YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)
    num_train_epochs=0.1,

Fine-Tuned LLaMA-3-8B CEFR Model

This is a fine-tuned version of unsloth/llama-3-8b-instruct-bnb-4bit for CEFR-level sentence generation.

  • Base Model: unsloth/llama-3-8b-instruct-bnb-4bit
  • Fine-Tuning: LoRA with SMOTE-balanced dataset
  • Training Details:
    • Dataset: CEFR-level sentences with SMOTE and undersampling for balance
    • LoRA Parameters: r=32, lora_alpha=32, lora_dropout=0.5
    • Training Args: learning_rate=2e-5, batch_size=8, epochs=0.1, cosine scheduler
    • Optimizer: adamw_8bit
    • Early Stopping: Patience=3, threshold=0.01
  • Usage:
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    model = AutoModelForCausalLM.from_pretrained("Mr-FineTuner/Test___01")
    tokenizer = AutoTokenizer.from_pretrained("Mr-FineTuner/Test___01")
    
    # Example inference
    prompt = "<|user|>Generate a CEFR B1 level sentence.<|end|>"
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=50)
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
    

Uploaded using huggingface_hub.

import unsloth from unsloth import FastLanguageModel, is_bfloat16_supported import torch import pandas as pd from datasets import Dataset from sklearn.utils import resample from transformers import Trainer, TrainingArguments, EarlyStoppingCallback, AutoModelForCausalLM, AutoTokenizer from trl import SFTTrainer from sentence_transformers import SentenceTransformer from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler from imblearn.pipeline import Pipeline import numpy as np import wandb import os from huggingface_hub import create_repo, upload_folder

Verify environment

print(f"PyTorch version: {torch.version}") print(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU: {torch.cuda.get_device_name(0)}")

Cell 1: Load model and tokenizer

max_seq_length = 2048 dtype = None load_in_4bit = True

try: model, tokenizer = FastLanguageModel.from_pretrained( model_name="unsloth/llama-3-8b-instruct-bnb-4bit", max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=load_in_4bit, use_exact_model_name=True, device_map="auto" ) print("Model and tokenizer loaded successfully with Unsloth!") except Exception as e: print(f"Error loading model with Unsloth: {e}") print("Falling back to transformers...") model_name = "unsloth/llama-3-8b-instruct-bnb-4bit" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, device_map="auto" ) print("Model and tokenizer loaded with transformers!")

Cell 2: Configure LoRA

try: model = FastLanguageModel.get_peft_model( model, r=32, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], lora_alpha=32, lora_dropout=0.5, bias="none", use_gradient_checkpointing="unsloth", random_state=3407, ) print("LoRA configuration applied successfully!") except Exception as e: print(f"Error applying LoRA: {e}") raise

Cell 3: Load datasets

train_file = "train_merged_output.txt" val_file = "dev_merged_output.txt" test_file = "test_merged_output.txt"

cefr_mapping = {1: "A1", 2: "A2", 3: "B1", 4: "B2", 5: "C1", 6: "C2"}

def load_and_reformat(file_path): try: with open(file_path, "r") as f: lines = f.readlines() reformatted_data = [] for line in lines: parts = line.strip().split("\t") sentence = parts[0] levels = parts[1:] for level in levels: level_int = int(level) cefr_level = cefr_mapping.get(level_int, "Unknown") reformatted_data.append({"sentence": sentence, "level": cefr_level}) return pd.DataFrame(reformatted_data) except Exception as e: print(f"Error loading file {file_path}: {e}") raise

train_dataset = load_and_reformat(train_file) val_dataset = load_and_reformat(val_file) test_dataset = load_and_reformat(test_file)

print("Train dataset - Column names:", train_dataset.columns.tolist()) print("Train dataset - First 5 rows:\n", train_dataset.head()) print("Validation dataset - First 5 rows:\n", val_dataset.head()) print("Test dataset - First 5 rows:\n", test_dataset.head())

expected_columns = {"sentence", "level"} for name, dataset in [("Train", train_dataset), ("Validation", val_dataset), ("Test", test_dataset)]: if not expected_columns.issubset(dataset.columns): missing = expected_columns - set(dataset.columns) print(f"Warning: {name} dataset missing expected columns: {missing}")

Cell 4: Rename columns

column_mapping = {"sentence": "sentence", "level": "level"} train_dataset = train_dataset.rename(columns=column_mapping) val_dataset = val_dataset.rename(columns=column_mapping) test_dataset = test_dataset.rename(columns=column_mapping)

print("Train dataset - Renamed column names:", train_dataset.columns.tolist()) print("Train dataset - First row after renaming:\n", train_dataset.head(1))

Cell 5: Convert to HF Dataset and format

train_dataset_hf = Dataset.from_pandas(train_dataset) val_dataset_hf = Dataset.from_pandas(val_dataset) test_dataset_hf = Dataset.from_pandas(test_dataset)

def format_func(example): return { "text": ( f"<|user|>\nGenerate a CEFR {example['level']} level sentence.<|end|>\n" f"<|assistant|>\n{example['sentence']}<|end|>\n" ), "level": example['level'] }

train_dataset_transformed = train_dataset_hf.map(format_func) val_dataset_transformed = val_dataset_hf.map(format_func) test_dataset_transformed = test_dataset_hf.map(format_func)

train_dataset_transformed = train_dataset_transformed.remove_columns(['sentence']) val_dataset_transformed = val_dataset_transformed.remove_columns(['sentence']) test_dataset_transformed = test_dataset_transformed.remove_columns(['sentence'])

print("Train dataset columns after transformation:", train_dataset_transformed.column_names) print("Example transformed text:", train_dataset_transformed[0]["text"]) print("Train CEFR distribution:\n", train_dataset["level"].value_counts()) print("Validation CEFR distribution:\n", val_dataset["level"].value_counts()) print("Test CEFR distribution:\n", test_dataset["level"].value_counts())

Cell 6: Rebalance validation and test sets

train_proportions = { 'A1': 0.0346, 'A2': 0.1789, 'B1': 0.3454, 'B2': 0.3101, 'C1': 0.1239, 'C2': 0.0072 }

def rebalance_dataset(df, total_samples, proportions, random_state=3407): resampled_dfs = [] for level, proportion in proportions.items(): level_df = df[df['level'] == level] n_samples = int(total_samples * proportion) if len(level_df) > n_samples: level_df_resampled = resample(level_df, n_samples=n_samples, random_state=random_state) else: level_df_resampled = resample(level_df, n_samples=n_samples, replace=True, random_state=random_state) resampled_dfs.append(level_df_resampled) return pd.concat(resampled_dfs).sample(frac=1, random_state=random_state).reset_index(drop=True)

val_df = val_dataset.copy() new_val_df = rebalance_dataset(val_df, len(val_df), train_proportions) new_val_dataset = Dataset.from_pandas(new_val_df) new_val_dataset_transformed = new_val_dataset.map(format_func) new_val_dataset_transformed = new_val_dataset_transformed.remove_columns(['sentence'])

test_df = test_dataset.copy() new_test_df = rebalance_dataset(test_df, len(test_df), train_proportions) new_test_dataset = Dataset.from_pandas(new_test_df) new_test_dataset_transformed = new_test_dataset.map(format_func) new_test_dataset_transformed = new_test_dataset_transformed.remove_columns(['sentence'])

print("New Validation CEFR distribution:\n", new_val_df["level"].value_counts(normalize=True)) print("New Test CEFR distribution:\n", new_test_df["level"].value_counts(normalize=True))

Cell 7: Apply SMOTE and undersampling to balance training dataset

evaluator_model = SentenceTransformer("BAAI/bge-base-en-v1.5")

def apply_smote_to_dataset(df, target_proportions, random_state=3407): print("Generating sentence embeddings...") embeddings = evaluator_model.encode(df["sentence"].tolist(), show_progress_bar=True)

level_to_idx = {'A1': 0, 'A2': 1, 'B1': 2, 'B2': 3, 'C1': 4, 'C2': 5}
labels = df["level"].map(level_to_idx).values

class_counts = df["level"].value_counts().to_dict()
print("Original class counts:", class_counts)

total_samples = len(df)
target_samples = {
    level_to_idx[level]: max(int(total_samples * proportion), class_counts.get(level, 0))
    for level, proportion in target_proportions.items()
}
print("Target sample counts:", target_samples)

pipeline = Pipeline([
    ('oversample', SMOTE(sampling_strategy=target_samples, random_state=random_state)),
    ('undersample', RandomUnderSampler(sampling_strategy=target_samples, random_state=random_state))
])

print("Applying SMOTE and undersampling...")
X_resampled, y_resampled = pipeline.fit_resample(embeddings, labels)

idx_to_level = {v: k for k, v in level_to_idx.items()}
resampled_data = []
for embedding, label in zip(X_resampled, y_resampled):
    # Find the closest original embedding
    distances = np.linalg.norm(embeddings - embedding, axis=1)
    closest_idx = np.argmin(distances)
    sentence = df.iloc[closest_idx]["sentence"]
    resampled_data.append({
        "sentence": sentence,
        "level": idx_to_level[label]
    })

return pd.DataFrame(resampled_data)

train_dataset_smote = apply_smote_to_dataset(train_dataset, train_proportions) train_dataset_hf = Dataset.from_pandas(train_dataset_smote) train_dataset_transformed = train_dataset_hf.map(format_func) train_dataset_transformed = train_dataset_transformed.remove_columns(['sentence'])

print("SMOTE-balanced Train CEFR distribution:\n", train_dataset_smote["level"].value_counts(normalize=True))

Cell 8: Training setup

wandb.init(project="Phi-3-CEFR-finetuning_v3", config={ "model": "unsloth/llama-3-8b-instruct-bnb-4bit", "strategy": "gradient_checkpointing", "learning_rate": 2e-5, "batch_size": 8, "lora_dropout": 0.5, })

trainer = SFTTrainer( model=model, tokenizer=tokenizer, train_dataset=train_dataset_transformed.shuffle(seed=3407), eval_dataset=new_val_dataset_transformed, dataset_text_field="text", max_seq_length=max_seq_length, callbacks=[ EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=0.01), ], args=TrainingArguments( per_device_train_batch_size=8, gradient_accumulation_steps=1, warmup_ratio=0.1, num_train_epochs=0.1, learning_rate=2e-5, fp16=not is_bfloat16_supported(), bf16=is_bfloat16_supported(), logging_steps=50, optim="adamw_8bit", weight_decay=0.3, lr_scheduler_type="cosine", eval_strategy="steps", eval_steps=200, save_strategy="steps", save_steps=200, output_dir="outputs", load_best_model_at_end=True, metric_for_best_model="eval_loss", greater_is_better=False, seed=3407, report_to="wandb", run_name="phi3-cefr-lora-v14", gradient_checkpointing=True, ), )

Cell 9: Training and test evaluation

try: trainer_stats = trainer.train() print("Training completed successfully!") print("Trainer stats:", trainer_stats) except Exception as e: print(f"Error during training: {e}") raise

Tokenize test dataset

def tokenize_function(example): return tokenizer(example["text"], truncation=True, max_length=max_seq_length, padding=False)

new_test_dataset_tokenized = new_test_dataset_transformed.map(tokenize_function, batched=True) new_test_dataset_tokenized = new_test_dataset_tokenized.remove_columns(['text']) print("Test dataset structure:", new_test_dataset_tokenized[0])

Evaluate on tokenized test dataset

try: eval_results = trainer.evaluate(new_test_dataset_tokenized) print("Test evaluation results:", eval_results) except Exception as e: print(f"Error during evaluation: {e}") raise

Cell 10: Save and upload the model to Hugging Face

Save the fine-tuned model locally

output_dir = "./fine_tuned_model" try: model = model.merge_and_unload() # Merge LoRA weights with base model model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) print(f"Model and tokenizer saved locally to {output_dir}") except Exception as e: print(f"Error saving model locally: {e}") raise

Create a new repository on Hugging Face

repo_id = "Mr-FineTuner/Test___01" try: create_repo(repo_id, private=False) # Set private=True for a private repo print(f"Repository {repo_id} created successfully!") except Exception as e: print(f"Error creating repository: {e}")

Upload the model to Hugging Face

try: upload_folder( folder_path=output_dir, repo_id=repo_id, repo_type="model", commit_message="Upload fine-tuned LLaMA-3-8B CEFR model" ) print(f"Model uploaded successfully to https://huggingface.co/{repo_id}") except Exception as e: print(f"Error uploading model: {e}") raise

Create and upload a model card

model_card = """

Fine-Tuned LLaMA-3-8B CEFR Model

This is a fine-tuned version of unsloth/llama-3-8b-instruct-bnb-4bit for CEFR-level sentence generation.

  • Base Model: unsloth/llama-3-8b-instruct-bnb-4bit
  • Fine-Tuning: LoRA with SMOTE-balanced dataset
  • Training Details:
    • Dataset: CEFR-level sentences with SMOTE and undersampling for balance
    • LoRA Parameters: r=32, lora_alpha=32, lora_dropout=0.5
    • Training Args: learning_rate=2e-5, batch_size=8, epochs=0.1, cosine scheduler
    • Optimizer: adamw_8bit
    • Early Stopping: Patience=3, threshold=0.01
  • Usage:
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    model = AutoModelForCausalLM.from_pretrained("Mr-FineTuner/Test___01")
    tokenizer = AutoTokenizer.from_pretrained("Mr-FineTuner/Test___01")
    
    # Example inference
    prompt = "<|user|>Generate a CEFR B1 level sentence.<|end|>"
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=50)
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
    

Uploaded using huggingface_hub. """ try: with open(f"{output_dir}/README.md", "w") as f: f.write(model_card) upload_folder( folder_path=output_dir, repo_id=repo_id, repo_type="model", commit_message="Add model card" ) print(f"Model card uploaded successfully!") except Exception as e: print(f"Error uploading model card: {e}") raise

Downloads last month
6
Safetensors
Model size
8B params
Tensor type
F16
F32
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support