YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Fine-Tuned LLaMA-3-8B CEFR Model
This is a fine-tuned version of unsloth/llama-3-8b-instruct-bnb-4bit for CEFR-level sentence generation, evaluated with a fine-tuned classifier from Mr-FineTuner/Skripsi_validator_best_model.
- Base Model: unsloth/llama-3-8b-instruct-bnb-4bit
- Fine-Tuning: LoRA with balanced dataset
- Training Details:
- Dataset: CEFR-level sentences
- LoRA Parameters: r=32, lora_alpha=32, lora_dropout=0.5
- Training Args: learning_rate=1e-5, batch_size=8, epochs=0.01, cosine scheduler
- Optimizer: adamw_8bit
- Early Stopping: Patience=2, threshold=0.01
- Evaluation Metrics (Exact Matches):
- CEFR Classifier Accuracy: 0.283
- Precision (Macro): 0.267
- Recall (Macro): 0.283
- F1-Score (Macro): 0.267
- Evaluation Metrics (Within ±1 Level):
- CEFR Classifier Accuracy: 0.850
- Precision (Macro): 0.878
- Recall (Macro): 0.850
- F1-Score (Macro): 0.838
- Other Metrics:
- Perplexity: 22.487
- Diversity (Unique Sentences): 0.983
- Inference Time (ms): 5981.186
- Model Size (GB): 8.0 # Updated to reflect PyTorch format
- Robustness (F1): 0.253
- Confusion Matrix (Exact Matches):
- CSV: confusion_matrix_exact.csv
- Image: confusion_matrix_exact.png
- Confusion Matrix (Within ±1 Level):
- Per-Class Confusion Metrics (Exact Matches):
- A1: TP=0, FP=0, FN=10, TN=50
- A2: TP=2, FP=5, FN=8, TN=45
- B1: TP=3, FP=17, FN=7, TN=33
- B2: TP=4, FP=11, FN=6, TN=39
- C1: TP=4, FP=6, FN=6, TN=44
- C2: TP=4, FP=4, FN=6, TN=46
- Per-Class Confusion Metrics (Within ±1 Level):
- A1: TP=4, FP=0, FN=6, TN=50
- A2: TP=9, FP=1, FN=1, TN=49
- B1: TP=9, FP=5, FN=1, TN=45
- B2: TP=9, FP=2, FN=1, TN=48
- C1: TP=10, FP=0, FN=0, TN=50
- C2: TP=10, FP=1, FN=0, TN=49
- Usage:
from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Mr-FineTuner/With_synthetic_Dataset_llama-001epoch") tokenizer = AutoTokenizer.from_pretrained("Mr-FineTuner/With_synthetic_Dataset_llama-001epoch") # Example inference prompt = "<|user|>Generate a CEFR B1 level sentence.<|end|>" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) Uploaded using huggingface_hub.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support