Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from microsoft/codebert-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-C-CodeBERT-ST")
# Run inference
sentences = [
'\n\n\n#include <stdio.h>\n\n#include <stdlib.h>\nint ()\n{\n int i,j,k,counter =0;\n char word[3];\n char paswd[3];\t\n char get[100];\n int ;\n char username[]="";\n \n \n \n \n \n\t\t\t\t\n\t\n\tfor (i = 65; i <= 122; i++)\n\t{\n\t\t if(i==91) {i=97;} \n \n\t\tfor (j = 65; j <= 122; j++)\n\t\t{\n\t\t\n\t\tif(j==91) {j=97;}\n \n\t\tfor (k = 65; k <= 122; k++)\n\t\t{\n\t\t \n\t\t\tif(k==91) {k=97;} \n\t\t\t\n\t\t\t word[0] = i;\n\t\t\t word[1] = j;\n\t\t\t word[2] = k;\n\t\t\t sprintf(paswd,"%c%c%c",word[0],word[1],word[2]); \n\t\t\t counter++;\n\t\t\tprintf("%d )%s\\n\\n", counter, paswd);\n\t\t\t sprintf(get,"wget --http-user=%s --http-passwd=%s http://sec-crack.cs.rmit.edu./SEC/2/",username,paswd);\n\t\t\t=system(get);\n\t \n\t\t\tif(==0) \n\t\t\t{\n\t\t\tprintf("The Password has been cracked and it is : %s" , paswd);\n\t\t\texit(0);\n\t\t\t}\n\t\t}\n \n\t\t}\n \n\t}\n \n\t\n}\n\n',
'\n\n#include<stdio.h>\n#include<strings.h>\n#include<stdlib.h>\n#include<ctype.h>\n#define MAX_SIZE 255\n\n\nint (int argc, char *argv[])\n {\n FILE *fp;\n \n while(1)\n { \n system("wget -p http://www.cs.rmit.edu./students");\n\n\n\n system("mkdir data"); \n if((fp=fopen("./data/index.html","r"))==NULL)\n { \n system("cp www.cs.rmit.edu./students/index.html ./data");\n\t \n }\n else\n { \n \n\t \n\t system("diff ./data/index.html www.cs.rmit.edu./students/index.html | mail @cs.rmit.edu.");\n\t system("cp www.cs.rmit.edu./students/index.html ./data");\n } \n\n\n\n system("mkdir images"); \n if((fp=fopen("./images/file.txt","r"))==NULL)\n { \n system("md5sum www.cs.rmit.edu./images/*.* > ./images/file.txt");\n\t\t \n }\n \n else\n { \n system("md5sum www.cs.rmit.edu./images/*.* > www.cs.rmit.edu./file.txt");\n\t \n\t \n\t \n\t system("diff ./images/file.txt www.cs.rmit.edu./file.txt | mail @cs.rmit.edu.");\n\t system("cp www.cs.rmit.edu./file.txt ./images");\n }\n sleep(86400); \n }\t\n return (EXIT_SUCCESS);\n }\n \n\t \n\t \t\n',
'\n\n#include <stdio.h>\n#include <string.h>\n#include <sys/time.h>\n\n#define OneBillion 1e9\n#define false 0\n#define true 1\nint execPassword(char *, char *b) {\n\n\n char [100]={\'\\0\'};\n strcpy(,b);\n \n strcat(,);\n printf ("Sending command %s\\n",);\n if ( system()== 0) {\n printf ("\\n password is : %s",);\n return 1;\n }\n return 0;\n}\n \n\nint bruteForce(char [],char comb[],char *url) {\n\n\nint i,j,k;\n\n for(i=0;i<52 ;i++) {\n comb[0]= [i];\n if (execPassword(comb,url)== 1) return 1; \n for(j=0;j<52;j++) {\n comb[1] = [j];\n if(execPassword(comb,url)==1) return 1;\n for(k=0;k<52;k++) {\n comb[2] = [k];\n if(execPassword(comb,url)==1) return 1;\n }\n comb[1] = \'\\0\';\n }\n }\n return 0;\n\n} \n\nint (char *argc, char *argv[]) {\n\n int i,j,k;\n char strin[80] = {\'\\0\'};\n char *passwd;\n char a[] = {\'a\',\'b\',\'c\',\'d\',\'e\',\'f\',\'g\',\'h\',\'i\',\'j\',\'k\',\'l\',\'m\',\'n\',\'o\',\'p\',\'q\',\'r\',\'s\',\'t\',\'u\',\'v\',\'w\',\'x\',\'y\',\'z\',\'A\',\'B\',\'C\',\'D\',\'E\',\'F\',\'G\',\'H\',\'K\',\'L\',\'M\',\'N\',\'O\',\'P\',\'Q\',\'R\',\'S\',\'T\',\'U\',\'V\',\'W\',\'X\',\'Y\',\'Z\'};\n char v[4]={\'\\0\'};\n int startTime, stopTime, final;\n int flag=false; \n strcpy(strin,"wget http://sec-crack.cs.rmit.edu./SEC/2/ --http-user= --http-passwd=");\n\n startTime = time();\n if (bruteForce(a,v,strin)==1) {\n stopTime = time();\n final = stopTime-startTime;\n }\n\n printf ("\\n The password is : %s",v);\n printf("%lld nanoseconds (%lf) seconds \\n", final, (double)final/OneBillion );\n\n}\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9892, 0.9953],
# [0.9892, 1.0000, 0.9908],
# [0.9953, 0.9908, 1.0000]])
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
#include |
#include |
1 |
#include |
|
0 |
|
#include |
0 |
BatchAllTripletLossper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Base model
microsoft/codebert-base