad.h5
│ ├── valid_mask.h5 # Valid annotation mask
│ └── ...
└── README.md
HDF5 Format
Each .h5 file contains a single dataset with key 'main':
- Image files (
im_*.h5): uint8 grayscale EM images, shape (90, 1536, 1536) - Segmentation files (
seg_*.h5): uint8 instance labels, shape (90, 1536, 1536)- 0 = background
- 1-N = axon instance IDs
Loading Example
import h5py
import numpy as np
# Load a volume
with h5py.File('EM30-H-train-9vol-pad-20-512-512/im_0-0-0_pad.h5', 'r') as f:
image = f['main'][:] # (90, 1536, 1536) uint8
with h5py.File('EM30-H-train-9vol-pad-20-512-512/seg_0-0-0_pad.h5', 'r') as f:
labels = f['main'][:] # (90, 1536, 1536) uint8
# Convert to binary mask (axon vs background)
binary_mask = (labels > 0).astype(np.uint8)
# Remove padding to get annotated region
z_pad, y_pad, x_pad = 20, 512, 512
image_cropped = image[z_pad:-z_pad, y_pad:-y_pad, x_pad:-x_pad] # (50, 512, 512)
Using with EasyMedSeg
from dataloader.axonem import AxonEMImageDataset, AxonEMVideoDataset
# Image mode (2D slices)
dataset = AxonEMImageDataset(
hf_repo_id="Angelou0516/AxonEM",
subset="human", # or "mouse"
)
# Video mode (3D volumes)
dataset = AxonEMVideoDataset(
hf_repo_id="Angelou0516/AxonEM",
subset="human",
)
Citation
@inproceedings{wei2021miccai,
title={AxonEM Dataset: 3D Axon Instance Segmentation of Brain Cortical Regions},
author={Wei, Donglai and Xu, Kisuk and Liao, Ran and Pfister, Hanspeter and
Haehn, Daniel and Bhanu, Shubham and Bhattacharyya, Chandrajit},
booktitle={International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI)},
year={2021}
}
Links
License
This dataset is released under CC BY 4.0.
- Downloads last month
- 21