bert-ner-it
This model is a fine-tuned version of dbmdz/bert-base-italian-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1663
- Loc: {'precision': 0.902371288186285, 'recall': 0.9182608695652174, 'f1': 0.9102467406529469, 'number': 4600}
- Org: {'precision': 0.8682170542635659, 'recall': 0.8707482993197279, 'f1': 0.8694808345463367, 'number': 4116}
- Per: {'precision': 0.9575375863470134, 'recall': 0.9596823457544288, 'f1': 0.9586087663988611, 'number': 4911}
- Overall Precision: 0.9119
- Overall Recall: 0.9188
- Overall F1: 0.9153
- Overall Accuracy: 0.9666
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Framework versions
- Transformers 4.57.1
- Pytorch 2.6.0+cu124
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for PaoloPangallo/bert-ner-it
Base model
dbmdz/bert-base-italian-cased