YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Fine-Tuned LLaMA-3-8B CEFR Model

This is a fine-tuned version of unsloth/llama-3-8b-instruct-bnb-4bit for CEFR-level sentence generation, evaluated with a fine-tuned classifier from Mr-FineTuner/Skripsi_validator_best_model.

  • Base Model: unsloth/llama-3-8b-instruct-bnb-4bit
  • Fine-Tuning: LoRA with balanced dataset
  • Training Details:
    • Dataset: CEFR-level sentences
    • LoRA Parameters: r=32, lora_alpha=32, lora_dropout=0.5
    • Training Args: learning_rate=1e-5, batch_size=8, epochs=0.01, cosine scheduler
    • Optimizer: adamw_8bit
    • Early Stopping: Patience=2, threshold=0.01
  • Evaluation Metrics (Exact Matches):
    • CEFR Classifier Accuracy: 0.283
    • Precision (Macro): 0.267
    • Recall (Macro): 0.283
    • F1-Score (Macro): 0.267
  • Evaluation Metrics (Within ±1 Level):
    • CEFR Classifier Accuracy: 0.850
    • Precision (Macro): 0.878
    • Recall (Macro): 0.850
    • F1-Score (Macro): 0.838
  • Other Metrics:
    • Perplexity: 22.487
    • Diversity (Unique Sentences): 0.983
    • Inference Time (ms): 5981.186
    • Model Size (GB): 8.0 # Updated to reflect PyTorch format
    • Robustness (F1): 0.253
  • Confusion Matrix (Exact Matches):
  • Confusion Matrix (Within ±1 Level):
  • Per-Class Confusion Metrics (Exact Matches):
    • A1: TP=0, FP=0, FN=10, TN=50
    • A2: TP=2, FP=5, FN=8, TN=45
    • B1: TP=3, FP=17, FN=7, TN=33
    • B2: TP=4, FP=11, FN=6, TN=39
    • C1: TP=4, FP=6, FN=6, TN=44
    • C2: TP=4, FP=4, FN=6, TN=46
  • Per-Class Confusion Metrics (Within ±1 Level):
    • A1: TP=4, FP=0, FN=6, TN=50
    • A2: TP=9, FP=1, FN=1, TN=49
    • B1: TP=9, FP=5, FN=1, TN=45
    • B2: TP=9, FP=2, FN=1, TN=48
    • C1: TP=10, FP=0, FN=0, TN=50
    • C2: TP=10, FP=1, FN=0, TN=49
  • Usage:
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    model = AutoModelForCausalLM.from_pretrained("Mr-FineTuner/With_synthetic_Dataset_llama-001epoch")
    tokenizer = AutoTokenizer.from_pretrained("Mr-FineTuner/With_synthetic_Dataset_llama-001epoch")
    
    # Example inference
    prompt = "<|user|>Generate a CEFR B1 level sentence.<|end|>"
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=50)
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
    Uploaded using huggingface_hub.
    
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support