Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from microsoft/graphcodebert-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-C-GraphCodeBERT-ST")
# Run inference
sentences = [
'#include<stdio.h>\n#include<stdlib.h>\n\nint ()\n{\n\nFILE *fin1;\nFILE *fin2;\nint flag=0;\n\n\nwhile(1)\n{\n \n system("wget -p http://www.cs.rmit.edu./students");\n\n system("cd www.cs.rmit.edu./");\n\n \n \n if(flag>0)\n {\n \n fin1=fopen("./watchtext/index.html","r");\n fin2=fopen("./watchtext/test2.txt","r");\n system("diff ./www.cs.rmit.edu./students/index.html ./watchtext/index.html | mail @cs.rmit.edu.");\n system("cp ./www.cs.rmit.edu./students/index.html ./watchtext/index.html ");\n system("md5sum ./www.cs.rmit.edu./images/*.* > ./www.cs.rmit.edu./test2.txt");\n system("diff ./www.cs.rmit.edu./test2.txt ./watchtext/test2.txt | mail @cs.rmit.edu.");\n system("cp ./www.cs.rmit.edu./test2.txt ./watchtext/test2.txt");\n system("rm ./www.cs.rmit.edu./test2.txt");\n \n fclose(fin2);\n fclose(fin1); \n } \n \n if(flag==0)\n {\n system("mkdir watchtext"); \n if((fin1=fopen("./watchtext/index.html","r"))==NULL)\n {\n system("cp ./www.cs.rmit.edu./students/index.html ./watchtext/index.html");\n system("md5sum ./www.cs.rmit.edu./images/*.* > ./watchtext/test2.txt");\n \n flag++;\n }\n \n } \n \n \n \n printf("Running every 24 hours"); \n sleep(86400); \n \n}\n system("rmdir ./watchtext"); \n} \n \n \n \n \n',
'#include<stdio.h>\n#include<stdlib.h>\n#include<string.h> \n#include <ctype.h>\n#include <sys/time.h>\n\n\n#define SUCCESS 0;\n#define FAILURE 1;\n#define SECONDS 1e9\n\nint findPassword(char *);\nint smallPass();\nint capsPass();\n\nint main()\n{\n\tint foundP;\t\n\tfoundP=smallPass();\n\tfoundP=capsPass();\n\tif(foundP == 2)\n\t{\t\t\n\t\treturn SUCCESS;\n\t}\n\tprintf("\\n PASSWORD NOT FOUND");\n\treturn SUCCESS;\n \n}\n\nint smallPass()\n{\n\tchar [26] ={\'a\',\'b\',\'c\',\'d\',\'e\',\'f\',\'g\',\'h\',\'i\',\'j\',\'k\',\'l\',\'m\',\'n\',\'o\',\'p\',\'q\',\'r\',\'s\',\'t\',\'u\',\'v\',\'w\',\'x\',\'y\',\'z\'};\t\n\tchar pass[3]="";\t\n\tint i,j,k,l;\n\tint incr;\n\tint found;\n\tint , end, final;\t\n\t\n\t = time();\n\tfor(j=0;j<3;j++)\n\t{\n\t\tincr=0;\t\t\n\t\tfor(i=0;i<=25;i++)\n\t\t{\t\t\t\t\n\t\t\tif(j==0)\n\t\t\t{\t\n\t\t\t\tincr++;\n\t\t\t\tpass[j]=[i];\n\t\t\t\tprintf("\\n Trial %d --- %s ",incr,pass);\n\t\t\t\tfound = findPassword(pass);\n\t\t\t\tif(found == 2)\n\t\t\t\t{\t\n\t\t\t\t\tend = time();\n\t\t\t\t\tfinal = end-;\n\t\t\t\t\tprintf(" %lld nanoseconds (%1f seconds) find the Password\\n",final,(double) final / SECONDS);\n\t\t\t\t\tprintf("\\nPASSWORD FOUND -- %s",pass);\t\t\t\t\n\t\t\t\t\treturn 2;\n\t\t\t\t}\n\t\t\t\t\n\t\t\t}\n\t\t\tif(j==1)\n\t\t\t{\t\t\t\t\n\t\t\t\tpass[j-1]=[i];\n\t\t\t\tfor(k=0;k<=25;k++)\n\t\t\t\t{\n\t\t\t\t\tincr++;\n\t\t\t\t\tpass[j] = [k];\n\t\t\t\t\tprintf("\\n Trial %d --- %s ",incr,pass);\n\t\t\t\t\tfound = findPassword(pass);\n\t\t\t\t\tif(found == 2)\n\t\t\t\t\t{\t\n\t\t\t\t\t\tend = time();\n\t\t\t\t\t\tfinal = end-;\n\t\t\t\t\t\tprintf(" %lld nanoseconds (%1f seconds) find the Password\\n",final,(double) final / SECONDS);\n\t\t\t\t\t\tprintf("\\nPASSWORD FOUND -- %s",pass);\t\t\t\n\t\t\t\t\t\treturn 2;\n\t\t\t\t\t}\t\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(j==2)\n\t\t\t{\t\t\t\t\t\t\n\t\t\t\tpass[j-2]=[i];\n\t\t\t\tfor(k=0;k<=25;k++)\n\t\t\t\t{\n\t\t\t\t\tpass[j-1] = [k];\n\t\t\t\t\tfor(l=0;l<=25;l++)\n\t\t\t\t\t{\n\t\t\t\t\t\tincr++;\n\t\t\t\t\t\tpass[j] = [l];\n\t\t\t\t\t\tpass[j+1]=\'\\0\';\n\t\t\t\t\t\tprintf("\\n Trial %d --- %s ",incr,pass);\n\t\t\t\t\t\tfound = findPassword(pass);\n\t\t\t\t\t\tif(found == 2)\n\t\t\t\t\t\t{\t\n\t\t\t\t\t\t\tend = time();\n\t\t\t\t\t\t\tfinal = end-;\n\t\t\t\t\t\t\tprintf(" %lld nanoseconds (%1f seconds) find the Password\\n",final,(double) final / SECONDS);\t\t\t\t\t\n\t\t\t\t\t\t\tprintf("\\nPASSWORD FOUND -- %s",pass);\t\t\t\t\t\t\n\t\t\t\t\t\t\treturn 2;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\t\n\t\t\t\t}\n\t\t\t}\t\t\n\t\t\t\n\t\t\t\n\t\t}\n\t}\n\t\n\treturn SUCCESS;\t\n}\n\n\n\nint capsPass()\n{\n\tchar caps[26] ={\'A\',\'B\',\'C\',\'D\',\'E\',\'F\',\'G\',\'H\',\'I\',\'J\',\'K\',\'L\',\'M\',\'N\',\'O\',\'P\',\'Q\',\'R\',\'S\',\'T\',\'U\',\'V\',\'W\',\'X\',\'Y\',\'Z\'};\t\n\tchar pass[3]="";\t\n\tint i,j,k,l;\n\tint incr;\n\tint found;\n\tint , end, final;\t\n\t\n\t = time();\n\tfor(j=2;j<3;j++)\n\t{\n\t\tincr=0;\n\t\tfor(i=0;i<=25;i++)\n\t\t{\n\t\t\t\t\n\t\t\tif(j==0)\n\t\t\t{\t\n\t\t\t\tincr++;\n\t\t\t\tpass[j]=caps[i];\n\t\t\t\tprintf("\\n Trial %d --- %s ",incr,pass);\n\t\t\t\tfound = findPassword(pass);\n\t\t\t\tif(found == 2)\n\t\t\t\t{\t\n\t\t\t\t\tend = time();\n\t\t\t\t\tfinal = end-;\n\t\t\t\t\tprintf(" %lld nanoseconds (%1f seconds) find the Password\\n",final,(double) final / SECONDS);\n\t\t\t\t\tprintf("\\nPASSWORD FOUND -- %s",pass);\t\t\t\t\n\t\t\t\t\treturn 2;\n\t\t\t\t}\n\t\t\t\t\n\t\t\t}\n\t\t\tif(j==1)\n\t\t\t{\t\t\t\t\n\t\t\t\tpass[j-1]=caps[i];\n\t\t\t\tfor(k=0;k<=25;k++)\n\t\t\t\t{\n\t\t\t\t\tincr++;\n\t\t\t\t\tpass[j] = caps[k];\n\t\t\t\t\tprintf("\\n Trial %d --- %s ",incr,pass);\n\t\t\t\t\tfound = findPassword(pass);\n\t\t\t\t\tif(found == 2)\n\t\t\t\t\t{\t\n\t\t\t\t\t\tend = time();\n\t\t\t\t\t\tfinal = end-;\n\t\t\t\t\t\tprintf(" %lld nanoseconds (%1f seconds) find the Password\\n",final,(double) final / SECONDS);\n\t\t\t\t\t\tprintf("\\nPASSWORD FOUND -- %s",pass);\t\t\t\n\t\t\t\t\t\treturn 2;\n\t\t\t\t\t}\t\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(j==2)\n\t\t\t{\t\t\t\t\n\t\t\t\tpass[j-2]=caps[i];\n\t\t\t\tfor(k=0;k<=25;k++)\n\t\t\t\t{\n\t\t\t\t\tpass[j-1] = caps[k];\n\t\t\t\t\tfor(l=0;l<=25;l++)\n\t\t\t\t\t{\n\t\t\t\t\t\tincr++;\n\t\t\t\t\t\tpass[j] = caps[l];\n\t\t\t\t\t\tpass[j+1]=\'\\0\';\n\t\t\t\t\t\tprintf("\\n Trial %d --- %s ",incr,pass);\n\t\t\t\t\t\tfound = findPassword(pass);\n\t\t\t\t\t\tif(found == 2)\n\t\t\t\t\t\t{\t\n\t\t\t\t\t\t\tend = time();\n\t\t\t\t\t\t\tfinal = end-;\n\t\t\t\t\t\t\tprintf(" %lld nanoseconds (%1f seconds) find the Password\\n",final,(double) final / SECONDS);\n\t\t\t\t\t\t\tprintf("\\nPASSWORD FOUND -- %s",pass);\t\t\t\t\t\t\n\t\t\t\t\t\t\treturn 2;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\t\n\t\t\t\t}\n\t\t\t}\t\t\n\t\t\t\n\t\t\t\n\t\t}\n\t}\n\t\n\treturn SUCCESS;\t\n}\n\n\nint findPassword(char *pass)\n{\n\tchar var[50]="";\t\n\tchar [50]="";\n\tstrcpy(var,"wget --non-verbose --http-user= --http-passwd=");\t\t\n\tstrcpy(," http://sec-crack.cs.rmit.edu./SEC/2/index.php");\n\tstrcat(var,pass);\n\tstrcat(var,);\n\tif(system(var)==0)\n\t{\t\t\n\t\treturn 2;\n\t}\t\n\t\t\n\treturn SUCCESS;\n}\n\n\n\t \n',
'#include<stdio.h>\n#include<string.h>\n#include<strings.h>\n#include<stdlib.h>\n#include<sys/time.h>\n\n()\n{\n\tint i,j,k,m,count=0,flage=0;\n\tFILE* log;\n\ttime_t ,finish;\n\tdouble ttime;\n\tchar s[30];\n\tchar arr[52]={\'a\',\'b\',\'c\',\'d\',\'e\',\'f\',\'g\',\'h\',\'i\',\'j\',\'k\',\'l\',\'m\',\'n\',\'o\',\'p\',\'q\',\'r\',\'s\',\'t\',\'u\',\'v\',\'w\',\'x\',\'y\',\'z\',\'A\',\'B\',\'C\',\'D\',\'E\',\'F\',\'G\',\'H\',\'I\',\'J\',\'K\',\'L\',\'M\',\'N\',\'O\',\'P\',\'Q\',\'R\',\'S\',\'T\',\'U\',\'V\',\'W\',\'X\',\'Y\',\'Z\'};\n\tchar add[100];\n\tstrcpy(add,"wget --http-user= --http-passwd= -nv -o log http://sec-crack.cs.rmit.edu./SEC/2/");\n\t=time(NULL);\t\n\tfor(i=0;i<52;i++)\t\n\t{\n\t\tfor(j=0;j<52;j++)\n\t\t{\n\t\t\tfor(k=0;k<52;k++)\n\t\t\t{\n\t\t\tprintf("%c %c %c\\n",arr[i],arr[j],arr[k]);\n\t\t\t\n\t\t\tadd[40]=arr[i];\n\t\t\tadd[41]=arr[j];\n\t\t\tadd[42]=arr[k];\n\t\t\tsystem(add);\n\t\t\tcount++;\n\t\t\tlog=fopen("log","r");\n\t\t\tif(log!=(FILE*)NULL)\n\t\t\tfgets(s,100,log);\n\t\t\tprintf("%s",s);\t\t\n\t\t\t\tif(strcmp(s,"Authorization failed.\\n")!=0)\n\t\t\t\t{\n\t\t\t\t\tfinish=time(NULL);\n\t\t\t\t\tttime=difftime(,finish);\n\t\t\t\t\tprintf("\\nThe password is %c%c%c \\nThe time:%f\\n The of attempts %d",arr[i],arr[j],arr[k],ttime,count);\n\t\t\t\t\tflage=1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\n\t\t\t\tfclose(log);\n\t\t\t}\n\t\t}\n\t}\n\tif(flage==0)\t\n\t{\n\t\tfor(i=0;i<52;i++)\n\t\t{\n\t\tadd[40]=arr[i];\n\t\tsystem(add);\n\t\t\tcount++;\n\t\t\tlog=fopen("log","r");\n\t\t\tif(log!=(FILE*)NULL)\n\t\t\tfgets(s,100,log);\n\t\t\tprintf("%s",s);\n\t\t\t\tif(strcmp(s,"Authorization failed.\\n")!=0)\n\t\t\t\t{\n\t\t\t\t\tfinish=time(NULL);\n\t\t\t\t\tttime=difftime(,finish);\n\t\t\t\t\tprintf("\\nThe password is %c%c%c \\nThe time:%f\\n The of attempts %d",arr[i],ttime,count);\n\t\t\t\t\tflage=1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\n\t\t\t\tfclose(log);\n\t\t}\n\t}\n\tif(flage==0)\t \n\t{\n\t\tfor(i=0;i<52;i++)\n\t\t{\n\t\t\tfor(j=0;j<52;j++)\n\t\t\t{\n\t\t\tadd[40]=arr[i];\n\t\t\tadd[41]=arr[j];\n\t\t\tsystem(add);\n\t\t\tcount++;\n\t\t\tlog=fopen("log","r");\n\t\t\tif(log!=(FILE*)NULL)\n\t\t\tfgets(s,100,log);\n\t\t\tprintf("%s",s);\n\t\t\t\tif(strcmp(s,"Authorization failed.\\n")!=0)\n\t\t\t\t{\n\t\t\t\t\tfinish=time(NULL);\n\t\t\t\t\tttime=difftime(,finish);\n\t\t\t\t\tprintf("\\nThe password is %c%c%c \\nThe time:%f\\n The of attempts %d",arr[i],arr[j],ttime,count);\n\t\t\t\t\tflage=1;\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\n\t\t\t\tfclose(log);\n\t\t\t}\n\t\t}\n\t}\n\t\n}\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9511, 0.9570],
# [0.9511, 1.0000, 0.9799],
# [0.9570, 0.9799, 1.0000]])
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
|
#include |
0 |
#include |
#include |
0 |
|
#include |
0 |
BatchAllTripletLossper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Base model
microsoft/graphcodebert-base