bert-ner-it

This model is a fine-tuned version of dbmdz/bert-base-italian-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1663
  • Loc: {'precision': 0.902371288186285, 'recall': 0.9182608695652174, 'f1': 0.9102467406529469, 'number': 4600}
  • Org: {'precision': 0.8682170542635659, 'recall': 0.8707482993197279, 'f1': 0.8694808345463367, 'number': 4116}
  • Per: {'precision': 0.9575375863470134, 'recall': 0.9596823457544288, 'f1': 0.9586087663988611, 'number': 4911}
  • Overall Precision: 0.9119
  • Overall Recall: 0.9188
  • Overall F1: 0.9153
  • Overall Accuracy: 0.9666

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.6.0+cu124
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
2
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for PaoloPangallo/bert-ner-it

Finetuned
(7)
this model

Evaluation results