See axolotl config
axolotl version: 0.12.2
# 基础模型配置
base_model: Qwen/Qwen3-4B-Instruct-2507
load_in_8bit: false
load_in_4bit: false # QLoRA才需要4bit
# LoRA 适配器配置 - 这是关键部分
adapter: lora # 明确指定使用LoRA
lora_model_dir: # 如果有预训练的LoRA权重可以在这里指定
# LoRA 具体参数
lora_r: 64
lora_alpha: 128
lora_dropout: 0.1
lora_target_modules: # Qwen3模型的关键模块
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
lora_target_linear: true # 自动找到所有线性层
lora_fan_in_fan_out: false
# 数据集设置
chat_template: qwen3
datasets:
- path: /workspace/train_dir_0927-02/goal_data.json
type: chat_template
roles_to_train: ["assistant"]
field_messages: messages
message_property_mappings:
role: role
content: content
dataset_prepared_path:
val_set_size: 0.1
output_dir: /workspace/train_dir_0927-02/checkpoints
# 序列长度设置
sequence_len: 7000
pad_to_sequence_len: true
sample_packing: true
eval_sample_packing: false
# 训练超参数
num_epochs: 5
micro_batch_size: 8 # H100显存大
gradient_accumulation_steps: 2 # 8卡LoRA不需要太大的累积
eval_batch_size: 8
# 优化器设置
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 8e-5
warmup_ratio: 0.1
weight_decay: 0.01
# 精度设置
bf16: true # H100支持bf16
tf32: true
gradient_checkpointing: true # 节省显存
flash_attention: true
# 日志和保存
logging_steps: 30
evals_per_epoch: 1
saves_per_epoch: 1
save_total_limit: 3 # 只保留最新的3个checkpoint
# 多卡训练配置 - 使用DeepSpeed而不是FSDP
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json # 或者直接内联配置
# 如果要内联DeepSpeed配置:
# deepspeed:
# zero_optimization:
# stage: 2 # Zero-2对LoRA效果很好
# allgather_partitions: true
# allgather_bucket_size: 2e8
# reduce_scatter: true
# reduce_bucket_size: 2e8
# overlap_comm: true
# contiguous_gradients: true
# bf16:
# enabled: true
# gradient_accumulation_steps: 2
# gradient_clipping: 1.0
# train_batch_size: auto
# train_micro_batch_size_per_gpu: auto
# 移除FSDP配置,因为LoRA不需要FSDP
# fsdp相关配置全部删除
# 其他优化
ddp_timeout: 3600 # DDP超时设置
ddp_find_unused_parameters: false # LoRA通常不需要
# 可选:如果不想用DeepSpeed,可以用原生DDP
# 只需要删除deepspeed配置,Axolotl会自动使用DDP
workspace/train_dir_0927-02/checkpoints
This model is a fine-tuned version of Qwen/Qwen3-4B-Instruct-2507 on the /workspace/train_dir_0927-02/goal_data.json dataset. It achieves the following results on the evaluation set:
- Loss: 0.0472
- Memory/max Mem Active(gib): 114.6
- Memory/max Mem Allocated(gib): 114.6
- Memory/device Mem Reserved(gib): 115.83
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 200
Training results
| Training Loss | Epoch | Step | Validation Loss | Mem Active(gib) | Mem Allocated(gib) | Mem Reserved(gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.1065 | 88.14 | 88.14 | 88.77 |
| 0.3209 | 1.0 | 40 | 0.0662 | 114.6 | 114.6 | 115.83 |
| 0.0632 | 2.0 | 80 | 0.0543 | 114.6 | 114.6 | 115.83 |
| 0.0456 | 3.0 | 120 | 0.0501 | 114.6 | 114.6 | 115.83 |
| 0.0416 | 4.0 | 160 | 0.0479 | 114.6 | 114.6 | 115.83 |
| 0.0381 | 5.0 | 200 | 0.0472 | 114.6 | 114.6 | 115.83 |
Framework versions
- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.6.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 6
Model tree for cjkasbdkjnlakb/agent-0927-02
Base model
Qwen/Qwen3-4B-Instruct-2507