YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Non-Fine-Tuned Gemma-7B CEFR Evaluation
This repository contains the evaluation results of the base unsloth/gemma-7b-bnb-4bit model for CEFR-level sentence generation, without fine-tuning, as part of an ablation study. The model is evaluated using a fine-tuned classifier from Mr-FineTuner/Skripsi_validator_best_model.
- Base Model: unsloth/gemma-7b-bnb-4bit
- Evaluation Details:
- Dataset: Rebalanced test dataset (
test_merged_output.txt), which was also used to train and evaluate the classifier, potentially introducing bias. - No fine-tuning performed; base model used directly.
- Classifier: MLP classifier trained on
train_merged_output.txt,dev_merged_output.txt, andtest_merged_output.txtfor CEFR level prediction.
- Dataset: Rebalanced test dataset (
- Evaluation Metrics (Exact Matches):
- CEFR Classifier Accuracy: 0.167
- Precision (Macro): 0.028
- Recall (Macro): 0.167
- F1-Score (Macro): 0.048
- Evaluation Metrics (Within ±1 Level):
- CEFR Classifier Accuracy: 0.500
- Precision (Macro): 0.375
- Recall (Macro): 0.500
- F1-Score (Macro): 0.400
- Other Metrics:
- Perplexity: 55.377
- Diversity (Unique Sentences): 0.100
- Inference Time (ms): 5461.263
- Model Size (GB): 4.2
- Robustness (F1): 0.045
- Confusion Matrix (Exact Matches):
- CSV: confusion_matrix_exact.csv
- Image: confusion_matrix_exact.png
- Confusion Matrix (Within ±1 Level):
- Per-Class Confusion Metrics (Exact Matches):
- A1: TP=0, FP=0, FN=10, TN=50
- A2: TP=0, FP=0, FN=10, TN=50
- B1: TP=10, FP=50, FN=0, TN=0
- B2: TP=0, FP=0, FN=10, TN=50
- C1: TP=0, FP=0, FN=10, TN=50
- C2: TP=0, FP=0, FN=10, TN=50
- Per-Class Confusion Metrics (Within ±1 Level):
- A1: TP=0, FP=0, FN=10, TN=50
- A2: TP=10, FP=0, FN=0, TN=50
- B1: TP=10, FP=30, FN=0, TN=20
- B2: TP=10, FP=0, FN=0, TN=50
- C1: TP=0, FP=0, FN=10, TN=50
- C2: TP=0, FP=0, FN=10, TN=50
- Note on Bias:
- The test dataset used for evaluation (
test_merged_output.txt) was part of the training and evaluation data for the classifier (Mr-FineTuner/Skripsi_validator_best_model). This may lead to inflated performance metrics due to the classifier's familiarity with the dataset. For a more robust evaluation, a new dataset not used in classifier training is recommended.
- The test dataset used for evaluation (
- Usage:
from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("unsloth/gemma-7b-bnb-4bit") tokenizer = AutoTokenizer.from_pretrained("unsloth/gemma-7b-bnb-4bit") # Example inference prompt = "<|user|>Generate a CEFR B1 level sentence.<|end|>" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Uploaded using huggingface_hub.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support