YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Non-Fine-Tuned Gemma-7B CEFR Evaluation

This repository contains the evaluation results of the base unsloth/gemma-7b-bnb-4bit model for CEFR-level sentence generation, without fine-tuning, as part of an ablation study. The model is evaluated using a fine-tuned classifier from Mr-FineTuner/Skripsi_validator_best_model.

  • Base Model: unsloth/gemma-7b-bnb-4bit
  • Evaluation Details:
    • Dataset: Rebalanced test dataset (test_merged_output.txt), which was also used to train and evaluate the classifier, potentially introducing bias.
    • No fine-tuning performed; base model used directly.
    • Classifier: MLP classifier trained on train_merged_output.txt, dev_merged_output.txt, and test_merged_output.txt for CEFR level prediction.
  • Evaluation Metrics (Exact Matches):
    • CEFR Classifier Accuracy: 0.167
    • Precision (Macro): 0.028
    • Recall (Macro): 0.167
    • F1-Score (Macro): 0.048
  • Evaluation Metrics (Within ±1 Level):
    • CEFR Classifier Accuracy: 0.500
    • Precision (Macro): 0.375
    • Recall (Macro): 0.500
    • F1-Score (Macro): 0.400
  • Other Metrics:
    • Perplexity: 55.377
    • Diversity (Unique Sentences): 0.100
    • Inference Time (ms): 5461.263
    • Model Size (GB): 4.2
    • Robustness (F1): 0.045
  • Confusion Matrix (Exact Matches):
  • Confusion Matrix (Within ±1 Level):
  • Per-Class Confusion Metrics (Exact Matches):
    • A1: TP=0, FP=0, FN=10, TN=50
    • A2: TP=0, FP=0, FN=10, TN=50
    • B1: TP=10, FP=50, FN=0, TN=0
    • B2: TP=0, FP=0, FN=10, TN=50
    • C1: TP=0, FP=0, FN=10, TN=50
    • C2: TP=0, FP=0, FN=10, TN=50
  • Per-Class Confusion Metrics (Within ±1 Level):
    • A1: TP=0, FP=0, FN=10, TN=50
    • A2: TP=10, FP=0, FN=0, TN=50
    • B1: TP=10, FP=30, FN=0, TN=20
    • B2: TP=10, FP=0, FN=0, TN=50
    • C1: TP=0, FP=0, FN=10, TN=50
    • C2: TP=0, FP=0, FN=10, TN=50
  • Note on Bias:
    • The test dataset used for evaluation (test_merged_output.txt) was part of the training and evaluation data for the classifier (Mr-FineTuner/Skripsi_validator_best_model). This may lead to inflated performance metrics due to the classifier's familiarity with the dataset. For a more robust evaluation, a new dataset not used in classifier training is recommended.
  • Usage:
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    model = AutoModelForCausalLM.from_pretrained("unsloth/gemma-7b-bnb-4bit")
    tokenizer = AutoTokenizer.from_pretrained("unsloth/gemma-7b-bnb-4bit")
    
    # Example inference
    prompt = "<|user|>Generate a CEFR B1 level sentence.<|end|>"
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=50)
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))
    

Uploaded using huggingface_hub.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support