metadata
license: mit
tags:
- peft
- lora
- transformers
- roberta
- phishing-detection
language:
- en
🛡️ Phishing URL Detector — RoBERTa + LoRA
This repository stores a LoRA adapter for roberta-base, fine‑tuned for phishing URL detection.
⚠️ Note: The 🤗 Inference Widget is disabled because this uses PEFT LoRA adapters. Use the code snippet below to run inference locally.
📦 Model Details
- Base:
roberta-base - Adapter Type: LoRA via PEFT
- Task: Phishing vs Legitimate URL classification
- Model Size: ~8.4 MB
- Files Included (9 total):
adapter_model.safetensors— LoRA weights (~3.6 MB)adapter_config.jsontokenizer_config.jsonspecial_tokens_map.jsonvocab.jsonmerges.txt
📈 Performance
| Metric | Score |
|---|---|
| Accuracy | 99.81% |
| Precision | 99.99% |
| Recall | 99.68% |
| F1 Score | 99.84% |
| AUC | 99.78% |
🧪 Usage in Python
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification
from peft import PeftModel, PeftConfig
import torch
# Load LoRA adapter with base model
config = PeftConfig.from_pretrained("Irshadcse2k16/PhishUrlDetection-RoBERTa")
base_model = RobertaForSequenceClassification.from_pretrained(
config.base_model_name_or_path, num_labels=2
)
model = PeftModel.from_pretrained(
base_model, "Irshadcse2k16/PhishUrlDetection-RoBERTa"
)
tokenizer = RobertaTokenizerFast.from_pretrained(
"Irshadcse2k16/PhishUrlDetection-RoBERTa"
)
# Inference
url = "http://secure-login-update.com"
inputs = tokenizer(url, return_tensors="pt", truncation=True, padding=True, max_length=128)
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.softmax(logits, dim=1)
label = torch.argmax(probs).item()
print("🚨 Phishing" if label == 1 else "✅ Legitimate")