File size: 14,132 Bytes
0849444 1f1362b 76eeefc 6e1ab67 1f1362b 0849444 0532476 6e1ab67 0532476 6e1ab67 0532476 76eeefc 6e1ab67 0532476 1f1362b 0849444 d059b0e 76eeefc d059b0e f4716f5 76eeefc d059b0e 1f1362b d059b0e 1f1362b d059b0e 76eeefc d059b0e 76eeefc d059b0e c06c23e d059b0e 76eeefc d059b0e 76eeefc c06c23e d059b0e 76eeefc d059b0e 76eeefc d059b0e d4f5bc1 d059b0e d4f5bc1 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 5bb0424 d059b0e 5bb0424 2be2dc3 d059b0e 2be2dc3 d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e a65a2e6 d059b0e a65a2e6 d059b0e a65a2e6 d059b0e a65a2e6 d059b0e a65a2e6 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 410ae2c 2be2dc3 d059b0e 2be2dc3 410ae2c 2be2dc3 d059b0e 2be2dc3 d059b0e 410ae2c 2be2dc3 410ae2c 2be2dc3 d059b0e 2be2dc3 d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 410ae2c d059b0e 1f1362b d059b0e d4f5bc1 d059b0e 1f1362b d059b0e d4f5bc1 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e 2be2dc3 d059b0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
---
language:
- en
- multilingual
license: gpl-3.0
library_name: pytorch
pipeline_tag: audio-classification
tags:
- phoneme-recognition
- speech-processing
- audio
- pytorch
- multilingual
model-index:
- name: en_libri1000_uj01d
results:
- task:
type: phoneme-classification
dataset:
name: LibriSpeech
type: speech-recognition
metrics:
- name: Phoneme Error Rate
type: phoneme-error-rate
value: 0.25
- name: Phoneme Group Error Rate
type: phoneme-group-error-rate
value: 0.23
- name: multi_MLS8_uh02
results:
- task:
type: phoneme-classification
dataset:
name: Multilingual LibriSpeech (MLS)
type: speech-recognition
metrics:
- name: Phoneme Error Rate
type: phoneme-error-rate
value: 0.31
- name: Phoneme Group Error Rate
type: phoneme-group-error-rate
value: 0.26
- name: multi_mswc38_ug20
results:
- task:
type: phoneme-classification
dataset:
name: MSWC Multilingual Spoken Words Corpus
type: speech-recognition
metrics:
- name: Phoneme Error Rate
type: phoneme-error-rate
value: 0.49
- name: Phoneme Group Error Rate
type: phoneme-group-error-rate
value: 0.39
---
# ๐ฃ๏ธ CUPE: Contextless Universal Phoneme Encoder
[](https://huggingface.co/Tabahi/CUPE-2i)
[](https://github.com/tabahi/contexless-phonemes-CUPE)
[](https://arxiv.org/abs/2508.15316)
[](https://www.gnu.org/licenses/gpl-3.0)
> ๐ **A PyTorch model for contextless phoneme prediction from speech audio**
CUPE processes 120ms frames independently, ensuring each frame's embeddings are acoustically pureโunlike transformer models that mix context across frames.
## ๐ Quick Links
- ๐ฏ [**Bournemouth Forced Aligner**](https://github.com/tabahi/bournemouth-forced-aligner) - For phoneme/word timestamp alignment
- ๐ [**CUPE GitHub**](https://github.com/tabahi/contexless-phonemes-CUPE) - Source code repository
- ๐ค [**CUPE Hugging Face**](https://huggingface.co/Tabahi/CUPE-2i) - Pre-trained models
---
## ๐ฏ Trained Models
> **๐ Three 30.1M parameter models available**
All models are available in the [**checkpoints directory**](https://huggingface.co/Tabahi/CUPE-2i/tree/main/ckpt).
### ๐ Model Performance
| ๐ท๏ธ **Model** | ๐ **Languages** | ๐ **PER** | ๐ **GER** | ๐ **Description** |
|------------|-------------|----------|----------|--------------|
| ๐ฌ๐ง **English** | English | **0.24** | **0.21** | ๐ Best quality for English speech |
| ๐ **Multilingual MLS** | 8 European | **0.31** | **0.26** | ๐ช๐บ en, de, fr, es, pt, it, pl, nl |
| ๐ **Multilingual MSWC** | 38 languages | **0.49** | **0.39** | ๐บ๏ธ Broad language coverage |
<details>
<summary>๐ <strong>Detailed Metrics</strong></summary>
**๐ฌ๐ง English (New: Oct2025) ([en_libri1000_ua01c](https://huggingface.co/Tabahi/CUPE-2i/resolve/main/ckpt/en_libri1000_ua01c_e4_val_GER=0.2186.ckpt)):**
- ๐ฏ **PER:** 0.24 (Phoneme Error Rate)
- ๐ฏ **GER:** 0.22 (Phoneme Group Error Rate)
- Fixed rhotics and compound phonemes
**๐ฌ๐ง English ([en_libri1000_uj01d](https://huggingface.co/Tabahi/CUPE-2i/resolve/main/ckpt/en_libri1000_uj01d_e199_val_GER=0.2307.ckpt)):**
- ๐ฏ **PER:** 0.25 (Phoneme Error Rate)
- ๐ฏ **GER:** 0.23 (Phoneme Group Error Rate)
**๐ Multilingual MLS ([multi_MLS8_uh02](https://huggingface.co/Tabahi/CUPE-2i/resolve/main/ckpt/multi_MLS8_uh02_e36_val_GER=0.2334.ckpt)):**
- ๐ฏ **PER:** 0.31
- ๐ฏ **GER:** 0.26
**๐ Multilingual MSWC ([multi_mswc38_ug20](https://huggingface.co/Tabahi/CUPE-2i/resolve/main/ckpt/multi_mswc38_ug20_e59_val_GER=0.5611.ckpt)):**
- ๐ฏ **PER:** 0.49
- ๐ฏ **GER:** 0.39
</details>
> โ ๏ธ **Note:** CUPE models are designed for contextless phoneme prediction and are not optimal for phoneme classification tasks that require contextual information. CUPE excels at extracting pure, frame-level embeddings that represent the acoustic properties of each phoneme independently of surrounding context.
---
## ๐ Datasets
### ๐ต Training Data Sources
- ๐ **LibriSpeech ASR corpus (SR12):** 960 hours of English speech
- ๐ **Multilingual LibriSpeech (MLS):** 800 hours across 8 languages
- ๐ฃ๏ธ **MSWC Multilingual Spoken Words:** 240 hours from 50 languages
<details>
<summary>๐ <strong>Dataset Details</strong></summary>
**๐ LibriSpeech ASR corpus (SR12):**
- โฑ๏ธ 960 hours of English speech
- ๐ train-100, train-360, and train-500 splits
**๐ Multilingual LibriSpeech (MLS) (SLR94):**
- โฑ๏ธ 800 hours total (100 hours each)
- ๐ 8 languages: `pl`, `pt`, `it`, `es`, `fr`, `nl`, `de`, `en`
**๐ฃ๏ธ MSWC Multilingual Spoken Words Corpus:**
- โฑ๏ธ 240 hours from 50 languages (max 10 hours/language)
- ๐ **Training:** 38 languages (`en`, `de`, `fr`, `ca`, `es`, `fa`, `it`, `ru`, `pl`, `eu`, `cy`, `eo`, `nl`, `pt`, `tt`, `cs`, `tr`, `et`, `ky`, `id`, `sv-SE`, `ar`, `el`, `ro`, `lv`, `sl`, `zh-CN`, `ga-IE`, `ta`, `vi`, `gn`, `or`)
- ๐งช **Testing:** 6 languages (`lt`, `mt`, `ia`, `sk`, `ka`, `as`)
</details>
> ๐ก **Need a new language?** Start a [new discussion](https://github.com/tabahi/bournemouth-forced-aligner/discussions) and we'll train it for you!
---
## ๐ Installation
### โก Quick Start (Bournemouth Forced Aligner)
```bash
# ๐ฆ Install the package
pip install bournemouth-forced-aligner
# ๐ง Install dependencies
apt-get install espeak-ng ffmpeg
# โ Show help
balign --help
```
๐ See complete [**BFA guide**](https://github.com/tabahi/bournemouth-forced-aligner).
### ๐ ๏ธ Quick Start (CUPE)
```bash
# ๐ฆ Install core dependencies
pip install torch torchaudio huggingface_hub
```
---
## ๐ป Easy Usage with Automatic Download
> ๐ฏ **Zero-setup required** - automatic downloads from Hugging Face Hub
### ๐ฆ Example Output
Running with sample audio [๐ฆ butterfly.wav](samples/109867__timkahn__butterfly.wav.wav):
```bash
๐ Loading CUPE english model...
โ
Model loaded on cpu
๐ต Processing audio: 1.26s duration
๐ Processed 75 frames (1200ms total)
๐ Results:
๐ค Phoneme predictions shape: (75,)
๐ท๏ธ Group predictions shape: (75,)
โน๏ธ Model info: {'model_name': 'english', 'sample_rate': 16000, 'frames_per_second': 62.5}
๐ First 10 frame predictions:
Frame 0: phoneme=66, group=16
Frame 1: phoneme=66, group=16
Frame 2: phoneme=29, group=7
...
๐ค Phonemes: ['b', 'ส', 't', 'h', 'ส', 'f', 'l', 'รฆ']...
๐ท๏ธ Groups: ['voiced_stops', 'central_vowels', 'voiceless_stops']...
```
### ๐ Python Code
```python
import torch
import torchaudio
from huggingface_hub import hf_hub_download
import importlib.util
def load_cupe_model(model_name="english", device="auto"):
"""๐ Load CUPE model with automatic downloading from Hugging Face Hub"""
model_files = {
"english": "en_libri1000_uj01d_e199_val_GER=0.2307.ckpt",
"multilingual-mls": "multi_MLS8_uh02_e36_val_GER=0.2334.ckpt",
"multilingual-mswc": "multi_mswc38_ug20_e59_val_GER=0.5611.ckpt"
}
if device == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
# ๐ฅ Download files automatically from Hugging Face Hub
repo_id = "Tabahi/CUPE-2i"
model_file = hf_hub_download(repo_id=repo_id, filename="model2i.py")
windowing_file = hf_hub_download(repo_id=repo_id, filename="windowing.py")
checkpoint = hf_hub_download(repo_id=repo_id, filename=f"ckpt/{model_files[model_name]}")
model_utils_file = hf_hub_download(repo_id=repo_id, filename="model_utils.py")
# ๐ง Import modules dynamically
_ = import_module_from_file("model_utils", model_utils_file)
spec = importlib.util.spec_from_file_location("model2i", model_file)
model2i = importlib.util.module_from_spec(spec)
spec.loader.exec_module(model2i)
spec = importlib.util.spec_from_file_location("windowing", windowing_file)
windowing = importlib.util.module_from_spec(spec)
spec.loader.exec_module(windowing)
# ๐ Initialize model
extractor = model2i.CUPEEmbeddingsExtractor(checkpoint, device=device)
return extractor, windowing
# ๐ฏ Example usage
extractor, windowing = load_cupe_model("english")
# ๐ต Load and process your audio
audio, sr = torchaudio.load("your_audio.wav")
if sr != 16000:
resampler = torchaudio.transforms.Resample(sr, 16000)
audio = resampler(audio)
# ๐ Add batch dimension and process
audio_batch = audio.unsqueeze(0)
windowed_audio = windowing.slice_windows(audio_batch, 16000, 120, 80)
batch_size, num_windows, window_size = windowed_audio.shape
windows_flat = windowed_audio.reshape(-1, window_size)
# ๐ฎ Get predictions
logits_phonemes, logits_groups = extractor.predict(windows_flat, return_embeddings=False, groups_only=False)
print(f"๐ค Phoneme logits shape: {logits_phonemes.shape}") # [num_windows, frames_per_window, 66]
print(f"๐ท๏ธ Group logits shape: {logits_groups.shape}") # [num_windows, frames_per_window, 16]
```
---
## ๐ง Advanced Usage (Manual Setup)
<details>
<summary>๐ <strong>Manual Setup Code</strong></summary>
For more control, see [run.py](https://huggingface.co/Tabahi/CUPE-2i/blob/main/run.py):
```python
import torch
import torchaudio
from model2i import CUPEEmbeddingsExtractor # ๐ฏ Main CUPE model feature extractor
import windowing # ๐ง Provides slice_windows, stich_window_predictions
# ๐ Load model from local checkpoint
cupe_ckpt_path = "./ckpt/en_libri1000_uj01d_e199_val_GER=0.2307.ckpt"
extractor = CUPEEmbeddingsExtractor(cupe_ckpt_path, device="cuda")
# ๐ต Prepare audio
sample_rate = 16000
window_size_ms = 120
stride_ms = 80
max_wav_len = 10 * sample_rate # 10 seconds
dummy_wav = torch.zeros(1, max_wav_len, dtype=torch.float32, device="cpu")
audio_batch = dummy_wav.unsqueeze(0) # Add batch dimension
# ๐ช Window the audio
windowed_audio = windowing.slice_windows(
audio_batch.to("cuda"),
sample_rate,
window_size_ms,
stride_ms
)
batch_size, num_windows, window_size = windowed_audio.shape
windows_flat = windowed_audio.reshape(-1, window_size)
# ๐ฎ Get predictions
logits, _ = extractor.predict(windows_flat, return_embeddings=False, groups_only=False)
# ๐ Reshape and stitch window predictions
frames_per_window = logits.shape[1]
logits = logits.reshape(batch_size, num_windows, frames_per_window, -1)
logits = windowing.stich_window_predictions(
logits,
original_audio_length=audio_batch.size(2),
cnn_output_size=frames_per_window,
sample_rate=sample_rate,
window_size_ms=window_size_ms,
stride_ms=stride_ms
)
print(f"๐ Output shape: {logits.shape}") # [B, T, 66]
```
</details>
---
## ๐ Output Format
- ๐ค **Phoneme logits**: `(time_frames, 66)` - 66 IPA phoneme classes
- ๐ท๏ธ **Group logits**: `(time_frames, 16)` - 16 phoneme groups
- โฑ๏ธ **Time resolution**: ~16ms per frame (~62.5 FPS)
- ๐บ๏ธ **Mapping**: See [mapper.py](https://huggingface.co/Tabahi/CUPE-2i/blob/main/mapper.py) for phoneme-to-index mapping
---
## โจ Key Features
- ๐ **No manual downloads** - automatic via Hugging Face Hub
- ๐ **Multiple languages** - English + 37 other languages
- โก **Real-time capable** - faster than real-time on GPU
- โฑ๏ธ **Frame-level timing** - 16ms resolution
- ๐ฏ **Contextless** - each frame processed independently
---
## ๐จ Custom Dataset for Training
<details>
<summary>๐ง <strong>Training Setup</strong></summary>
- ๐ See [mapper.py](https://huggingface.co/Tabahi/CUPE-2i/blob/main/mapper.py) for tokenization (66 phonemes + 16 groups)
- ๐ค Use IPA-based grapheme-to-phoneme tools: [Espeak-ng](https://pypi.org/project/espeakng/)
- ๐ Convert words to IPA sequences: [phonemizer](https://pypi.org/project/phonemizer/3.0.1/)
- ๐บ๏ธ Map IPA phonemes to tokens: [IPAPhonemeMapper](https://github.com/tabahi/IPAPhonemeMapper)
**Token Mapping:**
- Token 0: ๐ Silence
- Tokens 1-65: ๐ค IPA phonemes
- Token 66: ๐ป Blank/noise
</details>
---
## ๐ฏ Use Cases
- โฐ **Timestamp alignment** (examples coming soon)
- ๐ **Speech analysis**
- ๐ **Phoneme recognition**
- ๐ต **Audio processing**
---
## ๐ Visual Results
### ๐ Sample Probabilities Timeline

### ๐ Multilingual Confusion Plot

### ๐ฌ๐ง English-only Confusion Plot

---
## ๐ Citation
๐ **Paper**: [CUPE: Contextless Universal Phoneme Encoder for Language-Agnostic Speech Processing](https://arxiv.org/abs/2508.15316)
```bibtex
@inproceedings{rehman2025cupe,
title = {CUPE: Contextless Universal Phoneme Encoder for Language-Agnostic Speech Processing},
author = {Abdul Rehman and Jian-Jun Zhang and Xiaosong Yang},
booktitle = {Proceedings of the 8th International Conference on Natural Language and Speech Processing (ICNLSP 2025)},
year = {2025},
organization = {ICNLSP},
publisher = {International Conference on Natural Language and Speech Processing},
}
```
---
<div align="center">
### ๐ **Star this repository if you find it helpful!** โญ
[](https://github.com/tabahi/contexless-phonemes-CUPE)
[](https://huggingface.co/Tabahi/CUPE-2i)
</div> |