ONNX Export: broadfield-dev/bert-small-ner-pii-tuned-12261022

This is a version of broadfield-dev/bert-small-ner-pii-tuned-12261022 that has been converted to ONNX and optimized.

Model Details

  • Base Model: broadfield-dev/bert-small-ner-pii-tuned-12261022
  • Task: token-classification
  • Opset Version: 17
  • Optimization: INT8 - Optimized for Mobile (ARM64)

Usage

Installation

pip install onnxruntime transformers

Python Example

from tokenizers import Tokenizer
import onnxruntime as ort
import numpy as np

# 1. Load the lightweight tokenizer (No Transformers dependency needed)
tokenizer = Tokenizer.from_pretrained("broadfield-dev/bert-small-ner-pii-tuned-12261022-onnx")

# 2. Load the ONNX model
session = ort.InferenceSession("model.onnx")

# 3. Preprocess (Simple text encoding)
text = "Run inference on mobile!"
encoding = tokenizer.encode(text)

# Prepare inputs (Exact names vary by model, usually input_ids + attention_mask)
inputs = {{
    "input_ids": np.array([encoding.ids], dtype=np.int64),
    "attention_mask": np.array([encoding.attention_mask], dtype=np.int64)
}}

# 4. Run Inference
outputs = session.run(None, inputs)
print("Output logits shape:", outputs[0].shape)

About this Export

This model was exported using Optimum and onnxruntime. It includes the INT8 - Optimized for Mobile (ARM64) quantization settings.

Downloads last month
15
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for broadfield-dev/bert-small-ner-pii-mobile