Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,26 +1,6 @@
|
|
| 1 |
-
# CUPE: Contextless Universal Phoneme Encoder
|
| 2 |
-
|
| 3 |
-
A PyTorch model for contextless phoneme prediction from speech audio. CUPE processes 120ms frames independently, ensuring each frame's embeddings are acoustically pure—unlike transformer models that mix context across frames.
|
| 4 |
-
|
| 5 |
-
## Trained Models
|
| 6 |
-
|
| 7 |
-
Two 30.1M parameter models are available in the [checkpoints directory](https://huggingface.co/Tabahi/CUPE-2i/tree/main/ckpt).
|
| 8 |
-
|
| 9 |
-
## Datasets
|
| 10 |
-
|
| 11 |
-
- **LibriSpeech ASR corpus (SR12):** 960 hours of English speech from train-100, train-360, and train-500 splits.
|
| 12 |
-
- **Multilingual LibriSpeech (MLS) (SLR94):** 800 hours total, with 100 hours each for 8 languages: `pl`, `pt`, `it`, `es`, `fr`, `nl`, `de`, `en`. Dataset's train/test/val splits.
|
| 13 |
-
- **MSWC Multilingual Spoken Words Corpus:** 240 hours from 50 languages (max 10 hours/language).
|
| 14 |
-
- **Training:** 38 languages (`en`, `de`, `fr`, `ca`, `es`, `fa`, `it`, `ru`, `pl`, `eu`, `cy`, `eo`, `nl`, `pt`, `tt`, `cs`, `tr`, `et`, `ky`, `id`, `sv-SE`, `ar`, `el`, `ro`, `lv`, `sl`, `zh-CN`, `ga-IE`, `ta`, `vi`, `gn`, `or`)
|
| 15 |
-
- **Testing:** 6 languages (`lt`, `mt`, `ia`, `sk`, `ka`, `as`)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
---
|
| 20 |
-
language:
|
| 21 |
-
|
| 22 |
-
- multilingual
|
| 23 |
-
license: GPL-3.0
|
| 24 |
library_name: pytorch
|
| 25 |
pipeline_tag: audio-classification
|
| 26 |
tags:
|
|
@@ -40,10 +20,28 @@ model-index:
|
|
| 40 |
- name: Phoneme Error Rate
|
| 41 |
type: phoneme-error-rate
|
| 42 |
value: 0.25
|
| 43 |
-
- name: Phoneme Group Error Rate
|
| 44 |
type: phoneme-group-error-rate
|
| 45 |
value: 0.23
|
| 46 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
## Metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language: en
|
| 3 |
+
license: gpl-3.0
|
|
|
|
|
|
|
| 4 |
library_name: pytorch
|
| 5 |
pipeline_tag: audio-classification
|
| 6 |
tags:
|
|
|
|
| 20 |
- name: Phoneme Error Rate
|
| 21 |
type: phoneme-error-rate
|
| 22 |
value: 0.25
|
| 23 |
+
- name: Phoneme Group Error Rate
|
| 24 |
type: phoneme-group-error-rate
|
| 25 |
value: 0.23
|
| 26 |
---
|
| 27 |
+
# CUPE: Contextless Universal Phoneme Encoder
|
| 28 |
+
|
| 29 |
+
A PyTorch model for contextless phoneme prediction from speech audio. CUPE processes 120ms frames independently, ensuring each frame's embeddings are acoustically pure—unlike transformer models that mix context across frames.
|
| 30 |
+
|
| 31 |
+
## Trained Models
|
| 32 |
+
|
| 33 |
+
Two 30.1M parameter models are available in the [checkpoints directory](https://huggingface.co/Tabahi/CUPE-2i/tree/main/ckpt).
|
| 34 |
+
|
| 35 |
+
## Datasets
|
| 36 |
+
|
| 37 |
+
- **LibriSpeech ASR corpus (SR12):** 960 hours of English speech from train-100, train-360, and train-500 splits.
|
| 38 |
+
- **Multilingual LibriSpeech (MLS) (SLR94):** 800 hours total, with 100 hours each for 8 languages: `pl`, `pt`, `it`, `es`, `fr`, `nl`, `de`, `en`. Dataset's train/test/val splits.
|
| 39 |
+
- **MSWC Multilingual Spoken Words Corpus:** 240 hours from 50 languages (max 10 hours/language).
|
| 40 |
+
- **Training:** 38 languages (`en`, `de`, `fr`, `ca`, `es`, `fa`, `it`, `ru`, `pl`, `eu`, `cy`, `eo`, `nl`, `pt`, `tt`, `cs`, `tr`, `et`, `ky`, `id`, `sv-SE`, `ar`, `el`, `ro`, `lv`, `sl`, `zh-CN`, `ga-IE`, `ta`, `vi`, `gn`, `or`)
|
| 41 |
+
- **Testing:** 6 languages (`lt`, `mt`, `ia`, `sk`, `ka`, `as`)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
|
| 46 |
|
| 47 |
## Metrics
|