ONNX Export: broadfield-dev/bert-small-ner-pii-tuned-12261022
This is a version of broadfield-dev/bert-small-ner-pii-tuned-12261022 that has been converted to ONNX and optimized.
Model Details
- Base Model:
broadfield-dev/bert-small-ner-pii-tuned-12261022 - Task:
token-classification - Opset Version:
17 - Optimization:
INT8 - Optimized for Mobile (ARM64)
Usage
Installation
pip install onnxruntime transformers
Python Example
from tokenizers import Tokenizer
import onnxruntime as ort
import numpy as np
# 1. Load the lightweight tokenizer (No Transformers dependency needed)
tokenizer = Tokenizer.from_pretrained("broadfield-dev/bert-small-ner-pii-tuned-12261022-onnx")
# 2. Load the ONNX model
session = ort.InferenceSession("model.onnx")
# 3. Preprocess (Simple text encoding)
text = "Run inference on mobile!"
encoding = tokenizer.encode(text)
# Prepare inputs (Exact names vary by model, usually input_ids + attention_mask)
inputs = {{
"input_ids": np.array([encoding.ids], dtype=np.int64),
"attention_mask": np.array([encoding.attention_mask], dtype=np.int64)
}}
# 4. Run Inference
outputs = session.run(None, inputs)
print("Output logits shape:", outputs[0].shape)
About this Export
This model was exported using Optimum and onnxruntime.
It includes the INT8 - Optimized for Mobile (ARM64) quantization settings.
- Downloads last month
- 15
Model tree for broadfield-dev/bert-small-ner-pii-mobile
Base model
prajjwal1/bert-small
Finetuned
broadfield-dev/bert-small-ner-pii