Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
The dataset viewer is not available for this split.
The info cannot be fetched for the config 'default' of the dataset.
Error code:   InfoError
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                                         ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/hdf5/hdf5.py", line 64, in _split_generators
                  with h5py.File(first_file, "r") as h5:
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 564, in __init__
                  fid = make_fid(name, mode, userblock_size, fapl, fcpl, swmr=swmr)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 238, in make_fid
                  fid = h5f.open(name, flags, fapl=fapl)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "h5py/_objects.pyx", line 56, in h5py._objects.with_phil.wrapper
                File "h5py/_objects.pyx", line 57, in h5py._objects.with_phil.wrapper
                File "h5py/h5f.pyx", line 102, in h5py.h5f.open
              FileNotFoundError: [Errno 2] Unable to synchronously open file (unable to open file: name = 'hf://datasets/Angelou0516/AxonEM@e7fc28b2e8a224e8f8920ac4364fe5ad0996b1a8/EM30-H-train-9vol-pad-20-512-512/im_0-0-0_pad.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 223, in compute_first_rows_from_streaming_response
                  info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

AxonEM Dataset

Large-scale 3D Axon Instance Segmentation of Brain Cortical Regions from serial section Electron Microscopy (sEM).

Dataset Description

AxonEM contains high-resolution electron microscopy volumes of mouse and human brain cortex tissue for axon instance segmentation.

Subsets

Subset Species Volumes Resolution Original Size
Human Homo sapiens 9 30×8×8 nm 1000×4096×4096
Mouse Mus musculus 9 40×8×8 nm 750×4096×4096

Volume Information

Each training sub-volume has shape (90, 1536, 1536) voxels with padding:

  • Padding: 20 slices in Z, 512 pixels in Y/X (on each side)
  • Annotated region: (50, 512, 512) after removing padding

File Structure

AxonEM/
├── EM30-H-train-9vol-pad-20-512-512/    # Human subset
│   ├── im_0-0-0_pad.h5                   # Image volume
│   ├── seg_0-0-0_pad.h5                  # Segmentation (instance labels)
│   └── ...
├── EM30-M-train-9vol-pad-20-512-512/    # Mouse subset
│   ├── im_0-0-0_pad.h5
│   ├── seg_0-0-0_pad.h5
│   ├── valid_mask.h5                     # Valid annotation mask
│   └── ...
└── README.md

HDF5 Format

Each .h5 file contains a single dataset with key 'main':

  • Image files (im_*.h5): uint8 grayscale EM images, shape (90, 1536, 1536)
  • Segmentation files (seg_*.h5): uint8 instance labels, shape (90, 1536, 1536)
    • 0 = background
    • 1-N = axon instance IDs

Loading Example

import h5py
import numpy as np

# Load a volume
with h5py.File('EM30-H-train-9vol-pad-20-512-512/im_0-0-0_pad.h5', 'r') as f:
    image = f['main'][:]  # (90, 1536, 1536) uint8

with h5py.File('EM30-H-train-9vol-pad-20-512-512/seg_0-0-0_pad.h5', 'r') as f:
    labels = f['main'][:]  # (90, 1536, 1536) uint8

# Convert to binary mask (axon vs background)
binary_mask = (labels > 0).astype(np.uint8)

# Remove padding to get annotated region
z_pad, y_pad, x_pad = 20, 512, 512
image_cropped = image[z_pad:-z_pad, y_pad:-y_pad, x_pad:-x_pad]  # (50, 512, 512)

Using with EasyMedSeg

from dataloader.axonem import AxonEMImageDataset, AxonEMVideoDataset

# Image mode (2D slices)
dataset = AxonEMImageDataset(
    hf_repo_id="Angelou0516/AxonEM",
    subset="human",  # or "mouse"
)

# Video mode (3D volumes)
dataset = AxonEMVideoDataset(
    hf_repo_id="Angelou0516/AxonEM",
    subset="human",
)

Citation

@inproceedings{wei2021miccai,
  title={AxonEM Dataset: 3D Axon Instance Segmentation of Brain Cortical Regions},
  author={Wei, Donglai and Xu, Kisuk and Liao, Ran and Pfister, Hanspeter and 
          Haehn, Daniel and Bhanu, Shubham and Bhattacharyya, Chandrajit},
  booktitle={International Conference on Medical Image Computing and 
             Computer-Assisted Intervention (MICCAI)},
  year={2021}
}

Links

License

This dataset is released under CC BY 4.0.

Downloads last month
21